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Linked systems of symmetric designs

Brian G. Kodalen

Abstract A linked system of symmetric designs (LSSD) is a w-partite graph (w > 2) where the
incidence between any two parts corresponds to a symmetric design and the designs arising from
three parts are related. The original construction for LSSDs by Goethals used Kerdock sets, in
which v is a power of two. Some four decades later, new examples were given by Davis et. al.
and Jedwab et. al. using difference sets, again with v a power of two. In this paper we develop
a connection between LSSDs and “linked simplices”, full-dimensional regular simplices with
two possible inner products between vertices of distinct simplices. We then use this geometric
connection to construct sets of equiangular lines and to find an equivalence between regular
unbiased Hadamard matrices and certain LSSDs with Menon parameters. We then construct
examples of non-trivial LSSDs in which w can be made arbitarily large for fixed even part of
v. Finally we survey the known infinite families of symmetric designs and show, using basic
number theoretic conditions, that w = 2 in most cases.

1. Introduction
In [3], Cameron investigated groups with inequivalent doubly-transitive permutation
representations having the same permutation character and introduced the notion of
a linked system of symmetric designs (LSSD). One such example arising from Kerdock
codes was communicated by Goethals and later published in [8]. These structures in
the homogeneous case were then further studied by Noda [16] where he bounded the
number of fibers in a LSSD in terms of the design parameters induced between any
two of the fibers. Using the specific (16, 6, 2) designs, Mathon [14] classified all in-
equivalent LSSDs on these parameters via a computer search, finding that there were
many inequivalent LSSDs with two or three fibers but only the scheme described by
Geothals worked with four or more fibers. Later, Van Dam proved in [19] the equiv-
alence between these objects and 3-class Q-antipodal association schemes. Martin,
Muzychuk, and Williford found a connection to mutually unbiased bases in certain
dimensions [13]. Finally Davis, Martin, Polhill [6] and Jedwab, Li, Simon [11] built
more non-trivial examples using difference sets in 2-groups.

We begin with a survey of known results focusing on the connection to association
schemes. We then introduce “linked simplices”, natural geometric objects which are of
interest in their own right. We then establish the equivalence of sets of linked simplices
and LSSDs. We compare three known bounds on the number of fibers and then explore
connections to structures in Euclidean space. We show how to construct equiangular
lines from arbitrary LSSDs and explore cases where LSSDs lead to real mutually
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unbiased bases (MUBs). After reviewing known examples, we focus on the case of
Menon parameters and, employing an equivalence with sets of mutually unbiased
Hadamard matrices, we construct new families of LSSDs for many values of v. In
particular, we show that one may fix the even part of v without bounding the number
of fibers in an LSSD, a result which was not previously known. In an appendix, we
survey the parameters of known infinite families of symmetric designs and determine
which of these cannot produce LSSDs with more than two fibers, noting differences
from a recent discovery by Jedwab et. al. [11] in restricted cases.

2. Homogeneous linked systems of symmetric designs
We begin by reviewing symmetric designs as these will play a central role in all that
follows. A symmetric 2-design with parameters (v, k, λ) is a set of blocks B on point
set X written as (X,B) satisfying the following three conditions:

• There are v blocks and v points (|B| = |X| = v);
• Every block contains k points and every point is contained in k blocks;
• Every pair of points is contained in λ blocks and the intersection of any pair

of blocks contains λ points.
We form an incidence matrix B for the block design, indexing rows by blocks and
columns by points, setting Bij = 1 if point j is in block i and Bij = 0 otherwise.
Finally, we note the following two equivalent equations which hold for any symmetric
2-design:

k(k − 1) = λ(v − 1),(1)
k(v − k) = (k − λ)(v − 1).(2)

We now move to a description of a homogeneous(1) linked system of symmetric designs
as described by Cameron in [3] and Noda in [16]. Consider a multipartite graph Γ on
wv vertices with vertex set partitioned into w sets of v vertices called “fibers”:

X = X1∪̇X2∪̇ · · · ∪̇Xw.

We say Γ is a linked system of symmetric designs, LSSD(v, k, λ;w) (w > 2), if it
satisfies the following three properties:

(i) no edge of Γ has both ends in the same fiber Xi;
(ii) for all 1 6 i, j 6 w with i 6= j, the induced subgraph of Γ between Xi and Xj

is the incidence graph of some (v, k, λ)-design;
(iii) there exist constants µ and ν such that for distinct h, i, j (1 6 h, i, j 6 w),

(3) a ∈ Xi, b ∈ Xj ⇒ |Γ(a) ∩ Γ(b) ∩Xh| =
{
µ a ∼ b
ν a 6∼ b

where ∼ denotes adjacency in Γ and Γ(x) denotes the neighborhood of vertex x. Ob-
serve that Γ is regular with valency k(w − 1). A specific type of LSSD introduced
by [6] called a linking system of difference sets is a LSSD where the symmetric de-
sign induced between any two fibers comes from a difference set. Recently Jedwab
et. al. [11] examined these in more detail, building new examples and proving non-
existence results for certain parameters. However, Mathon [14] showed there exist
three fiber LSSDs which do not come from difference sets and therefore these objects

(1)Here, “homogeneous” refers to the designs between fibers all having the same parameters.
For the duration of this paper, we will only concern ourselves with this case, though we drop this
clarification later and only refer to the structures as linked systems of symmetric designs.
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are not always equivalent to LSSDs. We will consider the general case, and therefore
do not assume this added structure on our symmetric designs.

In [16, Prop. 0], Noda shows that µ and ν must take one of two pairs of values
given by:

(4) ν = k(k ±
√
k − λ)

v
, µ = ν ∓

√
k − λ.

With these two possibilities for µ and ν, it becomes useful to distinguish between
the two types of LSSDs. We will refer to the LSSD as “µ-heavy” (resp., “ν-heavy”)
when µ > ν (resp., ν > µ). Note that µ 6= ν since k−λ is positive. We now show that
swapping adjacency between fibers produces another LSSD; we call this graph the
multipartite complement of Γ. We again refer to [16] for the following observation.
Proposition 2.1 (Noda). Let Γ be a LSSD(v, k, λ;w) with w > 2. If Γ is µ-
heavy (resp., ν-heavy), the multipartite complement Γ′ is a ν-heavy (resp., µ-heavy)
LSSD(v, v − k, v − 2k + λ;w).

We further find that, given v, k, and λ, only one of the outcomes in (4) is possible
for v > 3.
Lemma 2.2. Let Γ be a LSSD(v, k, λ;w) with w > 2 and 1 < k < v − 1. Then the
following hold:

(i) exactly one of k(k+s)
v and k(k−s)

v is an integer;
(ii) gcd(k, v) > 1;
(iii) gcd(s, v) > 1.

Proof. Assume first (taking complements if necessary) that k 6 v
2 . One can quickly

check that k + s < v except when (v, k, λ) = (2, 1, 0) and 0 < k − s whenever k > 1.
Then, for any x ∈ Z+, we have that if x(k±s)

v is an integer then gcd(x, v) > 1. Using
our expression for ν in (4), we see that gcd(k, v) > 1. Noting that k′ = v − k and
therefore (ii) holds: gcd(k′, v) = gcd(k, v) > 1. Now, using equation (1) and our
requirement that

√
k − λ = s, we have the two equations:

k(k ± s)
v

∓ s(k ± s)
v

= λ.

The integer ν in (4) appears as the first term in one of these equations. Therefore
we must have that either s(k+s)

v or s(k−s)
v must also be an integer, giving us (iii):

gcd(s, v) > 1. To show (i), consider that if both k(k+s)
v and k(k−s)

v are integers, then
the same must hold for both s(k+s)

v and s(k−s)
v . However, this implies 2s2

v ∈ Z+,
contradicting s2 < k 6 v

2 . �

Remark 2.3. It is noteworthy that our assumption that the LSSD exists can be
replaced with the requirement that either of k(k±s)

v is an integer for symmetric design
parameters (v, k, λ). Thus any time we can show that either µ-heavy or ν-heavy
parameters are integral, we know the opposite parameters cannot be integral as well.
This will become useful in the appendix where we check the various known infinite
families for feasibility.

The case where k = 1 or k = v− 1 produces LSSDs which are not of interest to us
and for the remainder of the paper, we will refer to these designs as degenerate. For
a further description of why these designs are degenerate, see Section 6.1. The obser-
vations that gcd(k, v) > 1 and gcd(s, v) > 1 are two tools which help us determine
more easily which parameters might be feasible for a LSSD with w > 2. There are
many other statements similar to these we can find, but these two will be sufficient
for now. Using these, we can immediately rule out many parameters, for instance:
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Corollary 2.4.Assume w > 2. If there exists a non-degenerate LSSD(v, k, λ;w),
then v is composite.

For a further use of these tools to rule out certain families of symmetric designs,
see Appendix A.

3. Association schemes
Let X be a finite set of vertices. A symmetric d-class association scheme (see [2]) on
X is a pair L = (X,R) where R = {R0, R1, . . . , Rd} is a set of d + 1 relations on X
satisfying the following properties:

• R0 is the identity relation;
• {R0, R1, . . . , Rd} forms a partition of X ×X;
• (x, y) ∈ Ri implies (y, x) ∈ Ri;
• for 0 6 i, j, k 6 d there exist intersection numbers pki,j such that for any

(x, y) ∈ Rk, the number of vertices z for which (x, z) ∈ Ri and (z, y) ∈ Rj is
equal to pki,j independent of our original choice of x and y.

Often it becomes useful to order the vertices in X and then represent each Ri as a
01-matrix Ai where the (x, y) entry of Ai is 1 if and only if (x, y) ∈ Ri. With this
setting in mind, the defining properties above are encoded as:

• A0 = I;
•
∑
iAi = J ;

• for all 0 6 i 6 d, ATi = Ai;
• for all 0 6 i, j 6 d, AiAj =

∑
pki,jAk.

The final condition tells us that A = span {A0, A1, . . . Ad} forms a matrix algebra
under standard matrix multiplication. As our matrices are 01-matrices with disjoint
support, this Bose–Mesner algebra is also closed under Schur (element-wise) products.
Using our symmetric property, we note that pki,j = pkj,i telling us that AiAj = AjAi
and our matrices commute with each other. This allows us to simultaneously diago-
nalize our matrices to give us d+ 1 orthogonal eigenspaces with projection operators
E0, . . . , Ed. As both {A0, . . . , Ad} and {E0, . . . , Ed} form bases for the Bose–Mesner
algebra, there exists unique matrices P and Q so that

(5) Ai =
∑
j

PjiEj , Ej = 1
|X|

∑
i

QijAi.

