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Existence of Solution for Quasilinear
Degenerated Elliptic Unilateral Problems

Youssef Akdim
Elhoussine Azroul

Abdelmoujib Benkirane

Abstract

An existence theorem is proved, for a quasilinear degenerated ellip-
tic inequality involving nonlinear operators of the form Au+g(x, u,∇u),
where A is a Leray-Lions operator from W 1,p

0 (Ω, w) into its dual, while
g(x, s, ξ) is a nonlinear term which has a growth condition with respect
to ξ and no growth with respect to s, but it satisfies a sign condition
on s, the second term belongs to W−1,p′(Ω, w∗).

1 Introduction
Let Ω be a bounded open set of RN , p be a real number such that 1 < p <∞
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions on Ω, i.e. each
wi(x) is a measurable a.e. strictly positive on Ω, satisfying some integrability
conditions (see section 2). This paper is concerned with the existence of
solution of unilateral degenerate problems associated to a nonlinear operator
of the form

Au+ g(x, u,∇u).

The principal part A is a differential operator of second order in divergence
form of Leray-Lions type acting from W 1,p

0 (Ω, w) into it’s dual W−1,p′(Ω, w∗),
i.e.

Au = −div(a(x, u,∇u)) (1.1)

and g is a nonlinear lower order term having natural growth with respect to
|∇u|, with respect to |u| we do not assume any growth restrictions, but we
assume the sign-condition. Bensoussan, Boccardo and Murat have proved in
the first part of [3], the existence of a solution for the problem

Au+ g(x, u,∇u) = f,
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where f ∈ W−1,p′(Ω). In the second part of [3], the authors have extended
the last result to variational inequalities, more precisely, they have proved
the existence of at least one solution of the following unilateral problem:

〈Au, v − u〉+
∫

Ω
g(x, u,∇u)(v − u) dx ≥ 〈f, v − u〉

for all v ∈ Kψ

u ∈ W 1,p
0 (Ω) u ≥ ψ a.e. in Ω

g(x, u,∇u) ∈ L1(Ω) g(x, u,∇u)u ∈ L1(Ω),

where Kψ = {v ∈ W 1,p
0 (Ω)∩L∞(Ω), v ≥ ψ a.e. in Ω}, with ψ a measurable

function on Ω such that ψ+ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). The same result is also

proved in [2] where f ∈ L1(Ω).
It is our purpose in this paper, to study the variational degenerated inequal-
ities. More precisely, we prove the existence of solution to the problem (P)
(see section 4), in the framework of weighted Sobolev space. We obtain the
existence results by proving that the positive part u+

ε (resp. negative part
u−ε ) of uε strongly converges to u+(resp. u−) in W 1,p

0 (Ω, w), where uε is a
solution of the approximate problem (Pε) (see section 4). Let us point out,
that another work in this direction can be found in [6] and [1] in the case of
equation.
Note that, this paper can be seen as a generalization of [3] in weighted case
and as a continuation of [1] where the case of equation is treated. This paper
is organized as follows: Section 2 contains some preliminaries, section 3 is
concerned with the basic assumptions and some technical lemmas, in section
4 we state and prove main results.

2 Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 1), let 1 < p < ∞, and
let w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e. every
component wi(x) is a measurable function which is strictly positive a.e. in
Ω. Further, we suppose in all our considerations that

wi ∈ L1
loc(Ω) (2.1)

and
w
− 1

p−1

i ∈ L1
loc(Ω) (2.2)
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for any 0 ≤ i ≤ N .
We define the weighted space Lp(Ω, γ), where γ is a weight function on Ω by,

Lp(Ω, γ) = {u = u(x), uγ
1
p ∈ Lp(Ω)}

with the norm

‖u‖p,γ =

(∫
Ω

|u(x)|pγ(x) dx
) 1

p

.

Now, we denote by W 1,p(Ω, w) the space of all real-valued functions u ∈
Lp(Ω, w0) such that the derivatives in the sense of distributions fulfil

∂u

∂xi
∈ Lp(Ω, wi) for all i = 1, ..., N,

which is a Banach space under the norm

‖u‖1,p,w =

(∫
Ω

|u(x)|pw0(x) dx+
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx

) 1
p

. (2.3)

Since we shall deal with the Dirichlet problem, we shall use the space

X = W 1,p
0 (Ω, w) (2.4)

defined as the closure of C∞
0 (Ω) with respect to the norm (2.3). Note that,

C∞
0 (Ω) is dense in W 1,p

0 (Ω, w) and (X, ‖.‖1,p,w) is a reflexive Banach space.
We recall that the dual space of weighted Sobolev spaces W 1,p

0 (Ω, w) is equiv-
alent to W−1,p′(Ω, w∗), where w∗ = {w∗

i = w1−p′
i , ∀i = 0, ..., N}, where p′ is

the conjugate of p i.e. p′ = p
p−1

( for more details we refer to [5]).

