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Stuttering blocks of Ariki–Koike algebras

Salim Rostam

Abstract We study a shift action defined on multipartitions and on residue multisets of
their Young diagrams. We prove that the minimal orbit cardinality among all multipartitions
associated with a given multiset depends only on the orbit cardinality of the multiset. Using
abaci, this problem reduces to a convex optimisation problem over the integers with linear
constraints. We solve it by proving an existence theorem for binary matrices with prescribed
row, column and block sums. Finally, we give some applications to the representation theory
of the Hecke algebra of the complex reflection group G(r, p, n).

1. Introduction
It is known since Frobenius that the irreducible representations {Dλ}λ of the sym-
metric group on n letters Sn over a field of characteristic 0 are parametrised by the
partitions of n, that is, sequences λ = (λ0 > · · · > λh−1 > 0) of positive integers
with |λ| := λ0 + · · · + λh−1 = n. When the ground field is of prime characteristic p,
the irreducible representations {Dλ}λ are now indexed by the p-regular partitions of
n. However, in this case some representations may not be written as a direct sum
of irreducible ones. Hence, we are also interested in the blocks of the group algebra,
that is, indecomposable two-sided ideals. Blocks also partition both sets of irreducible
and indecomposable representations. Brauer and Robinson proved that these blocks
are parametrised by the partitions of n that are p-cores (see Section 2.1), proving
the so-called “Nakayama Conjecture”. We refer to [21] for more details about the
representation theory of the symmetric group.

More generally, we can consider a Hecke algebra of the complex reflection group
G(r, 1, n) ' (Z/rZ) o Sn. Let F be a field and let q ∈ F r {0, 1} be of finite order
e ∈ N>2, the “quantum characteristic”. Let r ∈ N∗ and κ = (κ0, . . . , κr−1) ∈ (Z/eZ)r.
The Ariki–Koike algebra Hκn, or cyclotomic Hecke algebra of G(r, 1, n), is the unitary
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associative F -algebra defined by the generators S, T1, . . . , Tn−1 and the relations
r−1∏
k=0

(S − qκk) = 0,

ST1ST1 = T1ST1S,

STa = TaS, for all a ∈ {2, . . . , n− 1},
(Ta + 1)(Ta − q) = 0, for all a ∈ {1, . . . , n− 1},

TaTb = TbTa, for all a, b ∈ {1, . . . , n− 1} with |a− b| > 1,
TaTa+1Ta = Ta+1TaTa+1, for all a ∈ {1, . . . , n− 2}

(see [4, 7]). Note that we may consider a more general version of the first relation
(the cyclotomic relation for the generator S), but a Morita equivalence of Dipper
and Mathas [12] ensures that it suffices to understand this particular case where only
powers of q are involved.

The algebra Hκn is a natural deformation of the group algebra of G(r, 1, n) and
their representation theories are deeply linked. If r = 1, we recover the Hecke algebra
Hn of G(1, 1, n) ' Sn, also known as the Hecke algebra of type An−1. In this case,
the situation is similar to the one of the symmetric group: if Hn is semisimple then its
irreducible representations {Dλ}λ are parametrised by the partitions of n, otherwise
they are parametrised by the e-regular partitions of n while the blocks of Hn are
parametrised by the e-cores of n. In general, if Hκn is semisimple then its irreducible
representations are parametrised by the r-partitions of n, that is, by the r-tuples
λ = (λ(0), . . . , λ(r−1)) of partitions with |λ| := |λ(0)| + · · · + |λ(r−1)| = n. If Hκn is
not semisimple, its irreducible representations {Dλ}λ can be indexed by a non-trivial
generalisation of e-regular partitions, known as Kleshchev r-partitions (see [3, 5]).
Similarly, the naive generalisation of e-cores to r-partition, the e-multicores, do not
parametrise in general the blocks of Hκn. In fact, Lyle and Mathas [22] proved that
the blocks of Hκn are parametrised by the multisets of κ-residues modulo e of the
r-partitions of n (see Section 2.4). We can identify this parametrising set with a
subset Qκn of Q+ := NZ/eZ and we denote by Hκα the block corresponding to α ∈ Qκn.
Moreover, to each r-partition λ of n we can associate an element ακ(λ) ∈ Qκn. The
blocks of Hκn partition the set of r-partitions of n via the map λ 7→ ακ(λ). We say
that the block indexed by α ∈ Qκn contains the r-partition λ if ακ(λ) = α.

Now let p ∈ N∗ dividing both r and e, let d := r
p and η := e

p and assume that
κ is compatible with (d, η, p) (cf. (2)). The algebra Hκn has a natural subalgebra
Hκp,n that is a Hecke algebra of the complex reflection group G(r, p, n) (see [2, 7]
and also [26], where we emphasise the connection between these two papers). The
subalgebra Hκp,n ⊆ Hκn is the subalgebra of fixed points of the automorphism σ of
order p defined on the generators of Hκn by

(1)
σ(S) = ζS,

σ(Ta) = Ta, for all a ∈ {1, . . . , n− 1},

where ζ ∈ F× has order p. The representation theory of Hκp,n can be studied using
Clifford theory, see for instance [2, 10, 16, 19]. Let λ be a Kleshchev r-partition and let
Dλ be the irreducibleHκn-module indexed by λ. The restriction Dλ

yHκn
Hκp,n

is isomorphic
to a sum of irreducible Hκp,n modules. The number of irreducible Hκp,n-modules that
appear depends on the cardinality of the orbit [λ] of λ =

(
λ(0), . . . , λ(r−1)) under the

shift action defined by
σλ := (λ(r−d), . . . , λ(r−1), λ(0), . . . , λ(r−d−1)).
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A natural question is to determine the extreme cardinalities of the orbits under this
action, and thus the extremal number of irreducible Hκp,n-module that appear during
the restriction process. The answer is an easy exercise when considering all r-partitions
of n.

Proposition 1.1. Let C := {#[λ] : λ is an r-partition of n} ⊆ N∗. We have max C =
p and min C = p

gcd(p,n) .

Already with this Proposition 1.1, we can give some results about the represen-
tation theory of Hκp,n, such as the number of “Specht modules” that appear in the
restriction of Specht modules of Hκn to Hκp,n (as defined in [18]). We can also prove
that a natural basis of Hκp,n is not “adapted” cellular (cf. Section 5.2.5). In order to
give block-analogue answers, we introduce a shift action on Q+. More precisely, for
any α ∈ Q+ we define σ ·α by shifting coordinates by η and we write [α] for the orbit
of α. The subalgebra Hκ[α] :=

⊕
β∈[α]Hκβ of Hκn is stable under σ : Hκn → Hκn, and we

denote by Hκp,[α] the subalgebra of fixed points. The two shift actions that we have
defined are compatible in the following way: if λ is an r-partition then

ακ(σλ) = σ · ακ(λ)
(see Lemma 2.25). Hence, if α := ακ(λ) we always have #[λ] > #[α]. It is easy to
see in small examples that we may have a strict inequality. However, the main results
of this paper, Theorem 2.27 and Corollary 2.30, prove that equality holds if we allow
us to choose among all r-partitions µ with ακ(µ) = ακ(λ). It leads to a more precise
version of the “min part” of Proposition 1.1.

Theorem 1.2. Let λ be an r-partition and let α := ακ(λ). There exists an r-partition
µ with ακ(µ) = α and #[µ] = #[α].

Wada [29] proved a more precise version of the “max part” of Proposition 1.1. In
order to classify the blocks of Hκp,n, Wada proved that there (almost) always exists an
r-partition µ with ακ(µ) = α and #[µ] = p. His proof uses the classification result
of [22] and is very short. In contrast, the proof of Theorem 1.2 that we present here
is quite long and we did not find a way to use [22]. At least, as in [22], we use the
abacus representation of partitions.

Theorem 1.2 allows us to give the block-analogues of the results for Hκp,n that we
deduced from Proposition 1.1, that is, the same results but for Hκp,[α] instead of Hκp,n.
We can also deduce from Theorem 1.2 some consequences about the blocks of Hκn. We
say that an r-partition λ (respectively an element α ∈ Q+) is stuttering if #[λ] = 1
(resp. #[α] = 1). By Theorem 1.2, we know that the block indexed by a stuttering
α ∈ Qκn always contains a stuttering r-partition.

The paper is organised as follows. Section 2 is devoted to combinatorics. More
specifically, in Section 2.1 we define partitions of integers and to each partition λ
we associate an element α(λ) ∈ Q+ = NZ/eZ. In Section 2.2 we recall the abacus
representation of partitions. In Section 2.3, to an e-core λ we associate the e-abacus
variable x = (x0, . . . , xe−1) ∈ Ze. The main fact of this subsection is the equality

α(λ)0 = 1
2

e−1∑
i=0

x2
i

(cf. Proposition 2.14), which we recall from [13]. In Section 2.4 we extend the previous
definitions to multipartitions, so we can in Section 2.5 define the two shift maps
λ 7→ σλ and α 7→ σ·α involved in the statement of our main results, Theorem 2.27 and
Corollary 2.30. Theorem 2.27 is the case #[α] = 1 of Theorem 1.2 and Corollary 2.30
is the general case.
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Section 3 is devoted to technical tools that we need to prove Theorem 2.27. The
reader who wants to focus on the proof of Theorem 2.27 may, in the first instance, skip
this section. In Section 3.1, we study the existence of a chain of interchanges

(
1 0
0 1
)
↔(

0 1
1 0
)
in a family of binary matrices (Corollary 3.7). In Section 3.2, we recall a special

case of a general theorem of Gale [14] and Ryser [28] about the existence of a binary
matrix with prescribed row and column sums. We apply the results of Section 3.1
to impose extra conditions on block sums (Proposition 3.10). Finally, we gather in
Section 3.3 some inequalities; in particular, Lemma 3.13 is a special case of a Jensen’s
inequality for strongly convex functions and Lemma 3.15 is an application to an
inequality involving the fractional part map.

In Section 4, we prove the main result, Theorem 2.27. After a preliminary step
in Section 4.1, we give in Section 4.2 a key lemma (Lemma 4.1), which reduces the
proof of Theorem 2.27 to a (strongly) convex optimisation problem over the inte-
gers with linear constraints. We find in Section 4.3 a partial solution, in Section 4.4
we use Proposition 3.10 to find a solution and eventually in Section 4.5 we prove
Theorem 2.27.

Finally, we give in Section 5 two applications of Corollary 2.30. The general idea
is that we will have more precise results with Corollary 2.30 than with Proposi-
tion 1.1. We quickly recall in Section 5.1 the theory of cellular algebras of Graham
and Lehrer [17], the Ariki–Koike algebra Hκn and its blocks being particular cases.
In Section 5.2 we use the map µ :=

∑p−1
j=0 σ

j to construct a family of bases for
Hκp,[α] = µ(Hκ[α]) (Proposition 5.10). We deduce in Section 5.2.4 that Hκp,[α] is a cel-
lular algebra if #[α] = p, and Hκp,n is cellular if p and n are coprime. Then, using
Corollary 2.30, we show that if #[α] < p and p is odd then the bases that we con-
structed for Hκp,[α] are not adapted cellular (see Section 5.2.5). Finally, in Section 5.3,
we study the maximal number of “Specht modules of Hκp,[α]” (see [18]) that appear
when restricting the Specht modules of Hκ[α] to Hκp,[α].

2. Combinatorics
In this section, we recall standard definitions of combinatorics such as (multi)partitions
and their associated abaci. We also introduce two shift actions and then state our
main result, Theorem 2.27.

Let e > 2 be an integer. We identify Z/eZ with the set {0, . . . , e− 1}. We will use
N = Z>0 to denote the set of non-negative integers and N∗ = Z>0.

2.1. Partitions. A partition of n is a non-increasing sequence of positive integers
λ = (λ0, . . . , λh−1) of sum n. We will write |λ| := n and h(λ) := h. If λ is a partition,
we denote by Y(λ) its Young diagram, defined by:

Y(λ) :=
{

(a, b) ∈ N2 : 0 6 a 6 h(λ)− 1 and 0 6 b 6 λa − 1
}
.

Example 2.1. We represent the Young diagram associated with the partition
(4, 3, 3, 1) by

.

We refer to the elements of N × N as nodes. For instance, the elements of Y(λ)
are nodes. A node γ ∈ Y(λ) is removable if Y(λ) r {γ} is the Young diagram of a
partition. Similarly, a node γ /∈ Y(λ) is addable if Y(λ) ∪ {γ} is the Young diagram
of a partition. A rim hook of λ is a subset of Y(λ) of the following form:

rλ(a,b) := {(a′, b′) ∈ Y(λ) : a′ > a, b′ > b and (a′ + 1, b′ + 1) /∈ Y(λ)} ,
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where (a, b) ∈ Y(λ). We say that rλ(a,b) is an l-rim hook if it has cardinality l. Note
that 1-rim hooks are exactly removable nodes. The hand of a rim hook rλ(a,b) is the
node (a, b′) ∈ rλ(a,b) with maximal b′. The set Y(λ) r rλ(a,b) is the Young diagram of a
certain partition µ, obtained by unwrapping or removing the rim hook rλ(a,b) from λ.
Conversely, we say that λ is obtained from µ by wrapping on or adding the rim hook
rλ(a,b). We say that a partition λ is an e-core if λ has no e-rim hook.

Example 2.2. We consider the partition λ := (3, 2, 2, 1). An example of a 3-rim hook
is

rλ(2,0) =
× ×
×

,

and a 4-rim hook is for instance
rλ(1,0) =

×
× ×
×

.

We can check that λ has no 5-rim hook so it is a 5-core. We will see in Section 2.3
how to use abaci to easily know whether a partition is an e-core.

The residue of a node γ = (a, b) is res(γ) := b − a (mod e). For any i ∈ Z/eZ, an
i-node is a node with residue i. If λ is a partition, we denote by ni(λ) the multiplicity
of i in the multiset of residues of all elements of Y(λ). Note that

∑e−1
i=0 n

i(λ) = |λ|.
Let Q be a free Z-module of rank e and let {αi}i∈Z/eZ be a basis. We have Q =⊕e−1
i=0 Zαi and we define Q+ :=

⊕e−1
i=0 Nαi. For any α ∈ Q, we denote by |α| ∈ Z the

sum of its coordinates in the basis {αi}i∈Z/eZ. If λ is a partition we define

α(λ) :=
∑

γ∈Y(λ)

αres(γ) =
e−1∑
i=0

ni(λ)αi ∈ Q+.

Note that |α(λ)| = |λ|. More generally, if Γ is any finite subset of N2 we will write
α(Γ) :=

∑
γ∈Γ αres(γ).

Remark 2.3. If rλ is an l-rim hook then α(rλ) =
∑l−1
i=0 αi0+i for some i0 ∈ Z/eZ. In

particular, if rλ is an e-rim hook then α(rλ) =
∑e−1
i=0 αi.

Finally, if for α ∈ Q+ there exists a partition λ such that α = α(λ), we say that
α ∈ Q+ is associated with λ. For an arbitrary α ∈ Q+, there can exist two different
partitions λ 6= µ such that α = α(λ) = α(µ). However, if we restrict to e-cores
then the map λ 7→ α(λ) is one-to-one (see [21, 2.7.41 Theorem] or [22]). Hence, the
following subset of Q+:

Q∗ :=
{
α ∈ Q+ : α is associated with some e-core

}
,

is in bijection with the set of e-cores. The aim of Section 2.3 is to explicitly construct
a bijection between Q∗ and Ze−1.

2.2. Abaci. The abacus representation of a partition has been first introduced by
James [20]. Here, we follow the construction of [22]. To a partition λ = (λ0, . . . , λh−1)
we associate the β-number β(λ) defined as the sequence (λa−1−a)a>1, where λa−1 := 0
for any a > h.