We call P and Q the first and second eigenmatrices, respectively and note here that
P0i is the valency of relation Ri and Q0j is the rank of Ej . Finally, as our matrix
algebra is closed under Schur products, we find that there exist structure constants
qki,j such that for all 0 6 i, j 6 d:

Ei ◦ Ej = 1
|X|

∑
k

qki,jEk.

We call these parameters the Krein parameters of the association scheme. A Q-
polynomial (cometric) association scheme is one in which the set {E0, E1, . . . , Ed}
may be ordered so that qki,j = 0 whenever k > i+ j or k < |i− j| and qki,j > 0 when-
ever k = i + j. Finally, we say an association scheme with Q-polynomial ordering
E0, . . . , Ed is Q-antipodal if qkd,d > 0 when k = 0 but qkd,d = 0 for 0 < k < d. Given
a Q-polynomial ordering E0, . . . , Ed we find it convenient to order relations so that
Q01 > Q11 > · · · > Qd1; we call this the natural ordering.

Algebraic Combinatorics, Vol. 2 #1 (2019) 122



Linked systems of symmetric designs

Theorem 3.1 (Van Dam [19]). Let Γ be a non-degenerate LSSD with adjacency matrix
A. Then the algebra 〈A〉 is the Bose–Mesner algebra of a 3-class Q-antipodal associ-
ation scheme on X. Conversely, every Q-antipodal 3-class association scheme arises
in this way. More specifically, the natural ordering of the relations of any Q-antipodal
3-class association scheme is as follows:

• R0 is the identity relation on X;
• R1 is given by adjacency in a µ-heavy LSSD;
• R2 is the union of complete graphs on the fibers induced by R1;
• R3 is given by adjacency in a ν-heavy LSSD;

While we will not provide a proof here, instead referring the reader to [19], we
list the intersection numbers, the first and second eigenmatrices, and a some of the
Krein parameters for later use. Let Γ1 = (X,R1) be a µ-heavy LSSD(v, k, λ) with
complement design given by Γ2 = (X,R3). The following are the intersection numbers,
listed via the four matrices L0, L1, L2, L3 where Li = [pki,j ]k,j ;

L0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, L1 =

0 k(w − 1) 0 0
1 µ(w − 2) k − 1 (k − µ)(w − 2)
0 λ(w − 1) 0 (k − λ)(w − 1)
0 ν(w − 2) k (k − ν)(w − 2)

,

L2 =

0 0 v − 1 0
0 k − 1 0 v − k
1 0 v − 2 0
0 k 0 v − k − 1

, L3 =

0 0 0 (v − k)(w − 1)
0 (k − µ)(w − 2) v − k (v + µ− 2k)(w − 2)
0 (k − λ)(w − 1) 0 (v + λ− 2k)(w − 1)
1 (k − ν)(w − 2) v − k − 1 (v + ν − 2k)(w − 2)

.
Now, the first and second eigenmatrices (P and Q respectively) are given as:

(6) P =

 1 k(w − 1) v − 1 (v − k)(w − 1)
1
√
k − λ(w − 1) −1 −

√
k − λ(w − 1)

1 −
√
k − λ −1

√
k − λ

1 −k v − 1 k − v

, Q =

 1 v − 1 (w − 1)(v − 1) w − 1
1 v−k√

k−λ − v−k√
k−λ −1

1 −1 1− w w − 1
1 −k√

k−λ
k√
k−λ −1

.
Finally, we use this matrix Q to calculate our Krein parameters using standard tech-
niques (see [2]). Defining L∗i = [qki,j ]k,j similar to before, we find

L∗1 =


0 v − 1 0 0
1 (1−w)(2k−v)+(v−2)s

ws
(w−1)(s(v−2)+(2k−v))

ws 0
0 s(v−2)+2k−v

ws
s(w−1)(v−2)−(2k−v)

ws 1
0 0 v − 1 0

, L∗3 =


0 0 0 w − 1
0 0 w − 1 0
0 1 w − 2 0
1 0 0 w − 2

.

Note that our association scheme is Q-polynomial if L∗1 is irreducible tridiagonal
([2, Prop. 2.7.1(i′)]), requiring that s(v − 2) > v − 2k for which k > 1 is sufficient.
Further, the two 0’s in the last column of L∗3 signify that our scheme is Q-antipodal.
We henceforth use the term “linked system of symmetric designs” to refer to either
the graph Γ or to the association scheme it generates as in Theorem 3.1. It is worth
noting that we can fulfill the LSSD conditions using degenerate parameters, however
these will not satisfy the requirement s(v − 2) > v − 2k as k = 1. Therefore, these
association schemes will not be Q-polynomial. This is one reason why we will ignore
this case for much of our discussion.
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3.1. Bounds for w.

Noda Bound. In Theorem 2 of [16], Noda gives the following bound

(w − 1)
[
(k − 2)λ

(
k

3

)
− (v − 2)

[
(v − k)

(
ν

3

)
+ k

(
µ

3

)]]
6 (v − 2)

[
(v − 1)

(
λ

3

)
+
(
k

3

)
−
[
(v − k)

(
ν

3

)
+ k

(
µ

3

)]]
with equality if and only if a pair (X1, X2 ∪ X3 ∪ · · · ∪ Xw) forms a 3-design. If we
restrict ourselves to the case of µ-heavy LSSDs, one can verify that this gives

(w − 1)(2k − v) 6 (v − 2)
√
k − λ.

If we have that 2k > v, then we arrive at the bound

(7) w 6
(v − 2)

√
k − λ

2k − v + 1.

Since the condition becomes vacuous when 2k < v, the bound only applies when
(2k − v)(µ− ν) > 0.

Krein Conditions. In [14], Mathon shows that the previous bound is equivalent to the
requirement that q1

1,1 > 0. We have

q1
1,1 = (1− w)(2k − v) + (v − 2)s

ws
> 0, w 6

(v − 2)s
2k − v + 1

assuming v < 2k. As before, the bound says nothing about LSSDs with (2k − v) ×
(µ− ν) < 0.

Absolute Bound. In [13], a bound is provided independent of the sign of (2k−v)(µ−ν)
relying only on the Q-polynomial structure (particularly that q3

1,1 = 0 and q2
1,1 > 0).

Let mi = rank(Ei). We know from our Q matrix that m2 = (w − 1)m1. Further,

E1 ◦ E1 = 1
|X|

(q0
1,1E0 + q1

1,1E1 + q2
1,1E2).

Therefore m2 + m1 + 1 6 1
2m1 (m1 + 1) if q1

1,1 > 0 and m2 + 1 6 1
2m1 (m1 + 1)

otherwise (c.f. [2, Thm. 2.3.3]). First consider the case when q1
1,1 > 0:

(w − 1)m1 6
m2

1 −m1 − 2
2 ,

w 6
m1

2 + 1
2 −

2
m1

.

Since m1 = v − 1 is an integer, this gives w 6 v−1
2 .

If instead we have that q1
1,1 = 0 then we find w 6 v+1

2 , so the absolute bound is
never tight. But here, know our Krein condition is tight giving us

w = (v − 2)s
2k − v + 1

with 2k > v (q1
1,1 = 0 is not possible unless 2k > v since w > 2). Further, our bound

from the eigenspace structure gives

w 6
m1 + 2

2 = v + 1
2 .

Therefore we must have (v−2)s
2k−v + 1 6 v+1

2 giving 2(v − 2)s 6 (v − 1)(2k − v) or
2s 6 (2k − v) + 2s

v−1 . Since 2s < k < v − 1, this means that 2s 6 (2k − v). We can
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square both sides and preserve the inequality, giving: 4(k − λ) 6 4k2 − 4kv + v2.
Using (2) this gives

4(k − λ) 6 v.
This means that whenever the Krein condition is tight (q1

1,1 = 0), we must have
4(k − λ) 6 v 6 2k. There is only one known family of constructions which achieve
the Krein bound. For this construction (see Section 6.2) v = 4(k − λ). Further, the
more general family of parameters (Menon) is the only possible family for which this
inequality is tight.

4. Linked Simplices
In this section, we will write {bj} for the set {b1, . . . , bv} for both sets of points and
sets of blocks. For our purposes a “regular simplex” will be taken to be a set of v
unit vectors spanning Rv−1 with the property that the inner product of any pair of
distinct vectors is −1

v−1 . Let A = {ai} and B = {bj} be two regular simplices in Rv−1.
We say A and B are linked if there exist two real numbers γ and δ such that for
all 1 6 i, j 6 v, 〈ai, bj〉 ∈ {γ, δ}. (Note that, here, “linked” always implies regular.)
Extending this, given regular simplices A1, . . . ,Aw in Rv−1 we say {A1, . . . , Aw} is
a set of w linked simplices if any two of them are linked with the same parameters
γ and δ. The next few theorems establish an equivalence between these objects and
LSSDs.

Theorem 4.1. Consider a LSSD(v, k, λ;w) with Bose–Mesner algebra A. The first
idempotent E1 in a Q-polynomial ordering of A, appropriately scaled, is the Gram
matrix of a set of w linked simplices. In the case w = 2, E2 scaled similarly is also
the Gram matrix of a second set of two linked simplices.

Proof. Let (X,R) be a LSSD(v, k, λ;w) with Bose–Mesner algebra A. Let {Ai} and
{Ej} be the bases of Schur and matrix idempotents respectively. We have from (5)

Ej = 1
|X|

∑
QijAi.

As Ej is an idempotent, Ej is a positive semidefinite (p.s.d.) matrix with rank Q0j .
Therefore using (6),

G = vw

v − 1E1 = A0 + v − k
(v − 1)

√
k − λ

A1 −
1

v − 1A2 −
k

(v − 1)
√
k − λ

A3

is p.s.d. with 1 on the main diagonal. Given that Q01 = v − 1, G is the Gram matrix
of a set Y of vw vectors in Rv−1. Further there are only three possible inner products
among distinct vectors of Y given by

α1 = v − k
(v − 1)

√
k − λ

, α2 = − 1
v − 1 , α3 = − k

(v − 1)
√
k − λ

.

