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Liminal reciprocity and factorization
statistics

Trevor Hyde

Abstract LetMd,n(q) denote the number of monic irreducible polynomials inFq[x1, x2, . . . , xn]
of degree d. We show that for a fixed degree d, the sequence Md,n(q) converges coefficientwise
to an explicitly determined rational function Md,∞(q). The limit Md,∞(q) is related to the
classic necklace polynomial Md,1(q) by an involutive functional equation we call liminal
reciprocity. The limiting first moments of factorization statistics for squarefree polynomials
are expressed in terms of symmetric group characters as a consequence of liminal reciprocity,
giving a liminal analog of a result of Church, Ellenberg, and Farb.

1. Introduction
Let Fq be a field with q elements. How many degree d polynomials in Fq[x1, x2, . . . , xn]
are irreducible? LetMd,n(q) denote the number of irreducible monic(1) polynomials in
Fq[x1, x2, . . . , xn] of total degree d. When n = 1, Md,1(q) is given by the dth necklace
polynomial

(1) Md,1(q) := 1
d

∑
e|d

µ(e)qd/e,

where µ is the Möbius function. There does not appear to be a simple formula for
Md,n(q) analogous to (1) when n > 1. In Lemma 2.1 Md,n(q) is shown to be a
recursively computable polynomial in q for all n > 1. The table below gives the low
degree terms of M3,n(q) for small n.

n M3,n(q)
1 − 1

3q + 1
3q

3

2 − 1
3q −

1
3q

2 + 1
3q

3 − q5 − 2
3q

6 + . . .
3 − 1

3q −
1
3q

2 + q4 + q5 + 1
3q

6 − q7 + . . .
4 − 1

3q −
1
3q

2 + 2
3q

4 + 2q5 + 7
3q

6 + 2q7 + . . .
5 − 1

3q −
1
3q

2 + 2
3q

4 + 5
3q

5 + 10
3 q

6 + 4q7 + . . .
6 − 1

3q −
1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 5q7 + . . .
7 − 1

3q −
1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 14
3 q

7 + . . .
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(1)By monic in a multivariate polynomial ring we mean an F×q -orbit of polynomials under scaling.
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The table suggests that the sequence of polynomials M3,n(q) converges coefficient-
wise as the number of variables n increases. We prove this to be the case for all d > 1.

Theorem 1.1. LetMd,n(q) be the number of irreducible degree d monic polynomials in
Fq[x1, x2, . . . , xn]. Then Md,n(q) is a polynomial in q and for each d > 1 the sequence
of polynomials Md,n(q) converges coefficientwise (that is, with respect to the q-adic
topology) in the formal power series ring Q[[q]] to the rational function

Md,∞(q) := −1
d

∑
e|d

µ(e)
(

1
1− 1

q

)d/e
.

In particular Md,∞(q) satisfies the functional equation,

(2) Md,∞(q) = −Md,1

(
1

1− 1
q

)
.

Furthermore the rate of convergence of Md,n(q) is bounded by the congruence

Md,n(q) ≡Md,∞(q) mod qn+1.

The fractional linear transformation q 7→ 1
1− 1

q

is an involution, hence (2) is equiv-
alent to

Md,1(q) = −Md,∞

(
1

1− 1
q

)
.

This functional equation relating irreducible polynomial counts in one and infinitely
many variables is the first instance of a phenomenon we call liminal reciprocity.

1.1. Liminal reciprocity for type polynomials. Let Polyd,n(Fq) denote the set
of monic polynomials in Fq[x1, x2, . . . , xn] of total degree d. Since the polynomial ring
Fq[x1, x2, . . . , xn] has unique factorization, each f ∈ Polyd,n(Fq) has a well-defined
factorization type. The factorization type of a polynomial f ∈ Polyd,n(Fq) is the
partition λ ` d given by the degrees of the Fq-irreducible factors of f .

Remark 1.2. The factorization type of a polynomial does not record the multiplicities
of factors, only the degrees of the irreducible factors. For example, the polynomials x2

and x(x+1) both have factorization type (12) since they each have two linear factors.

Definition 1.3. If λ ` d is a partition, then the λ-type polynomial Tλ,n(q) is the
number of elements in Polyd,n(Fq) with factorization type λ. Similarly the squarefree
λ-type polynomial T sf

λ,n(q) is the number of squarefree elements in Polyd,n(Fq) with
factorization type λ. The type polynomials may be expressed in terms of Md,n(q) as

Tλ,n(q) :=
∏
j>1

((
Mj,n(q)
mj(λ)

))
T sf
λ,n(q) :=

∏
j>1

(
Mj,n(q)
mj(λ)

)
,

where mj(λ) is the number of parts of λ of size j,
(
x
m

)
:= 1

m!x(x− 1) · · · (x−m+ 1)
is the usual binomial coefficient, and

((
x
m

))
:= 1

m!x(x+ 1) · · · (x+m− 1). Recall that(
x
m

)
counts the number of subsets of size m in a set of size x and

((
x
m

))
counts the

number of subsets of size m with repetition in a set of size x.

It follows from Theorem 1.1 that the coefficientwise limits
Tλ,∞(q) := lim

n→∞
Tλ,n(q) T sf

λ,∞(q) := lim
n→∞

T sf
λ,n(q)

converge to rational functions. Our next result is a version of liminial reciprocity for
type polynomials.
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Theorem 1.4 (Liminal reciprocity). Let λ be a partition and let `(λ) :=
∑
j>1 mj(λ)

be the number of parts of λ. Then the following identities hold in Q(q),

Tλ,∞(q) = (−1)`(λ)T sf
λ,1

(
1

1− 1
q

)

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
These identities are involutive in the sense that interchanging the ∞ and 1 sub-

scripts gives an equivalent statements. The new feature appearing in Theorem 1.4 is
the relationship between squarefree polynomials and general polynomials of a given
factorization type. This connection is closely related to Stanley’s combinatorial reci-
procity phenomenon [15] (see Section 1.3.)

