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Lp−boundedness of oscillating spectral
multipliers on Riemannian manifolds

Michel Marias

Abstract

We prove endpoint estimates for operators given by oscillating
spectral multipliers on Riemannian manifolds with C∞-bounded ge-
ometry and nonnegative Ricci curvature.
Keywords: spectral multipliers, wave equation, Riesz means
AMS Subject Classification: 58G03

1 Introduction and statement of the results

Let M be an n−dimensional, complete, noncompact Riemannian manifold
with nonnegative Ricci curvature and let us assume that it has C∞-bounded
geometry, that is, the injectivity radius is positive and every covariant deriva-
tive of the curvature tensor is bounded (cf. [25]). Let d(., .) denote the Rie-
mannian distance on M , dx its volume element. Let us denote by B(x, r)
the ball of radius r > 0 centered at x ∈ M and by |B(x, r)| its volume.
By the Bishop comparison theorem (cf. [5]), the assumption that M has
nonnegative Ricci curvature implies that

|B(x, r)|
|B(x, t)|

≤
(r
t

)n

, r ≥ t > 0, (1.1)

and hence
|B(x, 2r)| ≤ 2n |B(x, r)| , r > 0.

This is the so called ‘doubling volume property’ and makes M a ‘space of
homogeneous type’ in the sense of Coifman and Weiss [8]. Thus we can define
the atomic Hardy space H1 (M) and BMO (M), the space of functions of
bounded mean oscillation, in the standard way (cf. [8]). Further, by Theorem
B of [8], BMO (M) is the dual of H1 (M).
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Let L be the Laplace-Beltrami operator. It admits a selfadjoint extension
on L2(M), also denoted by L and hence the spectral resolution

L =

∫ ∞

0

λdEλ.

Given a bounded measurable functionm(λ), we can define, by the spectral
theorem, the operator

m(L) =

∫ ∞

0

m(λ)dEλ.

This operator is bounded on L2(M). The function m(λ) is called multiplier.
Oscillating multipliers are multipliers of the type

mα,β(λ) = ψ(|λ|) |λ|−β/2 ei|λ|α/2

, α > 0, β ≥ 0. (1.2)

with ψ a smooth function which is 0 for |λ| ≤ 1 and 1 for |λ| ≥ 2.
In this article we shall prove some endpoint results concerning the Lp

boundedness of the family of operators

mα,β(L) =

∫ ∞

0

mα,β(λ)dEλ.

We have the following:

Theorem 1.1: Let mα,β be as above and let α ∈ (0, 1). The following hold:

(i). If β = αn
2

, then mα,β(L) is bounded from H1(M) to L1(M), on Lp(M),
1 < p <∞ and from L∞(M) to BMO (M).

(ii). If 0 ≤ β < nα
2

, then mα,β(L) is bounded on Lp(M), for β ≥ αn
∣∣∣1p − 1

2

∣∣∣,
1 < p <∞.

(iii). If β > αn
2

, then mα,β(L) is bounded on Lp(M) for 1 ≤ p ≤ ∞.

Oscillating multipliers fall outside the scope of Calderón-Zygmund theory
and they have been studied extensively. See for example [31, 14, 10, 11, 21,
22, 23, 28, 26] for Rn and [9, 1, 20, 12] for more abstract settings.

The above result, in the context of Rn and for 0 ≤ β ≤ αn/2, has
been proved by Fefferman and Stein in [11]. In the context of Riemannian
manifolds of nonnegative Ricci curvature, Alexopoulos [1], has proved that
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Oscillating spectral multipliers

for any α > 0, mα,β(L) is bounded on Lp for β > αn
∣∣∣1p − 1

2

∣∣∣, 1 ≤ p ≤ ∞.
According to [11], the results above, for 0 ≤ β ≤ αn/2, are optimal.

For the proof of the H1 − L1 boundedness of mα, αn
2

(L), we follow the
strategy that Alexopoulos sketches at the end of the paper [1]. The idea,
which is due to M. Taylor, is to express mα,β(L) in terms of the wave operator
cos t

√
L and then use the Hadamard parametrix method to get very precise

estimates of its kernel near the diagonal. Away from the diagonal, we use
the finite propagation speed property of cos t

√
L and the fast decay of the

multiplier at infinity to obtain that mα,β(L) is bounded on Lp, p ≥ 1.
To prove that the operator mα,β(L) is bounded on Lp for β = αn

∣∣∣1p − 1
2

∣∣∣,
1 < p < ∞, we compose mα, nα

2
(L) with the imaginary powers of the Lapla-

cian, which are bounded on H1, (cf. [19]), and then use the H1−L1 bound-
edness of mα, αn

2
(L) and complex interpolation.

We shall apply Theorem 1.1 in order to obtain similar results for the Riesz
means associated with the Schrödinger type group eisLα/2 i.e. for the family
of operators

Ik,α(L) = kt−k

∫ t

0

(t− s)k−1eisLα/2

ds, 0 < α < 1, k > 0.

We have the following

Theorem 1.2: For any α ∈ (0, 1), the following hold:

(i). If k = n
2
, then Ik,α(L) is bounded from H1(M) to L1(M), on Lp(M),

1 < p <∞, and from L∞(M) to BMO (M).

(ii). If k < n
2
, then Ik,α(L) is bounded on Lp(M), for k ≥ n

∣∣∣1p − 1
2

∣∣∣, 1 <
p <∞.

(iii). If k > n
2
, then Ik,α(L) is bounded on Lp(M), 1 ≤ p ≤ ∞.

In the context of Rn, the operators Ik,α(L) are studied for example in [27]
and [22]. According to [27], the results above, for k ≤ n/2, are optimal. The
operators Ik,α(L) have also been studied in more abstract contexts, see for
example [1, 2, 17, 18, 4, 6].
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It is worth mentioning that our approach is valid only for α ∈ (0, 1). This
is due to the fact that the estimates of the multiplier mα,β(λ) are available
only for α ∈ (0, 1), (cf. [31] and Section 5).

The paper is organized as follows. In Section 2 we recall some known facts
about the Hardy space H1 and BMO (Subsection 2.1), the wave operator
and the construction of its parametrix (Subsection 2.2). In Section 3 the
estimates of the Fourier transform of the derivatives of the multiplier mα,β(λ)
are given. In Section 4 we give the estimates of the kernel of the operator
mα,β(L) near the diagonal and in Section 5 we establish its Lp-boundedness
when β > n/2. In Section 6 we prove the H1 − L1 boundedness of the
operator mα, αn

2
(L) and in Section 7 we finish the proofs of Theorems 1.1 and

1.2.
Throughout this article the different constants will always be denoted by

the same letter c. When their dependence or independence is significant, it
will be clearly stated.