Since A2 corresponds to complete graphs within fibers, our vectors form a set of w
linked simplices in Rv−1 with γ = α1 and δ = α3 as inner products between simplices.

Similarly we have

G′ = vw

v − 1E2 =
(
A0 + −k

(v − 1)
√
k − λ

A1 −
1

v − 1A2 + v − k
(v − 1)

√
k − λ

A3

)
.

Therefore G′ is also the Gram matrix of a set of vectors coming from w distinct
simplices. However, the rank of E2 is (w − 1)(v − 1) and therefore these simplices
are linked only when w = 2 (we require that each simplex is full-dimensional in the
space spanned by vectors in both simplices in order for the simplices to be considered
linked). Therefore any pair of fibers from our LSSD will give us another set of linked
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simplices with inner products −α1 and −α3. This corresponds to choosing one of the
two simplices and replacing each x in that simplex by −x. �

This tells us that every LSSD gives rise to a set of linked simplices. Before proving
the converse, we first prove a lemma arising from the observation that a regular
simplex is an equiangular tight frame [10].

Lemma 4.2. Let {ai} be a regular simplex in Rv−1 and let x, y ∈ Rv−1. Then∑
i

〈ai, x〉 〈ai, y〉 = v

v − 1 〈x, y〉 .

Proof. For a vector x, let x(i) denote the ith element of x. For each 1 6 i 6 v, define
αi ∈ Rv as the unit vector

αi =
√
v − 1
v

[
ai(1), ai(2), . . . , ai(v − 1), 1√

v − 1

]
.

For i 6= i′,

〈αi, αi′〉 = v − 1
v

(
〈ai, ai′〉+ 1

v − 1

)
= 0.

Therefore {αi} forms an orthonormal basis for Rv. Now define χ, ψ ∈ Rv as:
χ = [x(1), x(2), . . . , x(v − 1), 0] , ψ = [y(1), y(2), . . . , y(v − 1), 0] .

Then for each i,

〈αi, χ〉 =
√
v − 1
v
〈ai, x〉 , 〈αi, ψ〉 =

√
v − 1
v
〈ai, y〉

giving us

〈x, y〉 = 〈χ, ψ〉 =
∑
i

〈αi, χ〉 〈αi, ψ〉 = v − 1
v

∑
i

〈ai, x〉 〈ai, y〉 .

�

Using this lemma, we now seek to build a LSSD with w fibers from a set of w linked
simplices. We first provide a construction of the graph Γ and then split the verification
into two parts: first that Γ restricted to a pair of fibers represents a symmetric design,
and second that the constants µ and ν given by (3) are well-defined. Clearly, we need
only consider three fibers in the proofs to follow; the arguments extend to w fibers.

Theorem 4.3. Let {ai} and {bj} be linked simplices in Rv−1 with inner products γ
and δ. For each j, let Bj = {ai : 〈ai, bj〉 = γ}. Then ({ai} , {Bj}) is a symmetric
2-design.

Proof. First we must prove that each block contains a constant number of points.
Let 1 6 j 6 v be fixed and define kj = |Bj |. Since the set {ai} of vectors form a
regular simplex, the centroid of those vectors must be the origin. Then,

∑
i 〈bj , ai〉 =

〈bj ,
∑
i ai〉 = 0 giving us the equation kjγ + (v − kj)δ = 0. Solving this for kj gives

kj = δv
γ−δ , independent of j. Now we will show that any pair of blocks contains a

constant number of points in common; swapping roles this gives that any pair of
points is contained in a constant number of blocks. Fix 1 6 s, t 6 v so that bs and
bt are two distinct vectors in {bj} with corresponding blocks Bs and Bt respectively.
Define λs,t = |Bs ∩Bt| and

xs = [〈a1, bs〉 , 〈a2, bs〉 , . . . , 〈av, bs〉] , xt = [〈a1, bt〉 , 〈a2, bt〉 , . . . , 〈av, bt〉] .
Recalling that kγ + (v − k)δ = 0,

〈xs, xt〉 = λs,tγ
2 + 2(k − λs,t)γδ + (v − 2k + λs,t)δ2 = λs,t (δ − γ)2 − vδ2.

Algebraic Combinatorics, Vol. 2 #1 (2019) 126



Linked systems of symmetric designs

We may instead apply Lemma 4.2 to get

〈xs, xt〉 =
∑
i

〈ai, bs〉 〈ai, bt〉 = v

v − 1 〈bs, bt〉 = − v

(v − 1)2 .

Equating these two values gives us

λs,t = vδ2

(δ − γ)2 −
v

(v − 1)2(γ − δ)2 .

The quantity on the right is independent of s and t and therefore λs,t does not depend
on s and t. Therefore our block system forms a 2-design with the above values for k
and λ. �

As both k and λ are integers, this gives us restrictions on which inner products are
allowed. We solve the system

kγ + (v − k)δ = 0,

λ(δ − γ)2 − vδ2 = − v

(v − 1)2

to find that δ2 = k
(v−1)(v−k) . Using (2), this simplifies to

(8) δ = ± k

(v − 1)
√
k − λ

, γ = ∓ v − k
(v − 1)

√
k − λ

.

These match the previously determined entries of E1 and E2 corresponding to the
first and third relations. Our next theorem concerns the existence of µ and ν, which
arise between triples of fibers.

Theorem 4.4. Let {ai}, {bi}, and {ci} be three linked simplices in Rv−1 with inner
products γ and δ as before. For each 1 6 j, k 6 v, let Bj = {ai : 〈ai, bj〉 = γ} and
Ck = {ai : 〈ai, ck〉 = γ}. Then there exists integers µ and ν such that

|Bj ∩ Ck| =
{
µ 〈bj , ck〉 = γ

ν 〈bj , ck〉 = δ

where µ and ν are independent of our choice of j and k.

Proof. We follow a similar method of calculating an inner product in two ways, then
equating the results. Fix 0 6 i, j 6 v and let ηi,j = |Bi ∩ Cj |. Define

xi = [〈a1, bi〉 , 〈a2, bi〉 , . . . , 〈av, bi〉] , xj = [〈a1, cj〉 , 〈a2, cj〉 , . . . , 〈av, cj〉] .
Then we have 〈xi, xj〉 = ηi,j(γ − δ)2 − vδ2 and using Lemma 4.2,

〈xi, xj〉 =
∑
`

〈a`, bi〉 〈a`, cj〉 = v

v − 1 〈bi, cj〉 .

Equating these two values and solving for ηi,j gives us

ηi,j = 1
(γ − δ)2

(
vδ2 + v

v − 1 〈bi, cj〉
)
.

While the right side is not independent of i and j as we saw in the previous theorem,
it is only dependent on the value of 〈bi, cj〉. Using ν and µ for ηi,j when 〈bi, cj〉 is δ
and γ respectively, we have:

ν = v

(γ − δ)2

(
δ2(v − 1)2 + δ(v − 1)

(v − 1)2

)
,

µ = v

(γ − δ)2

(
δ2(v − 1)2 + γ(v − 1)

(v − 1)2

)
= ν + v

(γ − δ)(v − 1) .
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Using the values of γ and δ found previously to make λ integral, we find that

γ − δ = ∓ v

(v − 1)
√
k − λ

,

giving us that

ν = k(k ±
√
k − λ)

v
,

µ = ν ∓
√
k − λ.

Since µ and ν are both cardinalities of sets, any time we find non-integral values for µ
and ν we can conclude that the hypothesized set of linked simplices does not exist. �

This brings us to the main theorem of this section (cf. [17, Thm. 2.6(1)]).

Theorem 4.5.A LSSD(v, k, λ;w) is equivalent to a set of w linked simplices in Rv−1.

Proof. Theorem 4.1 tells us that given any LSSD(v, k, λ;w) we can always build a
set of w linked simplices using a scaled version of the first idempotent as the Gram
matrix. For the converse, let {X1, X2, . . . , Xw} be a set of w linked simplices with
inner products γ > δ. Define a graph Γ on vertex set

⋃
iXi where x ∈ Xj and y ∈ X`

(j 6= `) are adjacent if and only if 〈x, y〉 = γ. Then Γ is a multipartite graph with
w fibers. Theorem 4.3 tells us that the induced graph between a pair of fibers is a
symmetric 2-design. Theorem 4.4 shows that given any pair of vertices in distinct
fibers x ∈ Xi and y ∈ X`,

|Γ(x) ∩ Γ(y) ∩Xj | =
{
µ x ∼ y
ν x 6∼ y

where Xj is a third fiber. As we assumed γ > δ, this also provides that µ > ν.
Therefore Γ is a µ-heavy LSSD and adjacency in Γ is the first relation of our proposed
association scheme. The third relation (the ν-heavy LSSD) is built from using δ to
define adjacency. �

4.1. A geometric classification. As every association scheme has relations cor-
responding to complementary µ-heavy and ν-heavy LSSDs, it becomes useful to dif-
ferentiate between LSSDs where P01 (the valency of the µ-heavy design) is greater
than P03 (the valency of the ν-heavy design) or vice versa. Noting that the µ-heavy
LSSD gives the nearest neighbor graph(2) of our association scheme and thus the only
positive inner product apart from 1, we classify a LSSD as “optimistic” if P01 > P03
(and thus there are more positive inner products than negative). Likewise we classify
the opposite case as “pessimistic”. While this classification helps designate whether
the set of linked simplices has mostly positive or mostly negative inner products, we
also note that every known non-degenerate example of a LSSD is optimistic. At the
level of linked systems, an LSSD is optimistic if (2k − v)(µ− ν) > 0 and pessimistic
if (2k − v)(µ− ν) < 0. The following table lists the possibilities.

2k > v 2k < v
µ-heavy optimistic pessimistic
ν-heavy pessimistic optimistic

Motivated by the natural ordering of relations, we will adopt the convention of focus-
ing on the µ-heavy LSSD. This forces us to allow for k > v

2 .

