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Frobenius Heisenberg categorification

Alistair Savage

Abstract We associate a graded monoidal supercategory HeisF,k to every graded Frobe-
nius superalgebra F and integer k. These categories, which categorify a broad range of lattice
Heisenberg algebras, recover many previously defined Heisenberg categories as special cases.
In this way, the categories HeisF,k serve as a unifying and generalizing framework for Heisen-
berg categorification. Even in the case of previously defined Heisenberg categories, we obtain
new, more efficient, presentations of these categories, based on an approach of Brundan. When
k = 0, our construction yields new versions of the affine oriented Brauer category depending
on a graded Frobenius superalgebra.

1. Introduction
In [12], Khovanov developed a graphical calculus for the induction and restriction func-
tors arising from the tower of algebras coming from the symmetric groups. He showed
that the Grothendieck ring of the resulting monoidal category contains an infinite-
dimensional Heisenberg algebra and conjectured that the two are isomorphic. Since
Khovanov’s original work, his construction has been generalized to q-deformations [8,
14], to categories depending on a graded Frobenius superalgebra [9, 16], and to higher
level [15]. In addition, a generalization of Khovanov’s conjecture [15, Conj. 4.5] has
recently been proved in [7, Th. 1.1].

In [2], Brundan introduced a new approach to Heisenberg categorification, proving
that the higher level Heisenberg categories of [15], which include Khovanov’s original
category, can be defined using a smaller set of relations, including an “inversion rela-
tion”. This approach also shows that the affine oriented Brauer category of [4] can be
viewed as the level zero Heisenberg category.

In the current paper, we associate a graded monoidal supercategory HeisF,k to
each graded Frobenius superalgebra F and integer k. The Heisenberg supercategories
HeisF,k can simultaneously be viewed as graded Frobenius superalgebra deformations
of the categories of [15], and as extensions of the graded monoidal supercategories
of [16] to higher level. When k = 0, we also obtain new Frobenius deformations
of affine oriented Brauer categories. In this way, the categories introduced in the
current paper unify and generalize these previous constructions. Our approach is
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inspired by the inversion relation method of [2]. As a consequence, even when we
specialize to the setting of [16], which corresponds to the choice k = −1, we obtain
two new presentations of the Heisenberg categories defined there. Specializing further,
we obtain higher level versions of, as well as new presentations of, the categories
introduced in [9], which are related to the geometry of the Hilbert scheme.

Fix a commutative ground ring k. Throughout the paper, the term graded will mean
Z-graded. Let F be a nonnegatively graded Frobenius superalgebra with homogeneous
basis B (thus, we assume F is free as a k-module), Nakayama automorphism ψ, even
trace map tr, and top degree ∆. By definition, the map

F → Homk(F,k), f 7→
(
g 7→ (−1)f̄ ḡ tr(gf)

)
,

is an isomorphism, and

(1) tr(fg) = (−1)f̄ ḡ tr(gψ(f)) = (−1)f̄ tr(gψ(f)) = (−1)ḡ tr(gψ(f)) f, g ∈ F,

where f̄ denotes the parity of a homogeneous element f ∈ F . Here and throughout
the paper, when an equation involves the parity of elements, it is understood that we
extended it by linearity to non-homogeneous elements. The degree of a homogeneous
element f ∈ F will be denoted by |f |. We let {b∨ : b ∈ B} denote the left dual basis,
so that

(2) tr(a∨b) = δa,b, a, b ∈ B.

Fix k ∈ Z. We refer the reader to [5] for a treatment of monoidal supercategories and
the diagramatic conventions used below.

Definition 1.1. The supercategory HeisF,k is the strict k-linear graded monoidal su-
percategory defined as follows. The objects are generated by Q+ and Q−, and we use
juxaposition to denote tensor product. The morphisms of HeisF,k are generated by

x : Q+ → Q+, s : Q+Q+ → Q+Q+,

|x| = ∆, x̄ = 0, |s| = 0, s̄ = 0,
c : 1→ Q−Q+, d : Q+Q− → 1, βf : Q+ → Q+, f ∈ F,
|c| = 0, c̄ = 0, |d| = 0, d̄ = 0, |βf | = |f |, β̄f = f̄ , f ∈ F,

subject to certain relations. Using the usual string calculus for strict monoidal (su-
per)categories, we depict the generating morphisms by the diagrams

x = , s = , c = , d = , βf = f , f ∈ F.

We refer to the decoration representing x as a dot and the decorations representing
βf , f ∈ F , as tokens. The identity morphisms of Q+ and Q− are denoted by ↑ and
↓, respectively. For n > 1, we denote the n-th power xn of x by labelling the dot with
the exponent n:

xn = n .

We also define

(3) t : Q+Q− → Q−Q+, t = := .

We impose three sets of relations:
(a) Affine wreath product algebra relations: We have a homomorphism of graded

superalgebras

(4) F → End Q+, f 7→ βf ,
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so that, in particular,

(5) g
f = fg , f, g ∈ F.

Furthermore, the following relations are satisfied for all f ∈ F :

(6) = , (7) = , (8) f =
ψ(f) ,

(9) f = f , (10) − =
b∨

b .

In (10) and throughout the paper we adopt the convention that, whenever an expression
contains the symbols b and b∨ (or a and a∨, etc.), there is an implicit sum over b ∈ B
(or a ∈ B, etc.). For example,

b∨
b =

∑
b∈B b∨

b and ba⊗ a∨ =
∑
a∈B

ba⊗ a∨ by convention.

(In a few instances we will include the explicit sum where there is some possibility for
confusion.) It follows from the above relations that we also have the relations:

(11) f = f , (12) − = b b∨ .

Recall that when morphisms appear at the same height, as is the case for the two
tokens on the right side of (12), one obtains the same morphism by slightly increasing
the height of the leftmost one. See, for example, [5, (1.3)].

(b) Right adjunction relations: We impose the following relations:

(13) = , (14) = .

(c) Inversion relation: The following matrix of morphisms is an isomorphism in
the additive envelope of HeisF,k:

[
r

b∨
, 0 6 r 6 k − 1, b ∈ B

]T
: Q+Q− → Q−Q+ ⊕ 1⊕k dimF if k > 0,

(15)

[
r

b∨
, 0 6 r 6 −k − 1, b ∈ B

]
: Q+Q− ⊕ 1⊕(−k dimF ) → Q−Q+ if k < 0.

(16)

(The matrix (15) is of size (1 + k dimF )× 1, while the matrix (16) is of size 1× (1 +
k dimF ).) Note that these conditions are independent of the choice of basis B of F .

In the special case k = 0, the inversion relation means that there is another gener-
ating morphism

t′ = : Q−Q+ → Q+Q−,

that is inverse to t. Thus we have

= , = .
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If F = k and we reflect diagrams in a vertical axis, we obtain precisely the affine
oriented Brauer category of [4]. Thus, we can view HeisF,0 as a graded Frobenius
superalgebra deformation of the (reversed) affine oriented Brauer category.

In the case k 6= 0, the inversion relation is substantially more intricate. We analyze
its consequences in Section 2. The main result of that analysis is contained in the next
two theorems. The proofs of these and other theorems stated in this introduction will
be given in Section 3. In the special case that F = k, Theorems 1.2 and 1.3 are due
to Brundan [2, Th. 1.2, Th. 1.3].

We adopt the following convention for computing determinants of matrices whose
entries lie in a superalgebra. For 1×1 matrices, we define det(a) = a. Then, for n > 1,
we recursively define

(17) det(ai,j)ni,j=1 =
n∑
s=1

(−1)s+1as,1 detAs,1,

where As,1 is the (n − 1) × (n − 1) matrix obtained from the matrix (ai,j)ni,j=1 by
deleting the s-th row and first column. In other words, we compute determinants by
recursively expanding along the first column.

