ANNALES MATHÉMATIQUES

Ming Gen Cui, Huan Min Yao, Huan Ping Liu
The Affine Frame in p-adic Analysis
Volume 10, n ${ }^{\circ} 2$ (2003), p. 297-303.
http://ambp.cedram.org/item?id=AMBP_2003__10_2_297_0
© Annales mathématiques Blaise Pascal, 2003, tous droits réservés.
L'accès aux articles de la revue «Annales mathématiques Blaise Pascal» (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand - France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

The Affine Frame in p-adic Analysis

Ming Gen Cui
Huan Min Yao
Huan Ping Liu

Abstract

In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of p-adic number, hence provide new mathematic tools for application of p-adic analysis.

1 Introduction

The concept of affine frame was introduced to wavelet analysis at first in reference [2]. And the theory of affine frame was studied in reference [3] and [4] further. In this paper, we introduce the concept of affine frame in wavelet analysis to the field of p-adic number as the discrete formula of wavelet transform. Before now, we have introduced the wavelet transform to the field of p-adic analysis([1]). General knowledge on p-adic analysis see [6].

It is known that if $x=p^{r} \sum_{k=0}^{n} x_{k} p^{-k} \in R^{+} \cup\{0\}, x_{0} \neq 0.0 \leq x_{k} \leq$ $p-1, k=1,2, \cdots$, then there is another expression for x.

$$
\begin{equation*}
x=p^{r}\left(\sum_{k=0}^{n-1} x_{k} p^{-k}+\left(x_{n}-1\right) p^{-n}+(p-1) \sum_{k=n+1}^{\infty} p^{-k}\right) \tag{1.1}
\end{equation*}
$$

We don't adopt this expression. Let M_{R} be the set of numbers in the form of (1.1). An mapping ρ was introduced in reference [5], which $\rho: \mathbf{Q}_{\mathbf{p}} \rightarrow$ $R^{+} \cup\{0\}$, for $x=p^{-r} \sum_{x=0}^{\infty} x_{k} p^{k}, x_{0} \neq 0,0 \leq p-1, k=1,2, \cdots$

$$
\begin{equation*}
\rho(x)=p^{-r-l} \sum_{k=0}^{\infty} x_{k} p^{-k} \tag{1.2}
\end{equation*}
$$

For $a_{R}, b_{R} \in R^{+} \cup\{0\}$, mapping (1.2) follows that

$$
b_{R}-a_{R}=\mu\left(\left[a_{p}, b_{p}\right]\right), a_{p}=\rho^{-1}\left(a_{R}\right), b_{p}=\rho^{-1}\left(b_{R}\right)
$$

M.G. Cui, H.M. Yao and H.P. Liu

and then we have the following lemma.
Lemma 1.1: Let $f\left(x_{p}\right) \in L^{2}\left(Q_{p}\right)$ and $f_{R}\left(x_{R}\right) \stackrel{\text { def }}{=} f\left(\rho\left(x_{p}\right)\right), x_{p} \in Q_{p}, x_{R}=$ $\rho\left(x_{p}\right)$ then

$$
\int_{a_{p}}^{b_{p}} f\left(x_{p}\right) \mathrm{d} x_{p}=\int_{a_{R}}^{b_{R}} f_{R}\left(x_{R}\right) \mathrm{d} x_{R},
$$

where $a_{R}=\rho\left(a_{p}\right), b_{R}=\rho\left(b_{p}\right)$.
Remark: $\mu\left\{\left[a_{p}, b_{p}\right]\right\}$ is defined as the infimum of measure of all the disjoint discs covering $\left\{B_{r_{i}}\left(a_{i}\right)\right\}$ for interval $\left[a_{p}, b_{p}\right]$, and for complex-valued function f, the integral of f is defined by

$$
\int_{\left[a_{p}, b_{p}\right]} f \mathrm{~d} x_{p} \stackrel{\text { def }}{=} \inf _{\left\{B_{r_{i}}\left(a_{i}\right)\right\}} \sum_{i} f\left(a_{i}\right) \mu\left(B_{r_{i}}\left(a_{i}\right)\right) .
$$