Lemma 2.4. The β-number of a partition λ is strictly decreasing and satisfies β(λ)a =
−a for all a > h(λ). Conversely, if β = (βa)a>1 is a strictly decreasing sequence of
integers with βa = −a for all a� 1 then β is the β-number of some partition.
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The following result is well-known (see for instance [21, 2.7.13 Lemma]).

Lemma 2.5. Let l ∈ N∗. A partition λ has an l-rim hook if and only if there is an
element b ∈ β(λ) such that b − l /∈ β(λ). In that case, if µ is the partition that we
obtain by removing this l-rim hook, then β(µ) is obtained by replacing b by b − l in
β(λ) and then sorting in decreasing order.

In particular, if µ is a partition and if b ∈ β(µ) and l ∈ N∗ are such that b+l /∈ β(µ),
then replacing b by b+l in β(µ) and sorting in decreasing order is equivalent to adding
an l-rim hook to µ. Indeed, by Lemma 2.4 the sequence that we obtain from β(µ) is
the β-number of a certain partition λ, and by Lemma 2.5 the partition µ is obtained
from λ by unwrapping an l-rim hook. That is, the partition λ is obtained from µ by
wrapping on an l-rim hook (see also [23, Lemma 5.26]).

Lemma 2.5 ensures that for any partition λ, there is a unique e-core λ that can be
obtained by successively removing e-rim hooks. We say that λ is the e-core of λ, and
the number of e-rim hooks that we remove to obtain λ from λ is the e-weight of λ. We
now consider an abacus with e-runners, each runner being a horizontal copy of Z and
displayed in the following way: the 0th runner is on top and the origins of each copy
of Z are aligned with respect to a vertical line. We record the elements of β(λ) on this
abacus according to the following rule: there is a bead at position j ∈ Z on the runner
i ∈ {0, . . . , e − 1} if and only if there exists a > 1 such that β(λ)a = i + je. We say
that this abacus is the e-abacus associated with λ. Note that, for any i ∈ {0, . . . , e−1}
and j � 0, on runner i there is a bead at position −j (by Lemma 2.4) and a gap
(that is, no bead) at position j.

Example 2.6. We consider the partition λ = (3, 2, 2, 1) from Example 2.2. Its β-
number is β(λ) = (2, 0,−1,−3,−5, . . . ). The associated 3-abacus is

. . .

. . .

. . .

. . .

. . .

. . .

,

the associated 4-abacus is

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

,

and the associated 5-abacus is

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
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Recall that counting the number of gaps up each bead (continuing counting on the left
starting from the (e−1)th runner when reaching the 0th one) recovers the underlying
partition.

Let λ be a partition and let us consider its associated e-abacus. We give the abacus
interpretation of Lemma 2.5 in the two particular cases l = 1 and l = e. Note that for
any a ∈ {1, . . . , h(λ)}, we have β(λ)a = i (mod e) if and only if (a−1, λa−1−1) ∈ Y(λ)
is an i-node.

Corollary 2.7.
• We can move a bead on position j ∈ Z on runner i ∈ {0, . . . , e − 1} to the
previously free position j on runner i− 1 (to the previously free position j− 1
on runner e− 1 if i = 0) if and only if λ has a removable i-node.

• We can move a bead on position j on runner i to the previously free position
j on runner i+1 (to the previously free position j+1 on runner 0 if i = e−1)
if and only if λ has an addable (i+ 1)-node.

Corollary 2.8.
• We can slide a bead on position j on runner i to the previously free position
j − 1 on the same runner if and only if λ has an e-rim hook of hand residue
i. Hence, the partition λ is an e-core if and only if its associated e-abacus has
no gap, that is, no bead has a gap on its left.

• We can slide a bead on position j on runner i to the previously free position
j + 1 on the same runner if and only if λ has an addable e-rim hook of hand
residue i. Hence, we can always add an e-rim hook of hand residue i to λ.

Example 2.9. We consider the partition λ = (3, 2, 2, 1) of Example 2.2. Recall that
we gave in Example 2.6 the e-abaci for e ∈ {3, 4, 5}. The 3-abacus of λ has only one
gap thus rλ(2,0) is the only 3-rim hook that we can remove. The 4-abacus of λ has two
gaps, corresponding to the two lonely beads on runners 0 and 2. Sliding left the bead
on runner 2 (respectively 0) corresponds to removing the 4-rim hook

rλ(0,1) = × ×
×
×

(resp. rλ(1,0) =
×

× ×
×

).

The hand residue, in blue (resp. red), matches since the multiset of residues is given
by

0 1 2
2 0
1 2
0

.

The 5-abacus of λ has no gap thus λ is a 5-core, as we saw in Example 2.2.

2.3. Parametrisation of Q∗. In this subsection, we will parametrise by Ze−1 the
set Q∗ of all α ∈ Q+ that are associated with e-cores. Given an e-abacus associated
with an e-core λ and i ∈ {0, . . . , e − 1}, let us write xi(λ) ∈ Z for the position of
the first gap on the runner i. We say that x0(λ), . . . , xe−1(λ) are the parameters of
the e-abacus, or the e-abacus variables of λ. We will also use the notation x(λ) =(
x0(λ), . . . , xe−1(λ)

)
∈ Ze.

Example 2.10. We use � to denote the position of each xi(λ). The 3-abacus asso-
ciated with the empty partition (which is a 3-core indeed), of associated β-number
(−1,−2, . . . ), is
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. . .

. . .

. . .

. . .

. . .

. . . �

�

�

�

�

�

�

�

�

,

thus the associated parameters are x0(∅) = x1(∅) = x2(∅) = 0. As we saw in
Example 2.6, the 5-abacus associated with the 5-core λ = (3, 2, 2, 1) is

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

thus the associated parameters are
x0(λ) = x2(λ) = 1, x1(λ) = x3(λ) = −1, x4(λ) = 0.

We have the following consequences of Corollary 2.7.
Lemma 2.11. Let λ be an e-core. For all i ∈ {0, . . . , e − 1} we have xi(λ) = ni(λ) −
ni+1(λ).
Proof. We construct the partition λ adding nodes one by one. By Corollary 2.7,
the runner i is involved exactly when adding an i-node or an (i + 1)-node, which
corresponds to a bead going from runner i− 1 to i and runner i to i+ 1 respectively.
Thus, once the e-core λ is constructed exactly ni(λ) (respectively ni+1(λ)) beads were
added to (resp. removed from) runner i. We conclude the proof since xi(∅) = 0. �

Corollary 2.12. Let λ be an e-core. For all i ∈ {1, . . . , e − 1} we have ni(λ) =
n0(λ)− x0(λ)− · · · − xi−1(λ).
Proposition 2.13. Let x0, . . . , xe−1 ∈ Z. Then x0 + · · ·+xe−1 = 0 if and only if there
is an e-core λ such that xi = xi(λ) for all i ∈ {0, . . . , e− 1}.
Proof. If λ is an e-core then Lemma 2.11 ensures that x0(λ) + · · ·+xe−1(λ) = 0. Now
let x0, . . . , xe−1 ∈ Z such that x0 + · · · + xe−1 = 0 and consider the e-abacus A of
parameters x0, . . . , xe−1. That is, the runner i is full of beads before position xi−1 and
has only gaps after position xi. For any i, j ∈ {0, . . . , e−1}, we consider the operation
ti,j that moves the rightmost bead on runner i to the leftmost gap on runner j. We have
t−1
i,j = tj,i, and by Corollaries 2.7 and 2.8 the operation ti,j preserves the set of e-abaci
associated with e-cores. After the operation ti,j , the parameter xi (respectively xj)
decreases (resp. increases) by 1 and thus the new parameters that we obtain still sum
to 0. By induction on maxi xi, we can find a sequence ti1,j1 , . . . , tik,jk of operations
so that the parameters of the e-abacus Ã := tik,jk · · · ti1,j1(A) are all zero. Hence,
the e-abacus Ã corresponds to the empty e-core, and we conclude the proof since
A = tj1,i1 · · · tjk,ik(Ã). �

We thus have a bijection

{e-cores} 1:1←→ {(x0, . . . , xe−1) ∈ Ze : x0 + · · ·+ xe−1 = 0} =: Ze0.
The function n0 defined on the set of e-cores is a symmetric polynomial in

x0, . . . , xe−1. Indeed, exchanging the runners i and i+1 for any i ∈ {0, . . . , e−2} only

Algebraic Combinatorics, Vol. 2 #1 (2019) 82



Stuttering blocks of Ariki–Koike algebras

modifies the number of (i+ 1)-nodes (by Corollary 2.7) and we reach our conclusion
since the symmetric group S({0, . . . , e − 1}) is generated by the transpositions
(i, i+ 1) for all i ∈ {0, . . . , e− 2}. We explicitly give this symmetric polynomial in the
following proposition, where ‖·‖ denotes the Euclidean norm on tuples of integers.

Proposition 2.14. Let λ be an e-core. We have:

n0(λ) = 1
2‖x(λ)‖2 = 1

2

e−1∑
i=0

xi(λ)2.

Proof. Since λ is an e-core, it has e-weight 0 and thus the result immediately follows
from Lemma 2.11 and [13, Proposition 2.1] (see also [15, Bijection 2] and [25, top of
p. 24]). �

Remark 2.15. Let λ be an e-core. Using Corollary 2.12 and Proposition 2.14 we
obtain

ni(λ) = 1
2‖x(λ)‖2 − x0(λ)− · · · − xi−1(λ),

for all i ∈ {1, . . . , e− 1}.

Example 2.16. We take p = 2 and e = 4. We consider the parameter x :=
(2,−1,−1, 0) ∈ Z4

0. The corresponding 4-abacus is

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

��

�

�

�

�

�

�

�

�

�

�

,

the β-number is then (4, 0,−1,−4,−5, . . . ) and this corresponds to the 4-core λ =
(5, 2, 2). The multiset of residues is

0 1 2 3 0
3 0
2 3

and the number of 0-nodes is 3 = 1
2 (22 + 12 + 12 + 02).

Example 2.17. We take p = e = 3. We consider the parameter x := (1, 2,−3) ∈ Z3
0.

The corresponding 3-abacus is:

. . .

. . .

. . .

. . .

. . .

. . .

��

�

�

�

�

�

�

�

�

�

�

�

�

�

,

the β-number is then (4, 1, 0,−2,−3,−5,−6,−8,−9, . . . ) and this corresponds to the
4-core λ = (5, 3, 3, 2, 2, 1, 1). The multiset of residues is

0 1 2 0 1
2 0 1
1 2 0
0 1
2 0
1
0

and the number of 0-nodes is 7 = 1
2 (12 + 22 + 32).
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2.4. Multipartitions. Let d, η, p ∈ N∗ and assume that e = ηp. We define r := dp
and we identify Z/rZ with the set {0, . . . , r−1}. Let κ = (κ0, . . . , κr−1) ∈ (Z/eZ)r be a
multicharge. An r-partition (ormultipartition) of n is an r-tuple λ = (λ(0), . . . , λ(r−1))
of partitions such that |λ| := |λ(0)| + · · · + |λ(r−1)| = n. We write λ ∈ Pκn if λ is an
r-partition of n. We say that κ is compatible with (d, η, p) when

(2) κk+d = κk + η, for all k ∈ Z/rZ.

Thus, the multicharge κ is compatible with (d, η, p) if and only if

(3) κ =
(
κ0, . . . , κd−1, κ0 +η, . . . , κd−1 +η, . . . . . . , κ0 +(p−1)η, . . . , κd−1 +(p−1)η

)
.

Example 2.18. If d = 1 and η = p = 2 (thus e = 4 and r = 2), the multicharge
κ := (0, 2) ∈ (Z/4Z)2 is compatible with (d, η, p).

The Young diagram of an r-partition λ = (λ(0), . . . , λ(r−1)) is the subset of N3

defined by

Y(λ) :=
r−1⋃
c=0

(
Y(λ(c))× {c}

)
.

A node is any element of N × N × {0, . . . , r − 1}, for instance, any element of Y(λ)
is a node. The κ-residue of a node γ = (a, b, c) is resκ(γ) := b− a + κc (mod e). For
any i ∈ Z/eZ, we denote by niκ(λ) its multiplicity in the multiset of κ-residues of all
elements of Y(λ). We also define

ακ(λ) :=
∑

γ∈Y(λ)

αresκ(γ) =
e−1∑
i=0

niκ(λ)αi ∈ Q+.

We have |ακ(λ)| = |λ|. These quantities ακ(λ) were used by Lyle and Mathas [22] to
parametrise the blocks of Hκn. More precisely, the cellularity of the algebra Hκn allows
to associate to each r-partition λ of n a block ofHκn (see Lemma 5.3 and Section 5.2.2):
the main result of [22] is that an r-partition µ of n has the same associated block
as λ if and only if ακ(µ) = ακ(λ). In this case, we say that λ and µ belong to the
same block of Hκn.

Finally, if λ = (λ(0), . . . , λ(r−1)) is an r-partition, its e-multicore is the r-partition
λ :=

(
λ(0), . . . , λ(r−1)

)
. We say that λ is an e-multicore if λ = λ, that is, if each λ(k)

for k ∈ {0, . . . , r − 1} is an e-core, in which case we write

x(k)(λ) := x
(
λ(k)) ∈ Ze0,

for the parameter of the e-abacus associated with the e-core λ(k). We write x(k)(λ) =(
x

(k)
0 (λ), . . . , x(k)

e−1(λ)
)
, so that x(k)

i (λ) := xi
(
λ(k)) for any i ∈ {0, . . . , e− 1}.

Remark 2.19. For ordinary partitions, which are 1-partitions, we recover the defini-
tions of Section 2.1 if κ = 0. In particular, if λ is a partition then ni(λ) = ni0(λ) for all
i ∈ {0, . . . , e− 1} and α(λ) = α0(λ). Moreover, if λ is an e-core then x(0)(λ) = x(λ).

Remark 2.20. Contrary to [22], we do not shift by κk the definition of the β-number
(and thus the e-abacus) for λ(k). While the convention used by [22] behaves well
towards adding and removing i-nodes (more generally, concerning Lemma 2.5), the one
we use is more adapted to detect when two components of λ are equal (see Section 2.5).

The next lemma is straightforward.

Lemma 2.21. Let λ be a partition and i, δ, κ∗ ∈ Z/eZ. We have

niκ∗+δ(λ) = ni−δκ∗ (λ).
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We now give a generalisation of Lemma 2.11 and Proposition 2.14 in the setting
of multipartitions. Recall that we identify {0, . . . , e− 1} (respectively {0, . . . , r − 1})
with Z/eZ (resp. Z/rZ).

Lemma 2.22. Let λ be an e-multicore. For all i ∈ {0, . . . , e− 1} we have

niκ(λ)− ni+1
κ (λ) =

r−1∑
k=0

x
(k)
i−κk(λ).

Proof. Write λ =
(
λ(0), . . . , λ(r−1)) and let i ∈ {0, . . . , e − 1}. By Lemmas 2.11

and 2.21 we have

niκ(λ)− ni+1
κ (λ) =

r−1∑
k=0

[
niκk(λ(k))− ni+1

κk
(λ(k))

]
=

r−1∑
k=0

[
ni−κk(λ(k))− ni+1−κk(λ(k))

]
=

r−1∑
k=0

xi−κk(λ(k)) =
r−1∑
k=0

x
(k)
i−κk(λ). �

Finally, for any i ∈ {0, . . . , e − 1} define Li(x) :=
∑i−1
i′=0 xi′ for all x ∈ Ze. By

Corollary 2.12, if λ =
(
λ(0), . . . , λ(r−1)) is an e-multicore we have

n0
κ(λ) =

r−1∑
k=0

n0
κk

(λ(k)) =
r−1∑
k=0

n−κk(λ(k)) =
r−1∑
k=0

[
n0(λ(k))− L−κk

(
x(k)(λ)

)]
.

