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Symmetric quantum Weyl algebras

Rafael Díaz1

Eddy Pariguan2

Abstract

We study the symmetric powers of four algebras: q-oscillator alge-
bra, q-Weyl algebra, h-Weyl algebra and U(sl2). We provide explicit
formulae as well as combinatorial interpretation for the normal coor-
dinates of products of arbitrary elements in the above algebras.

1 Introduction

This paper takes part in the time-honored tradition of studying an algebra
by first choosing a “normal” or “standard” basis for it B, and second, writing
down explicit formulae and, if possible, combinatorial interpretation for the
representation of the product of a finite number of elements in B, as linear
combination of elements in B.

This method has been successfully applied to many algebras, most promi-
nently in the theory of symmetric functions (see [7]). We shall deal with
algebras given explicitly as the quotient of a free algebra, generated by a
set of letters L, by a number of relations. We choose normal basis for our
algebras by fixing an ordering of the set of the letters L, and defining B to be
the set of normally ordered monomials, i.e., monomials in which the letters
appearing in it respect the order of L.

We consider algebras of the form Symn(A), i.e, symmetric powers of
certain algebras. Let us recall that for each n ∈ N, there is a functor
Symn: C -alg −→ C -alg from the category of associative C -algebras into it-
self defined on objects as follows: if A is a C -algebra, then Symn(A) denotes

1The first author is partially supported by UCV.
2The second author is partially supported by FONACIT.
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the algebra whose underlying vector space is the n-th symmetric power of A:
Symn(A) = (A⊗n)/〈a1 ⊗ . . . ⊗ an − aσ−1(1) ⊗ . . . ⊗ aσ−1(n) : ai ∈ A, σ ∈ Sn〉,
where Sn denotes the group of permutations on n letters. The product of m
elements in Symn(A) is given by the rule

(n!)m−1

m∏
i=1

(
n⊗

j=1

aij

)
=

∑
σ∈{id}×Sm−1

n

n⊗
j=1

(
m∏

i=1

aiσ−1
i (j)

)
(1.1)

for all (aij) ∈ A[[1,m]]×[[1,n]]. Notice that if A is an algebra, then A⊗n is also
an algebra. Sn acts on A⊗n by algebra automorphisms, and thus we have
a well defined invariant subalgebra (A⊗n)Sn ⊆ A⊗n. The following result is
proven in [8].

Theorem 1.1: The map s : Symn(A) −→ (A⊗n)Sn given by

s

(
n⊗

i=1

ai

)
=

1

n!

∑
σ∈Sn

n⊗
i=1

aσ−1(i), for all ai ∈ A

defines an algebra isomorphism.

The main goal of this paper is the study of the symmetric powers of
certain algebras that may be regarded as quantum analogues of the Weyl
algebra. Let us recall the well-known

Definition 1.2: The algebra C〈x, y〉[h]/〈yx − xy − h〉 is called the Weyl
algebra.

This algebra admits a natural representation as indicated in the

Proposition 1.3: The map ρ : C〈x, y〉[h]/〈yx − xy − h〉 −→ End(C[x, h])
given by ρ(x)(f) = xf , ρ(y)(f) = h ∂f/∂x, ρ(h)(f) = hf for any f ∈ C[x, h]
defines a representation of the Weyl algebra.

The symmetric powers of the Weyl algebra have been studied from sev-
eral point of view in papers such as [1],[3],[6],[10]. Our interest in the subject
arose from the construction of non-commutative solitonic states in string
theory, based on the combinatorics of the annihilation ∂

∂x
and creation x̂

operators given in [3]. In [8] we gave explicit formula, as well as combinato-
rial interpretation for the normal coordinates of monomials ∂a1xb1 . . . ∂anxbn .
This formulae allow us to find explicit formulae for the product of a finite
number of elements in the symmetric powers of the Weyl algebra. Looking at
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Proposition 1.3 ones notices that the definition of Weyl algebra relies on the
notion of the derivative operator ∂

∂x
from classical infinitesimal calculus. The

classical derivative ∂
∂x

admits two well-known discrete deformations, the so
called q-derivative ∂q and the h-derivative ∂h. The main topic of this paper
is to introduce the corresponding q and h-analogues for the Weyl algebra,
and generalize the results established in [8] to these new contexts.

