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Minimal inclusions of torsion classes

Emily Barnard, Andrew Carroll & Shijie Zhu

Abstract Let Λ be a finite-dimensional associative algebra. The torsion classes of modΛ form
a lattice under containment, denoted by torsΛ. In this paper, we characterize the cover relations
in torsΛ by certain indecomposable modules. We consider three applications: First, we show
that the completely join-irreducible torsion classes (torsion classes which cover precisely one
element) are in bijection with bricks. Second, we characterize faces of the canonical join complex
of torsΛ in terms of representation theory. Finally, we show that, in general, the algebra Λ is
not characterized by its lattice torsΛ. In particular, we study the torsion theory of a quotient
of the preprojective algebra of type An. We show that its torsion class lattice is isomorphic to
the weak order on An.

1. Introduction
Let Λ be a finite-dimensional associative algebra over a field k, and write tors Λ for
the set of torsion classes of finitely generated modules over Λ, partially ordered by
containment. The poset tors Λ is a complete lattice in which the meet (or greatest
lower bound)

∧
{T , T ′} coincides with the intersection T ∩T ′, and the join (or smallest

upper bound)
∨
{T , T ′} coincides with the iterative extension closure of the union T ∪

T ′. In this paper, we study the cover relations T ′ ·> T in tors Λ. Recall that a torsion
class T ′ covers T if T ( T ′ and for each Y ∈ tors Λ, if T ( Y ⊆ T ′ then Y = T ′.

In [1], the authors describe the lattice of functorially-finite torsion classes by way
of τ -tilting pairs. They show the existence of a unique module which encodes each
cover relation as follows: When T and T ′ are functorially finite torsion classes, with
T ′ ·> T , there exists a unique module M with the property that T ′ is the closure of
add(T ∪ {M}) under taking quotients.

In our complimentary approach, we show that for each cover relation T ′ ·> T in
tors Λ, there exists a unique “minimal” module M with the property that T ′ is the
closure of T ∪ {M} under taking iterative extensions. Below, we make the notation
of “minimal” precise.

Definition 1.1. A module M is a minimal extending module for T if it satisfies the
following three properties:

(P1) Every proper factor of M is in T ;
(P2) If 0 → M → X → T → 0 is a non-split exact sequence with T ∈ T , then

X ∈ T ;
(P3) Hom(T ,M) = 0.
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In general, a minimal extending module M is a quotient of the module studied
in [1]. For a more precise description of this relationship see [2, Proposition 1.9], [10,
Theorem 4.1], and [11, Theorem 3.11].

The following remarks will be useful. Assuming Property (P1), Property (P3) is
equivalent to the fact that M /∈ T . Observe that if there is a non-trivial homomor-
phism from a module in T to M , then both the image and cokernel are in T , and M
is an extension of the cokernel by the image. Thus, any minimal extending module is
indecomposable. Indeed, direct summands are proper factors, and torsion classes are
closed under direct sums.

In the statement of the following theorem, and throughout the paper we have the
following notation: We write [M ] for the isoclass of the module M ; ME(T ) for the set
of isoclasses [M ] such thatM is a minimal extending module for T ; and Filt(T ∪{M})
for the iterative extension closure of T ∪ {M}.

Theorem 1.2. Let T be a torsion class over Λ. Then the map
ηT : [M ] 7→ Filt(T ∪ {M})

is a bijection from the set ME(T ) to the set of T ′ ∈ tors Λ such that T <· T ′.

Recall that a moduleM is called a brick if the endomorphism ring ofM is a division
ring. (That is, the non-trivial endomorphisms are invertible.)

Theorem 1.3. Let Λ be a finite-dimensional associative algebra and M ∈ mod Λ.
Then M is a minimal extending module for some torsion class if and only if M is a
brick.

As an immediate consequence of Theorem 1.3 we obtain a labeling of cover relations
for tors Λ (when they exist) by bricks. Independently and concurrently with our work,
the authors of [11] also give a labeling of the cover relations in the lattice of torsion
classes by brick modules which coincides with the labeling proposed here. We illustrate
in Example 3.2 that in tors Λ there exists pairs T ′ > T such that there is no torsion
class Y satisfying T ′ ·> Y > T .

This paper fits into a larger body of research which studies the combinatorial
structure of the lattice of (functorially finite) torsion classes. Connections between
the combinatorics of a finite simply laced Weyl group W and the corresponding pre-
projective algebra ΠW are of particular interest. In [15], Mizuno showed the lattice
of functorially finite torsion classes f-tors ΠW is isomorphic to the weak order on W .
Building on this work, the authors of [13] have shown that the lattice of (functorially
finite) torsion classes of quotients of ΠW are lattice quotients of the weak order onW .
They also obtain an analogous labeling of f-tors ΠW by certain modules called layer
modules. (See [13, Theorem 1.3].) Cover relations in the lattice of torsion classes are
also closely related to maximal green sequences [6]. In a related direction, the authors
of [12] study certain lattice properties of f-tors Λ when Λ arises from a quiver that is
mutation-equivalent to a path quiver or oriented cycle, including a certain minimal
“factorization” called the canonical join representation.

Inspired by these results, we will give three applications of Theorems 1.2 and 1.3.
Before describing them, we recall some terminology in lattice theory. In a (not nec-
essarily finite) lattice L, a join representation for an element w ∈ L is an expression∨
A = w, where A is a (possibly infinite) subset of L. An element w is join-irreducible,

if w ∈ A for any join representation w =
∨
A, where A is a finite set. An element w

is completely join-irreducible, if w ∈ A for any join representation w =
∨
A, where A

is any subset of L. (By convention, the smallest element in L is not join-irreducible
or completely join-irreducible.) Equivalently, w is completely join-irreducible if and
only if w covers only one element v and any element u < w ∈ L satisfies u 6 v.
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Example 1.4. Let L be the lattice of N∪ {∞} with natural partial order. Then ∞ is
join-irreducible but not completely join-irreducible.

For our first application, we have the following theorem; see [12, Lemma 8.2], [13,
Theorems 1.1 and 1.2], and [11, Theorem 3.3] for analogous results. (In the statement
below Gen(M) is the closure of M under taking factors and direct sums.)
Theorem 1.5. Suppose that M is an indecomposable Λ module. Then the map ζ :
[M ] 7→ Filt(Gen(M)) is a bijection from the set of isoclasses of bricks over Λ to the
set of of completely join-irreducible elements in tors Λ.

For our second application, we consider the canonical join representation in tors Λ.
A join representation

∨
A is irredundant if

∨
A′ <

∨
A for each subset A′ ⊆ A.

Informally, the canonical join representation of w is the unique lowest irredundant
join representation

∨
A for w, when such an expression exists. In this case, we also

say that the set A is a canonical join representation. (We make the notion “lowest”
precise in Section 3.2.) In particular, each element a ∈ A is join-irreducible.

Example 1.6. Consider the top element 1̂ in the pentagon lattice N5 shown on the
left in Figure 1. Its irredundant join representations are

∨
1̂,
∨
{x, z} and

∨
{x, y}.

Observe that
∨
{x, y} is “lower” than

∨
{x, z} because x 6 z (and y 6 y). Indeed,∨

{x, y} is the canonical join representation of 1̂.
It is natural to ask which collections A of join-irreducible elements in L satisfy

∨
A

is a canonical join representation. The collection of such subsets, which we denote by
Γ(L), has the structure of an abstract simplicial complex whose vertex set is the set
of join-irreducible elements in L. (See, for instance, [16, Proposition 2.2], for the case
when L is finite.) We call Γ(L) the canonical join complex of L.

y

z

x

1̂

y

z

x

Figure 1. A lattice N5 and its canonical join complex Γ(N5).

Example 1.7. Consider the pentagon lattice N5 shown on the left in Figure 1. The
canonical join complex Γ(N5) appears on the right. The set {x, z} 6∈ Γ(N5) because∨
{x, z} = 1̂ is not the canonical join representation for 1̂, and {y, z} is not a face in

Γ(N5) because
∨
{y, z} is not even irredundant.

Our second application characterizes the collections of subsets A of completely
join-irreducible elements that belong to Γ(tors Λ). For the second statement of the
theorem below, recall that tors Λ is finite if and only if Λ is τ -rigid finite (and in this
case tors Λ is equal to the lattice of functorially finite torsion classes f-tors Λ). See [14]
and Remark 3.8.
Theorem 1.8. Suppose that E is a collection of bricks over Λ. Then the set
{Filt(GenM) : M ∈ E} is a face of Γ(tors Λ) if and only if each pair M and M ′
satisfies the compatibility condition known as hom-orthogonality:

dim HomΛ(M,M ′) = dim HomΛ(M ′,M) = 0.
In particular, if Λ is τ -rigid finite then Γ(tors Λ) is isomorphic to the complex of
hom-orthogonal Λ brick modules.
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A collection of hom-orthogonal bricks were also studied in [2], where they are called
semibricks.