1.2. Liminal first moments of squarefree factorization statistics. A func-
tion P defined on Polyd,n(Fq) is called a factorization statistic if P (f) depends only
on the factorization type of f . In [10] we expressed the moments of factorization sta-
tistics on the set of univariate polynomials (n = 1) in terms of the symmetric group
representations carried by the cohomology of point configurations in Euclidean space.
(See Section 3 for definitions.) Note that Polysf

d,n(Fq) denotes the subset of squarefree
polynomials in Polyd,n(Fq).

Theorem 1.5 ([10, Thm. 2.2, Thm. 2.3]). Let P be a factorization statistic, and
let ψkd , φkd be the characters of the Sd-representations H2k(PConfd(R3),Q) and
Hk(PConfd(R2),Q) respectively. Then

∑
f∈Polyd,1(Fq)

P (f) =
d−1∑
k=0
〈P,ψkd〉qd−k(1)

∑
f∈Polysf

d,1(Fq)

P (f) =
d−1∑
k=0

(−1)k〈P, φkd〉qd−k,(2)

where 〈P,Q〉 = 1
d!
∑
τ∈Sd

P (τ)Q(τ) is the standard inner product of class functions
on Sd.

The squarefree case (2) of Theorem 1.5 is due to Church, Ellenberg, and Farb [6,
Prop. 4.1]. The general polynomial case (1) was shown by the author [10] using dif-
ferent methods which also led to a new proof of the squarefree case. Theorem 1.5
provides a bridge between the arithmetic and combinatorics of factorization statistics
on one hand and the geometry and representation theory of configuration spaces on
the other.

Numerical experiments suggest there are not direct analogs of Theorem 1.5 for poly-
nomials in n > 1 variables. However, an analog does emerge in the liminal squarefree
case.

Theorem 1.6. Let P be a factorization statistic, and let σkd be the character of the
Sd-representation

(3) Σkd :=
d−1⊕
j=k

sgnd⊗H2j(PConfd(R3),Q)⊕(j
k).
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For each n, the first moment
∑
f∈Polysf

d,n
(Fq) P (f) is a polynomial in q and

lim
n→∞

∑
f∈Polysf

d,n
(Fq)

P (f) = 1
(1− q)d

d−1∑
k=0

(−1)k〈P, σkd〉qd−k,

where the limit is taken coefficientwise in Q[[q]].

Remark 1.7. By considering arbitrary factorization statistics P our results also de-
termine higher moments of P , as the kth moment of P is the first moment of P k.

Since the limit in Theorem 1.6 is taken coefficientwise, the representation theoretic
interpretation of first moments manifests for sufficiently large n. For example, let L
be the linear factor statistic where L(f) is the number of linear factors of f . The
following table shows the first moment of L on Polysf

3,n(Fq) scaled by (1− q)3.

n (1− q)3∑
f∈Polysf

3,n(Fq) L(f)

1 q − 5q2 + 10q3 − 10q4 + 5q5 − q6

2 q − 4q2 + 2q3 + 7q4 − 6q5 − 3q6 + 2q7 + q8 + q9 − q10

3 q − 4q2 + 3q3 − q4 + 7q5 − 6q6 − 3q8 + 3q9 − q11 + q12 + q14 − q15

4 q − 4q2 + 3q3 − q5 + 7q6 − 6q7 − 3q10 + 3q11 − q16 + q17 + q20 − q21

5 q − 4q2 + 3q3 − q6 + 7q7 − 6q8 − 3q12 + 3q13 − q22 + q23 + q27 − q28

From this table and the convergence bound in Theorem 1.1 we conclude that∑
f∈Polysf

3,n(Fq)

L(f) = q − 4q2 + 3q3 +O(qn+1)
(1− q)3 .

It then follows from Theorem 1.6 that

〈L, σ2
3〉 = 1 〈L, σ1

3〉 = 4 〈L, σ0
3〉 = 3.

Note that these inner products are positive integers: this reflects that L, viewed as a
class function of the symmetric group, is the character of the standard permutation
representation.

Remark 1.8. The table above also illustrates a higher stability in the coefficients. For
example, the coefficient of qn+2 is 7 in the numerator of the first moment of L for all
n > 2. Since these exponents grow with n, these terms vanish in the limit as n→∞.
This higher stability persists more generally; it could be an interesting direction for
future work.

Liminal reciprocity gives a new method to compute the expected values of factor-
ization statistics for univariate polynomials. As an example we compute the expected
value of the sign function sgnd, where sgnd(λ) = (−1)d−`(λ).

Proposition 1.9. Let d > 1.
(1) The expected value Ed,1(sgnd) of the sign statistic on the set Polyd,1(Fq) is

given by

Ed,1(sgnd) := 1
qd

∑
f∈Polyd,1(Fq)

sgnd(f) = 1
qbd/2c .
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(2) The limiting expected value Esf
d,∞(sgnd) of the sign statistic on the set

Polysf
d,n(Fq) as n→∞ is given by

Esf
d,∞(sgnd) := lim

n→∞

1
P sf
d,n(q)

∑
f∈Polysf

d,n
(Fq)

sgnd(f) =
(

1
1− 1

q

)bd/2c

,

where the limit is taken 1/q-adically.
Proposition 1.9 is equivalent to a result of Carlitz arrived at by other means. See

Proposition 3.4 and the discussion that follows.