2 The Frame in $L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$

Let $f, h \in L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$. The following we will discuss conditions of $\left\{h_{m, n}\right\}$ becomes to the frame of $L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$. Here, the so-called frame defined as: $\exists A, B>0$ such that

$$
A\|f\|_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)}^{2} \leq \sum_{m, n}\left|\left(f, h_{m n}\right)\right|_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)}^{2} \leq B\|f\|_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)}^{2}
$$

where

$$
\begin{aligned}
\|f\|_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)}^{2} & =\int_{\mathbf{Q}_{\mathbf{P}}}|f|^{2} \mathrm{~d} x_{p} \\
\left(f, h_{m n}\right)_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)} & =\int_{\mathbf{Q}_{\mathbf{P}}} f \bar{h}_{m n} \mathrm{~d} x_{p}
\end{aligned}
$$

It is known that if $\left\{h_{m n}\right\}$ is the frame of $L^{2}\left(Q_{p}\right)$, then the function $f \in$ $L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$ can be express as

$$
\begin{equation*}
f\left(x_{p}\right)=\sum_{m, n}\left(f, h_{m n}^{*}\right)_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)} h_{m n}\left(x_{p}\right)=\sum_{m, n}\left(f, h_{m n}\right)_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)} h_{m n}^{*} \tag{2.1}
\end{equation*}
$$

here $h_{m n}^{*}=S^{-1} h_{m n}$ is the dual frame of $h_{m n}$, and $S: L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right) \rightarrow L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$ is the frame operator.

$$
S f=\sum_{m, n}\left(f, h_{m n}\right)_{L^{2}\left(\mathbf{Q}_{\mathbf{P}}\right)} h_{m n}
$$

The Affine Frame In p-adic Analysis

Theorem2.1. Let $f, h \in L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$ be complex-value function, and $h(0)=$ $0, x_{R}=\rho\left(x_{p}\right), x_{p} \in Q_{p} \backslash M$, here $M=\rho^{-1}\left(M_{R}\right)$, and measure of set M be equal to 0 . Select $b_{0}=p^{r\left(b_{0}\right)}, r\left(b_{0}\right) \in \mathbf{Z}, a_{0}=p^{r\left(a_{0}\right)}, r\left(a_{0}\right) \in \mathbf{Z}$. If
(1) $\exists A, B>0$ such that for $\omega \neq 0$

$$
A \leq G(\omega) \stackrel{\text { def }}{=} \sum_{m \in \mathbf{Z}}\left|\widehat{h}_{1}\left(\frac{\omega}{a_{0}^{m}}\right)\right|^{2} \leq B,
$$

(2) $\operatorname{supp} \widehat{h}_{1} \subset\left[-\frac{1}{2 b_{0}}, \frac{1}{2 b_{0}}\right]$
then

$$
\left\{h_{m n}\left(x_{p}\right) \stackrel{\text { def }}{=} a_{0}^{m / 2} h\left(\frac{\alpha_{n}^{(m)}\left(x_{p}\right)-x_{p}}{a_{0}^{-m}}\right)\right\}_{n, m \in \mathbf{Z}}
$$

is a frame of $L^{2}\left(\mathbf{Q}_{\mathbf{p}}\right)$, where

$$
\alpha_{n}^{(m)}\left(x_{p}\right)= \begin{cases}\rho^{-1}\left(x_{R}+a_{0}^{-m} n b_{0}\right)+x_{p}, & x_{R}+a_{0}^{-m} n b_{0}>0 \\ x_{p}, & x_{R}+a_{0}^{-m} n b_{0} \leq 0\end{cases}
$$

the sign ${ }^{\wedge}$ denotes the Fourier transform

$$
\widehat{f}(w)=\int_{R} f(x) e^{-2 \pi i \omega x} \mathrm{~d} x
$$

and h_{1} is defined from(2.3).
Proof. From the definition of $\alpha_{n}^{(m)}\left(x_{p}\right)$, we have

$$
\begin{align*}
(S f, f)_{L^{2}\left(Q_{p}\right)} & =\sum_{m, n \in \mathbf{Z}}\left|\left(f, h_{m n}\right)_{L^{2}\left(Q_{p}\right)}\right|^{2} \\
& =\sum_{m, n \in \mathbf{Z}} a_{0}^{m}\left|\int_{Q_{p} \backslash M} f\left(x_{p}\right) h\left\{\frac{\alpha_{n}^{(m)}\left(x_{p}\right)-x_{p}}{a_{0}^{-m}}\right\} \mathrm{d} x_{p}\right|^{2} \\
& =\sum_{m, n \in \mathbf{Z}} a_{0}^{m}\left|\int_{\mathbf{R}^{+} \cup\{\mathbf{0}\}} f_{R}\left(x_{R}\right) h_{1}\left\{\frac{x_{R}+a_{0}^{-m} n b_{0}}{a_{0}^{-m}}\right\} \mathrm{d} x_{R}\right|^{2} \tag{2.2}
\end{align*}
$$

