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Ashish Mishra & Shraddha Srivastava

Abstract This paper defines the partition algebra, denoted by Tk(r, p, n), for complex re-
flection group G(r, p, n) acting on k- fold tensor product (Cn)⊗k, where Cn is the reflection
representation of G(r, p, n). A basis of the centralizer algebra of this action of G(r, p, n) was
given by Tanabe and for p = 1, the corresponding partition algebra was studied by Orellana.
We also define a subalgebra Tk+ 1

2
(r, p, n) such that Tk(r, p, n) ⊆ Tk+ 1

2
(r, p, n) ⊆ Tk+1(r, p, n)

and establish this subalgebra as partition algebra of a subgroup of G(r, p, n) acting on (Cn)⊗k.
We call the algebras Tk(r, p, n) and Tk+ 1

2
(r, p, n) Tanabe algebras. The aim of this paper is to

study representation theory of Tanabe algebras: parametrization of their irreducible modules,
and construction of Bratteli diagram for the tower of Tanabe algebras

T0(r, p, n) ⊆ T 1
2

(r, p, n) ⊆ T1(r, p, n) ⊆ T 3
2

(r, p, n) ⊆ · · · ⊆ Tbn2 c(r, p, n).

We conclude the paper by giving Jucys–Murphy elements of Tanabe algebras and their actions
on the Gelfand–Tsetlin basis, determined by this multiplicity free tower, of irreducible modules.
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1. Introduction
The symmetric group Sk acts on the k- fold tensor product V ⊗k of the n-dimensional
vector space V = Cn over the field of complex numbers C. The general linear group
GLn(C) acts on V ⊗k diagonally where V is the defining representation of GLn(C).
These two actions commute; moreover, they generate the centralizers of each other.
This is known as the classical Schur–Weyl duality [6].

Jones [9] and Martin [10], independently, defined partition algebra CAk(q), where
q ∈ C, as a generalization of Temperley–Lieb algebras and Potts model in higher
dimensional statistical mechanics. The symmetric group Sn, being the subgroup of
permutation matrices in GLn(C), acts on V ⊗k. Jones [9] proved Schur–Weyl duality
between the partition algebra CAk(n) and the symmetric group Sn acting on V ⊗k.
Furthermore, Martin and Saleur studied the structure of partition algebras in [13, 14]
and proved that the partition algebra CAk(n) is semisimple unless n is an integer
such that 0 6 n < 2k − 1.

The subalgebra CAk+ 1
2
(n) of partition algebra CAk+1(n) was introduced by Martin

and Rollet [12] (See also [11]). Halverson and Ram [8] showed Schur–Weyl duality
between CAk+ 1

2
(n) and the subgroup Sn−1 of Sn; and thus established it to be equally

important as partition algebra CAk(n). It was also shown in [8] that the branching
rule is multiplicity free for CAl− 1

2
(n) ⊆ CAl(n) for l ∈ 1

2Z>0 whenever both the
algebras are semisimple. Recursively building the Bratteli diagram for the tower of
partition algebras

CA0(n) ⊆ CA 1
2
(n) ⊆ CA1(n) ⊆ CA 3

2
(n) ⊆ · · · ,

the Jucys–Murphy elements of partition algebras were given in [8, Theorem 3.37].
Later, the seminormal representations of parition algebra were derived by Enyang [5].

The complex reflection group G(r, p, n), where r, p and n are positive integers such
that p divides r, is a subgroup ofGLn(C). The groupG(r, 1, n) is the wreath product of
the cyclic group Z/rZ by the symmetric group Sn and G(r, p, n) is a normal subgroup
of index p ofG(r, 1, n). Shephard and Todd [25] gave a classification of finite irreducible
complex reflection groups. It was shown there that the families of groups Sn for n > 1,
Z/rZ for r > 1, and G(r, p, n) (except when (r, p, n) = (2, 2, 2) or (1, 1, 1)) are the only
infinite families of finite irreducible complex reflection groups and there are exactly 34
more finite irreducible complex reflection groups. Also, they characterized the group
G(r, p, n), for n > 1, by showing that these (except the group G(2, 2, 2)) are the only
finite irreducible imprimitive complex reflection groups up to isomorphism.

The restriction of the action of GLn(C) on V to G(r, p, n) is the reflection repre-
sentation of G(r, p, n). Tanabe [27, Lemma 2.1] described a basis of the centralizer
algebra of the action of G(r, p, n) on the tensor space V ⊗k. Orellana [19] defined a
subalgebra Tk(n, r) of partition algebra CAk(n), and proved Schur–Weyl duality be-
tween Tk(n, r) and G(r, 1, n) [19, Theorem 5.4]. Also, she recursively constructed the
Bratteli diagram for the tower of algebras

T0(n, r) ⊆ T1(n, r) ⊆ T2(n, r) ⊆ · · ·
in [19, Proposition 5.6].

In this paper, we define a subalgebra, denoted by Tk(r, p, n), of partition algebra
CAk(n) such that there is Schur–Weyl duality between Tk(r, p, n) and the complex
reflection group G(r, p, n). In particular, for p = 1, the algebra Tk(r, 1, n) is equal
to the algebra Tk(n, r) defined by Orellana. Along the lines of [8], we introduce a
subgroup L(r, p, n) of G(r, p, n) which plays a role analogous to the subgroup Sn−1 of
Sn in the study of partition algebra. We define a subalgebra, denoted by Tk+ 1

2
(r, p, n),

of partition algebra CAk+ 1
2
(n) and exhibit Schur–Weyl duality between Tk+ 1

2
(r, p, n)
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and L(r, p, n). Thus, the algebras Tk(r, p, n) and Tk+ 1
2
(r, p, n) are partition algebras

for the complex reflection group G(r, p, n) and its subgroup L(r, p, n), respectively.
We call the algebras Tk(r, p, n) and Tk+ 1

2
(r, p, n) Tanabe algebras.

The main results in this paper are as follows.
(a) For Tanabe algebras:

(i) Decomposition of the centralizer algebras EndG(r,p,n)(V ⊗k) and
EndL(r,p,n)(V ⊗k) into their irreducible modules which, in particu-
lar, gives parametrization of the irreducible modules of Tanabe algebras
Tk(r, p, n) and Tk+ 1

2
(r, p, n) for n > 2k and n > 2k + 1, respectively

(Theorem 6.4).
(ii) Construction of Bratteli diagram recursively for the tower

T0(r, p, n) ⊆ T 1
2
(r, p, n) ⊆ T1(r, p, n) ⊆ T 3

2
(r, p, n) ⊆ · · · ⊆ Tbn2 c(r, p, n).

In this case, the Bratteli diagram is a simple graph (Section 6).
(iii) Description of a specific set of commuting elements, called Jucys–

Murphy elements, which act as scalars on the canonical basis, called
Gelfand–Tsetlin basis, of each irreducible module of Tanabe algebras
(Theorem 7.6).

(b) For complex reflection groups:
(i) Construction of a basis of irreducible G(r, p, n)-modules (Theorem 4.14)

using a combination of ideas from Okounkov–Vershik approach to the
representation theory of G(r, 1, n) in [16], Clifford theory and higher
Specht polynomials in [17].

(ii) Branching rule from G(r, p, n) to L(r, p, n) (Theorem 4.16).
(iii) Decomposition of V ⊗k in terms of irreducible G(r, p, n)-modules and

L(r, p, n)-modules (Theorem 6.3).
Using theory of the basic construction, [8, Theorem 3.27] shows that the necessary

and sufficient condition for the semisimplicity of partition algebra CAl(n), for n ∈ Z>2
and l ∈ 1

2Z>0, is l 6 n+1
2 . The corresponding question for Tanabe algebras is open.

Also, another important question is to find a presentation by generators and relations
for Tanabe algebras. A generating set for Tk(r, 1, n) is given in [19, Proposition 5.1].
A set of generators for EndG(r,p,n)(V ⊗k) is described in [27, Section 3].

The inductive approach to the representation theory of symmetric groups was done
by Okounkov and Vershik in [18, 28]. This approach considers the chain of symmetric
groups

{1} = S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · ·

to study their representation theory recursively. The advantage over the traditional
approach is that the appearance of Young diagrams and standard Young tableaux is
given a spectral explanation, and the branching rule is determined simultaneously. The
Gelfand–Tsetlin decomposition, the Gelfand–Tsetlin algebra, the canonical Gelfand–
Tsetlin basis of the irreducible representations, and the Jucys–Murphy elements, a
set of generators of Gelfand–Tsetlin algebra, are fundamental to this approach. The
corresponding approach in the case of G(r, 1, n) proves fruitful in giving new proofs
of some known results and also in establishing new results in this paper.

This paper is organized in the following sections. Section 2 gives a brief introduc-
tion to partition algebra, Okounkov–Vershik approach to the representation theory
of G(r, 1, n), and Clifford theory. In Section 3, we define Tanabe algebras, Tk(r, p, n)
and Tk+ 1

2
(r, p, n), as subspaces of partition algebras and prove that these subspaces

are algebras.
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Section 4 contains a description of representation theory of complex reflection group
G(r, p, n) and its subgroup L(r, p, n) (Theorems 4.10 and 4.12). We review the rep-
resentation theory of G(r, p, n) using Clifford theory. We parametrize the irreducible
L(r, 1, n)-modules and, then by Clifford theory, determine the representation theory of
L(r, p, n). This section concludes with the branching rule from G(r, p, n) to L(r, p, n).

In Section 5, we demonstrate that Tk(r, p, n) and Tk+ 1
2
(r, p, n) are in Schur–Weyl

duality with G(r, p, n) and L(r, p, n), respectively. Using results from Section 4, Sec-
tion 6 starts with the decomposition of V ⊗k as G(r, p, n)-module and L(r, p, n)-
module. Then, we give decomposition of V ⊗k as (G(r, p, n), Tk(r, p, n))-bimodule and
(L(r, p, n), Tk+ 1

2
(r, p, n))-bimodule (Theorem 6.5) and use it to construct Bratteli dia-

gram of Tanabe algebras. In Section 7, we give Jucys–Murphy elements and their ac-
tions on the canonical Gelfand–Tsetlin basis of irreducible modules of Tanabe algebras.

Conventions. Throughout this paper, we assume that
(i) r, p,m and n are positive integers such that p divides r and m = r

p , and
(ii) we index the components in a w-tuple from 1, . . . , w, therefore, for a multiple

t of w, the t(modw)-th component means the w-th component.

2. Preliminaries
In this section, we give an overview of partition algebra, Okounkov–Vershik approach
and Clifford theory to set up notations and to state basic definitions and results used
in the rest of the paper.

2.1. Partition algebra. For k ∈ Z>0, let Ak be the set of all set partitions of
{1, 2, . . . , k, 1′, 2′, . . . , k′}. Given an element d ∈ Ak, we say that i and j are in the
same block in d if i and j belong to the same set partition in d. The elements of Ak
can be depicted as graphs, called partition diagrams, with the vertices {1, 2, . . . , k}
and {1′, 2′, . . . , k′} in the top and bottom rows, respectively and two vertices in the
same block are connected by an edge. By d = {B1, B2, . . . , Bs}, we denote that there
are exactly s blocks B1, B2, . . . , Bs in d. Also, |d| denotes the number of blocks in d.

The multiplication of two elements d1, d2 ∈ Ak, denoted by d1 ◦ d2, is obtained by
concatenating the diagrams d1 and d2 in the following way: place d1 above d2, identify
the vertices in the bottom row of d1 with the vertices in the top row of d2, then remove
all the connected blocks which are entirely in the middle row. The multiplication ◦
makes (Ak, ◦) a monoid with the identity element given in Figure 1.

1 2 3

...

i

...

(k − 1) k

1′ 2′ 3′ i′ (k − 1)′ k′

Figure 1. Identity element in partition monoid.

Define a subset Ak+ 1
2
of Ak+1 consisting of those elements which have (k+ 1) and

(k + 1)′ in the same block. It can be easily seen that Ak+ 1
2
is a submonoid of Ak+1.

The monoids Ak and Ak+ 1
2
are called partition monoids.

Example 2.1. Taking k = 6, the elements d1 and d2 in A6 with
d1 = {{1, 2, 1′}, {3, 5, 3′}, {4}, {6, 5′}, {2′, 4′}, {6′}} ∈ A6

Algebraic Combinatorics, Vol. 3 #2 (2020) 392
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and

d2 = {{1, 5, 2′, 3′}, {2, 4}, {3}, {6, 6′}, {1′, 4′}, {5′}} ∈ A6,

can be written in terms of partition diagrams and the multiplication d1 ◦ d2 is illus-
trated in Figure 2.

d1 =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

d2 =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

d1 ◦ d2 =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

Figure 2. Example of multiplication in partition monoid.

For a complex number q, define

CAk(q) := C- span{d ∈ Ak}.

The multiplication of basis elements, which when extended linearly makes CAk(q) an
associative algebra, is defined as: for d1, d2 ∈ Ak, define

d1d2 := qld1 ◦ d2

where l is the number of blocks removed from the middle row while computing d1 ◦d2.
Also, CAk+ 1

2
(q) is a subalgebra of CAk+1(q). The algebras CAk(q) and CAk+ 1

2
(q) are

called partition algebras.

Example 2.2. In Example 2.1, the product d1d2 in CA6(q) is illustrated in Figure 3
since one block has been removed from the middle row while computing d1 ◦ d2 in
Figure 2.

d1d2 = q

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

Figure 3. Example of multiplication in partition algebra.
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2.2. The Okounkov–Vershik approach. Let Gn denote the direct product of n-
copies of a finite group G and let C[G] be the group algebra of G. The action of
the symmetric group Sn on Gn by permuting the coordinates defines the semidirect
product of Gn by Sn. The group GnoSn is also known as wreath product of G by Sn.
The Okounkov–Vershik approach to the representation theory of GnoSn, where G is
any finite group, was done in [16]. In this paper, we are interested in the particular case
G = Z/rZ, the cyclic group of order r. We use the notation G(r, 1, n) := (Z/rZ)noSn
where Z/rZ = 〈ζ〉 with ζ being a primitive r-th root of unity. Thus,

G(r, 1, n) = {(g1, g2, . . . , gn, π) | gi ∈ Z/rZ for i = 1, . . . , n and π ∈ Sn}.

In this section, we follow [16] and present here a brief summary of Okounkov–Vershik
approach to the representation theory of G(r, 1, n).

For 1 6 i 6 n, let Hi,n := {(g1, . . . , gn, π) ∈ G(r, 1, n) | π(j) = j for i+1 6 j 6 n}.
We have the following chain of subgroups of G(r, 1, n)

(1) H1,n ⊆ H2,n ⊆ · · · ⊆ Hn,n := G(r, 1, n).

The irreducible representations of H1,n ∼= Gn = (Z/rZ)n are one-dimensional.
The following result of Wigner [29, p. 677] gives a necessary and sufficient condition

for the restriction to be multiplicity free. For a proof using double centralizer theorem,
see [16, Theorem 4.1]. We use this result to prove the multiplicity freeness of chain (1).

Theorem 2.3. Let A be a complex finite dimensional semisimple algebra and let B be
a semisimple subalgebra. Then the relative commutant of the pair A and B, denoted
by Z(A,B), consisting of all the elements of A that commute with the elements of B
is semisimple and the following conditions are equivalent:

(a) The restriction of any finite dimensional complex irreducible representation
of A to B is multiplicity free.

(b) The relative commutant Z(A,B) is commutative.

Using [16, Theorem 4.13], we can conclude that the relative commutant of the pair
of group algebras C[Hm,n] and C[Hm−1,n] is commutative for all 2 6 m 6 n. Thus,
Theorem 2.3 implies that the chain (1) is multiplicity free.

For each i = 1, 2, . . . , n, suppose that H∧i,n denotes the indexing set of irreducible
Hi,n-modules and given λ ∈ H∧i,n, assume that V λ denotes the corresponding Hi,n-
module. Bratteli diagram of the chain (1) is a simple graph in which the vertices at
i-th level are elements of H∧i,n and a vertex µ ∈ H∧i−1,n is joined by an edge with a
vertex λ ∈ H∧i,n if V µ appears in the restriction of V λ to Hi−1,n.

For a fixed 1 6 m 6 n, consider the Hm,n-module V λm , where λm ∈ H∧m,n. The
branching rule being multiplicity free implies that the decomposition of V λm into
irreducible Hm−1,n-modules is canonical, and the decomposition is

V λm =
⊕
λm−1

V λm−1 ,

where the sum is over all λm−1 ∈ H∧m−1,n with an edge from λm−1 to λm such that
V λm−1 is identified with the corresponding submodule of V λm . We iterate the above
decomposition for the chain of subgroups of Hm,n in chain (1). This implies that the
following decomposition of V λm into irreducible H∧1,n-submodules is canonical:

(2) V λm =
⊕
T

VT ,

where the sum is over all possible paths T = (λ1, λ2, . . . , λm) from a vertex in H1,n
to λm in Bratteli diagram with λi ∈ H∧i,n for 1 6 i 6 m.
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The decomposition given in (2) is called the Gelfand–Tsetlin decomposition (GZ-
decomposition) of V λm and each VT in (2) is called a Gelfand–Tsetlin subspace (GZ-
subspace) of V λm . In our case, each GZ-subspace VT is one-dimensional. Choose a
non-zero vector vT ∈ VT . The basis

{vT | T is a path in the GZ-decomposition of V λm}
of V λm is called the Gelfand–Tsetlin basis (GZ-basis) of V λm and it is unique up to
scalars and

C[Hi,n] · vT = V λi , i = 1, 2, . . . ,m.
The GZ-basis being canonical is significant in the case of G(r, 1, n), since, in gen-
eral, for the wreath product of a finite group by symmetric group, GZ-subspaces are
canonical, GZ-basis may not necessarily be canonical.