Finally, we consider the question: Is the algebra Λ characterized by its lattice of
torsion classes? For our third application, we give an extended counter-example. We
study the torsion theory of a certain quotient of the preprojective algebra in type An,
which we call RAn. Unlike the preprojective algebra, RAn has finite representation
type for each n. We describe the canonical join complex of RAn, and construct an
explicit isomorphism from torsRAn to the weak order on An. Thus, by Mizuno’s
result, RAn shares the same torsion theory as ΠAn.

2. Minimal inclusions among torsion classes
In this section, we prove Theorems 1.2 and 1.3. In Proposition 2.7, we verify that
the map ηT from Theorem 1.2 is well-defined. That is, we argue that Filt(T ∪ {M})
is indeed a torsion class, and that it covers T . In Theorem 2.8 we construct an
inverse map of ηT . The proof of the forward direction of Theorem 1.3 can be found
in Lemma 2.3 while the remaining direction appears in the proof of Proposition 2.13.

2.1. Preliminaries. Throughout, we take Λ to be a finite-dimensional associative
algebra over a field k, and we write mod Λ for the category of finite-dimensional (left)
modules over Λ. For T a class of modules over Λ (which we assume to be closed under
isomorphism), we write ind T for the set of indecomposable modules M ∈ T and
[ind T ] for the set of isoclasses [M ] such that M ∈ ind T .

A torsion class T is a class of modules that is closed under factors, isomorphisms,
and extensions. Dually, a class of modules F is a torsion-free class if it is closed under
submodules, isomorphisms, and extensions. As in the introduction, tors Λ denotes the
lattice of torsion classes over Λ, in which T 6 T ′ if and only if T ⊆ T ′. We write
torf Λ for the lattice of torsion-free classes also ordered by containment.

At times it will be useful to translate a result or a proof from the language of
torsion classes to the language of torsion-free classes. To do this, we make use of the
following standard dualities. Given a torsion class T , denote by T ⊥ the set of modules
X ∈ mod Λ such that HomΛ(T , X) = 0. The map (−)⊥ : tors Λ → torf Λ is a poset
anti-isomorphim with inverse given by

F 7→⊥ F := {X ∈ mod Λ : HomΛ(X,F) = 0}.

The duality functor D = Homk(−, k) : mod Λ→ mod Λop also furnishes a poset anti-
isomorphism from tors Λ to torf Λop with inverse given by the same duality. (Recall
that Λop denotes the opposite algebra of Λ. For details, see [14] or [17].)

Let S be a set of indecomposable modules in mod Λ. An S-filtration (of length l)
of a module M in mod Λ is a sequence of submodules

M = Ml )Ml−1 ) · · · )M1 )M0 = 0

such that Mi/Mi−1 is isomorphic to a module in S for each i = 1, . . . , l. We write
Filt(l)(S) for the class of modulesM that admit an S-filtration of length at most l and
Filt(S) for the class of all modules in mod Λ that admit an S-filtration, i.e. Filt(S) =⋃
l>0 Filt(l)(S). When S is not a class of indecomposable modules (but rather an ad-

ditive full subcategory, for instance) we abuse the notation and write Filt(S) instead
of Filt(indS). We close this subsection with two lemmas.

Lemma 2.1. Let S be a class of indecomposable modules in mod Λ. The class Filt(S)
is closed under extensions.
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Proof. Suppose there is an exact sequence

0→ N →M
π→ N ′ → 0

with N ∈ Filt(l)(S) and N ′ ∈ Filt(l
′)(S).

Let N = Nl ) Nl−1 ) . . . ) N0 = 0 and N ′ = N ′l′ ) N ′l′−1 ) . . . ) N ′0 = 0 be
an S-filtration of N and N ′ respectively. Take Mi to be the pull back following, for
0 6 i 6 l′:

Mi N ′i

M N ′

ThenM = Ml′ )Ml′−1 ) · · ·M0 = N = Nl ) Nl−1 ) · · · ) N0 = 0 is an S-filtration
of M . �

Lemma 2.2. Suppose that S is a class of indecomposable modules that is closed under
taking indecomposable summands of factors. Then Filt(S) is closed under factors.
Dually, if S is closed under taking indecomposable summands of submodules, then
Filt(S) is closed under submodules.

Proof. Suppose that N ∈ Filt(l)(S) and φ : N → U is an epimorphism. We assume,
without loss of generality, that U is indecomposable and proceed by induction on
l. If l = 1, then N ∈ S. Since S is closed under epimorphisms, we have U ∈ S.
Now suppose that all factors of modules in Filt(l

′)(S) are in Filt(S) for l′ < l.
Since N ∈ Filt(l)(S), it admits an S-filtration N = Nl ) Nl−1 ) · · · ) N0 = 0
with Ni/Ni−1 isomorphic to an object in S. Consider the submodule φ(Nl−1) of U ,
and notice that φ(Nl−1) is a factor of Nl−1 ∈ Filt(l−1)(S). Therefore, by induction,
φ(Nl−1) has an S-filtration. Further, U/φ(Nl−1) is a factor of Nl/Nl−1 ∈ S. Therefore
U/φ(Nl−1) belongs to S. We have the following short exact sequence:

0→ φ(Nl−1)→ U
π→ U/φ(Nl−1)→ 0.

Lemma 2.1 then implies that U is in Filt(S), as desired. �

2.2. Minimal extending modules. In this subsection, we prove Theorem 1.2. We
begin by showing that ηT : [M ] 7→ Filt(T ∪{M}) is well-defined. The first statement
in the next lemma confirms that Filt(T ∪ {M}) is indeed a torsion class. Because it
follows immediately, we also dispense with the forward direction of Theorem 1.3.

Lemma 2.3. Suppose that T ∈ tors Λ and M is an indecomposable Λ module that does
not belong to T . If every proper factor of M lies in T then:

(1) Filt(T ∪ {M}) is a torsion class and
(2) M is a brick over Λ.

Proof. The first statement follows immediately from Lemma 2.2. To prove the second
statement, let f : M → M be a non-zero morphism, and assume that f is not an
isomorphism. Consider the exact sequence:

0→ Im f →M →M/ Im f → 0.

Observe that both Im f and M/ Im f are proper factors of M , and thus belong to
T . Because T is closed under extensions, it follows that M ∈ T , and that is a con-
tradiction. Therefore End(M) only contains automorphisms and hence End(M) is a
division ring. So M is a brick. �

Algebraic Combinatorics, Vol. 2 #5 (2019) 883



Emily Barnard, Andrew Carroll & Shijie Zhu

Example 2.4. In light of Lemma 2.3, we might be tempted to think that condi-
tion (P1) is sufficient for constructing cover relations in tors Λ. For a nonexample,
consider the torsion class T = {3, 32} in tors kQ for the quiver Q = 3 −→ 2 −→ 1. (We
write i for the simple at i, and 3

2 for the representation k 1−→ k −→ 0.) The simple
module at vertex 1 trivially satisfies the condition that all of its proper factors belong
to T . We have the following chain of torsion classes in tors Λ:

T = add{3, 32} ( add
{

3, 32,
3
2
1

}
( add

{
3, 32,

3
2
1
, 1
}

= Filt(T ∪ {1}).

Below (Proposition 2.6) we establish precisely when Filt(T ∪ {M}) covers T .
Lemma 2.5. Let T ∈ tors Λ and M 6∈ T be indecomposable such that each proper
factor of M belongs to T . Let N ∈ Filt(T ∪ {M}) r T such that each proper factor
of N lies in T . If Filt(T ∪ {M}) ·> T then N ∼= M .
Proof. Write T ′ for Filt(T ∪ {M}). Note that N also satisfies the assumptions of
Lemma 2.3, so Filt(T ∪ {N}) is a torsion class which properly contains T (since
N /∈ T ) and is contained in T ′. Hence, T ′ = Filt(T ∪ {N}). In particular, N admits
a T ∪{M}-filtration with at least one subfactor isomorphic toM , so dimN > dimM .
Symmetrically, M admits a T ∪{N}-filtration with at least one subfactor isomorphic
to N . Therefore, M ∼= N . �

Proposition 2.6. Let T ∈ tors Λ and M 6∈ T be an indecomposable module such that
each proper factor of M belongs to T . Then T ′ = Filt(T ∪ {M}) ·> T if and only if
M is a factor of each N ∈ T ′ r T .
Proof. First we argue the “if” direction. Suppose that every element in T ′rT admits
an epimorphism toM . Let G be a torsion class with T ( G ⊆ T ′, and pick N ∈ GrT .
Because M is a factor of N , we have M ∈ G. Thus, T ′ = Filt(T ∪ {M}) ⊆ G, as
desired.