1.3. Related work. Carlitz [4, 5] studied the asymptotic behavior of Md,n(q) for
n > 1. In the language of this paper his main result is as follows.
Theorem 1.10 ([4, Sec. 3.]). For d, n > 1, let md,n := degMd,n(q). Then md,n =(
d+n
d

)
− 1 and the sequence Md,n(q)/qmd,n of polynomials in 1/q converges coefficien-

twise in Q[[ 1
q ]] to

lim
n→∞

Md,n(q)
qmd,n

= 1
1− 1

q

.

This work was subsequently refined and extended in [1, 7, 8, 16, 17]. Our Theo-
rem 1.1 may be interpreted as a determination of the q-adic asymptotics of Md,n(q)
as n→∞. In other words Carlitz studied the limiting behavior of the leading terms
of Md,n(q) and we study the limiting behavior of the low degree terms.

The liminal reciprocity identities (Theorem 1.1 and Theorem 1.4) were discovered
empirically. We would be interested to know if there is a geometric or combinatorial
interpretation of these results. The proof of liminal reciprocity for type polynomials
(Theorem 1.4) passes through a well-known example of Stanley’s combinatorial reci-
procity phenomenon [15, Ex. 1.1]. Combinatorial reciprocity is a family of dualities
between related combinatorial problems which concretely takes the form of functional
equations similar to our liminal reciprocity identities. However, the precise relation-
ship between liminal and combinatorial reciprocity remains unclear. Finding more
examples of liminal reciprocity may shed some light on this phenomenon.

The relationship between the liminal first moments of squarefree factorization sta-
tistics and representations of the symmetric group parallels our results in [10]. Church,
Ellenberg, and Farb [6] connected first moments of squarefree factorization statistics
for univariate polynomials and the cohomology of point configurations in R2 with their
twisted Grothendieck–Lefschetz formula for squarefree polynomials. They deduce the
asymptotic stability of first moments (as d → ∞) as a consequence of representa-
tion stability. We extend this connection to general univariate polynomials in [10,
Thm. 2.7]. However, this connection does not extend to liminal first moments; the
representations Σkd does not exhibit representation stability.

The results in [10] are expressed in terms of expected values of factorization sta-
tistics. In this paper we focus on first moments as they lead to a cleaner statement
for Theorem 1.6. The only difference between expected values and first moments of
factorization statistics is whether or not one divides by the “total mass” of the space
of polynomials considered. This difference is simply a factor of qd for general uni-
variate polynomials, but is more subtle for squarefree polynomials and multivariate
polynomials as it affects the family of characters determining the coefficients. The
equivalence between Theorem 1.5 (2) and [10, Thm. 2.3] follows from [11, Prop. 4.2].
Alternatively, Theorem 1.5 (2) appears as stated in [6, Prop. 4.1].

In a subsequent paper [9] we study the vanishing of the polynomials Md,n(q) at
roots of unity and the relation of Md,n(q) to geometry. For a field K let Irrd,n(K)
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denote the collection of all K-irreducible monic polynomials of total degree d in
K[x1, x2, . . . , xn]. If K = R or C, then Irrd,n(K) inherits a subspace topology from
the projective space of all non-zero monic polynomials of degree at most d. We show
that the values of Md,n(q) at q = ±1 compute the compactly supported Euler char-
acteristics of these spaces.

Theorem 1.11 ([9]). Let d, n > 1 and let χc be the compactly supported Euler char-
acteristic, then

χc(Irrd,n(C)) = Md,n(1) =
{
n if d = 1
0 otherwise.

χc(Irrd,n(R)) = Md,n(−1) =
{
bk if d = 2k

0 otherwise.

where n =
∑
k>0 bk2k is the unique expression of n as an alternating sum of an even

number of powers of 2.

2. Polynomial factorization statistics
Let Fq be a finite field. Recall that we define a monic polynomial in Fq[x1, x2, . . . , xn]
to be an F×q -orbit of polynomials under scaling. Let Polyd,n(Fq) be the set of all total
degree d monic polynomials in Fq[x1, x2, . . . , xn]. For each m > 1 let Polymd,n(Fq) ⊆
Polyd,n(Fq) be the subset of those polynomials with all factors of multiplicity at most
m. There is a filtration

Polysf
d,n(Fq) := Poly1

d,n(Fq) ⊆ Poly2
d,n(Fq) ⊆ Poly3

d,n(Fq) ⊆ . . . ⊆ Polyd,n(Fq),

where Polysf
d,n(Fq) is the set of the squarefree polynomials.

Recall that Fq[x1, x2, . . . , xn] is a unique factorization domain, hence every element
of Polyd,n(Fq) has a unique factorization as a product of irreducible monic polyno-
mials. The factorization type of f ∈ Polyd,n(Fq) is the partition of d given by the
degrees of the Fq-irreducible factors of f . If λ is a partition of d, then let Polyλ,n(Fq)
denote the set of all f ∈ Polyd,n(Fq) with factorization type λ. For m > 1, let
Polymλ,n(Fq) := Polymd,n(Fq)∩Polyλ,n(Fq). If λ = (d) is the partition with one part, let
Irrd,n(Fq) := Poly(d),n(Fq) be the set of monic, irreducible, total degree d polynomials.

Lemma 2.1 shows that the cardinality of each of the sets just defined is given by a
polynomial in the size of the field q.

Lemma 2.1. For any d, n > 1,
(1) |Polyd,n(Fq)| = Pd,n(q), where

Pd,n(q) := q(
d+n

n ) − q(
d+n−1

n )
q − 1 = q(

d+n−1
n ) q(

d+n−1
n−1 ) − 1
q − 1 .