Definition: Let Y be a separable reflexive Banach space, the operator B
from Y to its dual Y ∗ is called of the calculus of variations type, if B is
bounded and is of the form,

B(u) = B(u, u), (2.5)

where (u, v) −→ B(u, v) is an operator from Y × Y into Y ∗ satisfying the
following properties:{

∀u ∈ Y, v → B(u, v) is bounded hemicontinuous from Y into Y ∗

and (B(u, u)−B(u, v), u− v) ≥ 0,
(2.6)

3



Y. Akdim, E. Azroul, A. Benkirane

∀v ∈ Y, u→ B(u, v) is bounded hemicontinuous from Y into Y ∗, (2.7){
if un ⇀ u weakly in Y and if (B(un, un)−B(un, u), un − u) → 0
then, B(un, v) ⇀ B(u, v) weakly in Y ∗, ∀v ∈ Y,

(2.8){
if un ⇀ u weakly in Y and if B(un, v) ⇀ ψ weakly in Y ∗,
then, (B(un, v), un) → (ψ, u).

(2.9)

Definition: Let Y be a reflexive Banach space, a bounded mapping B from
Y to Y ∗ is called pseudo-monotone if for any sequence un ∈ Y with un ⇀ u
weakly in Y and lim sup

n→∞
〈Bun, un − u〉 ≤ 0, one has

lim inf
n→∞

〈Bun, un − v〉 ≥ 〈Bu, u− v〉 for all v ∈ Y.

3 Basic assumption and some technical lem-
mas

We start by the following assumptions.
Assumption (H1)
The expression

‖|u|‖X =

(
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx

) 1
p

is a norm defined on X and it’s equivalent to the norm (2.3).
And there exist a weight function σ on Ω and a parameter q, such that

1 < q < p+ p′, (3.1)

and
σ1−q′ ∈ L1

loc(Ω), (3.2)

with q′ = q
q−1

and that the Hardy inequality,

(∫
Ω

|u(x)|qσ(x) dx

) 1
q

≤ c

(
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx

) 1
p

, (3.3)
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holds for every u ∈ X with a constant c > 0 independent of u, and moreover,
the imbedding

X ↪→↪→ Lq(Ω, σ), (3.4)

expressed by the inequality (3.3) is compact.
Notice that (X, ‖|.|‖X) is a uniformly convex (and thus reflexive ) Banach
space.

Remark: If we assume that w0(x) ≡ 1 and in addition the integrability
condition:

there exists ν ∈]
N

p
,∞[∩[

1

p− 1
,∞[ such that w−ν

i ∈ L1(Ω) ∀i = 1, ..., N,

which is stronger than (2.2). Then

‖|u|‖X =

(
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx

) 1
p

,

is a norm defined on W 1,p
0 (Ω, w) and it’s equivalent to (2.3), moreover

W 1,p
0 (Ω, w) ↪→↪→ Lq(Ω),

for all 1 ≤ q < p∗1 if pν < N(ν + 1) and for all q ≥ 1 if pν ≥ N(ν + 1),
where p1 = pν

ν+1
and p∗1 = Np1

N−p1 = Npν
N(ν+1)−pν is the Sobolev conjugate of

p1 (see [5]). Thus the hypotheses (H1) are verified for σ ≡ 1 and for all
1 < q < min{p∗1, p + p′} if pν < N(ν + 1) and for all 1 < q < p + p′ if
pν ≥ N(ν + 1).

Let A be a nonlinear operator from W 1,p
0 (Ω, w) into its dual W−1,p′(Ω, w∗)

defined by (1.1), i.e.,
Au = −div(a(x, u,∇u)),

where a : Ω × R × RN −→ RN is a Carathéodory vector-function satisfying
the following assumptions:

Assumption (H2)

|ai(x, s, ξ)| ≤ βw
1
p

i (x)[k(x) +σ
1
p′ |s|

q
p′ +

N∑
j=1

w
1
p′
j (x)|ξj|p−1] for all i = 1, ..., N,

(3.5)
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[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, for all ξ 6= η ∈ RN , (3.6)

a(x, s, ξ).ξ ≥ α
N∑
i=1

wi|ξi|p, (3.7)

where k(x) is a positive function in Lp
′
(Ω) and α, β are strictly positive

constants.