For the q-calculus, we will actually introduce two q-analogues of the Weyl
algebra: the q-oscillator algebra (section 2) and the q-Weyl algebra (section
3). Needless to say, the q-oscillator algebra also known as the q-boson algebra
[11], and q-Weyl algebra are deeply related. The main difference between
them is that while the q-oscillator is the algebra generated by ∂q and x̂, a
third operator, the q-shift sq is also present in the q-Weyl algebra. We believe
that sq is as fundamental as ∂q and x̂. The reason it has passed unnoticed in
the classical case is that for q = 1, sq is just the identity operator. For both
q-analogues of the Weyl algebra we are able to find explicit formulae and
combinatorial interpretation for the product rule in their symmetric powers
algebras.

For the h-calculus, also known as the calculus of finite differences, we
introduce the h-Weyl algebra in section 4. Besides the annihilator ∂h and
the creator x̂ operators, also includes an h-shift operator sh, which again
reduces to the identity for h = 0. We give explicit formulae and combinatorial
interpretation for the product rule in the symmetric powers of the h-Weyl
algebra.

In section 5 we deal with an algebra of a different sort. Since our method
has proven successful for dealing with the Weyl algebra (and it q and h-
deformations); and it is known that the Weyl algebra is isomorphic to the
universal enveloping algebra of the Heisenberg Lie algebra, it is an interest
problem to apply our constructions for other Lie algebras. We consider here
only the simplest case, that of sl2. We give explicit formulae for the product
rule in the symmetric powers of U(sl2).

Although some of the formulae in this paper are rather cumbersome, all
of them are just the algebraic embodiment of fairly elementary combinatorial
facts. The combinatorial statements will be further analyzed in [9].

Notations and conventions

• N denotes the set of natural numbers. For x ∈ Nn and i ∈ N, we denote
by x<i the vector (x1, . . . , xi−1) ∈ Ni−1, by x≤i the vector (x1, . . . , xi) ∈
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Ni, by x>i the vector (xi+1, . . . , xn) ∈ Nn−i and by x≥i the vector
(xi, . . . , xn) ∈ Nn−i+1.

• Given (U,<) an ordered set and s ∈ U , we set U>s := {u ∈ U : u > s}.

• | | : Nn −→ N denotes the map such that |x| :=
∑n

i=1 xi, for all x ∈ Nn.

• For a set X, ](X) := cardinality of X, and C〈X〉 := free associative
algebra generated by X.

• Given natural numbers a1, . . . , an ∈ N, min(a1, . . . , an) denotes the
smallest number in the set {a1, . . . , an}.

• Given n ∈ N, we set [[1, n]] = {1, . . . , n}.

• Let S be a set and A : [[1, m]]× [[1, n]] −→ S an S-valued matrix. For
σ ∈ (Sn)m and j ∈ [[1, n]], Aσ

j : [[1, m]] −→ S denotes the map such
that Aσ

j (i) = Aiσ−1
i (j), for all i = 1, . . . ,m.

• The q-analogue n integer is [n] :=
1− qn

1− q
. For k ∈ N, we will use

[n]k := [n][n− 1] . . . [n− k + 1].

2 Symmetric q-oscillator algebra

In this section we define the q-oscillator algebra and study its symmetric
powers. Let us introduce several fundamental operators in q-calculus (see
[13] for a nice introduction to q-calculus).

Definition 2.1: The operators ∂q, sq, x̂, q̂, ĥ : C[x, q, h] −→ C[x, q, h] are
given as follows

∂qf(x) = f(qx)−f(x)
(q−1)x

sq(f)(x) = f(qx) q̂(f) = qf

x̂(f) = xf ĥ(f) = hf

for all f ∈ C[x, q, h]. We call ∂q the q-derivative and sq the q-shift.

Definition 2.2: The algebra C〈x, y〉[q, h]/Iqo, where Iqo is the ideal gener-
ated by the relation yx = qxy + h is called the q-oscillator algebra.
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We have the following analogue of Proposition 1.3.

Proposition 2.3: The map ρ : C〈x, y〉[q, h]/Iqo −→ End(C[x, q, h]) given by
ρ(x) = x̂, ρ(y) = h∂q, ρ(q) = q̂ and ρ(h) = ĥ defines a representation of the
q-oscillator algebra.