(2) Md,n(q) := | Irrd,n(Fq)| is a polynomial in q with rational coefficients.
(3) For every partition λ ` d,

|Polyλ,n(Fq)| = Tλ,n(q) :=
∏
j>1

((
Mj,n(q)
mj(λ)

))
,

|Polysf
λ,n(Fq)| = T sf

λ,n(q) :=
∏
j>1

(
Mj,n(q)
mj(λ)

)
.

where
((
x
m

))
:=
(
x+m−1
m

)
is the number of subsets with repetition of size m

chosen from an x element set.
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Proof. (1) There are q(
d+n

n ) polynomials in n variables of degree at most d. Hence
there are q(

d+n
n ) − q(

d+n−1
n ) polynomials in n variables of degree exactly d. Taking

orbits under scaling, the total number of degree d monic polynomials in n variables is

|Polyd,n(Fq)| =
q(

d+n
n ) − q(

d+n−1
n )

q − 1 .

(2) We proceed by induction on d to show that Md,n(q) is a polynomial in q. If d = 1,
then all polynomials are irreducible, hence

M1,n(q) = | Irr1,n(Fq)| = |Poly1,n(Fq)| =
qn+1 − q
q − 1 .

Suppose our claim is true for all degrees less than d > 1. By unique factorization, the
total number of polynomials with factorization type λ is

(4) Tλ,n(q) := |Polyλ,n(Fq)| =
∏
j>1

((
Mj,n(q)
mj(λ)

))
.

Counting elements on both sides of the decomposition

Polyd,n(Fq) =
⊔
λ`d

Polyλ,n(Fq),

gives
Pd,n(q) = Md,n(q) +

∑
λ`d
λ 6=(d)

Tλ,n(q).

If λ 6= (d), then all parts j of λ are smaller than d, which by our inductive hypothesis
implies that Mj,n(q) is a polynomial for all such j, hence so is Tλ,n(q). Thus

Md,n(q) = Pd,n(q)−
∑
λ`d
λ6=(d)

Tλ,n(q) ∈ Q[q].

Finally, (3) follows from equation (4) and (2) . �

The definitions of the polynomials appearing in Lemma 2.1 are collected here for
convenience.

Definition 2.2. Let d, n > 1 and λ ` d, then

Pd,n(q) := q(
d+n

n ) − q(
d+n−1

n )
q − 1 = q(

d+n−1
n ) q(

d+n−1
n−1 ) − 1
q − 1

Md,n(q) := | Irrd,n(Fq)| = |Poly(d),n(Fq)|

Tλ,n(q) := |Polyλ,n(Fq)| =
∏
j>1

((
Mj,n(q)
mj(λ)

))
Tmλ,n(q) := |Polymλ,n(Fq)|

T sf
λ,n(q) = T 1

λ,n(q) := |Polysf
λ,n(Fq)| =

∏
j>1

(
Mj,n(q)
mj(λ)

)
Pmd,n(q) := |Polymd,n(Fq)| =

∑
λ`d

Tmλ,n(q),

where d represents degree, n the number of variables, and m the maximum multiplicity
of a factor.
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There is a well-known formula [13, Cor. 2.1] for Md,1(q) given by counting elements
in Fqd by the field they generate,

(5) Md,1(q) = 1
d

∑
e|d

µ(e)qd/e.

The value of Md,1(k) for an integer k > 1 has a combinatorial interpretation as the
number of aperiodic necklaces made with beads of k colors. For this reason, Md,1(q)
is known as the dth necklace polynomial. There is no apparent analog of (5) nor a
necklace interpretation for Md,n(k) when n > 1. Instead Md,n(q) may be computed
recursively as in the proof of Lemma 2.1:

M1,n(q) = P1,n(q) = qn+1 − q
q − 1

Md,n(q) = Pd,n(q)−
∑
λ`d
λ6=[d]

Tλ,n(q).

Our next result shows that all the polynomials listed in Definition 2.2 converge
coefficientwise to rational functions in the ring of formal power series Q[[q]] as the
number of variables n tends to infinity. Recall that coefficientwise convergence in Q[[q]]
is equivalent to convergence with respect to the q-adic topology. All coefficientwise
limits are taken with respect to the q-adic topology.

Theorem 2.3. Let d > 1. Then,
(1) The sequence Pd,n(q) converges coefficientwise in Q[[q]] to

Pd,∞(q) = lim
n→∞

Pd,n(q) =
{
− 1

1− 1
q

d = 1

0 d > 1.

(2) For m > 1 the sequence Pmd,n(q) converges coefficientwise in Q[[q]] to

Pmd,∞(q) = lim
n→∞

Pmd,n(q) =


−
(

1
1− 1

q

)k
d = (m+ 1)k −m(

1
1− 1

q

)k
d = (m+ 1)k

0 d 6≡ 0, 1 mod m+ 1.

In particular, if m = 1, then

P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b d+1
2 c

.

(3) For all partitions λ ` d and m > 1 the sequencesMd,n(q), Tλ,n(q), and Tmλ,n(q)
converge coefficientwise in Q[[q]] to rational functions as n→∞. Furthermore,

Tλ,∞(q) =
∏
j>1

((
Mj,∞(q)
mj(λ)

))

T sf
λ,∞(q) =

∏
j>1

(
Mj,∞(q)
mj(λ)

)
.

Proof. (1) By Lemma 2.1

Pd,n(q) = q(
d+n−1

n ) q(
d+n−1

n−1 ) − 1
q − 1 .
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For d = 1 this simplifies to

P1,n(q) = qn+1 − q
q − 1 .

Since limn→∞ qn = 0 in Q[[q]], it follows that

P1,∞(q) = lim
n→∞

qn+1 − q
q − 1 = − q

q − 1 = − 1
1− 1

q

.

If d > 1, then limn→∞
(
d+n−1
n

)
=∞. Thus

Pd,∞(q) = lim
n→∞

q(
d+n−1

n ) q(
d+n−1

n−1 ) − 1
q − 1 = 0.

