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Annales Mathematiques Blaise Pascal 10, 117-131 (2003)

Cale Bases in Algebraic Orders

Martine Picavet-L’Hermitte

Abstract

Let R be a non-maximal order in a finite algebraic number field
with integral closure R. Although R is not a unique factorization do-
main, we obtain a positive integer N and a family Q (called a Cale
basis) of primary irreducible elements of R such that xN has a unique
factorization into elements of Q for each x ∈ R coprime with the con-
ductor of R. Moreover, this property holds for each nonzero x ∈ R
when the natural map Spec(R) → Spec(R) is bĳective. This last
condition is actually equivalent to several properties linked to almost
divisibility properties like inside factorial domains, almost Bézout do-
mains, almost GCD domains.

1 Introduction
Let K be a number field and OK its ring of integers. A subring of OK

with quotient field K is called an algebraic order in K. Let R be a non-
integrally closed order with integral closure R. Since R cannot be a unique
factorization domain, an element of R need not have a unique factorization
into irreducibles. Let R be a quadratic order such that f is the conductor of
R ↪→ R. A. Faisant got a unique factorization into a family of irreducibles
for any xe where x ∈ R is such that Rx + f = R and e is the exponent of
the class group of R [7, Théorème 2]. We are going to generalize his result
to an arbitrary order and to a larger class of elements, using the notion of
Cale basis defined by S.T. Chapman, F. Halter-Koch and U. Krause in [4].
In Section 2, we show that there exists a Cale basis for an order R if and
only if the spectral map Spec(R) → Spec(R) is bĳective. This condition
is also equivalent to R ↪→ R is a root extension, or R is an API-domain
(resp. AD-domain, AB-domain, AP-domain, AGCD-domain, AUFD). These
integral domains were studied by D. D. Anderson and M. Zafrullah in [3]
and [11]. In Section 3, we consider orders R such that Spec(R) → Spec(R)
is bĳective and exhibit a Cale basis Q for such an order. The elements of
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Q are primary and irreducible and we determine a number N , linked to
some integers associated to R, such that xN has a unique factorization into
elements of Q for each nonzero x ∈ R. When R is an arbitrary order, we
restrict this property to a smaller class of nonzero elements of R. We do
not know whether the integer N is the minimum number such that xN has a
unique factorization into elements of Q for each nonzero x ∈ R, but we get
an affirmative answer for Z[3i].

A generalization of these results can be gotten by considering a residually
finite one-dimensional Noetherian integral domain R with torsion class group
or finite class group and such that its integral closure is a finitely generated
R-module.

Throughout the paper, we use the following notation:
For a commutative ring R and an ideal I in R, we denote by VR(I) the

set of all prime ideals in R containing I and by DR(I) its complement in
Spec(R). If R is an integral domain, U(R) is the set of all units of R and R
is the integral closure of R. The conductor of R ↪→ R is called the conductor
of R. For a, b ∈ R \ {0}, we write a|b if b = ac for some c ∈ R. Let J be an
ideal of R and x an element of R: we say that x is coprime to J if Rx+J = R
and we denote by CopR(J) the monoid of elements of R coprime to J . The
cardinal number of a finite set S is denoted by |S|. When an element x of a
group has a finite order, o(x) is its order. As usual, N∗ is the set of nonzero
natural numbers.

2 Almost divisibility

A Cale basis generalizes for an integral domain the set of irreducible elements
of a unique factorization domain. In fact, S.T. Chapman, F. Halter-Koch and
U. Krause first introduced this notion in [4] for monoids and later on extended
it to integral domains.

Definition: Let R be a multiplicative, commutative and cancellative monoid.
A subset of nonunit elements Q of R is a Cale basis if R has the following
two properties:

1. For every nonunit a ∈ R, there exist some n ∈ N∗ and ti ∈ N such that
an = u

∏
qi∈Q

qti
i where u ∈ U(R) and only finitely many of the ti’s are

nonzero.
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2. If u
∏
qi∈Q

qti
i = v

∏
qi∈Q

qsi
i where u, v ∈ U(R) and si, ti ∈ N with si = ti = 0

for almost all qi ∈ Q, then u = v and ti = si for all qi ∈ Q.

3. A monoid is called inside factorial if it possesses a Cale basis.

4. An integral domain R is called inside factorial if its multiplicative
monoid R \ {0} is inside factorial.

Remark: In [4], the authors give the definition of an inside factorial monoid
by means of divisor homomorphisms, but their result [4, Proposition 4] allows
us to use this simpler definition.