Using the algebra isomorphism
(3) C[Hm,n] ∼=

⊕
λm∈H∧m,n

End(V λm),

given by
g 7→ (V λm g→ V λm : λm ∈ H∧m,n), g ∈ Hm,n, 1 6 m 6 n,

we can define the Gelfand–Tsetlin algebra (GZ-algebra), denoted byGZm,n, a maximal
commutative subalgebra of C[Hm,n] based on the GZ-decomposition (2):

GZm,n = {a ∈ C[Hm,n] | a acts diagonally in the GZ-basis of V λm ,
for all λm ∈ H∧m,n}.

Theorem 2.4 ([16, Theorem 3.1(i)]). Let Zi,n denote the center of C[Hi,n] for each
i = 1, 2, . . . ,m. Then,

GZm,n = 〈Z1,n, Z2,n, . . . , Zm,n〉.

The theorem above implies the following result which is [16, Lemma 3.2].

Lemma 2.5.
(a) Let v ∈ V λm for some λm ∈ H∧m,n such that v is an eigenvector of every

element of GZm,n, then (a scalar multiple of ) v belongs to the GZ-basis of
V λm .

(b) Let v and u be elements in V λm and V µm , respectively for some λm, µm ∈
H∧m,n such that v and u have the same eigenvalues for every element of GZm,n,
then v = u and λm = µm.

A GZ-subspace of Hm,n is a GZ-subspace of some irreducible Hm,n-module V λm ,
λm ∈ H∧m,n. Thus, using Lemma 2.5, a GZ-subspace of Hm,n is GZ-subspace of a
unique irreducible representation of Hm,n.

The Jucys–Murphy elements for the wreath product of a finite group by a sym-
metric group were given in [20]. For our particular case G(r, 1, n), the Jucys–Murphy
elements can be written as:

X1 = 0,
and

Xj =
j−1∑
i=1

r−1∑
l=0

ζliζ
−l
j sij , 2 6 j 6 n,(4)

where sij is the transposition (i, j) and

ζliζ
−l
j sij = (1, . . . , 1, ζl, 1 . . . , 1, ζ−l, 1, . . . , 1, (i, j)) ∈ G(r, 1, n),
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with ζl and ζ−l as i-th and j-th coordinates, respectively. It is clear that the element
Xj can be identified naturally with an element of Hj,n.

Theorem 2.6 ([16, Theorem 4.4]).We have
GZm,n = 〈Z[C[Gn]], X1, X2, . . . , Xm〉.

A GZ-subspace V of Hm,n is isomorphic to ρ1 ⊗ · · · ⊗ ρn, ρi ∈ G∧ for all i. We
call ρ = (ρ1, . . . , ρn) the label of V . And define the weight α(V ) of V by
(5) α(V ) = (ρ, α1, . . . , αm),
where αi = eigenvalue of Xi on V . Using Lemma 2.5 and Theorem 2.6, it can be
easily shown that a GZ-subspace is uniquely determined by its weight.

Let Y be the set of all Young diagrams. The unique Young diagram with zero boxes
is empty Young diagram, denoted by ∅. For λ ∈ Y, let |λ| denote the number of boxes
in λ. Define

Y(r, n) := {λ = (λ1, λ2, . . . , λr) | λi ∈ Y for all i = 1, 2, . . . , r and
r∑
i=1
|λi| = n},

i.e. Y(r, n) is the set of r-tuples of Young diagrams such that the total number of
boxes is n.

Let µ ∈ Y. A standard Young tableau of shape µ is obtained by filling the boxes
in the Young diagram µ with the distinct numbers 1, 2, . . . , |µ| such that the numbers
in the boxes strictly increase along each row and each column of µ. For λ ∈ Y(r, n),
a standard r-tuple of Young tableaux of shape λ is obtained by filling the n-boxes in
the r-tuple λ with the distinct numbers 1, 2, . . . , n such that the numbers in the boxes
strictly increase along each row and each column of all Young diagrams occurring
in λ. Define Tab(r, λ) as the set of all standard r-tuple of Young tableaux and set
Tab(r, n) := ∪λ∈Y(r,n) Tab(r, λ).

For each i = 1, 2, . . . , r, define the irreducible representation σi of G:
σi : G→ C∗

ζ 7→ ζi−1.

The irreducible representations of G are σ1, σ2, . . . , σr.
We draw Young diagrams by following the convention of writing down matrices

with x-axis running downwards and y-axis running to the right. For a box b of a
Young diagram, its content c(b) is its y-coordinate − its x-coordinate. Given λ =
(λ1, . . . , λr) ∈ Y(r, n), T ∈ Tab(r, λ) and 1 6 i 6 n, the number i resides in exactly
one box of one of λ1, . . . , λr, say λji , let bT (i) be this box in λji and let rT (i) := σji .

The following result for G(r, 1, n) can be easily seen by [16, Theorem 6.5].

Theorem 2.7. Let λ ∈ Y(r, n). Then the GZ-subspaces of V λ can be parametrized by
T ∈ Tab(r, λ) and the GZ-decomposition of V λ can be written as
(6) V λ =

⊕
T∈Tab(r,λ)

VT ,

where each VT is closed under the action of Gn and, as a Gn-module, is isomorphic
to the irreducible Gn-module

rT (1)⊗ rT (2)⊗ · · · ⊗ rT (n)
For i = 1, . . . , n, the eigenvalue of Xi on VT is given by rc(bT (i)).

Let R denote the element of Tab(r, λ) defined as follows: for λ = (λ1, . . . , λr), we
start with λ1 by filling the Young diagram λ1 with the numbers 1, . . . , |λ1| in row
major order, i.e. the first row is filled with 1, 2, . . . , l1 in increasing order where l1 is
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the length of the first row, the second row is filled with l1 + 1, . . . , l1 + l2 in increasing
order where l2 is the length of the second row and so on till the last row of λ1 has
been filled. Then we fill the Young diagram λ2 with |λ1| + 1, . . . , |λ1| + |λ2| in row
major order and so on till the last Young diagram λr.

The irreducible representations of G(r, 1, n) are parametrized by the elements of
Y(r, n) and given λ ∈ Y(r, n), the GZ-basis elements (and hence, GZ-subspaces) of
V λ are parametrized by T ∈ Tab(r, λ).

2.3. Clifford Theory. We give an outline of Clifford theory for a finite group
H and its normal subgroup N such that H/N is a cyclic group of order p as done
in [1, 17, 26]. The pair H and N on which they have applied Clifford theory is the
pair G(r, 1, n) and G(r, p, n). The group G(r, p, n) can be considered as the subgroup
of GLn(C) consisting of generalized permutation matrices such that the m-th power
of the product of nonzero entries is one. We discuss the complex reflection group
G(r, p, n) and its representation theory in detail in Section 4 and review Clifford
theory for the rest of this section.

Let H∧ denote the indexing set of irreducible representations of H. Identifying
H/N with the group C consisting of one-dimensional representations of H which
contain N in their kernel, we can define an action of C on the set of irreducible
representations of H by

V ρ 7→ δ ⊗ V ρ

where δ ∈ C and V ρ is the irreducible representation of H indexed by ρ ∈ H∧. Denote
the orbit of V ρ by [ρ] with respect to the action of C. The irreducible representations
of H which are in the same orbit are called associates of each other. Assume that V ρ
has b(ρ) associates. Then the stabilizer subgroup of C with respect to V ρ, denoted by
Cρ, has the order u(ρ) = p

b(ρ) . Suppose that δ0 is a generator of Cρ. It is easy to see
that there exists a N -linear map A : V ρ −→ V ρ such that A(hv) = δ0(h)hA(v) for all
h ∈ H and v ∈ V ρ. Then by Schur’s lemma, the H-linear map Au(ρ) acts by a nonzero
scalar. Normalizing the scalar, we obtain that Au(ρ) is the identity map on V ρ. Such
an A is called the associator of V ρ. Also, if µ ∈ [ρ], then the stabilizer subgroup
Cµ = Cρ. The following theorem gives parametrization of irreducible N -modules.

Theorem 2.8.
(a) The eigenspace decomposition of V ρ with respect to A is given by

(7) V ρ ∼=
u(ρ)−1⊕
l=0

E(l),

where E(l) is the eigenspace with eigenvalue e
2πil
u(ρ) . The group Cρ can be iden-

tified with {e
2πil
u(ρ) | l = 0, 1, . . . , u(ρ)− 1}.

(b) The eigenspaces E(l), for 0 6 l 6 u(ρ) − 1, occuring in (7) are inequivalent
irreducible N -modules, each of which is of dimension dim(V ρ)/u(ρ).

(c) For any 0 6 l 6 u(ρ)− 1, we have

IndHN (E(l)) =
⊕
µ∈[ρ]

V µ.

(d) Let O denote the set of all orbits in H∧. The irreducible N -modules are
parametrized by the pairs ([ρ], ε) where [ρ] ∈ O and ε ∈ Cρ.
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3. Tanabe algebra
The partition monoid is a poset with the partial order given as: for d, d′ ∈ Ak, d′ 6 d
if d′ is coarser than d, i.e. if i and j are in the same block of d, then i and j are in
the same block of d′. For d ∈ Ak, define the unique element xd ∈ CAk(n) satisfying

(8) d =
∑
d′6d

xd′ .

This partial order on Ak can be extended to a total order on Ak. It can be easily
seen that the transition matrix between {d | d ∈ Ak} and {xd | d ∈ Ak} is an upper
triangular matrix with 1′s on the diagonal and thus, {xd | d ∈ Ak} is also a basis of
the partition algebra CAk(n), see also [8, p. 879].

An internal block in d1 ◦d2, for d1, d2 ∈ Ak, is a block that is entirely in the middle
while computing d1 ◦ d2. We say that the bottom row of d1 matches with the top row
of d2 if the following condition is satisfied: i′ and j′ are in the same block in d1 if and
only if i and j are in the same block in d2 for 1 6 i, j 6 k. For every s in a block B
of d ∈ Ak, if we put is = t for some 1 6 t 6 n, then t is said to be a mark of the
block B. The next lemma and the idea of its proof are from the online notes [23] and
it also appears in [2, Section 4]. It gives the structure constants with respect to the
basis {xd | d ∈ Ak} of CAk(n).

Lemma 3.1. For d1, d2 ∈ Ak, the multiplication of xd1 and xd2 in CAk(n) is given by

xd1xd2 =


∑
d∈Ak

cdxd, if the bottom row of d1 matches with the top row of d2,

0, otherwise,

where the sum is taken over all those d in Ak such that d is coarser than d1 ◦ d2 and
the coarsening is done by connecting a block of d1 which is contained entirely in the
top row of d1 with a block of d2 which is contained entirely in the bottom row of d2 and

cd = (n− |d|)[d1◦d2],

where |d| is the number of blocks in d, [d1 ◦ d2] is the number of internal blocks in
d1 ◦ d2, and for a ∈ Z, b ∈ Z>0,

(a)b :=
{
a(a− 1) · · · (a− b+ 1), if b > 0,
1, if b = 0,

such that when a, b ∈ Z>0 and a > b, we have (a)b = aP b, the number of permutations
of a objects taken b at a time.

Proof. Let n > 2k. Then φk : CAk(n) ∼= EndSn(V ⊗k) (by Schur–Weyl duality for
partition algebras, Theorem 5.1). Identifying xd with φk(xd), we have

(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)(xd1xd2)

=
∑

i1′ ,i2′ ,...,ik′ ,i1′′ ,i2′′ ,...,ik′′

(vi1′′ ⊗ vi2′′ ⊗ · · · ⊗ vik′′ )(xd1)i1,i2,...,iki1′ ,i2′ ,...,ik′
(xd2)i1′ ,i2′ ,...,ik′i1′′ ,i2′′ ,...,ik′′

.

If the bottom row of d1 does not match with the top row of d2, then using (20) it can
be seen that xd1xd2 = 0.
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If the bottom row of d1 matches with the top row of d2, then again using (20) we
have ∑

i1′ ,i2′ ,...,ik′ ,i1′′ ,i2′′ ,...,ik′′

(vi1′′ ⊗ vi2′′ ⊗ · · · ⊗ vik′′ )(xd1)i1,i2,...,iki1′ ,i2′ ,...,ik′
(xd2)i1′ ,i2′ ,...,ik′i1′′ ,i2′′ ,...,ik′′

=
∑
d

αdxd,

where αd is some positive integer and the sum is over all d obtained by coarsening
d1 ◦ d2 which is done by connecting a block of d1 contained entirely in the top row
of d1 and a block of d2 contained entirely in the bottom row of d2. So, αd = number
of ways the internal blocks of d1 ◦ d2 can be marked distinctly after putting distinct
marks on the blocks of d = (n− |d|)[d1◦d2] = cd.

Fix k and vary n. For a given n, fix d1, d2, d ∈ Ak(n). Then the coefficient of xd in
the product xd1xd2 is a polynomial fd(n) in n. Then by above arguments, for n > 2k,
we have fd(n) = (n − |d|)[d1◦d2]. The fundamental theorem of algebra implies that
fd(n) = (n− |d|)[d1◦d2] for all n. �

Let B be a block of d ∈ Ak. Suppose that N(B) is the number of elements in
B ∩ {1, 2, . . . , k} and M(B) is the number of elements in B ∩ {1′, 2′, . . . , k′}. Thus,
N(B) and M(B) are the number of elements in the block B in top row and bottom
row of d, respectively.

Define the following mutually disjoint subsets of Ak:

Πk(r) := {d = {B1, B2, . . . , Bs} ∈ Ak | s > 1 and
N(Bi) ≡M(Bi) (mod r)(1 6 i 6 s)},

Λk(r, p, n) := {d = {B1, B2, . . . , Bn} ∈ Ak | N(Bi) ≡M(Bi) (modm),
N(Bi) 6≡M(Bi) (mod r), (1 6 i 6 n), and
N(Bi)−M(Bi) ≡ N(Bj)−M(Bj) (mod r), (1 6 i, j 6 n)},

Θk(r, p, n) := {d = {B1, B2, . . . , By} ∈ Ak | y > n,

N(Bi) ≡M(Bi) (modm), (1 6 i 6 y),
and for some j ∈ {1, . . . , y}, N(Bj) 6≡M(Bj) (mod r)}.

See Example 3.10 for the above defined sets in the case k = 2. Define Ak(r, p, n), a
subset of Ak, by setting

Ak(r, p, n) := Πk(r) ∪ Λk(r, p, n) ∪Θk(r, p, n).

Definition 3.2.Define Tk(r, p, n) := C-span{xd | d ∈ Ak(r, p, n)}, a subspace of the
partition algebra CAk(n).

Definition 3.3.Define CAk(r, p, n) := C-span{d | d ∈ Ak(r, p, n)}, a subspace of the
partition algebra CAk(n).

The subspace CAk(r, 1, n) was defined by Orellana [19, p. 610] (she used the
notation Tk(n, r)). Also, she proved Schur–Weyl duality between CAk(r, 1, n) and
G(r, 1, n) [19, Theorem 5.4]. In the next lemma, we show that the subspaces Tk(r, p, n)
and CAk(r, p, n) are equal when p = 1. For p 6= 1, the subspace CAk(r, p, n) may not
be a subalgebra of CAk(n), and CAk(r, p, n) may neither contain nor be contained in
Tk(r, p, n). See Remark 3.11.

Lemma 3.4. The subspaces Tk(r, 1, n) and CAk(r, 1, n) are equal. Also, Tk(r, 1, n) is a
subalgebra of CAk(n).
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Proof. The sets Λk(r, 1, n) and Θk(r, 1, n) are empty. So,
Tk(r, 1, n) = C- span{xd | d ∈ Πk(r)} and CAk(r, 1, n) = C- span{d | d ∈ Πk(r)}.

Also, for d ∈ Πk(r), the elements d′ 6 d belong to Πk(r) because the difference
between the number of elements in top row and bottom row in each block remains
0 (mod r) even after coarsening. Using the definition of xd in (8), we get that d ∈
Tk(r, 1, n) for all d ∈ Πk(r). Thus, CAk(r, 1, n) ⊆ Tk(r, 1, n) and we get the equality
because of their dimensions being equal.

The subset Πk(r) is a submonoid of Ak. Therefore, CAk(r, 1, n) is a subalgebra of
CAk(n). �

The explicit formula for the dimension of Tk(r, p, n), or even in the case of Tk(r, 1, n),
is not known. However, when m→∞ (recall m = r

p ), then Λk(r, p, n) and Θk(r, p, n)
are empty sets and thus,

lim
m→∞

dim(Tk(r, p, n)) = lim
r→∞

dim(Tk(r, 1, n)).

Also, lim
r→∞

dim(Tk(r, 1, n)) is described in [19, p. 611].
Let V = Cn be the n-dimensional vector space on which GLn(C) acts naturally.

The action of G(r, p, n) on V is given by the restriction of the action of GLn(C) on
V . Also, G(r, p, n) acts on the k- fold tensor product V ⊗k by the diagonal action.