Hence, by Proposition 2.14,

(4) n0
κ(λ) =

r−1∑
k=0

[
1
2‖x

(k)(λ)‖2 − L−κk
(
x(k)(λ)

)]
.

2.5. Shifts. We are now ready to define our two shift maps.

Definition 2.23. Recall that e is determined by η and p. For any i ∈ Z/eZ we define
ση,p · αi := αi+η ∈ Q+, and we extend ση,p to a Z-linear map Q→ Q.

Definition 2.24. Recall that r is determined by d and p. If λ = (λ(0), . . . , λ(r−1)) is
an r-partition, we define

σd,pλ := (λ(r−d), . . . , λ(r−1), λ(0), . . . , λ(r−d−1)).

Note that ση,p and σd,p are the identity maps when p = 1 (thus η = e and d = r).
For any α ∈ Q+, we denote by Pκα the subset of Pκn given by r-partitions λ such that
ακ(λ) = α. The two shifts of Definitions 2.23 and 2.24 are compatible in the following
way.

Lemma 2.25. Assume that the multicharge κ is compatible with (d, η, p). If λ is an
r-partition then ακ(σd,pλ) = ση,p · ακ(λ). In other words, the map σd,p induces a
bijection between Pκα and Pκση,p·α.
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Proof. Recall that we are identifying Z/eZ (respectively Z/rZ) with {0, . . . , e − 1}
(resp. {0, . . . , r − 1}). We write λ =

(
λ(0), . . . , λ(r−1)). Using the compatibility equa-

tion (2) for the multicharge κ and Lemma 2.21 we have
ακ(σd,pλ) = ακ

(
λ(r−d), . . . , λ(r−1), λ(0), . . . , λ(r−d−1))

=
e−1∑
i=0

niκ
(
λ(r−d), . . . , λ(r−1), λ(0), . . . , λ(r−d−1))αi

=
e−1∑
i=0

r−1∑
k=0

niκk
(
λ(r−d+k))αi =

e−1∑
i=0

r−1∑
k=0

niκk
(
λ(k−d))αi

=
e−1∑
i=0

r−1∑
k=0

niκk+d

(
λ(k))αi =

e−1∑
i=0

r−1∑
k=0

niκk+η
(
λ(k))αi

=
e−1∑
i=0

r−1∑
k=0

ni−ηκk

(
λ(k))αi =

e−1∑
i=0

r−1∑
k=0

niκk
(
λ(k))αi+η

= ση,p ·
e−1∑
i=0

r−1∑
k=0

niκk
(
λ(k))αi = ση,p ·

e−1∑
i=0

niκ
(
λ(0), . . . , λ(r−1))αi

= ση,p · α(λ),
as desired. The second statement follows. �

Lemma 2.26. Let p′ be an integer that divides p and assume that the multicharge κ is
compatible with (d, η, p). Then κ is compatible with

(
p′d, p′η, pp′

)
and

σp
′

η,p = σp′η, p
p′
, in Q+,

σp
′

d,p = σp′d, p
p′
, on r-partitions.

Proof. We have r = dp = (p′d) pp′ and e = pη = p
p′ (p

′η). Since κ is compatible
with (d, η, p) we have κi+d = κi + η for all i ∈ Z/rZ thus κi+p′d = κi + p′η, which
means that κ is compatible with

(
p′d, p′η, pp′

)
. We conclude the proof by applying

Definitions 2.23 and 2.24. �

We can now state the main theorem of the paper, which will be proved in Section 4.

Theorem 2.27. Let λ be an r-partition and let α := ακ(λ) ∈ Q+. Assume that κ
is compatible with (d, η, p). If ση,p · α = α then there is an r-partition µ ∈ Pκα with
σd,pµ = µ.

We say that an r-partition µ as in Theorem 2.27 is stuttering. Note that when
p = 1, all r-partitions are stuttering. We will often drop the subscripts and only write
σ for σd,p and ση,p when the meaning is clear from the context.

Example 2.28. We consider the setting of Example 2.18 and the bipartition λ :=(
(5, 2, 1), (1, 1)

)
. The multiset of κ-residues is

0 1 2 3 0
3 0
2

2
1
,

thus ακ(λ) = 3(α0 + α2) + 2(α1 + α3) =: α. Hence, we have σ · α = α but σλ =(
(1, 1), (5, 2, 1)

)
6= λ. We now consider the partition µ := (3, 1, 1). The residue multiset

of the bipartition (µ, µ) is
0 1 2
3
2

2 3 0
1
0

,
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thus ακ(µ, µ) = 3(α0 +α2) + 2(α1 +α3) = α. Hence, the stuttering bipartition (µ, µ)
is as in Theorem 2.27.

Remark 2.29. Two particular cases of Theorem 2.27 easily follow from Lemma 2.25.
Let λ be an r-partition and let α := ακ(λ).

(1) If σλ = λ then σ · α = α and there is nothing to prove.
(2) If σ · α = α and if λ is the only r-partition in Pκα (e.g. when the associated

Ariki–Koike algebra is semisimple, see [1]) then σλ ∈ Pκσ·α = Pκα thus σλ = λ.

Let us denote by [λ] (respectively by [α]) the orbit of an r-partition λ (resp. of
α ∈ Q+) under the action of σ. We now state Theorem 1.2 from the introduction.

Corollary 2.30. Assume that κ is compatible with (d, η, p) and let α ∈ Q+ such
that Pκα is not empty. Then #[α] is the smallest element of the set {#[λ] : λ ∈ Pκα}.
In other words, if λ is an r-partition and α := ακ(λ), if σj · α = α for some j ∈
{0, . . . , p− 1} then there exists an r-partition µ such that ακ(µ) = α and σjµ = µ.

Proof. The second part of the statement is clear. Let C be the set {#[λ] : λ ∈ Pκα} and
let us prove that #[α] is the smallest element of C. For each λ ∈ Pκα, by Lemma 2.25
we have ακ(σλ) = σ · ακ(λ) thus #[λ] > #[α], hence #[α] is a lower bound of C. To
prove that it is the smallest element, it suffices to prove that there is an r-partition
µ ∈ Pκα such that #[µ] 6 #[α]. Write p′ := #[α]. The integer p′ divides p since σ has
order p. By Lemma 2.26, we know that κ is compatible with (p′d, p′η, pp′ ). Moreover,
we have σp′η,p · α = α thus Lemma 2.26 also gives

σp′η, p
p′
· α = α.

Hence, by Theorem 2.27 applied with (p′d, p′η, pp′ ) we know that there is an r-partition
µ ∈ Pκα such that

σ
dp′, p

p′ µ = µ,

that is, by another application of Lemma 2.26,
σp
′
d,pµ = µ.

Hence, we have #[µ] 6 p′ and we conclude the proof since p′ = #[α]. �

Remark 2.31. We saw that Lyle and Mathas [22] proved that two r-partitions are in a
same Pκα if and only if they belong to the same block of Hκn. Thus, Corollary 2.30 gives
a little information about the r-partitions that belong to each block. As we mentioned
in the introduction, Wada [29] proved that the maximum of the set {#[λ] : λ ∈ Pκα}
of Corollary 2.30 is always p, provided that this set has at least two elements. His
proof is very short but relies on the (non trivial) fact that if λ and µ are in Pκα then
they are Jantzen equivalent (cf. [22]). On the contrary, we did not find a way to
use [22] to prove Theorem 2.27.

We conclude this section by a reduction step for our main theorem. We assume
that the multicharge κ is compatible with (d, η, p). For any ` ∈ {0, . . . , d − 1}, we
define the multicharge κ(`) ∈ (Z/eZ)p by

(5) κ(`) := (κ`, κ`+d, . . . , κ`+(p−1)d) = (κ`, κ` + η, . . . , κ` + (p− 1)η).
We first need the following lemma.

Lemma 2.32. Let ` ∈ {0, . . . , d − 1}, let λ be a partition and let µ be a partition
obtained from λ by wrapping on an η-rim hook. We define the two p-partitions λp and
µp by λp := (λ, . . . , λ) and µp := (µ, . . . , µ). If α := ακ(`)(λp) and β := ακ(`)(µp) then
β = α+ α0 + · · ·+ αe−1.
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Proof. By Remark 2.3, we have ακ`(µ) = ακ`(λ) + αi0 + · · · + αi0+η−1 for some
i0 ∈ Z/eZ. Thus, for any j ∈ {0, . . . , p− 1} we have

ακ`+jη(µ) = σj · ακ`(µ) = σj · ακ`(λ) +
η−1∑
i=0

σj · αi0+i

= ακ`+jη(λ) +
η−1∑
i=0

αi0+i+jη.

We obtain

β = ακ(`)(µp) =
p−1∑
j=0

ακ`+jη(µ)

=
p−1∑
j=0

ακ`+jη(λ) +
p−1∑
j=0

η−1∑
i=0

αi0+i+jη

= ακ(`)(λp) + α0 + · · ·+ αe−1

= α+ α0 + · · ·+ αe−1. �

Proposition 2.33. It suffices to prove Theorem 2.27 for the e-multicores.

Proof. Let λ be an r-partition such that σ · ακ(λ) = ακ(λ) and let λ be its e-
multicore. By definition of the e-multicore and by Remark 2.3, we have ακ(λ) =
ακ(λ) + w

∑e−1
i=0 αi where w ∈ N is the number of e-rim hooks that we need to wrap

on to obtain λ from λ. Since ακ(λ) and
∑e−1
i=0 αi are both stable by σ, we have

σ · ακ(λ) = ακ(λ). If Theorem 2.27 is true for the e-multicore λ, we can find a
stuttering r-partition µ̃ = σµ̃ with ακ(µ̃) = ακ(λ). Write µ̃ = (µ̃(0), . . . , µ̃(r−1)) and
let µ(0) be a partition obtained by wrapping on w times an η-rim hook to µ̃(0). We
define

µ(jd) := µ(0), for all j ∈ {1, . . . , p− 1},

µ(k) := µ̃(k), for all k ∈ {0, . . . , r − 1}r {0, d, . . . , (p− 1)d}.

The r-partition µ := (µ(0), . . . , µ(r−1)) satisfies µ = σµ. Moreover, since µ̃(0) = µ̃(jd)

for all j ∈ {1, . . . , p− 1}, we can apply w times Lemma 2.32 with ` := 0 starting from
the p-partition

(
µ̃(0), . . . , µ̃(0)). We obtain

ακ(µ) = ακ(0)
(
µ(0), . . . , µ(0))+

d−1∑
`=1

ακ(`)
(
µ(`), . . . , µ(`))

= ακ(0)
(
µ̃(0), . . . , µ̃(0))+ w

e−1∑
i=0

αi +
d−1∑
`=1

ακ(`)
(
µ̃(`), . . . , µ̃(`))

= ακ(µ̃) + w

e−1∑
i=0

αi = ακ(λ) + w

e−1∑
i=0

αi

= ακ(λ).
Hence, Theorem 2.27 is proved for λ. �

Remark 2.34. Since the η-rim hooks that we wrap on are arbitrary, the stuttering
r-partition in Theorem 2.27 is not unique in general. Moreover, using the same idea
of wrapping on η-rim hooks we can easily prove Theorem 2.27 in the particular case
η = 1 (that is, p = e). Finally, if λ and µ are as in Theorem 2.27 and if λ is an
e-multicore, then µ is not necessarily an e-multicore.
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3. Binary tools and inequalities
In this section, we introduce two technical tools that we will need to prove Theo-
rem 2.27. In Section 3.1, given a family of binary matrices satisfying some conditions,
our aim is to prove that we can find a series of compatible submatrices

(
1 0
0 1
)
. We will

need to study some particular cases (Lemma 3.5 and Proposition 3.6) before stating
the main result, Corollary 3.7. We use this result to prove in Section 3.2 the existence
of a binary matrix with prescribed row, (partial) column and block sums. Finally, we
will give Section 3.3 some inequalities. The first one will be reminiscent of the binary
setting, and the others will use convexity.

We use |·| : Rn → R to denote the sum of the coordinates (we warn the reader that
we do not take the sum of the absolute values) and we write ‖·‖ for the Euclidean
norm.

3.1. Binary matrices. Given two matrices with entries in {0, 1} whose row sums
(respectively column sums) are pairwise equal, we can get from the one to the other by
replacing submatrices

(
1 0
0 1
)
by
(

0 1
1 0
)
(cf. [28]). These interchanges do not change the

row or column sums, however they may change block sums. The results of this section,
particularly Corollary 3.4, will be used to prove Proposition 3.10 in Section 3.2, where
we show the existence of a binary matrix with prescribed row, column and block
sums. Note that Chernyak and Chernyak [9] considered matrices with prescribed row,
column and block sums, but they did not study the existence problem.

We call binary matrix a matrix with entries in {0, 1}. If M is an m × n binary
matrix, we write M`k for its entry at (`, k) ∈ {1, . . . ,m} × {1, . . . , n}. We denote by
γ`,k(M) the binary matrix that we obtain from M by changing the entry (`, k) to
1−M`k. We write R`(M) for the `th row of M . Note that if |M | denotes the sum of
the entries of M then |M | =

∑
`|R`(M)|. Finally, if the number of rows of M is even,

we will systematically write M =
(
M+

M−

)
where M+ and M− have the same size, and

we define γ±`,k(M) :=
( γ`,k(M+)
γ`,k(M−)

)
.

Definition 3.1. Let A = A+

A−
and B = B+

B−
be two binary matrices with the same even

number of rows. We say that the matrix
(

1 0
0 1
)
is a compatible submatrix of (A|B) if

there exist `, k, k′ such that

A+
`k = 1, B+

`k′ = 0,
A−`k = 0, B−`k′ = 1.

In that case, we will write A |=`,k,k′ B. We denote by γ`,k,k′(A,B) :=(
γ±`,k(A), γ±`,k′(B)

)
the pair of binary matrices that we obtain if we replace the

submatrix
(

1 0
0 1
)
by
(

0 1
1 0
)
.

Example 3.2. We consider the binary matrices A =
(
A+

A−

)
and B =

(
B+

B−

)
defined by

A+ :=
(

1 1
0 0

)
, B+ :=

(
1 0 0
0 1 0

)
,

A− :=
(

1 0
0 1

)
, B− :=

(
1 0 1
1 0 1

)
.
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The red entries prove that A |=1,2,3 B. With (Ã, B̃) := γ1,2,3(A,B), we have

Ã+ :=
(

1 0
0 0

)
, B̃+ :=

(
1 0 1
0 1 0

)
,

Ã− :=
(

1 1
0 1

)
, B̃− :=

(
1 0 0
1 0 1

)
.

If A and B are two binary matrices with the same even number of rows, the set of
all pairs γ`,k,k′(A,B) where `, k, k′ are such that A |=`,k,k′ B is denoted by Γ(A,B).
Moreover, we will write A |= B if the set Γ(A,B) is non-empty, that is, if there exist
`, k, k′ such that A |=`,k,k′ B.

We can generalise these notations to a family (Ai)16i6n of binary matrices with
the same even number of rows. Let ((`i, ki, k′i))16i6n−1 be a family of triples such
that

Ai |=`i,ki,k′i
Ai+1,

for all i ∈ {1, . . . , n− 1}. For any i ∈ {2, . . . , n− 1} we have

Ai−1 |=`i−1,ki−1,k′i−1
Ai |=`i,ki,k′i

Ai+1,

thus, according to Definition 3.1,

(`i−1, k
′
i−1) 6= (`i, ki).