(2)The “nearest neighbor graph” here refers to the basis relation in our association scheme corre-
sponding to largest innerproduct not equal to 1. By definition, this is R1 under the natural ordering
of relations for a Q-polynomial scheme.
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5. Connections to Other Structures in Euclidean Space
In the previous section, we developed the equivalence between LSSDs and a certain
geometric structure using the first and second idempotents as Gram matrices. We now
explore similar structures which can be built using combinations of these idempotents,
though we will not always be able to reverse these constructions. Recall that

Ej = 1
|X|

∑
QijAi

and the rank of Ej is given by Q0j . By considering nonnegative linear combinations of
these idempotents, we construct Gram matrices of systems of vectors with desirable
properties. As we are interested in low rank Gram matrices, we will only consider
combinations of two or three of these idempotents, avoiding E2 as this has rank
(w − 1)(v − 1). Before moving to the examples, we note that the matrix x0E0 +
x1E1 + x3E3 is expressible as

∑
i yiAi with the following values for yi:

y0 = 1
vw

(x0 + (v − 1)x1 + (w − 1)x3),

y1 = 1
vw

(x0 + v − k√
k − λ

x1 − x3),

y2 = 1
vw

(x0 − x1 + (w − 1)x3),

y3 = 1
vw

(x0 −
k√
k − λ

x1 − x3).

5.1. Equiangular Lines. This construction is a generalization of de Caen’s con-
struction [7] using the Cameron–Seidel scheme. Using the above idempotents, we
wish to make a positive semidefinite matrix with low rank with constant diagonal
and only one possible magnitude of the main diagonal. Since the rank of our matrix
is the sum of the multiplicities of the idempotents we use, we avoid using E2 in order
to reduce the rank. Therefore consider the matrix

G = vw(αE0 + βE1 + γE3).

This is a vw × vw matrix with rank v + w − 1. In order to get equiangular lines, we
must have a constant positive value c such that∣∣∣α+ β

(
v − k√
k − λ

)
− γ
∣∣∣ =

∣∣∣α− β + (w − 1)γ
∣∣∣ =

∣∣∣α− β( k√
k − λ

)
− γ
∣∣∣ = c.

Since α, β, and γ must all be positive, we note that α + β
(

v−k√
k−λ

)
− γ > α −

β
(

k√
k−λ

)
− γ and therefore we must have

c = α+ β

(
v − k√
k − λ

)
− γ = −

[
α− β

(
k√
k − λ

)
− γ
]
.

This tells us that

β = 2c
√
k − λ
v

and α− γ = c

(
2k − v
v

)
.

Here we have one final choice (the sign of α−β+ (w−1)γ). Substituting in our value
for β, we find that

α+ (w − 1)γ = c

(
2
√
k − λ± v
v

)
.

Algebraic Combinatorics, Vol. 2 #1 (2019) 129



B. G. Kodalen

However, since we must have 2
√
k − λ < v, we know that choosing the minus on the

right hand side would make the entire side negative. However α, γ, and (w − 1) are
all positive and therefore this is not possible. Therefore we must use the +, giving

γ = 2c
(
v − k +

√
k − λ

vw

)
, α = c

(
v + 2

√
k − λ− (w − 1) (v − 2k)

vw

)
.

Our final requirement is that the main diagonal ofG is equal to 1. Using the coefficients
of A0 in our expression for G, we find

c = 1
2
√
k − λ− 1

.

Scaling by vw for convenience, this gives us the final values:

vwα = v + 2
√
k − λ− (w − 1)(v − 2k)

(2
√
k − λ− 1)

,

vwβ = 2w
√
k − λ

2
√
k − λ− 1

,

vwγ = 2v − 2k + 2
√
k − λ

2
√
k − λ− 1

,

with inner product 1
2
√
k−λ−1 . As we require α > 0 for this construction to give a p.s.d.

matrix, we need w < 2(k+s)
v−2k +2 in the pessimistic LSSD case (no such restriction occurs

for the optimistic case). Therefore we have the following generalization of de Caen’s
construction:

Theorem 5.1. Let L be the association scheme arising from a LSSD(v, k, λ;w). If
either L is optimistic, or w 6 2 + 2(k+s)

v−2k then we can build a set of vt lines in Rv+t−1

for any 1 6 t 6 w. In the pessimistic case with w > 2 + 2(k+s)
v−2k , we can achieve the

construction for any t 6 2 + 2(k+s)
v−2k .

5.2. Real Mutually Unbiased Bases. A second useful system of vectors arises
from taking x2 = x3 = 0 and x0 = x1 = w. This gives us the Gram matrix

G = A0 + v − k +
√
k − λ

v
√
k − λ

A1 −
k −
√
k − λ√

k − λ
A3

of a set of w orthonormal bases where two vectors from distinct bases have one of two
inner products;

β1 = v − k +
√
k − λ

v
√
k − λ

, β2 = −k −
√
k − λ

v
√
k − λ

.

Of particular interest is the case when |β1| = |β2|; this is precisely when our construc-
tion gives a set of mutually unbiased bases. This will be discussed in greater detail in
Section 7.

6. Two Families
6.1. Degenerate case. We first examine the case when the Q-polynomial structure
fails as seen in the discussion of Theorem 3.1. Arguably the most interesting property
of this scheme is that there are no bounds on w. In fact, for any choice of v, w > 0,
we can build a LSSD with w fibers by building a set of cliques, each of size w,
where each clique contains a single vertex from each fiber. This gives a µ-heavy LSSD
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with the complement giving us the ν-heavy LSSD. Below is a representation of the
complementary pairs LSSD(4,1,0;3) and LSSD(4,3,2;3).

µ-heavy LSSD ν-heavy LSSD

In this case the µ-heavy LSSD has parameters (v, 1, 0), so we find that s =
√
k − λ = 1,

ν = k(k−s)
v = 0, and µ = ν + s = 1. We list the P matrix and Q matrix and use these

to further describe the LSSD:

P =


1 w − 1 v − 1 (v − 1)(w − 1)
1 w − 1 −1 −(w − 1)
1 −1 −1 1
1 −1 v − 1 1− v

, Q =


1 v − 1 (w − 1)(v − 1) w − 1
1 v − 1 −(v − 1) −1
1 −1 1− w w − 1
1 −1 1 −1

.
This means that our first idempotent is given by:

E1 = (v − 1)I + (v − 1)A1 −A2 −A3 = (vI − J)⊗ J.
If we scale this appropriately to obtain a Gram matrix of unit vectors, we find that
E1 is the Gram matrix of w copies of the same simplex in Rv. This can be seen as well
from the fact that Q01 = Q11 meaning that any simplex vector has inner product 1
with exactly one vector from each of the “other” simplices, meaning the simplices are
just copies of the same simplex. This explains why w is unbounded as we can always
copy the same simplex as many times as we would like. This also indicates why this
example is not of interest to us as it is not giving w distinct linked simplices.

6.2. Cameron–Seidel Scheme. This construction is given originally by Goethals
([8]) in terms of Kerdock codes. A generalization of this concept is found in [1], where
Bey and Kyureghyan frame the properties of Kerdock sets in terms of bent functions
rather than quadratic forms. While this generalization gives the same parameter sets
as the original construction, it shows that there are many non-isomorphic construc-
tions using various different realizations of Kerdock sets. Let Q1, Q2, . . . , Qw be a set
of w quadratic forms on Zn2 for which Qi +Qj is a full rank quadratic form whenever
i 6= j. Let cosets Q1,Q2, . . . ,Qw be cosets, Qi = Qi + R(1, n), of the first order Reed
Muller code (see [21, §4.5]). For each 1 6 i 6 w, define a set of vectors Vi via

Vi = {[q(1), q(2), . . . , q(2n − 1)] | q(2n) = 0}q∈Qi
.

Since Qi is closed under complements, we know that |Vi| = 1
2 |Qi| = 2n. Further, any

pair of vectors v, w ∈
⋃
i Vi come from vectors qv, qw ∈

⋃
iQi with last entry 0, so

wt(v ⊕ w) = wt(qv ⊕ qw). Finally, for each i construct the vector set

Xi =
{

1√
2n − 1

(2v − 1)
∣∣∣∣ v ∈ Vi}.
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We claim {Xi}i=1..w is a set of linked simplices. To verify this, fix 1 6 i < j 6 w and
let xi, yi ∈ Xi and zj ∈ Xj with corresponding coset vectors qx, qy, and qz respectively.
Then,

〈xi, xi〉 = 1
2n − 1

(
(wt(xi) + (−1)2(2n − 1− wt(xi))

)
= 1

giving that every vector in
⋃
iXi is a unit vector. Next,

〈xi, yi〉 = 1
2n − 1 ((2n − 1)− 2wt(qx ⊕ qy)) = − 1

2n − 1

giving us that Xi forms a regular simplex. Finally,

〈xi, zj〉 = 1
2n − 1 ((2n − 1)− 2wt(qx ⊕ qw)) .

Since wt(qx ⊕ qz) ∈
{

2n−1 ± 2r−1} we have that

〈xi, wj〉 =
{

2r−1
2n−1 wt(qx ⊕ qw) = 2n−1 − 2r−1

− 2r+1
2n−1 wt(qx ⊕ qw) = 2n−1 + 2r−1

meaning there are two possible angles between simplices.
Therefore we can build a LSSD with w fibers whenever we have w quadratic forms

whose pairwise sums are full rank. We represent each quadratic form as the n × n
matrix giving the corresponding alternating bilinear form. Then, every matrix must
differ in the first row in order for their difference to be full rank. This means w 6 2n−1

as there are only 2n−1 possible choices for the first row. This upper bound is achievable
whenever n is even [4]. Below we give an example when n = 4 where Qi is the
alternating bilinear form corresponding to the ith quadratic form.

Q1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Q2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, Q3 =


0 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

, Q4 =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

,

Q5 =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

, Q6 =


0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

, Q7 =


0 0 1 1
0 0 1 0
1 1 0 1
1 0 1 0

, Q8 =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

.
We can form the characteristic vectors [Qi(v)]v. Below we display [Q2(v)]v and
[Q8(v)]v:

[Q2(v)]v =
[

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0
]
,

[Q8(v)]v =
[

0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0
]
.

Given the characteristic vectors, we can find the cosets of R(1, 4). The coset cor-
responding to Q2(v) is given below as the set of rows of the matrix. To improve
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readability, + denotes a 1, − denotes a −1 and an empty space denotes a 0.

[Q2(v)]v + R(1, 4) =



+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +



.

To form our regular simplex we now choose all vectors with 0 in the last coordinate,
discard the last element, replace every 0 with a −1, and then scale by 1√

15 giving us
the vectors (given by rows):

X2 = 1√
15



− − − + − − − + − − − + + + +
+ − + + + − + + + − + + − + −
+ + − + + + − + + + − + − − +
− + + + − + + + − + + + + − −
+ + + − − − − + + + + − + + +
− + − − + − + + − + − − − + −
− − + − + + − + − − + − − − +
+ − − − − + + + + − − − + − −
+ + + − + + + − − − − + + + +
− + − − − + − − + − + + − + −
− − + − − − + − + + − + − − +
+ − − − + − − − − + + + + − −
− − − + + + + − + + + − + + +
+ − + + − + − − − + − − − + −
+ + − + − − + − − − + − − − +
− + + + + − − − + − − − + − −



.