Conversely, suppose that T ′ ·> T , and let N be any module in T ′ r T . Among all
submodules N ′ ⊆ N such that N/N ′ ∈ T ′ r T , choose N ′ maximal. By Lemma 2.5
N/N ′ is isomorphic to M . We conclude M is a factor of N . �

We use the previous proposition to verify that ηT (from Theorem 1.2) has the
correct codomain. In the next proposition, cov↑(T ) denotes the set of torsion classes
T ′ such that T ′ ·> T .
Proposition 2.7. Suppose that T ∈ tors Λ and M is an indecomposable Λ module. If
M is a minimal extending module for T , then Filt(T ∪{M}) ·> T . That is, the map
ηT : ME(T )→ cov↑(T ) is well-defined.
Proof. Again, denote by T ′ the torsion class Filt(T ∪{M}). Properties (P1) and (P3)
imply that M satisfies the hypotheses of Proposition 2.6. Let N ∈ T ′ r T with
ind T ∪ {M}-filtration N = Nl ) Nl−1 ) · · · ) N0 = 0. Assume, without loss of
generality, that N is indecomposable. We argue by induction on l that M is a factor
of N . If l = 1, then N ∼= M since N /∈ T . Suppose that l > 1, and let i to be the
smallest index such that Ni/Ni−1 ∼= M (one must exist since N /∈ T ).

If i = 1, then there is a short exact sequence
0→M → N → N/N1 → 0.

Since N was assumed indecomposable (and l > 1), the sequence does not split. If
N/N1 ∈ T , then by Property (P2),N ∈ T , a contradiction. Otherwise,N/N1 6∈ T is in
Filt(l−1)(T ∪{M}), so by induction,M is a factor of N/N1, so it is also a factor of N .

If i > 1, consider the short exact sequence
0→ Ni−1 → N → N/Ni−1 → 0
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which again is non-split by assumption. Note that since Ni−1 has a filtration by
modules in T , Ni−1 ∈ T . If N/Ni−1 ∈ T , then so is N , since torsion classes are closed
under extensions. Therefore, N/Ni−1 /∈ T , and it has a T ∪ {M}-filtration of length
l− i+1 < l. Hence, by induction,M is a factor of N/Ni−1, and therefore of N as well.

Hence, M is a factor of N for each module N in T ′, so T l T ′. �

Below we construct the inverse map to ηT , completing the proof of Theorem 1.2.
Recall that [ind Λ] is the set of isoclasses [M ] such that M ∈ ind Λ.

Theorem 2.8. For each T ′ ·> T in tors Λ, there exists a unique (up to isomorphism)
indecomposable module M such that T ′ = Filt(T ∪ {M}). Furthermore, the map
Filt(T ∪ {M}) 7→ [M ] is the inverse to ηT .

Proof of Theorem 2.8 and Theorem 1.2. Let N ∈ T ′rT . As in the proof of Proposi-
tion 2.6, among all submodules N ′ of N such that N/N ′ ∈ T ′rT , choose N ′ maximal.
We take M to be the factor N/N ′. (It is immediate that M is indecomposable.) Be-
cause T ′ ·> T , we conclude that T ′ = Filt(T ∪ {M}). Lemma 2.5 implies that M is
unique up to isomorphism.

To prove the second statement, it is enough to show thatM is a minimal extending
module. It is immediate thatM satisfies Property (P1). Suppose that 0→M

i→ X
π→

T → 0 is a short exact sequence with T ∈ T . If X ∈ T ′ r T , then Proposition 2.6
implies that there is an epimorphism q : X →M . If q ◦ i = 0, then q factors through
π which implies that M is a quotient of T , contradicting with M /∈ T . If q ◦ i 6= 0,
then q ◦ i is an isomorphism due to the fact that M is a brick. So the exact sequence
splits. Thus M satisfies property (P2). By construction, M 6∈ T . Thus according to
the first remark after Definition 1.1, M satisfies (P3). �

The following corollary will be useful as we explore the connection to the canonical
join complex of tors Λ in Section 3.2.

Corollary 2.9. Let T1 and T2 be distinct torsion classes in tors Λ, and for each
i ∈ {1, 2}, letMi be a minimal extending module for Ti. If Filt(T1∪{M1}) = Filt(T2∪
{M2}) then

dim HomΛ(M1,M2) = dim HomΛ(M2,M1) = 0.

Proof. Write T ′ for Filt(T1 ∪ {M1}) = Filt(T2 ∪ {M2}). First, we claim that M1
belongs to T2 and M2 belongs to T1. Then the statement follow immediately from
Property (P3) of minimal extending modules. Since T1 and T2 are distinct and both
covered by the same torsion class T ′, it follows that there exists some N ∈ T1 r T2.
In particular, N ∈ T ′ r T2. Proposition 2.6 implies that N surjects onto M2. Thus,
M2 ∈ T1. By symmetry M1 ∈ T2. �

2.3. Torsion-free classes and bricks. We now record the corresponding notions
for torsion-free classes, both for completeness, and for a convenient proposition relat-
ing the upper covers of T to the lower covers of T ⊥. (See Proposition 2.12 below.)
Proofs that are essentially equivalent to their counterparts in the torsion context are
suppressed. We begin by defining the analogue to minimally extending modules.

Definition 2.10. A module M is called a minimal co-extending module for a torsion-
free class F if it satisfies the following three conditions:
(P1′) Every proper submodule of M is in F ;
(P2′) if 0 → F → X → M → 0 is a non-split exact sequence, with F ∈ F , then

X ∈ F ;
(P3′) HomΛ(M,F) = 0.
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In Theorem 2.11 below, the notation cov↑(F) is the set of torsion-free classes F ′
such that F ′ ·> F .

Theorem 2.11. Suppose that F is a torsion-free class over Λ and M 6∈ F is an
indecomposable Λ module. The following are equivalent:

(1) M is a minimal co-extending module of F .
(2) Each proper submodule of M lies in F and M is a submodule for each N ∈

Filt(F ∪ {M}) r F .
(3) Filt(F ∪ {M}) ·> F .

The map ζ : [M ] 7→ Filt(F ∪ {M}) is a bijection from the set of isoclasses [M ] such
that M is a minimal co-extending module for F to the set cov↑(F).

Proposition 2.12. Suppose that T is a torsion class in tors Λ and M is an indecom-
posable Λ module such that Filt(T ∪ {M}) is a torsion class. Then M is a minimal
extending module for the torsion class T if and only if it is a minimal co-extending
module for the torsion-free class Filt(T ∪ {M})⊥.

Proof. We argue the forward implication of the proposition; the reverse implication
is similar. Let T ′ denote the torsion class ηT ([M ]) = Filt(T ∪ {M}). Observe that
M 6∈ (T ′)⊥. Also, Property (P3) implies that M belongs to T ⊥. By Theorem 2.11, it
is enough to show that M satisfies the following: First, each proper submodule of M
belongs to (T ′)⊥; and second, M is a submodule of each X ∈ T ⊥ r (T ′)⊥.

Suppose thatM ′ is an indecomposable submodule ofM , and N belongs to T ′rT .
We claim that HomΛ(N,M ′) is nonzero only if M ′ = M . Let φ : N → M ′ be
such a nonzero homomorphism. On one hand, Imφ ∈ T ′ (because T ′ is closed under
epimorphisms). On the other hand, Imφ ∈ T ⊥ (because torsion-free classes are closed
under submodules). In particular, Imφ 6∈ T . By Proposition 2.6, there is a surjection
of Imφ onto M . Because Imφ is a submodule of M , we obtain Imφ ∼= M ′ ∼= M , as
desired. We conclude that each proper submodule of M belongs to (T ′)⊥.

Suppose that X ∈ T ⊥ r (T ′)⊥, and let f : N → X be a nonzero morphism from
a module N ∈ T ′ r T . We may assume that f is injective. (If it is not injective, then
replace N with N/ ker(f).) We claim that M is a submodule of N . Let N = Nl )
· · · ) N0 = 0 be an ind(T )∪ {M}-filtration of N . Since N /∈ T , there is some index i
such that Ni/Ni−1 is isomorphic to M . For the moment, assume that i > 1, so that
N1 ∈ T . Then we have a nonzero homomorphism N1 ↪→ N ↪→ X from a module in
T to X. That is a contradiction. Thus, M ∼= N1 ↪→ N ↪→ X as desired. �

We close this section by completing the proof of Theorem 1.3. Recall that in
Lemma 2.3, we showed that if M is a minimal extending module, then it is a brick
(the forward implication in Theorem 1.3). By Proposition 2.12 it is enough to show:
If M is a brick, then there exists a torsion-free class F such that M is a minimal
co-extending module for F . Also recall that Filt(GenM) is always a torsion class.