Hence, for all i ∈ {2, . . . , n− 1} we have

Ai−1 |=`i−1,ki−1,k′i−1
γ±`i,ki(Ai),

γ±`i−1,k′i−1
(Ai) |=`i,ki,k′i

Ai+1,

and

(6) γ±`i,ki
(
γ±`i−1,k′i−1

(Ai)
)

= γ±`i−1,k′i−1

(
γ±`i,ki(Ai)

)
.

We denote by γ((`i,ki,k′i))16i6n−1 ((Ai)16i6n) the family (Ãi)16i6n defined by

Ã1 := γ±`1,k1
(A1),

Ãi := γ±`i,ki
(
γ±`i−1,k′i−1

(Ai)
)
, for all i ∈ {2, . . . , n− 1},

Ãn := γ±`n−1,k′n−1
(An).

By (6), no choice has been made to define Ãi for i ∈ {2, . . . , n − 1}. Finally, we
denote by Γ(A1, . . . , An) the set of all families γ((`i,ki,k′i))16i6n−1

(
(Ai)16i6n

)
where(

(`i, ki, k′i)
)

16i6n−1 is such that A1 |=`1,k1,k′1
· · · |=`n−1,kn−1,k′n−1

An, and we will
write A1 |= · · · |= An if Γ(A1, . . . , An) is non-empty.

The following properties are straightforward from the definition.

Proposition 3.3. Let A and B be two binary matrices with the same even number of
rows such that A |=`,k,k′ B. If (Ã, B̃) := γ`,k,k′(A,B) then

Ã+
`k = A+

`k − 1, B̃+
`k′ = B+

`k′ + 1,

Ã−`k = A−`k + 1, B̃−`k′ = B−`k′ − 1,

the other entries being unchanged. Hence, the following equalities are satisfied:

Ã+
`k + Ã−`k = A+

`k +A−`k, B̃+
`k′ + B̃−`k′ = B+

`k′ +B−`k′ ,

R`(Ã+) +R`(B̃+) = R`(A+) +R`(B+), R`(Ã−) +R`(B̃−) = R`(A−) +R`(B−),
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and

|Ã+| = |A+| − 1, |B̃+| = |B+|+ 1,

|Ã−| = |A−|+ 1, |B̃−| = |B−| − 1.

As a consequence, if A |= B |= C and (Â, B̂, Ĉ) ∈ Γ(A,B,C) then |B̂+| = |B+| and
|B̂−| = |B−|.

Corollary 3.4. Let (Ai)16i6n be a family of binary matrices with the same even
number of rows. Assume that i0, . . . , is are distinct integers such that Ai0 |= . . . |= Ais
and let (Ãi0 , . . . , Ãis) ∈ Γ(Ai0 , . . . , Ais). Then

|Ã+
i0
| = |A+

i0
| − 1, |Ã+

is
| = |A+

is
|+ 1,

|Ã−i0 | = |A
−
i0
|+ 1, |Ã−is | = |A

−
is
| − 1,

and for all t ∈ {1, . . . , s− 1} we have

|Ã+
it
| = |A+

it
|,

|Ã−it | = |A
−
it
|.

The following easy to prove lemma is very important in the proof of Proposi-
tion 3.10.

Lemma 3.5. Let A and B be two binary matrices with the same even number of rows.
We assume that

|R`(A+)|+ |R`(B+)| = |R`(A−)|+ |R`(B−)|, for all `,
|A+| > |A−|.

Then A |= B.

Proof. Since |A+| > |A−|, there is some ` such that |R`(A+)| > |R`(A−)|. Since the
matrices have their entries in {0, 1}, for all k we have(

A+
`k

A−`k

)
∈
{(

0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
0
1

)}
.

Thus, there is some k such that (
A+
`k

A−`k

)
=
(

1
0

)
.

Moreover, we have

|R`(B+)| = |R`(B−)|+
(
|R`(A−)| − |R`(A+)|

)
< |R`(B−)|.

Again, we deduce that there is some k′ such that(
B+
`k′

B−`k′

)
=
(

0
1

)
.

Finally, we have

A+
`k = 1, B+

`k′ = 0,
A−`k = 0, B−`k′ = 1,

thus A |= B. �

Let us now give a generalisation of Lemma 3.5 to an arbitrary number of matrices.
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Proposition 3.6. Let (Ai)16i6n be a family of binary matrices with the same even
number of rows. We assume that

n∑
i=1
|R`(A+

i )| =
n∑
i=1
|R`(A−i )|, for all `,

|A+
1 | > |A

−
1 |,

|A+
i | > |A

−
i |, for all i ∈ {2, . . . , n− 1}.

Then there exists a sequence 1 < i1, . . . , is−1 < n of distinct integers such that
A1 |= Ai1 |= Ai2 |= . . . |= Ais−1 |= An.

Proof. We consider the following binary matrices with an even number of rows:
B1 :=

(
A2 A3 · · · An−1 An

)
.

For each ` we have |R`(B+
1 )| =

∑n
i=2|R`(A

+
i )| and |R`(B−1 )| =

∑n
i=2|R`(A

−
i )|. Thus,

|R`(A+
1 )|+ |R`(B+

1 )| =
n∑
i=1
|R`(A+

i )|

=
n∑
i=1
|R`(A−i )|

= |R`(A−1 )|+
n∑
i=2
|R`(A−i )|

|R`(A+
1 )|+ |R`(B+

1 )| = |R`(A−1 )|+ |R`(B−1 )|.

Since |A+
1 | > |A

−
1 |, we can apply Lemma 3.5 to the matrices A and B1. Hence, if

we define I1 as the set of integers i ∈ {2, . . . , n} such that A1 |= Ai, then I1 is
not empty. If n ∈ I1 then the proof is over, and otherwise we start an induction.
Assume that for some integer s we have some pairwise disjoint non-empty subsets
I0 := {1}, I1, . . . , Is−1 of {1, . . . , n− 1} such that for all t ∈ {1, . . . , s− 1} we have

for all it ∈ It, there exists it−1 ∈ It−1 such that Ait−1 |= Ait .

In the following, we write i /∈ I0 ∪ · · · ∪ Is−1 to mean i ∈ {1, . . . , n}r
(
I0 ∪ · · · ∪ Is−1

)
.

We define the two following binary matrices with the same even number of rows:

Âs :=
(
Ai

)
i∈I0∪···∪Is−1

,

Bs :=
(
Ai

)
i/∈I0∪···∪Is−1

.

Note that the matrix Bs is not empty since n ∈ {1, . . . , n}r
(
I0 ∪ · · · ∪ Is−1

)
. For all

` we have
|R`(Â+

s )| =
∑

i∈I0∪···∪Is−1

|R`(A+
i )|,

|R`(Â−s )| =
∑

i∈I0∪···∪Is−1

|R`(A−i )|,

and
|R`(B+

s )| =
∑

i/∈I0∪···∪Is−1

|R`(A+
i )|,

|R`(B−s )| =
∑

i/∈I0∪···∪Is−1

|R`(A−i )|.
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Thus,

|R`(Â+
s )|+ |R`(B+

s )| =
n∑
i=1
|R`(A+

i )| =
n∑
i=1
|R`(A−i )| = |R`(Â−s )|+ |R`(B−s )|.

Furthermore, since |A+
i | > |A

−
i | for all i ∈ I1 ∪ · · · ∪ Is−1 ⊆ {2, . . . , n − 1} and

|A+
1 | > |A

−
1 | we obtain

|Â+
s | =

∑
i∈I1∪···∪Is−1

|A+
i |+ |A

+
1 |

>
∑

i∈I1∪···∪Is−1

|A−i |+ |A
+
1 |

> |Â−s | − |A−1 |+ |A
+
1 |

|Â+
s | > |Â−s |.

As a consequence, we can apply Lemma 3.5 to the matrices Âs and Bs. Hence, the
set Is of integers i ∈ {1, . . . , n} r (I0 ∪ · · · ∪ Is−1) such that Â

ı
|= Ai for some

ı̂ ∈ I0 ∪ · · · ∪ Is−1 is non-empty. Moreover, by construction such an integer ı̂ is
necessary in Is−1. We stop here if n ∈ Is, and otherwise we continue the induction
with I0, I1, . . . , Is.

Since the sets that we construct are non-empty, pairwise disjoint and included
in {1, . . . , n}, there is some integer s such that n ∈ Is. By construction, for any
t ∈ {1, . . . , s} if it ∈ It then there exists it−1 ∈ It−1 such that Ait−1 |= Ait . Hence,
starting with n ∈ Is, since the sets (It)06t6s are pairwise disjoint and I0 = {1}, we
can find a sequence 1 < i1, . . . , is−1 < n of distinct integers such that A1 |= Ai1 |=
. . . |= Ais−1 |= An. �

Corollary 3.7. Let (Ai)16i6n be a family of matrices with the same even number of
rows. We assume that

n∑
i=1
|R`(A+

i )| =
n∑
i=1
|R`(A−i )|, for all `,

|A+
i0
| > |A−i0 |, for some i0 ∈ {1, . . . , n}.

Then there exists a sequence of distinct integers i1, . . . , is distinct from i0 such that

Ai0 |= Ai1 |= Ai2 |= . . . |= Ais−1 |= Ais ,

with |A+
is
| < |A−is |.

Proof. Let m ∈ {1, . . . , n−1} be the number of i ∈ {1, . . . , n} such that |A+
i | > |A

−
i |.

Let (jk)16k6n be a reordering of {1, . . . , n} with j1 = i0 such that

|A+
jk
| > |A−jk |, for all k ∈ {1, . . . ,m},

|A+
jk
| < |A−jk |, for all k ∈ {m+ 1, . . . , n}.

We define the following binary matrix with an even number of rows:

A :=
(
Ajm+1 · · · Ajn

)
.

For all ` we have
m∑
k=1
|R`(A+

jk
)|+ |R`(A+)| =

m∑
k=1
|R`(A−jk)|+ |R`(A−)|.

Algebraic Combinatorics, Vol. 2 #1 (2019) 93



Salim Rostam

Hence, we can apply Proposition 3.6 to the family (Aj1 , . . . , Ajm , A). We find a se-
quence i1, . . . , is−1 of distinct elements of {j2, . . . , jm} such that

Aj1 = Ai0 |= Ai1 |= . . . |= Ais−1 |= A.

We conclude the proof since Ais−1 |= A implies that there exists is ∈ {jm+1, . . . , jn}
such that Ais−1 |= Ais . �

3.2. Application to binary averaging. The following result is well-known.

Lemma 3.8. Let w0, . . . , wn−1 ∈ {0, . . . , p}. For all i ∈ {0, . . . , n−1} we define vi := wi
p

and we set v := (v0, . . . , vn−1) ∈ [0, 1]n. There exist some vectors ε0, . . . , εp−1 ∈ {0, 1}n
such that

v = 1
p

p−1∑
j=0

εj .

In particular,
1
p

p−1∑
j=0
|εj | = 1

p

p−1∑
j=0
‖εj‖2 = |v|.

If in addition |v| ∈ N then for all j ∈ {0, . . . , p − 1} we can choose εj such that
|εj | = ‖εj‖2 = |v|.

The last result is equivalent to the existence of a binary p × n matrix with row
sums (|v|, . . . , |v|) and column sums (w0, . . . , wn−1). By a general result of [14, 28],
we know that such a matrix exists, since the conjugate (p, . . . , p) (with |v| terms) of
the partition (|v|, . . . , |v|) dominates the partition w̃ for the usual dominance order
on partitions, where w̃ is the partition obtained by rearranging the entries of w in
decreasing order. However, for the convenience of the reader we give a simplified proof
for the particular setting of Lemma 3.8.

Proof. For any i ∈ {0, . . . , n− 1}, we define the set
Wi := {w0 + · · ·+ wi−1 + 1, . . . , w0 + · · ·+ wi}.

For any j ∈ {0, . . . , p − 1}, we consider the element εj := (εj0, . . . , ε
j
n−1) ∈ {0, 1}n

defined by

εji :=
{

1 if Wi contains an element of residue j modulo p,
0 otherwise,

for any i ∈ {0, . . . , n − 1}. Since Wi has cardinality wi and is given by at most
p successive integers, the set of residues modulo p of the elements of Wi has also
cardinality wi. Hence, there are exactly wi integers εji for all j ∈ {0, . . . , p − 1} that
are equal to 1. The other are 0, thus

p−1∑
j=0

εji = wi.

The ith component of 1
p

∑p−1
j=0 ε

j is thus wi
p = vi and we obtain

1
p

p−1∑
j=0

εj = v.

Since |·| is additive, we deduce that 1
p

∑p−1
j=0 |εj | = |v|. Moreover, since εj ∈ {0, 1}n we

have |εj | = ‖εj‖2 thus 1
p

∑p−1
j=0‖εj‖2 = |v|.
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Now assume that |v| ∈ N. There are in the set {1, . . . , |v|p = |w|} exactly |v|
integers of residue j modulo p for each j ∈ {0, . . . , p− 1}. Since {Wi}i∈{0,...,n−1} is a
partition of {1, . . . , |w|}, we deduce that

n−1∑
i=0

εji = #
{
elements of {1, . . . , |w|} of residue j modulo p

}
= |v|,

for all j ∈ {0, . . . , p− 1}. Hence |εj | = |v| and we conclude the proof. �

We will use Corollary 3.7 of Section 3.1 to generalise Lemma 3.8: see Proposi-
tion 3.10. Let us first give an easy lemma.

Lemma 3.9. Let a0, . . . , ap−1 be integers of sum a multiple of p. The following integer:

m := max {aj − aj′ : j, j′ ∈ {0, . . . , p− 1}} ∈ N,

satisfies m = 0 or m > 2.

Proof. Assume m 6 1. Then, for all j, j′ ∈ {0, . . . , p − 1} we have |aj − aj′ | 6 1.
If j0 ∈ {0, . . . , p − 1} is such that aj0 is the minimum of {aj}j∈{0,...,p−1} then for
all j ∈ {0, . . . , p − 1}, there exists εj ∈ {0, 1} such that aj = aj0 + εj . From the
hypothesis, we know that paj0 +

∑p−1
j=0 εj is a multiple of p, thus

∑p−1
j=0 εj is a multiple

of p. Since εj0 = 0, we deduce that εj = 0 for all j. We conclude that aj0 = aj for all
j ∈ {0, . . . , p− 1} thus m = 0. �

We need to introduce some notation in order to state Proposition 3.10. For any
` ∈ {0, . . . , d− 1} and i ∈ {0, . . . , e− 1}, let w(`)

i ∈ {0, . . . , p} and set v(`)
i := w

(`)
i

p . For
each ` ∈ {0, . . . , d− 1} we define

v(`) := (v(`)
0 , . . . , v

(`)
e−1).

We obtain a d× e matrix

V :=

 v(0)

...
v(d−1)

 .

We assume that for all ` ∈ {0, . . . , d − 1} we have |v(`)| ∈ N. Hence, for all ` ∈
{0, . . . , d− 1} we can apply Lemma 3.8 (with n := e). We obtain some vectors εj(`) ∈
{0, 1}e for all j ∈ {0, . . . , p− 1}, such that

(7) v(`) = 1
p

p−1∑
j=0

εj(`),

and

(8) |εj(`)| = |v(`)|.

For all j ∈ {0, . . . , p− 1}, define the following d× e matrix:

Ej :=

 εj(0)

...
εj(d−1)

 .

Recall that e is a multiple of η (and e = ηp). We write the matrix V with η blocks
of the same size V =

(
V [0] · · · V [η−1]), and we use the same block structure for the
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matrices Ej =
(
Ej[0] · · · Ej[η−1]). As a consequence of (7), we have

(9) |V [i]| = 1
p

p−1∑
j=0
|Ej[i]|,

for all i ∈ {0, . . . , η − 1}.