Notice that if we let q → 1, y becomes central and we recover the
Weyl algebra. We order the letters of the q-oscillator algebra as follows:
q < x < y < h.

Assume we are given A = (A1, . . . , An) ∈ (N2)n, and Ai = (ai, bi) ∈ N2,
for i ∈ [[1, n]]. Set XAi = xaiybi , for i ∈ [[1, n]]. We set a = (a1, . . . , an) ∈ Nn,
b = (b1, . . . , bn) ∈ Nn, c = (c1, . . . , cn) ∈ Nn and |A| = (|a|, |b|) ∈ N2. Using
this notation we have

Definition 2.4: The normal coordinates Nqo(A, k) of

n∏
i=1

XAi ∈ C〈x, y〉[h, q]/Iqo

are given by the identity

n∏
i=1

XAi =
min∑
k=0

Nqo(A, k)X |A|−(k,k)hk (2.1)

where min = min(|a|, |b|). For k > min, we set Nqo(A, k) to be equal to 0.

Let us introduce some notation needed to formulate Theorem 2.6 be-
low which provides explicit formula for the normal coordinates Nqo(A, k) of
n∏

i=1

XAi . Given (A1, . . . , An) ∈ (N2)n choose disjoint totally ordered sets

(Ui, <i), (Vi, <i) such that ](Ui) = ai and ](Vi) = bi, for i ∈ [[1, n]]. De-
fine a total order set (U ∪ V ∪ {∞}, <), where U = ∪n

i=1Ui, V = ∪n
i=1Vi and

∞ 6∈ U ∪ V , as follows: Given u, v ∈ U ∪ V ∪ {∞} we say that u ≤ v if and
only if a least one of the following conditions hold

u ∈ Vi, v ∈ Vj and i ≤ j; u ∈ Vi, v ∈ Uj and i ≤ j;

u ∈ Ui, v ∈ Vj and i ≤ j; u, v ∈ Ui and u ≤i v;

u, v ∈ Vi and u ≤i v; v = ∞.
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Given k ∈ N, we let Pk(U, V ) be the set of all maps p : V −→ U ∪ {∞} such
that

• p restricted to p−1(U) is injective, and ](p−1(U)) = k.

• If (v, p(v)) ∈ Vi × Uj then i < j.

Figure 1 shows an example of such a map. We only show the finite part of
p, all other points in V being mapped to ∞.

R. Dı́az and E. Pariguan
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Figure 1: Combinatorial interpretation of Nqo.

Definition 2.5: The value of the crossing number map c : Pk(U, V ) −→ N

when evaluated on p ∈ Pk(U, V ) is given by

c(p) = �({(s, t) ∈ V × U |s < t < p(s), t ∈ p(U>s)
c}).

Theorem 2.6: For any A = (A1, . . . , An) ∈ (N2)n with Ai = (ai, bi) ∈ N2 for
i ∈ [[1, n]] and any k ∈ N, we have that

Nqo(A, k) =
∑

p∈Pk(U,V )

qc(p).

Proof: The proof is by induction. The only non-trivial case is the following

y

n∏
i=1

XAi =

min∑
k=0

q|a|−kNqo(A, k)X |A|−(k,k+1)hk

+

min∑
k=0

Nqo(A, k)

a−k∑
i=1

qi−1X |A|−(k+1,k)hk (2.2)

where min = min(|a|, |b|). Normalizing the left-hand side of (2.2) we get a
recursive relation

Nqo(((0, 1)A), k) = Nqo(A, k) +
a−k∑
i=1

qi−1Nqo(A, k − 1).
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The other recursion needed being Nqo(((1, 0)A), k) = Nqo(A, k). It is straight-
forward to check that Nqo(A, k) =

∑
p∈Pk(U,V )

qc(p) satisfies both recursions.

Consider the identity (2.1) in the representation of the q-oscillator algebra
defined in Proposition 2.3. Apply both sides of the identity (2.1) to xt for
t ∈ N, and use Theorem 2.6 to get the fundamental

Corollary 2.7: Given (t, a, b) ∈ N×Nn×Nn the following identity holds
n∏

i=1

[t + |a>i| − |b>i|]bi
=

∑
p∈Pk(U,V )

qc(p)[t]|b|−k.