Theorem 1.2. There are unique even morphisms c′ : 1→ Q+Q− and d′ : Q−Q+ → 1

in HeisF,k, drawn as
c′ = , d′ = ,

with |c′| = −k∆ and |d′| = k∆, such that the following relations hold:

(18) = +
∑
r,s>0 r

b∨

sa

a∨b−r−s−2

= + δk,1
b∨

b
if k 6 1

 ,

(19)

= +
∑
r,s>0

(−1)āb̄+ā+̄b
r
b∨

sa

a∨b−r−s−2

= −δk,−1(−1)b̄
b

b∨

if k>−1

,

(20) = δk,0 if k > 0, (21) r f = −δr,k−1 tr(f) if 0 6 r < k,

(22) = δk,0 if k 6 0, (23) rf = δr,−k−1 tr(f) if 0 6 r < −k.

Moreover, HeisF,k can be presented equivalently as the strict k-linear monoidal
supercategory generated by the objects Q+, Q−, and morphisms s, x, c, d, c′, d′, and
βf , f ∈ F , subject only to the relations (4), (6) to (10), (13), (14), and (18) to (23).
In the above relations, in addition to the rightward crossing t defined by (3), we have
used the left crossing t′ : Q−Q+ → Q+Q− defined by

(24) t′ = := ,
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and the negatively dotted bubbles defined, for f ∈ F , by

f r−k−1 =
∑

b1,...,br−1∈B

det
(

b∨j−1bji−j+k

)r
i,j=1

, if r 6 k,(25)

fr+k−1 = (−1)r+1
∑

b1,...,br−1∈B

det
(
b∨j−1bj i−j−k

)r
i,j=1

, if r 6 −k,

(26)

where we adopt the convention that b∨0 = f and br = 1, and we interpret the deter-
minants as tr(f) if r = 0 and as 0 if r < 0. We have also used dots and tokens on
downward strands, as defined by the first equalities in (32) and (33) below.

Theorem 1.3. Using the notation from Theorem 1.2, the following relations are con-
sequences of the defining relations.

(a) Infinite grassmannian relations: For f, g ∈ F , we have

(27) r f = −δr,k−1 tr(f) if r 6 k − 1,

(28) rf = δr,−k−1 tr(f) if r 6 −k − 1,

(29)
∑
r,s∈Z

r+s=t−2

r fb

sb∨g

=
∑
r,s>0
r+s=t

r+k−1 fb

s−k−1b∨g

= −δt,0 tr(fg).

(b) Left adjunction:

(30) = , (31) = .

(c) Rotation relations: For all f ∈ F ,

f := f =
ψk(f)

,(32)

:= = −
b∨

k ψ−1(b)−b
,(33)

(34) := = .

(d) Curl relations: For all r > 0,

(35) r =
∑
s>0

br−s−1
s
b∨

, (36) r = −
∑
s>0 b∨ r−s−1

s
b

.
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(e) Bubble slides: For all f ∈ F and r > 0,

(37) rf = rf −
∑
t>0

t∑
s=0

(−1)āb̄

r−t−2a∨f

bψ−s(a)ψ−t(b∨)
t ,

(38)

rf = rf −
∑
t>0

t∑
s=0

(−1)āb̄

r−t−2a∨f

bψ−s(a)ψ−t(b∨)
t .

(f) Alternating braid relation:
(39)

− =



∑
r,s,t>0

ra

se∨

a∨b−r−s−t−3
e
t
b∨

if k> 2,

0 if − 16 k6 1,

∑
r,s,t>0(−1)āb̄+ā+b̄+b̄ē

eψ−r(b∨)
r

sa

a∨b−r−s−t−3
e∨
t

if k6−2.

The terminology infinite grassmannian relations for (27) to (29) comes from the
analogy with the defining relations for the cohomology ring of the infinite grassman-
nian. When F = k, these relations can also be interpreted at the relations between
the elementary and complete symmetric functions. (See, for example, [2, (1.21)].)
Thus, the results of the current paper suggest a theory of deformations of symmetric
functions depending on a graded Frobenius superalgebra.

Taking t = 1 in (29) and using (27), (28), (42), and (43) gives

(40) −kf = k f and −k f = kf for all f ∈ F.

It follows from the bubble slide relations (37) and (38) that the bubbles

(41) f := −kf = k f , f ∈ F,

which have the same degree and parity as f , are strictly central:

f = f and f = f .

We can therefore impose additional relations on these bubbles. If R is a set of homo-
geneous relations involving these bubbles, we let HeisF,k(R) denote the supercategory
obtained from HeisF,k by imposing the additional relations R. For example, if

R =
{

f − ψ(f) : f ∈ F
}
,

then the sum on the right side of (33) is zero, and hence the right and left mates of
the dot are equal. If we also have that k is a multiple of the order of ψ, then we see
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from (32) that the right and left mates of tokens are equal, in which case the category
HeisF,k(R) is strictly pivotal.

It also follows from (25), (26), (37), and (38) that the bubbles

rf and r f , r ∈ Z, f ∈ F, |f | > 0,

are central. Indeed, consider the terms in the sum in (37). The token labelled
bψ−s(a)ψ−t(b∨) is zero for degree reasons unless |a| = 0. But |a| = 0 implies that
|a∨| = ∆, which in turn implies that the token labelled a∨f is zero whenever f has
positive degree. A similar argument holds for (38). That negatively dotted bubbles
are strictly central then follows from (25) and (26).

Theorem 1.4.
(a) The Heisenberg category H̃λ defined in [15] is isomorphic to the additive en-

velope of Heisk,k(R), where k = −
∑
i λi, and R =

{
1 −

∑
i iλi

}
. In par-

ticular, the Heisenberg category H′ defined by Khovanov in [12] is isomorphic
to the additive envelope of Heisk,−1(R), where R =

{
1
}
.

(b) The Heisenberg supercategory H′F defined in [16] (in the case where the trace
map of F is even) is isomorphic to the additive envelope of the underly-
ing category of the Π-envelope (see [5, § 1.5]) of HeisF op,−1(R), where R ={
f : f ∈ F

}
.

We note also that when F is the two-dimensional Clifford superalgebra, the su-
percategory HeisF,k is studied in [10]. In particular, when k = 0, this supercategory
reduces to the degenerate affine oriented Brauer–Clifford supercategory of [3].

The definition of the supercategory HeisF,k is inspired by the affine wreath prod-
uct algebras studied in [18]. One benefit of the inversion relation presentation of
Definition 1.1 is that it makes it relatively straightforward to verify that HeisF,k acts
naturally on suitable categories. In particular, we now describe how HeisF,k acts nat-
urally on modules over cyclotomic quotients of affine wreath product algebras. For
the remainder of this introduction, we suppose that the Nakayama auotmorphism ψ
has finite order θ, and that k < 0. (Analogous results could be formulated in the case
k > 0.)

Following [18, § 3.1], we define the affine wreath product algebra An(F ) to be the
graded superalgebra that is the free product of superalgebras

k[x1, . . . , xn] ? F⊗n ? kSn,

modulo the relations

fxi = xiψi(f), 1 6 i 6 n, f ∈ F⊗n,
sixj = xjsi, 1 6 i 6 n− 1, 1 6 j 6 n, j 6= i, i+ 1,
sixi = xi+1si − bib∨i+1, 1 6 i 6 n− 1,
πf = πfπ, π ∈ Sn, f ∈ F⊗n,

where ψi = id⊗(i−1)⊗ψ⊗ id⊗(n−i), fi = 1⊗(i−1)⊗ f ⊗1⊗(n−i) ∈ F⊗n (f ∈ F ), and πf
denotes the natural action of π on f by superpermutation of the factors. The degree
and parity on An(F ) are determined by the degree and parity of elements of F⊗n,
together with

|xi| = ∆, x̄i = 0, |π| = 0, π̄ = 0, 1 6 i 6 n, π ∈ Sn,

By convention, we set A0(F ) = k.
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For 1 6 r 6 θ, choose nr > 0 and even elements of degree r∆

c(r,1), . . . , c(r,nr) ∈
{
f ∈ F : ψ(f) = f, gf = (−1)f̄ ḡfψr(g) for all g ∈ F

}
such that

∑θ
r=1 rnr = −k. Let C = (c(1,1), . . . , c(1,n1), . . . , c(θ,1), . . . , c(θ,nθ)). As in [18,

§ 6.2], for n > 0, we define the cyclotomic wreath product algebra to be the quotient
AC
n (F ) = An(F )/JC, where JC is the two-sided ideal in An(F ) generated by the

homogeneous element
θ∏
r=1

nr∏
j=1

(
xr1 − c(r,j)

)
.