Proposition 3.10. We keep the previous notation. In addition to the hypotheses
|v(`)| ∈ N for all ` ∈ {0, . . . , d − 1}, assume that for all i ∈ {0, . . . , η − 1} we
have |V [i]| ∈ N. Then we can choose the vectors εj(`) for all j ∈ {0, . . . , p − 1} and
` ∈ {0, . . . , d−1} such that the previous properties (7) and (8) still hold, together with

(10) |Ej[i]| = |V [i]|,

for all j ∈ {0, . . . , p− 1} and i ∈ {0, . . . , η − 1}.

Example 3.11. Take p = 4 and d = 2. With the following matrix:

V := 1
4

(
1 2 2 1 2 3 0 1
0 2 1 3 1 3 2 0

)
=
(
v(0)

v(1)

)
=
(
V [0] V [1] ) ,

we have |v(0)| = |v(1)| = |V [0]| = |V [1]| = 3. The vectors εj(`) constructed as in the
proof of Lemma 3.8 are the following:

ε0(0) = (1, 0, 1, 0, 0, 1, 0, 0), ε0(1) = (0, 1, 0, 1, 0, 1, 0, 0),

ε1(0) = (0, 1, 0, 1, 0, 1, 0, 0), ε1(1) = (0, 1, 0, 1, 0, 1, 0, 0),

ε2(0) = (0, 1, 0, 0, 1, 1, 0, 0), ε2(1) = (0, 0, 1, 0, 1, 0, 1, 0),

ε3(0) = (0, 0, 1, 0, 1, 0, 0, 1), ε3(1) = (0, 0, 0, 1, 0, 1, 1, 0).

Thus, we have

E0 =
(

1 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0

)
=
(
ε0(0)

ε0(1)

)
=
(
E0[0] E0[1] ) ,

E1 =
(

0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 0

)
=
(
ε1(0)

ε1(1)

)
=
(
E1[0] E1[1] ) ,

E2 =
(

0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0

)
=
(
ε2(0)

ε2(1)

)
=
(
E2[0] E2[1] ) ,

E3 =
(

0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

)
=
(
ε3(0)

ε3(1)

)
=
(
E3[0] E3[1] ) .

However, we have |E0[0]| = 4 6= |V [0]|, thus these vectors εj(`) do not satisfy the
condition (10) of Proposition 3.10. Let us consider the two compatible submatrices
indicated by the coloured entries. Define

A :=
(
E0[0]

E2[0]

)
, B :=

(
E0[1]

E2[1]

) (
resp. C :=

(
E1[0]

E3[0]

)
, D :=

(
E1[1]

E3[1]

))
and set (Ã, B̃) := γ1,1,1(A,B) (resp. (C̃, D̃) := γ1,2,1(C,D)). We have

E0 =
(
A+ B+ ) ,

E1 =
(
C+ D+ ) ,

E2 =
(
A− B−

)
,

E3 =
(
C− D−

)
,
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and

Ẽ0 :=
(
Ã+ B̃+

)
=
(

0 0 1 0 1 1 0 0
0 1 0 1 0 1 0 0

)
,

Ẽ1 :=
(
C̃+ D̃+

)
=
(

0 0 0 1 1 1 0 0
0 1 0 1 0 1 0 0

)
,

Ẽ2 :=
(
Ã− B̃−

)
=
(

1 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0

)
,

Ẽ3 :=
(
C̃− D̃−

)
=
(

0 1 1 0 0 0 0 1
0 0 0 1 0 1 1 0

)
.

The vectors ε̃j(`) defined for all j ∈ {0, . . . , 3} and ` ∈ {0, 1} by Ẽj =
(
ε̃j(0)

ε̃j(1)

)
satisfy (7)

and (8), together with the condition (10) of Proposition 3.10. In general, the existence
of such interchanges will be given by Corollary 3.7.

The remaining part of this subsection is now devoted to the proof of Proposi-
tion 3.10. First, note that the interchanges

(
1 0
0 1
)
↔
(

0 1
1 0
)
that are compatible with

the block decomposition

(11)

 E0

...
Ep−1

 =

 E0[0] · · · E0[η−1]

...
...

...
E(p−1)[0] · · · E(p−1)[η−1]

 ,

do not affect properties (7) and (8). However, these interchanges change the value of
some |Ej[i]|, as described in Proposition 3.3. Thus, it suffices to prove that there exists
a sequence of compatible interchanges that modifies each |Ej[i]| to |V [i]|. We endow
N×N∗ with the usual lexicographic order. We will use an induction on (∆, N) ∈ N×N∗,
where

∆ := max
{
|Ej[i]| − |Ej

′[i]| : i ∈ {0, . . . , η − 1}, j, j′ ∈ {0, . . . , p− 1}
}
∈ N,

and

N := #
{

(i, j, j′) ∈ {0, . . . , η − 1} × {0, . . . , p− 1}2 : |Ej[i]| − |Ej
′[i]| = ∆

}
∈ N∗.

Define

M := max
{
|Ej[i]| : i ∈ {0, . . . , η − 1}, j ∈ {0, . . . , p− 1}

}
,

m := min
{
|Ej[i]| : i ∈ {0, . . . , η − 1}, j ∈ {0, . . . , p− 1}

}
,

and

Nmax := #
{

(i, j) ∈ {0, . . . , η − 1} × {0, . . . , p− 1} : |Ej[i]| = M
}
,

Nmin := #
{

(i, j) ∈ {0, . . . , η − 1} × {0, . . . , p− 1} : |Ej[i]| = m
}
.

We have ∆ = M −m and N = NmaxNmin. If ∆ = 0 then by (9) we have |Ej[i]| =
|V [i]| for all i, j so the proof is over. Assume ∆ > 1 and let i0 ∈ {0, . . . , e − 1} and
j0, j

′
0 ∈ {0, . . . , p− 1} such that |Ej0[i0]| − |Ej′0[i0]| = ∆. We now consider the matrix(

Ej0

Ej
′
0

)
=
(
Ej0[0] · · · Ej0[i0] · · · Ej0[η−1]

Ej
′
0[0] · · · Ej′0[i0] · · · Ej′0[η−1]

)
,
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given by the j0th and j′0th block-rows of the matrix of (11). We consider the family
(Ai)06i6η−1 of matrices with the same even number of rows defined by

Ai =
(
A+
i

A−i

)
:=
(
Ej0[i]

Ej
′
0[i]

)
,

for all i ∈ {0, . . . , η − 1}. The hypotheses of Corollary 3.7 are satisfied, thanks to the
definition of i0 and (8) (note that R`(Ej0) = εj0(`) and R`(Ej

′
0) = εj

′
0(`)). Hence, we

can find a sequence of distinct integers i1, . . . , is distinct from i0 with |A+
is
| < |A−is |

and
Ai0 |= · · · |= Ais .

Let (Ãi0 , . . . , Ãis) ∈ Γ(Ai0 , . . . , Ais). By Corollary 3.4, we know that

(12)
|Ã+
it
| = |A+

it
|,

|Ã−it | = |A
−
it
|,

for all t ∈ {1, . . . , s− 1}. Moreover, we have

|Ã+
i0
| = |A+

i0
| − 1, |Ã−i0 | = |A

−
i0
|+ 1,(13a)

|Ã+
is
| = |A+

is
|+ 1, |Ã−is | = |A

−
is
| − 1.(13b)

We now want to evaluate the new values ∆̃ and Ñ of ∆ and N that we obtain and
prove that (∆̃, Ñ) is strictly less than (∆, N). We have

∆̃ = max
{
|Ẽj[i]| − |Ẽj

′[i]| : i ∈ {0, . . . , η − 1}, j, j′ ∈ {0, . . . , p− 1}
}
∈ N,

and

Ñ = #
{

(i, j, j′) ∈ {0, . . . , η − 1} × {0, . . . , p− 1}2 : |Ẽj[i]| − |Ẽj
′[i]| = ∆̃

}
∈ N∗,

where

Ẽj[i] :=


Ã+
it

if i = it for some t ∈ {0, . . . , s} and j = j0,

Ã−it if i = it for some t ∈ {0, . . . , s} and j = j′0,

Ej[i] otherwise.
Moreover, with

M̃ := max
{
|Ẽj[i]| : i ∈ {0, . . . , η − 1}, j ∈ {0, . . . , p− 1}

}
,

m̃ := min
{
|Ẽj[i]| : i ∈ {0, . . . , η − 1}, j ∈ {0, . . . , p− 1}

}
,

and

Ñmax := #
{

(i, j) ∈ {0, . . . , η − 1} × {0, . . . , p− 1} : |Ẽj[i]| = M̃
}
,

Ñmin := #
{

(i, j) ∈ {0, . . . , η − 1} × {0, . . . , p− 1} : |Ẽj[i]| = m̃
}
,

we have ∆̃ = M̃ − Ñ and Ñ = ÑmaxÑmin. Note that by (12), for all i ∈ {0, . . . , η− 1}
and j ∈ {0, . . . , p− 1} we have

|Ẽj[i]| = |Ej[i]|, if i /∈ {i0, is} or j /∈ {j0, j′0}.(14)

By the assumption |V [i]| ∈ N and (9), thanks to Lemma 3.9 we know that ∆ =
|A+
i0
| − |A−i0 | = M −m > 2. Hence, by (13a) we have

(15) m < |Ã−i0 | 6 |Ã
+
i0
| < M.
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Furthermore, since m 6 |A+
is
| < |A−is | 6M , by (13b) we have

m < |Ã+
is
| 6 |A−is | 6M,(16a)

m 6 |A+
is
| 6 |Ã−is | < M.(16b)

Equations (14), (15) and (16) prove that M̃ 6M and m̃ > m, thus ∆̃ 6 ∆. If ∆̃ < ∆
then (∆̃, Ñ) < (∆, N), thus we now assume that ∆̃ = ∆, that is, M̃ = M and m̃ = m.
By (14) we have

Nmax − Ñmax = #
{

(i, j) ∈ {i0, is} × {j0, j′0} : |Ej[i]| = M
}

−#
{

(i, j) ∈ {i0, is} × {j0, j′0} : |Ẽj[i]| = M
}
.

Thus,

Nmax − Ñmax = 1 + δ|A−
is
|,M −#

{
(i, j) ∈ {i0, is} × {j0, j′0} : |Ẽj[i]| = M

}
,

where δ is the Kronecker symbol. By (15) and (16), we obtain

(17) Nmax − Ñmax = 1 + δ|A−
is
|,M − δ|Ã+

is
|,M .

By (16a), we know that
δ|Ã+

is
|,M 6 δ|A−is |,M

,

thus (17) yields Nmax − Ñmax > 1. Similarly, we have Nmin − Ñmin > 1. Finally, we
obtain Ñ = ÑmaxÑmin < NmaxNmin = N and thus (∆̃, Ñ) = (∆, Ñ) < (∆, N). By
induction, this concludes the proof of Proposition 3.10.

3.3. A few inequalities. We will prove some inequalities that we will use to prove
Theorem 2.27. The setting of the first one is reminiscent of Lemma 3.8 and the
following ones use convexity. Recall that ‖·‖ is the euclidean norm on Rn and denote
by 〈·, ·〉 the associated scalar product.

Lemma 3.12. Let n ∈ N∗ and h : Rn → R be a function such that h − 1
2‖·‖

2 is
affine. Let v ∈ Rn and suppose that ε0, . . . , εp−1 ∈ {0, 1}n satisfy v = 1

p

∑p−1
j=0 ε

j and
|εj | = ‖εj‖2 = |v| for all j ∈ {0, . . . , p− 1}. For any a ∈ Rn we have

h(a+ v)− 1
p

p−1∑
j=0

h(a+ εj) = ‖v‖
2 − |v|
2 .

More specifically, there exists j ∈ {0, . . . , p− 1} (depending on a) such that

h(a+ εj) 6 h(a+ v) + |v| − ‖v‖
2

2 .

Proof. Denote by ∆ := h(a+ v)− 1
p

∑p−1
j=0 h(a+ εj) the left-hand side of the equality.

Note that the Hessian matrix of the second partial derivatives of h is the identity
matrix. More precisely, since h is a degree 2 polynomial, the Taylor formula reads

h(a+ w) = h(a) + 〈∇h(a), w〉+ 1
2‖w‖

2, for all w ∈ Rn,

where ∇h(a) denotes the gradient of h at a. Since v = 1
p

∑p−1
j=0 ε

j , the quantity that
defines ∆ vanishes at the affine level, hence

∆ = 1
2

‖v‖2 − 1
p

p−1∑
j=0
‖εj‖2

 .
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We conclude the proof of the first assertion ‖εj‖2 = |v|. The second one is straight-
forward. �

The next inequalities involve convexity. The first one is a particular case of a
Jensen’s inequality for convex functions. The reader may refer to [24, Theorem 4]; we
include a proof for convenience.

Lemma 3.13. Let n ∈ N∗ and m ∈ R. Let h : Rn → R such that h− m
2 ‖·‖

2 is convex.
For any x0, . . . , xp−1 ∈ Rn we have

h(x) 6 1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj − x‖2,

where x := 1
p

∑p−1
j=0 xj.

Proof. Since h− m
2 ‖·‖

2 is convex, we have

h(x)− m

2 ‖x‖
2 6

1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj‖2.

Thus,

h(x) 6 1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj‖2 − p‖x‖2


6

1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj − x‖2 + 2

p−1∑
j=0
〈xj , x〉 − 2p‖x‖2


6

1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj − x‖2 + 2p〈x, x〉 − 2p‖x‖2


6

1
p

p−1∑
j=0

h(xj)−
m

2p

p−1∑
j=0
‖xj − x‖2. �

Remark 3.14. The real number m of Lemma 3.13 is usually taken to be positive.
In this case, the map h is convex and we say that it is m-strongly convex. We have
stated Lemma 3.13 for a general m since we will need it to be negative in the proof
of Lemma 3.15.

For any x ∈ R, we denote by {x} ∈ [0, 1[ its fractional part. We have {x} := x−bxc,
where bxc ∈ Z is the greatest integer less than or equal to x.

Lemma 3.15. Let x0, . . . , xp−1 ∈ Z be integers and let x := 1
p

∑p−1
j=0 xj. With v := {x}

we have

v − v2 6
1
p

p−1∑
j=0

(xj − x)2.

Proof. Let us consider the function φ : R→ R defined by x 7→ {x}−{x}2+x2. It is con-
tinuous on RrZ, and in fact continuous on R since limx→n− φ(x) = limx→n+ φ(x) =
n2 for any n ∈ Z. Moreover,

φ(x) = x− bxc − (x2 − 2bxcx+ bxc2) + x2 = (1 + 2bxc)x− bxc(1 + bxc).
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Thus, the function φ is affine on each interval [n, n+ 1[ for n ∈ Z, with slope 2n+ 1.
Hence, the function φ is continuous with non-decreasing left derivative thus φ is
convex. Applying Lemma 3.13 with n := 1, m := −2 and h := {·} − {·}2 we obtain

v − v2 6
1
p

p−1∑
j=0

(
{xj} − {xj}2

)
+ 1
p

p−1∑
j=0

(xj − x)2.

For any j ∈ {0, . . . , p − 1} we have xj ∈ Z thus {xj} = 0 and we conclude the
proof. �

4. Proof of the main theorem
We are now ready to prove Theorem 2.27, which we repeat here for the convenience
of the reader.

Theorem 2.27. Let λ be an r-partition and let α := ακ(λ) ∈ Q+. Assume that κ is
compatible with (d, η, p). If σ ·α = α then there is an r-partition µ ∈ Pκα with σµ = µ.