Assumption (H3)
Let g(x, s, ξ) be a Carathéodory function satisfying the following assump-
tions:

g(x, s, ξ)s ≥ 0 (3.8)

|g(x, s, ξ)| ≤ b(|s|)

(
N∑
i=1

wi|ξi|p + c(x)

)
, (3.9)

where b : R+ −→ R+ is a continuous increasing function and c(x) is a positive
function which lies in L1(Ω).
We consider,

f ∈ W−1,p′(Ω, w∗). (3.10)

Now we recall some lemmas introduced in [1] which will be used later.

Lemma 3.1: (cf. [1]) Let g ∈ Lr(Ω, γ) and let gn ∈ Lr(Ω, γ), with ‖gn‖r,γ ≤
c (1 < r <∞). If gn(x) −→ g(x) a.e. in Ω, then gn ⇀ g weakly in Lr(Ω, γ),
where γ is a weight function on Ω.

Lemma 3.2: (cf. [1]) Assume that (H1) holds. Let F : R −→ R be uniformly
Lipschitzian, with F (0) = 0. Let u ∈ W 1,p

0 (Ω, w). Then F (u) ∈ W 1,p
0 (Ω, w).

Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)
∂xi

=

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω : u(x) 6∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 3.3: (cf. [1]) Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), and let

Tk(u), k ∈ R+, be the usual truncation then Tk(u) ∈ W 1,p
0 (Ω, w). Moreover,

we have
Tk(u) −→ u strongly in W 1,p

0 (Ω, w).
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Lemma 3.4: (cf. [1]) Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), then

u+ = max(u, 0) and u− = max(−u, 0) lie in W 1,p
0 (Ω, w). Moreover, we have

∂(u+)

∂xi
=

{
∂u
∂xi

, if u > 0

0 , if u ≤ 0

∂(u−)

∂xi
=

{
0 , if u ≥ 0
− ∂u
∂xi

, if u < 0.

Lemma 3.5: (cf. [1]) Assume that (H1) holds. Let (un) be a sequence of
W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w). Then, u+

n ⇀ u+ weakly
in W 1,p

0 (Ω, w) and u−n ⇀ u− weakly in W 1,p
0 (Ω, w).

Lemma 3.6: (cf. [1]) Assume that (H1) and (H2) are satisfied, and let (un)
be a sequence of W 1,p

0 (Ω, w) such that

un ⇀ u weakly in W 1,p
0 (Ω, w)

and ∫
Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx −→ 0.

Then,
un −→ u strongly in W 1,p

0 (Ω, w).

4 Main general result
Let ψ be a measurable function with values in R such that,

ψ+ ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω). (4.1)

Set
Kψ = {v ∈ W 1,p

0 (Ω, w) ∩ L∞(Ω) v ≥ ψ a.e. in Ω}. (4.2)

Remark that (4.1) implies that Kψ 6= ∅.
Consider the nonlinear problem with Dirichlet boundary condition,

(P)


〈Au, v − u〉+

∫
Ω
g(x, u,∇u)(v − u) dx ≥ 〈f, v − u〉

for all v ∈ Kψ

u ∈ W 1,p
0 (Ω, w) u ≥ ψ a.e. in Ω

g(x, u,∇u) ∈ L1(Ω) g(x, u,∇u)u ∈ L1(Ω),
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here u is the solution of the problem (P).
Our main result is the following.

Theorem 4.1: Assume that the assumption (H1) − (H3), (3.10) and (4.1)
hold, then, there exists at least one solution of (P).

Remarks:

1) The statement of Theorem 4.1, generalizes in weighted case the analo-
gous one in [3].

2) If we take ψ = −∞, we obtain the existence result for the equation
case (see [1]).

Proof of Theorem 4.1
Step (1) The approximate problem and a priori estimate.
Let Ωε be a sequence of compact subsets of Ω such that Ωε increase to Ω as
ε→ 0.
We consider the sequence of approximate problems:

(Pε)


〈Auε, v − uε〉+

∫
Ω
gε(x, uε,∇uε)(v − uε) dx ≥ 〈f, v − uε〉

v ∈ W 1,p
0 (Ω, w) v ≥ ψ a.e. in Ω

uε ∈ W 1,p
0 (Ω, w) uε ≥ ψ a.e. in Ω,

where

gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|
χΩε(x),

and where χΩε is the characteristic function of Ωε.
Note that gε(x, s, ξ) satisfies the following conditions,

gε(x, s, ξ)s ≥ 0, |gε(x, s, ξ)| ≤ |g(x, s, ξ)| and |gε(x, s, ξ)| ≤
1

ε
.