where $x_{R}=\rho\left(x_{p}\right), x_{p} \in Q_{p} \backslash M, f_{R}\left(x_{R}\right)=f\left(\rho^{-1}\left(x_{R}\right)\right)$,

$$
h_{1}\left(x_{R}\right)= \begin{cases}h\left(\rho^{-1} x_{R}\right), & x_{R}>0 \tag{2.3}\\ h(0), & x_{R} \leq 0\end{cases}
$$

M.G. Cui, H.M. Yao and H.P. Liu

Let

$$
f_{R}^{+}\left(x_{R}\right)= \begin{cases}f_{R}\left(x_{R}\right), & x_{R} \geq 0 \\ 0, & x_{R}<0\end{cases}
$$

Thus, from(2.2), the following equalities hold

$$
\begin{align*}
& \sum_{m, n \in Z}\left|\left(f, h_{m n}\right)_{L^{2}\left(Q_{p}\right)}\right|^{2} \\
= & \sum_{m, n \in Z} a_{0}^{m}\left|\int_{R} f_{R}^{+}\left(x_{R}\right) h_{1}\left(\frac{x_{R}+a_{0}^{-m} n b_{0}}{a_{0}^{-m}}\right) \mathrm{d} x_{R}\right|^{2} \\
= & \sum_{m, n \in Z} a_{0}^{-m}\left|\int_{R} \widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right) \exp \left(2 \pi i a_{0}^{-m} n b_{0} \omega\right) \mathrm{d} \omega\right|^{2} \\
= & \sum_{m, n \in Z} a_{0}^{-m}\left|\int_{-\frac{a_{0}^{m}}{2 b_{0}}}^{\frac{a_{0}^{m}}{2 b_{0}}} \widehat{f}_{R}^{+}(\omega) \widehat{h}_{1}\left(\frac{\omega}{a_{0}^{m}}\right) \exp \left(2 \pi i a_{0}^{-m} n b_{0} \omega\right) \mathrm{d} \omega\right|^{2} \tag{2.4}
\end{align*}
$$

In the last equality, we used $\operatorname{supp} \widehat{h_{1}} \subset\left[-\frac{a_{0}^{m}}{2 b_{0}}, \frac{a_{0}^{m}}{2 b_{0}}\right]$. But

$$
\frac{1}{a_{0}^{m} / b_{0}} \int_{-\frac{a_{0}^{m}}{2 b_{0}}}^{\frac{a_{0}^{m}}{2 b_{0}}} \widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right) \exp \left(2 \pi i a_{0}^{-m} n b_{0} \omega\right) \mathrm{d} \omega
$$

is the Fourier coefficient of the function $\widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right)$. Denotes this coefficient by c_{-n}. By the Parseval equality, we have

$$
\begin{align*}
\sum_{n \in \mathbf{Z}}\left|c_{n}\right|^{2}= & \frac{1}{a_{0}^{2 m} / b_{0}^{2}} \sum_{n \in \mathbf{Z}}\left|\int_{-\frac{a_{0}^{m}}{2 b_{0}}}^{\frac{a_{0}^{m}}{2 b_{0}}} \widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right) \exp \left(2 \pi i a_{0}^{-m} n b_{0} \omega\right) \mathrm{d} \omega\right|^{2} \\
& =\frac{b_{0}}{a_{0}^{m}} \int_{-\frac{a_{0}^{m}}{2 b_{0}}}^{\frac{a_{0}^{m}}{2 b_{0}}}\left|\widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right)\right|^{2} \mathrm{~d} \omega \tag{2.5}
\end{align*}
$$

By (2.4), we have

$$
\sum_{m, n \in Z}\left|\left(f, h_{m n}\right)_{L^{2}\left(Q_{p}\right)}\right|^{2}=\left.\frac{1}{b_{0}} \sum_{m \in \mathbf{Z}} \int_{-\frac{a_{0}^{m}}{2 b_{0}}} \begin{gathered}
\frac{a_{0}^{m}}{2 b_{0}}
\end{gathered} \widehat{f_{R}^{+}}(\omega) \widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right)\right|^{2} \mathrm{~d} \omega
$$