2 Preliminaries

2.1 The Hardy space H1 and BMO

Let us recall that a complex-valued function a on M is an atom if it is
supported in a ball B (y0, r) and satisfies

‖a‖∞ ≤ |B(y0, r)|−1 and
∫

M
a (x) dx = 0.

A function f on M belongs to the Hardy space H1(M) if there exist
(λm)m∈N ∈ `1 and a sequence of atoms (am)m∈N such that

f =
∑
m∈N

λmam,

where the series converges in L1 (M). The norm ‖f‖H1 is the infimum of∑
m∈N |λm| for all such decompositions of f .
A function f belongs to BMO(M), if there exists a constant c > 0 such

that for all balls B(x, r),

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB| dy < c,
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where
fB =

1

|B(x, r)|

∫
B(x,r)

f(y)dy.

The smallest of all such constants c is the BMO norm of f .
Finally we note that the dual of H1(M) is BMO(M), (cf. [8], Theorem

B, p. 593).

2.2 The wave operator
Let Gt(x, y) be the kernel of the wave operator cos t

√
L. Note that Gt(x, y)

is also the solution of the wave equation

(∂2
t + Ly)u(t, x, y) = 0,
u(0, x, y) = δx(y),
∂tu(0, x, y) = 0.

(2.1)

In this article we shall exploit the fact that Gt(x, y) propagates with finite
propagation speed (cf. [7, 29]):

supp(Gt) ⊆ {(x, y) : d(x, y) ≤ |t|} . (2.2)

Next we shall recall some facts about the Hadamard parametrix construc-
tion for the kernel Gt(x, y), (cf. [3, 4, 15]).

Let δ ∈ (0, r0), to be fixed later, and let us consider, for every ball B(x, δ),
x ∈ M , the exponential normal coordinates centered at x. Let gij(x, y),
y ∈ B(x, δ), be the metric tensor expressed in these coordinates and let
us denote by (gij(x, y)) its inverse matrix. We have the following Taylor
expansion of gij:

gij(x, y) = δij +2 Aijkl(yk − xk)(yl − xl)

+3Aijklm(yk − xk)(yl − xl)(ym − xm) + ...
(2.3)

where the kAij... are universal polynomials in the components of the curvature
tensor and its first k−2 covariant derivatives at the point x, (cf. [24], p. 85).
By the term “universal” we mean that the coefficients of the polynomials
kAij... depend only on the dimension of the manifold.

It follows from (2.3) and the assumption of C∞-bounded geometry that
for any multi-index α there exists a positive constant cα such that∣∣∂α

y gij(x, y)
∣∣ ≤ cα, x ∈M, y ∈ B(x, δ). (2.4)
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Since gij(x, x) = δij, there is c > 0 and δ ∈ (0, r0) such that

c−1 ≤ det(gij(x, y)) ≤ c. (2.5)

for all x ∈M and y ∈ B(x, δ).
In what follows, we shall fix a δ ∈ (0,min(1, r0)) such that (2.5) is satis-

fied.
From (2.4) and (2.5) we also have that there is c′α > 0 such that∣∣∂α

y g
ij(x, y)

∣∣ ≤ c′α. (2.6)

for all x ∈M , y ∈ B(x, δ).
Let Θ(x, y) = det (gij(x, y)). Then, the Laplace-Beltrami operator L can

be written as follows:

L =
1

(Θ(x, y)))1/2

∑
i,j

∂

∂yi

(Θ(x, y)))1/2gij(x, y)
∂

∂yj

.

Note that by (2.4), (2.5) and (2.6), the Laplacian can also be written as

L =
∑
|α|≤2

ca(y)∂
α
y

with the coefficients satisfying∣∣∂β
y cα(y)

∣∣ ≤ cα,β, (2.7)

for all x ∈M , y ∈ B(x, δ) and any multi-index β.
Let us consider the following smooth functions:

U0(x, y) = Θ−1/2(x, y)

and

Uk+1(x, y) = Θ−1/2(x, y)

∫ 1

0

skΘ1/2(x, ys)L2Uk(x, ys)ds,

where ys, s ∈ [0, 1], is the geodesic from x to y and L2 denotes the Laplacian
acting on the second variable. Note that U0(x, x) = 1.

In what follows, we always assume that |t| ≤ δ and y ∈ B(x, δ), x ∈M .
Let us consider the kernels

EN(t, x, y) = C0

N∑
k=0

(−1)kUk(x, y) |t|
(t2 − d(x, y)2)

k−n+1
2

+

4kΓ
(
k − n−1

2

) , (2.8)
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where C0 is a normalizing constant.
They satisfy (cf. [3])

(∂2
t + Ly)EN(t, x, y) = C0(−1)N

4NΓ(N−n−1
2 )

|t| (t2 − d(x, y)2)
N−n+1

2
+ LyUN(x, y),

EN(0, x, y) = δx(y),
∂tEN(0, x, y) = 0.

(2.9)
Now, let us observe that by (2.4), (2.5) and (2.7) there exists a c > 0 such

that
|U0(x, y)| ≤ c0 and |LyU0(x, y)| ≤ c1. (2.10)

These also imply that for any k ∈ N there is c > 0 such that

|Uk(x, y)| ≤ ck
1

k!
, |LyUk(x, y)| ≤ ck+1

1

k!
and ‖∇yUk(x, y)‖ ≤ c

ck
1

k!
, (2.11)

for x ∈M and y ∈ B(x, δ).
If k ≥ n+1

2
, then (2.11) and the fact that

Γ
(
k − n+1

2

)
∼ k!, as k →∞,

imply that∣∣∣∣∣Uk(x, y) |t|
(t2 − d(x, y)2)

k−n+1
2

+

4kΓ
(
k − n−1

2

) ∣∣∣∣∣ ≤ ck1
k!
δ
δ2k−(n+1)

4kk!
≤ ck1
k!

δ2k−n

4kk!
. (2.12)

From (2.8) and (2.12) we get that EN(t, x, y) converges uniformly as N →
∞ and (2.9), (2.11) and (2.1) that the limit is Gt(x, y). Thus we have the
expansion

Gt(x, y) = C0

∞∑
k=0

(−1)kUk(x, y) |t|
(t2 − d(x, y)2)

k−n+1
2

+

4kΓ
(
k − n−1

2

) , (2.13)

the convergence being uniform for |t| ≤ δ and y ∈ B(y, δ).