We define the operator Gε : X −→ X∗ by,

〈Gεu, v〉 =

∫
Ω

gε(x, u,∇u)v dx.

8
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Thanks to Hölder’s inequality we have for all u ∈ X and v ∈ X,

|
∫

Ω

gε(x, u,∇u)v dx| ≤
(∫

Ω

|gε(x, u,∇u)|q
′
σ−

q′
q dx

) 1
q′
(∫

Ω

|v|qσ dx
) 1

q

≤ 1

ε

(∫
Ωε

σ1−q′ dx

) 1
q′

‖v‖q,σ
≤ cε‖|v|‖.

(4.3)
The last inequality is due to (3.2) and (3.4).

Lemma 4.2: The operator Bε = A+Gε from X into its dual X∗ is pseudo-
monotone. Moreover, Bε is coercive, in the following sense:{

there exists v0 ∈ Kψ such that
〈Bεv,v−v0〉

‖|v|‖ → +∞ if ‖|v|‖ → ∞, v ∈ Kψ.

This lemma will be proved below.
In view of lemma 4.2, (Pε) has a solution by the classical result (cf. theorem
8.2 chapter 2 [7]).
Let v = ψ+ as test function in (Pε), we easily deduce that∫

Ω
gε(x, uε,∇uε)(uε−ψ+) ≥ 0, then, 〈Auε, uε〉 ≤ 〈f, uε−ψ+〉+〈Auε, ψ+〉,

i.e.∫
Ω

a(x, uε,∇uε)∇uε dx ≤ 〈f, uε − ψ+〉+
N∑
i=1

∫
Ω

ai(x, uε,∇uε)
∂ψ+

∂xi
dx,

then,

α
N∑
i=1

∫
Ω

wi|
∂uε
∂xi

|p dx = α‖|uε|‖p ≤ ‖f‖X∗(‖|uε|‖+ ‖|ψ+|‖) +

+
N∑
i=1

(∫
Ω

|ai(x, uε,∇uε)|p
′
w1−p′
i dx

) 1
p′
(∫

Ω

|∂ψ
+

∂xi
|pwi dx

) 1
p

≤ ‖f‖X∗(‖|uε|‖+ ‖|ψ+|‖) +

+ c
N∑
i=1

(∫
Ω

(kp
′
+ |uε|qσ +

N∑
j=1

|∂uε
∂xj

|pwj) dx

) 1
p′

‖|ψ+|‖.
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Using (3.4) the last inequality becomes

α‖|uε|‖p ≤ c1‖|uε|‖+ c2‖|uε|‖
q
p′ + c3‖|uε|‖p−1 + c4

where ci are various positive constants. Then thanks to (3.1), we can deduce
that uε remains bounded in W 1,p

0 (Ω, w), i.e.

‖|uε|‖ ≤ β0, (4.4)

where β0 is a positive constant.
Extracting a subsequence (still denoted by uε) we get

uε ⇀ u weakly in X and a.e. in Ω.

Note that u ≥ ψ a.e. in Ω.
Step(2) We study the convergence of the positive part of uε.
Let k > 0. Define u+

k = min{u+, k}.
We shall fix k, and use the notation,

zε = u+
ε − u+

k . (4.5)

Assertion(i) We claim that,

lim sup
ε→0

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )+ dx ≤ Qk, (4.6)

where Qk → 0, if k → +∞.
Indeed, Consider the test function vε = uε − z+

ε . By lemma 3.3 and lemma
3.4, we have zε ∈ W 1,p

0 (Ω, w) and z+
ε ∈ W 1,p

0 (Ω, w). And since k −→ ∞ and
ψ+ ∈ L∞(Ω) we can assume that k ≥ ψ a.e. in Ω, by the choice of k, the
above test function is admissible for (Pε). Multiplying (Pε) by vε we obtain,

〈Auε, z+
ε 〉+

∫
Ω

gε(x, uε,∇uε)z+
ε dx ≤ 〈f, z+

ε 〉. (4.7)

If z+
ε > 0, we have uε > 0 and from (3.8), gε(x, uε,∇uε) ≥ 0, then,∫

Ω

a(x, uε,∇uε)∇z+
ε dx ≤ 〈f, z+

ε 〉.

Since uε = u+
ε in {x ∈ Ω / z+

ε > 0}, then,∫
Ω

a(x, uε,∇u+
ε )∇z+

ε dx ≤ 〈f, z+
ε 〉,

10
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which implies that,∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )+ dx ≤

≤ −
∫

Ω

a(x, uε,∇u+
k )∇(u+

ε − u+
k )+ dx+ 〈f, z+

ε 〉.