Remark 3.5. The proof of Theorem 3.6 uses the following two known results (both
of which are independent of the algebra structure of Tk(r, p, n)):

(a) Schur–Weyl duality between the partition algebra CAk(n) and the symmetric
group Sn as stated in Theorem 5.1(a) (also see [8, Theorem 3.6] and [9]); and

(b) The basis of the centralizer algebra of the action of G(r, p, n) on V ⊗k as given
in Lemma 5.2(a) (also see [27, Lemma 2.1]).

Theorem 3.6. The vector space Tk(r, p, n) is a subalgebra of CAk(n).

Proof. Let d1, d2 ∈ Ak(r, p, n). It is sufficient to assume that the bottom row of d1
matches with the top row of d2. The multiplication xd1xd2 is given by

(9) xd1xd2 =
∑
d∈Ak

cdxd

Case 1. If d1, d2 ∈ Πk(r), then by Lemma 3.4, we have xd1xd2 ∈ Tk(r, 1, n) ⊆
Tk(r, p, n).

Case 2.One of d1 or d2 is in Θk(r, p, n). Without loss of generality, assume that
d1 ∈ Θk(r, p, n) and d2 ∈ Ak(r, p, n).
Claim. cd = 0 for d /∈ Ak(r, p, n) in (9). Since d1 has more than n blocks, therefore
using Theorem 5.1(a) (see Remark 3.5), we get, in (9)∑

d∈Ak,
|d|6n

cdφk(xd) = 0.

The linear independence of {φk(xd) | |d| 6 n} implies that cd = 0 for d ∈ Ak, |d| 6 n.
Thus, cd can be nonzero only when |d| > n. For such d, we show that either d ∈ Πk(r)
or d ∈ Θk(r, p, n). Suppose d /∈ Πk(r), then there exists 1 6 j 6 |d| such that
N(Bj) 6≡M(Bj)(mod r).
Subcase 2.1. Suppose d = d1 ◦ d2. If a block B in d1 is connected with a block B′
in d2 then N(B) ≡ M(B)(modm), N(B′) ≡ M(B′)(modm) and M(B) = N(B′).
Thus, N(B) ≡M(B′)(modm) and d ∈ Θk(r, p, n). This also includes the cases when
either of B and B′ are entirely in the top or bottom row of d1 and d2, respectively.
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Subcase 2.2. Suppose that d is obtained by coarsening of d1 ◦ d2 as in Lemma 3.1.
Let the coarsening be done by connecting a block B entirely in the top row of d1 with
a block B′ entirely in the bottom row of d2. Then

N(B) ≡ 0(modm) and 0 ≡M(B′)(modm).
Thus, N(B) ≡M(B′)(modm) and d ∈ Θk(r, p, n).

Case 3.One of d1 and d2 is in Πk(r) and the other is in Λk(r, p, n). Without loss
of generality, assume that d1 ∈ Πk(r) and d2 ∈ Λk(r, p, n). If |d1| > n, then we can
argue similar to the case (ii) above. So, assume that |d1| 6 n. From (9), we have

0 6=
∑
d∈Ak

cdφk(xd) ∈ EndG(r,p,n)(V ⊗k).

Using the basis of EndG(r,p,n)(V ⊗k) as given in Lemma 5.2(a) (see Remark 3.5), it
follows that, for d such that |d| 6 n, cd can be nonzero only when d ∈ Πk(r) ∪
Λk(r, p, n).

If there exists d in (9) with more than n blocks such that cd 6= 0, then by the
arguments similar to the case (ii), we get either d ∈ Πk(r) or d ∈ Λk(r, p, n). �

Define the following mutually disjoint subsets of Ak+ 1
2
:

Πk+ 1
2
(r) := Πk+1(r) ∩Ak+ 1

2
,

Λk+ 1
2
(r, p, n) := Λk+1(r, p, n) ∩Ak+ 1

2
,

Θk+ 1
2
(r, p, n) := Θk+1(r, p, n) ∩Ak+ 1

2
.

Also, define Ak+ 1
2
(r, p, n), a subset of Ak+ 1

2
, by setting

Ak+ 1
2
(r, p, n) := Πk+ 1

2
(r) ∪ Λk+ 1

2
(r, p, n) ∪Θk+ 1

2
(r, p, n).

Definition 3.7.Define Tk+ 1
2
(r, p, n) := C- span{xd | d ∈ Ak+ 1

2
(r, p, n)}, a subspace

of partition algebra CAk+ 1
2
(n).

Theorem 3.8. The vector space Tk+ 1
2
(r, p, n) is a subalgebra of CAk+ 1

2
(n).

Proof. Note that Tk+ 1
2
(r, p, n) = Tk+1(r, p, n) ∩ CAk+ 1

2
(n), hence Tk+ 1

2
(r, p, n) is an

algebra. �

Definition 3.9 (Tanabe algebra).We call the algebras Tk(r, p, n) and Tk+ 1
2
(r, p, n)

Tanabe algebras.

There is an injective algebra homomorphism (see [8, p. 879])
CAk(n) ↪→ CAk+ 1

2
(n)

d 7→ d′,

where d ∈ Ak and d′ ∈ Ak+ 1
2
has same blocks as d with an additional block {(k +

1), (k + 1)′}. It is easy to see that the corresponding element xd is mapped to (xd′ +∑
xd′′), where the sum is over all d′′ ∈ Ak+ 1

2
r {d′} obtained by connecting a block

in d′ with the block {(k + 1), (k + 1)′}. Using the description of the above map in
terms of the elements xd, we see that the algebra Tk(r, p, n) can be embedded inside
the algebra Tk+ 1

2
(r, p, n).

Example 3.10. In this example, we describe the elements of the sets Πk(r),Λk(r, p, n)
and Θk(r, p, n) for various specific values of r, p and n when k = 2. The partition
monoid A2 = {d1, d2, . . . , d15} with the elements in terms of partition diagrams is
given in Figure 4.
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d1 =

1 2

1′ 2′

, d2 =

1 2

1′ 2′

, d3 =

1 2

1′ 2′

, d4 =

1 2

1′ 2′

,

d5 =

1 2

1′ 2′

, d6 =

1 2

1′ 2′

, d7 =

1 2

1′ 2′

, d8 =

1 2

1′ 2′

,

d9 =

1 2

1′ 2′

, d10 =

1 2

1′ 2′

, d11 =

1 2

1′ 2′

, d12 =

1 2

1′ 2′

,

d13 =

1 2

1′ 2′

, d14 =

1 2

1′ 2′

, d15 =

1 2

1′ 2′

Figure 4. Elements of A2.

(a) For r = 2, we have Π2(2) = {d8, d9, d10, d15}.
(i) For p = 2, n = 2, the sets

Λ2(2, 2, 2) = {d11, d12, d13, d14}

and Θ2(2, 2, 2) = {d1, d2, d3, d4, d5, d6, d7}.
Thus, T2(2, 2, 2) is the partition algebra CA2(2).

(ii) For p = 2, n = 3, Λ2(2, 2, 3) is an empty set and Θ2(2, 2, 3) = {d1}.
(iii) For p = 2, n = 4, we have Λ2(2, 2, 4) = {d1} and Θ2(2, 2, 4) is an empty

set.
(b) For r 6= 1, 2, we have Π2(r) = {d9, d10, d15}. For r = 3, Λ2(r, p, n) is nonempty

if and only if (r, p, n) = (3, 3, 3); and Λ2(3, 3, 3) = {d2, d7}. For r = 4,
Λ2(r, p, n) is nonempty if and only if (r, p, n) = (4, 2, 2) or (4, 4, 2); and
Λ2(4, 2, 2) = Λ2(4, 4, 2) = {d8}. For r > 4, Λ2(r, p, n) is empty for all val-
ues of p and n. In general, for r > 2k, Λk(r, p, n) is empty for all values of p
and n.

Remark 3.11. In Example 3.10(a), we see that A2(2, 2, 3) = {d1, d8, d9, d10, d15}. The
product d8d1 = d2 is not an element of A2(2, 2, 3) which implies that CA2(2, 2, 3) is

not an algebra. Using the definition of xd in (8), we have (a) d1 =
15∑
i=1

xdi and (b) the

coefficient of d2 in the expression of xd1 as a linear combination of partition diagrams
is −1. So, we can conclude that CA2(2, 2, 3) * T2(2, 2, 3) and T2(2, 2, 3) * CA2(2, 2, 3).

Remark 3.12. For n > 2k, Θk(r, p, n) is an empty set. Moreover, for n > 2k, the set
Λk(r, p, n) is nonempty if and only if (r, p, n) = (2, 2, 2k); Λk(2, 2, 2k) = {d}, where d
is a partition diagram with 2k blocks, i.e. each block consists of a single vertex. Using
the multiplication rule in Lemma 3.1, it is easy to check that the corresponding xd is
a central element of Tanabe algebra Tk(2, 2, 2k). This remark, along with Remark 6.7,
is useful in Section 7 for the special case (r, p, n) = (2, 2, 2k).
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4. Complex reflection groups
For an n-dimensional complex vector space W , a linear isomorphism of W of finite
order is said to be a reflection in W if it has exactly (n − 1) eigenvalues equal to
1. A complex reflection group R in W is a group generated by reflections in W .
The space W is called the reflection representation of R. We say R is irreducible
if the R-invariant complement of the subspace WR, which is fixed pointwise by R,
in W is irreducible (see [4, Definitions (1.1)]). If there exists a direct sum W =
W1⊕W2⊕· · ·⊕Wt, where Wi is non-trivial proper subspace of W for each 1 6 i 6 n,
such thatW1,W2, . . . ,Wt are permuted among themselves under the action of R, then
we say that R is imprimitive. By Shephard–Todd classification, the groups G(r, p, n),
for n > 1, (except the group G(2, 2, 2)) are the only finite irreducible imprimitive
complex reflection groups [25, Section 2]. The group G(2, 2, 2) is imprimitive, but it
is not irreducible [4, Theorem (2.4)].

Suppose that G := Z/rZ is the cyclic group of order r with ζ, a primitive r-th
root of unity. Define D(r, p, n) to be the subgroup of GLn(C) consisting of diagonal
matrices as:

D(r, p, n) :=



ζi1 0 . . . 0
0 ζi2 . . . 0
...

...
. . .

...
0 0 . . . ζin

 ∣∣∣ i1 + i2 + · · ·+ in ≡ 0(mod p)

 .

Let Sn be the group of n × n permutation matrices. Define G(r, p, n) to be the
subgroup of GL(n,C) generated by D(r, p, n) and Sn. Since Sn normalizes D(r, p, n)
and D(r, p, n) ∩ Sn = {In}, where In is the identity matrix, the group G(r, p, n) is a
semidirect product:

G(r, p, n) = D(r, p, n) o Sn.

Thus, as a subgroup of GLn(C), the group G(r, p, n) consists of generalized permu-
tation matrices with nonzero entries being r-th roots of unity and the m-th power of
the product of nonzero entries is one. Also, the elements of G(r, p, n) can be written
as (n+ 1)-tuple:

G(r, p, n) = {(ζi1 , ζi2 , . . . , ζin , π) | i1 + i2 + · · ·+ in ≡ 0(mod p), π ∈ Sn}.
The particular case when p = 1 is the group G(r, 1, n), the wreath product of the

group G by the symmetric group Sn, of order rnn!. Taking the exact sequence
1 −→ G(r, p, n) −→ G(r, 1, n) −→ Z/pZ −→ 1

(ζi1 , ζi2 , . . . , ζin , π) 7→ ζi1+i2+···+in ,

we see that G(r, p, n) is a normal subgroup of the group G(r, 1, n) of index p. So, the
order of the group G(r, p, n) is (rnn!)/p.

Some families of groups which are special cases of G(r, p, n) are:
(a) cyclic group of order r, i.e. Z/rZ = G(r, 1, 1),
(b) dihedral group of order 2r, D2r = G(r, r, 2),
(c) symmetric group on n symbols, Sn = G(1, 1, n),
(d) Weyl group of type Bn (also called hyperoctahedral group) is G(2, 1, n),
(e) Weyl group of type Dn is G(2, 2, n).

Let G(n) be an isomorphic copy of G (= Z/rZ) in G(r, 1, n) defined as
G(n) := {(1, . . . , 1, gn, (1)) | gn ∈ G}.

Assume that Sn−1 is the subgroup of Sn consisting of elements fixing n. The groups
G(r, 1, n − 1) × G(n) and G(r, p, n) are subgroups of G(r, 1, n). Let L(r, p, n) be the
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subgroup of G(r, p, n) defined as:

L(r, p, n) :=(G(r, 1, n− 1)×G(n)) ∩G(r, p, n)
=((Gn−1 o Sn−1)×G(n)) ∩ (D(r, p, n) o Sn)
=(Gn o Sn−1) ∩ (D(r, p, n) o Sn)
=D(r, p, n) o Sn−1.

As a subgroup of GLn(C), the group L(r, p, n) consists of those elements in G(r, p, n)
such that the (n, n)-th entry is nonzero. For p = 1, we have

L(r, 1, n) = Gn o Sn−1

=
(
Gn−1 o Sn−1

)
×G(n)

= G(r, 1, n− 1)×G(n).

The order of L(r, 1, n) is rn(n− 1)!. Taking the exact sequence

1 −→ L(r, p, n) −→ L(r, 1, n) −→ Z/pZ −→ 1
(g1, g2, . . . , gn, π) 7→ g1g2 · · · gn,

we see that L(r, p, n) is a normal subgroup of the group L(r, 1, n) of index p. Thus,
the order of L(r, p, n) is (rn(n− 1)!)/p.

Recall from Section 2.2 that Y(r, n) is the set of r-tuples of Young diagram such that
the total number of boxes is n. Given an r-tuple of Young diagrams (λ1, λ2, . . . , λr) ∈
Y(r, n − 1), choose one i ∈ {1, 2, . . . , r}, take λi (λi may be empty also), color it by
n and denote by λni . We note that λni denotes the same Young diagram λi, but it
has the color n. The (n, i)-colored r-tuple of Young diagrams, denoted by λ(n,i) :=
(λ1, λ2, . . . , λi−1, λ

n
i , λi+1, . . . , λr), consists of the r-tuple (λ1, λ2, . . . , λr) ∈ Y(r, n−1)

with i-th component λi colored by n. Let Yn(r, n−1) denote the set of all (n, i)-colored
r-tuples of Young diagrams with total n− 1 boxes for i = 1, 2, . . . , r.

Lemma 4.1. The irreducible L(r, 1, n)-modules are indexed by the elements of
Yn(r, n− 1).

Proof. The irreducible representations of G are σ1, σ2, . . . , σr (defined in Section 2.2).
Suppose that V λ is the irreducible representation of G(r, 1, n − 1) corresponding to
λ ∈ Y(r, n− 1). Then,

{V λ ⊗ σi | λ ∈ Y(r, n− 1), i = 1, . . . , r}

is the set of irreducible representations of L(r, 1, n) which is indexed by the elements
of the set Yn(r, n− 1). �

Definition 4.2 (Inner corner and outer corner). Let λ be a Young diagram with |λ|
boxes. A box, which when removed from λ, leaves a Young diagram with |λ| − 1 boxes
is called an inner corner of λ. A box, which when added to λ, gives a Young diagram
with |λ|+ 1 boxes is called an outer corner of λ.

We describe the branching rule from G(r, 1, n) to L(r, 1, n). For µ = (µ1, µ2, . . . , µr)
in Y(r, n) with µi 6= ∅, let µ ↓ i denote the set of elements ν(n,i) ∈ Yn(r, n− 1) such
that ν is obtained from µ by removing the box at an inner corner of µi and then
coloring the i-th component of ν by n to obtain (n, i)-colored r-tuple ν(n,i). Assume
that V µ and V ν(n,i) are the irreducible G(r, 1, n)-module and L(r, 1, n)-module corre-
sponding to µ ∈ Y(r, n) and ν(n,i) ∈ Yn(r, n− 1), respectively.
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Theorem 4.3 (Branching rule from G(r, 1, n) to L(r, 1, n)).We have

(10) ResG(r,1,n)
L(r,1,n) (V µ) =

r⊕
i=1

( ⊕
ν∈µ↓i

V ν
(n,i)

)
.

Remark 4.4.We take equality in place of isomorphism because the restriction rule
is multiplicity free which makes the decomposition canonical and we identify V ν(n,i)

with the corresponding L(r, 1, n)-submodule of V µ.

Proof. Since νj = µj for j 6= i and |νi| = |µi| − 1, therefore given a GZ-subspace of
V µ, there exists a GZ-subspace of V ν(n,i) = V ν ⊗ σi with the same label. Also, for
1 6 i 6 n − 1, the action of Xi ∈ GZn−1,n ⊆ GZn,n on GZ-subspace of V ν(n,i) is
same as its action on GZ-subspace of V µ. A GZ-subspace is uniquely determined by
its weight and a GZ-subspace uniquely determines the parametrization of irreducible
representation. Thus, V ν(n,i) appears in the restriction of V µ as a L(r, 1, n)-module
with multiplicity one since the restriction from G(r, 1, n) to L(r, 1, n) is multiplicity
free (follows from chain (1) since Hm−1,n = L(r, 1, n)). �

The next step is the parametrization of the irreducible representations of G(r, p, n)
and L(r, p, n) using Clifford theory. Consider the one-dimensional representation

δ0 : G(r, 1, n) −→ C∗

δ0(g1, g2, . . . , gn, σ) = g1g2 . . . gn.