3 Estimates of the multiplier and of its deriva-
tives

In this section we shall give some estimates for the derivatives of the Fourier
transform of the multiplier mα,β.
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Let us consider the function

fα,β(t) = mα,β(t2) = ψ(t2) |t|−β ei|t|α .

Let r0 be the injectivity radius of M and us fix δ ∈ (0, r0). Let χδ(t) be a
smooth and nonnegative function such that χδ(t) = 1 for |t| ≤ δ/2 and 0 for
|t| ≥ δ. Set

f̂ 0
α,β(t) = f̂α,β(t)χδ(t), f̂∞α,β(t) = f̂α,β(t)(1− χδ(t)). (3.1)

In this article we shall need the following:

Lemma 3.1: Let α ∈ (0, 1) and β = αn
2

+ ε, ε ≥ 0. Then for all m,N ∈ N
and t ∈ R, ∣∣∣∂m

t f̂
0
α,β(t)

∣∣∣ ≤ c |t|−(1+m−ε−α(n+1)
2 )/(1−α) , (3.2)

and ∣∣∣∂m
t f̂

∞
α,β(t)

∣∣∣ ≤ c |t|−N . (3.3)

Before proceed to the proof of Lemma 3.1, let us recall the following
estimates from Wainger [31], Theorem 9. For any α ∈ (0, 1) and ε > 0,
consider the function

fε,α,b(x) = e−ε‖x‖ψ
(
‖x‖2) ‖x‖−b ei‖x‖α

, x ∈ Rk.

We have that

f̂ε,α,b(‖x‖) = ‖x‖
2−k
2

∫ ∞

0

e−εuψ(u2)u−b+ k
2 eiuα

J k−2
2

(u ‖x‖)du (3.4)

where Jm(z) is the Bessel function.
Making use of this formula, Wainger proved that the limit

f̂α,b(‖x‖) = lim
ε→0

f̂ε,α,b(‖x‖)

exists and it is continuous for x 6= 0. Further, if b > k
(
1− α

2

)
, then f̂α,b is

continuous also at x = 0, while if b ≤ k
(
1− α

2

)
and M ∈ N, then

f̂α,b(‖x‖) = ‖x‖−(k−b−αk
2 )/(1−α) eiξα‖x‖−α/(1−α) ∑M

m=0 am ‖x‖mα/(1−α)

+O
(
‖x‖(M+1)α/(1−α)

)
+ C(‖x‖),

(3.5)
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where a0 6= 0, ξα is real and ξα 6= 0; C is a continuous function.
Furthermore ∣∣∣f̂α,b(‖x‖)

∣∣∣ = O(‖x‖−N), as ‖x‖ → ∞, (3.6)

for any N ∈ N.

Proof of Lemma 3.1: If m = 0, then (3.2) and (3.3) are an immediate
consequence of (3.5), with k = 1, and (3.6).

If m = 2l, l ≥ 1, then ∂2lf̂α,β is the Fourier transform of the function

(−iλ)2lfα,β(λ) = (−i)2lψ(|λ|2) |λ|−β+2l ei|λ|α = (−i)2lfα,β−2l(λ).

Hence (3.2) and (3.3) follow again from (3.5) and (3.6) with b = β − 2l.
If m = 2l + 1, then ∂2l+1f̂α,β is the Fourier transform of the function

ϕ(λ) = (−i)2l+1ψ(|λ|2)λ |λ|−β+2l ei|λ|α .

Since this function is odd, we have

∂2l+1f̂α,β(t) = −2i

∫ +∞

0

ϕ(x) sin(tx)dx

= −2i limε→0

∫ +∞

0

e−εxϕ(x) sin(tx)dx.

Since

sin x =

√
πx

2
J 1

2
(x),

we have

∂2l+1f̂α,β(t) = c
√

2πt limε→0

∫ ∞

0

e−εxψ(x2)x−β+2l+3/2eixα
J 1

2
(tx)dx

= ct limε→0

{
t−

1
2

∫ ∞

0

e−εxψ(x2)x−β+2l+3/2eixα
J 1

2
(tx)dx

}
.

The integral in brackets above is the same as the integral f̂ε,α,b(t) in
formula (3.4), with k = 3 and b = β − 2l. This gives, as ε → 0, the Fourier
transform of the multiplier fα,b(λ) in R3. Therefore, the estimates ∂2l+1f̂α,β(t)
follow again from (3.5) and (3.6).
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4 The estimates of the kernel near the diag-
onal

Let us express the operator mα,β(L) in terms of the wave operator cos t
√
L.

If fα,β(t) = mα,β(t2), then mα,β(L) = fα,β(
√
L) and since fα,β is an even

function, by the Fourier inversion formula we have that

mα,β(L) = (2π)−1/2

∫ +∞

−∞
f̂α,β(t) cos t

√
Ldt.

Let mα,β(x, y) be the kernel of mα,β(L). Then by the finite propagation
speed property (2.2)

mα,β(x, y) = (2π)−1/2

∫
|t|≥d(x,y)

f̂α,β(t)Gt(x, y)dt.

This kernel is singular near the diagonal and integrable at infinity. We
want to split mα,β(x, y) into these two parts and treat them separately. This
can be done by considering the operators

m0
α,β(L) = (2π)−1/2

∫ ∞

−∞
f̂ 0

α,β(t) cos t
√
Ldt

and
m∞

α,β(L) = (2π)−1/2

∫ ∞

−∞
f̂∞α,β(t) cos t

√
Ldt,

where f 0
α,β and f∞α,β are defined in (3.1). We have

mα,β(L) = m0
α,β(L) +m∞

α,β(L).

Let m0
α,β(x, y) and m∞

α,β(x, y) denote the kernels of m0
α,β(L) and m∞

α,β(L),
respectively. Then

m0
α,β(x, y) = (2π)−1/2

∫
δ≥|t|≥d(x,y)

f̂ 0
α,β(t)Gt(x, y)dt (4.1)

and
m∞

α,β(x, y) = (2π)−1/2

∫
|t|>δ

f̂∞α,β(t)Gt(x, y)dt.
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In the present section we deal with the kernel m0
α,β(x, y). This kernel

contains the singular part of the kernel mα,β(x, y) and from (4.1) it follows
that

supp(m0
α,β) ⊂ {(x, y) ∈M ×M : d(x, y) ≤ δ}. (4.2)

We shall obtain very good L∞ estimates for m0
α,β(x, y) by using the

Hadamard parametrix construction for Gt(x, y). These estimates allow us
to prove in Section 6 that mα,β(L) is bounded from H1 to L1 for β = nα/2.