By convention, we set AC
0 (F ) = k. For n > 0, we have a natural inclusion AC

n (F ) ↪→
AC
n+1(F ). (See [18, § 6.5].)
We claim that there is a strict k-linear supermonoidal functor

ΨC : HeisF op,k → ENDk

(⊕
n>0
AC
n (F )-mod

)
to the graded monoidal supercategory of endofunctors of the sum of the categories of
left AC

n (F )-modules. The functor ΨC sends Q+ to the k-linear endofunctor taking an
AC
n (F )-moduleM to the inducedAC

n+1(F )-module CIndn+1
n M := AC

n+1(F )⊗AC
n (F )M

and sends Q− to the k-linear endofunctor taking anAC
n (F )-moduleM to the restricted

AC
n−1(F )-module CResnn−1M . On the generating morphisms, ΨC(x), ΨC(s), ΨC(c),

ΨC(d), and ΨC(βf ), f ∈ F op, are the natural transformations defined on an AC
n (F )-

module as follows:
• ΨC(x)M : CIndn+1

n M → CIndn+1
n M , z ⊗m 7→ zxn+1 ⊗m;

• ΨC(s)M : CIndn+2
n M → CIndn+2

n , z ⊗m 7→ zsn+1 ⊗m;
• ΨC(c)M : M → CResn+1

n
CIndn+1

n M , m 7→ 1⊗m;
• ΨC(d)M : CIndnn−1

CResnn−1M →M , z ⊗m 7→ zm;
• ΨC(βf )M : CIndn+1

n M → CIndn+1
n M , z ⊗m 7→ (−1)z̄f̄zfn+1 ⊗m.

To prove that ΨC is well defined, it suffices to verify that it preserves the
defining relations from Definition 1.1. The affine wreath product algebra relations
are straightforward to verify. The right adjunction relations follow from the fact
that ΨC(c) and ΨC(d) are the unit and counit of the canonical adjunction making(CIndn+1

n ,CResn+1
n

)
into an adjoint pair. Using (3), we see that ΨC(t) is the natural

transformation coming from the bimodule homomorphism
AC
n (F )⊗AC

n−1(F ) AC
n (F )→ AC

n+1(F ), z ⊗ w 7→ zsnw.

Then, the fact that ΨC preserves the inversion relation follows from the fact that the
bimodule isomorphism

AC
n (F )⊗AC

n−1(F ) AC
n (F )⊕

−k−1⊕
r=0

⊕
b∈B
AC
n (F )→ AC

n+1(F ),

(z ⊗ z′, (wr,b)r,b) 7→ zsnz
′ +
−k−1∑
r=0

∑
b∈B

xrn+1(1⊗n ⊗ b∨)wr,b,

is an isomorphism, which follows immediately from [18, Prop. 6.17].
The supercategory HeisF,k categorifies a certain lattice Heisenberg algebra, as we

now explain. Again, we suppose that k < 0, although an analogous result could
be stated in the case that k > 0. Assume that k is an algebraically closed field of
characteristic zero, and let KarHeisF,k denote the additive Karoubi envelope of the
underlying category of the Π-envelope of HeisF,k (see [5, § 1.5]).
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Let

Zq,π =


Z[q, q−1, π]/(π2 − 1) if all simple left F -modules are of

type M ,
Z[ 1

2 , q, q
−1] ∼= Z[ 1

2 , q, q
−1, π]/(π − 1) if F has a simple left module of

type Q,

where q and π are formal parameters. Then the split Grothendieck groupK0(F ) of the
category of finitely-generated projective left F -modules is naturally a Zq,π-module,
where q and π act by the grading shift and parity shift, respectively. Similarly, the
split Grothendieck ring K0(KarHeisF,k) of KarHeisF,k is naturally a Zq,π-algebra.

We equip K0(F ) with a nondegenerate symmetric sesquilinear form

〈−,−〉k : K0(F )×K0(F )→ Zq,π,

〈[M1], [M2]〉k = (1 + q∆ + · · ·+ q(−k−1)∆) grdim HOMF (M1,M2),

for finitely-generated projective F -modules M1 and M2. (We extend by sesquilinear-
ity.) Let HeisF,k be the lattice Heiseberg Zq,π-algebra associated to the lattice K0(F )
as in [13, Def. 2.1].

Theorem 1.5. Suppose R is a set of bubble relations (that is, a set of homogeneous
elements of the algebra generated by the bubbles of the form (41)). Then we have an
injective homomorphism of algebras Φ: HeisF,k → K0(KarHeisF,k(R)). Furthermore,
if ∆ > 0 (that is, F is not concentrated in degree zero) and, for each f ∈ F of degree
zero, the span of the elements of R contains f − af for some af ∈ k, then the
homomorphism Φ is also surjective.

Theorem 1.5 generalizes and unifies the categorification results of [9, 11, 12, 15, 16].
We expect that the surjectivity statement in Theorem 1.5 also holds without the
assumption that ∆ > 0 and without the assumption on R. The assumption on R could
likely be dropped if one had a basis theorem for the morphism spaces of HeisF,k. We
are hopeful that such a basis theorem can be proved using the methods of the recent
paper [7], and we plan to look at this in future work. The assumption ∆ > 0 is used
to prove that one has found all the idempotents of the objects Qm

+ Qn
−, n,m > 0. It

is for this reason that the categorifications considered in [12] and [15] (where ∆ = 0)
were conjectural. However, these conjectures have recently been proved in [7, Th. 1.1].
If, in addition to a basis theorem, one could compute the split Grothendieck group of
the affine wreath product algebras, the methods of [7] should allow one to also remove
the assumption ∆ > 0 in Theorem 1.5.

Although, for simplicity, we assume in this paper that the trace map of the graded
Frobenius superalgebra F is even, one could just as well consider the case where it is
odd. In this case, the morphism x (corresponding diagrammatically to the dot) would
be odd and one of the left adjunction relations (30) and (31) would involve a sign.
In a different direction, one can define natural q-deformations of the affine wreath
product algebras of [18]; this is done in [17]. This leads to a q-deformation of the
supercategory HeisF,k [6]. In the case where F = k and k = 0, one recovers the affine
oriented skein category of [1, § 4]. In the case where F = k and k = −1, one recovers
the quantum Heisenberg category of [8] (see also [14]).

We believe that the results of the current paper illustrate a broader phenomenon:
that many of the categories appearing in invariant theory and categorification can be
deformed to incorporate a graded Frobenius algebra. Such deformations should unify
many related constructions that are currently treated separately, as well as provide
natural generalizations of current constructions and results.
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Hidden details. For the interested reader, the tex file of the arXiv version of this
paper includes hidden details of some straightforward computations and arguments
that are omitted in the pdf file. These details can be displayed by switching the
details toggle to true in the tex file and recompiling.

2. Consequences of the inversion relation
In this section, we systematically analyse the consequences of the inversion relation.
We will see that this relation implies a surprising number of very natural relations in
our category.

2.1. Graded Frobenius superalgebras . For all f ∈ F , we have

(42) f = tr(b∨f)b. (43) f = tr(fb)b∨.
It follows that, for all f ∈ F ,

(44) fb⊗ b∨ = b⊗ b∨f.

This implies that tokens can “teleport” in HeisF,k in the sense that, for f ∈ F , we
have

fb
b∨ = b

b∨f ,

where the strands can occur anywhere in a diagram (i.e. they do not need to be
adjacent).

Since the trace map is even, we have b̄ = b∨ for all b ∈ B. We also have

(45) (b∨)∨ = (−1)b̄ψ−1(b).

2.2. Right mates. We define the right mates

(46) x′ = := , s′ = := , β′f = f := f , f ∈ F.

Using (13) and (14), we immediately have that

(47) F → End Q−, f 7→ β′f ,

is an anti-homomorphism of graded superalgebras, that is, that

g
f = (−1)f̄ ḡ gf , f, g ∈ F,

and that, for all f ∈ F ,

(48) = , = , (49) f = f , f = f ,

(50) = , = , = , = .