As a G(r, 1, n)-module, δ0 is parametrized by (∅, (n),∅, . . . ,∅) and G(r, p, n) ⊆
Ker(δm0 ). We use the same notation δ0 to denote the restriction of δ0 to L(r, 1, n). It
will be clear from the context whether we consider δ0 as a G(r, 1, n)-module or as a
L(r, 1, n)-module. As a L(r, 1, n)-module, δ0 is parametrized by the (n, 2)-colored r-
tuple (∅, (n− 1)n,∅, . . . ,∅) and L(r, p, n) ⊆ Ker(δm0 ). The cyclic group C generated
by δm0 is of order p. Thus

C ∼= G(r, 1, n)/G(r, p, n) ∼= L(r, 1, n)/L(r, p, n).

Definition 4.5.Define the shift map on Y(r, n) as sh : Y(r, n) −→ Y(r, n) by

(λ1, λ2, . . . , λr) 7→ (λr, λ1, λ2, . . . , λr−1).

Using the same notation, the shift map on Yn(r, n− 1) is defined as

sh : Yn(r, n− 1) −→ Yn(r, n− 1) by
(µ1, µ2, . . . , µ

n
i , . . . , µr) 7→ (µr, µ1, µ2, . . . , µi−1, µ

n
i , . . . , µr−1),

where the r-tuples on the left hand side and the right hand side are (n, i)-colored and
(n, i + 1)-colored, respectively. For the definition of shift map on Tab(r, λ), where
λ ∈ Y(r, n), see Definition 4.13.

Suppose that V λ and V µ(n,i) denote the irreducible representations of G(r, 1, n) and
L(r, 1, n) parametrized by the r-tuple λ = (λ1, λ2, . . . , λr) ∈ Y(r, n) and (n, i)-colored
r-tuple µ(n,i) = (µ1, µ2, . . . , µ

n
i , . . . , µr) ∈ Yn(r, n − 1) for some i ∈ {1, 2, . . . , r},

respectively.
The following lemma is proved using Okounkov–Vershik approach. Part (a) is [15,

Theorem 24] and it was proved there using ∗-rim hook tableaux.

Lemma 4.6. For λ ∈ Y(r, n) and µ(n,i) ∈ Yn(r, n− 1), the following are true:
(a) As G(r, 1, n)-modules,

δ0 ⊗ V λ ∼= V sh(λ).
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(b) As L(r, 1, n)-modules,

δ0 ⊗ V µ
(n,i) ∼= V sh(µ(n,i)).

Proof. (a) A GZ-subspace of an irreducible representation of G(r, 1, n) is uniquely
determined by its weight. Also, a GZ-subspace uniquely determines the r-tuple of
Young diagrams in Y(r, n) which parametrize the irreducible representation of which
it is a GZ-subspace.

For λ = (λ1, λ2, . . . , λr) ∈ Y(r, n) with yi := |λi|, let R be the standard r-tuple of
Young tableaux written in row major order. TheGZ-subspace of type VR is isomorphic
to

σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
y1- fold

⊗σ2 ⊗ · · · ⊗ σ2︸ ︷︷ ︸
y2- fold

⊗ · · · ⊗ σr ⊗ · · · ⊗ σr︸ ︷︷ ︸
yr- fold

as a Gn-module. For i = 1, 2, . . . , n and GZ-basis element
vR = v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸

y1- fold

⊗ v2 ⊗ · · · ⊗ v2︸ ︷︷ ︸
y2- fold

⊗ · · · ⊗ vr ⊗ · · · ⊗ vr︸ ︷︷ ︸
yr- fold

we have Xi(vR) = rc(bR(i))(vR) (for the definition of Jucys–Murphy elements Xi,
see (4) in Section 2.2).

The GZ-subspace of δ0 is given by n- foldσ2⊗· · ·⊗σ2 with GZ-basis element given
by n- fold v2 ⊗ · · · ⊗ v2. Thus, the GZ-subspace of δ0 ⊗ V λ is

(σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
y1- fold

⊗σ2 ⊗ · · · ⊗ σ2︸ ︷︷ ︸
y2- fold

⊗ · · · ⊗ σr ⊗ · · · ⊗ σr︸ ︷︷ ︸
yr- fold

)⊗ (σ2 ⊗ · · · ⊗ σ2︸ ︷︷ ︸
n- fold

)

∼= σ2 ⊗ · · · ⊗ σ2︸ ︷︷ ︸
y1- fold

⊗σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
y2- fold

⊗ · · · ⊗ σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
yr- fold

∼= Vsh(R),

isomorphic as Gn-module, with basis element v′ being
(v1 ⊗ v2) · · · ⊗ (v1 ⊗ v2)︸ ︷︷ ︸

y1- fold

⊗ (v2 ⊗ v2) · · · ⊗ (v2 ⊗ v2)︸ ︷︷ ︸
y2- fold

⊗ · · · ⊗ (vr ⊗ v2) · · · ⊗ (vr ⊗ v2)︸ ︷︷ ︸
yr- fold

).

Also, for 1 6 i 6= j 6 n, we have
ζliζ
−l
j sij(v2 ⊗ · · · ⊗ v2) = v2 ⊗ · · · ⊗ v2

So, for 1 6 i 6 n,
Xi(v′) = (v2 ⊗ · · · ⊗ v2)⊗Xi(v1 ⊗ · · · ⊗ v1 ⊗ v2 ⊗ · · · ⊗ v2 ⊗ · · · ⊗ vr ⊗ · · · ⊗ vr)

= rc(bR(i))(v′)
= rc(bsh(R)(i))(vsh(R)) = Xi(vsh(R))

which implies that v′ = vsh(R).

We have shown that Vsh(R) is aGZ-subspace of δ0⊗V λ. Thus, V sh(λ), corresponding
to r-tuple sh(λ), is a G(r, 1, n)-submodule of δ0 ⊗ V λ. The irreducibility of δ0 ⊗ V λ
implies the result.

(b) This part can be proved by arguments similar to those in part (a). To be able
to do so, we note that a GZ-subspace of an irreducible representation of L(r, 1, n)
is uniquely determined by its weight, i.e. its label and the action of Jucys–Murphy
elements X1, X2, . . . , Xn−1 on it. �

Lemma 4.6 implies Corollaries 4.7 and 4.8. Part (a) of Corollary 4.7 is [15, Corol-
lary 25] and is also stated as Theorem 2.1 in [19].

Corollary 4.7. For λ ∈ Y(r, n) and µ(n,i) ∈ Yn(r, n− 1), the following are true for
t ∈ Z :
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(a) As a G(r, 1, n)-module,

δt0 ⊗ V λ ∼= V sht(λ).

(b) As a L(r, 1, n)-module,

δt0 ⊗ V µ
(n,i) ∼= V sht(µ(n,i)).

Corollary 4.8. For t ∈ Z :
(a) As a G(r, 1, n)-module, δt0 is parametrized by (∅, . . . ,∅, (n),∅, . . . ,∅) ∈
Y(r, n), where (n) occurs at (t+ 1)(mod r)-th component.

(b) As a L(r, 1, n)-module, δt0 is parametrized by the (n, (t + 1)(mod r))-colored
r-tuple (∅, . . . ,∅, (n− 1)n,∅, . . . ,∅) ∈ Yn(r, n− 1), where (n− 1)n occurs at
(t+ 1)(mod r)-th component.

We define a combinatorial object (m, p)-necklace as in [7, p. 174] which will be
useful in parametrization of irreducible G(r, p, n)-modules and L(r, p, n)-modules.

Let λ = (λ1, λ2, . . . , λr) ∈ Y(r, n). For each i such that 1 6 i 6 m, consider the
p-tuple

λ̃(i) := (λi, λm+i, λ2m+i, . . . , λ(p−1)m+i).
Depict λ̃(i) as a p-necklace in the following way: the circular necklace, with centre on
the x-axis, has p nodes and lies in a vertical xy-plane with the first node λi placed
at the point, where tangent to the necklace in (y > 0)-half plane is parallel to the
x-axis. The placement of nodes is done in clockwise direction with the j-th node being
λ(j−1)m+i and placed at a clockwise angle of 2π/(j−1) with y-axis for j = 2, . . . , p. A
(m, p)-necklace of total n boxes obtained from λ ∈ Y(r, n), denoted by λ̃, is a m-tuple

λ̃ = (λ̃(1), λ̃(2), . . . , λ̃(m)),

where λ̃(i) is a p-necklace for each 1 6 i 6 m. For 1 6 j 6 p and 1 6 i 6 m, let λ̃(i,j)
denote the j-th node in λ̃(i), i.e. λ̃(i,j) = λ(j−1)m+i. Thus, we have

m∑
i=1

p∑
j=1

λ̃(i,j) = n.

Two (m, p)-necklaces, λ̃ and µ̃, both of total boxes n, are said to be equivalent if for
some integer t, λ̃(i,j) = µ̃(i,(j+t)(mod p)) for all 1 6 j 6 p and 1 6 i 6 m. Let Y(m, p, n)
denote the set of inequivalent (m, p)-necklaces of total n boxes.

Note that for any element µ ∈ [λ], the stabilizer subgroup Cµ = Cλ. So, the
stabilizer subgroup of a representative of [λ] can be written as Cλ while considering
(m, p)-necklace λ̃.
Example 4.9. The (3, 4)-necklace of total 30 boxes obtained from

λ = ((2, 1), (3, 2), (2, 1, 1), (1), (1, 1), (1, 1), (1, 1, 1), (2, 1), (1), (2), (2), (2))
is given in Figure 5.

Theorem 4.10 and its proof follow the expositions in [1, 17, 26].
Theorem 4.10. The irreducible G(r, p, n)-modules are parametrized by the ordered
pairs (λ̃, δ), where λ̃ ∈ Y(m, p, n) and δ ∈ Cλ. Given λ ∈ Y(r, n), the restriction of the
corresponding G(r, 1, n)-module V λ to G(r, p, n) has multiplicity free decomposition
given as:

ResG(r,1,n)
G(r,p,n)(V

λ) =
⊕
δ∈Cλ

V (λ̃,δ).

Also, for µ ∈ [λ],
ResG(r,1,n)

G(r,p,n)(V
λ) ∼= ResG(r,1,n)

G(r,p,n)(V
µ).
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λ̃(1,1)

λ̃(1,2)

λ̃(1,3)

λ̃(1,4)

,

λ̃(2,1)

λ̃(2,2)

λ̃(2,3)

λ̃(2,4) ,

λ̃(3,1)

λ̃(3,2)

λ̃(3,3)

λ̃(3,4)

Figure 5. The (3, 4)-necklace obtained from λ in Example 4.9.

Proof. The group C = 〈δm0 〉 acts on the set of irreducible G(r, 1, n)-modules. For
λ ∈ Y(r, n), suppose that [λ] denotes the set of elements in Y(r, n) which parametrize
the irreducible G(r, 1, n)-modules in the orbit of V λ. Using Corollary 4.7(a), we have

[λ] = {ν | ν = shim(λ) for some i = 0, 1, . . . , p− 1}.

Let the order of the orbit [λ] be b(λ). Then, the order of the stabilizer subgroup Cλ is
u(λ) := p

b(λ) . Also, Cλ is generated by δb(λ)m
0 . The result follows from Theorem 2.8. �

Given µ̃ ∈ Y(m, p, n − 1), the (n, i, j)-colored (m, p)-necklace, denoted by µ̃(n,i,j),
is obtained by coloring µ̃(i,j) by n, for 1 6 i 6 m and 1 6 j 6 p. The colored
(m, p)-necklaces, µ̃(n,i,j) and ν̃(n,s,t), are equivalent if and only if

(i) i = s, and j = (t+ l)(mod p) for some l ∈ Z, and
(ii) the corresponding µ̃ and ν̃ are equivalent as (m, p)-necklaces using the same l

as in (i), i.e. µ̃(a,b) = ν̃(a,(b+l)(mod p)) for all 1 6 a 6 m and 1 6 b 6 p.
Let Yn(m, p, n− 1) be the set of inequivalent (n, i, j)-colored (m, p)-necklaces of total
n− 1 boxes for all 1 6 i 6 m, 1 6 j 6 p.

Example 4.11. Consider the (3, 4)-necklace λ̃ with total 30 boxes in Example 4.9.
We obtain the (31, 2, 3)-colored (3, 4)-necklace in Figure 6, denoted by λ̃(31,2,3), by
coloring λ̃(2,3) by 31.

By depicting µ = (µ1, µ2, . . . , µ
n
t , . . . , µr) ∈ Yn(r, n − 1) as a (m, p)-necklace, we

get µ̃(n,i,j) ∈ Yn(m, p, n− 1), where t = (j− 1)m+ i for a unique pair (i, j) such that
1 6 i 6 m and 1 6 j 6 p.

Theorem 4.12. The irreducible L(r, p, n)-modules are parametrized by the elements
of Yn(m, p, n − 1). For µ(n,t) ∈ Yn(r, n − 1), the restriction of the corresponding
irreducible L(r, 1, n)-module V µ(n,t) to L(r, p, n) has multiplicity free decomposition
given as:

ResL(r,1,n)
L(r,p,n)(V

µ(n,t)
) = V µ̃

(n,i,j)
,

where t = (j − 1)m + i for a unique pair (i, j) such that 1 6 i 6 m and 1 6 j 6 p.
Also, for any ν(n,s) ∈ [µ(n,t)],

ResL(r,1,n)
L(r,p,n)(V

µ(n,t)
) ∼= ResL(r,1,n)

L(r,p,n)(V
ν(n,s)

).
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λ̃(1,1)

λ̃(1,2)

λ̃(1,3)

λ̃(1,4)

,

λ̃(2,1)

λ̃(2,2)

31

λ̃(2,3)

λ̃(2,4) ,

λ̃(3,1)

λ̃(3,2)

λ̃(3,3)

λ̃(3,4)

Figure 6. The (31, 2, 3)-colored (3, 4)-necklace in Example 4.11.

Proof. The group C = 〈δm0 〉 acts on the set of irreducible L(r, 1, n)-modules. For
µ(n,t) ∈ Yn(r, n− 1), suppose that [µ(n,t)] denotes the set of elements in Yn(r, n− 1)
which parametrize the irreducible L(r, 1, n)-modules in the orbit of V µ(n,t) . Using
Corollary 4.7(b), we have

[µ(n,t)] = {ω(n,y) | ω(n,y) = shzm(µ(n,t)) for some z = 0, 1, . . . , p− 1}.

Since the color is also shifting, therefore, the number of elements in the orbit is p
and thus the stabilizer subgroup consists of identity element only. The results follow
from Theorem 2.8. �

Branching rule from G(r, p, n) to L(r, p, n). The construction of higher Specht
polynomials for G(r, p, n) from the higher Specht polynomials for G(r, 1, n) was de-
scribed in [17] to decompose a module isomorphic to left regular G(r, p, n)-module into
its irreducible submodules. Applying a similar (but not identical) construction on the
canonical GZ-bases of irreducible G(r, 1, n)-modules obtained in Okounkov–Vershik
approach in Section 2, we construct the bases of irreducible G(r, p, n)-modules in
Theorem 4.14. We use such constructed basis to show in Theorem 4.15 that the irre-
ducible G(r, p, n)-modules V (λ̃,δ1) and V (λ̃,δ2), for λ̃ ∈ Y(m, p, n) and δ1, δ2 ∈ Cλ, are
isomorphic as L(r, p, n)-modules. Theorem 4.15 is useful in the proof of Theorem 4.16
for description of branching rule from G(r, p, n) to L(r, p, n).

Definition 4.13. Fix λ ∈ Y(r, n). Define the shift map sh : Tab(r, λ) −→ Tab(r, λ) by

(T1, T2, . . . , Tr) 7→ (Tr, T1, . . . , Tr−1).

Since Cλ is generated by δmb(λ)
0 , the G(r, 1, n)-modules V λ and δ

mb(λ)
0 ⊗ V λ are

isomorphic. Suppose that T ∈ Tab(r, λ) and 1
δ
mb(λ)
0

is the basis element of one-

dimensional G(r, 1, n)-module δmb(λ)
0 . Using Corollary 4.7(a), define the G(r, 1, n)-

linear isomorphism E : V λ −→ δ
mb(λ)
0 ⊗ V λ by

vT 7→ 1
δ
mb(λ)
0

⊗ vsh−mb(λ)(T ).

Also, the map F : δmb(λ)
0 ⊗V λ −→ V λ given by 1

δ
mb(λ)
0

⊗vT 7→ vT is a G(r, p, n)-linear
isomorphism.
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The associator of V λ is given by

Aλ = FE : V λ −→ V λ

vT 7→ vsh−mb(λ)(T ).(11)

For h = 1, 2, . . . , r, we define

Tab(r, λ)h = {T = (T 1, T 2, . . . , T r) ∈ Tab(r, λ) | n ∈ T r−ν , 0 6 ν < h}.

For T ∈ Tab(r, λ)mb(λ), we get the following u(λ) distinct standard r-Young tableaux:

T, shmb(λ)(T ), sh2mb(λ)(T ), . . . , sh(u(λ)−1)mb(λ)(T ).

An element δ ∈ Cλ = 〈δmb(λ)
0 〉 can be identified with ζlmb(λ) for some 0 6 l 6 u(λ)−1.