Proposition 2.13. If M is a brick over Λ, then M is a minimal co-extending module
for Filt(GenM)⊥.

Proof of Proposition 2.13 and Theorem 1.3. Suppose that M is a brick over Λ. We
will argue that M is a minimal co-extending module for the torsion-free class F =
Filt(GenM)⊥.

First, we claim that Filt(GenM)⊥ = M⊥ := {X : HomΛ(M,X) = 0}. It is
immediate that Filt(GenM)⊥ ⊆ M⊥. Conversely, let X ∈ M⊥. Since Hom(−, X)
is left exact, it follows that Hom(L,X) ↪→ Hom(⊕M,X) = 0 for each epimorphism
⊕M → L. Hence X ∈ Gen(M)⊥. Then using induction on the length of a filtration
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of N , for all N ∈ Filt(Gen(M)), it is easy to see Hom(N,X) = 0. Hence X is in
Filt(Gen(M))⊥. Therefore Property (P3′) holds.

To verify (P1′), letM ′ be a proper submodule ofM . If HomΛ(M,M ′) 6= 0, thenM
is not a brick, a contradiction. Thus, M ′ ∈ {X : Hom(M,X) = 0} = Filt(GenM)⊥.

To verify (P2′), suppose that there is a non-split short exact sequence

0→ F
f−→ X

g−→M → 0

with F ∈ F . If X /∈ F , then there is a nonzero homomorphism π : M → X. Since M
is a brick, and g ◦ π is a endomorphism of M (which is not an isomorphism since the
sequence is non-split), g ◦π = 0. Hence, π factors through f . Since HomΛ(M,F ) = 0,
we have a contradiction.

Therefore, M is a minimal co-extending module for F . The statement follows from
Proposition 2.12. �

3. Applications
We consider two applications of Theorems 1.2 and 1.3. First, in Proposition 3.1, we
prove that there is a bijective correspondence between isoclasses [M ] of bricks over Λ
and completely join-irreducible torsion classes in tors Λ via the map sending [M ] to
Filt(Gen(M)). Second, we consider the canonical join complex of tors Λ, proving the
forward implication of Theorem 1.8 in Proposition 3.5, and we completing the proof
in Proposition 3.7.

3.1. Completely join-irreducible torsion classes. In this section, we prove
Theorem 1.5 as Proposition 3.1 below. Recall that T is completely join-irreducible
if for each (possibly infinite) subset A ⊆ tors Λ, T =

∨
A implies that T ∈ A.

Equivalently, T is completely join-irreducible if and only if it covers precisely one
torsion class S, and G ⊆ S for any torsion class G ( T . In the statement below, recall
that GenM denotes the factor-closure of addM .

Proposition 3.1. The torsion class T is completely join-irreducible if and only if
there exists a brick M such that T is equal to Filt(GenM). In this case, the brick
M is unique up to isomorphism. In particular, the map ζ : [M ] 7→ Filt(GenM) from
Theorem 1.5 is a bijection.

Proof Proposition 3.1 and Theorem 1.5. Suppose that the torsion class T is com-
pletely join-irreducible and write S for the unique torsion class covered by T . The-
orem 1.3 implies that there exists a unique (up to isomorphism) brick M such that
T = Filt(S ∪ {M}). We claim that T = Filt(GenM). Observe that Filt(GenM) is
contained in T , and Filt(GenM) 6⊆ S (because M 6∈ S). The claim follows.

Conversely, let M be a brick over Λ. In the proof of Proposition 2.13, we showed
that M is a minimal co-extending module for Filt(GenM)⊥. By Proposition 2.12,
there exists a torsion class S such that Filt(GenM) ·> S and M is a minimal
extending module for S. (That is Filt(GenM) = Filt(S ∪ {M}).) Suppose that
G ⊆ Filt(GenM). If G 6⊆ S then there exists some module N ∈ G r S. In particular,
N ∈ Filt(GenM) r S. Proposition 2.6 says that M is a factor of N , hence M ∈ G.
We conclude that G = Filt(GenM). Thus any torsion class G ( Filt(GenM) also
satisfies G ⊆ S.

We conclude that Filt(GenM) is completely join-irreducible. �

Remark 3.2. There exist join-irreducible torsion classes which are not completely join-
irreducible. Consider mod kQ where Q is the Kronecker quiver and k is algebraically
closed (see Figure 2).
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a

Figure 2. The Kronecker quiver.

Let n be a non-negative integer, and write Vn for the representation defined as
follows: Vn(1) = kn+1, Vn(2) = kn; Vn(a) =

[
In 0

]
and Vn(b) =

[
0 In

]
where In is

the n× n identity matrix, and 0 is a column of zeros. (The module corresponding to
each Vn is indecomposable and preinjective; see e.g. [4, VIII.1].) Let In denote the
additive closure of {V0, V1, . . . , Vn}, and I∞ =

⋃
n>0
In. It is an easy exercise to verify

that both In and I∞ are torsion classes and In <· In+1 < I∞ for each n. Observe
that I∞ is join-irreducible, but not completely join-irreducible. In particular, it does
not cover any elements in tors kQ. Each brick in I∞ is isomorphic to Vn for some
n > 0, and it can be shown that I∞ cannot be expressed as In for any such n.
3.2. The canonical join complex of tors Λ. In this section, we characterize cer-
tain faces of the canonical join complex of tors Λ. Before we begin, we review the
necessary lattice-theoretic terminology. Recall that a lattice L is a poset such that,
for each finite subset A ⊆ L, the join or least upper bound

∨
A exists and, dually,

the meet or greatest lower bound
∧
A exists. The lattice tors Λ is a complete lattice,

meaning that
∨
A and

∧
A exist for arbitrary subsets A of torsion classes. A sub-

set A ⊆ L is an antichain if the elements in A are not comparable. The order ideal
generated by A is the set of w ∈ L such that w 6 a for some element a ∈ A.

Recall that the canonical join representation of an element w is the unique “lowest”
way to write w as the join of smaller elements. Below, we make these notions precise.
A join representation of an element w in a complete lattice is an expression w =

∨
A,

where A is a (possibly infinite) subset of L. We say that
∨
A is irredundant if

∨
A′ <∨

A, for each proper subset A′ ( A. Observe that if
∨
A is irredundant, then A is an

antichain.
Consider the set of all irredundant join representation for w. (Note that

∨
{w}

is an irredundant join representation of w.) We partially order the irredundant join
representations of w as follows: Say A �B if the order ideal generated by A is
contained in the order ideal generated by B. Equivalently, A�B if, for each a ∈ A,
there exists some b ∈ B such that a 6 b. Informally, we say that A is “lower” than B.
When A is strictly “lower” than B (e.g. A�B and A 6= B) then we write A�B.

The canonical join representation of w is the unique lowest irredundant join repre-
sentation

∨
A of w, when such a representation exists. In this case, we also say that

the set A is a canonical join representation. The elements of A are called canonical
joinands of w. If w is join-irreducible then

∨
{w} is the canonical join representation

of w. Conversely, each canonical joinand is join-irreducible.

Figure 3. The top element does not have a canonical join representation.

Remark 3.3. In general, the canonical join representation of an element may not exist.
For example, see Figure 3. Observe that the join of each pair of atoms is a minimal,

Algebraic Combinatorics, Vol. 2 #5 (2019) 888



Minimal inclusions of torsion classes

irredundant join representation of the top element. Since there is no unique such join
representation, we conclude that the canonical join representation does not exist.

The canonical join complex of L, denoted Γ(L), is the collection of subsets A ⊆ L
such that A is a canonical join representation. In the following proposition (essen-
tially [16, Proposition 2.2]) we show that Γ(L) is closed under taking subsets. In
the statement of [16, Proposition 2.2], the lattice L is finite. A standard argument
from lattice theory shows that the proposition also holds when L is a complete meet-
semilattice.

Proposition 3.4. Suppose that
∨
A is a canonical join representation in a complete

meet-semilattice L. Then, for each A′ ⊆ A, the join
∨
A′ is also canonical join rep-

resentation.

With Proposition 3.4, we conclude that the canonical join complex Γ(tors Λ) is
indeed a simplicial complex. We are finally prepared to prove Theorem 1.8. In the
next proposition, we tackle the easier direction of the proof.

Proposition 3.5. Suppose that E is a collection of bricks over Λ. If the set
{Filt(GenM) : M ∈ E} is a canonical join representation, then each pair of modules
M and M ′ is hom-orthogonal.

Proof. By Proposition 3.4, it is enough to show that the statement holds when E
contains two elements, say M and M ′. We write T for Filt(GenM)∨Filt(GenM ′).