(2) Consider the generating functions

Z(Tmn , t) :=
∑
d>0

Pmd,n(q)td =
∑
d>0

∑
λ`d

Tmλ,n(q)td,

Z(Tn, t) :=
∑
d>0

Pd,n(q)td =
∑
d>0

∑
λ`d

Tλ,n(q)td.

The binomial theorem allows us to formally exponentiate 1 + t or 1
1−t by any

element α ∈ R of a binomial ring(2) in R[[t]] by

(1 + t)α :=
∑
d>0

(
α

d

)
td,

(
1

1− t

)α
:=
∑
d>0

((α
d

))
td.

The following product formulas follow by unique factorization in Fq[x1, x2, . . . , xn],

Z(Tmn , t) =
∏
j>1

(1 + tj + t2j + . . .+ tmj)Mj,n(q) =
∏
j>1

(
1− t(m+1)j

1− tj

)Mj,n(q)

Z(Tn, t) =
∏
j>1

(
1

1− tj

)Mj,n(q)
.

Hence Z(Tn, t) = Z(Tn, tm+1)Z(Tmn , t). The coefficients of td for d > 0 in this identity
are polynomials which converge q-adically in Q[[q]] as n → ∞. Taking a limit t-
coefficientwise as n→∞, (1) implies that

1− 1
1− 1

q

t = Z(T∞, t) = Z(T∞, tm+1)Z(Tm∞ , t) =
(

1− 1
1− 1

q

tm+1

)∑
d>0

Pmd,∞(q)td.

Comparing coefficients we conclude that

Pmd+m+1,∞(q) = 1
1− 1

q

Pmd,∞(q)

(2)A binomial ring R is a commutative ring with no additive torsion which is closed under taking
binomial coefficients.
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for all d > 0, together with the initial values

Pm0,∞(q) = 1

Pm1,∞(q) = − 1
1− 1

q

Pmd,∞(q) = 0 for 1 < d 6 m.

Then (2) follows by induction.
(3) It suffices to prove that for every d > 1 the sequence Md,n(q) converges q-adically
to a rational function, the other claims follow by the explicit formulas given in Defi-
nition 2.2 and continuity. Recall the recursive formulas for Md,n(q) used in the proof
of Lemma 2.1. For all d, n > 1,

M1,n(q) = P1,n(q)

Md,n(q) = Pd,n(q)−
∑
λ`d
λ 6=[d]

∏
j>1

((
Mj,n(q)
mj(λ)

))
.

Taking coefficientwise limits as n→∞ using (1) we have

M1,∞(q) = P1,∞(q) = − 1
1− 1

q

,

Md,∞(q) = −
∑
λ`d
λ6=[d]

∏
j>1

((
Mj,∞(q)
mj(λ)

))
.

It follows by induction that Md,∞(q) is a rational function of q for all d > 1. �

There is a surprising relationship between the number of irreducible polynomials
in one variable Md,1(q) and the limit Md,∞(q) of the number of irreducible poly-
nomials in n variables as n → ∞, which gives us an explicit formula for Md,∞(q).
This relationship takes the form of an involutive functional equation we call liminal
reciprocity.

Theorem 2.4 (Liminal reciprocity). For all d > 1,

Md,∞(q) = −Md,1

(
1

1− 1
q

)
.

More explicitly,

Md,∞(q) = −1
d

∑
e|d

µ(e)
(

1
1− 1

q

)d/e
.

Wemake use of the following well-known lemma. A proof can be found, for example,
in [9, Lem. 4.2].

Lemma 2.5. For any binomial ring R and any sequence ad ∈ R for d > 0 such that
a0 = 1 there exists a unique sequence bj ∈ R for j > 1 such that the following identity
holds in R[[t]].

(6)
∑
d>0

adt
d =

∏
j>1

(
1

1− tj

)bj

.
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Proof. Recall the generating function Z(Tn, t) used in the proof of Theorem 2.3 (2),

Z(Tn, t) =
∑
d>0

Pd,n(q)td =
∏
j>1

(
1

1− tj

)Mj,n(q)

Theorem 2.3 (1) implies that the t-coefficientwise limit as n→∞ is simply

(7) 1− 1
1− 1

q

t =
∏
d>1

(
1

1− td

)Md,∞(q)
.

When n = 1, Pd,1(q) = qd and thus

(8) 1
1− qt = Z(T1, t) =

∏
d>1

(
1

1− td

)Md,1(q)
.

Substituting q 7→ 1
1− 1

q

and taking reciprocals in (8) gives

1− 1
1− 1

q

t =
∏
d>1

(
1

1− td

)−Md,1

(
1

1− 1
q

)
.

Comparing exponents with (7) and using the uniqueness of Lemma 2.5 we conclude
that

Md,∞(q) = −Md,1

(
1

1− 1
q

)
. �

Remark 2.6. The identity (8) is known as the cyclotomic identity [12]. It also arises
as the Euler product formula for the Hasse–Weil zeta function of A1(Fq).

The rate of q-adic convergence of Md,n(q) may be determined from the proof of
Theorem 2.4.

Corollary 2.7. For all d, n > 1,
Md,n(q) ≡Md,∞(q) mod qn+1.

Proof. Recall that

Pd,n(q) = q(
d+n−1

n ) q(
d+n−1

n−1 ) − 1
q − 1 .

Since
(
d+n−1
n

)
> n+ 1 for d > 2 and

P1,n(q) = qn+1 − q
q − 1 ≡ − 1

1− 1
q

mod qn+1,

it follows that ∑
d>0

Pd,n(q)td ≡ 1− 1
1− 1

q

t mod qn+1.