(4.8)
As ε → 0, we have z+

ε −→ (u+ − u+
k )+a.e. in Ω, moreover z+

ε is bounded in
W 1,p

0 (Ω, w), hence, we have,

z+
ε ⇀ (u+ − u+

k )+ weakly in W 1,p
0 (Ω, w).

Since a(x, uε,∇u+
k ) −→ a(x, u,∇u+

k ) in
∏N

i=1 L
p′(Ω, w∗

i ), we obtain by passing
to the limit in ε in (4.8) the inequality (4.6) with Qk defined by,

Qk = −
∫

Ω

a(x, u,∇u+
k )∇(u+ − u+

k )+ dx+ 〈f, (u+ − u+
k )+〉. (4.9)

Because, (u+ − u+
k )+ −→ 0 in W 1,p

0 (Ω, w) as k −→ ∞, we have Qk −→ 0 as
k −→∞.
Assertion(ii) Let us show that,

lim sup
ε→0

∫
Ω

−[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )− dx ≤ 0. (4.10)

Indeed. We consider for that, the test function vε = uε + ϕλ(z
−
ε ), where

ϕλ(s) = seλs
2 . We have, 0 ≤ z−ε ≤ k, i.e., z−ε ∈ L∞(Ω) and since z−ε ∈

W 1,p
0 (Ω, w), hence using lemma 3.2 we have vε ∈ W 1,p

0 (Ω, w), then clearly, vε
is an admissible test function.
Multiplying (Pε) by vε we obtain,∫

Ω

a(x, uε,∇uε)∇z−ε ϕ′λ(z−ε ) dx+

∫
Ω

gε(x, uε,∇uε)ϕλ(z−ε ) dx ≥ 〈f, ϕλ(z−ε )〉.

(4.11)
Define,

Eε = {x ∈ Ω, u+
ε (x) ≤ u+

k (x)} and Fε = {x ∈ Ω, 0 ≤ uε(x) ≤ u+
k (x)}.

Since ϕλ(z−ε ) = 0 in Ec
ε, we have,∫

Ω

gε(x, uε,∇uε)ϕλ(z−ε ) dx =

∫
Eε

gε(x, uε,∇uε)ϕλ(z−ε ) dx. (4.12)

11
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When uε ≤ 0, we have gε(x, uε,∇uε) ≤ 0 and since ϕλ(z−ε ) ≥ 0, we obtain∫
Eε

gε(x, uε,∇uε)ϕλ(z−ε ) dx ≤
∫
Fε

gε(x, uε,∇uε)ϕλ(z−ε ) dx

≤
∫
Fε

b(|uε|)[
N∑
i=1

wi|
∂uε
∂xi

|p + c(x)]ϕλ(z
−
ε ) dx

≤ b(k)

∫
Fε

[
N∑
i=1

wi|
∂uε
∂xi

|p + c(x)]ϕλ(z
−
ε ) dx

≤ b(k)

α

∫
Fε

a(x, uε,∇uε)∇uεϕλ(z−ε ) dx+ b(k)

∫
Fε

c(x)ϕλ(z
−
ε ) dx. (4.13)

As in the proof of theorem 1.1 in [3], we can show that,

−1

2

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )− dx ≤

≤
∫

Ω

[a(x, uε,∇uε)− a(x, uε,∇u+
ε )]∇u+

k ϕ
′
λ(u

+
k ) dx+ 〈−f, ϕλ(z−ε )〉

+

∫
Ω

a(x, uε,∇u+
k )∇z−ε ϕ′λ(z−ε ) dx+

b(k)

α

∫
Ω

a(x, uε,∇u+
ε )∇u+

k ϕλ(z
−
ε ) dx+

+
b(k)

α

∫
Ω

a(x, uε,∇u+
k )∇(u+

ε − u+
k )ϕλ(z

−
ε ) dx+ b(k)

∫
Ω

c(x)ϕλ(z
−
ε ) dx,

(4.14)
for λ = b(k)2

4α2 .
For short notation, we rewrite the above inequality as,

Iεk ≤ I1
εk + I2

εk + I3
εk + I4

εk + I5
εk. (4.15)

Extracting a subsequence such that,
a(x, uε,∇uε) ⇀ γ1 weakly in

∏N
i=1 L

p′(Ω, w∗
i )

and
a(x, uε,∇u+

ε ) ⇀ γ2 weakly in
∏N

i=1 L
p′(Ω, w∗

i ).

(4.16)

Lemma 4.3:(cf. [1]) For k fixed and letting ε→ 0, we claim that,

1) I1
εk −→ I1

k =

∫
Ω

[γ1 − γ2]∇u+
k ϕ

′
λ(u

+
k ) dx+ 〈−f, ϕλ((u+ − u+

k )−)〉.