Furthermore, attaching right caps to the top and right cups to the bottom of the
affine wreath product algebra relations gives the following relations for all f ∈ F :

(51) = , (52) = , (53) = .

(54) f = ψ(f)
,
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(55) f = f , (56) f = f ,

(57) f = f , (58) f = f ,

(59) − = (−1)b̄
b

b∨

, (60) − =
b∨

b
,

(61) − = b∨
b , (62) − = b∨

b .

Lemma 2.1. There is an isomorphism of monoidal supercategories ω : HeisF,k
∼=−→

Heisop
F,−k interchanging the objects Q+ and Q− and defined on the generating mor-

phisms by

ω(x) = x′, ω(s) = −s′, ω(c) = d, ω(d) = c, ω(βf ) = β′f , f ∈ F.

Proof. The functor ω preserves the affine wreath product algebra relations by (47),
(51) to (54), (58), and (62). The inversion relation is also preserved since we replace
k by −k. By the right adjunction relations, we have ω(x′) = x and ω(s′) = −s. Thus
ω2 = id. Hence ω is an isomorphism. �

Diagrammatically, ω reflects diagrams in the horizontal axis (multiplying by the
appropriate sign when odd elements change height), and then multiplies by (−1)r,
where r is the total number of crossings appearing in the diagram. This description
also holds for the other morphisms to be defined below, except that the sign becomes
(−1)r+r′ , where r is the total number of crossings and r′ is the total number of
undecorated left cups and caps (see Corollary 2.2).

2.3. Left crossings, cups, and caps. We define

t′ = : Q−Q+ → Q+Q−

and

(63)
(r,b)

: 1→ Q+Q−,
(r,b)

: Q−Q+ → 1.

for 0 6 r < k or 0 6 r < −k, respectively, by declaring that
(64)

(r,b)

, 06 r6 k − 1, b∈B

 =

[ r

b∨
, 06 r6 k − 1, b∈B

]T−1

if k > 0, or
(65) (r,b)

, 06 r6−k − 1, b∈B


T

=
[

r

b∨
, 06 r6−k − 1, b∈B

]−1
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if k < 0. More precisely, we add the left crossing t′ and the decorated cups and caps
in (63) as new generators, and impose the relations corresponding to the statements
that the matrices in (64) or (65) are two-sided inverses.

We extend the definition of the decorated left cups and caps by linearity in the
second argument of the label. In other words, for f ∈ F , we define

(r,f)

= tr(b∨f)
(r,b)

, if k > 0,
(r,f)

= tr(b∨f)
(r,b)

, if k < 0.

We then define

c′ = :=


−

(k−1,1)

if k > 0,

−k if k 6 0,
(66)

d′ = :=


k if k > 0,

(−k−1,1)

if k < 0.

(67)

Since the maps (63) have degree −|b∨| − r∆ and parity b̄, we have
|c′| = −k∆, |d′| = k∆, c̄′ = d̄′ = 0.

It then follows that

(68) = +
k−1∑
r=0 r

b∨

(r,b)
, (69) = +

−k−1∑
r=0

r

b∨

(r,b)
,

where the right sides of (68) and (69) are sums of mutually orthogonal idempotents.
When k > 0, we have

(70) f = f =
r
f = 0, (71) r f = −δr,k−1 tr(f),

for all 0 6 r 6 k − 1 and f ∈ F . When k < 0, we have

(72) f = f = r
f

= 0 (73) rf = δr,−k−1 tr(f),

for all 0 6 r 6 −k − 1 and f ∈ F .
Corollary 2.2. If k > 0, we have

(74) ω

(
(r,f)

)
= (−1)f̄

(r,f)

, for all 0 6 r 6 k − 1, f ∈ F.

In particular, ω(c′) = −d′ and ω(d′) = −c′.
Proof. When f ∈ B, (74) follows from (64) and (65), together with Lemma 2.1. It then
follows for arbitrary f ∈ F by linearity. The final statement then follows from (66)
and (67) and Lemma 2.1. �
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Relations (77) and (78) in the following lemma will be generalized in Lemma 2.9.

Lemma 2.3. The following relations hold for all f ∈ F :

(75) f = f , (76) f = f ,

(77)
(k−1,f)

= − f , k > 0, (78)
(−k−1,f)

= (−1)f̄ f , k < 0.

Proof. To prove (75), compose (55) on the top and bottom with the left crossing t′,
and then use (68) to (70) and (72). To prove (77) for f ∈ B, compose (68) on the
bottom with

f

and use (70) and (71). The result for general f ∈ F follows by linearity. The rela-
tions (76) and (78) then follow from (75) and (77) by applying the automorphism ω
and using Corollary 2.2. �

Lemma 2.4. The following relations hold for all f ∈ F :

(79) f = ψk(f) , (80) f = ψk(f) .

Proof. It suffices to prove (79), since (80) then follows from Lemma 2.1 and Corol-
lary 2.2.

If k > 0, (79) follows immediately from the definition (67) of the left cap d′, (54),
(75), and (76). When k < 0, we have

ψk(f)
(69)=

ψk(f)
+
−k−1∑
r=0

ψk(f)
r
b∨

(r,b)

(72)
(73)=
(8)
(49)

tr
(
ψ−1(f)b∨

) (−k−1,b)

(1)= (−1)f̄ (−k−1,f) (78)= f . �

Lemma 2.5. The following relations hold:

(81) − =
b∨

b
, (82) − = (−1)b̄

b

b∨

.

Proof. It suffices to prove (82), since (81) then follows from Lemma 2.1 and Corol-
lary 2.2.

Composing (59) on the top and bottom with t′ we have

− = (−1)b̄
b∨

b

(68),(69)
(70),(72)=⇒
(66), (67)
(48), (75)

−
−k−1∑
r=0 (r,b)

b∨
r + 1

− +
k−1∑
r=0

(r,b)

b∨ r
= δk,0(−1)b̄

b

b∨

.
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Now, when k < 0, we have

−k−1∑
r=0 (r,b)

b∨
r + 1 (72)=

(−k−1,b)
b∨
−k (49)

(76)=
(66)
(78)

(−1)b̄
b

b∨

.

Similarly, when k > 0, we have

k−1∑
r=0

(r,b)

b∨ r

(8)
(75)=
(48)

k−1∑
r=0

(r,b)

ψ(b∨)
r+1

(70)=
(k−1,b)

ψ(b∨)
k

(67)=
(77)
−

ψ(b∨)

b
= −(−1)b̄

b

b∨

,

where in the last equality we used the fact that {(−1)b̄b : b ∈ B} is the basis left dual
to the basis {ψ(b∨) : b ∈ B}. Relation (82) follows. �

2.4. Proofs of relations. We define the following negatively dotted bubbles for
r < 0 and f ∈ F :

r f =


(−1)f̄

−k

(−r−1,f)
if r > k − 1,

− tr(f) if r = k − 1,
0 if r < k − 1.

(83)

rf =


− k

(−r−1,ψ−r(f))
if r > −k − 1,

tr(f) if r = −k − 1,
0 if r < −k − 1.

(84)

Note that these definitions are compatible with the action of ω.

Proposition 2.6. The infinite grassmannian relations (27) to (29) hold.

Proof. The relations (27) and (28) and the first equality in (29) follow immediately
from (71), (73), (83), and (84).

It remains to prove the second equality in (29). Using (44), it suffices to prove it
in the case where g = 1. First consider the case k > 0. When t = 0, the middle term
of (29) becomes, using (27) and (28)

− tr(fb) tr(b∨) = − tr (tr(fb)b∨) (43)= − tr(f).
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When t > 0, we have

∑
r,s∈Z

r+s=t−2

r fb

sb∨
=

∑
r,s∈Z

r+s=t−2

(−1)b̄
r b

f

sb∨

(84)= (−1)b̄ tr(b∨)
t+k−1

b
f −

k−1∑
u=0 u+t−1 ψ−u(b∨)

f

k
(u,b) +

∑
r>−1, s>0
r+s=t−2

(−1)b̄
r b

f

sb∨

(8)
(49)=
(42) t+k−1

f −
k−1∑
u=0

u

b∨

t− 1 f

k
(u,b)

+
∑

r>−1, s>0
r+s=t−2

(−1)b̄
r b

f

sb∨

(68)=
k

t−1 f

+
∑
r,s>0

r+s=t−2

(−1)b̄
r b

f

sb∨

+ (−1)b̄
−1 b

f

t−1b∨

(67)
(27)=

t−1 f
+

∑
r,s>0

r+s=t−2

(−1)b̄
r b

f

sb∨

− δk,0 tr(fb) t−1b∨

(43)=
t−1 f

+
∑
r,s>0

r+s=t−2

(−1)b̄
r b

f

sb∨

− δk,0 t−1f

(59)=
(49)

t−1

f
− δk,0 t−1f

(70)=
(66)

δk,0

 t−1

f − t−1f

 (56)
(69)= 0.