Likewise each Qj(v) gives us a coset of size 32, which in turn is transformed to a
regular simplex Xj in this manner.

Symmetric design parameters. The parameters of this scheme will be v = 22r,
k = 2r−1 (2r + 1), λ = 2r−1 (2r−1 + 1

)
, s = 2r−1, ν = 2r−2 (2r + 1), and

µ = 2r−2 (2r + 3).

Intersection numbers. Noting that pki,j = pkj,i, we list the unique intersection numbers
while omitting the trivial pj0,i parameters. Note that each pji,k is scaled by a constant
based on i and k given in the first row of our table.
j pj

1,1/2r−2 pj
1,2/2r−1 pj

1,3/2r−2 pj2,2 pj
2,3/2r−1 pj

3,3/2r−2

0
(
2r+1 + 2

)
(w − 1) 0 0 22r − 1 0 (2r+1 − 2)(w − 1)

1 (2r + 3) (w − 2) (2r+1)−21−r (2r − 1)(w − 2) 0 (2r − 1)
(
2r−2 − 1

)
(w − 2)

2 (2r + 2) (w − 1) 0 2r(w − 1) 22r − 2 0 (2r − 2)(w − 1)
3 (2r + 1) (w − 2) 2r + 1 (2r + 1)(w − 2) 0 (2r−1)−21−r (2r−2 − 3

)
(w − 2)

Krein parameters. As with the intersection numbers, we recall that qki,j = qkj,i and
list each unique Krein parameter omitting the trivial qj0,i parameters. No scaling is
needed here.

j qj1,1 qj1,2 qj1,3 qj2,2 qj2,3 qj3,3
0 22r − 1 0 0 (w − 1)(22r − 1) 0 w − 1
1 22r

w − 2 22r (w−1
w

)
0 22r

(
(w−1)2

w

)
− 2(w − 1) w − 1 0

2 22r

w 22r (w−1
w

)
− 2 1 22r

(
(w−1)2

w

)
+ 2(w − 2) w − 2 0

3 0 22r − 1 0 (w − 2)(22r − 1) 0 w − 2
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7. New examples with v 6= 2m

Recall from Section 5.2 that we found the Gram matrix for a set of bases by adding
the first two idempotents of our scheme, giving us

(9) M = w(E0 + E1) =
(
A0 + v − k +

√
k − λ

v
√
k − λ

A1 −
k −
√
k − λ

v
√
k − λ

A3

)
where k is the block size of the µ-heavy LSSD. If v−k+

√
k−λ

v
√
k−λ and −k−

√
k−λ

v
√
k−λ have the

same absolute value, then M is the Gram matrix for a set of w mutually unbiased
bases in Rv. This will only occur when

v − 2k = −2
√
k − λ.

This means our LSSD must be optimistic, leading to the following lemma:

Lemma 7.1. Let A be the Bose–Mesner algebra of an optimistic LSSD(v, k, λ;w)
with Q-polynomial ordering E0, E1, E2, E3 of its primitive idempotents. If |v − 2k| =
2
√
k − λ then w(E0 +E1) is the Gram matrix of a set of w real MUBs in dimension v.

It is important to note here that there exist pessimistic LSSDs such that v −
2k = 2

√
k − λ. One such example is a specific case of the degenerate parameters in

Section 6.1 given by (v, k, λ) = (4, 1, 0) with the graph Γ1 displayed below.

We can easily see that v − 2k = 2 = 2
√
k − λ. However, the sum of the first two

eigenspaces gives

M = 3(E0 + E1) = 1
3A0 −

1
4A1

which is not the Gram matrix of a set of MUBs. In fact, any Menon parameter set with
v/4 odd will satisfy |v − 2k| = 2

√
k − λ however none of these will produce MUBs.

Therefore our restriction to optimistic LSSDs is required and we cannot say that
any LSSD satisfying |v − 2k| = 2

√
k − λ will give us MUBs using this construction.

Conversely, the existence of w MUBs in Rv does not guarantee the existence of an
optimistic LSSD(v, k, λ;w); consider 3 MUBs in R4.

7.1. Restrictions on the Parameters. In this section, we show that |v − 2k| =
2
√
k − λ implies (v, k, λ) are Menon parameters. In the case of optimistic LSSDs, we

also show v/4 is even. We now take a closer look at our restriction v−2k = −2
√
k − λ.

First note we can square both sides to get

4(k − λ) = v2 − 4k(v − k).

Using (2), this gives v = 4(k − λ) where we apply (1) to get

k2 + k + λ = 4λ(k − λ).
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Solving this for k gives k = 4λ+1
2 ±

√
4λ+1

2 requiring 1
2 ±

1
2
√

4λ+ 1 to be an integer.
Therefore

√
4λ+ 1 must be an odd integer. Assume 4λ + 1 = (2u − 1)2 for some

positive integer u. Then λ = u2 − u and

k = 2u2 − (2∓ 1)u+
(

1∓ 1
2

)
.

If we re-parameterize the second family to avoid the trivial (0, 0, 0) design when u = 1,
we get the complementary families:

λ = (u− 1)u λ′ = (u+ 1)u
k = (2u− 1)u and k′ = (2u+ 1)u
v = 4u2 v′ = 4u2.

If we restrict to an optimistic LSSD, we must use the second family for our µ-heavy
LSSD Γ. From (4), the remaining parameters of Γ are

s =
√
k − λ = u, ν = k(k − s)

v
= u2 + u

2 , µ = ν + s = u2 + 3
2u.

Therefore ν (and µ) are integral if and only if u is even, resulting in the following
theorem

Theorem 7.2. Let Γ be an optimistic LSSD(v, k, λ;w). If v − 2k = −2
√
k − λ then:

(i) v = 4u2

(ii) k = 2u2 + u
(iii) λ = u2 + u
(iv) w 6 2u2

Further, if u is odd, then w = 2.

Proof. Statements (i)–(iii) as well as our restriction when u is odd follow directly from
above. Conclusion (iv) follows from (7). �

The upper bound for w is achieved whenever u is a power of two using the Cameron–
Seidel scheme. In light of this family and the requirement that w = 2 whenever v/4
is odd, one might ask if w is bounded as a function of the highest power of 2 dividing
v. We will show later that this is not true by constructing examples with w as large
as we like and v/16 odd.

7.2. Hadamard Matrix Equivalence. In this section, we establish an equivalence
between LSSDs with parameters as in Theorem 7.2 with sets of regular unbiased
Hadamard matrices (see [9] for more detailed information on unbiased Hadamard
matrices). Van Dam et. al. [20, p. 1423] briefly mention this connection citing con-
structions of unbiased regular Hadamard matrices by Holzmann, Kharaghani, and
Orrick [9] using mutually orthogonal latin squares. In this paper we describe the
connection between unbiased regular Hadamard matrices and LSSDs in full using
Theorem 7.1. A real Hadamard matrix of order v is a v × v matrix H with entries
±1 such that HHT = vI. H is a regular Hadamard matrix if HJ = cJ for some
constant c. Two Hadamard matrices H1 and H2 are unbiased if 1

vH1H
T
2 is itself a

Hadamard matrix. Finally, a set of Hadamard matrix matrices are unbiased if each
pair is unbiased. Using these definitions, consider the following:

Theorem 7.3. Let Γ be an optimistic LSSD(v, k, λ;w). If |v−2k| = −2
√
k − λ, then

there exists a set of w − 1 real unbiased regular Hadamard matrices.
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Proof. Let (X,R) be the association scheme arising from Γ with Bose–Mesner algebra
A. Let {E0, E1, E2, E3} be the set of idempotents under the natural Q-polynomial
ordering. From Lemma 7.1, G = w(E0 + E1) is the Gram matrix of a set of w
MUBs in Rv. Let the w MUBs be given by the columns of the w unitary matrices
{M1, . . . ,Mw} and without loss of generality assume M1 = I. Then any column from
another Mi (i 6= 1) must have entries ± 1√

v
. For 1 < i 6 w, let Hi =

√
vMi. First note

that HiH
T
i = vMiM

T
i = vI, therefore for each 1 < i 6 w, Hi is a Hadamard matrix.

Now consider that the first v rows of G will have the block form
[
I M2 M3 . . . Mw

]
.

However from (9), we have that the positive (resp., negative) entries of Mi represent
adjacency between vertices in the first and ith fibers of the µ-heavy (resp., ν-heavy)
LSSD. Therefore each Mi must have k positive entries and v − k negative entries
giving that Hi must be regular. Now define

(
w
2
)
matrices Mi,j where Mi,j is the

unitary matrix representing basis j when basis i is taken to be the standard basis (so
M1,j = Mj). Then we repeat all previous arguments to show that G has the block
form:

G =


I M1,2 . . . M1,w

M2,1 I . . . M2,w
...

...
. . .

...
Mw,1 Mw,2 . . . I


where

√
nMi,j is a Hadamard matrix for all 1 6 i 6= j 6 w. Now consider a second

association scheme L′ arising from the subgraph of Γ induced on three distinct fibers
Xi, Xj , and Xk. The matrix G′ = w(E′0 + E′1) will have the form:

G′ =

 I Mi,j Mi,k

Mj,i I Mj,k

Mk,i Mk,j I

.
Noting that G2 = wG, the block in the (1, 2) block of G2 gives us that

2Mi,j +Mi,kMk,j = 2Mi,j , or equivalently Mi,kMk,j = Mi,j .

Therefore, if we return to the original LSSD and define Hi,j =
√
vMi,j then we

find that 1√
v
HT
i Hj = Hi,j . Therefore the set {H2, . . . ,Hw} is a set of w − 1 regular

unbiased Hadamard matrices. �

We now show the converse:

Theorem 7.4.Assume w > 2. Let {H2, . . . ,Hw} be w−1 regular unbiased Hadamard
matrices of order v. Then there exists an optimistic LSSD(v, k, λ;w).