Let λ be an r-partition and assume that the multicharge κ ∈ (Z/eZ)r is compatible
with (d, η, p). Recalling the reduction step Proposition 2.33, we assume that λ is an
e-multicore. We define

α := ακ(λ),

x(k) := x(k)(λ), for all k ∈ {0, . . . , r − 1},
ni := niκ(λ), for all i ∈ {0, . . . , e− 1}.

In the whole section, we assume that σ · α = α. There will be four steps in the proof,
each step corresponding to one subsection. First, we will give an expression of n0 in
terms of the abacus variables x(0), . . . , x(r−1), which takes into account the σ-stability
of α. We will then give a key lemma, followed by a naive (but useful) attempt to prove
the theorem. Finally, we will use the results of Section 3 to conclude the proof.

4.1. Using shift invariance. In this subsection, we will write n0 in terms of x(k)
i

for k ∈ {0, . . . , r − 1} and i ∈ {0, . . . , e − 1} (Lemma 2.22). The difference with the
equality of Lemma 2.22 is that α is now assumed to be σ-stable, which will allow us
to make the expression symmetric. The map (Re)r → R that we obtain will be later
used to apply the convexity results of Section 3.3.

Recall from Section 2.4 that we have some linear forms L0, . . . , Le−1 that satisfy (4):

n0 =
r−1∑
k=0

[
1
2
∥∥x(k)∥∥2 − L−κk

(
x(k))] .

Since σ ·α = α, for all j0 ∈ {0, . . . , p−1} we have n0
κ(λ) = n0

κ(σ
−j0
λ) by Lemma 2.25.

We deduce that

n0 =
r−1∑
k=0

[
1
2
∥∥x(k+j0d)∥∥2 − L−κk

(
x(k+j0d))]

=
r−1∑
k=0

[
1
2
∥∥x(k)∥∥2 − L−κk−j0d

(
x(k))] .

Averaging on j0 ∈ {0, . . . , p− 1}, we obtain

n0 =
r−1∑
k=0

[
1
2
∥∥x(k)∥∥2 − L̃k

(
x(k))] ,
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where L̃k is a linear form that depends only on the residue k ∈ {0, . . . , d − 1} of k
modulo d. Now, if for ` ∈ {0, . . . , d− 1} we consider the map defined on Re by

(18) g` : x 7→ 1
2‖x‖

2 − L̃`(x),

we have

(19) n0 =
d−1∑
`=0

p−1∑
j=0

g`
(
x(`+jd)) =: f

(
x(0), . . . , x(r−1)).

The map f : (Re)r → R is of the form f = 1
2‖·‖

2 − L where L is a linear form.
Moreover, define

(20)
f 〈p〉

(
x(0), . . . , x(d−1)) :=

d−1∑
`=0

g`
(
x(`))

= 1
p
f
(
x(0), . . . , x(d−1), . . . , x(0), . . . , x(d−1)),

where, in the expression f
(
x(0), . . . , x(d−1), . . . , x(0), . . . , x(d−1)) the sequence

x(0), . . . , x(d−1) is repeated p times. Like f , the map f 〈p〉 : (Re)d → R is of the
form 1

2‖·‖
2 −L〈p〉, where L〈p〉 is a linear form. Note that for all j ∈ {0, . . . , p− 1} we

have

f 〈p〉
(
x(jd), . . . , x(d−1+jd)) =

d−1∑
`=0

g`
(
x(`+jd)),

hence, by (19) we deduce that

f
(
x(0), . . . , x(r−1)) =

p−1∑
j=0

f 〈p〉
(
x(jd), . . . , x(d−1+jd)).

4.2. Key lemma. Lemma 4.1 that we will give in this subsection is the key to our
proof of Theorem 2.27. Recall that α = ακ(λ) satisfies σ · α = α. For any i ∈
{0, . . . , η − 1}, define

δi := ni − ni+1.

The σ-stability of α implies that δi = ni+j0η−ni+j0η+1 for all j0 ∈ {0, . . . , p− 1}. We
deduce from Lemma 2.22 and the compatibility of κ with (d, η, p) (cf. (2)) that

(21) δi =
r−1∑
k=0

x
(k)
i+j0η−κk =

d−1∑
`=0

p−1∑
j=0

x
(`+jd)
i+(j0−j)η−κ` ,

for all j0 ∈ {0, . . . , p− 1}.
As noted in Remark 2.34, the stuttering r-partition µ of Theorem 2.27, which

satisfies ακ(µ) = α, is not necessarily an e-multicore. The following lemma shows
that, to prove Theorem 2.27, it suffices to find a stuttering e-multicore ν such that
ακ(ν) = α− h(α0 + · · ·+ αe−1) for some h ∈ N.

Lemma 4.1. Suppose that z(0), . . . , z(d−1) ∈ Ze0 are such that
(22) pf 〈p〉

(
z(0), . . . , z(d−1)) 6 f(x(0), . . . , x(r−1)),

and

(23)
d−1∑
`=0

p−1∑
j=0

z
(`)
i−jη−κ` = δi,

for all i ∈ {0, . . . , η − 1}. Then Theorem 2.27 is true for the e-multicore λ: we can
find an r-partition µ such that ακ(µ) = α and σµ = µ.
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Proof. For any ` ∈ {0, . . . , d − 1} and j ∈ {1, . . . , p − 1}, define z(`+jd) := z(`) ∈ Ze0.
For each k ∈ {0, . . . , r − 1}, let µ(k) be the e-core of parameter z(k). We ob-
tain an e-multicore µ = (µ(0), . . . , µ(r−1)) that satisfies σµ = µ. For any
i ∈ {0, . . . , e − 1}, we define mi := niκ(µ). Since κ is compatible with (d, η, p), we
have

∑d−1
`=0

∑p−1
j=0 z

(`)
i−jη−κ` =

∑r−1
k=0 z

(k)
i−κk . By Lemma 2.22 and the assumption (23),

we deduce that
mi −mi+1 = δi,

for all i ∈ {0, . . . , η−1}. Hence, for all i ∈ {0, . . . , η−1} we havemi−mi+1 = ni−ni+1

thus

(24) m0 −mi = n0 − ni.

The above equality is also true for any i ∈ {0, . . . , e − 1} since ni = ni+η and mi =
mi+η (by Lemma 2.25). Recalling the definition of f (respectively f 〈p〉) given at (19)
(resp. (20)), the assumption (22) implies

m0 6 n0.

Hence, as in the proof of Proposition 2.33 we can construct an r-partition µ =(
µ(0), . . . , µ(r−1)) such that σµ = µ and:

• the partition µ(0) is obtained by adding n0−m0 times an η-rim hook to µ(0);
• we have µ(j) = µ(j) for all j ∈ {1, . . . , d− 1}.

Finally, by Lemma 2.32 and (24) we obtain

ακ(µ) = ακ(µ) +
(
n0 −m0)(α0 + · · ·+ αe−1)

=
e−1∑
i=0

miαi +
e−1∑
i=0

(
n0 −m0)αi

=
e−1∑
i=0

(
n0 +mi −m0)αi =

e−1∑
i=0

niαi

= α,

thus we conclude the proof. �

4.3. Naive attempt. We will use the convexity of the map f : (Re)r → R to obtain
some parameters z̃(0), . . . , z̃(d−1) that almost satisfy the conditions of Lemma 4.1.
These parameters will not necessarily be integers: we will fix this in the next section.

Proposition 4.2. For any ` ∈ {0, . . . , d− 1}, we define

z̃(`) := 1
p

p−1∑
j=0

x(`+jd) ∈ 1
p
Ze.

We have

pf 〈p〉
(
z̃(0), . . . , z̃(d−1)) 6 f(x(0), . . . , x(r−1))− 1

2

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
.

Proof. Let ` ∈ {0, . . . , d − 1} and let k ∈ {0, . . . , r − 1} be of residue ` modulo d.
Recall the definition of the map g` : Re → R given in (18). The map g` − 1

2‖·‖
2 is

convex, thus by Lemma 3.13 we deduce that

g`
(
z̃(`)) 6 1

p

p−1∑
j=0

g`
(
x(`+jd))− 1

2p

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
.
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Summing over all ` ∈ {0, . . . , d− 1}, we obtain

f 〈p〉
(
z̃(0), . . . , z̃(d−1)) 6 1

p
f
(
x(0), . . . , x(r−1))− 1

2p

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
.

Multiplying by p gives the desired result. �

Remark 4.3. The inequality of Proposition 4.2 is in fact an equality since g` − 1
2‖·‖

2

is linear.

Let us now try to verify the hypotheses of Lemma 4.1 with the parameters
z̃(0), . . . , z̃(d−1) ∈ 1

pZ
e of Proposition 4.2. First, for each ` ∈ {0, . . . , d− 1} we have

(25)
∣∣z̃(`)∣∣ = 1

p

p−1∑
j=0

∣∣x(`+jd)∣∣ = 1
p

p−1∑
j=0

0 = 0.

Moreover, since
∥∥x(`+jd) − x(`+j′d)

∥∥ > 0 we deduce from the inequality of Proposi-
tion 4.2 that
(26) pf 〈p〉

(
z̃(0), . . . , z̃(d−1)) 6 f(x(0), . . . , x(r−1)).

Finally, for each i ∈ {0, . . . , η − 1} we have, using (21),
d−1∑
`=0

p−1∑
j=0

z̃
(`)
i−jη−κ` = 1

p

d−1∑
`=0

p−1∑
j=0

p−1∑
j′=0

x
(`+j′d)
i−jη−κ`

= 1
p

p−1∑
j=0

d−1∑
`=0

p−1∑
j′=0

x
(`+j′d)
i+(−j+j′︸ ︷︷ ︸

=:j0

−j′)η−κ`

= 1
p

p−1∑
j0=0

d−1∑
`=0

p−1∑
j′=0

x
(`+j′d)
i+(j0−j′)η−κ`


= 1
p

p−1∑
j0=0

δi

= δi.(27)

Hence, all hypotheses are satisfied but one: the parameters z̃(0), . . . , z̃(d−1) ∈ 1
pZ

e
0 are

not necessarily in Ze0.

4.4. Rectification of the parameters. We will construct from z̃(0), . . . , z̃(d−1) ∈
1
pZ

e
0 (defined in Proposition 4.2) some elements z(0), . . . , z(d−1) ∈ Ze0 that satisfy all

the assumptions of Lemma 4.1. To that end, we will approximate z̃(0), . . . , z̃(d−1)

using Proposition 3.10, and we will control the value of f
(
z(0), . . . , z(d−1)) using

Lemma 3.12. The remainder of this subsection is now devoted to the proof of the
following proposition.

Proposition 4.4. There exist elements z(0), . . . , z(d−1) ∈ Ze0 such that
d−1∑
`=0

p−1∑
j=0

z
(`)
i−jη−κ` = δi,

for all i ∈ {0, . . . , η − 1} and

f 〈p〉
(
z(0), . . . , z(d−1)) 6 f 〈p〉(z̃(0), . . . , z̃(d−1))+ 1

2p

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
.
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Let ` ∈ {0, . . . , d−1}. Since z̃(`) ∈ 1
pZ

e, we know that for any i ∈ {0, . . . , η−1} and
j ∈ {0, . . . , p − 1} there exist unique elements m(`)

j+ip ∈ Z and w(`)
j+ip ∈ {0, . . . , p − 1}

such that

(28) z̃
(`)
i−jη−κ` = m

(`)
j+ip +

w
(`)
j+ip

p
.

The fractional part of z̃(`)
i−jη−κ` is

(29)
{
z̃

(`)
i−jη−κ`

}
=
w

(`)
j+ip

p
=: v(`)

j+ip.

For each ` ∈ {0, . . . , d − 1}, we have two e-tuples m(`) :=
(
m

(`)
0 , . . . ,m

(`)
e−1
)
and

v(`) :=
(
v

(`)
0 , . . . , v

(`)
e−1
)
. Let π` be the permutation of {0, . . . , e− 1} defined by

π`(j + ip) := i− jη − κ`,

for all i ∈ {0, . . . , η−1} and j ∈ {0, . . . , p−1}. Permuting the components of e-tuples
according to π0, . . . , πd−1, we obtain a map f̃ 〈p〉 : (Re)d → R that satisfies

f̃ 〈p〉
(
m(0) + v(0), . . . ,m(d−1) + v(d−1)) = f 〈p〉

(
z̃(0), . . . , z̃(d−1)).

To match with the setting of Section 3.2, we define the two following d× e matrices:

M =

 m(0)

...
m(d−1)

 , V =

 v(0)

...
v(d−1)

 ,

so that

(30) f̃ 〈p〉
(
M + V

)
= f 〈p〉

(
z̃(0), . . . , z̃(d−1)).

Like f 〈p〉, the map f̃ 〈p〉 defined on the d× e matrices is of the form 1
2‖·‖

2 − L̃ where
‖·‖2 is the sum of the squares of the entries and L̃ is a linear form. We now write the
matrix V blockwise in the same fashion as for Proposition 3.10. That is,

V =

 v(0)

...
v(d−1)

 =
(
V [0] · · · V [η−1]) ,

where

V [i] =


v

(0)
ip · · · v(0)

p−1+ip
...

...
...

v
(d−1)
ip · · · v(d−1)

p−1+ip

 ,

for any i ∈ {0, . . . , η − 1}. We now check that V satisfies the assumptions of Propo-
sition 3.10. First, for any ` ∈ {0, . . . , d − 1} the element v(`) satisfies

∣∣v(`)
∣∣ > 0 since

Algebraic Combinatorics, Vol. 2 #1 (2019) 105



Salim Rostam

its entries are non-negative. Furthermore,

∣∣v(`)∣∣ =
η−1∑
i=0

p−1∑
j=0

v
(`)
j+ip

=
η−1∑
i=0

p−1∑
j=0

(
z̃

(`)
i−jη−κ` −m

(`)
j+ip

)
(by (28), (29))

=
e−1∑
i=0

z̃
(`)
i −

η−1∑
i=0

p−1∑
j=0

m
(`)
j+ip

=
∣∣z̃(`)∣∣− η−1∑

i=0

p−1∑
j=0

m
(`)
j+ip.

Hence, we have
∣∣v(`)

∣∣ ∈ Z since
∣∣z̃(`)

∣∣ = 0 and m(`)
j+ip ∈ Z, thus

∣∣v(`)
∣∣ ∈ N. The same

argument shows that
∣∣V [i]

∣∣ ∈ N for any i ∈ {0, . . . , η − 1} since

∣∣V [i]∣∣ =
d−1∑
`=0

p−1∑
j=0

v
(`)
j+ip

=
d−1∑
`=0

p−1∑
j=0

z̃
(`)
i−jη−κ` −

d−1∑
`=0

p−1∑
j=0

m
(`)
j+ip

= δi −
d−1∑
`=0

p−1∑
j=0

m
(`)
j+ip.

Thus, we can apply Proposition 3.10. There exist vectors εj(`) ∈ {0, 1}e for all
j ∈ {0, . . . , p− 1} and ` ∈ {0, . . . , d− 1} such that

1
p

p−1∑
j=0

εj(`) = v(`),

∣∣εj(`)∣∣ =
∣∣v(`)∣∣,(31) ∣∣Ej[i]∣∣ =
∣∣V [i]∣∣, for all i ∈ {0, . . . , η − 1}.(32)

In the above equality, the matrices Ej[i] for any i ∈ {0, . . . , η − 1} are defined by the
same block decomposition as V :

Ej :=

 εj(0)

...
εj(d−1)

 =
(
Ej[0] · · · Ej[η−1]) ,

in particular each Ej[i] has size d × p. The map f̃ 〈p〉 and the matrices V and Ej

for all j ∈ {0, . . . , p− 1} satisfy the assumptions of Lemma 3.12. Hence, there exists
j0 ∈ {0, . . . , p− 1} such that

f̃ 〈p〉(M + Ej0) 6 f̃ 〈p〉(M + V ) + |V | − ‖V ‖
2

2 .