Proposition 2.1: Let R be a one-dimensional Noetherian inside factorial
domain with Cale basis Q. Any element of Q is a primary element and there
is a bĳective map {

Q → Max(R)
q 7→

√
Rq

Proof: Let q ∈ Q and show that Rq is a primary ideal. Let x, y ∈ R \ {0}
be such that q|(xy)k = xkyk for some k ∈ N∗. By [4, Lemma 2 (f)], there
exists some n ∈ N∗ such that q|xkn or q|ykn. This implies that

√
Rq is a

maximal ideal in R and Rq is a primary ideal.
Let P ∈ Max(R) and q, q′ ∈ Q be two P -primary elements. R being

Noetherian, there exists some n ∈ N∗ such that Rqn ⊂ P n ⊂ Rq′, so that
q′|qn. Set qn = q′x, x ∈ R. Since R is inside factorial, there exist some
k ∈ N∗ and ti ∈ N such that xk = u

∏
qi∈Q

qti
i where u ∈ U(R). This gives

qnk = uq′k
∏
qi∈Q

qti
i and q = q′ since Q is a Cale basis.

Let P ∈ Max(R) and x be a nonzero element of P . There exist some
n ∈ N∗ and ti ∈ N such that xn = u

∏
qi∈Q

qti
i where u ∈ U(R). Then Rxn =∏

qi∈Q

Rqti
i with Rqti

i a Pi-primary ideal and ti 6= 0 for each Pi containing x.

Moreover we have Pi 6= Pj for i 6= j. Since P contains x, one of the Pi such
that ti 6= 0 is P so that qi is P -primary. So we get the bĳection.

119



M. Picavet-L’Hermitte

Remark: We recover here the structure of Cale bases gotten in [4, Theorem
2] with the additional new property that every element of the Cale basis is a
primary element.

For a one-dimensional Noetherian domain with torsion class group, the
notion of inside factorial domain is equivalent to a lot of special integral
domains with different divisibility properties we are going to recall now (see
[11], [3] and [1]).

Definition: Let R be an integral domain with integral closure R. We say
that

1. R ↪→ R is a root extension if for each x ∈ R, there exists an n ∈ N∗

with xn ∈ R [3].

2. R is an almost principal ideal domain (API-domain) if for any nonempty
subset {ai} ⊆ R \ {0}, there exists an n ∈ N∗ with ({an

i }) principal [3,
Definition 4.2].

3. R is an AD-domain if for any nonempty subset {ai} ⊆ R \ {0}, there
exists an n ∈ N∗ with ({an

i }) invertible [3, Definition 4.2].

4. R is an almost Bézout domain (AB-domain) if for a, b ∈ R \ {0}, there
exists an n ∈ N∗ such that (an, bn) is principal [3, Definition 4.1].

5. R is an almost Prüfer domain (AP-domain) if for a, b ∈ R \ {0}, there
exists an n ∈ N∗ such that (an, bn) is invertible [3, Definition 4.1].

6. R is an almost GCD-domain (AGCD-domain) if for a, b ∈ R\{0}, there
exists an n ∈ N∗ such that anR ∩ bnR is principal [11].

7. A nonzero nonunit p ∈ R is a prime block if for all a, b ∈ R with
aR ∩ pR 6= apR and bR ∩ pR 6= bpR, there exist an n ∈ N∗ and
d ∈ R such that (an, bn) ⊂ dR with (an/d)R ∩ pR = (an/d)pR or
(bn/d)R ∩ pR = (bn/d)pR. Then R is an almost unique factorization
domain (AUFD) if every nonzero nonunit of R is expressible as a prod-
uct of finitely many prime blocks [11, Definition 1.10].

8. R is an almost weakly factorial domain if some power of each nonzero
nonunit element of R is a product of primary elements [1].
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We first give a result for one-dimensional Noetherian integral domains.

Proposition 2.2: Let R be a one-dimensional Noetherian inside factorial
domain with Cale basis Q. Then R is an AGCD and an almost weakly
factorial domain.