Thus ∏
d>1

(
1

1− td

)Md,n(q)
=
∑
d>0

Pd,n(q)td

≡ 1− 1
1− 1

q

t mod qn+1

≡
∏
d>1

(
1

1− td

)Md,∞(q)
mod qn+1.
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Therefore by Lemma 2.5
Md,n(q) ≡Md,∞(q) mod qn+1. �

Remark 2.8. Notice that the fractional linear transformation q 7−→ 1
1− 1

q

is an invo-
lution. Thus Theorem 2.4 is equivalent to

Md,1(q) = −Md,∞

(
1

1− 1
q

)
.

This is the sense in which we consider Theorem 2.4 a “reciprocity.”

Our next result combines Theorem 2.4 with the combinatorial reciprocity identity

(9)
(
−x
m

)
= (−1)m

((
x

m

))
,

to deduce a striking relationship between factorization statistics of polynomials when
n = 1 and n =∞.

Theorem 2.9 (Liminal reciprocity). For any partition λ, let `(λ) =
∑
j>1 mj(λ)

denote the number of parts of λ. Then

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
,

Tλ,∞(q) = (−1)`(λ)T sf
λ,1

(
1

1− 1
q

)
.

Proof. Theorem 2.3 (3), Theorem 2.4, and the combinatorial reciprocity identity (9)
imply that

T sf
λ,∞(q) =

∏
j>1

(
Mj,∞(q)
mj(λ)

)

=
∏
j>1

(−Mj,1

(
1

1− 1
q

)
mj(λ)

)

=
∏
j>1

(−1)mj(λ)

Mj,1

(
1

1− 1
q

)
mj(λ)


= (−1)`(λ)Tλ,1

(
1

1− 1
q

)
.

The second identity follows from a parallel computation noting that (9) is equivalent to((
−x
m

))
= (−1)m

(
x

m

)
. �

The liminal reciprocity identity

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
relates the limiting number of squarefree polynomials with factorization type λ in
Fq[x1, x2, . . . , xn] as n → ∞ to the number of polynomials Fq[x] with factorization
type λ with no restrictions on factor multiplicity. This relationship is, to us, myste-
rious. It would be interesting to find a conceptual explanation for this relationship
between infinite and one dimensional factorization statistics.
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3. Liminal first moments of squarefree factorization statistics
A factorization statistic is a function P defined on Polyd,n(Fq) such that P (f) only
depends on the factorization type of f ∈ Polyd,n(Fq). Equivalently, P is a function
defined on the partitions of the degree d, or a class function of the symmetric group
Sd. In [10] we determined explicit formulas for the first moments of factorization
statistics on Polyd,1(Fq) and Polysf

d,1(Fq) in terms of the characters of symmetric
group representations carried by the cohomology of point configurations in Euclidean
space.

If X is a topological space, then the ordered configuration space of d points in X
is defined as

PConfd(X) := {(a1, a2, . . . , ad) ∈ Xd : ai 6= aj}.
The symmetric group Sd acts on PConfd(X) by permuting the labels of points, and
thus the singular cohomology Hk(PConfd(X),Q) is a linear representation of Sd for
each cohomological degree k.

Theorem 3.1 ([10, Thm. 2.2, Thm. 2.3], [6, Prop. 4.1]). Let P be a factorization statis-
tic, and let ψkd , φkd be the characters of the Sd-representations H2k(PConfd(R3),Q)
and Hk(PConfd(R2),Q) respectively. Then∑

f∈Polyd,1(Fq)

P (f) =
d−1∑
k=0
〈P,ψkd〉qd−k(1)

∑
f∈Polysf

d,1(Fq)

P (f) =
d−1∑
k=0

(−1)k〈P, φkd〉qd−k,(2)

where 〈P,Q〉 = 1
d!
∑
τ∈Sd

P (τ)Q(τ) is the standard inner product of class functions
of Sd.

The identity (2) was first shown by Church, Ellenberg, and Farb [6, Prop. 4.1]
using algebro-geometric methods including the Grothendieck–Lefschetz trace formula.
They called this identity the twisted Grothendieck–Lefschetz formula for squarefree
polynomials. We gave a new proof in [10, Thm. 2.3] using a generating function
argument. Our results in [10] are stated in terms of expected values instead of first
moments; this distinction has little effect in the Polyd,1(Fq) case, but does change the
family of representations in the squarefree case Polysf

d,1(Fq); since the total number
of degree d squarefree polynomials in Fq[x] is P sf

d,1(q) = qd − qd−1, dividing the first
moment of a factorization statistic by qd− qd−1 results in a polynomial with different
coefficients. This version of (2) appears in [6, Prop. 4.1].

Our next result combines Theorem 3.1 with liminal reciprocity to express the lim-
iting first moments of squarefree factorization statistics in terms of characters of
symmetric group representations.

Theorem 3.2. Let P be a factorization statistic, and let σkd be the character of the
Sd-representation

(10) Σkd =
d−1⊕
j=k

sgnd⊗H2j(PConfd(R3),Q)⊕(j
k).

Then

lim
n→∞

∑
f∈Polysf

d,n
(Fq)

P (f) = 1
(1− q)d

d∑
k=0

(−1)k〈P, σkd〉qd−k.
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Theorem 3.2 follows from the following representation theoretic interpretation of
the liminal squarefree type polynomials T sf

λ,∞(q). Recall that for a partition λ the
liminal squarefree type polynomial T sf

λ,∞(q) is defined by

T sf
λ,∞(q) := lim

n→∞
T sf
λ,n(q),

where T sf
λ,n(q) is the number of monic squarefree polynomials in Fq[x1, x2, . . . , xn] with

factorization type λ.