Suppose that f : M ′ →M is a nonzero homomorphism, and write N for Im f . Since
Filt(GenM) ∨Filt(GenM ′) is irredundant, it follows that N is not isomorphic to
M . Hence, M/N is a proper factor of M , and the torsion class Filt(Gen(M/N))
is strictly contained in Filt(GenM). (Indeed, if M belongs to Filt(Gen(M/N)),
then there exists a submodule Y ⊆ M that is also a proper factor of M . That is a
contradiction to the fact that M is a brick.)

Finally, we observe that Filt(GenM/N) ∨ Filt(GenM ′) is an irredundant join
representation for T , and because Filt(GenM/N) ( Filt(GenM),

{Filt(GenM/N),Filt(GenM ′)}�{Filt(GenM),Filt(GenM ′)}.
That is a contradiction to the fact that Filt(GenM)∨Filt(GenM ′) is the canonical
join representation for T . �

Next, we consider the reverse implication of Theorem 1.8. As above, let E be a col-
lection of hom-orthogonal bricks. We write T for the torsion class

∨
{Filt(GenM) :

M ∈ E}, and argue that
∨
{Filt(GenM) : M ∈ E} is the canonical join represen-

tation of T . This will require the following lemma. For context, recall that a torsion
class need not have any upper or lower cover relations. (For example, the torsion class
I∞ in the Kronecker quiver from Example 3.2 does not cover any other torsion class.)

Lemma 3.6. Suppose that E is a collection of hom-orthogonal bricks over Λ and let
T =

∨
{Filt(GenM) : M ∈ E}. Then for each module M ∈ E:

(1) there is a torsion class S <· T such that T = Filt(S ∪M);
(2) M is a minimal extending module for S; and
(3) S contains E r {M}.

Proof. The torsion class T =
∨
{Filt(Gen(M)) : M ∈ E} is the smallest torsion class

in tors Λ that contains the modules in E . Thus, a module N belongs to T if and only
if N admits a filtration N = Nl ) · · · ) N0 = 0 such that each Ni/Ni−1 is a factor of
some indecomposable module in E . For each M ∈ E , we claim that M is a minimal
co-extending module for the torsion-free class T ⊥.
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First we check Property (P1′). Suppose that Y is an indecomposable proper sub-
module of M and that Y /∈ T ⊥. So, there exists a module N ∈ T and a nonzero
homomorphism f : N → Y . We may assume, without loss of generality, that f is
injective (if not, we take the map f : N/ ker f → Y , noting that N/ ker f is in T by
closure under factors). From the filtration of N described above, observe that the sub-
module N1 is a factor of M ′, for some M ′ ∈ E . Also f(N1) is a non-trivial submodule
of Y . So, we have the following sequence of homomorphisms

M ′ � N1 � f(N1) ⊆ Y ⊆M.

The composition of these homomorphisms is non-zero, contradicting our hypothesis
that dim HomΛ(M ′,M) = 0. Therefore, Y ∈ T ⊥. Futhermore, since M ∈ T , Prop-
erty (P3′) holds immediately.

To verify Property (P2′), suppose that 0 → F
i−→ X

π−→ M → 0 is a non-split
exact sequence with F ∈ T ⊥, and that X /∈ T ⊥. As above, let f : N → X be
a non-zero homomorphism, where N ∈ T indecomposable. We may again assume
that f is injective, and in particular the restriction of the map to N1 is injective. As
above, N1 is a factor of some module M ′ ∈ E . Thus, we have the nonzero composite
homomorphism:

f̃ : M ′ � N1 � f(N1) ⊆ X.
Since dim HomΛ(M ′,M) = 0 the composition π ◦ f̃ is zero. Therefore, f̃ factors
through the module F , and we have a nonzero homomorphism from M ′ to F . Since
F ∈ T ⊥, that is a contradiction. We conclude that X ∈ T ⊥, and M a minimal co-
extending module for T ⊥. Proposition 2.12 implies that there exists a torsion class
S <· T such that T = Filt(S ∪ {M}) and M a minimal extending module for S.

To prove the third statement, suppose that M ′ ∈ E r {M} does not belong to S.
Proposition 2.6 implies that M is a factor of M ′, and that is a contradiction. The
statement follows. �

The following proposition completes our proof of Theorem 1.8.

Proposition 3.7. Suppose that E is a collection of hom-orthogonal Λ brick modules
and write T for the torsion class

∨
{Filt(GenM) : M ∈ E}. Then the expression∨

{Filt(GenM) : M ∈ E} is the canonical join representation of T .

Proof. We assume that E has at least two elements (otherwise the statement follows
from Theorem 1.5). First we show that

∨
{Filt(GenM) : M ∈ E} is irredundant. Let

M ∈ E , and consider the torsion class T ′ =
∨
{Filt(GenM ′) : M ′ ∈ E r {M}}. By

Lemma 3.6, there exists S <· T such that each module in E r {M} lies in S. Thus
T ′ 6 S <· T .

Next, we show the expression
∨
{Filt(GenM) : M ∈ E} is the unique lowest

irredundant join representation for T . Suppose that
∨
A is another irredundant join

representation. We claim that for each torsion class Filt(GenM) such that M ∈ E ,
there exists some G ∈ A such that Filt(GenM) 6 G. (Thus, {Filt(GenM) : M ∈ E}
is “lower” than A.) Fix a module M ∈ E , let S be the torsion class covered by T
satisfying T = Filt(S ∪ {M}) and M is a minimal extending module for S. (Such a
torsion class S exists by Lemma 3.6.) Observe that there exists G ∈ A such that G 6⊆ S.
Indeed, if each G is contained in S, then

∨
A ⊆ S. Let N ∈ G r S. Proposition 2.6

implies that M is a factor of N , hence M ∈ G. We conclude that Filt(GenM) 6 G.
We have proved the claim and the proposition. �

Remark 3.8. When tors Λ is finite (equivalently, when Λ is τ -rigid finite) each join-
irreducible torsion class is completely join-irreducible. Thus, the canonical join com-
plex Γ(tors Λ) is isomorphic to the complex of hom-orthogonal bricks. Moreover, the
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proof Proposition 3.7 implies that the number of canonical joinands of T ∈ tors Λ is
equal to the number of torsion classes S covered by T . More precisely:
Corollary 3.9. Suppose that T is a torsion class over Λ with the following property:
for every torsion class S with S < T , there is a torsion class T ′ such that S 6 T ′lT .
Then the canonical join representation of T is equal to∨

{Filt(Gen(M)) : M is a minimal co-extending module of T ⊥}.

In particular, if Λ is τ -rigid finite, each torsion class has a canonical join represen-
tation.

Proof. The statement follows immediately form Corollary 2.9. �

Indeed, the canonical join representation “sees” the geometry of the Hasse diagram
for any finite lattice. We summarize this useful fact below (see [5, Proposition 2.2]).
Proposition 3.10. Suppose that L is a finite lattice, and for each element w ∈ L
the canonical join representation of w exists. Then, for each w ∈ L, the number of
canonical joinands of w is equal to the number of elements covered by w.

Figure 4. Two nonisomorphic lattices with isomorphic canonical
join complexes.

Remark 3.11. It is natural to ask if the canonical join complex Γ(tors Λ) characterizes
the underlying algebra Λ or the torsion theory of Λ. In fact, non-isomorphic algebras
may have the same torsion theory. We explore such an example in the following section
when we show that the algebra RAn (an algebra of finite representation type for all
n) has the same torsion theory as the preprojective algebra ΠAn (which is not finite
representation type for n > 4).

Furthermore, nonisomorphic lattices L and L′ may have isomorphic canonical join
complexes. For example, consider the two (nonisomorphic) lattices shown in Figure 4.
It is an easy exercise to check that canonical join complex of both lattices consists of
an edge and an isolated vertex. (See Example 1.6.)

4. torsRAn and the weak order on An

Mizuno showed (in [15, Theorem 2.3]) that the lattice of torsion classes for the prepro-
jective algebra of Dynkin type W is isomorphic to the weak order on the associated
Weyl group, when W is simply laced. In this last section, we construct a different
algebra, which we refer to as RAn, and show that torsRAn is isomorphic to the weak
order on An. This is carried out in two steps: First, in Theorem 4.5, we show that
the canonical join complex of torsRAn is isomorphic to the canonical join complex
of the weak order on An. Second, in Proposition 4.19, we map each cover relation
T <· T ′ in torsRAn bijectively to a cover relation of permutations in weak order.
Before we begin, we establish some useful notation. Throughout we write [n] for the
set {1, 2, . . . , n}, [i, k] for the set {i, i+ 1, . . . , k} and (i, k) for {i+ 1, . . . , k − 1}.
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4.1. The algebra RAn. Let Q be the quiver with vertex set Q0 = [n] and arrows
Q1 = {ai : i → i+ 1, a∗i : i+ 1 → i}i∈[n−1]. Define I to be the two-sided ideal in the
path algebra kQ generated by all two-cycles, I = 〈aia∗i , a∗i ai | i ∈ [n− 1]〉, and define
RAn to be the algebra kQ/I.