Now suppose k < 0. If we let · denote multiplication in F op, we have

ω

 ∑
r,s>0
r+s=t

r+k−1 fb

s−k−1b∨g

 =
∑
r,s>0
r+s=t

(−1)(f̄+b̄)(b̄+ḡ)
b∨g s−k−1

fbr+k−1

(79)
(80)=
(48)

∑
r,s>0
r+s=t

(−1)(f̄+b̄)(b̄+ḡ)
s−k−1 ψ−k(b∨)ψ−k(g)

r+k−1ψ−k(f)ψ−k(b)

=
∑
r,s>0
r+s=t

(−1)f̄ ḡ+b̄
s−k−1 ψ−k(g) · ψ−k(b∨)

r+k−1ψ−k(b) · ψ−k(f)

= −δt,0(−1)f̄ ḡ tr
(
ψ−k(g) · ψ−k(f)

)
= −δt,0 tr(fg) = ω

(
− δt,0 tr(fg)

)
,
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where, in the fourth equality, we use (29) for −k > 0 case, together with the fact that
{(−1)b̄ψ−k(b) : b ∈ B} is the basis for F op left dual to the basis {ψ−k(b∨) : b ∈ B}.
Since ω is an involution, (29) follows. �

Lemma 2.7. The following relations hold:

= +
b∨

ψ−1(b)−b k
,(85)

= − (−1)b̄
b∨

ψ−1(b)−b −k
.(86)

In particular, if ψ = id, then dots slide over left cups and caps.

Proof. It suffices to prove (85), since then (86) follows by applying ω.
First suppose k > 0. Then we have

(67)= k (82)=
(48)

k + 1 + (−1)b̄

b

b∨
k

= k + 1 +
b∨

ψ−1(b) k
.

In the final equality above, we move the tokens labeled b and b∨ over the left cup and
cap using (79) and (80). Then we used the fact that {ψk(b∨) : b ∈ B} is the basis left
dual to {ψk(b) : b ∈ B} to remove the ψk. Finally, we used (45). We also have

(67)= k (81)= k + 1 +
b∨

b k

Relation (85) follows.
Now suppose k < 0. Composing both sides of (85) on the bottom with the invertible

map (16), we see that it suffices to prove

= +
b∨

ψ−1(b)−b k
(87)

and

r + 1
a∨

= r

a∨
+

kψ−1(b)−b

b∨

r

a∨

for all 0 6 r < −k, a ∈ B.(88)

All the terms in the sum in (87) are zero by (72). Then we compute

(59)= + (−1)b̄
b

b∨
(72)
(73)=
(42)

δk,−1
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and

(60)= +
b∨

b
(72)
(73)=
(43)

δk,−1 .

Thus (87) holds.
It remains to prove (88). If 0 6 r 6 −k− 3, then all terms in (88) are zero by (73).

Now suppose r = −k− 2. Then all the terms in the sum on the right side of (88) are
zero by (73). We also have

r + 1
a∨

(49)= −k − 1a∨
(73)= tr(a∨) = tr(ψ(a∨))

(73)= −k − 1ψ(a∨)
(48)
(8)=

(49)

r

a∨
,

so (88) holds. Finally, consider the case r = −k − 1. Then we have

kψ−1(b)−b

b∨

r

a∨

(8)
(49)=
(73)
(42)

kψ−r−1(a∨)−ψ−r(a∨)

(40)= −k ψ−r−1(a∨)−ψ−r(a∨)
(8)=

(48)

r + 1
a∨

− r

a∨

and so (88) holds. �

Lemma 2.8. Recall our convention for computing determinants from (17). For all
f ∈ F and r > 0, we have

f r−k−1 =
∑

b1,...,br−1∈B

det
(

b∨j−1bji−j+k

)r
i,j=1

,(89)

fr+k−1 = (−1)r+1
∑

b1,...,br−1∈B

det
(
b∨j−1bj i−j−k

)r
i,j=1

,(90)

where we adopt the convention that b∨0 = f and br = 1.

Proof. We prove (89) and the leave the proof of (90), which is similar, to the reader.
The case r = 1 follows immediately from (40). Assume that r > 1 and that the result
holds for r − 1. For b1, b2, . . . , br−1 ∈ B, define the matrix

A =
(

b∨j−1bji−j+k

)r
i,j=1

.

(We leave the dependence on b1, b2, . . . , br−1 ∈ B implicit to simplify the notation.)
We have

detA =
r∑
t=1

(−1)t+1
fb1t+k−1 detAt,1.
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If we consider At,1 as a block matrix with upper-left block of size (t − 1) × (t − 1)
and lower-right block of size (r− t)× (r− t), we see that it is block lower triangular.
By (27), the upper-left block is lower triangular with diagonal entries

− tr(b∨1 b2), − tr(b∨2 b3), . . . , − tr(b∨t−1bt).
On the other hand, the lower-right block is the matrix(

b∨t+j−1bt+ji−j+k

)r−t
i,j=1

.

Thus, using the induction hypothesis and (2), we have

�(91)
∑

b1,...,br−1∈B

detA =
r∑
t=1

fb1t+k−1

b∨1 r−t−k−1

(27)
(29)=
(43)

f r−k−1 .

Lemma 2.9. For f ∈ F , we have

(92)
(r,f)

= −
∑
s>0

sa

a∨f−r−s−2
, 0 6 r < k,

and

(93)
(r,f)

= −
∑
s>0

(−1)āf̄+ā+f̄

sa

a∨f−r−s−2
, 0 6 r < −k.

Proof. By linearity, it suffices to prove the result for f = b ∈ B. Suppose 0 6 r <
k. Using (48), (79), and (80), together with the fact that the sum over a ∈ B is
independent of the basis, we have that the right side of (92) is equal to

(94) −
∑
s>0

s
a

a∨ψ−k(b) −r−s−2

(68)
(48)=
(80)
−
∑
s>0

s
a

a∨ψ−k(b) −r−s−2

−
∑
s>0

k−1∑
j=0

(j,e)

j+s ψ−k(e∨)a

a∨ψ−k(b) −r−s−2

.

By (27) and (28),

(95)
j+s ψ−k(e∨)a

a∨ψ−k(b) −r−s−2

is equal to zero unless k − 1 − j 6 s 6 k − 1 − r. In particular, (95) is zero unless
j > r. If j > r, then

∑
s>0

j+s ψ−k(e∨)a

a∨ψ−k(b) −r−s−2

(28)=
∑
u,s∈Z

u+s=j−r−2

u ψ−k(e∨)a

a∨ψ−k(b) s

(29)= −δj,r tr
(
ψ−k(e∨)ψ−k(b)

)
= −δj,rδb,e.
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Now consider the sum

(96)
∑
s>0

s
a

a∨f −r−s−2

.

The terms with s > k−1−r are zero by (28). On the other hand, for 0 6 s 6 k−1−r,
we have

s
a

(60)=
s

a

−
s−1∑
t=0

t

s−t−1
a

b

b∨

(70)=
(27)

0

Thus, the sum (96) is equal to zero. Combined with the above, this proves (92).
The relation (93) follows from (92) by applying ω. �

Using Lemma 2.9 and (27) and (28), relations (68) and (69) become

(97) = +
∑
r,s>0 r

b∨

sa

a∨b−r−s−2

(28)=
(42)

+ δk,1
b∨

b
if k 6 1

 ,

(98) = +
∑
r,s>0

(−1)āb̄+ā+b̄

r
b∨

sa

a∨b−r−s−2

(27)=
(42)

− δk,−1(−1)b̄
b

b∨

if k > −1

 .