2) I2
εk −→ I2

k =

∫
Ω

a(x, u,∇u+
k )∇((u+ − u+

k )−)ϕ′λ((u
+ − u+

k )−) dx.

12
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3) I3
εk −→ I3

k =
b(k)

α

∫
Ω

γ2∇u+
k ϕλ((u

+ − u+
k )−) dx.

4) I4
εk −→ I4

k =
b(k)

α

∫
Ω

a(x, u,∇u+
k )∇(u+ − u+

k )ϕλ((u
+ − u+

k )−) dx.

5) I5
εk −→ I5

k = b(k)

∫
Ω

c(x)ϕλ((u
+ − u+

k )−) dx.

In view of lemma 4.3 and (u+ − u+
k )− = 0 and ϕλ(0) = 0 we have,

lim sup
ε→0

Iεk ≤ I1
k + I2

k + I3
k + I4

k + I5
k =

∫
Ω

[γ1(x)− γ2(x)]∇u+
k ϕ

′
λ(u

+
k ) dx.

Moreover, if uε < 0 we have (uε)
+
k = 0, hence,

(a(x, uε,∇uε)− a(x, uε,∇u+
ε ))(uε)

+
k = 0 a.e. in Ω

which implies that (γ1(x)− γ2(x))u
+
k = 0, and so that,

lim sup
ε→0

Iεk ≤ 0,

thus, (4.10) follows.
Assertion(iii) Let us show that,

u+
ε −→ u+ strongly in W 1,p

0 (Ω, w). (4.17)

From (4.6) and (4.10) we have (as in the proof of theorem 1.1 in [3]),

lim sup
ε→0

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+)]∇(u+

ε − u+) dx ≤

≤ Qk +

∫
Ω

[γ2(x)− a(x, u,∇u+
k )]∇(u+

k − u+) dx.

Now letting k −→∞ and using lemma 3.6 we obtain (4.17).
Step(3) We study the convergence of the negative part of uε
Similarly to the preceding step, we shall prove that

u−ε −→ u− strongly in W 1,p
0 (Ω, w). (4.18)

Assertion (j)Let us show that,

lim sup
ε→0

∫
Ω

−[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )+ dx ≤ Q̃k,

(4.19)

13
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where Q̃k → 0, if k → +∞.
Indeed. We define

u−k = min{u−, k} and yε = u−ε − u−k .

Consider the test function vε = uε + y+
ε in (Pε), it is clearly admissible.

Multiplying (Pε) by vε, we have,∫
Ω

a(x, uε,∇uε)∇y+
ε dx+

∫
Ω

gε(x, uε,∇uε)y+
ε dx ≥ 〈f, y+

ε 〉.

Since y+
ε > 0 implies uε < 0, then from (3.8), we have gε(x, uε,∇uε) ≤ 0,

hence gε(x, uε,∇uε)y+
ε ≤ 0 a.e. in Ω, then,∫

Ω

a(x, uε,∇uε)∇y+
ε dx ≥ 〈f, y+

ε 〉.

Since uε = −u−ε on the set {x ∈ Ω, y+
ε > 0} we can also write∫

Ω
a(x, uε,−∇u−ε )∇y+

ε dx ≥ 〈f, y+
ε 〉, which implies that,

−
∫

Ω

[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )+ dx ≤∫
Ω

a(x, uε,−∇u−k )∇(u−ε − u−k )+ dx− 〈f, y+
ε 〉.

As ε → 0 we have y+
ε −→ (u− − u−k )+a.e. in Ω, and since y+

ε is bounded in
W 1,p

0 (Ω, w), then y+
ε ⇀ (u− − u−k )+ weakly in W 1,p

0 (Ω, w) (for k fixed).
Passing to the limit in ε we obtain (4.19), with Q̃k defined by,

Q̃k =

∫
Ω

a(x, u,−∇u−k )∇(u− − u−k )+ dx− 〈f, (u− − u−k )+〉.