Fixing δ ∈ Cλ, we define, for each T ∈ Tab(r, λ)mb(λ),

v
(δ)
T :=

u(λ)−1∑
t=0

ζtlmb(λ)vshtmb(λ)(T ).

The linear independence of {vT | T ∈ Tab(r, λ)} implies that {v(δ)
T | T ∈

Tab(r, λ)mb(λ)}, for a fixed δ ∈ Cλ, is linearly independent.

Theorem 4.14. For λ = (λ1, λ2, . . . , λr) ∈ Y(r, n), consider λ̃ ∈ Y(m, p, n). For each
δ ∈ Cλ, define

V (λ̃,δ) := C- span{v(δ)
T | T ∈ Tab(r, λ)mb(λ)}.

The following are true:
(a) The eigenspace decomposition of V λ with respect to the associator Aλ is:

(12) V λ =
⊕
δ∈Cλ

V (λ̃,δ).

(b) The eigenspace V (λ̃,δ), for δ ∈ Cλ, is an irreducible G(r, p, n)-module.
(c) The set {V (λ̃,δ) | λ̃ ∈ Y(m, p, n), δ ∈ Cλ} is the complete set of irreducible

G(r, p, n)-modules.

Proof. It can be seen from the definition of the associator Aλ in (11) that

Aλ(v(δ)
T ) = ζlmb(λ)(v(δ)

T ), for δ ∈ Cλ.

This implies that the subspaces V (λ̃,δ), for δ ∈ Cλ, are contained in the distinct
eigenspaces of Aλ. Thus, we have

(13)
⊕
δ∈Cλ

V (λ̃,δ) ⊂ V λ.

Also for each δ ∈ Cλ, the dimension of V (λ̃,δ) is equal to the number of elements in
Tab(r, λ)mb(λ), denoted by #(Tab(r, λ)). This implies that we have

dimV (λ̃,δ) = 1
u(λ)#(Tab(r, λ)) = 1

u(λ) dimV λ.

Thus, the dimensions of both sides in (13) are equal which implies equality in (13).
This proves part (a). The proofs of parts (b) and (c) follow from Clifford theory and
part (a) of this theorem. �

Theorem 4.15. For a fixed λ̃ ∈ Y(m, p, n) and δ1, δ2 ∈ Cλ, we have

ResG(r,p,n)
L(r,p,n) (V (λ̃,δ1)) ∼= ResG(r,p,n)

L(r,p,n) (V (λ̃,δ2)).
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Proof. The linear map θ : V (λ̃,δ1) −→ V (λ̃,δ2) defined by setting

v
(δ1)
T 7→ v

(δ2)
T , for T ∈ Tab(r, λ)mb(λ),

is an L(r, p, n)-module isomorphism. �

Given λ̃ ∈ Y(m, p, n), 1 6 i 6 m, 1 6 j 6 p, let λ̃ ↓ (i, j) denote the set of
all elements in Yn(m, p, n − 1) obtained by deleting a box from an inner corner in
λ̃(i,j) and then coloring the corresponding node by n. For a fixed 1 6 i 6 m, define
J(i) ⊆ {1, 2, . . . , p} such that for s, t ∈ J(i), s 6= t, we have λ̃ ↓ (i, s) ∩ λ̃ ↓ (i, t) = ∅.
If λ̃ ↓ (i, s) ∩ λ̃ ↓ (i, t) 6= ∅, then λ̃ ↓ (i, s) = λ̃ ↓ (i, t).

Theorem 4.16 (Branching rule from G(r, p, n) to L(r, p, n)). For λ̃ ∈ Y(m, p, n) and
δ ∈ C(λ), we have

ResG(r,p,n)
L(r,p,n) (V (λ̃,δ)) ∼=

m⊕
i=1

⊕
j∈J(i)

( ⊕
µ̃(n,i,j)∈λ̃↓(i,j)

V µ̃
(n,i,j)

)
,

and the branching rule from G(r, p, n) to L(r, p, n) is multiplicity free.

Proof. We use the transitivity of restriction from G(r, 1, n) to L(r, p, n):

G(r, 1, n) ⊃ L(r, 1, n) ⊃ L(r, p, n) and G(r, 1, n) ⊃ G(r, p, n) ⊃ L(r, p, n).

Given λ̃, we have λ ∈ Y(r, n). Considering V λ as L(r, 1, n)-module, Theorem 4.3
implies that

(14) ResG(r,1,n)
L(r,1,n) (V λ) ∼=

r⊕
t=1

( ⊕
µ∈λ↓t

V µ
(n,t))

.

Writing t = (j − 1)m + i, where 1 6 i 6 m, 1 6 j 6 p, we note that u(λ) distinct
elements of Yn(r, n− 1)

(15) µ(n,t), shmb(λ)(µ(n,t)), . . . , sh(u(λ)−1)mb(λ)(µ(n,t))

give rise to the same µ̃(n,i,j) ∈ Yn(m, p, n − 1) and j ∈ J(i). Also, from µ(n,s) (not
in (15)) such that s = (y−1)m+ i, where 1 6 y 6 p, we get µ̃(n,i,y) ∈ Yn(m, p, n−1),
not equivalent to µ̃(n,i,j), and thus y ∈ J(i) and y 6= j. Restricting V λ as L(r, p, n)-
module in (14), Theorem 4.12 implies that

(16) ResG(r,1,n)
L(r,p,n)(V λ) ∼=

(
m⊕
i=1

⊕
j∈J(i)

( ⊕
µ̃(n,i,j)∈λ↓(i,j)

V µ̃
(n,i,j)

))⊕u(λ)

.

Considering V λ as G(r, p, n)-module, Theorem 4.10 implies that

(17) ResG(r,1,n)
G(r,p,n)(V

λ) =
⊕
δ∈Cλ

V (λ̃,δ).

Further restricting V λ as L(r, p, n)-module in (17), using Theorem 4.15 and the order
of Cλ being u(λ), we get

(18) ResG(r,1,n)
L(r,p,n)(V λ) ∼=

(
ResG(r,p,n)

L(r,p,n) (V (λ̃,δ))
)⊕u(λ)

,

where δ ∈ Cλ. The result follows from (16) and (18). �

Next, we illustrate Theorem 4.16 with an example.
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Example 4.17. For the group G(4, 2, 8), consider its irreducible representation
V ((λ̃1,λ̃2),δ) of G(4, 2, 8) parametrized by ((λ̃1, λ̃2), δ), where (λ̃1, λ̃2) is the (2, 2)-
necklace obtained from λ = ((2, 1), (1), (2, 1), (1)) and δ is a fixed element of the
stabilizer subgroup Cλ. Thus, the (2, 2)-necklace (λ̃1, λ̃2) is as given in Figure 7.

,

Figure 7. The (2, 2)-necklace obtained from λ = ((2, 1), (1), (2, 1), (1)).

It can be easily seen that the sets λ̃ ↓ (1, 1) and λ̃ ↓ (1, 2) are equal and so,
J(1) contains only one element which can be chosen to be either 1 or 2. We choose
J(1) = {2}; and λ̃ ↓ (1, 2) contains two elements written as (8, 1, 2)-colored (2, 2)-
necklaces as given in Figure 8.

8

, and
8

,

Figure 8. Elements of λ̃ ↓ (1, 2).

Also, the sets λ̃ ↓ (2, 1) and λ̃ ↓ (2, 2) are equal. We choose J(2) = {2}; and
λ̃ ↓ (2, 2) contains a single element written as a (8, 2, 2)-colored (2, 2)-necklace as
given in Figure 9.

,

∅8

Figure 9. Element of λ̃ ↓ (2, 2).

Theorem 4.16 implies that as a L(4, 2, 8)-module, V ((λ̃1,λ̃2),δ) has a multiplicity free
decomposition into a direct sum of irreducible representations parametrized by the
elements of λ̃ ↓ (1, 2) ∪ λ̃ ↓ (2, 2).

5. Schur–Weyl duality for Tanabe algebras
Let V = Cn be the n-dimensional vector space with standard basis {v1, v2, . . . , vn}.
There is a natural action of GLn(C) on V . For k ∈ Z>0, consider the k-fold tensor
product V ⊗k = V ⊗ V ⊗ · · · ⊗ V with the basis

{vi1 ⊗ vi2 ⊗ · · · ⊗ vik | 1 6 i1, i2, . . . , ik 6 n}.
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With respect to this basis, F ∈ End(V ⊗k) can be written as a matrix
(
F i1,··· ,iki1′ ,··· ,ik′

)
such that

(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)F =
∑

16i1′ ,i2′ ,...,ik′6n
F i1,··· ,iki1′ ,··· ,ik′ (vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ).

The action of GLn(C) on V ⊗k is given by

g(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = gvi1 ⊗ gvi2 ⊗ · · · ⊗ gvik
for g ∈ GLn(C) and vi1 ⊗ vi2 ⊗ · · · ⊗ vik ∈ V ⊗k. The symmetric group Sn can be
identified with the subgroup of permutation matrices of GLn(C). Also, we can identify
the subgroup Sn−1 of Sn fixing n with the subgroup of of permutation matrices having
(n, n)-th entry as 1 of GLn(C). The action of Sn on V ⊗k is given by the restriction
of the action of GLn(C) to Sn. Define V ⊗(k+ 1

2 ) := V ⊗k ⊗ vn, a subspace of V ⊗(k+1),
which is isomorphic to V ⊗k as a Sn−1-module.

Define a map

φk : CAk(n)→ End(V ⊗k)
d 7→ φk(d)

such that for d ∈ Ak and for 1 6 i1, i2, . . . , ik, i1′ , i2′ , . . . , ik′ 6 n,

(vi1 ⊗ vi2 ⊗· · ·⊗ vik)(φk(d)) =
∑

16i1′ ,i2′ ,...,ik′6n
(φk(d))i1,i2,...,iki1′ ,i2′ ,...,ik′

(vi1′ ⊗ vi2′ ⊗· · ·⊗ vik′ )

where

(19) (φk(d))i1,i2,...,iki1′ ,i2′ ,...,ik′
=


1, if ir = is when r and s are

in the same block of d,
0, otherwise.

This defines a right action of CAk(n) on V ⊗k as:

(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)d := (vi1 ⊗ vi2 ⊗ · · · ⊗ vik)(φk(d)).

It follows from (8) and (19) that for all d ∈ Ak,

(φk(xd))i1,i2,...,iki1′ ,i2′ ,...,ik′
=


1, if ir = is if and only if r and s

are in the same block of d,
0, otherwise.

(20)

The action of the partition algebra CAk+ 1
2
(n) on V ⊗(k+ 1

2 ) is

φk+ 1
2

: CAk+ 1
2
(n) −→ End(V ⊗(k+ 1

2 ))

given by φk+ 1
2

= φk+1|CA
k+ 1

2
(n)

.

The following theorem is [8, Theorem 3.6] which shows that CAk(n) and CAk+ 1
2
(n)

are in Schur–Weyl duality with Sn and Sn−1 acting on V ⊗k and V ⊗(k+ 1
2 ), respectively.

Theorem 5.1.
(a) The image of the map φk : CAk(n) → End(V ⊗k) is given by EndSn(V ⊗k)

and the kernel is given by

C- span{xd | d has more than n blocks}.

Thus, the partition algebra CAk(n) is isomorphic to EndSn(V ⊗k) if and only
if n > 2k.
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(b) The image of the map φk+ 1
2

: CAk+ 1
2
(n) → End(V ⊗(k+ 1

2 )) is given by
EndSn−1(V ⊗(k+ 1

2 )) and the kernel is given by

C- span{xd | d has more than n blocks}.

Thus, the partition algebra CAk+ 1
2
(n) is isomorphic to EndSn−1(V ⊗(k+ 1

2 )) if
and only if n > 2k + 1.

Let Πk(r, n) and Πk+ 1
2
(r, n) be subsets of Πk(r) and Πk+ 1

2
(r) (defined in Section 3),

respectively, consisting of those elements which have at most n blocks. Define

Πk(r, p, n) :− Πk(r, n) ∪ Λk(r, p, n), and
Πk+ 1

2
(r, p, n) :− Πk+ 1

2
(r, n) ∪ Λk+ 1

2
(r, p, n),

subsets of Ak(r, p, n) and Ak+ 1
2
(r, p, n), respectively.

The actions of G(r, p, n) and L(r, p, n) on V are given by restrictions of the action
of GLn(C) on V . Also, V is the reflection representation of G(r, p, n). We note that
C-span{vn} is a L(r, p, n)-invariant subspace of V . The following lemma gives bases
of the centralizer algebras of the diagonal actions of G(r, p, n) and L(r, p, n) on V ⊗k
and V ⊗(k+ 1

2 ), respectively. Part (a) is [27, Lemma 2.1] and we follow the proof there
to prove part (b) here.

Lemma 5.2.
(a) {φk(xd)) | d ∈ Πk(r, p, n)} is a basis of EndG(r,p,n)(V ⊗k).
(b) {φk+ 1

2
(xd) | d ∈ Πk+ 1

2
(r, p, n)} is a basis of EndL(r,p,n)(V ⊗(k+ 1

2 )).

Proof. (b) An element d ∈ Πk+ 1
2
(r, p, n) has at most n blocks. By part (b) of Theo-

rem 5.1, φk+ 1
2
(xd) 6= 0. Also,

{φk+ 1
2
(xd) | d ∈ Πk+ 1

2
(r, p, n)} ⊂ {φk+ 1

2
(xd) | d ∈ Ak+ 1

2
}

is a linearly independent set.
Since Sn−1 is a subgroup of L(r, p, n), thus we have

EndL(r,p,n)(V ⊗(k+ 1
2 )) ⊂ EndSn−1(V ⊗(k+ 1

2 )).

Choose 0 6= F ∈ EndL(r,p,n)(V ⊗(k+ 1
2 )). Then, F can be written as

F =
∑

d∈A
k+ 1

2

adφk+ 1
2
(xd)

=
∑

d∈Π
k+ 1

2
(r,p,n)

adφk+ 1
2
(xd) +

∑
d∈A

k+ 1
2
,

d/∈Π
k+ 1

2
(r,p,n)

adφk+ 1
2
(xd).

with φk+ 1
2
(xd) 6= 0 and ad 6= 0 for some d ∈ Ak+ 1

2
. Fix such a d ∈ Ak+ 1

2
and let

1 6 i1, . . . , ik, i1′ , . . . , ik′ 6 n with ik+1 = i(k+1)′ = n such that

(φk(xd))i1,i2,...,ik,ni1′ ,i2′ ,...,ik′ ,n
= 1.

For 1 6 u 6 n, define

Bu := {j ∈ {1, . . . , k + 1, 1′, . . . , (k + 1)′} | ij = u}.

Note that d = {B1, B2, . . . , Bn}, where some of the blocks B1, B2, . . . , Bn−1 may be
empty and {k + 1, (k + 1)′} ⊆ Bn.

For 1 6 i 6 n, define
ti := (1, . . . , 1, ζp, 1, . . . , 1),
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where ζp is i-th component, and for 1 6 i 6= j 6 n, define

hij := (1, . . . , 1, ζ, 1, . . . , 1, ζ−1, 1, . . . , 1),

where ζ and ζ−1 are i-th and j-th components, respectively. The elements ti, for
1 6 i 6 n, and the elements hij , for 1 6 i 6= j 6 n, together generate D(r, p, n).

For 1 6 i 6 n,

t−1
i Fti(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vik+1) = (vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vik+1)F

implies that∑
i1′ ,i2′ ,...,ik′

ζp(N(Bi)−M(Bi))F
i1,··· ,ik,ik+1
i1′ ,··· ,ik′ ,i(k+1)′

(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ⊗ vi(k+1)′ )

=
∑

i1′ ,i2′ ,...,ik′

F
i1,··· ,ik,ik+1
i1′ ,··· ,ik′ ,i(k+1)′

(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ⊗ vi(k+1)′ ).(21)

For 1 6 i 6= j 6 n,

h−1
ij Fhij(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vik+1) = (vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vik+1)F

implies that∑
i1′ ,i2′ ,...,ik′

ζ(N(Bi)−M(Bi))−(N(Bj)−M(Bj))F
i1,··· ,ik,ik+1
i1′ ,··· ,ik′ ,i(k+1)′

(vi1′ ⊗vi2′ ⊗· · ·⊗vik′ ⊗vi(k+1)′ )

=
∑

i1′ ,i2′ ,...,ik′

F
i1,··· ,ik,ik+1
i1′ ,··· ,ik′ ,i(k+1)′

(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ⊗ vi(k+1)′ ).(22)

From (21) and (22) we have

N(Bi) ≡M(Bi)(modm), for 1 6 i 6 n,(23)
N(Bi)−M(Bi) ≡ N(Bj)−M(Bj)(mod r), for 1 6 i 6= j 6 n.(24)

The following two cases arise.
(i) If N(B1) ≡ M(B1)(mod r), then (24) implies that N(Bi) ≡ M(Bi)(mod r)

for all 1 6 i 6 n. So, we have

d ∈ Πk+ 1
2
(r, n).

(ii) If N(B1) 6≡ M(B1)(mod r), then (24) implies that N(Bi) 6≡ M(Bi)(mod r)
for all 1 6 i 6 n. Thus, the number of elements, N(Bi) +M(Bi), in the block
Bi is nonzero for all 1 6 i 6 n. So, all the n blocks, B1, . . . , Bn, in d are
nonempty. Along with (23), we get d ∈ Λk+ 1

2
(r, p, n).