We have the following:

Lemma 4.1: Let α ∈ (0, 1). Then for all ε ≥ 0, there exists a constant
c > 0 such that for all x, y ∈M∣∣∣m0

α, αn
2

+ε(x, y)
∣∣∣ ≤ cd(x, y)−n+ ε

1−α (4.3)

and ∥∥∥∇ym
0
α, αn

2
(x, y)

∥∥∥ ≤ cd(x, y)−(n+1)+α′ , (4.4)

where 1
α

+ 1
α′

= 1.

For β = αn
2

+ ε and k = −1, 0, 1,..., we set

Ik(x, y) =

∫
R
f̂ 0

α,β(t) |t| (t
2 − d(x, y)2)

k−n+1
2

+

Γ
(
k − n−1

2

) dt.

Lemma 4.1 is a consequence of the expansion (2.13) of Gt (x, y) and of
the following:

Lemma 4.2: (i). If 0 ≤ k ≤ n+1
2

, then there is a c > 0 such that

|Ik(x, y)| ≤ cd(x, y)−n+ ε
1−α , ∀x, y ∈M. (4.5)

(ii). If k > n+1
2

, then there is a c > 0 such that

|Ik(x, y)| ≤ c δ2k

Γ(k−n−1
2 )

, ∀x, y ∈M. (4.6)

(iii). If k = −1 and ε = 0, then there is a c > 0 such that

|Ik(x, y)| ≤ cd(x, y)−(n+2)+α′ , ∀x, y ∈M. (4.7)
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Proof: The proof is given in steps. Let us set, for simplicity, d = d(x, y).
Proof of (4.5) for n = 2p + 1. This is the simpler case. If we put t = ud,
then we have

Ik(x, y) = d2k−n+1

∫
R
|u| f̂ 0

α,β(ud)
(u2−1)

k−n+1
2

+

Γ(k−n−1
2 )

du

= d2k−n+1

∫
R
|u| f̂ 0

α,β(ud) (u+ 1)k−p−1 (u−1)k−p−1
+

Γ(k−p)
du.

Since
(u− 1)k−p−1

+

Γ (k − p)
= δ(p−k)(u− 1), for k ≤ p+ 1, (4.8)

(cf. [13], p. 56), we have

Ik = d2k−n+1
(
∂p−k

u |u| f̂ 0
α,β(ud) (u+ 1)k−p−1

)∣∣∣
u=1

= d2k−n+1

p−k∑
m=0

cm,p,k

(
∂m

u f̂
0
α,β(ud)∂p−k−m

u

(
|u| (u+ 1)k−p−1

))∣∣∣
u=1

= d2k−n+1

p−k∑
m=0

c′m,p,k

(
∂m

u f̂
0
α,β(ud)

)∣∣∣
u=1

.

Making use of Lemma 3.1, we get that for all m = 0,...,p− k,∣∣∣∂m
u f̂

0
α,β(ud)u=1

∣∣∣ ≤ cdm

d(1+m−ε−n+1
2 α)/(1−α)

= cdmdε/(1−α)

d(1+m−(p+1)α)/(1−α)

= dmdε/(1−α)

dd(m−pα)/(1−α)

= cd−1dε/(1−α)dα(p−m)/(1−α)

≤ cd−1dε/(1−α)dαk(1−α).

This implies that for all k ≥ 0,

|Ik| ≤ cd2k−n+1d−1dε/(1−α)dαk(1−α) ≤ cd−ndε/(1−α)

which proves (4.5), when n = 2p+ 1.
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Proof of (4.5), for n = 2p. In this case we have

Ik(x, y) =

∫
R
|t| f̂ 0

α,β(t)
(t2 − d2)

k−p− 1
2

+

Γ
(
k − p+ 1

2

) dt.
The calculations now are more complicated because k− p− 1

2
is no more an

integer. If we put t = du and v = u+ 1, then

Ik = cd2k−2p+1

∫
|u|>1

|u| f̂ 0
α,β(du) (u2 − 1)

k−p− 1
2

+ du

= cd2k−2p+1

∫
u>1

uf̂ 0
α,β(du) (u+ 1)k−p− 1

2 (u− 1)
k−p− 1

2
+ du

+cd2k−2p+1

∫
u<−1

(−u)f̂ 0
α,β(du) |u− 1|k−p− 1

2 (−(u+ 1))
k−p− 1

2
+ du

= cd2k−2p+1

∫
v>0

(v + 1)f̂ 0
α,β(d(v + 1))(v + 2)k−p− 1

2v
k−p− 1

2
+ dv

+cd2k−2p+1

∫
v>0

(v + 1)f̂ 0
α,β(−d(v + 1))(v + 2)k−p− 1

2w
k−p− 1

2
+ dv.

Since f̂ 0
α,β is an even function

Ik = 2cd2k−2p+1

∫
v>0

(v + 1)f̂ 0
α,β(d(v + 1))(v + 2)k−p− 1

2v
k−p− 1

2
+ dv.

We shall only treat the term I0 which is the most singular near v = 0.
The integrals Ik, k > 0, can be treated similarly. We have

I0 = cd−2p+1

∫ ∞

0

(v + 1)f̂ 0
α,β(d(v + 1))(v + 2)−p− 1

2v
−p− 1

2
+ dv. (4.9)

By replacing the term (v+2)−p− 1
2 by its Taylor’s expansion at v = 0, we can

see that the most singular part of I0 is the integral

J0 := d−2p+1

∫ ∞

0

f̂ 0
α,β(d(v + 1))v

−p− 1
2

+ dv.