Lemma 2.10. The curl relations (35) and (36) hold.

Proof. We first prove that

(99) =
k∑
t=0 tb∨

b−t−1
, (100) = −

−k∑
t=0

(−1)b̄
b∨ t

b−t−1
.
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It suffices to prove (99), since (100) then follows by applying ω. When k < 0, (99)
holds by (72), so we assume k > 0. Then we have

(67)=
k (97)=

(28)
k +

k−1∑
t=0

∑
s>0 t

b∨

s+ka

a∨b−t−s−2

(27)=
(28)

k +
k−1∑
t=0

∑
r,s>0

r+s=k−t
t
b∨

s+k−1a

a∨br−k−1 +
k−1∑
t=0

tr(a)
t
b∨

a∨b−t−1

(29)=
(43)

k +
k−1∑
t=0

t
b∨

b−t−1

.

The final expression is equal to the right side of (99) by (28) and (42). This completes
the proof of (99).

Now we have

r (60)=
(99)

k∑
t=0 b∨

b−t−1

t+ r
+
r−1∑
s=0 sb∨

r−s−1 b (28)=
∑
s>0 sb∨

r−s−1 b
.

Placing an upward strand on the right, joining the bottom of the two rightmost
strands with a right cup, and using (3) and (13) gives (35). Relation (36) is obtained
similarly, using (100). �

It follows from (27), (28), (43), (99), and (100) that

(101) = δk,0 , if k 6 0, (102) = δk,0 , if k > 0.

The following lemma will be generalized in Lemma 2.13. However, we need the
following partial result first to prove Lemma 2.12, which will then be used in the
proof of the more general Lemma 2.13.

Lemma 2.11. The following relations hold:

(103) = if k 6 0, (104) = if k > 0.

Proof. First suppose k 6 0. We first claim that

(105) = .

Composing on the bottom with the invertible map (16), it suffices to prove that

(106) = , (107)
f
t =

f
t , f ∈ F, 0 6 t 6 −k−1.
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To prove (106), we compute

(7)=
(53)

(101)= δk,0
(50)=
(7)

δk,0
(101)= .

To prove (107), we compute

f
t

(50)=
f
t (9)=

(49)
f t

(10)
(7)=

(49) f
t −

t−1∑
r=0

r

a∨ t−1−r

a
f

(35)=
(28) f

t .

This completes the proof of (105).
Now we have

(105)= (98)=
(48)
(49)

+
−k−1∑
t=0

∑
s>0

(−1)āb̄+ā+b̄ t
b∨

−t−s−2 a∨b

sa

(11)
(35)=
(28)

.

This completes the proof of (103). The proof of (104) is similar and will be omitted.
�

Lemma 2.12. The left adjunction relations (30) and (31) hold.

Proof. We prove (31), since (30) then follows by applying ω. If k 6 0, we have

(66)=
−k

(103)=
−k

(35)=
(28)

tr(b) b∨
(43)= .

On the other hand, if k > 0, we have

(67)=
k (104)=

k (36)=
(27)

tr(b∨) b
(42)= . �

Lemma 2.13 (Pitchfork relations). The following relations hold:

(108) = , (109) = ,

(110) = , (111) = .

Proof. In light of Lemma 2.11, it suffices to prove (108) for k > 0 and (110) for k 6 0.
Then (109) and (111) following by applying ω. First suppose k > 0. Attaching left
caps to the top left and top right strands of (104) gives

= .
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Then (108) follows from (30) and (31). Similarly, when k 6 0, (110) follows from
attaching left cups to the bottom left and bottom right strands of (103) and using
(30) and (31). �

Lemma 2.14. The bubble slide relations (37) and (38) hold.

Proof. It suffices to prove (37), since then (38) follows by applying ω, placing upward
strands to the left and right of all diagrams, connecting the tops of the two leftmost
straight strands with a right cap, connecting the bottoms of the rightmost strands
with a right cup, and using (13), (48), and (49).

First suppose k < 0. We have

rf

(48)
(98)=
(80)
(13)
(31)

r
f −

∑
u,s>0

(−1)āb̄+āf̄+ā+b̄

u
b∨

fψk(a)
s

−u−s−2 a∨br

(50)
(110)=

(8)
r
f −

∑
u,s>0

(−1)b̄+f̄ b̄ u+ r + s

ψ−u(b∨)ψ−u−r(f)ψk−u−r(a)

−u−s−2 a∨b

.

Introducing t = u+ r + s and replacing the sum over u with a sum over t, the above
double sum becomes

∑
s>0

∑
t>r+s

(−1)b̄+f̄ b̄+āb̄ t

ψr+s−t(b∨)ψs−t(f)ψk+s−t(a)

r−t−2
b

a∨

.

Sliding the token labelled b and the r − t− 2 dots over the right cap (and past each
other) and the token labelled a∨ over the left cup, changing the sum over a ∈ B to
a sum over ψk(a), and the sum over b ∈ B to a sum over ψr+s−t(b∨) (with left dual
basis elements (−1)b̄ψr+s−t−1(b) by (45)) we obtain

(112)
∑
s>0

∑
t>r+s

(−1)f̄ b̄+āb̄ t

bψs−t(fa)

r−t−2ψ−s−1(b∨)a∨
.

Now

(−1)āb̄ψ−s−1(b∨)a∨ ⊗ a (43)= (−1)b̄+b̄ē tr
(
ψ−s−1(b∨)a∨e

)
e∨ ⊗ a

(1)= (−1)b̄ēe∨ ⊗ tr
(
a∨eψ−s(b∨)

)
a

(42)= (−1)b̄ēe∨ ⊗ eψ−s(b∨).

Using this and (44), the expression (112) becomes

∑
s>0

∑
t>r+s

(−1)āb̄ t

bψs−t(a)ψ−t(b∨)

r−t−2a∨f

.
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On the other hand, we have

r
f

(12)
(9)=

(49)
(48)
(8)

r
f +

r−1∑
u=0

(−1)b̄f̄ u

b∨

bψu+1−r(f)
r−1−u

(7)
(36)=
(8)

rf −
r−1∑
u=0

∑
s>0

(−1)b̄f̄
u−s−1a∨

r+s−1−u
bψu+1−r(fa)

b∨

(44)=
(8)

rf −
r−1∑
u=0

∑
s>0

(−1)āb̄
u−s−1a∨f

r+s−1−u
bψu+1−r(a)ψu−s−r+1(b∨)

= rf −
∑
s>0

r+s−1∑
t=s

(−1)āb̄
r−t−2a∨f

t
bψs−t(a)ψ−t(b∨)

,

where, in the final equality, we introduced t = r+ s−1−u and changed the sum over
u to a sum over t.

Combining the computations above, we have

rf = rf −
∑
s>0

∑
t>s

(−1)āb̄
r−t−2a∨f

t
bψs−t(a)ψ−t(b∨)

,

which is equal to the right side of (37) after changing the order of summation.
The case k > 0, which is similar but simpler, is left to the reader. �

Lemma 2.15. The alternating braid relation (39) holds.

Proof. On both sides of (53), attach crossings to the top left and bottom right pairs
of strands to obtain

(113) = .

First consider the case −1 6 k 6 1. Using (98), the left side of (113) becomes

− δk,−1(−1)b̄
b∨

b

(11)
(50)=
(7)

(72)

.
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Similarly, using (97), the right side of (113) becomes

+ δk,1

b

b∨

(11)
(50)=
(7)

(70)

.

Now suppose k > 2. Using (98), the left side of (113) becomes

.

Using (97), the right side of (113) becomes

+
∑
u,r>0

u
b∨

ra

a∨b−u−r−2

.

Note that all terms above with u > k are zero by (28). For 0 6 u 6 k − 1, we have

u
b∨

(11)
(75)
(10)=
(50)
(7)

(70)

u−1∑
t=0

e

t

b∨

u−1−t

e∨

(55)
(59)=
(70)
(48)

u−1∑
t=0 e∨ u−1−t

b∨

t
e

.