Combining both the cases we get that d ∈ Πk+ 1
2
(r, p, n). �

Recall from Section 3 that Tanabe algebras Tk(r, p, n) and Tk+ 1
2
(r, p, n) are sub-

algebras of partition algebras CAk(n) and CAk+ 1
2
(n), respectively. The actions of

Tk(r, p, n) and Tk+ 1
2
(r, p, n) on V ⊗k and V ⊗(k+ 1

2 ), respectively, are given by:

ψk : Tk(r, p, n) −→ End(V ⊗k) with ψk := φk|Tk(r,p,n)
,

and ψk+ 1
2

: Tk+ 1
2
(r, p, n) −→ End(V ⊗(k+ 1

2 )) with ψk+ 1
2

:= φk+ 1
2 |Tk+ 1

2
(r,p,n)

.

Using Theorem 5.3 and Corollary 5.5, we get that Tk(r, p, n) and Tk+ 1
2
(r, p, n) are

in Schur–Weyl duality with G(r, p, n) and L(r, p, n) acting on V ⊗k and V ⊗(k+ 1
2 ),

respectively.
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Theorem 5.3.
(a) The image of the map ψk : Tk(r, p, n)→End(V ⊗k) is given by EndG(r,p,n)(V ⊗k)

and the kernel is given by
C- span{xd | d ∈ Ak(r, p, n) has more than n blocks}.

Thus, Tanabe algebra Tk(r, p, n) is isomorphic to EndG(r,p,n)(V ⊗k) if and only
if n > 2k.

(b) The image of the map ψk+ 1
2

: Tk+ 1
2
(r, p, n) → End(V ⊗(k+ 1

2 )) is given by
EndL(r,p,n)(V ⊗(k+ 1

2 )) and the kernel is given by
C- span{xd | d ∈ Ak+ 1

2
(r, p, n) has more than n blocks}.

Thus, Tanabe algebra Tk+ 1
2
(r, p, n) is isomorphic to EndL(r,p,n)(V ⊗(k+ 1

2 )) if
and only if n > 2k + 1.

Proof. (a) For r = 1, this is Theorem 5.1(a) which is Schur–Weyl duality between
CAk(n) and Sn acting on V ⊗k. Now consider r > 2. Using Lemma 5.2(a), we have

EndG(r,p,n)(V ⊗k) = C- span{ψk(xd) | d ∈ Πk(r, p, n)} ⊂ ψk(Tk(r, p, n)).
The element d ∈ Ak(r, p, n)rΠk(r, p, n) has more than n blocks. So, Theorem 5.1(a)
implies that

(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)ψk(xd) = 0,
for vi1 ⊗ vi2 ⊗ · · · ⊗ vik ∈ V ⊗k. Thus, we get the image and kernel as stated in the
theorem. The kernel of ψk is zero if and only if n > 2k.

(b) The proof of this part is along the similar lines as that of part (a) using
Lemma 5.2(b) and Theorem 5.1(b). �

Remark 5.4. Putting p = 1 in Theorem 5.3(a) we recover Schur–Weyl duality between
Tk(r, 1, n) and G(r, 1, n) as given in [19, Theorem 5.4].

Using the diagonal actions of G(r, p, n) and L(r, p, n) on V ⊗k and V ⊗(k+ 1
2 ), respec-

tively, we define the following maps

ϑk : C[G(r, p, n)]→ End(V ⊗k) and ϑk+ 1
2

: C[L(r, p, n)]→ End(V ⊗(k+ 1
2 )).

Corollary 5.5.Assume that n > 2k. Then,
(a) The image of the map ϑk : C[G(r, p, n)] → End(V ⊗k) is given by

EndTk(r,p,n)(V ⊗k).
(b) The image of the map ϑk+ 1

2
: C[L(r, p, n)] → End(V ⊗(k+ 1

2 )) is given by
EndT

k+ 1
2

(r,p,n)(V ⊗(k+ 1
2 )).

Proof. (a) Theorem 5.3(a) implies that for n > 2k, the algebra Tk(r, p, n) is isomorphic
to EndG(r,p,n)(V ⊗k) and the action of Tk(r, p, n) on V ⊗k commutes with the action of
G(r, p, n) on V ⊗k. So, ϑk(C[G(r, p, n)]) ⊆ EndTk(r,p,n)(V ⊗k). Using double centralizer
theorem [3, Theorem 1.3], we get that ϑk(C[G(r, p, n)]) = EndTk(r,p,n)(V ⊗k).

(b) Theorem 5.3(b) and double centralizer theorem imply part (b). �

6. Bratteli diagram of Tanabe algebras
Let us first study the decomposition of V ⊗k and V ⊗(k+ 1

2 ) as G(r, p, n)-module and
as L(r, p, n)-module, respectively. For the rest of the paper, we assume that r > 2.

It can be easily seen using Okounkov–Vershik approach that the G(r, 1, n)-module
V is an irreducible module parametrized by ((n − 1), (1),∅, . . . ,∅) ∈ Y(r, n). Using
the theory of Section 4, we see that for (r, p, n) 6= (2, 2, 2), the G(r, p, n)-module V is
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an irreducible module parametrized by (λ̃, δ), where λ̃ ∈ Y(m, p, n) and δ ∈ Cλ are
as follows:

(i) If p 6= r, then λ̃ = (λ̃(1), . . . , λ̃(m)) with

λ̃(1) = ((n− 1),∅, . . . ,∅),
λ̃(2) = ((1),∅, . . . ,∅),
λ̃(i) = (∅, . . . ,∅), for i = 3, . . . ,m,

and δ = 1 since Cλ = {1}.
(ii) If p = r and (r, p, n) 6= (2, 2, 2), then λ̃ = (λ̃(1)) = ((n− 1), (1),∅, . . . ,∅) and

δ = 1 since Cλ = {1}.
For (r, p, n) = (2, 2, 2), V is the direct sum of irreducible G(2, 2, 2)-modules
parametrized by (((1), (1)), 1) and (((1), (1)),−1).

Suppose that 1n is the trivial representation of G(r, 1, n). Then, σ = 1n−1 ⊗ σ2
is a one-dimensional representation of L(r, 1, n) and thus, by restriction, a represen-
tation of L(r, p, n). The parametrization of σ as a L(r, 1, n)-module is µ = ((n −
1),∅n,∅, . . . ,∅) ∈ Yn(r, n − 1). The parametrization of σ as a L(r, p, n)-module is
µ̃(n,i,j) ∈ Yn(m, p, n− 1) given as follows:

(i) If p 6= r, then i = 2, j = 1 and µ̃(n,2,1) = (µ̃(1), µ̃
(n,1)
(2) , . . . , µ̃(m)) with

µ̃(1) = ((n− 1),∅, . . . ,∅),

µ̃
(n,1)
(2) = (∅n,∅, . . . ,∅),
µ̃(i) = (∅, . . . ,∅) for i = 3, . . . ,m.

(ii) If p = r, then i = 1, j = 2 and µ̃(n,1,2) = (µ̃(n,2)
(1) ) = ((n− 1),∅n,∅, . . . ,∅).

Using the above parametrizations of V and σ, by Frobenius reciprocity and Theo-
rem 4.16, we have (for (r, p, n) = (2, 2, 2) also)

V ∼= IndG(r,p,n)
L(r,p,n) (σ).

Let M be a G(r, p, n)-module. Then using the tensor identity, we have

IndG(r,p,n)
L(r,p,n)

(
ResG(r,p,n)

L(r,p,n) (M)⊗ σ
)
∼= M ⊗ IndG(r,p,n)

L(r,p,n) (σ)

∼= M ⊗ V.

Thus, taking M = V ⊗(k−1) for k > 1, we have

IndG(r,p,n)
L(r,p,n)

(
ResG(r,p,n)

L(r,p,n) (V ⊗(k−1))⊗ σ
)
∼= V ⊗k(25)

and ResG(r,p,n)
L(r,p,n)

(
IndG(r,p,n)

L(r,p,n)

(
ResG(r,p,n)

L(r,p,n) (V ⊗(k−1))⊗ σ
))
∼= V ⊗k(26)

as G(r, p, n)-module and L(r, p, n)-module, respectively.
It will be clear from the context whether we consider σ as a L(r, 1, n)-module or as a

L(r, p, n)-module. Given λ(n,t) ∈ Yn(r, n−1), assume that V λ(n,t) is the corresponding
irreducible L(r, 1, n)-module.

Lemma 6.1. For λ(n,t) ∈ Yn(r, n− 1)

(27) V λ
(n,t)
⊗ σ = V λ

(n,z)

where λ(n,z) ∈ Yn(r, n− 1) and z = (t+ 1)(mod r).
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Proof. Noting that the GZ-subspace of σ is given by σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
(n−1)- fold

⊗σ2 with GZ-basis

element given by v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
(n−1)- fold

⊗v2, the proof is similar to that of Theorem 4.6. �

Given an (n, i, j)-colored (m, p)-necklace λ̃(n,i,j) ∈ Yn(m, p, n − 1), suppose that
V λ̃

(n,i,j) is the corresponding irreducible L(r, p, n)-module.

Lemma 6.2. For λ̃(n,i,j) ∈ Yn(m, p, n− 1)

(28) V λ̃
(n,i,j)

⊗ σ = V λ̃
(n,x,y)

where λ̃(n,x,y) ∈ Yn(m, p, n− 1) is obtained from λ̃(n,i,j) by the following rule:
(a) If i < m, then x = i+ 1 and y = j;
(b) If i = m, then x = 1 and y = (j + 1)(mod p).

Proof. The proof follows by using Lemma 6.1 and Theorem 4.12. �

Define the sets Ωk(r, p, n) and Ωk+ 1
2
(r, p, n) as follows. Let

Ω0(r, p, n) = {(λ̃, 1)}
where λ̃ = (((n),∅, . . . ,∅), (∅, . . . ,∅), . . . , (∅, . . . ,∅)) ∈ Y(m, p, n). For k ∈ Z>0 the
sets Ωk(r, p, n) ⊆ Y(m, p, n)×C and Ωk+ 1

2
(r, p, n) ⊆ Yn(m, p, n− 1) are obtained by

the following recursive rule.
From Ωk(r, p, n) to Ωk+ 1

2
(r, p, n):

For (λ̃, δ) ∈ Ωk(r, p, n), let λ̃(i,j)− ∈ Y(m, p, n − 1) be the set of (m, p)-necklaces
obtained by deleting an inner corner from λ̃(i,j). For µ̃ ∈ λ̃(i,j)−, color µ̃ by (n, i, j)
to obtain µ̃(n,i,j) ∈ Ωk+ 1

2
(r, p, n).

From Ωk+ 1
2
(r, p, n) to Ωk+1(r, p, n):

For µ̃(n,i,j) ∈ Ωk+ 1
2
(r, p, n), remove the color (n, i, j) to get µ̃ ∈ Y(m, p, n− 1) and

then add a box to an outer corner, either in the j-th node of (i + 1)-th component
of µ̃ if 1 6 i 6 m − 1 or in the (j + 1)(mod p)-th node of the first component of µ̃
if i = m, to obtain ν̃ ∈ Y(m, p, n). Let Cν be the corresponding stabilizer subgroup.
For δ ∈ Cν ⊆ C, the element (ν̃, δ) ∈ Ωk+1(r, p, n).

Theorem 6.3. The indexing sets of the irreducible G(r, p, n)-modules occuring in
V ⊗k and of the irreducible L(r, p, n)-modules occuring in V ⊗(k+ 1

2 ) are Ωk(r, p, n) and
Ωk+ 1

2
(r, p, n), respectively.

Proof. The proof follows from (25), (26), Lemma 6.2, branching rule from G(r, p, n) to
L(r, p, n) in Theorem 4.16, Frobenius reciprocity and the observation that the spaces
V ⊗(k+ 1

2 ) and V ⊗k are isomorphic as L(r, p, n)-modules. �

Theorem 6.4. The indexing sets of the irreducible EndG(r,p,n)(V ⊗k)-modules and of
the irreducible EndL(r,p,n)(V ⊗(k+ 1

2 ))-modules are Ωk(r, p, n) and Ωk+ 1
2
(r, p, n), respec-

tively.

Proof. The proof is a consequence of the centralizer theorem ([8, Theorem 5.4]) and
Theorem 6.3. �

Theorem 6.5. Let n and k be nonnegative integers.
(a) For n > 2k, as (C[G(r, p, n)], Tk(r, p, n))-bimodule,

V ⊗k ∼=
⊕

(λ̃,δ)∈Ωk(r,p,n)

(
V (λ̃,δ) ⊗ T (λ̃,δ)

k

)
,
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where V (λ̃,δ) is the irreducible G(r, p, n)-module and T (λ̃,δ)
k is the irreducible

Tk(r, p, n)-module parametrized by (λ̃, δ) ∈ Ωk(r, p, n). Also

dim(T (λ̃,δ)
k ) = the number of paths from (((n),∅, . . . ,∅), 1) ∈ Ω0(r, p, n)

to (λ̃, δ) ∈ Ωk(r, p, n) in the Bratteli diagram T̂ (r, p, n).
(b) For n > 2k + 1, as (C[L(r, p, n)], Tk+ 1

2
(r, p, n)))-bimodule,

V ⊗(k+ 1
2 ) ∼=

⊕
µ̃(n,i,j)∈Ω

k+ 1
2

(r,p,n)

(
V µ̃

(n,i,j)
⊗ T µ̃(n,i,j)

k+ 1
2

)
,

where V µ̃
(n,i,j) is the irreducible L(r, p, n)-module and T µ̃(n,i,j)

k+ 1
2

is the irre-
ducible Tk+ 1

2
(r, p, n)-module parametrized by µ̃(n,i,j) ∈ Ωk+ 1

2
(r, p, n) and

dim(T µ̃(n,i,j)

k ) = the number of paths from (((n),∅, . . . ,∅), 1) ∈ Ω0(r, p, n)

to µ̃(n,i,j) ∈ Ωk+ 1
2
(r, p, n) in the Bratteli diagram T̂ (r, p, n).

Proof. The proofs of (a) and (b) follow from Theorem 5.3(a) and (b), respectively
along with the centralizer theorem, Theorem 6.3 and Theorem 6.4. �

For (λ̃, δ) ∈ Ωk(r, p, n), define the set A(λ̃,δ)
k− 1

2
as consisting of the elements µ̃(n,i,j) ∈

Ωk− 1
2
(r, p, n) for some 1 6 i 6 m and 1 6 j 6 p such that (λ̃, δ) is obtained from

µ̃(n,i,j) while constructing Ωk(r, p, n) from Ωk− 1
2
(r, p, n). For µ̃(n,i,j) ∈ Ωk+ 1

2
(r, p, n),

define the set Aµ̃
(n,i,j)

k as consisting of the elements (λ̃, δ) ∈ Ωk(r, p, n) such that
µ̃(n,i,j) is obtained from (λ̃, δ) while constructing Ωk+ 1

2
(r, p, n) from Ωk(r, p, n).

Corollary 6.6.
(a) For n > 2k and for (λ̃, δ) ∈ Ωk(r, p, n), we have

ResTk(r,p,n)
T
k− 1

2
(r,p,n)(T (λ̃,δ)

k ) =
⊕

µ̃(n,i,j)∈A(λ̃,δ)
k− 1

2

T µ̃(n,i,j)

k− 1
2

.

(b) For n > 2k + 1 and for µ̃(n,i,j) ∈ Ωk+ 1
2
(r, p, n), we have

Res
T
k+ 1

2
(r,p,n)

Tk(r,p,n) (T µ̃(n,i,j)

k+ 1
2

) =
⊕

(λ̃,δ)∈Aµ̃
(n,i,j)
k

T (λ̃,δ)
k .

Proof. (a) Using Theorem 6.5(a) and (25),

T (λ̃,δ)
k

∼= HomG(r,p,n)(V ⊗k, V (λ̃,δ))
∼= HomG(r,p,n)(IndG(r,p,n)

L(r,p,n) ((ResG(r,p,n)
L(r,p,n) V

⊗(k−1))⊗ σ), V (λ̃,δ)).

From the above isomorphism and Frobenius reciprocity, we get

(29) ResTk(r,p,n)
T
k− 1

2
(r,p,n) T (λ̃,δ)

k

∼= ResTk(r,p,n)
T
k− 1

2
(r,p,n) HomL(r,p,n)((ResG(r,p,n)

L(r,p,n) V
⊗(k−1))⊗ σ,ResG(r,p,n)

L(r,p,n)V
(λ̃,δ))

∼= HomL(r,p,n)(V ⊗(k− 1
2 ), σ′ ⊗ ResG(r,p,n)

L(r,p,n)V
(λ̃,δ)),

where σ′ is the contragredient representation of σ. As L(r, 1, n)-representation, σ′ =
σ−1 = σ ⊗ · · · ⊗ σ︸ ︷︷ ︸

(r−1)- fold

is parametrized by ((n − 1),∅, . . . ,∅,∅n) ∈ Yn(r, n). First using
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Theorem 4.16 and then by the repeated application of Lemma 6.2, we compute σ′ ⊗
ResG(r,p,n)

L(r,p,n)V
(λ̃,δ). Then, from (29) and Theorem 6.5(b), we have the restriction rule.