The Affine Frame In p-Adic Analysis

$$
\begin{equation*}
=\frac{1}{b_{0}} \int_{R}\left|\widehat{f_{R}^{+}}(\omega)\right|^{2}\left|\widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right)\right|^{2} \mathrm{~d} \omega \tag{2.6}
\end{equation*}
$$

Here

$$
\begin{equation*}
G(\omega)=\sum_{m \in Z}\left|\widehat{h_{1}}\left(\frac{\omega}{a_{0}^{m}}\right)\right|^{2} \tag{2.7}
\end{equation*}
$$

Finally, by the condition of theorem $0<A \leq|G(\omega)|^{2} \leq B$ and formula (2.6), we have

$$
\sum_{m, n \in Z}\left|\left(f, h_{m n}\right)_{L^{2}\left(Q_{p}\right)}\right|^{2}=\left\{\begin{array}{l}
\geq \frac{1}{b_{0}} A \int_{R}\left|\widehat{f}_{R}^{+}(\omega)\right|^{2} \mathrm{~d} \omega \\
\leq \frac{1}{b_{0}} B \int_{R}\left|\hat{f}_{R}^{+}(\omega)\right|^{2} \mathrm{~d} \omega
\end{array}\right.
$$

But

$$
\begin{aligned}
\int_{R}\left|\widehat{f}_{R}^{+}(\omega)\right|^{2} \mathrm{~d} \omega=\int_{R}\left|f_{R}^{+}\left(x_{R}\right)\right|^{2} \mathrm{~d} x_{R}=\int_{R^{+} \cup\{0\}}\left|f_{R}\left(x_{R}\right)\right|^{2} \mathrm{~d} x_{R} & =\int_{Q_{p}}\left|f\left(x_{p}\right)\right|^{2} \mathrm{~d} x_{p} \\
& =\|f\|_{L^{2}\left(Q_{p}\right)}^{2}
\end{aligned}
$$

Hence, the theorem follows.

3 Dual frame $h_{m n}^{*}$

It is known that if $\left\{h_{m n}\right\}_{m n}$ construct a frame of $L^{2}\left(Q_{p}\right)$, then expression (2.1) is valid. From (2.6), we have

$$
\begin{align*}
(S f, f)_{L^{2}\left(Q_{p}\right)} & =\frac{1}{b_{0}} \int_{R}\left|\widehat{f}_{R}^{+}(\omega)\right|^{2} G(\omega) \mathrm{d} \omega \\
& =\frac{1}{b_{0}} \int_{R}\left(\widehat{f_{R}^{+}} G\right)^{\vee}\left(x_{R}\right) \bar{f}_{R}^{+}\left(x_{R}\right) \mathrm{d} x_{R} \\
& =\frac{1}{b_{0}} \int_{R^{+} \cup\{0\}}\left(\widehat{f}_{R}^{+} G\right)^{\vee}\left(x_{R}\right) \bar{f}_{R}\left(x_{R}\right) \mathrm{d} x_{R} \\
& =\frac{1}{b_{0}} \int_{Q_{p}}\left(\widehat{f_{R}^{+}} G\right)^{\vee}\left(\rho\left(x_{p}\right)\right) \bar{f}\left(x_{p}\right) \mathrm{d} x_{p} \tag{3.1}
\end{align*}
$$

where $x_{p}=\rho^{-1}\left(x_{R}\right), x_{R} \in R^{+} \cup\{0\}$, and " \vee " is the sign of Fourier inverse transform. Here, we use lemma A.
(3.1) can be rewritten as

$$
\begin{equation*}
(S f, f)_{L^{2}\left(Q_{p}\right)}=\frac{1}{b_{0}}\left(\left(\hat{f}_{R}^{+} G\right)^{\vee}\left(\rho\left(x_{p}\right)\right), f\left(x_{p}\right)\right)_{L^{2}\left(Q_{p}\right)} \tag{3.2}
\end{equation*}
$$