Proof: R is obviously an almost weakly factorial domain (see also [1,
Theorem 3.9]). Let a, b ∈ R \ {0}. There exist some n ∈ N∗ and si, ti ∈ N
such that an = u

∏
qi∈Q

qsi
i , bn = v

∏
qi∈Q

qti
i where u, v ∈ U(R). For each i, set

mi = sup(si, ti), m′
i = inf(si, ti) and c =

∏
qi∈Q

qmi
i . Then Rc ⊂ Ran ∩ Rbn so

that c = u−1ana′ = v−1bnb′ with a′ =
∏
qi∈Q

qmi−si
i and b′ =

∏
qi∈Q

qmi−ti
i . Now,

let x, y ∈ R \ {0} be such that xan = ybn. It follows that xu
∏
qi∈Q

q
si−m′

i
i =

yv
∏
qi∈Q

q
ti−m′

i
i where qi appears in the product in at most one side and uxb′ =

vya′. Assume m′
i = si 6= ti. Since Rq

ti−m′
i

i is a Pi-primary ideal and qj 6∈ Pi

for each j 6= i by Proposition 2.1, we get that qmi−si
i = q

ti−m′
i

i divides x.
Repeating the process for each i such that ti > m′

i, we get that a′ | x and
xan ∈ Rc. Then Rc = Ran ∩Rbn and R is an AGCD.

More precisely, for one-dimensional Noetherian integral domains with tor-
sion class group, we have the following.

Theorem 2.3: Let R be a one-dimensional Noetherian integral domain with
torsion class group and with integral closure R. The following conditions are
equivalent.

1. R ↪→ R is a root extension.

2. R is an API-domain.

3. R is an AD-domain.

4. R is an AB-domain.

5. R is an AP-domain.

6. R is an AGCD-domain.
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7. R is an AUFD.

8. R is an inside factorial domain.

Moreover, if R is a finitely generated R-module and R is residually finite,
these conditions are equivalent to

9. Spec(R) → Spec(R) is bĳective.

Proof: (1) ⇔ (4) ⇔ (5) by [3, Corollary 4.8] since R is a Prüfer domain.
(1) ⇔ (8) by [4, Corollary 6].
(6) ⇔ (7) by [11, Proposition 2.1 and Theorem 2.12].
At last, implications (4) ⇒ (2) ⇒ (3) ⇒ (5) and (4) ⇒ (6) are obvious

since R is Noetherian.
(6) ⇒ (1) follows from [3, Theorem 3.1] and (1) ⇒ (9) is true in any case

by [3, Theorem 2.1].
Moreover, if R is a finitely generated R-module and R is residually finite,

we get (9) ⇒ (1). Indeed, it is enough to mimic the proof of [9, Proposition
3] since R ↪→ R is factored in finitely many root extensions.

Remark: In [5, page 178] and [3, page 297], the authors asked about non-
integrally closed AGCD domains of finite t-character or of characteristic 0.
The previous theorem gives examples of such domains.

3 Structure of Cale bases of algebraic orders
In this section, we consider algebraic orders where Theorem 2.3 reveals as
being useful. A generalization to residually finite one-dimensional Noetherian
integral domains R with finite class group and with integral closure R such
that R is a finitely generated R-module can be easily made. We use the
following notation.

Let R be an order with integral closure R and conductor f. Set I(R) (resp.
If(R), If(R)) the monoid of all nonzero ideals of R (resp. the monoid of all
nonzero ideals of R comaximal to f, the monoid of all nonzero ideals of R
comaximal to f). In particular, DR(f) = (If(R) ∩ Spec(R)) ∪ {0}. Let P(R)
(resp. Pf(R)) be the submonoid of all principal ideals belonging to I(R)
(resp. to If(R)). Then C(R) = I(R)/P(R) (resp. C(R) = If(R)/Pf(R))
is the class group of R (resp. R [9, Proposition 2]) and C(R) → C(R) is
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surjective. Both of these groups are finite. Moreover, we have a monoid
isomorphism ϕ : If(R) → If(R) defined by ϕ(J) = JR for all J ∈ If(R) (see
[8, §3]). In particular, any ideal of If(R), as any ideal of I(R), is the product
of maximal ideals in a unique way since ϕ(DR(f)) = DR(f). The image of
an ideal J of I(R) (resp. If(R)) in C(R) (resp. C(R)) is denoted by [J ].
The exponent of C(R) is denoted by e(R) and s(R) is the order of the factor
group U(R)/U(R).

3.1 Building a Cale basis

Proposition 3.1: Let f be the conductor of an order R where the integral
closure is R.