Recall that a representation of (Q, I) is a collection of vector spaces M(x), one for
each vertex i ∈ Q0, and linear maps M(ai) : M(i)→ M(i+ 1), M(a∗i ) : M(i+ 1)→
M(i), for each of the arrows in Q, that satisfy the relations given by I. We will make
generous use of the equivalence between the category of modules over RAn and that
of the representations of the bound quiver (Q, I), generally referring to the objects
of interest as modules, while describing them as representations. The support of a
representation is the set of vertices i for which M(i) 6= 0.
Proposition 4.1. There are finitely many isoclasses of indecomposable representa-
tions of RAn for each n.
Proof. The algebra RAn is gentle (see [3]) with no band modules since any cycle
contains a 2-cycle, each of which lies in I. By the work of Butler–Ringel [7], then,
there are finitely many isoclasses of indecomposable modules. �

As a quiver representation, each indecomposable module M (up to isomorphism)
over RAn corresponds to a connected subquiver QM of Q satisfying the condition
that at most one of either ai or a∗i belongs to (QM )1. Thus, each indecomposable
module can be identified with an orientation of a type-A Dynkin diagram with rank
less than or equal to n. More precisely, the quiver representation corresponding to
QM satisfies:

• M(i) = k for all i ∈ (QM )0 and M(i) = 0 for i /∈ (QM )0;
• M(a) 6= 0 if and only if a ∈ (QM )1.

Proposition 4.2. Each indecomposable module over RAn is a brick. In particular, the
canonical join complex of torsRAn is isomorphic to the complex of hom-orthogonal
indecomposable modules over RAn.
Proof. Let M be an indecomposable module over RAn and let QM be the corre-
sponding quiver. An endomorphism f : M →M is a set of maps f = (fi)i∈Q1 where
fi : M(i) → M(i) and for every arrow a : i → j ∈ Q1, the composition M(a) ◦ fi is
equal to fj ◦M(a). Since M(i) = k for all i ∈ (QM )0, the map M(a) : k → k is just a
scalar multiplication. Therefore fi = fj for each i, j ∈ (QM )0, and hence f is a scalar
multiple of the identity map. �

From now on, we abuse notation and refer to Γ(torsRAn) as the complex of
hom-orthogonal indecomposable modules over RAn. (Although, more precisely,
Γ(torsRAn) is a simplicial complex on the set of join-irreducible torsion classes
Filt(Gen(M)) in torsRAn, not the set of indecomposable modules.)

We close this section with a technical lemma that will be useful in Section 4.3.
Lemma 4.3. Suppose that M is an indecomposable module over RAn, and S is an
interval in [n] containing supp(M). Then:

(1) M is a submodule of some indecomposable M ′ with supp(M ′) = S and
(2) there is an indecomposableM ′′ with supp(M ′′) = S, of whichM is a quotient.

Proof. We prove only the first statement, since the second is similar by Proposi-
tion 4.7. Let QM be the quiver associated with M , and write [p, q] = supp(M). Let
QM ′ be any quiver with support equal to S satisfying the following: the orientation
of QM ′ on the interval [p, q] coincides with that of QM , and QM ′ contains the the
arrows ap−1 if p−1 ∈ S and a∗q if q+ 1 ∈ S. Since QM is a connected successor closed
subquiver of QM ′ , we obtain the desired result. �
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4.2. Noncrossing arc diagrams and canonical join representations. In
this section, we construct a model for the canonical join complex of torsRAn called
the noncrossing arc complex. The noncrossing arc complex was first defined in [16]
where it was used to study certain aspects of the symmetric group. (We will make use
of this connection in the following section.) Informally, the noncrossing arc complex
is a simplicial complex whose faces are collections of non-intersecting curves called
arcs. We will see that the “noncrossing” criteria that defines such a face also encodes
the hom-orthogonality of indecomposable modules in modRAn.

A noncrossing arc diagram on n+ 1 nodes consists of a vertical column of nodes,
labeled 0, . . . , n in increasing order from bottom to top, together with a (possibly
empty) collection of curves called arcs. Each arc α has two endpoints, and travels
monotonically up from its bottom endpoint b(α) to its top endpoint t(α). For each
node in between, α passes either to the left or to the right. Each pair of arcs α and β
in a diagram satisfies two compatibility conditions:
(C1) α and β do not share a bottom endpoint or a top endpoint;
(C2) α and β do not cross in their interiors.

Figure 5. The noncrossing arc diagrams on 3 nodes.

Each arc is considered only up to combinatorial equivalence. That is, each arc α is
characterized by its endpoints and which side each node the arc passes (either left or
right) as it travels from b(α) up to t(α). Furthermore, a collection of arcs is drawn
so as to have the smallest number of intersections. The support of an arc α, written
supp(α), is the set [b(α), t(α)]. We write supp◦(α) for the set (b(α), t(α)). We say that
α has full support if supp(α) = [0, n]. We say that β is a subarc of α if both of the
following conditions are satisfied:

• supp(β) ⊆ supp(α);
• α and β pass on the same side of each node in supp◦(β).

Figure 6. Some pairs of compatible arcs.

A set of arcs are compatible if there is a noncrossing arc diagram that contains
them. We define the noncrossing arc complex on n + 1 nodes to be the simplicial
complex whose vertex set is the set of arcs and whose face set is the collection of all
sets of compatible arcs. (We view each collection of compatible arcs as a noncrossing
arc diagram. When we refer to “the set of arcs” we mean “the set of noncrossing
arc diagrams, each of which contains precisely one arc”.) The next proposition is
a combination of [16, Proposition 3.2 and Corollary 3.6]. Recall that a simplicial
complex is flag if its minimal non-faces have size equal to 2. Equivalently, a subset F
of vertices is a face if and only if each pair of vertices is a face.
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Proposition 4.4. A collection of arcs can be drawn together in a noncrossing arc
diagram if and only if each pair of arcs is compatible. Thus, the noncrossing arc
complex is flag.

Our goal is to prove:

Theorem 4.5. The canonical join complex of the lattice torsRAn is isomorphic to
the noncrossing arc complex on n+ 1 nodes.

We begin the proof of Theorem 4.5 by mapping vertices to vertices. More precisely,
we define a bijection σ from the set of indecomposable modules over RAn to the set
of arcs on n+ 1 nodes.

For an arc α with support [p− 1, q] we define:

R(α) = {i ∈ [p, q − 1] : α passes on the right side of i};
L(α) = {i ∈ [p, q − 1] : α passes on the left side of i}.

For an indecomposable RAn module with support [p, q] ⊆ [n], we define:

R(M) = {i ∈ [p, q − 1] : ai acts nontrivially on M};
L(M) = {i ∈ [p, q − 1] : a∗i acts nontrivially on M}.

Just as an arc is determined by its endpoints and the binary Left-Right data, so
too is an indecomposable module over RAn determined by the binary data of the
action of its Lowering-Raising arrows (a∗i and ai, respectively). Therefore, we have
the following:

Proposition 4.6. Let σ be the map which sends an indecomposable RAn module M
with support [p, q − 1] to the arc σ(M) = α satisfying

• b(α) = p− 1 and t(α) = q;
• L(α) = L(M);
• R(α) = R(M).

Then σ is a bijection from the set of indecomposable modules over RAn the set of arcs
on n+ 1 nodes. (See Figure 7.)

1

2

3

4

a∗1

a2

a∗3

(A) QM for RA4 (B) The arc σ(M)
0

1

2

3

4

Figure 7. Visualization of σ(M) and QM for a module over RA4.

For the remainder of the section, we letM andM ′ be indecomposable modules, and
write α for σ(M) and α′ for σ(M ′). We wish is to reinterpret the hom-orthogonality
of M and M ′ in terms of certain subarcs of α and α′. Recall that a quiver Q′ is called
a predecessor closed subquiver of Q if i → j with j ∈ Q′ implies i ∈ Q′. Successor
closed subquivers are defined similarly. The following result is well-known (and an
easy exercise). See [9, Section 2].
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Proposition 4.7. Suppose that M and M ′ are indecomposable modules over RAn
and let QM and QM ′ be the corresponding quivers. Then:

(1) M ′ is a quotient of M if and only if QM ′ is a connected predecessor closed
subquiver of QM .

(2) M ′ is a submodule of M if and only if QM ′ is a connected successor closed
subquiver of QM .