(b) The proof is along the similar lines as that of part (a) using Theo-
rem 6.5(b), (26), Theorem 4.16, Frobenius reciprocity and Theorem 6.5(a). �

Orellana [19, p. 614] describes the rule for recursively constructing Bratteli diagram
for the tower of algebras

T0(r, 1, n) ⊆ T1(r, 1, n) ⊆ T2(r, 1, n) ⊆ · · · .
We consider the tower of Tanabe algebras
(30) T0(r, p, n) ⊆ T 1

2
(r, p, n) ⊆ T1(r, p, n) ⊆ T 3

2
(r, p, n) ⊆ · · · ⊆ Tbn2 c(r, p, n)

and using Theorems 6.3, 6.4 and Corollary 6.6, construct the corresponding Bratteli
diagram T̂ (r, p, n) recursively by the following rule: For l ∈ 1

2Z>0, the vertices at
l-th level of Bratteli diagram are elements of the set Ωl(r, p, n). A vertex vl at l-
th level is connected by an edge with a vertex vl+ 1

2
at (l + 1

2 )-th level if and only if
vl+ 1

2
is obtained from vl while constructing Ωl+ 1

2
(r, p, n) from Ωl(r, p, n). The Bratteli

diagram of Tanabe algebras is a simple graph.
Remark 6.7. For t ∈ Z>0, t 6 bn2 c and (λ̃, δ) ∈ Ωt(r, p, n), the stabilizer subgroup Cλ
is non-trivial if and only if (r, p, n) = (2, 2, 2k) and t = k; in this case Cλ = {1,−1}.
Thus, for n > 2k, there is a one-to-one correspondence between the irreducible repre-
sentations of the same degree occuring at t-th level in Bratteli diagrams for Tk(r, 1, n)
and Tk(r, p, n) if and only if (r, p, n, t) 6= (2, 2, 2k, k); the correspondence in terms of
parametrization is λ 7→ (λ̃, 1).

We draw Bratteli diagram, up to level k = 2, of Tanabe algebras for (r, p, n) =
(2, 2, 4) in Figure 10. Note that at level k = 2, a node parametrized by (λ̃,−1) also
appears when λ = ((2), (2)) because Cλ is nontrivial.

k = 0 :

k = 1
2 :

k = 1 :

k = 3
2 :

k = 2 :

(
((4), ∅), 1

)

(
((3)

4
, ∅)

)

(
((3), (1)), 1

)

(
((2)

4
, (1))

) (
((3) , ∅ 4)

)

(
((2), (2)), 1

) (
((2), (2)),−1

) (
((2), (1, 1)), 1

) (
((4), ∅), 1

) (
((3, 1), ∅), 1

)

Figure 10. Bratteli diagram, up to level k = 2, of Tanabe algebras
for (r, p, n) = (2, 2, 4).

In Figure 11, we draw Bratteli diagram, up to level k = 5
2 , of Tanabe alge-

bras for (r, p, n) = (6, 2, 6). Note that the representation T v
5
2
corresponding to v =(

((4), ∅), ((1)6, ∅), (∅, ∅))
)
is of dimension two. To accommodate the figure, the

last two vertices in the level k = 2 in Figure 11 have been denoted by v1 and v2,
where v1 = (((4)6, ∅), (∅, ∅), ((1), ∅))) and v2 = (((5), ∅), (∅, ∅), (∅6, ∅))).

Algebraic Combinatorics, Vol. 3 #2 (2020) 420



On representation theory of Tanabe algebras

k = 0 :

k = 1
2 :

k = 1 :

k = 3
2 :

k = 2 :

k = 5
2 :

(
((6), ∅), (∅, ∅), (∅, ∅)), 1

)

(
((5)

6
, ∅), (∅, ∅) (∅, ∅))

)

(
((5) , ∅), ((1), ∅), (∅, ∅)), 1

)

(
((4)

6
, ∅), ((1), ∅), (∅, ∅))

) (
((5) , ∅), (∅ 6, ∅), (∅, ∅))

)

(
((4) , ∅), ((2), ∅), (∅, ∅)), 1

) (
((4) , ∅), ((1, 1), ∅), (∅, ∅))), 1

)(
((5) , (∅)), (∅, ∅), ((1), ∅))), 1

)

(
((3)

6
, ∅), ((2), ∅), (∅, ∅))

) (
((4), ∅), ((1)6, ∅), (∅, ∅))

) (
((3)6, ∅), ((1, 1), ∅), (∅, ∅))

)
v1 v2

Figure 11. Bratteli diagram, up to level k = 5
2 , of Tanabe algebras

for (r, p, n) = (6, 2, 6).

7. Jucys–Murphy elements for Tanabe algebras
Recall from Section 2 that the Jucys–Murphy elements for G(r, 1, n) are:

X1 = 0,

and Xj =
j−1∑
i=1

r−1∑
l=0

ζliζ
−l
j sij , 2 6 j 6 n.

For T ∈ Tab(r, λ), we have ∑
b∈λ

c(b) :=
n∑
j=1

c(bT (j))

and it is easily seen that
∑
b∈λ

c(b) is independent of the choice of T ∈ Tab(r, λ).

Lemma 7.1.
(a) For r, n ∈ Z>0,

κr,n := 1
r

r−1∑
l=0

∑
16i<j6n

ζliζ
−l
j sij

is a central element of C[G(r, p, n)] and κr,n =
∑
b∈λ

c(b) as operators on V (λ̃,δ),

the irreducible G(r, p, n)-module parametrized by (λ̃, δ) ∈ Y(m, p, n)× Cλ.
(b) For r, n ∈ Z>0,

κr,n−1 := 1
r

r−1∑
l=0

∑
16i<j6n−1

ζliζ
−l
j sij

is a central element of C[L(r, p, n)] and κr,n−1 =
∑
b∈µ

c(b) as operators on

V µ
(n,i) , the irreducible L(r, 1, n)-module parametrized by µ(n,i) ∈ Yn(r, n−1).
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Proof. (a) First, we consider the case p = 1. Being the sum of elements in the conju-
gacy class of (1, 1, . . . , 1, s12), κr,n is a central element of C[G(r, 1, n)] and

κr,n = 1
r

n∑
j=1

Xj .

For the irreducible G(r, 1, n)-module V λ parametrized by λ ∈ Y(r, n), the canonical
decomposition of V λ into GZ-subspaces is

V λ =
⊕

T∈Tab(r,λ)
VT .

Using Theorem 2.7 for the action of Jucys–Murphy elements of G(r, 1, n), we have

κr,n(vT ) =
n∑
j=1

c(bT (j))(vT ) =
(∑
b∈λ

c(b)
)
vT

where vT is GZ-basis element corresponding to T ∈ Tab(r, λ). Thus, κr,n =
∑
b∈λ

c(b)

as operators on V λ. For a divisor p of r, note that κr,n ∈ C[G(r, p, n)] ⊆ C[G(r, 1, n)].
Thus, κr,n is a central element of C[G(r, p, n)] also, and its action on the irreducible
G(r, p, n)-module V (λ̃,δ) follows by restricting the action of G(r, 1, n) on V λ.

(b) The proof is along the similar lines as that of part (a). �

Now, we describe a particular central element in C[G(2, 2, 2k)]. The conju-
gacy class C of the element (1, 1, . . . , 1, (1, 2)(3, 4) · · · (2k − 1, 2k)) in G(2, 1, 2k)
consists of the elements of the form (a1, a2, . . . , a2k, (i1, i2)(i3, i4) · · · (i2k−1, i2k))
such that (i1, i2), (i3, i4), . . . , (i2k−1, i2k) are mutually disjoint transpositions in
S2k, and aijaij+1 = 1 for all j = 1, 3, . . . , 2k − 1 with ai ∈ G = Z/2Z =
{1,−1} for all i = 1, . . . , 2k. Using [24, Theorem 11], the conjugacy class of
(1, 1, . . . , 1, (1, 2)(3, 4) · · · (2k − 1, 2k)) in G(2, 1, 2k) decomposes into two conjugacy
classes, denoted by C1 and C2, in G(2, 2, 2k) with representatives

c1 = (−1,−1, 1, . . . , 1, (1, 2)(3, 4) · · · (2k − 1, 2k))
and c2 = (1, 1, . . . , 1, (1, 2)(3, 4) · · · (2k − 1, 2k)),

respectively. The classes C1 and C2 consist of those elements in C such that the
number of pairs (aij , aij+1) = (−1,−1), where j = 1, 3, . . . , 2k − 1, is odd and even,
respectively. Let z1 and z2 be the conjugacy class sums of C1 and C2, respectively.
Define z = z2 − z1 which is a central element in C[G(2, 2, 2k)].

Lemma 7.2. Let λ ∈ Y(2, 2k). Then,
(a) For λ 6= ((k), (k)), z = 0 as operators on the irreducible G(2, 2, 2k)-module

V (λ̃,1).
(b) For λ = ((k), (k)), z = 2kk! as operators on the irreducible G(2, 2, 2k)-

module V (λ̃,1) and z = −2kk! as operators on the irreducible G(2, 2, 2k)-
module V (λ̃,−1).

Proof. In the following, we use [16, Theorem 6.10] to describe the action of z on
irreducible G(2, 2, 2k)-modules. The irreducible G(2, 1, 2k)-module V λ parametrized
by λ = (λ1, λ2) ∈ Y(2, 2k) has a GZ-basis element vR where R = (R1, R2) is the
element of Tab(2, λ) written in row major order, i.e. the entries in R1 are in from
1, . . . , |λ1| and entries in R2 are from |λ1|+ 1, . . . , |λ1|+ |λ2|, both filled in row major
order. We have the following cases:

(a) λ 6= ((k), (k)): V λ remains irreducible as G(2, 2, 2k)-module and V (λ̃,1) = V λ

with v(1)
R = vR as one of the basis elements using the parametrization of irreducible
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G(2, 2, 2k)-module in Theorem 4.10 and construction of basis of irreducibleG(2, 2, 2k)-
modules.

Let Y be the set of those π ∈ S2k which can be written as a product of disjoint
transpositions such that the elements of each transposition are either in R1 or in R2.
For a fixed π ∈ Y , the action of

∑
(a1, . . . , a2k, π) on v(1)

R , where the sum is over all
such elements in C1, is equal to the action of

∑
(b1, . . . , b2k, π) on v(1)

R , where the sum
is over all such elements in C2.

The coefficient of vR in tv
(1)
R is zero for any t ∈ C1 ∪ C2 which is of the form

t = (a1, a2, . . . , a2k, (i1, i2)(i3, i4) · · · (i2k−1, i2k)) such that there is at least one trans-
position (iy, iy+1) with one of iy, iy+1 being from the entries in R1 and the other being
from the entries in R2.

Thus, we have zv(1)
R = 0.

(b) λ = ((k), (k)): V λ decomposes into two irreducible as G(2, 2, 2k)-modules V (λ̃,1)

and V (λ̃,−1) with v
(1)
R = vR + vsh(R) and v

(−1)
R = vR − vsh(R) as one of their ba-

sis elements, respectively. Analogous to part (a), for a fixed π ∈ Y , the action of∑
(a1, . . . , a2k, π) on vR and vsh(R), where the sum is over all such elements in C1, is

equal to the action of
∑

(b1, . . . , b2k, π) on vR and vsh(R), where the sum is over all
such elements in C2, respectively.

Let P be the set of those β ∈ S2k which can be written as a product of disjoint trans-
positions such that one element of each transposition is from 1, . . . , k and the other
one is from k + 1, . . . , 2k. The order of P is k!. For (a1, . . . , a2k, β) ∈ C1 and β ∈ P ,
(a1, . . . , a2k, β)vR = −vsh(R) and (a1, . . . , a2k, β)vsh(R) = −vR. For (a1, . . . , a2k, β) ∈
C2 and β ∈ P , (a1, . . . , a2k, β)vR = vsh(R) and (a1, . . . , a2k, β)vsh(R) = vR.

For those elements (a1, . . . , a2k, γ) ∈ C1∪C2 such that γ /∈ Y ∪P , the coefficients of
both the elements vR and vsh(R) in both (a1, . . . , a2k, γ)vR and (a1, . . . , a2k, γ)vsh(R)
are zero. Thus,

zv
(1)
R = (2kk!)v(1)

R and zv(−1)
R = −(2kk!)v(−1)

R .

Thus, we get the scalars as stated in the theorem. �

Assume that S is a subset of {1, 2, . . . , k}, I is a subset of S ∪ S′ and Ic denotes
the complement of I in S ∪ S′, where S′ is the set of all j′ such that j ∈ S. Define
the elements bS and dI of the partition monoid Ak:

bS = {S ∪ S′, {l, l′}l/∈S} and dI = {I, Ic, {l, l′}l/∈S}.

Thus, bS ∈ Πk(r). Also, it is easy to see that

dI = dIc , dS∪S′ = d∅ = bS , and d{l,l′} = d{l,l′}c = bSr{l}.

Example 7.3. For k = 6, S = {1, 2, 4}, and I = {1, 4′} ⊂ S ∪ S′, bS and dI are given
in Figure 12.

bS =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

, dI =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

Figure 12. Example of bS and dI .

Algebraic Combinatorics, Vol. 3 #2 (2020) 423



Ashish Mishra & Shraddha Srivastava

Following the notation of Section 3, let N(I) and M(I) denote the number of
elements in top row and bottom row of the block I, respectively. For k ∈ Z>0, we
define an element Zk,r ∈ Tk(r, 1, n) ⊆ Tk(r, p, n):

Zk,r =
(
n

2

)
+
∑
|S|>1

(−1)|S|
(

(n− 1)bS +
∑

N(I)≡M(I)(mod r)

(−1)N(I)−M(I)(dI − bS)
)
,

where the outer sum is over all the nonempty subsets S of {1, 2, . . . , k} and the inner
sum is over I ⊆ S ∪ S′ such that dI ∈ Πk(r) and dI 6= bS .

Define an element Zk+ 1
2 ,r
∈ Tk+ 1

2
(r, 1, n) ⊆ Tk+ 1

2
(r, p, n) as follows:

Zk+ 1
2 ,r

=
(
n

2

)
+
∑
|S|>1
k+1/∈S

(−1)|S|
(

(n−1)bS +
∑

N(I)≡M(I)(mod r)

(−1)N(I)−M(I)(dI − bS)
)

+
∑

k+1∈S
|S|>1

(−1)|S|
(

(n− 1)bS +
∑

{k+1,(k+1)′}⊂I or Ic
N(I)≡M(I)(mod r)

(−1)N(I)−M(I)(dI − bS)
)
,

where the first outer sum is over all the nonempty subsets S of {1, 2, . . . , k + 1}
such that k + 1 /∈ S and the inner sum in that is over I ⊆ S ∪ S′ such that dI ∈
Πk+ 1

2
(r) and dI 6= bS ; and the second outer sum is over all the nonempty subsets S

of {1, 2, . . . , k, k+ 1} such that k+ 1 ∈ S and the inner sum in that is over I ⊆ S ∪S′
such that

{k + 1, (k + 1)′} ⊆ I or Ic, dI ∈ Πk+ 1
2
(r) and dI 6= bS .

The elements Zk,r and Zk+ 1
2 ,r

and the idea of the proof of the next theorem are
from the online notes [22].

Theorem 7.4.

(a) Let k ∈ Z>0. Then,

κr,n = Zk,r and κr,n−1 = Zk+ 1
2 ,r

as operators on V ⊗k and V ⊗(k+ 1
2 ), respectively.

(b) Let k ∈ Z>0. Then Zk,r is a central element of Tk(r, p, n). For n > 2k

Zk,r =
∑
b∈λ

c(b)

as operators on T (λ̃,δ)
k , the irreducible Tk(r, p, n)-module parametrized by

(λ̃, δ) ∈ Ωk(r, p, n).
Also, Zk+ 1

2 ,r
is a central element of Tk+ 1

2
(r, p, n). For n > 2k + 1,

Zk+ 1
2 ,r

=
∑
b∈µ

c(b)

as operators on T µ̃(n,i,j)

k+ 1
2

, the irreducible Tk+ 1
2
(r, p, n)-module parametrized by

µ̃(n,i,j) ∈ Ωk+ 1
2
(r, p, n).
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Proof. (a) We express the action of κr,n in terms of matrices Ei,j .

(31) 2κr,n(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)

= 1
r

r−1∑
l=0

∑
16i 6=j6n

ζliζ
−l
j sijvi1 ⊗ ζliζ−lj sijvi2 ⊗ · · · ⊗ ζliζ−lj sijvik

= 1
r

r−1∑
l=0

∑
16i 6=j6n

(1− Eii − Ejj + ζlEij + ζ−lEji)vi1 ⊗ · · ·

⊗ (1− Eii − Ejj + ζlEij + ζ−lEji)vik .

Let S be a subset of {1, 2, . . . , k} such that Sc corresponds to the tensor positions
where 1 is acting, I ⊂ S ∪ S′ corresponds to the tensor positions that must equal i
and Ic corresponds to the tensor positions that must equal j. Let

cS,I :=
∏
t∈Sc

(δitit′ )(−1)#({t,t′}⊂I)+#({t,t′}⊂Ic)

× ζl(#({t∈I,t′∈Ic})−#({t∈Ic,t′∈I}))
∏
t∈I

(δiti)
∏
t∈Ic

(δitj)

Thus, expanding (31), we get that 2κr,n(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) equals

(32) 1
r

∑
S⊂{1,...,k}

∑
i1′ ,i2′ ,...,ik′

r−1∑
l=0

∑
16i 6=j6n

∑
I⊂S∪S′

cS,I(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ).