1. Let P ∈ DR(f) \ {0} and α = o([P ]). There exists an irreducible P -
primary element q ∈ P such that Pα = Rq.

2. Let P ∈ VR(f) such that there exists a unique P ′ ∈ Spec(R) lying over
P . There exists a P -primary element q ∈ P such that P ′n = Rq for
some n ∈ N∗ and such that P ′n′

= Rq′ with q′ ∈ R implies n ≤ n′.
Such an element q is irreducible in R.

Proof:
(1) Pα is a principal ideal. Let q ∈ R be such that Pα = Rq and suppose
there exist x, y ∈ R such that q = xy so that Pα = (Rx)(Ry). Using the
monoid isomorphism ϕ, we get that Rx = P β and Ry = P γ with α = β + γ.
But the definition of α implies that x or y is a unit and q is an irreducible
element, obviously P -primary.
(2) Set α = o([P ′]). There exists p′ ∈ P ′ such that P ′α = Rp′.

Let Q ∈ DR(f). Then RQ → RQ is an isomorphism, so that p′/1 ∈ RQ.
Let P 6= Q ∈ VR(f). Then p′/1 ∈ U(RQ). As |U(RQ)/U(RQ)| is finite,

there exists nQ ∈ N∗ such that (p′/1)nQ ∈ RQ.
Lastly, RP ↪→ RP is a root extension in view of Theorem 2.3 (9). It

follows that there exists nP ∈ N∗ such that (p′/1)nP ∈ RP .
VR(f) being finite, there exists a least n ∈ N∗ such that p′n ∈ R∩P ′ = P .

In case there exists u ∈ U(R) such that P ′mα = Rp′m, with m < n and
up′m ∈ R ∩ P ′ = P , we pick q ∈ P such that P ′β = Rq, where β is the least
k ∈ N∗ such that P ′k = Rq′ with q′ ∈ R. Then q is obviously a P -primary
element.
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Let x, y ∈ R be such that q = xy, which gives P ′β = (Rx)(Ry) so that
Rx = P ′γ and Ry = P ′δ with β = γ + δ. But the definition of β implies that
x or y is in U(R) ∩R = U(R) and q is an irreducible element in R.

Remark: If we assume that Spec(R) → Spec(R) is bĳective in Proposition
3.1, R ↪→ R is a root extension in view of Theorem 2.3 (1). Then, there
exists a least n ∈ N∗ such that p′n ∈ R ∩ P ′ = P .

Theorem 3.2: Let R be an order with conductor f and integral closure R.
For each P ∈ DR(f) \ {0}, let α = o([P ]). Choose qP ∈ P such that

Pα = RqP . Set Q1 = {qP | P ∈ DR(f) \ {0}}.
For each P ∈ VR(f) such that there exists a unique P ′ ∈ Spec(R) lying

over P , choose qP ∈ P such that qP generates a least power of P ′. Set
Q2 = {qP | P ∈ VR(f), there exists a unique P ′ ∈ Spec(R) lying over P}.

To end, set Q = Q1 ∪ Q2 and let J be the intersection of all P ∈ VR(f)
such that there exists more than one ideal in Spec(R) lying over P .

For each Pi ∈ VR(f) such that there exists a unique P ′
i ∈ Spec(R) lying

over Pi let ni be the least n ∈ N∗ such that P ′n
i is a principal ideal generated

by an element of R. Lastly, set m = lcm(e(R), ni) and N = ms(R). Then

1. Up to units of R, xN is a product of elements of Q in a unique way,
for each x ∈ CopR(J).

In particular, CopR(J) is an inside factorial monoid with Cale basis Q.

2. In particular, Q is a Cale basis for R when Spec(R) → Spec(R) is
bĳective.

Proof: • Since VR(f) is a finite set, there are finitely many Pi ∈ VR(f)
such that there exists a unique P ′

i ∈ Spec(R) lying over Pi.
Set ni = inf{n ∈ N∗ | P ′n

i is a principal ideal generated by an element of R}.
We can set m = lcm(e(R), ni) so that m = e(R)e′ = nin

′
i and e(R) = αiα

′
i,

where αi = o([Pi]) for each i such that Pi ∈ DR(f) \ {0}.
Let x ∈ CopR(J). Then Rx =

∏
P ′

i
ai , ai ∈ N∗, P ′

i ∈ Max(R). Set
Pi = R ∩ P ′

i and qi = qPi
for each i.