Because (u−−u−k )+ −→ 0 strongly in W 1,p
0 (Ω, w) as k −→∞ we obtain that

Q̃k −→ 0 as k −→∞.
Assertion (jj) Let us show that,

lim sup
ε→0

∫
Ω

[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )− dx ≤ 0. (4.20)

Indeed. Considering the following test function vε = uε − δεϕλ(y
−
ε ) where

δε > 0 such that δεeλ(y−ε )2 ≤ 1 this function is admissible (cf. [3]), then,

〈Auε,−δεϕλ(y−ε )〉 − δε

∫
Ω

gε(x, uε,∇uε)ϕλ(y−ε ) dx ≥ −〈f, δεϕλ(y−ε )〉,

14



Existence of Solution for Quasilinear Degenerated Elliptic...

i.e.,

〈Auε, ϕλ(y−ε )〉+

∫
Ω

gε(x, uε,∇uε)ϕλ(y−ε ) dx ≤ 〈f, ϕλ(y−ε )〉,

with this choice (4.20) follows as in (4.10).
Finally combining (4.19) and (4.20), we deduce as in (4.17) the assertion
(4.18).
Step (4) Convergence of uε.
From (4.17) and (4.18) we deduce that for a subsequence

uε −→ u strongly in W 1,p
0 (Ω, w) and a.e. in Ω (4.21)

∇uε −→ ∇u a.e. in Ω, (4.22)

which implies that,{
gε(x, uε,∇uε) −→ g(x, u,∇u) a.e in Ω
gε(x, uε,∇uε)uε −→ g(x, u,∇u)u a.e. in Ω.

(4.23)

On the other hand, multiplying (Pε) by uε and using (3.7), (3.8), (4.3), (4.4),
we obtain

0 ≤
∫

Ω

gε(x, uε,∇uε)uε dx ≤ β̃, (4.24)

where β̃ is some positive constant.
For any measurable subset E of Ω and any m > 0 we have,∫
E

|gε(x, uε,∇uε)| dx =

∫
E∩Xε

m

|gε(x, uε,∇uε)| dx+

∫
E∩Y ε

m

|gε(x, uε,∇uε)| dx

where {
Xε
m = {x ∈ Ω : |uε(x)| ≤ m}

Y ε
m = {x ∈ Ω : |uε(x)| > m}. (4.25)

From (3.9), (4.24), (4.25) we have,∫
E

|gε(x, uε,∇uε)| dx ≤
∫
E∩Xε

m

|gε(x, uε,∇uε)| dx+
1

m

∫
Ω

gε(x, uε,∇uε)uε dx

≤ b(m)

∫
E

(
N∑
i=1

wi|
∂uε
∂xi

|p + c(x)) dx+ β̃
1

m
.

(4.26)

15



Y. Akdim, E. Azroul, A. Benkirane

Since the sequence (∇uε) strongly converges in
∏N

i=1 L
p(Ω, wi), then (4.26)

implies the equi-integrability of gε(x, uε,∇uε).
Thanks to (4.23) and Vitali’s theorem one easily has

gε(x, uε,∇uε) −→ g(x, u,∇u) strongly in L1(Ω). (4.27)

Moreover, since gε(x, uε,∇uε)uε ≥ 0 a.e. in Ω, then by using (4.23), (4.24)
and Fatou’s lemma we have

g(x, u,∇u)u ∈ L1(Ω). (4.28)

From (4.21) and (4.27) we can pass to the limit in

〈Auε, v − uε〉+

∫
Ω

gε(x, uε,∇uε)(v − uε) dx ≥ 〈f, v − uε〉

and we obtain, 〈Au, v − u〉+

∫
Ω

g(x, u,∇u)(v − u) dx ≥ 〈f, v − u〉

for any v ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω) v ≥ ψ p.p. in Ω.

(4.29)

Proof of lemma 4.2
By the proposition 2.6 chapter 2 [7], it is sufficient to show that Bε is of the
calculus of variations type. Indeed put,

b1(u, v, w̃) =
N∑
i=1

∫
Ω

ai(x, u,∇v)∇w̃ dx

b2(u, w̃) =

∫
Ω

gε(x, u,∇u)w̃ dx.

The form w̃ −→ b1(u, v, w̃) + b2(u, w̃) is continuous in X. Then,

b1(u, v, w̃) + b2(u, w̃) = b(u, v, w̃) = 〈Bε(u, v), w̃〉, Bε(u, v) ∈ W−1,p′(Ω, w∗)

and we have
Bε(u, u) = Bεu.

Using (3.5) and Hölder’s inequality we can show that A is bounded [4], and
thanks to (4.3), Bε is bounded. Then, it is sufficient to check (2.6)− (2.9).
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Show that (2.6) and (2.7) are true.
By (3.6) we have,

(Bε(u, u)−Bε(u, v), u− v) = b1(u, u, u− v)− b1(u, v, u− v) ≥ 0.