Thus we have

− =
∑
u,r>0

u−1∑
t=0

ra

u−1−te∨

a∨b−u−r−2
e
t
b∨

.

We now introduce s = u− 1− t to replace the sum over u with a sum over s in order
to obtain (39) in the case k > 2. The case k 6 −2 is similar and will be omitted. �

Lemma 2.16. The rotation relations (32) to (34) hold.

Proof. The first equality of (32) is the definition of the token on a downward strand
(see (46)), while the second equality follows from (30) and (79). Similarly, the first
of equality of (33) is a definition, while the second equality follows from (30), (40),
and (86). Finally, the first equation of (34) follows from the definitions (3) and (46)
of t and s′, while the second equation follows from (30), (108), and (109). �

It follows from (34) and (46) that

s′ = := = .
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3. Proofs of theorems
3.1. Proof of Theorem 1.2. We first prove the existence of c′ and d′ satisfying
(18) to (23). Define HeisF,k as in Definition 1.1. Then define t′ and the decorated
left cups and caps by (64) and (65), define c′ and d′ by (66) and (67), and define
the negatively dotted bubbles by (83) and (84). It follows from (30) and (108) that
this definition of t′ agrees with (24). Similarly, it follows from Lemma 2.8 that this
definition of negatively dotted bubbles agrees with (25) and (26). Then the relations
(18) to (23) follow from (27), (28), (35), (36), (97), and (98).

Now let C be the strict k-linear graded monoidal supercategory generated by the
objects Q+, Q−, and morphisms s, x, c, d, c′, d′, and βf , f ∈ F , subject to the relations
(4), (6) to (10), (13), (14), and (18) to (23). Since all of these relations hold in HeisF,k,
there is a strict k-linear monoidal functor A : C → HeisF,k taking the objects Q± and
morphisms x, s, c, d, c′, d′, βf , f ∈ F , in C to the elements with the same names in
HeisF,k.

We claim that there is a strict k-linear monoidal functor B : HeisF,k → C, sending
the objects Q± and morphisms x, s, c, d, c′, d′, βf , f ∈ F , in C to the elements with the
same names in C. After showing the existence of B, we will prove that it is a two-sided
inverse of A. For the existence of B, it suffices to verify that the defining relations of
HeisF,k hold in C. We will do this in the case k > 0, since the case k < 0 is similar.

In C, we define new morphisms

(r,b)

= −
∑
s>0

sa

a∨b−r−s−2
, 0 6 r < k, b ∈ B.

We claim that the 1× (1 + k dimF ) matrix
(r,b)

, 0 6 r 6 k − 1, b ∈ B


is a two-sided inverse of (15). Composing in one order yields the morphism

−
∑
r,s>0 r

b∨

sa

a∨b−r−s−2
,

which is the identity by (18). Composing in the other order, we obtain a (1+k dimF )×
(1 + k dimF ) matrix. Its (1, 1)-entry is the identity by (19). This is sufficient when
k = 0. However, when k > 0, we also need to verify the following relations for b ∈ B,
0 6 r, s < k:

(114)
r
b∨ = 0, (115)

(r, b)
= 0, (116)

(s,c)
b∨
r

= δr,sδb,c.

To prove (114), we compute

(117)
r
b∨

(24)=
r
b∨

(8)=
(12)

r

ψ−r(b∨)
−
r−1∑
t=0 t

a

r−1−t

a∨

ψ−r(b∨)
(9)

(20)=
(8)

(21)

0.
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To prove (115), note that

(r, b)
= −

∑
s>0

sa

a∨b−r−s−2

.

By (25), the bubble above is zero if s > k, while for 0 6 s < k, the curl is zero by an
argument similar to (117).

Next we prove (116). We have

(118)
(s,a)

b∨
r

= −
∑
t>0

b∨e r+t

e∨a−s−t−2

.

If r < s, then all the terms on the right side of (118) vanish by (21) and (23) and we
are done. If r = s, then only the t = 0 term survives, and (116) follows from (21),
(23), and (42). Now suppose r > s. Note that the proof of (80) in the case k > 0
(obtained by applying ω to all diagrams in the proof of (79) in the case k < 0) is valid
in C. Also, it follows from the computation (119) below that (79) holds in C when
k > 0. Thus, letting f = ψ−k(b∨a), we have

(s,a)
b∨
r

= −
∑
t>0

b∨e r+t

e∨a−s−t−2

(79)
(80)=
(44)
−
∑
t>0

fer+t

e∨ −s−t−2

= −
r−s∑
u=0

feu+k−1

e∨ r−s−u−k−1

= f r−s−k−1 −
r−s∑
u=1

feu+k−1

e∨ r−s−u−k−1

= 0,

where, in the second equality, we changed from a sum over e ∈ B to a sum over
ψ−k(e), and the last equality follows by expansion of a determinant, as in the proof
of Lemma 2.8. This completes the proof of (116).

Since we have shown that C satisfies the defining relations of HeisF,k, in C we can
now use all the relations that we deduced from the defining relations of HeisF,k. We
will do so in what follows.

We next show that c′ and d′ are the unique morphisms in C satisfying (18) to (23).
To do this, we prove that these relations can be used to express c′ and d′ in terms of
the other generators. First note that t′ can be characterized as the first entry in the
inverse of the morphism (15) when k > 0, or as the first entry in the inverse of the
morphism (16) when k < 0. Hence t′ does not depend on c′ and d′, even though it is
defined in terms of them. When k > 0, as in (117) we have
(119)

k (24)= k
(12)=

k
−
k−1∑
r=0 r

a

k−1−r

a∨

(20)
(8)
(49)=
(21)
(42)

.
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Hence d′ is unique when k > 0. Similarly, when k 6 0, we have

k
(24)= k

(12)=
k

+
k−1∑
r=0

r

a∨

k−1−r

a
(22)
(79)=
(23)
(43)

.

Hence c′ is unique when k 6 0.
It remains to prove that d′ is unique when k < 0 and that c′ is unique when k > 0.

When k > 0, it follows from the above that the r = k − 1, b = 1 entry of the inverse
of (15) is

(k−1,1)

= −
∑
s>0

sb

b∨−r−s−2

(48)=
(79)
−
∑
s>0

sb

ψ−k(b∨) −r−s−2

(23)=
(42)
− .

Therefore c′ is unique when k > 0. The proof that d′ is unique when k < 0 is analogous.
We can now complete the proof of theorem. It is clear from the definitions that

A ◦ B = idHeisF,k . It is also clear that B ◦ A is the identity on x, s, c, and d. It
then follows from the uniqueness established above that it is the identity on c′ and d′.
Hence B◦A = idC . So HeisF,k and C are isomorphic, which establishes the equivalent
presentation from the statement of the theorem. Finally, since HeisF,k and C are
isomorphic, the uniqueness of c′ and d′ in C established above demonstrates that they
are also the unique isomorphisms in HeisF,k satisfying (18) to (23).

3.2. Proof of Theorem 1.4. When F = k, Definition 1.1 coincides with [2,
Def. 1.1]. So part (a) follows immediately from [2, Th. 1.4].

We now prove part (b). The need to pass to the underlying category of the Π-
envelope of HeisF,−1(R) arises from the different notion of supercategory used in [16],
where all morphisms are considered to be even of degree zero, but between shifted
objects. See the discussion in [5, § 1]. We will suppress this difference in the argument
to follow.

When k = −1, we have

(36)
(27)=
(42)

+
b∨ −1

b (80)=
(45)

+
b∨

b .

Thus, if R =
{
f : f ∈ F

}
, then the right curl is equal to the dot in HeisF,−1(R).