Then we have Rxm =
∏

Pi∈VR(f)

P ′
i
mai

∏
Pi∈DR(f)\{0}

P ′
i
mai .

If Pi ∈ VR(f), we get that P ′
i
mai = P ′

i
nin

′
iai = Rq

ain
′
i

i , with qi ∈ Q2.
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If Pi ∈ DR(f) \ {0}, we get that P ′
i = RPi so that P ′

i
mai = P ′

i
e(R)e′ai =

RPi
e(R)e′ai = Rq

aie
′α′

i
i , with qi ∈ Q1.

This gives finally Rxm = R
∏

Pi∈VR(f)

qi
n′

iai

∏
Pi∈DR(f)\{0}

qi
e′α′

iai , so that there ex-

ists u ∈ U(R) such that xm = u
∏
q∈Q

qbq , bq ∈ N. From v = us(R) ∈ R∩U(R) =

U(R), we deduce xms(R) = v
∏
q∈Q

qs(R)bq . Set N = ms(R) and tq = s(R)bq for

each q ∈ Q. Then xN = v
∏
q∈Q

qtq .

• Let us show that xN has a unique factorization into elements of Q. Let
v, v′ ∈ U(R), tq, t

′
q ∈ N be such that xN = v

∏
q∈Q

qtq = v′
∏
q∈Q

qt′q . This implies∏
q∈Q

Rqtq =
∏
q∈Q

Rqt′q in R, with finitely many nonzero tq and t′q. Taking into

account the uniqueness of the primary decomposition of RxN in R, we first
get Rqtq = Rqt′q , so that tq = t′q for each q ∈ Q, and then v = v′.

It follows that Q is a Cale basis for CopR(J), which is an inside factorial
monoid. Part (2) is then a special case of the general case.

Remark: (1) If there exists a maximal ideal P in R with more than one
maximal ideal in R lying over P , then CopR(J) is not the largest inside
factorial monoid contained in R where the elements of the Cale basis are
primary.

Indeed, let q be a P -primary element. The monoid generated by CopR(J)
and q is still inside factorial.

(2) Nevertheless, under the previous assumption, we can ask if there exists
in R a largest inside factorial monoid of the form CopR(K) where K is an
ideal of R and such that the elements of the Cale basis of CopR(K) are
irreducible and primary.

Proposition 3.3: Under notation of Theorem 3.2, J is the greatest ideal
K of R such that CopR(K) is an inside factorial monoid and such that
the elements of the Cale basis of CopR(K) are primary. Moreover, we get
CopR(K) ⊂ CopR(J) for any such an ideal K.

Proof: Let K be an ideal of R such that CopR(K) is an inside factorial
monoid and such that the elements of the Cale basis Q′ of CopR(K) are
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primary. Assume there exists a P -primary element q ∈ Q′ with P ∈ VR(J).
Let P1, . . . , Pn ∈ Spec(R) be lying over P with n > 1, so that f ⊂ P . Let
p1 ∈ R be a P1-primary element. We first show that there exist some r and
s ∈ N∗ such that qrps

1 is a P -primary element of R.
For a maximal ideal M ∈ Max(R), we denote by X ′ the localization of

an R-module X at M .
• If M ∈ DR(f), we get an isomorphism R′ ' R

′.
Then p1/1 ∈ R′ and (qr′

ps′
1 )/1 ∈ R′ for any r′, s′ ∈ N∗. Moreover, we have

(qr′
ps′

1 )/1 ∈ U(R′).
• If M ∈ VR(f) and M 6= P , then p1/1 ∈ U(R

′
) and there exists sM ∈ N∗

such that (psM
1 )/1 ∈ U(R′) since U(R

′
)/U(R′) has a finite order. Because of

VR(f) being finite too, there exists s ∈ N∗ such that (qr′
ps

1)/1 ∈ R′ for any
M ∈ VR(f) \ {P} and for any r′ ∈ N∗. Moreover, (qr′

ps
1)/1 ∈ U(R′).