Let us observe that f̂α,β(d(v + 1)) is the Fourier transform of the function

1

d
fα,β

(
t

d

)
eit =

1

d
ψ

(∣∣∣∣ td
∣∣∣∣2
)∣∣∣∣ td

∣∣∣∣−ε−αn/2

ei| t
d |

α

eit.
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Also, the Fourier transform of the distribution v
−p− 1

2
+ is equal to

iΓ

(
−p+

1

2

)[
e−i π

2 (p+ 1
2)t

p− 1
2

+ − e+i π
2 (p+ 1

2)t
p− 1

2
−

]
,

(cf. [13], p. 172). So,

J0 = d−2p+1

∫ ∞

−∞

1
d
ψ
(∣∣ t

d

∣∣2) ∣∣ t
d

∣∣−ε−αn/2
ei| t

d |
α

eit
[
c1t

p− 1
2

+ − c2t
p− 1

2
−

]
dt

= d−2p+1dp− 1
2

∫ ∞

−∞
ψ (u2) |u|−ε−αn/2 ei|u|αeiud

[
c1u

p− 1
2

+ − c2u
p− 1

2
−

]
du

= J0,1 + J0,2.
(4.10)

We shall only treat J0,1. The term J0,2 can be treated similarly. We have

J0,1 = c1d
−2p+1dp− 1

2

∫ ∞

0

ψ (u2)u−
αn
2
−ε+p− 1

2 eiuα
cos(ud)du

+ic1d
−2p+1dp− 1

2

∫ ∞

0

ψ (u2)u−
αn
2
−ε+p− 1

2 eiuα
sin(ud)du

= d−2p+1dp− 1
2 c1(L1 + iL2).

(4.11)

Now L1 is the Fourier transform of the even function

fα,b(u) = ψ
(
|u|2
)
|u|−

αn
2
−ε+p− 1

2 ei|u|α ,

with b = αn
2

+ ε− p+ 1
2
. So, by (3.5), with k = 1, we get that

|L1| ≤ cd−(1−αn
2
−ε+p− 1

2
−α

2 )/(1−α)

= cd−( 1−α
2

+p(1−α))/(1−α)d
ε

(1−α) = d−p− 1
2d

ε
(1−α) .

(4.12)

By the formula sin x =
√

πx
2
J 1

2
(x), we have

L2 =

∫ ∞

0

ψ (u2)u−
αn
2
−ε+p− 1

2 eiuα
sin(ud)du

= c
√
d

∫ ∞

0

ψ (u2)u−
αn
2
−ε+peiuα

J 1
2
(ud)du

= cd lim0<ρ→0

{
d−

1
2

∫ ∞

0

e−ρuψ (u2)u−(αn
2

+ε−p+ 3
2)+ 3

2 eiuα
J 1

2
(ud)du

}
.
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The integral in the brackets above is the same as the integral f̂ε,α,b in (3.4)
with k = 3 and b = αn

2
+ ε− p + 3

2
. Therefore, by (3.5), with k = 3, we get

that, for

|L2| ≤ cdd−(3−αn
2
−ε+p− 3

2
− 3α

2 )/(1−α)

= cdd−( 3
2
(1−α)+p(1−α))/(1−α)dε/(1−α)

= cdd−
3
2d−pdε/(1−α) = cd−

1
2d−pdε/(1−α).

(4.13)

It follows from (4.11), (4.12) and (4.13) that

|J0,1| ≤ cd−2p+1dp− 1
2d−p− 1

2 = cd−nd
ε

(1−α) . (4.14)

Putting all together, from (4.9) to (4.14), we get

|Ik(x, y)| ≤ cd−nd
ε

(1−α)

which proves (4.5), for n = 2p.
Proof of (4.6). If k > n+1

2
, then by (3.2) and (3.3) we get

|Ik(x, y)| ≤ c

∫
d≤|t|≤δ

∣∣∣f̂ 0
α,β(t)

∣∣∣ |t| (t2−d2)
k−n+1

2
+

Γ(k−n−1
2 )

dt

≤ c

Γ(k−n−1
2 )

∫
d≤|t|≤δ

|t|−(1−ε−α(n+1)
2 )/(1−α) |t|2k−n dt.

But, if k > n+1
2

, then

2k − n−
1− ε− α(n+1)

2

(1− α)
≥ 2ε+ α(n− 1)

2(1− α)
> 0,

so,

|Ik(x, y)| ≤ c
δ2k−n+1−(1−ε−α(n+1)

2 )/(1−α)

Γ
(
k − n−1

2

) ≤ c
δ2k

Γ
(
k − n−1

2

) .
Proof of (4.7). We shall only treat the case n = 2p + 1. The case n = 2p
can be treated similarly. As in the proof of (4.5), we have to estimate the
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integral

I−1(x, y) =

∫
R
f̂ 0

α,β(t) |t| (
t2−d(x,y)2)

−1−n+1
2

+

Γ(−1−n−1
2 )

dt

= d−n−1

∫
R
f̂ 0

α,β(du) |u| (
u2−1)

−1−n+1
2

+

Γ(−1−n−1
2 )

du

= d−n−1

∫
R
f̂ 0

α,β(du) |u| (u+ 1)−p−2 (u−1)−p−2
+

Γ(−p−1)
dt

= d−n−1∂p+1
u

(
|u| f̂ 0

α,β(ud) (u+ 1)−p−2
∣∣∣
u=1

.

So,

|I−1(x, y)| ≤ cd−n−1

p+1∑
m=0

c′m,p
dm

d(1+m−(p+1)α)/(1−α)

= cd−n−1

p+1∑
m=0

c′m,p
dm

dd(m−pα)/(1−α)

= cd−n−2

p+1∑
m=0

c′m,pd
m−mα−m+pa

1−α

= cd−n−2

p+1∑
m=0

c′m,pd
α

1−α
(p−m) ≤ cd−n−2d−α/(1−α) = cd−n−2dα′ .

Proof of Lemma 4.1: (i). It is a consequence of (2.11) and Lemma 4.2.
(ii) Making use of (2.13), we have

∇yGt(x, y) =
∞∑

k=0

(−1)k∇yUk(x, y) |t|
(t2−d(x,y)2)

k−n+1
2

+

4kΓ(k−n−1
2 )

−
∞∑

k=0

Uk(x, y) |t|
(
k − n+1

2

) (t2−d(x,y)2)
k−n+1

2 −1

+

4kΓ(k−n−1
2 )

2d∇y(d)

= I + II.

Now, it follows from (2.11) and the estimates (4.5), (4.6) for ε = 0, that

|I| ≤ cd(x, y)−n.
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To deal with II we first note that ‖∇yd(x, y)‖ ≤ 1 for d(x, y) ≤ 1. Then, by
(4.6) and (4.7) we have

|II| ≤ cd(x, y)−(n+1)+α′ .