Proof. Assume without loss of generality that the row sum of each of our Hadamard
matrices is positive. Define vectors xi,j for 2 6 i 6 w and 1 6 j 6 v such that
xi,j is the jth column of Hi − 1√

v
J . Let x1,j be the jth column of

√
vI − 1√

v
J . Note

that for all 1 6 i 6 w, ‖xi,j‖ = v − 1. Then, for all i, j, let x̂i,j = xi,j√
v−1 . Letting

Xi = {xi,1, . . . , xi,v}, we claim that {X1, . . . , Xw} is a set of linked simplices. To
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show this, fix j 6= k, i 6= i′ and consider the following four inner products:

〈x̂1,j , x̂1,k〉 = 1
v − 1 (vI − J)j,k = − 1

v − 1 ,(10)

〈x̂i,j , x̂i,k〉 = 1
v − 1(HiH

T
i − J)j,k = − 1

v − 1 ,(11)

〈x̂1,j , x̂i,k〉 =
√
v

v − 1

(
HT
i −

1√
v
J

)
j,k

,(12)

〈x̂i,j , x̂i′,k〉 =
√
v

v − 1

(
1√
v
HiH

T
i′ −

1√
v
J

)
j,k

.(13)

(10) and (11) give us the inner products within eachXi. Since 1√
v
HiH

T
i′ is a Hadamard

matrix, (12) and (13) tell us that inner products between sets Xi and Xi′ take values
of ±

√
v−1

v−1 . Finally note that the all ones vector is orthogonal to all xi,j . Therefore
{X1, . . . , Xw} is a set of w simplices in Rv−1 such that inner products between sim-
plices can take only two possible values. Finally consider that the possible inner
products are

√
v

v−1

(
±1− 1√

v

)
. This tells us that |γ| < |δ| where γ is the positive inner

product and δ is the negative. Therefore, since the centroid of any simplex is the
origin, we must have more positive inner products between simplices than negative,
telling us our LSSD is optimistic. �

This leaves us with the following theorem
Theorem 7.5.An optimistic LSSD(v, k, λ;w) with |v − 2k| = 2

√
k − λ exists if and

only if there exists a set of w − 1 regular unbiased Hadamard matrices with order v.
7.3. Constructing LSSDs from certain Real MUBs. Using the results from
the last section and the close relation between MUBs and Hadamard matrices, we
wish to build new LSSDs. From Theorems 7.5 and 7.2, we are only going to find
optimistic LSSDs with Menon parameters. Goethals gives a construction in [3] for
w = 2u2 whenever u is a power of 2 (see Section 6.2). Therefore we skip this case and
instead look for constructions where u (and equivalently v) is not necessarily a power
of 2.

7.3.1. Wocjan and Beth construction. Wocjan and Beth in [22] detail a way to create
MUBs from MOLS. They take a set of t MOLS with side length d and create t + 2
MUBs in dimension d2. The process is to convert the MOLS into an orthogonal array
with d2 rows. They then expand the array by replacing each column with d columns
giving by the characteristic vector of each symbol in that column. Finally, they extend
this matrix by replacing each 1 in the array with a row from a Hadamard matrix
and each 0 by an appropriate length vector of 0s. The result is that the d columns
arising from each original column are orthogonal to each other. We will focus on the
case where the resultant MUBs produce regular Hadamard matrices using their inner
products.

For our purposes, an orthogonal array of size (n2 × s) has entries from the set
{1, . . . , n} and any two columns contain each ordered pair exactly once. Let O be an
orthogonal array of size n2 × s, let Ci denote the ith column of O with entries Cik
(1 6 k 6 n2). We may uniquely express

Ci =
n∑
j=1

kBi,j

where each Bi,j is a 01-vector of length n2. As each symbol j appears in each column
Ci exactly n times, Bi,j will have n 1s and n2 − n 0s. Let H be a Hadamard matrix
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of order n. For 1 6 l 6 n define a matrix M i,j,l as follows: For 1 6 k 6 n, we replace
the kth 1, counting from the top, in Bi,j with the Hk,l. This produces n2s columns
each with n2 entries M i,j,l

k ∈ {0, 1,−1}.
The fact that HTH = nI together with Bi,j ◦ Bi,j′ = 0 for j 6= j′ give us that

Bi = {M i,1,1, . . . ,M i,n,n} is an orthogonal basis for each i = 1, . . . , s. Each vector in
these bases has squared norm n. For i 6= i′, Ci and Ci′ denote distinct columns in our
orthogonal array and therefore for any j and j′ (not necessarily distinct), Bi,j ◦Bi′,j′

has one nonzero entry. ThereforeM i,j,l◦M i′,j′,l′ also has one nonzero entry. Therefore

(14)
〈
M i,j,l,M i′,j′,l′

〉
= M i,j,l

k M i′,j′,l′

k = ±1

where Ok,i = j and Ok,i′ = j′. Therefore the bases B1, . . . ,Bs produced by Wocjan
and Beth are unbiased.

We now show that if H is regular, then the resulting unbiased Hadamard matrices
are regular (see proof of Theorem 7.3 for the construction of these Hadamard matri-
ces). For each Hadamard matrix, the row sum is the sum of inner products between
a column M i,j,l of one basis with the set of n2 columns M i′,j′,l′ (i 6= i′, 1 6 j′, l′ 6 n)
of the second basis used in its construction. We first sum 〈M i,j,l,M i′,j′,l′〉 over l′ to
get ∑

l′

〈
M i,j,l,M i′,j′,l′

〉
= M i,j,l

k

(∑
l′

M i′,j′,l′

k

)
= pM i,j,l

k .

We then sum this result over j′ noting that k was chosen so that Ok,i = j and
Ok,i′ = j′, and therefore depends on j′. As this sum will include every nonzero entry
in M i,j,l exactly once, we know

(15)
∑
j′

∑
l′

〈
M i,j,l,M i′,j′,l′

〉
=
∑
j′

pM i,j,l
k = p

∑
j′

Hj′,l = p2.

Then the sum of any row of the Hadamard matrix built from M i,j,l and M i′,j′,l′

(i 6= i′) will be p2. Further, we showed in Theorem 7.3 that these Hadamard matrices
are unbiased. Noting that n = 4t2 for some t, as our original Hadamard must be
regular, Theorem 7.5 tells us that our LSSD will be an optimistic LSSD(16t4, k, λ; s).
This leads to our final theorem.

Theorem 7.6 (cf. [9, Thm. 13]).Given a regular Hadamard matrix of order s and an
orthogonal array of size s2 ×N ,

• There exists N − 1 regular unbiased Hadamard matrices of order s2.
• There exists a LSSD with v = s2 and w = N .

Corollary 7.7. For sufficiently large s, if there exists a regular Hadamard matrix of
order s, then there exists a LSSD(s2, k, λ;w) with w > s 1

14.8 .

Proof. [5] states that for sufficiently large s, N(s) > s 1
14.8 where N(s) is the maximum

number of columns in an orthogonal array s on s symbols. �

Corollary 7.8. For any n > 1 and w > 2, there exists an odd t permitting a
LSSD(16nt, k, λ;w).

Proof. [15] tells us that for any odd t, there exists a regular Hadamard matrix of order
4t4. Let Ht be the regular Hadamard matrix of order 4t4. Using Corollary 7.7, we
can choose t large enough to guarantee the existence of a LSSD(16t8, k, λ;w). Now
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consider the Hadamard matrix

H =


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

.
Using this matrix, we can now build the regular Hadamard matrix Hn,t = Ht⊗n−1H
which is regular of order 4nt4. This matrix, again paired with Corollary 7.7, now
guarantees the existence of a LSSD(16nt8, k, λ;w) for any choice of n. �

Corollary 7.9. There exists an LSSD(v, k, λ;w) with v = 362n and w = 4n + 1 for
all n > 1.

Proof. Using the MacNeish construction ([12], [18, Thm. 1.1.2]), there exists an or-
thogonal array On of size 362n × (4n + 1). Consider the regular Hadamard matrix of
order 36:

H =



− − − − + − − + + + + − + + − + − + + + + + − − − + + + + − + + + − + −
+ − − − − + − − + + − + + − + − + + + + + − − − + + + + − + + + − + − +
+ + − − − − + − − − + + − + − + + + + + − − − + + + + − + + + − + − + +
− + + − − − − + − + + − + − + + + − + − − − + + + + + + + + − + − + + −
− − + + − − − − + + − + − + + + − + − − − + + + + + + + + − + − + + − +
+ − − + + − − − − − + − + + + − + + − − + + + + + + − + − + − + + − + +
− + − − + + − − − + − + + + − + + − − + + + + + + − − − + − + + − + + +
− − + − − + + − − − + + + − + + − + + + + + + + − − − + − + + − + + + −
− − − + − − + + − + + + − + + − + − + + + + + − − − + − + + − + + + − +
+ + − + + − + − + + + + + − + + − − + − + − + + + − + − − − + + + − − −
+ − + + − + − + + − + + + + − + + − − + − + + + − + + − − + + + − − − −
− + + − + − + + + − − + + + + − + + + − + + + − + + − − + + + − − − − −
+ + − + − + + + − + − − + + + + − + − + + + − + + − + + + + − − − − − −
+ − + − + + + − + + + − − + + + + − + + + − + + − + − + + − − − − − − +
− + − + + + − + + − + + − − + + + + + + − + + − + − + + − − − − − − + +
+ − + + + − + + − + − + + − − + + + + − + + − + − + + − − − − − − + + +
− + + + − + + − + + + − + + − − + + − + + − + − + + + − − − − − + + + −
+ + + − + + − + − + + + − + + − − + + + − + − + + + − − − − − + + + − −
+ + + + − − − + + − + − + − − − + − + + + + − + + − − + + − + − + + − +
+ + + − − − + + + + − + − − − + − − − + + + + − + + − + − + − + + − + +
+ + − − − + + + + − + − − − + − − + − − + + + + − + + − + − + + − + + +
+ − − − + + + + + + − − − + − − + − + − − + + + + − + + − + + − + + + −
− − − + + + + + + − − − + − − + − + + + − − + + + + − − + + − + + + − +
− − + + + + + + − − − + − − + − + − − + + − − + + + + + + − + + + − + −
− + + + + + + − − − + − − + − + − − + − + + − − + + + + − + + + − + − +
+ + + + + + − − − + − − + − + − − − + + − + + − − + + − + + + − + − + +
+ + + + + − − − + − − + − + − − − + + + + − + + − − + + + + − + − + + −
+ + − + + + − + − + + + − − − + + + − − + − + − − + − + + + + − + + − −
+ − + + + − + − + + + − − − + + + + − + − + − − + − − − + + + + − + + −
− + + + − + − + + + − − − + + + + + + − + − − + − − − − − + + + + − + +
+ + + − + − + + − − − − + + + + + + − + − − + − − − + + − − + + + + − +
+ + − + − + + − + − − + + + + + + − + − − + − − − + − + + − − + + + + −
+ − + − + + − + + − + + + + + + − − − − + − − − + − + − + + − − + + + +
− + − + + − + + + + + + + + + − − − − + − − − + − + − + − + + − − + + +
+ − + + − + + + − + + + + + − − − + + − − − + − + − − + + − + + − − + +
− + + − + + + − + + + + + − − − + + − − − + − + − − + + + + − + + − − +



.