• If M = P , we get that f′ is a P ′-primary ideal and the conductor of R′.
There exists r ∈ N∗ such that P ′r ⊂ f′, so that qr/1 ∈ f′. This implies
(qrps

1)/1 ∈ P ′ ⊂ R′.
To conclude, there exist r, s ∈ N∗ such that (qrps

1)/1 ∈ RM for any
M ∈ Max(R), which gives qrps

1 ∈ R and is a P -primary element in R by
the previous discussion. But P + K = R since q ∈ CopR(K). It follows
that qrps

1 ∈ CopR(K) and there exist t, x ∈ N∗ such that (qrps
1)

t = uqx (∗),
with u ∈ U(R). As q is a P -primary element, we get in R the two factor-

izations Rq =
n∏

i=1

P ai
i and Rp1 = P a

1 , with ai, a ∈ N∗. From (∗), we get

P ast
1 (

n∏
i=1

P rtai
i ) =

n∏
i=1

P xai
i , which gives :

- if i = 1, then rta1 + ast = a1x (1)
- if i 6= 1, then rtai = aix (i)

so that x = rt by (i) and then ast = 0 by (1), a contradiction.
Hence, any P -primary element q ∈ Q′ is such that P ∈ DR(J).
For any x ∈ CopR(K), let k ∈ N∗ be such that xk = u

∏
q∈Q′

qbq , so that

any maximal ideal P ∈ VR(x) is in DR(J). This implies that x ∈ CopR(J).
We have just shown that CopR(K) ⊂ CopR(J). To end, any P ∈ DR(K)

contains some q ∈ CopR(K) ⊂ CopR(J) so that P ∈ DR(J).
Then VR(J) ⊂ VR(K) and K ⊂

√
K ⊂

√
J = J .

Recall that an integral domain is weakly factorial if each nonunit is a
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product of primary elements (D. D. Anderson and L. A. Mahaney [2]). In
particular, the class group of a one-dimensional weakly factorial Noetherian
domain is trivial [2, Theorem 12]. The following corollary generalizes the
quadratic case worked out by A. Faisant [7, Corollaire].

Corollary 3.4: Let R be a weakly factorial order with conductor f. Then
each x ∈ CopR(f) is a product of prime elements of R in a unique way up to
units.

Proof: We get |C(R)| = 1. Let x ∈ CopR(f). Then, Rx =
∏

Pi∈DR(f)\{0}

Pi
ai ,

where each Pi is a principal ideal generated by a prime element pi ∈ Q1

(notation of Theorem 3.2). It follows that x = u
∏

pi∈Q1

pi
ai , u ∈ U(R).

Corollary 3.5:

1. Let R be an inside factorial order with integral closure R. Let Q be the
Cale basis defined in Theorem 3.2. Any overring S of R contained in
R is inside factorial and Q is still a Cale basis for S.

2. Let R1 and R2 be two inside factorial orders with the same integral
closure. Then R = R1 ∩ R2 is inside factorial. Moreover, there exists
a common Cale basis for R1 and R2.

Proof: (1) Since R ↪→ R is a root extension, so is S ↪→ R and S is inside
factorial by Theorem 2.3. Moreover, the spectral map Spec(R) → Spec(S)
is bĳective. Then, the construction of Q in the proof of Theorem 3.2 shows
that Q is also a Cale basis for S.

We may also use [4, Proposition 5].
(2) Set R = R1∩R2. Then R is an order with the same integral closure R

as R1 and R2. Since R1 ↪→ R and R2 ↪→ R are root extensions, so is R ↪→ R
and R is inside factorial by Theorem 2.3. Part (1) gives that any Cale basis
for R is also a Cale basis for R1 and R2.

Remark: The elements of the Cale basis Q gotten in Theorem 3.2 are irre-
ducible in R. The following examples show how they behave in the integral
closure R.
(1) Consider the quadratic order R = Z[

√
−3] with conductor f = 2R, a

maximal ideal in R and R. Then R is weakly factorial and inside factorial
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[10, Corollary 2.2]. Let Q be the Cale basis of Theorem 3.2. Any element of
Q belonging to CopR(f) is irreducible in R as well as in R. By Proposition
3.6 of the next subsection, 2 is the f-primary element of Q irreducible in both
R and R. Then Q is a Cale basis for R and its elements are also irreducible
in R.
(2) Consider the quadratic order R = Z[2i]. Its conductor f = 2R is a
maximal ideal in R. But f = R(1 + i)2 where R(1 + i) is a maximal ideal
in R. Then R is weakly factorial and inside factorial [10, Corollary 2.2].
Let Q be the Cale basis of Theorem 3.2. Any element of Q belonging to
CopR(f) is irreducible in R as well as in R. By Proposition 3.6 of the next
subsection, 2 is the f-primary element of Q, irreducible in R but not in R
since 2 = −i(1 + i)2. Then Q is a Cale basis for R and its elements need not
be all irreducible in R.