5 The Lp boundedness of mα,β(L) for β > αn
2

In this Section we prove claim (iii) of Theorem 1.1 which states that for all
α ∈ (0, 1) and β > αn

2
, mα,β(L) is bounded on Lp, p ≥ 1.

We note that the Lp boundedness of m∞
α,β(L) for β ≥ αn

2
, can be extracted

from [1]. We shall give below a simple proof of this result by adapting an
argument from [29].

Proposition 5.1: If α ∈ (0, 1) and β ≥ αn
2

, then m∞
α,β(L) is bounded on Lp,

p ≥ 1.

Proof: We have that

m∞
α,β(λ) =

1√
2π

∫ ∞

−∞
f̂∞α,β(t) cos t

√
λdt

and by the estimate (3.3) of f̂∞α,β(t) we get that m∞
α,β is bounded. Thus

m∞
α,β(L) is bounded on L2. Therefore, the Proposition will be a consequence

of the following:

sup
x∈M

∫
M

∣∣m∞
α,β(x, y)

∣∣ dy <∞. (5.1)

Let us first notice that the Dirac mass δx at x can be written as δx =
Lkϕx + ψx, where k =

[
n
4

]
+ 1 and where the functions ϕx and ψx are in

L2(B(x, r0)), with r0 the injectivity radius of M (cf. [29], p. 776). Also by
the assumption of C∞-bounded geometry, we can assume that there is c > 0
such that ‖ϕx‖2 ≤ c and ‖ψx‖2 ≤ c for all x ∈M . We have

m∞
α,β(x, y) = m∞

α,β(L)δx(y) = Lkm∞
α,β(L)ϕx(y) +m∞

α,β(L)ψx(y)

= (
√
L)2kf∞α,β(

√
L)ϕx(y) + f∞α,β(

√
L)ψx(y)

= (−i)−2k (2π)−1/2

∫ ∞

−∞
∂2kf̂∞α,β(t) cos t

√
Lϕx(y)dt

+ (2π)−1/2

∫ ∞

−∞
f̂∞α,β(t) cos t

√
Lψx(y)dt

= I1(x, y) + I2(x, y).

(5.2)
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By the estimates (3.3) of ∂m
t f̂

∞
α,β(t) and the finite propagation speed property

we have that

|I1(x, y)| ≤ c

∫ ∞

−∞

∣∣∣∂2kf̂∞α,β(t) cos t
√
Lϕx(y)

∣∣∣ dt
= c
∑
j≥1

∫
j≤|t|≤j+1

∣∣∣∂2kf̂∞α,β(t)
∣∣∣ ∣∣∣cos t

√
Lϕx(y)

∣∣∣ dt
≤ c
∑
j≥1

1
jN

∫
j≤|t|≤j+1

∣∣∣1B(x,r0+j+1)(y) cos t
√
Lϕx(y)

∣∣∣ dt.
(5.3)

By the Cauchy-Schwarz inequality∫
M

∣∣∣1B(x,R)(y) cos t
√
Lϕx(y)

∣∣∣ dy ≤ |B(x,R)|
1
2

∥∥∥cos t
√
Lϕx

∥∥∥
2

≤ cRn/2
∥∥∥cos t

√
L
∥∥∥

2
‖ϕx‖2

≤ cRn/2

(5.4)

since
∥∥∥cos t

√
L
∥∥∥

2
≤ 1 and ‖ϕx‖2 ≤ c for all x ∈M .

Let N > 2 + n
2
. Then, it follows from (5.2), (5.3) and (5.4) that∫

M

|I1(x, y)| dy ≤ c
∑
j≥1

(r0 + j + 1)
n
2

1

jN

∫
j≤|t|≤j+1

dt ≤ c
∑
j≥1

1

jN−n
2

and hence
sup
x∈M

∫
M

|I1(x, y)| dy <∞.

The term I2(x, y) can be treated similarly.

Proposition 5.2: If α ∈ (0, 1) and β > αn
2

, then m0
α,β(L) is bounded on Lp,

p ≥ 1.
Proof: Since m0

α,β(L) = mα,β(L) −m∞
α,β(L), Proposition 5.1 implies that

m0
α,β(L) is bounded on L2. If β = αn

2
+ ε, ε > 0, then from (4.2) and (4.3)

we have that

supx∈M

∫
M

∣∣m0
α,β(x, y)

∣∣ dy = supx∈M

∫
B(x,δ)

∣∣m0
α,β(x, y)

∣∣ dy
≤ c supx∈M

∫
B(x,δ)

d(x, y)−n+ ε
1−αdy

= c supx∈M

∫ δ

0

r−n+ ε
1−α rn−1dr = cδ

ε
1−α
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and the Proposition follows.

6 H1−L1 boundedness of the operator mα,αn
2

(L)

In this section we prove claim (i) of Theorem 1.1. By the duality of H1

with BMO, the H1 − L1 boundedness of mα, αn
2

(L) is a consequence of the
following

Proposition 6.1: If α ∈ (0, 1), then the operator mα, αn
2

(L) is bounded from
L∞(M) to BMO(M).

The Lp-boundedness of mα, αn
2

(L) for p ∈ (1,∞), follows from the L2

boundedness and Proposition 6.1 by interpolation and duality.
The strategy of the proof of Proposition 6.1 is inspired from [11]. It is

based on the following Lemmata.

Lemma 6.2: There is a constant A > 0 such that∫
d(x,y1)>2d(y,y1)1−α

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx < A, (6.1)

for all y1 ∈M and y ∈ B(y1, δ).

Proof: Let us fix y1 ∈ M and y ∈ B(y1, δ). Let y(s), s ∈ [0, d(y, y1)], be
the geodesic segment from y to y1. Then

m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1) =

∫ d(y,y1)

0

∇ym
0
α, αn

2
(x, y(s))ds.

By (4.4) and the mean value theorem, we get that∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ ≤ c

d(y, y1)

d(x, y∗)n+1−α′
, (6.2)

for some y∗ on y(s).
Let us set d = d(y, y1), Ak = B(y1, 2

k+1d1−α) \B(y1, 2
kd1−α) and

Ik =

∫
Ak

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx.
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Then ∫
d(x,y1)>2d(y,y1)1−α

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx

=
∑
k≥1

∫
Ak

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx =

∑
k≥1

Ik.

Since d ≤ δ ≤ 1, we have

d(x, y∗) ≥ 2kd1−α − d ≥ 2k−1d1−α, ∀x ∈ Ak, ∀k ≥ 1.