Theorem 3.3. Let λ ` d be a partition, and let σkd be the character of the Sd-
representation Σkd defined in (10). Then

T sf
λ,∞(q) = 1

zλ(1− q)d
d−1∑
k=0

(−1)kσkd(λ)qd−k,

where zλ :=
∏
j>1 j

mj(λ)mj(λ)! is the number of permutations in Sd commuting with
a permutation of cycle type λ.

Proof. Let ψkd be the character of the Sd-representation H2k(PConfd(R3),Q). In [10,
Thm. 2.1] we showed that for all partitions λ ` d,

Tλ,1(q) = 1
zλ

d−1∑
k=0

ψkd(λ)qd−k.

Thus, Theorem 2.9 gives

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)

= 1
zλ

d−1∑
j=0

(−1)`(λ)ψjd(λ)
(

1
1− 1

q

)d−j

= 1
zλ(1− q)d

d−1∑
j=0

(−1)d−`(λ)ψjd(λ)qd−j(q − 1)j

= 1
zλ(1− q)d

d−1∑
j=0

sgnd(λ)ψjd(λ)qd−j
j∑

k=0
(−1)k

(
j

k

)
qj−k

= 1
zλ(1− q)d

d−1∑
k=0

(−1)k
( d∑
j=k

(
j

k

)
sgnd(λ)ψjd(λ)

)
qd−k

= 1
zλ(1− q)d

d−1∑
k=0

(−1)kσkd(λ)qd−k. �

We now prove Theorem 3.3.

Proof. Since P depends only on factorization type, the limiting first moment of P
may be rewritten as

lim
n→∞

∑
f∈Polysf

d,n
(Fq)

P (f) = lim
n→∞

∑
λ`d

P (λ)T sf
λ,n(q) =

∑
λ`d

P (λ)T sf
λ,∞(q).
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Then Theorem 3.3 implies∑
λ`d

P (λ)T sf
λ,∞(q) =

∑
λ`d

1
zλ(1− q)d

d−1∑
k=0

(−1)kP (λ)σkd(λ)qd−k

= 1
(1− q)d

d−1∑
k=0

(−1)k
∑
λ`d

P (λ)σkd(λ)
zλ

qd−k

= 1
(1− q)d

d−1∑
k=0

(−1)k〈P, σkd〉qd−k. �

The coefficients of T sf
λ,1(q) also have representation theoretic interpretations, which

suggests that we might hope for a version of Theorem 3.3 for the limiting first mo-
ments of factorization statistics on Polyd,n(Fq). However, computations show that the
coefficients of Tλ,∞(q) are determined by virtual characters, unlike those of T sf

λ,∞(q).
In [10] we pose the question of finding a geometric interpretation of Theorem 3.1

which explains the connection between the configuration space PConfd(R3) and fac-
torization statistics of degree d polynomials over Fq. Furthermore, we would like a
conceptual interpretation of Theorem 3.3, be it geometric or combinatorial. The fam-
ily of representations Σkd is unfamiliar to us; we collect some of their basic properties
in Proposition 3.5.

3.1. Example. We demonstrate the liminal reciprocity identity of Theorem 2.9 by
computing the expected value of the sign statistic sgnd on degree d univariate poly-
nomials Polyd,1(Fq) and the limiting expected value of sgnd on squarefree degree d
polynomials Polysf

d,∞(Fq).
Let sgnd be the sign character of Sd. Note that sgnd(λ) = (−1)d(−1)`(λ), where

`(λ) =
∑
j>1 mj(λ) is the number of parts of λ. Recall that Pd,n(q) = |Polyd,n(Fq)|

and P sf
d,n(q) = |Polysf

d,n(Fq)|.

Proposition 3.4. Let d > 1.
(1) The expected value Ed,1(sgnd) of the sign statistic on the set Polyd,1(Fq) is

given by

Ed,1(sgnd) := 1
Pd,1(q)

∑
f∈Polyd,1(Fq)

sgnd(f) = 1
qbd/2c .

(2) The limiting expected value Esf
d,∞(sgnd) of the sign statistic on the set

Polysf
d,n(Fq) as n→∞ is given by

Esf
d,∞(sgnd) := lim

n→∞

1
P sf
d,n(q)

∑
f∈Polysf

d,n
(Fq)

sgnd(f) =
(

1
1− 1

q

)bd/2c

,

where the limit is taken q-adically.

Proof. (1) Since sgnd(f) depends only on the factorization type of f we have∑
f∈Polyd,1(Fq)

sgnd(f) =
∑
λ`d

sgn(λ)Tλ,1(q).

Theorem 2.9 gives the identity

(−1)`(λ)Tλ,1(q) = T sf
λ,∞

(
1

1− 1
q

)
,
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from which we deduce for each d > 1∑
λ`d

sgn(λ)Tλ,1(q) =
∑
λ`d

(−1)d(−1)`(λ)Tλ,1(q)

=
∑
λ`d

(−1)dT sf
λ,∞

(
1

1− 1
q

)

= (−1)dP sf
d,∞

(
1

1− 1
q

)
.

Theorem 2.3 (2) tells us

P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b d+1
2 c

.

Thus, ∑
λ`d

sgnd(λ)Tλ,1(q) = (−1)dP sf
d,∞

(
1

1− 1
q

)
= qb

d+1
2 c.

Since Pd,1(q) = qd and d− b(d+ 1)/2c = bd/2c it follows that

Ed,1(sgnd) = 1
Pd,1(q)

∑
f∈Polyd,1(Fq)

sgn(f) = 1
qbd/2c .

(2) For each n > 1,

Esf
d,n(sgnd) := 1

P sf
d,n(q)

∑
f∈Polysf

d,n
(Fq)

sgnd(f) = 1
P sf
d,n(q)

∑
λ`d

sgn(λ)T sf
λ,n(q).