3.2 The quadratic case
In this subsection we keep notation of Theorem 3.2 for N, Q1 and Q2. For
a quadratic order, determination of elements of Q2 and the number N is
simple. The characterization of quadratic inside factorial orders is given in
[4, Example 3].

Let d be a square-free integer and consider the quadratic number field
K = Q(

√
d). It is well-known that the ring of integers of K is Z[ω], where

ω = 1
2
(1 +

√
d) if d ≡ 1 (mod 4) and ω =

√
d if d ≡ 2, 3 (mod 4).

Moreover, Z[ω] is a free Z-module with basis {1, ω}. A quadratic order in K
is a subring R of Z[ω] which is a free Z-module of rank 2 with basis {1, nω}
where n ∈ N∗. Then Z[ω] is the integral closure R of R = Z[nω] and nZ[ω]
is the conductor of R. We denote by N(x) the norm of an element x ∈ Z[ω].

Proposition 3.6: Let R = Z[nω] be a quadratic order with conductor f =
nZ[ω], n ∈ N∗. Then Q2 is the set of ramified and inert primes dividing n.

In particular, Z[nω] ↪→ Z[ω] is a root extension if and only if no decom-
posed prime divides n.

Proof: Let P ∈ Max(R), with pZ = Z ∩ P . There is only one maximal
ideal lying over P in R if p is ramified or inert. By [12, Proposition 12], we
have P = pZ + nωZ when p|n.
• If p is inert, then Rp ∈ Max(R), so that p is irreducible in R and in R.
• If p is ramified, then Rp = P ′2, where P ′ ∈ Max(R).

- If P ′ is not a principal ideal, then p is irreducible in R and in R.
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- Let P ′ = Rp′, p′ ∈ R. Then p = up′2 with u ∈ U(R). Indeed, p is still
irreducible in R. Deny and let x, y ∈ R be nonunits such that p = xy. It
follows that N(p) = p2 = N(x)N(y) which gives N(x) = N(y) = ±p. But
x ∈ R can be written x = a + bnω, a, b ∈ Z.

If d ≡ 2, 3 (mod 4), we get N(x) = a2 − n2b2d, with p|n and p|N(x).
Then p|a, p2|a2, p2|n2 so that p2|N(x), a contradiction.

If d ≡ 1 (mod 4), we get d = 1 + 4k, k ∈ Z. It follows that N(x) =
a2 + abn− n2b2k. The same argument leads to a contradiction.

Corollary 3.7: Let R = Z[nω] be a quadratic order, n ∈ N∗, with conductor
f = nZ[ω]. The integer N is

1. N = 2e(R)s(R) if e(R) is odd and if a ramified prime divides n

2. N = e(R)s(R) if e(R) is even or if no ramified prime divides n.

Remark: We can ask whether the integer N gotten in Theorem 3.2 or in
Corollary 3.7 is the least integer n such that xn is a product of elements of Q
in a unique way, for any nonzero nonunit x of an inside factorial order. We
can answer in the quadratic case by an example.

Example: Consider R = Z[3i]. Its integral closure is the PID R = Z[i] and
its conductor is f = 3R ∈ Max(R) since 3 is inert.

As |U(R)/U(R)| = 2, we get |C(R)| = 2 by the class number formula
|C(R)| = |C(R)||U(R)/U(R)|−1(1 + 3) (see [6, Chapter 9.6]), so that N = 4.
Moreover, 2 = −i(1+i)2 is ramified in R and P = R∩(1+i)R = 2Z+3(1+i)Z
is a nonprincipal maximal ideal in R such that P 2 = 2R, with 2 and 3
irreducible in R. We get 2 ∈ Q1 and 3 ∈ Q2. Let t = 3(1 + i) ∈ R. The
only maximal ideals of R containing t are f and P . Now t2 = 32(2i), t3 =
33 · 2(−1 + i) and t4 = −34 · 22. Then t4 is the least power which has, up
to units of R, a unique factorization into elements of Q. It follows that
N = e(R)s(R) is the least integer n such that xn is a product of elements of
Q in a unique way, for any nonzero nonunit x of R.
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