Now, by (6.2) and since (1− α)(1− α′) = 1, we have

Ik ≤ c

∫
Ak

d(y,y1)dx

d(x,y∗)n+1−α′ ≤ c

∫
Ak

ddx

(2k−1d1−α)
n+1−α′

≤ cd|Ak|

(2kd1−α)
n+1−α′ ≤

cd(2k+1d1−α)
n

(2kd1−α)
n+1−α′

= cd
(2k)1−α′d(1−α)(1−α′) = c

(2k)1−α′ .

It follows that ∫
d(x,y1)>d(y,y1)1−α

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx

=
∞∑

k=1

Ik ≤ c
∞∑

k=1

1
(2k−1)1−α′ <∞

since 1− α′ > 0 for α ∈ (0, 1).

The following Lemma is based on a local version of a generalization of
Hardy-Littlewood-Sobolev theorem due to Varopoulos, (cf. [30], p. 12).

Lemma 6.3: For any α ∈ (0, 1), mα, αn
2

(L) is bounded from L2 to L
2

1−α .

Proof: We write

mα, αn
2

(L) = ψ(|L|) |L|−αn/4 ei|L|α/2

= (1 + L)−αn/4ψ(|L|) |L|−αn/4 (1 + L)αn/4ei|L|α/2

= (1 + L)−αn/4Φ (L) ,

where Φ (λ) = ψ(|λ|) |λ|−αn/4 (1 + λ)αn/4ei|λ|α/2

. Since Φ (λ) is bounded, it
suffices to show that the potential operator (1 +L)−αn/4 is bounded from L2
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to L
2

1−α . To this end, let qt(x, y) be the kernel of the semigroup e−t(1+L) and
pt(x, y) the heat kernel of M . Then

qt(x, y) = e−tpt(x, y).

By the Li-Yau estimate of pt:

pt(x, y) ≤ c
e−d(x,y)2/ct∣∣B (x,√t)∣∣ ,

for all t > 0 and x, y ∈M , (cf. [16]), it follows that

qt(x, y) ≤
{

ct−n/2, ∀t ≤ 1,
ce−t ≤ ct−n/2, ∀t ≥ 1.

(6.3)

From (6.3) it follows that∥∥e−t(1+L)f
∥∥
∞ ≤ ct−n/2 ‖f‖1 , ∀f ∈ L1, ∀t > 0.

As it is shown by Varopoulos, (cf. [30], p. 12), this estimate implies that the
operators (1 + L)−γ/2, γ > 0, are bounded from Lp to Lq for 1

q
= 1

p
− γ

n
and

1 < p <∞. The Lemma follows by taking γ = αn/2 and p = 2.

Proof of Proposition 6.1: In order to prove that mα, αn
2

(L) is bounded
from L∞ to BMO it enough to show that there is a constant c > 0, such
that for every ball B (y1, r) = B and every f ∈ C∞

0 (M)∫
B

∣∣mα, αn
2

(L)f(x)− (mα, αn
2

(L)f)B

∣∣ dx ≤ c ‖f‖∞ |B| , (6.4)

where (mα, αn
2

(L)f)B is the mean value of mα, αn
2

(L)f on B.
Let us then fix a ball B(y1, r) = B and let us set, in order to simplify

the notation, Bα = B(y1, 2r
1−α). If f ∈ C∞

0 (M), then we shall write f =
fχBα + fχBc

α
:= f1 + f2.

To prove (6.4), we shall show that∫
B

∣∣mα, αn
2

(L)f1(x)
∣∣ dx ≤ c ‖f‖∞ |B| , (6.5)

and ∫
B

∣∣mα, αn
2

(L)f2(x)− (mα, αn
2

(L)f)B

∣∣ dx ≤ c ‖f‖∞ |B| . (6.6)
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Proof of (6.5). If r > 1, then r1−α ≤ r and hence

∫
B

∣∣mα, αn
2

(L)f1(x)
∣∣ dx ≤ ∥∥mα, αn

2
(L)f1

∥∥
2
|B|1/2 ≤ c ‖f1‖2 |B|

1/2

= c ‖fχBα‖2 |B|
1/2 ≤ c ‖f‖∞ |Bα|1/2 |B|1/2

= c ‖f‖∞ |B(y1, 2r
1−α)|1/2 |B|1/2

≤ c ‖f‖∞ |B(y1, 2r)|1/2 |B|1/2 ≤ c ‖f‖∞ |B| .

In the case when r ≤ 1, we proceed by arguing as in [11], Theorem 1, p.
143 (see also [9], Theorem 2.1). Let p = 2/ (1− α) and let p′ be its conjugate
exponent. Then by Lemma 6.3 and Hölder’s inequality

∫
B

∣∣mα, αn
2
f1(x)

∣∣ dx ≤ |B|1/p′
∥∥mα, αn

2
f1

∥∥
p
≤ c |B|1/p′ ‖f1‖2

≤ c |B|1/p′ ‖f1‖2 = c |B|1/p′ ‖fχBα‖2

≤ c |B|1/p′ ‖f‖∞ |B(y1, 2r
1−α)|1/2

≤ c ‖f‖∞ r
n
p′ +(1−α)n

2 = crn ‖f‖∞ ≤ c |B| ‖f‖∞ ,

since n
p′

+ (1− α)n
2

= n
p′

+ n
p

= n. This completes the proof of (6.5).

Proof of (6.6). We have

∣∣mα, αn
2

(L)f2(x)− (mα, αn
2

(L)f)B

∣∣
≤
∣∣∣m0

α, αn
2

(L)f2(x)− (m0
α, αn

2
(L)f2)B

∣∣∣
+
∣∣∣(m0

α, αn
2

(L)f2)B − (mα, αn
2

(L)f)B

∣∣∣+ ∣∣∣m∞
α, αn

2
(L)f2(x)

∣∣∣ . (6.7)

We write

mα, αn
2

(L)f = m0
α, αn

2
(L)f1 +m0

α, αn
2

(L)f2 +m∞
α, αn

2
(L)f,

and we recall that the operator m0
α, αn

2
(L) is bounded on L2 and that, by
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Proposition 5.1, the operator m∞
α, αn

2
(L) is bounded on L∞. Therefore,∣∣∣(m0

α, αn
2

(L)f2)B − (mα, αn
2

(L)f)B

∣∣∣
= |B|−1

∣∣∣∣∫
B

m0
α, αn

2
(L)f2(x)dx−

∫
B

mα, αn
2

(L)f(x)dx

∣∣∣∣
= |B|−1

∣∣∣∣∫
B

m0
α, αn

2
(L)f1(x)dx+

∫
B

m∞
α, αn

2
(L)f(x)dx

∣∣∣∣
≤ |B|−1

∥∥∥m0
α, αn

2
(L)f1

∥∥∥
2
|B|

1
2 + |B|−1

∥∥∥m∞
α, αn

2
(L)f

∥∥∥
∞
|B|

≤ c |B|−1 ‖f‖∞ |B|+ c ‖f‖∞ = c ‖f‖∞ .