Since f is an arbitrary function in Q_{p},

$$
\begin{equation*}
(S f)\left(x_{p}\right)=\frac{1}{b_{0}}\left(\hat{f}_{R}^{+} G\right)^{\vee}\left(\rho\left(x_{p}\right)\right) \tag{3.3}
\end{equation*}
$$

or for $x \in R^{+} \cup\{0\}$, we conclude that

$$
\begin{equation*}
(S f)_{R}\left(x_{R}\right)=\frac{1}{b_{0}}\left(\hat{f}_{R}^{+} G\right)^{\vee}\left(x_{R}\right),(S f)_{R}=S\left(f \circ \rho^{-1}\right) \tag{3.4}
\end{equation*}
$$

On the basis of formula (3.4), we can extend the domain of function $(S f)_{R}\left(x_{R}\right)$ onto R. Therefore

$$
\begin{equation*}
(S f)_{R}^{\wedge}(\omega)=\frac{1}{b_{0}} \widehat{f_{R}^{+}}(\omega) G(\omega), \omega \in R^{+} \cup\{0\} \tag{3.5}
\end{equation*}
$$

Replacing f by $S^{-1} f$ in the formula (3.5), we have

$$
\widehat{f_{R}}\left(\omega_{R}\right)=\frac{1}{b_{0}}\left(\widehat{\left.S^{-1} f\right)_{R}^{+}}(\omega) G(\omega)\right.
$$

Thus

$$
\left(\widehat{\left.S^{-1} f\right)_{R}^{+}}\left(\omega_{R}\right)=\frac{b_{0} \widehat{f_{R}}(\omega)}{G(\omega)}\right.
$$

or

$$
\left(S^{-1} f\right)_{R}^{+}\left(x_{R}\right)=b_{0}\left\{\frac{\widehat{f_{R}}}{G}\right\}^{\vee}\left(x_{R}\right)
$$

For $x_{R} \geq 0$, we have

$$
\left(S^{-1} f\right)_{R}\left(x_{R}\right)=b_{0}\left\{\frac{\widehat{f_{R}}}{G}\right\}^{\vee}\left(x_{R}\right)
$$

or

$$
\left(S^{-1} f\right)\left(x_{p}\right)=b_{0}\left(\frac{\widehat{f_{R}}}{G}\right)^{\vee}\left(\rho\left(x_{p}\right)\right)
$$

So for $f_{R}\left(x_{R}\right), x_{R} \geq 0,\left(S^{-1} f\right)\left(x_{p}\right)=b_{0}\left[f_{R} *\left(G^{-1}\right)^{\vee}\right]$ is valid. Finally, We have

$$
h_{m n}^{*}\left(x_{p}\right)=b_{0}\left[\left(h_{m n}\right)_{R} *\left(G^{-1}\right)^{\vee}\right]\left(\rho\left(x_{p}\right)\right),
$$

where the $\operatorname{sign} *$ denotes convolution.

The Affine Frame In p-adic Analysis

References

[1] M.G. Cui. Note on the wavelet transform in the field q_{p} of p-adic numbers. Appl. and Computational hormonic Analgsis, 13:162-168, 2002.
[2] I. Daubechies, A. Grossman, and Y. Meyer. Painless nonorthogonal expansion. J. Math. Phys., 27:1271-1283, 1986.
[3] E. Ch. Heil and F. Walnut. Continuous and discrete wavelet transforms. SIAM Review, 31:628-666, 1989.
[4] B. Lian, K. Liu, and S.-T. Yau. Mirror principle I. Asian J. Math., 4:729-763, 1997.
[5] S.V.Kozyrev. Wavelet theory as p-adic spectral analysis. Izv. Russ. Akad. Nauk, Ser. Math., 66:149-158, 2002.
[6] V.S.Vladimirov, I.V.Volovich, and E.I.Zelenov. p-adic analysis and Mathematical Physics. World Scientific, 38 -112, 1994.
Ming Gen Cui
Harbin Institute of Technology
Department of Mathematics
Wen Hua Xi Road
Weihai, Shandong
P.R. CHina
cmgyfs@263.net

Huan Min Yao
Harbin Normal University
Department of Information
Science
He Xing Road
Harbin, Heilongjiang
P.R. CHINA
hmyao@0451.com

Huan Ping Liu
Harbin Normal University
Department of Information
Science
He Xing Road
Harbin, Heilongjiang
P.R. CHINA
hpliu@vip.0451.com