For each ` ∈ {0, . . . , d − 1}, define the vector z(`) by permuting the coordinates of
m(`) + εj0(`) via π`. We have

f 〈p〉
(
z(0), . . . , z(d−1)) = f̃ 〈p〉(M + Ej0),
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thus, recalling (30),

(33) f 〈p〉
(
z(0), . . . , z(d−1)) 6 f 〈p〉(z̃(0), . . . , z̃(d−1))+ |V | − ‖V ‖

2

2 .

We now check that z(0), . . . , z(d−1) have the properties described in Proposition 4.4.
First, for any ` ∈ {0, . . . , d− 1} the vector z(`) is a permutation of m(`) + εj0(`). Since
m(`) ∈ Ze and εj0(`) ∈ {0, 1}e, we have z(`) ∈ Ze. Moreover,∣∣z(`)∣∣ =

∣∣m(`)∣∣+
∣∣εj0(`)∣∣

=
∣∣m(`)∣∣+

∣∣v(`)∣∣ (by (31))

=
∣∣z̃(`)∣∣

= 0 (by (25)),

thus z(`) ∈ Ze0. The equality condition of Proposition 4.4 is satisfied, since for any
i ∈ {0, . . . , η − 1} we have

d−1∑
`=0

p−1∑
j=0

z
(`)
i−jη−κ` =

d−1∑
`=0

p−1∑
j=0

[
m

(`)
j+ip + ε

j0(`)
j+ip

]

=
d−1∑
`=0

p−1∑
j=0

m
(`)
j+ip +

∣∣Ej0[i]∣∣
=
d−1∑
`=0

p−1∑
j=0

m
(`)
j+ip +

∣∣V [i]∣∣ (by (32))

=
d−1∑
`=0

p−1∑
j=0

[
m

(`)
j+ip + v

(`)
j+ip

]

=
d−1∑
`=0

p−1∑
j=0

z̃
(`)
i−jη−κ`

= δi.

It remains to prove that the value of f 〈p〉
(
z(0), . . . , z(d−1)) does not grow too much.

We have

|V | − ‖V ‖2

2 = 1
2

d−1∑
`=0

[∣∣v(`)∣∣− ∥∥v(`)∥∥2
]

= 1
2

d−1∑
`=0

η−1∑
i=0

p−1∑
j=0

[
v

(`)
j+ip −

(
v

(`)
j+ip

)2]
.

Recall the definition of the vectors z̃(`) for any ` ∈ {0, . . . , d − 1} given in Propo-
sition 4.2. Since for all i ∈ {0, . . . , η − 1} and j ∈ {0, . . . , p − 1}, each v

(`)
j+ip is the

fractional part of

z̃
(`)
i−jη−κ` = 1

p

p−1∑
j′=0

x
(`+j′d)
i−jη−κ` ,

and since each x(`+j′d)
i−jη−κ` is an integer, we can apply Lemma 3.15. We obtain

v
(`)
j+ip −

(
v

(`)
j+ip

)2
6

1
p

p−1∑
j′=0

(
x

(`+j′d)
i−jη−κ` − z̃

(`)
i−jη−κ`

)2
,
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for all i ∈ {0, . . . , η − 1} and j ∈ {0, . . . , p− 1}, thus

∣∣v(`)∣∣− ∥∥v(`)∥∥2
6

1
p

p−1∑
j′=0

∥∥x(`+j′d) − z̃(`)∥∥2
.

It follows from (33) that

f 〈p〉
(
z(0), . . . , z(d−1)) 6 f 〈p〉(z̃(0), . . . , z̃(d−1))+ 1

2

d−1∑
`=0

[∣∣v(`)∣∣− ∥∥v(`)∥∥2
]

6 f 〈p〉
(
z̃(0), . . . , z̃(d−1))+ 1

2p

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
,

as desired.

4.5. Proof of the main theorem. We now conclude the proof of Theorem 2.27.
Let z(0), . . . , z(d−1) ∈ Ze0 be as in Proposition 4.4. They satisfy

(34)
d−1∑
`=0

p−1∑
j=0

z
(`)
i−jη−κ` = δi,

for all i ∈ {0, . . . , η − 1} and

f 〈p〉
(
z(0), . . . , z(d−1)) 6 f 〈p〉(z̃(0), . . . , z̃(d−1))+ 1

2p

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
.

Since, by Proposition 4.2, we have

pf 〈p〉
(
z̃(0), . . . , z̃(d−1)) 6 f(x(0), . . . , x(r−1))− 1

2

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
,

we obtain

pf 〈p〉
(
z(0), . . . , z(d−1)) 6 f(x(0), . . . , x(r−1))− 1

2

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2

+ 1
2

d−1∑
`=0

p−1∑
j=0

∥∥x(`+jd) − z̃(`)∥∥2
,

thus
pf 〈p〉

(
z(0), . . . , z(d−1)) 6 f(x(0), . . . , x(r−1)).

Remark 4.5. The error term 1
2
∑d−1
`=0

∑p−1
j=0
∥∥x(`+jd) − z̃(`)

∥∥2 vanished thanks to the
strong convexity inequality of Proposition 4.2, the “basic” convexity inequality (26)
being not accurate enough.

The above inequality, together with (34), prove that the elements z(0), . . . , z(d−1) ∈
Ze0 satisfy the hypotheses of Lemma 4.1. Hence, Theorem 2.27 is proved for the e-
multicore λ. Recalling the reduction step from r-partitions to e-multicores, Proposi-
tion 2.33, we conclude that Theorem 2.27 is true for any r-partition.
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5. Applications
We assume that the multicharge κ is compatible with (d, η, p) (cf. (2) and (3)). We
present two applications of Theorem 2.27 and Corollary 2.30. First, we will recall the
definition of cellular algebras, as introduced by Graham and Lehrer [17]. The algebra
Hκn and its blocksHκα for α ∈ Qκn are examples of cellular algebras. We are interested in
the fixed point subalgebrasHκp,[α] (respectivelyHκp,n) ofHκ[α] (resp. Hκn) for the algebra
homomorphism σ. We can easily give bases for these algebras (cf. Proposition 5.10).
In Section 5.2.4, we prove that if #[α] = p (resp. if p and n are coprime) then Hκp,[α]
(resp. Hκp,n) is cellular. Otherwise, using Corollary 2.30 we show that if in addition
p is odd then none of these bases of Hκp,[α] are adapted cellular (see Section 5.2.5).
Finally, in Section 5.3 we will study the restriction of Specht modules of Hκ[α].

5.1. Cellular algebras. Let A be an associative unitary finite-dimensional F -
algebra. A cellular datum for the algebra A is a triple (Λ, T , c) such that:

• the element Λ = (Λ,>) is a finite partially ordered set;
• for any λ ∈ Λ we have an indexing set T (λ) and distinct elements cλst for all
s, t ∈ T (λ) such that {

cλst : λ ∈ Λ, s, t ∈ T (λ)
}
,

is a basis of A as an F -module;
• for any λ ∈ Λ, t ∈ T (λ) and a ∈ A, there exist scalars rtv(a) ∈ F such that
for all s ∈ T (λ),

cλsta =
∑

v∈T (λ)

rtv(a)cλsv (mod A>λ),

where A>λ is the F -module spanned by {cµab : µ > λ and a, b ∈ T (µ)};
• the F -linear map ∗ : A → A determined by (cλst)

∗ := cλts for all λ ∈ Λ and
s, t ∈ T (λ) is an anti-automorphism of the algebra A.

We say that A is a cellular algebra if it has a cellular datum. We say that a basis B of
A is cellular if it coincides with {cλst : λ ∈ Λ, s, t ∈ T (λ)} where (Λ, T , c) is a cellular
datum for A.

Remark 5.1. If (Λ, T , c) is a cellular datum for A then

dimA =
∑
λ∈Λ

#T (λ)2.

Lemma 5.2. Let (Λ, T , c) be a cellular datum of A and let ∗ be the corresponding
anti-automorphism. The cardinality of{

cλst : λ ∈ Λ, s, t ∈ T (λ), (cλst)
∗ = cλst

}
,

is
∑
λ∈Λ #T (λ).

Proof. Since (cλst)
∗ = cλts, we have (cλst)

∗ = cλst if and only if s = t. �

Assume that (Λ, T , c) is a cellular datum for A. By [17], for each λ ∈ Λ we have an
A-module Sλ, called cell module, endowed with a certain bilinear form bλ whose radical
is an A-module. Moreover, if Dλ denotes the quotient of Sλ by the radical of bλ, the set
{Dλ : λ ∈ Λ,Dλ 6= {0}} is a complete family of non-isomorphic irreducible A-modules.
We conclude with the following lemma (see [17, (3.9.8)] or [23, Corollary 2.22]).

Lemma 5.3. For any λ ∈ Λ, all the composition factors of the cell module Sλ belong
to the same block of the algebra A.

Algebraic Combinatorics, Vol. 2 #1 (2019) 109



Salim Rostam

Let λ ∈ Λ and let B be the block of A such that all the composition factors of Sλ
belong to B. We say that λ belongs to the block B.

5.2. Cellularity of the fixed point subalgebra. We will first give more defi-
nitions from combinatorics, and recall the existence of a particular cellular datum for
Hκn and its blocks Hκα. Then, we will construct bases for the algebra Hκp,[α] and study
its cellularity. We will use the following notation:

Qκn :=
{
α ∈ Q+ : there exists λ ∈ Pκn such that ακ(λ) = α

}
.

5.2.1. Tableaux. Let λ =
(
λ(0), . . . , λ(r−1)) be an r-partition of n. Recall that we

defined in Section 2.1 and Section 2.4 the Young diagram Y(λ) of λ. A λ-tableau
is a bijection t =

(
t(0), . . . , t(r−1)) : Y(λ) → {1, . . . , n}. The κ-residue sequence of a

λ-tableau t is the sequence

resκ(t) :=
(

resκ
(
t−1(a)

))
a∈{1,...,n}

.

A λ-tableau t : Y(λ)→ {1, . . . , n} is standard if the value of t increases along the rows
and down the columns of Y(λ). We denote by T (λ) the set of standard λ-tableaux.

Example 5.4. We take r = p = 2 and we consider the bipartition λ :=
(
(4, 1), (1)

)
.

The map t : Y(λ)→ {1, . . . , 6} described by
1 5 4 6
2

3 ,

is a λ-tableau (we warn the reader that we represented in the same way the multiset
of residues associated with a multipartition), but it is not standard. The tableau
s : Y(λ)→ {1, . . . , 6} described by

1 4 5 6
2

3 ,

is standard. With κ = (0, 2) and e = 4 = 2η, the residue sequence of s is resκ(s) =
(0, 3, 2, 1, 2, 3).

Mimicking Definition 2.24, we define the shift of a λ-tableau t =
(
t(0), . . . , t(r−1)) by

σt :=
(
t(r−d), . . . , t(r−1), t(0), . . . , t(r−d+1)),

and we denote by [t] the orbit of t under the action of σ. Note that σt is a σλ-
tableau, which is standard if t is standard. In particular the set T [λ] := ∪µ∈[λ]T (µ)
is stable under σ and there is a well-defined equivalence relation ∼ on T [λ] generated
by t ∼ σt. We write T[λ] := T [λ]/∼ for the set of equivalence classes. Choose a lift
φ : T[λ] → T [λ] of the canonical projection T [λ] → T[λ]. In other words, if t is any
standard λ-tableau then φ([t]) ∈ [t]. For any j ∈ {0, . . . , p− 1}, we define

T φj (λ) :=
{
t ∈ T (λ) : φ([t]) = σj t

}
.

Note that the set T φj (λ) may be empty for some j ∈ {0, . . . , p − 1}, but we have a
partition T (λ) = tp−1

j=0T
φ
j (λ). Moreover:

(35) if t ∈ T φj (λ) then σt ∈ T φj−1(σλ).

We have

(36) #T φ0 [λ] = 1
p

#T [λ],
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where T φ0 [λ] := ∪µ∈[λ]T φ0 (µ) =
{
t ∈ T [λ] : φ([t]) = t

}
. In particular, the cardinality

of T φ0 [λ] does not depend on φ and we may abuse notation by writing #T0[λ] instead
of T φ0 [λ]. Since #T (λ) = 1

#[λ]#T [λ], we also deduce that

(37) #T (λ) = p

#[λ]T
φ

0 [λ].

Example 5.5. Recall that the multicharge κ is compatible with (d, η, p). For any
t ∈ T [λ], the compatibility condition (3) ensures that there exists a unique standard
tableau φ̃(t) ∈ [t] such that 1 is in the image of the first d components of φ̃(t), that
is, such that there exists c ∈ {0, . . . , d − 1} with φ̃(t)

(
(0, 0, c)

)
= 1. Note that when

d = 1 (i.e. when r = p), this condition is the same as resκ
(
φ̃−1(1)

)
= κ0. The map

φ̃ : T [λ]→ T [λ] is constant on the equivalent classes of ∼. Thus, it factorises to a map
φ : T[λ]→ T [λ] that lifts the natural projection. In this case, for any j ∈ {0, . . . , p−1}
we have
T φj (λ) =

{
t∈T (λ) : there exists c∈{(p− j)d, . . . , (p− j + 1)d− 1} such that t

(
(0, 0, c)

)
= 1
}
.

We will see in Section 5.2.4 another example of a lift φ of the natural projection.
Remark 5.6. Here, we chose φ to be a map T[λ] → T [λ]. If P is any subset of
Pκn/∼, the equivalence relation ∼ is also defined on ∪[λ]∈PT [λ] and the equivalence
classes are in natural bijection with ∪[λ]∈PT[λ]. Thus, we can allow φ to be a lift
∪[λ]∈PT[λ]→ ∪[λ]∈PT [λ].
5.2.2. Cellular datum for the Ariki–Koike algebra. It is known that we can find a
family
(38)

{
cλst : λ ∈ Pκn and s, t ∈ T (λ)

}
,

that form a cellular basis ofHκn (cf. [11]). Now recall that we defined in (1) a particular
algebra automorphism σ : Hκn → Hκn of order p. Let η be the n-tuple (η, . . . , η)
considered as an element of (Z/eZ)n. By [8, 26], we know that the algebra Hκn is
generated by some elements

e(i), for any i ∈ (Z/eZ)n,
ψa, for any a ∈ {1, . . . , n− 1},
ya, for any a ∈ {1, . . . , n},

the “Khovanov–Lauda generators”, for which
σ(e(i)) = e(i− η), for any i ∈ (Z/eZ)n,(39a)
σ(ψa) = ψa, for any a ∈ {1, . . . , n− 1},(39b)
σ(ya) = ya, for any a ∈ {1, . . . , n}.(39c)

The elements {e(i) : i ∈ (Z/eZ)n} form a complete system of orthogonal idempotents,
that is,

e(i)2 = e(i), for any i ∈ (Z/eZ)n,(40a)
e(i)e(j) = 0, for any i 6= j ∈ (Z/eZ)n,(40b) ∑

i∈(Z/eZ)n
e(i) = 1.(40c)

Among the generators e(i) for any i ∈ (Z/eZ)n, we know exactly the ones that are
non-zero (see [18, 4.1. Lemma]).
Lemma 5.7. For any i ∈ (Z/eZ)n, the idempotent e(i) ∈ Hκn is non-zero if and only
if there exist λ ∈ Pκn and t ∈ T (λ) such that i = resκ(t).
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There is a well-defined algebra anti-automorphism ∗ : Hκn → Hκn, which we now fix,
that is the identity on each Khovanov–Lauda generator (see [18, §5.1]). We can find
a cellular basis of Hκn of the form (38) such that the associated anti-automorphism is
the map ∗, with the additional property

(41) cλst ∈ e(resκ(s))Hκne(resκ(t)),

for all λ ∈ Pκn and s, t ∈ T (λ) (see [18] and also [6]). Note that we recover the result
of Lemma 5.7. We now fix such a cellular basis.