Taking a limit as n→∞,

Esf
d,∞(sgnd) = 1

P sf
d,∞(q)

∑
λ`d

sgnd(λ)T sf
λ,∞(q).

Theorem 2.9 gives us

(−1)`(λ)T sf
λ,∞(q) = Tλ,1

(
1

1− 1
q

)
.

Therefore, ∑
λ`d

sgnd(λ)T sf
λ,∞(q) =

∑
λ`d

(−1)d(−1)`(λ)T sf
λ,∞(q)

=
∑
λ`d

(−1)dTλ,1

(
1

1− 1
q

)

= (−1)d
(

1
1− 1

q

)d
.

Since P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b(d+1)/2c
and d− b(d+ 1)/2c = bd/2c we conclude that

Esf
d,∞(sgnd) = 1

P sf
d,∞(q)

∑
λ`d

sgnd(λ)T sf
λ,∞(q) =

(
1

1− 1
q

)bd/2c
. �
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Combining Theorem 3.1 (1) and Proposition 3.4 (1) we find that

Ed,1(sgnd) =
d−1∑
k=0

〈sgnd, ψkd〉
qk

= 1
qbd/2c .

Therefore it follows that H2k(PConfd(R3),Q) has a one dimensional sgnd component
if and only if k = bd/2c.

The sign function sgnd is closely related to the Liouville function λ studied by
Carlitz [2, 3] in the context of polynomials in Fq[x]. In particular, if f(x) ∈ Polyd,1(Fq)

λ(f) = (−1)d sgnd(f).

Carlitz [2, (ii) pg. 121][3, Sec. 3] computes the first moment of the Liouville function
using zeta functions. Proposition 3.4 may also be deduced from his result. We thank
Ofir Gorodetsky for bringing this work to our attention.

3.2. The Sd -representations Σkd. Theorem 3.2 relates the limiting first moments
of factorization statistics on squarefree polynomials with a family of symmetric group
representations Σkd. Recall that

Σkd :=
d−1⊕
j=k

sgnd⊗H2j(PConfd(R3),Q)⊕(j
k).

We conclude with Proposition 3.5 which records some observations about the repre-
sentations Σkd.

Proposition 3.5. Let σkd be the character of Σkd. Then
(1) The dimension of Σkd is

dim Σkd =
d−1∑
i=k

[
d

d− i

](
i

i− k

)
,

where
[
m
n

]
is an unsigned Stirling number of the first kind (see below for a

definition.)
(2) The representation

d−1⊕
k=0

Σkd

has dimension (2d− 1)!! := (2d− 1)(2d− 3) · · · 3 · 1.
(3) Σ0

d is isomorphic to the regular representation Q[Sd].

Remark 3.6. The sequence dim Σkd appears as A088996 in the Online Encyclopedia
of Integer Sequences [14].

Proof. (1) The dimension of a representation is given by evaluating its character on
the identity, hence

dim Σkd = σkd((1d)).
Theorem 3.3 implies that

T sf
(1d),∞(q) = 1

d!(1− q)d
d−1∑
k=0

(−1)kσkd((1d))qd−k.

On the other hand, we may compute T sf
(1d),∞(q) directly as

T sf
(1d),∞(q) =

(
Md,∞(q)

d

)
=
(− 1

1− 1
q

d

)
.
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The unsigned Stirling numbers of the first kind are defined as the coefficients in the
expansion of a binomial coeffcient

(
x
d

)
,(

x

d

)
= 1
d!

d−1∑
k=0

(−1)k
[

d

d− k

]
xd−k.

Thus,

T sf
(1d),∞(q) = 1

d!

d−1∑
i=0

(−1)i
[

d

d− i

](
− 1

1− 1
q

)d−i

= 1
d!(1− q)d

d−1∑
i=0

(−1)i
[

d

d− i

]
qd−i(1− q)i

= 1
d!(1− q)d

d−1∑
i=0

i∑
j=0

(−1)i+j
[

d

d− i

](
i

j

)
qd−(i−j).

Let k = i− j and write the sum in terms of i and k to get

T sf
(1d),∞(q) = 1

d!(1− q)d
d−1∑
k=0

(−1)k
(
d−1∑
i=k

[
d

d− i

](
i

i− k

))
qd−k.

Comparing coefficients in our two expressions for T sf
(1d),∞(q) we conclude that

dim Σkd = σkd((1d)) =
d−1∑
i=k

[
d

d− i

](
i

i− k

)
.

(2) Let ψkd be the character of H2k(PConfd(R3),Q). Then using the definition of
Σkd and switching the order of summation we have

d−1∑
k=0

σkd((1d)) =
d−1∑
k=0

d∑
j=k

(
j

k

)
ψjd((1

d)) =
d−1∑
j=0

j∑
k=0

(
j

k

)
ψjd((1

d)) =
d−1∑
j=0

2jψjd((1
d)).

Note that by Theorem 3.1 (1),

(11)
d−1∑
j=0

ψjd((1d))
qj

= d!
T(1d),1(q)

qd
= d!
qd

(
q + d− 1

d

)
.

Evaluating (11) at q = 1
2 implies

d−1∑
j=0

2jψjd((1
d)) = 2dd!

(
d− 1

2
d

)
= (2d− 1)(2d− 3) · · · 3 · 1 = (2d− 1)!!.

Therefore dim
⊕d

k=0 Σkd = (2d− 1)!!.
(3) By definition we have

Σ0
d
∼= sgnd⊗

d−1⊕
j=0

H2j(PConfd(R3),Q).

In [10, Thm. 2.6] we showed that
d−1⊕
j=0

H2j(PConfd(R3),Q) ∼= Q[Sd],

where Q[Sd] is the regular representation. The claim follows from
sgnd⊗Q[Sd] ∼= Q[Sd]. �
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