(6.8)

It follows from (6.7), (6.8) and the L∞ boundedness of m∞
α, αn

2
(L) that to

prove (6.6), it is enough to show that∫
B

∣∣∣m0
α, αn

2
(L)f2(x)− (m0

α, αn
2

(L)f2)B

∣∣∣ dx ≤ c ‖f‖∞ |B| . (6.9)

Let us set
cB =

∫
Bc

α

m0
α, αn

2
(x, y1)f2(x)dx.

If y ∈ B(y1, r), then

m0
α, αn

2
(L)f2(y)− cB =

∫
Bc

α

{
m0

α, αn
2

(x, y)−m0
α, αn

2
(x, y1)

}
f2(x)dx.

Also, if x ∈ B(y1, 2r
1−α)c and y ∈ B(y1, r), then

d(x, y1) > 2r1−α ≥ 2d(y, y1)
1−α.

Therefore, by Lemma 6.2∣∣∣m0
α, αn

2
(L)f2(y)− cB

∣∣∣
≤
∫

Bc
α

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ |f2(x)| dx

≤ ‖f‖∞
∫

d(x,y1)>2d(y,y1)1−α

∣∣∣m0
α, αn

2
(x, y)−m0

α, αn
2

(x, y1)
∣∣∣ dx

≤ A ‖f‖∞ .
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This implies that∫
B

∣∣∣m0
α, αn

2
(L)f2(y)− cB

∣∣∣ dy ≤ A |B| ‖f‖∞ . (6.10)

By (6.10) we have∫
B

∣∣∣m0
α, αn

2
(L)f2(y)− (m0

α, αn
2

(L)f2)B

∣∣∣ dy
≤
∫

B

∣∣∣m0
α, αn

2
(L)f2(y)− cB

∣∣∣ dy +

∫
B

∣∣∣cB − (m0
α, αn

2
(L)f2)B

∣∣∣ dy
≤ A ‖f‖∞ |B|+ |B|

∣∣∣cB − (m0
α, αn

2
(L)f2)B

∣∣∣ .
(6.11)

Finally, by using once more (6.10) we get∣∣∣(m0
α, αn

2
(L)f2)B − cB

∣∣∣ = |B|−1

∣∣∣∣∫
B(y1,r)

m0
α, αn

2
(L)f2(y)dy −

∫
B

cBdy

∣∣∣∣
≤ |B|−1

∫
B

∣∣∣m0
α, αn

2
(L)f(y)− cB

∣∣∣ dy ≤ A ‖f‖∞ .

(6.12)

7 Proof of the results

In this Section we shall finish the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1: The proof of claims (i) and (ii) of Theorem 1.1
are given in Sections 6 and 5 respectively. It remains to prove claim (ii).
This will be done by complex interpolation as in Theorem 6 of [11]. Let us
consider the analytic family of operators

Tz(L) = ez2

L
nα
4

zmα, αn
2

(L), Rez ∈ [0, 1] .

If t ∈ R, then
Tit(L) = e−t2Li nαt

4 mα, αn
2

(L).

But the imaginary powers of the Laplacian are bounded on H1 and∥∥Liγ
∥∥

H1→H1 ≤ c
(
1 +

√
|γ|eπ|γ|/2

)
, γ ∈ R,
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(cf. [19]). So, if we combine with Theorem 1.1(i), we get that Tit(L) is
bounded from H1(M) to L1(M) and

‖Tit(L)‖H1→L1 ≤ ce−t2
(
c
√
π +

√
αn |t|eπαn|t|/8

)
,

for all t ∈ R.
Also, the operators T1+it(L) are bounded on L2(M) and

‖T1+it(L)‖2 ≤ ce−t2 .

By complex interpolation between Rez = 0 and Rez = 1, we obtain that for
θ ∈ (0, 1) and p ∈ (1, 2), the operator Tθ(L) is bounded on Lp for 1

p
= 1− θ

2
.

If we choose θ = 1− 2β
αn

, then

Tθ(L) = eθ2

L
nα
4 L−

nα
4

2β
αnmα, αn

2
(L) = eθ2

mα,β(L)

and 1
p
− 1

2
= β

αn
. This is the desired result for p ∈ (1, 2). The case p ∈ (2,∞)

is just the dual result.

Proof of Theorem 1.2: As in [1], by replacing the operator L by L1 =
t2/αL, the operators

Ik,α(L) = kt−k

∫ t

0

(t− s)k−1eisLα/2

ds, 0 < α < 1, k > 0,

can be written in the form

Ik,α(L) = Mk(L
α/2
1 ),

with

Mk(λ) = k

∫ 1

0

(1− s)k−1eis|λ|ds.

Further, the multiplier Mk(λ) can be written as

Mk(λ) = Ckψ(λ)λ−keiλ + Ω(λ),

where ψ is as in (1.2) and Ω(λ) satisfies

∂N
λ Ω(λ) = O(λ−N−1), as λ→∞,
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for all N ∈ N, (cf. [1], [27], p. 336).
This implies that ∣∣∣Ω̂(t)

∣∣∣ ≤ c(N,R)

|t|N+1
, for |t| ≥ R.

Making use of this and by arguing in exactly the same way as in Propo-
sition 5.1 we can prove that the operator Ω(L) is bounded on Lp, p ≥ 1.
Furthermore, by Theorem 1.1(ii), Ckψ(L1)L

−αk/2
1 eiL

α/2
1 is bounded on Lp for

αk ≥ αn
∣∣∣1p − 1

2

∣∣∣ i.e. for k ≥ n
∣∣∣1p − 1

2

∣∣∣, 1 < p < ∞. This proves the claim
(ii) of Theorem 1.2. The claims (i) and (iii) can be deduced in a similar way
from Theorem 1.1(i) and (iii).
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