The operator v → Bε(u, v) is bounded hemicontinuous. Indeed, we have

ai(x, u,∇(v1 + λv2)) −→ ai(x, u,∇v1) strongly in Lp
′
(Ω, w∗

i ) as λ→ 0.
(4.30)

On the other hand, (gε(x, u1 + λu2,∇(u1 + λu2)))λ is bounded in Lq′(Ω, σ1−q′)
and gε(x, u1 + λu2,∇(u1 + λu2)) −→ gε(x, u1,∇u1) a.e. in Ω hence lemma
3.1 gives

gε(x, u1+λu2,∇(u1+λu2)) ⇀ gε(x, u1,∇u1) weakly in Lq
′
(Ω, σ1−q′) as λ→ 0.

(4.31)
Using (4.30) and (4.31), we can write

b(u, v1 + λv2, w̃) −→ b(u, v1, w̃) as λ→ 0 ∀u, vi, w̃ ∈ X.

Similarly we can prove (2.7).
Proof of assertion (2.8). Assume that un ⇀ u weakly in X and (B(un, un)−
B(un, u), un − u) → 0. We have: (B(un, un)−B(un, u), un − u)

=
N∑
i=1

∫
Ω

(ai(x, un,∇un)− ai(x, un,∇u))∇(un − u) dx→ 0,

then, by lemma 3.6 we have,

un −→ u strongly in X,

which gives
b(un, v, w̃) −→ b(u, v, w̃) ∀w̃ ∈ X,

i.e.,
Bε(un, v) ⇀ Bε(u, v) weakly in X∗.

It remains to prove (2.9). Assume that

un ⇀ u weakly in X (4.32)

and that
B(un, v) ⇀ ψ weakly in X∗. (4.33)

17
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Thanks to (3.4), (3.5) and (4.32), we obtain

ai(x, un,∇v) → ai(x, u,∇v) strongly in Lp
′
(Ω, w∗

i ) as n→∞,

then,
b1(un, v, un) −→ b1(u, v, u). (4.34)

On the other hand, by Hölder’s inequality,

|b2(un, un − u)| ≤
(∫

Ω

|gε(x, un,∇un)|q
′
σ

−q′
q dx

) 1
q′
(∫

Ω

|un − u|qσ dx
) 1

q

≤ 1

ε

(∫
Ωε

σ
−q′

q dx

) 1
q′

‖un − u‖Lq(Ω,σ) → 0 as n→∞,

i.e.,
b2(un, un − u) −→ 0 as n→∞, (4.35)

but in view of (4.33) and (4.34), we obtain

b2(un, u) = (Bε(un, v), u)− b1(un, v, u) −→ (ψ, u)− b1(u, v, u)

and from (4.35) we have,

b2(un, un) −→ (ψ, u)− b1(u, v, u).

Then,
(Bε(un, v), un) = b1(un, v, un) + b2(un, un) −→ (ψ, u).

Now, let us show that Bε is coercive. Let v0 ∈ Kψ.
From Hölder’s inequality, the growth condition (3.5) and the compact imbed-
ding (3.4) we have,

〈Av, v0〉 =
N∑
i=1

∫
Ω

ai(x, v,∇v)
∂v0

∂xi
dx

≤
N∑
i=1

(∫
Ω

|ai(x, v,∇v)|p
′
w

−p′
p

i dx

) 1
p′
(∫

Ω

|∂v0

∂xi
|pwi dx

) 1
p

≤ c1‖|v0|‖

(∫
Ω

k(x)p
′
+ |v|qσ +

N∑
j=1

| ∂v
∂xj

|pwj dx

) 1
p′

≤ c2(c3 + ‖|v|‖
q
p′ + ‖|v|‖p−1),
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where ci are various constants,
thanks to (3.7) we obtain,

〈Av, v〉
‖|v|‖

− 〈Av, v0〉
‖|v|‖

≥ α‖|v|‖p−1 − ‖|v|‖p−2 − ‖|v|‖
q
p′−1 − c

‖|v|‖
.

In view of (3.1) we have p− 1 > q
p′
− 1. Then,

〈Av, v − v0〉
‖|v|‖

−→ ∞ as ‖|v|‖ −→ ∞,

since 〈Gεv, v〉 ≥ 0 and 〈Gεv, v0〉 is bounded we have

〈Bεv, v − v0〉
‖|v|‖

≥ 〈Av, v − v0〉
‖|v|‖

− 〈Gεv, v0〉
‖|v|‖

−→ ∞ as ‖|v|‖ −→ ∞.

Remark: The assumption (3.1) appears necessary, in order to prove the
boundedness of (uε)ε in W 1,p

0 (Ω, w) and the coercivity of the operator Bε.
While the assumption (3.2) is necessary to prove the boundedness of Gε in
W 1,p

0 (Ω, w). Thus, when g ≡ 0, we don’t need to suppose (3.2).
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