Now, we take various cases of S and I to compute the above expression (32). Let
|S| = 0, then I is empty set and

cS,I = c∅,∅ =
∏

t∈{1,...,k}

δitit′ .

The corresponding summand in (32) is

(n2 − n)(vi1 ⊗ vi2 ⊗ · · · ⊗ vik).
Assume that |S| > 1 and we consider various cases of I ⊂ S ∪ S′. Since the whole

sum is symmetric in i and j and in I and Ic, therefore, the sum obtained is same
when I is interchanged with Ic. If I = S ∪ S′, then

cS,I =
∏
t∈Sc

(δitit′ )(−1)|S|
∏

t∈S∪S′
(δiti),

and thus the corresponding summand in expression (32) is

1
r

∑
i1′ ,i2′ ,...,ik′

r−1∑
l=0

(n− 1)
∑

16i6n
cS,I(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ )

= (n− 1)(−1)|S|bS(vi1 ⊗ vi2 ⊗ · · · ⊗ vik).
We get an identical summand for the case I = ∅.

Consider I ( S ∪ S′ and N(I) 6≡M(I)(mod r). Let
T (I) = {t ∈ {1, 2, . . . , k} | t ∈ I},
D(I) = {t′ ∈ {1′, 2′, . . . , k′} | t′ ∈ I},

and
B(I) = {t ∈ I | t′ ∈ I}.
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Thus, N(I) = |T (I)|, M(I) = |D(I)|. Also, we can see that

#({t ∈ I, t′ ∈ Ic}) = N(I)− |B(I)|

and

#({t ∈ Ic, t′ ∈ I}) = M(I)− |B(I)|.

Thus,

#({t ∈ I, t′ ∈ Ic})−#({t ∈ Ic, t′ ∈ I}) = N(I)−M(I) 6≡ 0(mod r).

In this case, since the sum of all the r-th roots of unity is zero, the summand for all
such I in expression (32) is zero.

Now, consider those subsets I ( S ∪ S′ such that N(I) ≡ M(I)(mod r). Define
B(I)′ := {t′ | t ∈ B(I)}, thus

{t ∈ {1, 2, . . . , k} | {t, t′} ⊂ I} = B(I),
and {t ∈ {1, 2, . . . , k} | {t, t′} ⊂ Ic} = (S r T (I)) r (D(I) rB(I)′).

This implies that

(−1)#({t,t′}⊂I)+#({t,t′}⊂Ic) = (−1)|B(I)|+(|S|−N(I))−(M(I)−|B(I)|)

= (−1)|B(I)|+(|S|−N(I))+(M(I)−|B(I)|)

= (−1)|S|−(N(I)−M(I))

= (−1)|S|+(N(I)−M(I)).

Thus, for the subsets I such that N(I) ≡ M(I)(mod r), we get the summand in
expression (32) as:

1
r

(−1)#({t,t′}⊂I)+#({t,t′}⊂Ic)
∑

i1′ ,i2′ ,...,ik′

r−1∑
l=0

∏
t∈Sc

(δitit′ )

×
∑

16i6=j6n

∏
t∈I

(δiti)
∏
t∈Ic

(δitj)(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ )

= (−1)|S|+(N(I)−M(I))
∑

i1′ ,i2′ ,...,ik′

∏
t∈Sc

(δitit′ )

 ∑
16i,j6n

∏
t∈I

(δiti)
∏
t∈Ic

(δitj)

−
∑

16i=j6n

∏
t∈I

(δiti)
∏
t∈Ic

(δitj)

 (vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ )

= (−1)|S|+(N(I)−M(I))(dI − bS)(vi1 ⊗ vi2 ⊗ · · · ⊗ vik).

Also, for the subsets I such that N(I) ≡ M(I)(mod r), we also have N(Ic) ≡
M(Ic)(mod r) and thus we get an identical summand by interchanging I and Ic.

Combining all the above cases together, we get that, as operators on V ⊗k,

κr,n = Zk,r.

Now we prove the second part of (b). We have

(1− Eii − Ejj + EiiEjj)(vn) =
{

0, if i = n or j = n,

vn, otherwise.
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Thus,

(33) 2κr,n−1(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vn)

= 1
r

r−1∑
l=0

∑
16i 6=j6n−1

ζliζ
−l
j sij(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ⊗ vn)

= 1
r

r−1∑
l=0

∑
16i 6=j6n

ζliζ
−l
j sijvi1 ⊗ ζliζ−lj sijvi2⊗

· · · ⊗ ζliζ−lj sijvik ⊗ (1− Eii − Ejj + EiiEjj)(vn)

= 1
r

r−1∑
l=0

∑
16i 6=j6n

ζliζ
−l
j sij(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)⊗ vn

+ 1
r

r−1∑
l=0

∑
16i6=j6n

(
(1− Eii − Ejj + ζlEij + ζ−lEji)vi1 ⊗ · · ·

⊗ (1− Eii − Ejj + ζlEij + ζ−lEji)vik
)
⊗ (−Eii − Ejj)vn

+ 1
r

r−1∑
l=0

∑
16i6=j6n

ζliζ
−l
j sijvi1 ⊗ ζliζ−lj sijvi2 ⊗ · · · ⊗ ζliζ−lj sijvik ⊗ EiiEjjvn.

In the expression (33), the first summand is equal to 2κr,n(vi1 ⊗ vi2 ⊗ · · · ⊗ vik)
which has been calculated in the first part of (b). Since i 6= j, the last summand is
zero. Expanding the middle summand gives

1
r

∑
S⊂{1,...,k+1}

k+1∈S

∑
i1′ ,i2′ ,...,ik′

r−1∑
l=0

∑
16i 6=j6n

∑
I⊂S∪S′

{k+1,(k+1)′}⊂I or Ic

cS,I(vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ).

The case |S| = 0 does not arise because k+ 1 ∈ S. For |S| > 1, we consider various
cases of I ⊂ S ∪ S′ which are:

(i) I = S ∪ S′,
(ii) {k + 1, (k + 1)′} ⊂ I ( S ∪ S′, N(I) 6≡M(I)(mod r), and
(iii) {k + 1, (k + 1)′} ⊂ I ( S ∪ S′, N(I) ≡M(I)(mod r).

and identical summands arise when I is interchanged with Ic in the cases (i), (ii),
and (iii). Thus, the middle summand gives us∑

k+1∈S
|S|>1

(−1)|S|2
(

(n− 1)bS +
∑

{k+1,(k+1)′}⊂I or Ic
N(I)≡M(I)(mod r)

(−1)N(I)−M(I)(dI − bS)
)
.

So, as operators on V ⊗(k+ 1
2 ), we have κr,n−1 = Zk+ 1

2 ,r
.

(b) Using Theorem 6.5(a) and using Lemma 7.1(a), we get that for n > 2k, Zk,r
acts on T (λ̃,δ)

k as the constant stated in the theorem. Therefore, Zk,r is a central
element of Tk(r, p, n) for n > 2k. Since the multiplication of elements of Tk(r, p, n) is
a polynomial in n, therefore the equality

Zk,rxd = xdZk,r for all xd ∈ Tk(r, p, n) and n > 2k

implies the equality

Zk,rxd = xdZk,r for all xd ∈ Tk(r, 1, n) and for all n.
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Theorem 6.5(b) and Lemma 7.1(b) along with the arguments similar to the above
imply the result for Zk+ 1

2 ,r
. �

In the light of Remarks 3.12 and 6.7, (r, p, n) = (2, 2, 2k) is the special case. Define
Mk,2,2 := xd ∈ Tk(2, 2, 2k), where d is the only element in Λk(2, 2, 2k) and d consists
of 2k blocks, each vertex being a block. The element Mk,2,2 is a central element of
Tk(2, 2, 2k).

Theorem 7.5.
(a) Let k ∈ Z>0. Then, Mk,2,2 = 1

2k z as operators on V ⊗k.
(b) Let k ∈ Z>0. Then, for λ 6= ((k), (k)), Mk,2,2 = 0 as operators on the irre-

ducible Tk(2, 2, 2k)-module T (λ̃,1)
k . For λ = ((k), (k)),
Mk,2,2 = k!

as operators on the irreducible Tk(2, 2, 2k)-module T (λ̃,1)
k and

Mk,2,2 = −k!

as operators on the irreducible Tk(2, 2, 2k)-module T (λ̃,−1)
k .

Proof. (a) The action of Mk,2,2 on V ⊗k is:

Mk,2,2(vi1 ⊗ · · · ⊗ vik) =


∑
π
vπ(j1) ⊗ · · · ⊗ vπ(jk), if i1, i2, . . . , ik are distinct

elements of {1, . . . , 2k},
0, otherwise,

where π varies over all the permutations of the set
{j1, . . . , jk} = {1, . . . , 2k}r {i1, . . . , ik}.

Now, we discuss the action of z on V ⊗k. Consider vi1 ⊗ · · · ⊗ vik ∈ V ⊗k such that
i1, . . . , ik are distinct elements of {1, . . . , 2k}. Then,

(a1, . . . , a2k, (i1, j1) · · · (ik, jk))(vi1 ⊗ · · · ⊗ vik) = −(vj1 ⊗ · · · ⊗ vjk)
if (a1, . . . , a2k, (i1, j1) · · · (ik, jk)) ∈ C1, and

(a1, . . . , a2k, (i1, j1) · · · (ik, jk))(vi1 ⊗ · · · ⊗ vik) = (vj1 ⊗ · · · ⊗ vjk)
if (a1, . . . , a2k, (i1, j1) · · · (ik, jk)) ∈ C2, where in each case

{j1, . . . , jk} = {1, . . . , 2k}r {i1, . . . , ik}.
For a fixed (i1, j1) · · · (ik, jk) element in S2k, there are 2k−1 elements of the form
(a1, . . . , a2k, (i1, j1) · · · (ik, jk)) in each of C1 and C2.

Consider an element of the form (a1, . . . , a2k, (x1, y1) · · · (xk, yk)) ∈ C such that at
least one pair, say {x1, y1} ⊂ {i1, . . . , ik}. Then, one of x2, . . . , xk, say xk, is different
from i1, . . . , ik and one can choose yk ∈ {1, . . . , 2k} r {i1, . . . , ik, xk, y2, . . . , yk−1}.
Now, (axk , ayk) = (1, 1) or (axk , ayk) = (−1,−1) keeps the sign of the action of
(a1, . . . , a2k, (x1, y1) · · · (xk, yk)) on (vi1 ⊗ · · · ⊗ vik) same.

Given (b1, . . . , b2k, (x1, y1) · · · (xk, yk)) ∈ C1 such that (bx1 , by1) = (1, 1), we have
the element (f1, . . . , f2k, (x1, y1) · · · (xk, yk)) ∈ C2, such that (fxi , fyi) = (bxi , byi) for
i 6= k and (fxk , fyk) = −(bxk , byk) and

(b1, . . . , b2k, (x1, y1) · · · (xk, yk))(vi1 ⊗ · · · ⊗ vik)
= (f1, . . . , f2k, (x1, y1) · · · (xk, yk))(vi1 ⊗ · · · ⊗ vik).

A similar analysis can be done if (bx1 , by1) = (−1,−1).
If at least two of i1, . . . , ik are same, say i1 = i2, then we can find a pair (axk , ayk)

such that the action of (a1, . . . , a2k, (x1, y1) · · · (xk, yk)) on (vi1 ⊗ · · · ⊗ vik) has the
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same sign whether (axk , ayk) = (1, 1) or (−1,−1). A similar analysis as above shows
that corresponding to any element (b1, . . . , b2k, (x1, y1) · · · (xk, yk)) ∈ C1 such that we
can find the element (f1, . . . , f2k, (x1, y1) · · · (xk, yk)) ∈ C2, such that

(b1, . . . , b2k, (x1, y1) · · · (xk, yk))(vi1 ⊗ · · · ⊗ vik)
= (f1, . . . , f2k, (x1, y1) · · · (xk, yk))(vi1 ⊗ · · · ⊗ vik).

Collecting all the cases, we have

z(vi1 ⊗ · · · ⊗ vik) =


(2k)

∑
π
vπ(j1) ⊗ · · · ⊗ vπ(jk), if i1, . . . , ik are distinct

elements of {1, . . . , 2k},
0, otherwise,

where π varies over all the permutations of the set

{j1, . . . , jk} = {1, . . . , 2k}r {i1, . . . , ik}.

(b) The proof is clear by using part (a) of this theorem, Theorem 6.5 (a) and
Lemma 7.2. �

For l ∈ 1
2Z>0, define the Jucys–Murphy elements of Tl(r, p, n) as follows:

M 1
2 ,r

= 1,

and My,r = Zy,r − Zy− 1
2 ,r
, for y ∈ 1

2Z>0 and 1 6 y 6 l.

In addition to these elements, Tk(2, 2, 2k) has one more Jucys–Murphy element which
is Mk,2,2.

Theorem 7.6. Let l ∈ 1
2Z>0 and let n be a positive integer.

(a) The elements M 1
2 ,r
,M1,r, . . . ,Ml− 1

2 ,r
,Ml,r commute with each other in Tan-

abe algebra Tl(r, p, n).
(b) Assume that n > 2l. Let vl ∈ Ωl(r, p, n) and T vl

l be the irreducible Tl(r, p, n)-
module parametrized by vl. Then there is a unique, up to scalars, basis

{uP | P is a path in T̂ (r, p, n) from v0 = ((n),∅, . . . ,∅) to vl}

of T vl
l such that, for all P = (v0, v 1

2
, v1, . . . , vl), and for all k ∈ Z>0, k 6 l

Mk,r(uP ) = c(vk/vk− 1
2
)uP ,

and
Mk+ 1

2 ,r
(uP ) = −c(vk/vk+ 1

2
)uP ,

where vk/vk− 1
2
and vk/vk+ 1

2
denote the box by which vk differs from vk− 1

2
and

vk+ 1
2
as r-tuple of Young diagrams, respectively.

(c) For (r, p, n) = (2, 2, 2k), the elementMk,2,2 commutes with the elementsM 1
2 ,2,

M1,2, . . . ,M2k− 1
2 ,2,M2k,2. The scalars by which the Jucys–Murphy elements

of Tk(2, 2, 2k) act on the basis (as given by part (b)) of T (((k),(k)),1)
k and

T (((k),(k)),−1)
k are same except for Mk,2,2.

Proof. (a) For i, j ∈ 1
2Z>0 and i 6 j 6 l, we have Zi,r, Zj,r ∈ Tj(r, p, n) and Zj,r

is a central element of Tj(r, p, n) ⊆ Tl(r, p, n), thus Zi,rZj,r = Zj,rZi,r. Since Mj,r =
Zj,r − Zj− 1

2 ,r
, thus Jucys–Murphy elements commute with each other in Tl(r, p, n).
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(b) The branching rule from Tj(r, p, n) to Tj− 1
2
(r, p, n) is multiplicity free for all

j ∈ 1
2Z>0 and n > 2j. Thus, T vl

l has canonical decomposition as irreducible Tl− 1
2
-

module:
T vl
l =

⊕
v
l− 1

2
∈Ω

l− 1
2

(r,p,n)
T

v
l− 1

2
l− 1

2

such that there is an edge from vl− 1
2
to vl in T̂ (r, p, n). Further, iterating this de-

composition, a canonical decomposition of T vl
l into irreducible T0(r, p, n)-modules is

obtained:
(34) T vl

l =
⊕

P
TP ,

where TP are one-dimensional T0(r, p, n)-modules and the sum is over all paths P =
(v0, v 1

2
, v1, . . . , vl) such that vj ∈ Ωj(r, p, n). The basis of T vl

l is obtained by choosing
a nonzero vector uP in each TP in the decomposition (34). Such a basis is called the
Gelfand–Tsetlin basis of the corresponding irreducible representation and it is unique,
up to scalars. Using the decomposition (34) and the definition of uP , we get

Tj(r, p, n)uP = T vj
j ,

for all j ∈ 1
2Z>0 and j 6 l ,which implies that uP is a basis element of T vj

j . Thus, for
all j ∈ 1

2Z>0 and j 6 l, the action of Zj,r on uP is as a scalar given in Theorem 7.4(b).
Now, by the definition of Jucys–Murphy elements, we get their actions on uP .

(c) The element Mk,2,2 is a central element of Tk(2, 2, 2k). For (r, p, n) = (2, 2, 2k)
and λ = ((k), (k)), let vk = (λ̃, 1) ∈ Ωk(2, 2, 2k), v ′k = (λ̃,−1) ∈ Ωk(2, 2, 2k). Then

T vk
k
∼= T v′k

k

as Tk− 1
2
(r, p, n)-modules. Thus, the part of the paths from v0 to vk and v ′k are same

for l < k, l ∈ 1
2Z>0 and so, we have

Mj(uP ) = Mj(uP ′), j 6 k and j ∈ 1
2Z>0

where uP and uP ′ are Gelfand–Tsetlin basis elements of T vk
k and T v′k

k , respectively.
However, by Theorem 7.5(b), we get that

Mk,2,2uP = (k!)uP and Mk,2,2uP ′ = −(k!)uP ′ ,

which proves the result. �
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