Remark 5.8. The cellular bases that are constructed in [6, 18] are graded cellular
bases: the algebraHκn is Z-graded ([8, 27]) and there exists a map deg :

∐
λ∈Pκn

T (λ)→
Z such that cλst is homogeneous of degree deg s + deg t. These graded cellular bases
seem to be more adapted to σ than the ungraded one of [11]: if Hκn is semisimple,
we can prove that σ permutes the elements of the graded basis but its action on the
ungraded basis is more complicated.

The condition (41) allows us to give a more precise description of this cellular
structure for Hκn. For any α ∈ Q+ with |α| = n, denote by Iα the subset of (Z/eZ)n
given by the n-tuples i ∈ (Z/eZ)n that have exactly αi components equal to i for any
i ∈ {0, . . . , e− 1}. The subalgebra

Hκα :=
∑
i,j∈Iα

e(i)Hκne(j) ⊆ Hκn,

is a block of Hκn if α ∈ Qκn and {0} otherwise (see [22]). By (41), when α ∈ Qκn the
algebra Hκα is cellular, with cellular basis{

cλst : λ ∈ Pκα and s, t ∈ T (λ)
}

(cf. [18, Corollary 5.12]).

5.2.3. Subalgebras of fixed points. Recall from the introduction that we defined a
subalgebra Hκp,n ⊆ Hκn as the subalgebra of the fixed points of σ : Hκn → Hκn. If
µ : Hκn → Hκn is the linear map defined by µ :=

∑p−1
j=0 σ

j , we have µ(Hκn) = Hκp,n.

Remark 5.9. We warn the reader that the map that we denoted by µ in [26] is the
map 1

pµ.

We now look at the blocks of Hκn. Let α ∈ Qκn and denote by [α] the orbit of α
under the action of σ (cf. Definition 2.23). The subalgebra Hκα ⊆ Hκn is not necessarily
stable under σ. Indeed, by (39a) we have

(42) σ(Hκα) ⊆ Hκσ·α.

Hence, the smallest subalgebra of Hκn stable under σ and containing Hκα is

Hκ[α] :=
⊕
β∈[α]

Hκβ .

Similarly, we define Pκ[α] := ∪β∈[α]Pκβ . Note that by Lemma 2.25 we have [λ] ⊆ Pκ[α].
Hence, as for the tableaux, there is a well-defined equivalence relation ∼ on Pκ[α]
generated by λ ∼ σλ. We write Pκ

[α] := Pκ[α]/∼ for the set of equivalence classes. As
in Section 5.2.2, the algebra Hκ[α] is cellular, with cellular basis

{
cλst : λ ∈ Pκ[α] and

s, t ∈ T (λ)
}
. As in the introduction, if Hκp,[α] ⊆ H

κ
[α] denotes the subalgebra of fixed

points of σ then Hκp,[α] = µ(Hκ[α]).

Algebraic Combinatorics, Vol. 2 #1 (2019) 112



Stuttering blocks of Ariki–Koike algebras

Proposition 5.10. Let
φ :

⋃
[λ]∈Pκ[α]

T[λ] −→
⋃

[λ]∈Pκ[α]

T [λ],

be a lift of the canonical projection. The family

(43)
{
µ(cλst) : λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ)

}
,

is an F -basis of Hκp,[α].

Proof. It suffices to prove that the family{
σj(cλst) : j ∈ {0, . . . , p− 1},λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ)

}
,

is an F -basis of Hκ[α]. For any j ∈ {0, . . . , p− 1}, define the idempotent

eφj :=
∑
λ∈Pκ[α]

∑
t∈T φ

j
(λ)

e
(
resκ(t)

)
.

The family
{
cλst : λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ)

}
is an F -basis of Hκ[α]e

φ
0 . Since κ is

compatible with (d, η, p), for any λ ∈ Pκ[α] and any λ-tableau t we have

resκ
(
σt
)

= resκ(t) + η.

Using (35), we deduce that σ(eφj ) = eφj+1 for all j ∈ {0, . . . , p− 1}. Hence the family{
σj(cλst) : λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ)

}
is an F -basis of Hκ[α]ej . By (40c) and

Lemma 5.7 we have
∑p−1
j=0 e

φ
j = 1 thus Hκ[α] =

⊕p−1
j=0 Hκ[α]e

φ
j and we conclude the

proof. �

Remark 5.11. Recall from Remark 5.8 that the algebra Hκ[α] is Z-graded. By [26], the
algebra Hκp,[α] is also Z-graded and the basis (43) is homogeneous.

We will prove the following partial alternative:
• if #[α] = p, the family (43) is a (graded) cellular basis of Hκp,[α], for a partic-

ular choice of lift φ (Section 5.2.4);
• if #[α] < p and p is odd, for any lift φ the family (43) is not an adapted

cellular basis of Hκp,[α], in the sense of Definition 5.15 (Section 5.2.5).

5.2.4. Cellular basis in the full orbit case. Let α ∈ Qκn and assume that #[α] = p. By
Lemma 2.25, given λ ∈ Pκ[α] we know that for any t ∈ T (λ) there is a unique standard
tableau tα ∈ [t] whose underlying r-partition is in Pκα. We have in fact tα ∈ T (λα),
where λα is the unique element of [λ] that is in Pκα. We obtain a map

φ :
⋃

[λ]∈Pκ[α]

T[λ] −→
⋃

[λ]∈Pκ[α]

T [λ]

t 7−→ tα

,

that lifts the natural projection. For any λ ∈ Pκ[α], we have

T φ0 (λ) =
{
T (λ), if λ ∈ Pκα,
∅, otherwise.

The basis (43) of Hκp,[α] that we obtain is thus

(44)
{
µ(cλst) : λ ∈ Pκα and s, t ∈ T (λ)

}
.

For any λ ∈ Pκα and s, t ∈ T (λ), we set dλst := µ(cλst). Recall that (Pκα, T , c) is a
cellular datum for Hκα.
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Proposition 5.12. Recall that #[α] = p. The triple (Pκα, T , d) is a cellular datum
for Hκp,[α].

Proof. It suffices to prove that µ commutes with ∗ and induces an algebra isomorphism
between Hκα and Hκp,[α]. The first point is clear: indeed, since ∗ fixes each Khovanov–
Lauda generator and by the action of σ on these generators (cf. (39)) we know that ∗
and σ commute. Now, the restriction of µ to Hκα is an algebra homomorphism. Indeed,
for any j ∈ {1, . . . , p− 1} we have α 6= σj ·α since #[α] = p, hence for any h, h′ ∈ Hκα
we have hσj(h′) = 0 (recall (40b) and (42)). We conclude the proof since by (44), µ
sends a basis of Hκα onto a basis of Hκp,[α]. �

Corollary 5.13. If p and n are coprime then the algebra Hκp,n is cellular.

Proof. Let us first prove that #[β] = p for all β ∈ Q+ with |β| = n. If #[β] = p′ then
p′ divides p and we can write

β =
p′η−1∑
i=0

βi
(
αi + αp′η+i + · · ·+ α(d−1)p′η+i

)
,

where d := p
p′ and β0, . . . , βp′η−1 ∈ N. We deduce that

n = |β| = d

p′η−1∑
i=0

βi,

hence d divides n. But d also divides p thus d = 1 and p′ = p as desired. Hence, each
subalgebra appearing in the following decomposition
(45) Hκp,n =

⊕
[β]∈Qκn

Hκp,[β],

is cellular by Proposition 5.12, where Qκ
n is the quotient of Qκn by the equivalence

relation ∼ generated by β ∼ σ · β for all β ∈ Qκn. We now easily check that Hκp,n
is cellular, using the following fact: for any [β] 6= [β′] ∈ Qκ

n we have hh′ = 0 for all
h ∈ Hκ[β] and h′ ∈ Hκ[β′] (cf. (40b)). �

5.2.5. Adapted cellularity. Let α ∈ Qκn and let φ be as in Proposition 5.10. By (37),
we have

dimHκp,[α] =
∑
λ∈Pκ[α]

(
#T (λ)

)(
#T φ0 (λ)

)
=

∑
λ∈Pκ[α]

p

#[λ]
(
#T φ0 [λ]

)(
#T φ0 (λ)

)
=

∑
[λ]∈Pκ[α]

p

#[λ]
(
#T φ0 [λ]

) ∑
µ∈[λ]

#T φ0 (µ)

=
∑

[λ]∈Pκ[α]

p

#[λ]
(
#T φ0 [λ]

)2
.

Recalling that #T φ0 [λ] does not depend on φ, we obtain

(46) dimHκp,[α] =
∑

[λ]∈Pκ[α]

p

#[λ]
(
#T0[λ]

)2
.

Remark 5.14. With (37) and Remark 5.1 we obtain the equality dimHκp,[α] =
1
p dimHκ[α].
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Suppose that there exists a cellular datum (Λ, T , c) for Hκp,[α]. Remark 5.1 and (46)
give two ways to write dimHκp,[α] as a sum of squares:

dimHκp,[α] =
∑
λ∈Λ

#T (λ)2 =
∑

[λ]∈Pκ[α]

p

#[λ]
(
#T0[λ]

)2
.

These two sums have the same terms up to reordering if and only if for all [λ] ∈ Pκ
[α],

there exist λ[λ],1, . . . , λ[λ], p
#[λ]
∈ Λ such that

#T (λ[λ],j) = #T0[λ], for all j ∈
{

1, . . . , p

#[λ]

}
,(47a)

and

(47b)
{
λ[λ],j : [λ] ∈ Pκ

[α] and j ∈
{

1, . . . , p

#[λ]

}}
= Λ.

Recall that the anti-automorphism ∗ : Hκn → Hκn was fixed in Section 5.2.2.

Definition 5.15. Suppose that (Λ, T , c) is a cellular datum for Hκp,[α]. We say
that (Λ, T , c) is an adapted cellular datum if for all [λ] ∈ Pκ

n, there exist
λ[λ],1, . . . , λ[λ], p

#[λ]
∈ Λ such that the conditions (47) are satisfied, together with(

cλst
)∗ = cλts for all λ ∈ Λ and s, t ∈ T (λ).

We say that a basis B of Hκp,[α] is adapted cellular if there exists an adapted cellular
datum (Λ, T , c) for Hκp,[α] such that B coincides with

{
cλst : λ ∈ Λ and s, t ∈ T (λ)

}
.

Lemma 5.16. Let λ ∈ Pκn and s, t ∈ T (λ). Then µ(cλst)
∗ = µ(cλst) if and only if

s = t, if p is odd,

s = t or σp/2(cλst) = cλts, if p is even.

Proof. Since µ and ∗ commute, we have

µ(cλst)
∗ = µ(cλts) =

p−1∑
j=0

σj(cλts).

Thus, if µ(cλst)
∗ = µ(cλst) then

p−1∑
j=0

σj(cλts) =
p−1∑
j=0

σj(cλst).

By (39a), (40a), (40b) and (41), we deduce that there exists j ∈ {0, . . . , p − 1} such
that
(48) cλts = σj(cλst).
Since σ and ∗ commute, we obtain

cλst = σj(cλts),
thus,

σj(cλst) = σ2j(cλts).
Combining with (48), we obtain

cλts = σ2j(cλts).
By (39a), (40a) and (40b) and since η ∈ (Z/eZ)n has order p, this equality implies
that 2j ∈ {0, p}. If p is odd then j = 0 and (48) yield cλts = cλst thus s = t. If p is
even then j ∈ {0, p2} and similarly we conclude the proof of the forward implication
using (48). The converse is straightforward. �
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Given the result of Section 5.2.4, it seems natural to look for a cellular basis for
Hκp,[α] of the form (43). The following proposition uses Corollary 2.30 to give a partial
answer to this problem.

Proposition 5.17. If #[α] < p and p is odd then the basis (43){
µ(cλst) : λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ)

}
,

of Hκp,[α] is not adapted cellular.

Proof. Let N be the cardinality of{
µ(cλst) : λ ∈ Pκ[α], s ∈ T (λ), t ∈ T φ0 (λ), µ(cλst)

∗ = µ(cλst)
}
.

Assume that the basis (43) is adapted cellular with associated cellular datum (Λ, T , c).
Lemma 5.2 yields, with the notation of Definition 5.15,

N =
∑
λ∈Λ

#T (λ)

=
∑

[λ]∈Pκ[α]

p
#[λ]∑
j=1

#T (λ[λ],j)

=
∑

[λ]∈Pκ[α]

p
#[λ]∑
j=1

#T0[λ]

=
∑

[λ]∈Pκ[α]

p

#[λ]#T0[λ].

We have p
#[λ] > 1 for all [λ] ∈ Pκ

[α]. Moreover, since #[α] < p we know by Corol-
lary 2.30 that there exists [λ] ∈ Pκ

[α] such that p
#[λ] > 1. Thus, we obtain

(49) N >
∑

[λ]∈Pκ[α]

#T0[λ].

But now p is odd, thus by Lemma 5.16 we know that

µ(cλst)
∗ = cλst ⇐⇒ s = t,

for all λ ∈ Pκ[α], s ∈ T (λ) and t ∈ T φ0 (λ). Hence, the only elements of the basis (43)
that are fixed by the ∗ anti-automorphism are the µ(cλss) for all λ ∈ Pκ[α] and s ∈
T φ0 (λ). We obtain

N =
∑
λ∈Pκ[α]

#T φ0 (λ) =
∑
λ∈Pκ[α]

#T0(λ) =
∑

[λ]∈Pκ[α]

#T0[λ],

which contradicts (49). �

Remark 5.18. We can also define an adapted cellularity for Hκp,n, similarly to Defini-
tion 5.15. Using Proposition 1.1, we can show that if p and n are not coprime and p is
odd, then the basis of Hκp,n that we obtain from (43) and (45) is not adapted cellular.
Note that, under these conditions, there can exist an α ∈ Qκn with #[α] = p, so that
the subalgebra Hκp,[α] is cellular (cf. Section 5.2.4). This explains why we are dealing
with Hκp,[α] and not only with Hκp,n.
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5.3. Restriction of Specht modules. Since we have a cellular datum (Pκn , T , c)
for the algebra Hκn, we have a collection of cell modules {Sλ : λ ∈ Pκn}. In this
case, the cell modules are called Specht modules. The algebra Hκp,n is not known to
be cellular in general, but Hu and Mathas [19] defined what they also called Specht
modules for Hκp,n. It is a family{

Sλj : j ∈ {0, . . . , p

#[λ] − 1}
}
,

of Hκp,n-modules with

(50) Sλ
yHκn
Hκp,n

' Sλ0 ⊕ · · · ⊕ Sλp#[λ]−1,

for any λ ∈ Pκn , where Sλ
yHκn
Hκp,n

denotes the restriction of the Hκn-module Sλ to an
Hκp,n-module. For any λ ∈ Pκn and j, j′ ∈ {0, . . . , p

#[λ] − 1}, the Hκp,n-modules Sλj
and Sλj′ are isomorphic up to a twist of the action of Hκp,n. The purpose of the name
“Specht module” is that each irreducible Hκp,n-module is isomorphic to the head of a
Sλj .

By Proposition 1.1, we know that the maximal number of summands in (50) is
gcd(p, n) when we restrict a Specht module of Hκn and that this bound is reached.
Our result Corollary 2.30 refines this result.

Proposition 5.19. For any α ∈ Qκn, the maximal number of summands in (50) is
p

#[α] and this bound is reached, when we restrict a Specht module Sλ with λ ∈ Pκ[α],
that is, when we restrict a Specht module of Hκ[α].
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