We define an analogous notion for arcs. We say that β is a predecessor closed subarc
of α if β is a subarc of α, and α does not pass to the right of b(β), nor to the left
of t(β). Similarly, β is a successor closed subarc if α does not pass to the left of b(β)
nor to the right of t(β). Observe that each predecessor closed subarc of α corresponds
(via the map σ) to an indecomposable quotient of M–that is, a predecessor closed
subquiver of QM . (The analogous statement holds for successor closed subarcs of α.)
The next result is from Crawley-Boevey [9, Section 2], rephrased for our context.
Proposition 4.8. Let α and α′ be arcs on n + 1 nodes, and write M and M ′

for the corresponding indecomposable modules over RAn. Then the vector space
HomRAn

(M,M ′) has dimension equal to the number of predecessor closed subarcs of
α which are also successor closed subarcs of α′.

We argue that α and α′ are compatible if and only if there exists no arc β that is
a predecessor closed subarc of one which is simultaneously a successor closed subarc
of the other.

α

b(β)

t(β)

α′

Figure 8. Suppose that β is a predecessor closed subarc of α and
a successor closed subarc of α′. Then the endpoints of β lie between
these two arcs. The two arcs switch from left side to right side (and
vice versa) as they travel from b(β) to t(β).

The following two lemmas give one direction of that argument. Figure 8 may help
build some intuition.

At times it will be convenient to consider the relative position of a pair of “over-
lapping” arcs.

We say that α and α′ overlap if the set
(supp(α) ∩ supp◦(α′)) ∪ (supp(α′) ∩ supp◦(α))

is nonempty. For two arcs α and α′ that overlap, we say that α′ is right of α if both
of the following hold:

• (L(α′) ∪ {t(α′), b(α′)}) ∩ (supp(α)) ⊆ L(α)
• {t(α), b(α)} ∩ (supp(α′)) ⊆ R(α′).

For example, in Figure 6, the dashed arc is right of the solid arc. Observe that if α′
is right of α then the two arcs are compatible.
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Lemma 4.9. Suppose that α and α′ are distinct arcs that share a bottom endpoint or
a top endpoint. Then there exists an arc β satisfying: β is a predecessor closed subarc
of one arc, either α or α′, and a successor closed subarc of the other arc.

Proof. By symmetry, we assume that α and α′ share a bottom node, and, without
loss of generality, this bottom endpoint is equal to 0. Let q be the smallest number
such that either of two conditions below is satisfied:

• α and α′ pass on opposite sides of q;
• q = min{t(α), t(α′)}.

Let β be the arc with endpoints b(β) = 0 and t(β) = q such that β is a subarc of α.
(Note, if q = t(α) then β coincides with α. If q 6= t(α), we can visualize β by cutting
α where it passes beside the node q, and anchoring the resulting segment at q.) Since
α and α′ pass on the same side of each node in the set [0, q − 1], we conclude that β
is also a subarc of α′.

At least one of the two arcs, α or α′, passes q. By symmetry, assume that this is
the arc α, and assume that α passes on the right side of q. Then β is a predecessor
closed subarc of α and also a successor closed subarc of α′. �

Lemma 4.10. Suppose that α and α′ are distinct arcs that neither share a bottom nor
top endpoint. If α and α′ intersect in their interiors, then there exists an arc β which
is a predecessor closed subarc of one arc and a successor closed subarc of the other.

Proof. First, we consider the case in which one of the two arcs is a subarc of the other.
By symmetry, we assume that α′ is a subarc of α. Observe that b(α′) and t(α′) must be
on opposite sides of α. (Otherwise, α and α′ can be drawn so they do not cross.) There-
fore, by definition, either α′ is a predecessor closed or successor closed subarc of α.

Next, suppose that α′ and α pass on the same side of each node in the set
supp◦(α) ∩ supp◦(α′), but neither arc is a subarc of the other. By symmetry, assume
that b(α′) < b(α) < t(α′) < t(α) and that α′ passes to the right of b(α). Observe that
α also passes to the right of t(α′). Otherwise, the arcs can be drawn so that α′ lies
strictly to the right of α, and the two arcs never cross. See Figure 9.

b(α)

t(α′)

Figure 9. A demonstration of the proof of Lemma 4.10. The arc α
is shown in blue, and α′ is shown in dashed red.

Let β be the subarc of α with bottom endpoint b(α) and top endpoint t(α′). Since
α and α′ pass on the same side of each node where they overlap, β is also a subarc
of α′. We conclude that β is a predecessor closed subarc of α that is also a successor
closed subarc of α′.
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Finally, we assume that α and α′ pass on opposite sides of some node p belonging
to supp◦(α)∩ supp◦(α′). By symmetry, assume that α passes to the left side of p and
α′ passes to the right. Consider the set

O = (supp(α) ∩ supp◦(α′)) ∪ (supp(α′) ∩ supp◦(α)) .

By way of contradiction, suppose for each q ∈ O, either α passes on the left side of q
or α′ passes on the right of q. Then for each q ∈ O, either α and α′ pass on the same
side of q, or q lies between them, with α on the left and α′ on the right. We conclude
that α′ is strictly to the right of α, and the two arcs never cross, a contradiction.

Thus, there exists some q ∈ O satisfying: α does not pass to the left of q nor does
α′ pass to the right. We choose p and q so that |p − q| is minimal. By symmetry,
assume that p < q. Let β be the subarc of α with endpoints p < q. The minimality
of |p − q| implies that β is also a subarc of α′. We conclude that β is a predecessor
closed subarc of α that is also a successor closed subarc of α′. �

Together, the previous two lemmas (and Proposition 4.8) imply that if α and α′
are not compatible, then there exists some homomorphism between M and M ′. The
next lemma completes the proof of Theorem 4.5.

Lemma 4.11. Suppose that α and α′ are compatible. Then there exists no arc β that
is predecessor closed subarc of one arc and a successor closed subarc of the other.
Thus, the modules M and M ′ corresponding to α and α′ under the bijection σ are
hom-orthogonal.

Proof. By way of contradiction, assume there exists an arc β that is both a predecessor
closed subarc of α and a successor closed subarc of α′. Because α and α′ do not share
a bottom endpoint, either b(α) 6= b(β) or b(α′) 6= b(β). By symmetry, assume that
b(α) 6= b(β). Thus, α passes strictly to the left of b(β). Since α′ does not pass to the
left of b(β), we conclude that α′ lies strictly on the right side of α, wherever the two
arcs overlap.

For the moment, assume that t(β) ∈ supp◦(α) ∩ supp◦(α′). On the one hand, α
passes strictly to the right of t(β). On the other hand, α′ passes strictly to the left of
t(β), so that α and α′ intersect in their interiors. (See Figure 8.) We obtain a similar
contradiction if t(β) = t(α) or t(β) = t(α′). �

4.3. The weak order on An and torsRAn. In this section we prove that torsRAn
is isomorphic to the weak order on An. We begin by reviewing the weak order and its
connection to noncrossing arc diagrams.

Recall that the type-A Weyl group of rank n is isomorphic to the symmetric group
on [n + 1]. It will be convenient for us to realize An as the symmetric group on
{0, . . . , n} = [0, n]. For the remainder of the paper, we do not distinguish between
the elements of An and the permutations on [0, n]. We write w ∈ An in its one-line
notation as w = w0 . . . wn where wi = w(i). An inversion of w is a pair (wi, wj) with
wi > wj and i < j. Each permutation is uniquely determined by its inversion set.

In the weak order, permutations are partially ordered by containment of their
inversion sets. In particular, w ·> v if and only if inv(v) ⊆ inv(w) and inv(w)r inv(v)
has precisely one element. This unique inversion is a descent for w. (Recall that a
descent is an inversion (q, p) such that q = wi and p = wi+1.) In this way, each
descent of w corresponds bijectively to a permutation that is covered by w. It follows
that w is join-irreducible if and only if it has precisely one descent.

We describe a bijection δ from the set of permutations in An to the set of non-
crossing arc diagrams on n + 1 nodes. For each descent (wi, wi+1) of a permutation
w, construct an arc α satisfying: t(α) = wi, b(α) = wi+1, and wj ∈ R(α) (resp.
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wj ∈ L(α)) whenever wj is in the interval (b(α), t(α)) and j > i + 1 (resp. j < i).
The arc diagram δ(w) is then the union of these arcs. Since descents become arcs, it
follows that δ restricts to a bijection from the set of join-irreducible permutations (on
[0, n]) to the set of arcs (on n+ 1 nodes).

012

021102

201120

210

0

2

1

Figure 10. The weak order on the symmetric group A2 and the
noncrossing arc diagram corresponding to 210.

Example 4.12. Consider the permutation w = 210, the top element in the weak order
on A2. The noncrossing arc diagram δ(w) consists of two arcs, one connecting 0 to 1,
and the second connecting 1 to 2. (See Figure 10.) Each arc corresponds (via δ) to a
join-irreducible permutation. In this example, the arc connecting 0 to 1 corresponds
to 102, and the arc which connects 1 to 2 corresponds to 021. Observe that that
210 =

∨
{102, 021}. In fact,

∨
{102, 021} is the canonical join representation of 210.