Since H is regular, Hn = H⊗n is a regular Hadamard of order 36n. Then On and Hn,
along with Theorem 7.6, give us the desired LSSD. �

The same construction gives, for example, LSSD(1002n, k, λ; 4n + 1) for all n > 1.
Finally, we note that if we can build a regular Hadamard matrix of order 4t2 for
1 6 t 6 50, the table of largest known orthogonal arrays for small n in [5] gives us
LSSDs with the following number of fibers.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
w 5 17 9 65 10 12 8 257 10 17 17 10 10 10 29 1025 10
t 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
w 26 11 26 11 17 11 32 10 17 10 50 30 30 12 4097 32
t 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
w 18 32 65 32 18 32 26 13 20 32 65 17 32 32 30 17

To give an example of the construction for Theorem 7.6 we build a LSSD(16,10,6;3).
In all matrices that follow, “+” denotes a positive 1, “−” denotes a −1, and an empty
space denotes 0. We begin by using the orthogonal array O and the Hadamard
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matrix H:

OT =

 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3

, H =


− + + +
+ − + +
+ + − +
+ + + −

.
Using this OA, we have

B:,: =



+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +



,

and then using our Hadamard matrix,

M1,:,: =



− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −



, M2,:,: =



− + + +
− + + +

− + + +
− + + +

+ − + +
+ − + +

+ − + +
+ − + +

+ + − +
+ + − +

+ + − +
+ + − +

+ + + −
+ + + −

+ + + −
+ + + −



,

M3,:,: =



− + + +
− + + +

− + + +
− + + +

+ − + +
+ − + +

+ − + +
+ − + +

+ + − +
+ + − +

+ + − +
+ + − +

+ + + −
+ + + −

+ + + −
+ + + −



.

Finding the inner products of each pair of bases we find the three Hadamard matrices

H1,2 =



+ − − − − + + + − + + + − + + +
− + + + + − − − − + + + − + + +
− + + + − + + + + − − − − + + +
− + + + − + + + − + + + + − − −
− + − − + − + + + − + + + − + +
+ − + + − + − − + − + + + − + +
+ − + + + − + + − + − − + − + +
+ − + + + − + + + − + + − + − −
− − + − + + − + + + − + + + − +
+ + − + − − + − + + − + + + − +
+ + − + + + − + − − + − + + − +
+ + − + + + − + + + − + − − + −
− − − + + + + − + + + − + + + −
+ + + − − − − + + + + − + + + −
+ + + − + + + − − − − + + + + −
+ + + − + + + − + + + − − − − +



, H1,3 =



+ − − − − + + + − + + + − + + +
− + + + + − − − − + + + − + + +
− + + + − + + + + − − − − + + +
− + + + − + + + − + + + + − − −
+ − + + − + − − + − + + + − + +
+ − + + + − + + − + − − + − + +
+ − + + + − + + + − + + − + − −
− + − − + − + + + − + + + − + +
+ + − + + + − + − − + − + + − +
+ + − + + + − + + + − + − − + −
− − + − + + − + + + − + + + − +
+ + − + − − + − + + − + + + − +
+ + + − + + + − + + + − − − − +
− − − + + + + − + + + − + + + −
+ + + − − − − + + + + − + + + −
+ + + − + + + − − − − + + + + −



,

H2,3 =



+ − − − + − + + + + − + + + + −
− + + + − + − − + + − + + + + −
− + + + + − + + − − + − + + + −
− + + + + − + + + + − + − − − +
+ + + − + − − − + − + + + + − +
+ + + − − + + + − + − − + + − +
+ + + − − + + + + − + + − − + −
− − − + − + + + + − + + + + − +
+ + − + + + + − + − − − + − + +
+ + − + + + + − − + + + − + − −
− − + − + + + − − + + + + − + +
+ + − + − − − + − + + + + − + +
+ − + + + + − + + + + − + − − −
− + − − + + − + + + + − − + + +
+ − + + − − + − + + + − − + + +
+ − + + + + − + − − − + − + + +



.
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This gives us a rank v idempotent

M = 1
12

 4I H12 H13
HT

12 4I H23
HT

13 H
T
23 4I

.
Taking the positive entries of the off diagonal blocks of this matrix gives us the
adjacency matrix of a µ-heavy LSSD(16, 10, 6; 3).

Appendix A. Feasible parameter sets
The Handbook of Combinatorial Designs gives us a list of 21 distinct families of
symmetric designs. We now examine each family to determine which parameter sets
could be the incident symmetric design between fibers in a LSSDs with three or more
fibers. The two conditions we will employ are that s =

√
k − λ and ν = k(k±s)

v are
integers, though from Lemma 2.2 we saw that the following conditions must also hold:

(i) (Corrollary 2.4) v must be composite;
(ii) (Lemma 2.2(ii)) gcd(v, k) > 1;
(iii) (Lemma 2.2(iii)) gcd(v, s) > 1;
(iv) (Remark 2.3) At most one of k(k±s)

v is integral.
Our results show that Families 6, 7, 9, 12, 13, and 14 are feasible. Further, Families
15-19 are feasible in specific cases (m = 1) but will not be feasible in general. It should
be noted that this does not mean that we can find LSSDs in each of these families with
w > 2, instead this means that we cannot disprove the existence of such LSSDs using
only our integrality conditions. In fact, two of the families (McFarland/Wallis and
Spence) were ruled out by Jedwab et. al. ([11]) in the case where the symmetric designs
come from certain known constructions of difference sets. It is still open whether these
families can produce LSSDs which do not arise from linking systems of difference sets.

Family 1 (Point-hyperplane Designs).
v = qm + · · ·+ 1 k = qm−1 + · · ·+ 1 λ = qm−2 + · · ·+ 1

n = qm−1 s = q
m−1

2

Since s is a power of q, we know that gcd(s, v) = 1. Therefore via (iii), any LSSD
with these parameters will have w = 2.

Family 2 (Hadamard matrix designs).
v = 4n− 1 k = 2n− 1 λ = n− 1 s =

√
n

Since s divides v + 1, we know that gcd(s, v) = 1. Therefore via (iii), any LSSD with
these parameters will have w = 2.

Family 3 (Chowla).

v = 4t2 + 1 k = t2 λ = 1
4(t2 − 1) s = 1

2
√

3t2 + 1

Chowla designs require that v is prime, therefore any LSSD with these parameters will
have w = 2 due to (i).

Family 4 (Lehmer).
(a) v = 4t2 + 9 k = t2 + 3 λ = 1

3 (t2 + 3) n = 3
4k

(b) v = 8t2 + 1 = 64u2 + 9 k = t2 λ = u2 n = t2 − u2

(c) v = 8t2 + 49 = 64u2 + 441 k = t2 + 6 λ = u2 + 7 n = t2 − u2 − 1
All three of the Lehmer designs require v to be prime, therefore any LSSD with these
parameters will have w = 2 due to (i).
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Family 5 (Whiteman).

v = pq k = 1
4(pq − 1) λ = 1

16(pq − 5) s = 1
4(3p+ 1)

where p and q = 3p + 2 are both prime. Since gcd(s, v) > 1 we must have s = p or
s = q. However s = q implies that p is negative while s = p implies that p = 1 and
q = 5. As this case gives the parameters (5, 1, 0), only the degenerate case is possible.
Therefore any non-degenerate LSSD using Whiteman parameters will require w = 2.

Family 6 (Menon).

v = 4t2 k = 2t2 − t λ = t2 − t
n = t2 s = t

ν = (2t2 − t)(2t2 − t± t)
4t2 = 1

2(2t− 1)
(
t− 1∓ 1

2

)
Since 2t− 1 will always be odd, we must have that

(
t− 1∓1

2
)
is even. This means that

for odd t, we must choose the + so that we have ν = (2t− 1) t−1
2 . If instead t is even

then we must choose the − so that ν = (2t− 1) t2 . This means that Menon parameters
are feasible for all t > 0, though our choice of µ-heavy or ν-heavy depends on the
parity of t.

Family 7 (Wallis; McFarland).

v = qm+1(qm + · · ·+ q + 2) k = qm(qm + · · ·+ q + 1)
λ = qm(qm−1 + · · ·+ q + 1) s = qm

ν = qm(qm + · · ·+ q + 1)(qm(qm + · · ·+ q + 1)± qm)
qm+1(qm + · · ·+ q + 2)

Consider first the case of ν-heavy parameters,

ν = qm(qm + · · ·+ q + 1)(qm(qm + · · ·+ q + 2))
qm+1(qm + · · ·+ q + 2) = qm−1(qm + · · ·+ q + 1).

As this is always an integer, we note using (iv) that µ-heavy parameters will never be
feasible.

Family 8 (Wilson; Shrikhande and Singhi).

v = m3 +m+ 1 k = m2 + 1 λ = m n = m2 −m+ 1

Note that v = mk + 1. Therefore gcd(k, v) = 1 and, from (ii), any LSSD using these
parameters will have w = 2.

Family 9 (Spence).

v = 3m
(

3m − 1
2

)
k = 3m−1

(
3m + 1

2

)
λ = 3m−1

(
3m−1 + 1

2

)
s = 3m−1

ν =
1
2 3m−1(3m + 1)( 1

2 3m−1(3m + 1)± 3m−1)
1
2 3m(3m − 1)

First consider µ-heavy parameters,

ν =
(3m + 1)

( 1
2 3m−1(3m − 1)

)
3(3m − 1) = 3m−2

(
3m + 1

2

)
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As this is always an integer, we note using (iv) that ν-heavy parameters will never be
feasible.