Theorem 1.2 gives a presentation of HeisF op,−1 with generating morphisms x, s, c, d,
c′, d′, and βf , f ∈ F op. Comparing the relations (5) to (10), (13), (14), and (18) to (23)
to the defining relations of H′F given in [16, § 6], we see that there is a strict monoidal
functor HeisF op,−1 → H′F sending Q+ to P, Q− to Q, the morphisms s, c, d, c′, d′ and
βf , f ∈ F , to the morphisms in H′F represented by the same diagrams, and x to
the right curl. (Note that the apparent sign difference between [16, (6.13)] and (19)
arises from the fact that b∨ denotes the right dual in [16] and that we consider the
opposite superalgebra F op.) This functor sends f , f ∈ F , to a figure-eight diagram,
which is zero since it contains a left curl. Thus our functor induces a functor from the
additive envelope of HeisF op,−1(R) to H′F . This functor is an isomorphism since it has
a two-sided inverse. Precisely, the inverse sends any diagram representing a morphism
in H′F to the morphism in the additive envelope of HeisF op,−1(R) represented by the
same diagram. This functor is well-defined since all of the local relations of [16, § 6]
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hold in HeisF op,−1(R). The fact that it is a two-sided inverse is clear. (Here we use
the above fact that the right curl is equal to the dot in HeisF,−1(R).)

3.3. Proof of Theorem 1.5. In this subsection, we assume that k is an alge-
braically closed field of characteristic zero. Since the proofs of the results to follow
are very similar to those of [15, 16], we only provide sketches. We let {s, ε}X, s ∈ Z,
ε ∈ Z2, denote the shift of an object X in KarHeisF,k.

It follows from (6) to (10) and (47), (51), (52), (54), (57), and (61) that, for n > 0,
we have graded superalgebra homomorphisms

(120) An(F )→ ENDHeisF,k(Qn
+), An(F )op → ENDHeisF,k(Qn

−),

where xi is mapped to a dot on the i-th strand, fi is mapped to a token labelled f
on the i-th strand, and si is mapped to a crossing of the i-th and (i + 1)-st strands.
Here we number strands from right to left.

For n > 1 and an idempotent f ∈ F , let ef,(n) = f⊗n 1
n!
∑
π∈Sn π. By an abuse of

notation, we also use ef,(n) to denote the images of this element under the maps (120),
and we let Qf,(n)

± := (Qn
±, ef,(n)) denote the corresponding object in KarHeisF,k. We

will denote the idempotents ef,(n) by boxes labelled f, (n):

f, (n) , f, (n) ,

where here, and in what follows, we use undecorated dashed strands to represent
multiple parallel strands when the number of strands is clear from the context. We
will sometimes omit the strands emanating from the tops of boxes appearing at the
top of a diagram, and similarly for boxes appearing at the bottom of a diagram.

Fix idempotents f, g ∈ F and an enumeration b1, . . . , bM of a subset of B such that
{gb∨i f : 1 6 i 6M} is a basis for gFf . For r > 1, let

Bf,gr =
{(

(s1, i1), . . . , (sr, ir)
)
∈ ({0, 1, . . . ,−k − 1} × {1, 2, . . . ,M})r

: (s1, i1) 6 (s2, i2) 6 · · · (sr, ir)} ,

where we have used the lexicographic order on pairs of integers. For z =(
(s1, i1), . . . , (sr, ir)

)
∈ Bf,gr , we define

z =
s1

b∨i1

s2

b∨i2
· · ·

sr

b∨ir
, |z| =

r∑
j=1

(|bij |+ sj∆), z̄ =
r∑
j=1

b̄ij .

For m,n > 1, 0 6 r 6 min{m,n}, and z ∈ Bf,gr , define
(121)

τz =

g, (m− r) f, (n− r)

f, (n) g, (m)

z

: {|z|, z̄}Qg,(m−r)
+ ⊗ Qf,(n−r)

− → Qf,(n)
− ⊗ Qg,(m)

+ .
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Lemma 3.1. In KarHeisF,k, the map

min{m,n}∑
r=0

∑
z∈Bf,gr

τz :
min{m,n}⊕

r=0

⊕
z∈Bf,gr

{|z|, z̄}Qg,(m−r)
+ Qf,(n−r)

− → Qf,(n)
− Qg,(m)

+

is an isomorphism.

Proof. First, note that it follows from (10), (12), (59) to (62), (81), and (82), that dots
slide through crossings modulo diagrams with fewer dots. Therefore, the arguments
of [15, Prop. 4.2] and [16, Th. 9.2] show that there exist morphisms

τ ′z : Qf,(n)
− Qg,(m)

+ → {|z|, z̄}Qg,(m−r)
+ Qf,(n−r)

− , 0 6 r 6 min{m,n}, z ∈ Bf,gr ,

such that

idQf,(n)
− Qg,(m)

+
=

min{m,n}∑
r=0

∑
z∈Bf,gr

τz ◦ τ ′z

is a decomposition into orthogonal idempotents. Namely, one uses the defining rela-
tions to pull the strands in idQf,(n)

− Qg,(m)
+

across each other as in [15, Prop. 4.2] (see
also [7, Lem. 8.1, Cor. 8.2]) to get a decomposition of the identity of the above form.
This shows that the morphism defined by the row vector [τz]T06r6min{m,n}, z∈Bf,gr

has
a right inverse. Then one argues as in [15, Lem. 4.1] that it also has a left inverse. �

Let V1, . . . , VN be a complete list of simple finite-dimensional left F -modules, up to
grading shift, parity shift, and isomorphism. Shifting with respect to the Z-grading if
necessary, we may assume that the Vi are non-negatively graded, with nonzero degree
zero piece. Recall that a simple module is said to be of type Q if it is evenly isomorphic
to its parity shift, and type M otherwise. After possibly reordering, we assume that

V1, . . . , VR are of type M and VR+1, . . . , VN are of type Q.

For 1 6 i 6 N , fix an idempotent ei ∈ F such that Fei is the projective cover of Vi.
We will view k[x]/(x−k) as a graded super vector space by declaring x to be even

of degree ∆. If V is a graded super vector space and X is an object of KarHeisF,k,
we define

V ⊗X :=
∑
v∈V
{|v|, v̄}X,

where the sum is over a homogenous basis of V . The graded dimension of V is defined
to be

grdimV =
∑
n∈Z

(qn dimVn,0 + qnπ dimVn,1) ∈ Zq,π,

where Vn,ε is the piece of V of degree n and parity ε. For r > 0, we define

Sr(V ) := V ⊗r/
〈
v − πv : π ∈ Sr, v ∈ V ⊗r

〉
.

(Recall that the action of Sr on V ⊗r is via superpermutations.)
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Proposition 3.2. Suppose f, g ∈ F are idempotents, n,m > 1, and i ∈ {R +
1, . . . , N}. In KarHeisF,k, we have the following isomorphisms:

Qf,(n)
+ Qg,(m)

+
∼= Qg,(m)

+ Qf,(n)
+ , Q(f,n)

− Qg,(m)
−

∼= Qg,(m)
− Qf,(n)

− ,(122)
n⊕
r=0

Qei,(2r)
+ Qei,(2n−2r)

+
∼=
n−1⊕
r=0

Qei,(2r+1)
+ Qei,(2n−2r−1)

+ ,(123)

n⊕
r=0

Qei,(2r)
− Qei,(2n−2r)

−
∼=
n−1⊕
r=0

Qei,(2r+1)
− Qei,(2n−2r−1)

− ,(124)

Qf,(n)
− Qg,(m)

+
∼=
⊕
r>0

Sr
(
gFf ⊗ k[x]/(x−k)

)
⊗
(

Qg,(m−r)
+ Qf,(n−r)

−

)
.(125)

Proof. It follows from (6), (7), (51), and (52) that symmetrizers slide through cross-
ings when all strands are oriented up or all strands are oriented down. Thus the
relations (122) follow as in [16, Th. 9.2].

Relations (123) and (124) also follow as in [16, Th. 9.2]. Finally, (125) follows from
Lemma 3.1. �

We can now complete the proof of Theorem 1.5. Using the local relations, an
inductive argument implies that all closed diagrams in HeisF,k can be written as
linear combinations of products of bubbles (clockwise or counterclockwise circles with
dots and tokens). By (27) to (29), all clockwise bubbles can be written in terms of
counterclockwise bubbles. Then it follows from (28) that all closed diagrams inHeisF,k
have nonnegative degree. Furthermore, the condition on R in the final sentence of
Theorem 1.5 implies that all closed diagrams of degree zero are scalar multiples of
the identity diagram. Then the theorem follows from the arguments of [16, § 10].
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