This fact is no coincidence.

In general, the weak order on An is a lattice in which each permutation has a canon-
ical join representation [8]. The next theorem is a combination of [16, Theorem 3.1
and Corollary 3.4].

Theorem 4.13. The bijection δ induces an isomorphism from the canonical join com-
plex of the weak order on An to the noncrossing arc complex on n+ 1 nodes.

We immediately obtain the following corollary.

Corollary 4.14. The canonical join complex of RAn is isomorphic to the canonical
join complex of the weak order on An.

Let us a consider the following composition:

Γ(torsRAn) σ−→ {Noncrossing arc diagrams on n+ 1 nodes} δ−1

−−→ Γ(An).
Recall that the map σ sends a collection of hom-orthogonal modules E to a collection
of compatible arcs σ(E) = A. By Theorem 4.13, δ−1 sends this collection of compatible
arcs to the permutation w =

∨
{δ−1(α) : α ∈ A}, where this join

∨
{δ−1(α) : α ∈ A}

is the canonical join representation of w. Define a map φ : torsRAn → An as follows:

φ :
∨
{Filt(Gen(M)) : M ∈ E} 7→

∨
{δ−1(σ(M)) : M ∈ E}.

Because each torsion class in torsRAn and each permutation in An has a canonical
join representation (see Corollary 3.9), and because the canonical join representation
is unique, we conclude that φ is a bijection.

Example 4.15. Consider the join of torsion classes T =
∨
{{1}, {2}} in torsRA2. (We

write {i} for the torsion class consisting of the simple module at vertex i.) Observe that
T is equal to the entire module category over RA2. Since the simple modules 1 and
2 are hom-orthogonal, the join

∨
{{1}, {2}} is the canonical join representation of T .
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The map σ sends {i} to the arc with endpoints i − 1 and i. Thus, σ(T ) is the
noncrossing arc diagram with two arcs: one arc that connects 0 to 1; and another arc
that connects 1 to 2. Recall from Example 4.12 that the permutation associated to
this diagram is 210. Thus, φ(T ) = 210.

Our goal is to show that φ is actually a lattice isomorphism. To that end, we
now give an alternative description of φ in terms of inversion sets. Recall that per-
mutations in An are ordered by containment of inversion sets. Each inversion set
I = inv(w) is transitively closed, meaning that whenever {(p, q), (q, r)} is a subset of
I then (p, r) ∈ I. Consider the set S of all pairs (p, q) such that p < q and p, q ∈ [0, n],
and write Ω for the power set of S. The transitive closure of I is the unique smallest
(under containment) set tran(I) in Ω that is transitively closed and contains I. Just as
we compute the join of a set of torsion classes by taking their filtration closure, we com-
pute the join of a set of permutations by taking their transitive closure. More precisely:

Proposition 4.16. Suppose that U is a collection of permutations in An. The in-
version set of the permutation w =

∨
U is equal to the transitive closure of the set

I = {inv(u) : u ∈ U}.

Building on this analogy, let us define an “inversion set” for a torsion class
of modRAn. For each indecomposable module M with support [p, r] we associate to
M the pair inv(M) = (p − 1, r). We define the inversion set of a torsion class T to
be the set of all pairs inv(M) such that M ∈ ind(T ).

Lemma 4.17. Suppose that S is a collection of indecomposable modules over RAn.
Then inv(Filt(S)) is equal to the transitive closure of inv(S).

Proof. First, suppose that (p−1, r) ∈ inv(Filt(S)), and let M be an indecomposable
module in Filtl(S) with supp(M) = [p, r]. Without loss of generality, we assume that
M is not simple. Thus, p < r. We prove that (p − 1, r) ∈ tran(inv(S)) by induction
on l.

Let M = Ml ) Ml−1 ) · · · ) M0 = 0 be an S-filtration of M , and consider the
short exact sequence:

0→Ml−1 →M →M/Ml−1 → 0.
Since dim(Ml−1(i)) + dim(M/Ml−1(i)) = dim(M(i)) for each vertex i ∈ Q0, we con-
clude that supp(Ml−1) = [p, q−1] and supp(M/Ml−1) = [q, r], for some q ∈ (p, r). Be-
causeMl−1 belongs to Filtl−1(S), our inductive hypothesis implies that (p−1, q−1) ∈
tran(inv(S)). Also M/Ml−1 ∈ S, so we have (q − 1, r) ∈ inv(S). Thus, (p − 1, r) ∈
tran(inv(S)). The other containment follows immediately from Lemma 4.3. �

Proposition 4.18. Suppose that T is a torsion class in torsRAn. Then inversion set
of T is equal to inv(φ(T )).

Proof. First suppose that T is join-irreducible, so that T = Filt(Gen(M)), where
M is an indecomposable module over RAn. Without loss of generality, we assume
that M has full support. As in Proposition 4.6, let α = σ(M), where α is defined
by the condition that L(α) = L(M) and R(α) = R(M). (Recall from Section 4.2
that L(M) is the set of indices of the arrows of type a∗i in QM while L(α) is the set
of nodes i such that α passes on the left side of i.) Write w for the join-irreducible
permutation δ−1(α). On the one hand, a pair (p − 1, r) is an inversion of w if and
only if p− 1 ∈ L(α)∪{0} and r ∈ R(α)∪{n}. On the other hand, (p− 1, r) is inv(N)
for some factor N of M if and only if p − 1 ∈ L(M) ∪ {0} and r ∈ R(M) ∪ {n}.
(Equivalently, each factor of M has support [p, r] such that p− 1 ∈ L(M) ∪ {0} and
r ∈ R(M) ∪ {n}.) We conclude that inv(Gen(M)) is equal to inv(φ(T )). Since the
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inversion set of the permutation φ(T ) is already transitively closed, we conclude that
inv(T ) is equal to inv(φ(T )).

Now assume that T is not join-irreducible. Write
∨
{Filt(Gen(M)) : M ∈ E}

for its canonical join representation, and write A for the set δ−1(σ(E)). Recall that
φ(T ) =

∨
{w : w ∈ A}, and this join is computed by taking the transitive closure

of the set {inv(w) : w ∈ A}. The join
∨
{Filt(Gen(M)) : M ∈ E} is computed by

taking the filtration closure of the set {Gen(M) : M ∈ E}. By Lemma 4.17, inv(T )
is equal to inv(φ(T )). �

We are now prepared to prove the main result of this section.

Theorem 4.19. Let T ′ and T be torsion classes in torsRAn. Suppose that T ′ is equal
to Filt(T ∪ {M}), where M is a minimal extending module for T . Then

inv(T ′) r inv(T ) = {inv(M)}.

In particular, torsRAn is isomorphic to the weak order on An.

Proof. Write (q, r) for the inversion inv(M). Proposition 4.17 says that inv(T ′) =
tran(inv(T ) ∪ {(q, r)}). If (q, r) ∈ inv(T ) then inv(T ) is equal to inv(T ′), and this
contradicts the fact that φ is a bijection (because distinct permutations have distinct
inversion sets). We claim that the set inv(T ∪ {(q, r)}) is transitively closed.

To prove this claim, first suppose that p < q and (p, q) ∈ inv(T ). We need to show
that (q, r) ∈ inv(T ). Let M ′ be an indecomposable module in T with supp(M) =
[p+ 1, q]. Then, Lemma 4.3 implies that there exists a short exact sequence:

0→M →M ′′ →M ′ → 0,

where supp(M ′′) = [p + 1, r]. Since M is minimally extending, (P2) implies that
M ′′ ∈ T ′. The statement follows. A similar argument shows that if there is some
s > r such that (r, s) ∈ inv(T ) then (q, s) also belongs to inv(T ). We conclude that
inv(T ′) = inv(T ) ∪ {(q, r)}, as desired. In particular, φ(T ′) ·> φ(T ).

For any finite lattice, define cov↓(L) to be the set of pairs (w′, w) such that w′ ·> w.
As is the case for torsRAn and An, suppose that each element w′ ∈ L has a canonical
join representation. Recall that the number of canonical joinands of w′ is equal to
the number of elements covered by w′. (This is Proposition 3.10.) Thus, the num-
ber of pairs (w′, w) in cov↓(L) is equal to a weighted sum of the faces in Γ(L),
where each face is weighted by its size. In particular, the sets cov↓(torsRAn) and
cov↓(An) are equinumerous. Since φ is a bijection, we conclude that the mapping
(T ′, T ) 7→ (φ(T ), φ(T ′)) is a bijection from cov↓(torsRAn) to cov↓(An). Hence, the
lattice torsRAn is isomorphic to the weak order on An. �
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