Family 10 (Rajkundlia and Mitchell; Ionin).

v = 1 + qr

(
rm − 1
r − 1

)
k = rm λ = rm−1

(
r − 1
q

)
r = qd − 1

q − 1

Since r divides v − 1 and k is a power of r, we know that gcd(v, k) = 1. Therefore,
by (ii), any LSSD using these parameters will require w = 2.

Family 11 (Wilson; Brouwer).

v = 2(qm + · · ·+ q) + 1 k = qm λ = 1
2q

m−1(q − 1) n = 1
2q

m−1(q + 1)

Since q divides v−1 and k is a power of q, we must have that gcd(k, v) = 1. Therefore,
by (ii), any LSSD using these parameters will require w = 2.

Family 12 (Spence, Jungnickel and Pott, Ionin).

v = qd+1
(
r2m − 1
r − 1

)
k = r2m−1qd λ = (r − 1)r2m−2qd−1

s = rm−1qd r = qd+1 − 1
q − 1

ν = r2m−1qd(r2m−1qd ± rm−1qd)
qd+1

(
r2m−1
r−1

) = qd−1r3m−2(rm ± 1)
r2m−1 + · · ·+ 1

First consider when m = 1,

v = qd+1 (qd + · · ·+ q + 2
)

k = qd(qd + · · ·+ 1) λ = qd
(
qd−1 + · · ·+ q + 1

)
Giving us the same parameters as McFarland parameters (Family 7). While these
constructions may be distinct, our conditions only depend on the parameters and thus
these will work for ν-heavy designs when m = 1. If m > 1 however, r3m−2 is relatively
prime with the denominator, so we must have (r2m−1 + · · ·+ 1)|qd−1 (rm ± 1). Since
r = qd+1−1

q−1 = qd+· · ·+1, we have that qd−1 < r. Therefore qd−1 (rm ± 1) < rm+1±r <
r2m−1 · · ·+1 and thus any LSSD using these parameters with m > 1 will require w = 2.

Family 13 (Davis and Jedwab).

v = 1
322d+4 (22d+2 − 1

)
k = 1

322d+1 (22d+3 + 1
)

λ = 1
322d+1 (22d+1 + 1

)
s = 22d+1

ν =
1
3 22d+1 (22d+3 + 1

) ( 1
3 22d+1 (22d+3 + 1

)
± 22d+1)

1
3 22d+4 (22d+2 − 1)

=
(
22d+3 + 1

) ((
22d+3 + 1

)
± 3
)

22d−2

3 (22d+2 − 1)
First consider µ-heavy parameters,

ν =
(
22d+3 + 1

) (
22d+3 − 2

)
22d−2

3 (22d+2 − 1) =
(
22d+3 + 1

)
22d−1

3 .

As 2n+ 1 is divisible by 3 any time n is odd, this will always be an integer. Therefore,
using (iv), ν-heavy parameters will never be feasible.
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Family 14 (Chen).

v = 4q2d
(
q2d − 1
q2 − 1

)
k = q2d−1

(
1 + 2

(
q2d − 1
q + 1

))
λ = q2d−1(q − 1)

(
q2d−1 + 1
q + 1

)
s = q2d−1

ν =
q2d−1

(
1 + 2

(
q2d−1
q+1

))(
q2d−1

(
1 + 2

(
q2d−1
q+1

))
± q2d−1

)
4q2d

(
q2d−1
q2−1

)
First consider µ-heavy parameters,

ν =

(
1 + 2

(
q2d−1
q+1

))(
2q2d−1

(
q2d−1
q+1

))
4q
(
q2d−1
q2−1

) =
q2d−2(q − 1)

(
1 + 2

(
q2d−1
q+1

))
2

Since 2 will always divide either q2d−2 or q − 1, we have that ν is integral under
µ-heavy parameters. Then from (iv), ν-heavy parameters will never be feasible.

Family 15 (Ionin).

v = qd
(

r2m − 1
(q − 1)(qd + 1)

)
k = qdr2m−1 λ = qd(qd + 1)(q − 1)r2m−2

s = qdrm−1 r = qd+1 + q − 1

ν =
qdr2m−1 (qdr2m−1 ± qdrm−1)

qd
(

r2m−1
(q−1)(qd+1)

) = (q − 1)(qd + 1)qdr3m−2

(rm ∓ 1) .

First assume that m = 1. Then,

ν = (q − 1)(qd + 1)qdr
(r ∓ 1) .

First considering µ-heavy parameters,

ν = (q − 1)(qd + 1)qdr
(r + 1) = (q − 1)(qd + 1)qdr

q(qd + 1) = (q − 1)qd−1r.

Therefore these parameters are feasible using µ-heavy parameters when m = 1 (and
via (iv), ν-heavy parameters are infeasible). Now consider when m > 2. In this case,
note that r3m−2 is relatively prime to rm∓1. Therefore if ν is integral, then rm∓1 must
divide qd(q−1)(qd+ 1). However, since q > 2 we know that r = q(qd+ 1)−1 > qd+ 1
and r = qd+1 + q−1 > qd+1− qd. Therefore rm > r2 > qd(q−1)(qd+1) meaning that
it is not possible for rm to divide the latter. Therefore ν will never be integral when
m > 1.

Family 16 (Ionin).

v = 2 · 3d
(
q2m − 1
3d + 1

)
k = 3dq2m−1 λ = 1

23d(3d + 1)q2m−2

s = 3dqm−1 q = 1
2(3d+1 + 1)

ν = 3dq2m−1(3dq2m−1 ± 3dqm−1)
2 · 3d

(
q2m−1
3d+1

) = 3d(3d + 1)q3m−2(qm ± 1)
2(qm + 1)(qm − 1) = 3d(3d + 1)q3m−2

2(qm ∓ 1)
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We again must consider the case when m = 1 separately. If m = 1, then

ν = 3d(3d + 1)q
2(q ∓ 1) .

We first consider µ heavy parameters,

ν = 3d(3d + 1)q
3d+1 + 3 = 3d−1q.

Therefore when m = 1, these parameters are feasible with µ-heavy parameters (and
via (iv), ν-heavy parameters are infeasible). Using the same arguments as before, we
can quickly find that ν will not be an integer for m > 1 noting that q is relatively
prime to qm ∓ 1 and qm − 1 > 3d(3d + 1).

Family 17 (Ionin).

v = 3d
(
q2m − 1

2(3d − 1)

)
k = 3dq2m−1 λ = 23d(3d − 1)q2m−2

s = 3dqm−1 q = 3d+1 − 2

ν = 3dq2m−1(3dq2m−1 ± 3dqm−1)
3d
(
q2m−1

2(3d−1)

) = 2q3m−23d(3d − 1)
(qm ∓ 1)

As before, we first consider the case when m = 1 using ν-heavy parameters,

ν = 2q3m−23d(3d − 1)
(q − 1) = 2q3m−23d(3d − 1)

(3d+1 − 3) = 2q3m−23d−1.

Therefore when m = 1, these parameters are feasible with ν-heavy parameters (and
via (iv), µ-heavy parameters are infeasible). We again find that m > 1 will not permit
ν to be an integer as q3m−2 is relatively prime to qm ± 1 and qm − 1 > 2 · 3d(3d − 1).

Family 18 (Ionin).

v = 22d+3
(
q2m − 1
q + 1

)
k = 22d+1q2m−1 λ = 22d−1(q + 1)q2m−2

s = 22d+1qm−1 q = 1
3
(
22d+3 + 1

)
ν = 22d+1q2m−1(22d+1q2m−1 ± 22d+1qm−1)

22d+3
(
q2m−1
q+1

) = (q + 1)22d−1q3m−2

(qm ∓ 1)

First consider m = 1 using µ-heavy parameters, then ν = 22d−1q3m−2. Due to (iv)
we see that ν-heavy parameters will not be feasible. Further, ν is non integral when
m > 1 noting that q3m−2 is relatively prime to qm ∓ 1 and qm − 1 > (q + 1)22d−1.

Family 19 (Ionin).

v = 22d+3
(
q2m − 1
3q − 3

)
k = 22d+1q2m−1 λ = 3 ∗ 22d−1(q − 1)q2m−2

s = 22d+1qm−1 q = 22d+3 − 3

ν =
22d+1q2m−1 (22d+1q2m−1 ± 22d+1qm−1)

22d+3
(
q2m−1
3q−3

) = 22d−1q3m−23(q − 1)
(qm ∓ 1)

If m = 1 and we take ν-heavy parameters then ν = 22d−13q. Due to (iv) we see that
ν-heavy parameters will not be feasible. Further, ν is non integral when m > 1 noting
that q3m−2 is relatively prime to qm ∓ 1 and qm ∓ 1 > 3 · 22d−1(q − 1).
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Family 20 (Ionin). For this family we use the only known realization where p = 2 and
q = 2d − 1 is a Mersenne prime.

v = 1 + 2d+1 2dm − 1
2d + 1 k = 22dm λ = 22dm−d−1(2d + 1) n = 22dm−d−1(2d − 1)

Our first restriction tells us that n must be a square. However since 2 does not divide
2d − 1, we know that 2d − 1 must be a square in order for n to be a square giving us
a contradiction. Thus any LSSD with these parameters will require w = 2.

Family 21 (Kharaghani and Ionin).

v = 4t2
(
qm+1 − 1
q − 1

)
k = (2t2 − t)qm λ = (t2 − t)qm

s = tq
m
2 q = (2t− 1)2

ν =
(2t2 − t)qm

(
(2t2 − t)qm ± tqm

2
)

4t2
(
qm+1−1
q−1

)
=

(2t− 1)3m+1 ((2t− 1)m+1 ± 1
)

(q − 1)
4 ((2t− 1)2m+2 − 1)

= (2t− 1)3m+1(q − 1)
4 ((2t− 1)m+1 ∓ 1)

First, since (2t − 1) is odd, we have that (2t − 1)3m+1 is relatively prime to
4((2t− 1)m+1 ∓ 1). However since m > 1, 4((2t− 1)m+1 ∓ 1) > 4(q − 1) and thus ν
is never integral. Thus any LSSD with these parameters will require w = 2.

Summary. We have shown here that only Families 6, 7, 9, 13 and 14 will always
satisfy our integrality conditions. Further, Families 12, 15, 16, 17, 18, and 19 satisfy
our integrality conditions whenever m = 1. Finally all remaining families will not
allow for any LSSDs with w > 2.
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