Our next theorem gives a fairly simple formula for the product of m
elements in Symn(C〈x, y〉[q, h]/Iqo). Fix a matrix A : [[1, m]]×[[1, n]] −→ N2,
(Aij) = ((aij), (bij)). Recall that given σ ∈ (Sn)m and j ∈ [[1, n]], Aσ

j denotes
the vector (A1σ−1

1 (j), . . . , Amσ−1
m (j)) ∈ (N2)m and X

Aij

j = x
aij

j y
bij

j . Set

|Aσ
j | = (|aσ

j |, |bσ
j |) where |aσ

j | =
m∑

i=1

aiσ−1
i (j) and |bσ

j | =
m∑

i=1

biσ−1
i (j).

Theorem 2.8: For any A : [[1, m]]× [[1, n]] −→ N2, the identity

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑
σ,k

(
n∏

j=1

Nqo(A
σ
j , kj)

)
n∏

j=1

X
|Aσ

j |−(kj ,kj)

j h|k|

where σ ∈ {id} × Sm−1
n and k ∈ Nn, holds in Symn(C〈x, y〉[q, h]/Iqo).

Proof: Using the product rule given in (1.1), the identity (2.1) and the
distributive property we obtain

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑

σ∈{id}×Sm−1
n

n∏
j=1

m∏
i=1

X
A

iσ−1
i

(j)

j

=
∑

σ∈{id}×Sm−1
n

n∏
j=1

(
minj∑
k=0

Nqo(Aσ
j , k)x

|aσ
j |−k

j y
|bσ

j |−k

j hk

)

=
∑
σ,k

(
n∏

j=1

Nqo(A
σ
j , kj)

)
n∏

j=1

X
|Aσ

j |−(kj ,kj)

j h|k|
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where minj = min(|aσ
j |, |bσ

j |).

3 Symmetric q-Weyl algebra

In this section we study the symmetric powers of the q-Weyl algebra.

Definition 3.1: The q-Weyl algebra is given by C〈x, y, z〉[q]/Iq, where Iq is
the ideal generated by the following relations:

zx = xz + y yx = qxy zy = qyz

We have the following q-analogue of Proposition 1.3.

Proposition 3.2: The map ρ : C〈x, y, z〉[q]/Iq −→ End(C[x, q]) given by
ρ(x) = x̂, ρ(y) = sq, ρ(z) = ∂q and ρ(q) = q̂ defines a representation of the
q-Weyl algebra.

Notice that if we let q → 1, we recover the Weyl algebra. We order the
letters of the q-Weyl algebra as follows: q < x < y < z. Given a ∈ N and
I ⊂ [[1, a]], we define the crossing number of I to be

χ(I) := ]({(i, j) : i > j, i ∈ I, j ∈ Ic}).

For k ∈ N, we let χk : N −→ N the map given by χk(a) =
∑

](I)=k

I⊂[[1,a]]

qχ(I), for

all a ∈ N. We have the following

Theorem 3.3: Given a, b ∈ N, the following identities hold in C〈x, y, z〉[q]/Iq

1. zaxb =
min∑
k=0

χk(a)[b]kx
b−kykza−k, where min = min(a, b).

2. zayb = qabybza.

3. yaxb = qabxbya.
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Proof: 2. and 3. are obvious, let us to prove 1. It should be clear that

zaxb =
∑

I⊂[[1,a]]

[b]](I)x
b−](I)

a∏
j=1

fI(j),

where fI(j) = z, if j /∈ I and fI(j) = y, if j ∈ I. The normal form of
a∏

j=1

fI(j)

is qχ(I)y](I)za−](I). Thus,

zaxb =
min∑
k=0

(∑
I

qχ(I)

)
[b]kx

b−kykza−k =
min∑
k=0

χk(a)[b]kx
b−kykza−k,

where min = min(a, b), I ⊂ [[1, a]] and ](I) = k.

Assume we are given A = (A1, . . . , An) ∈ (N3)n, where Ai = (ai, bi, ci), for
i ∈ [[1, n]], also XAi = xaiybizci for i ∈ [[1, n]]. We set a = (a1, . . . , an) ∈ Nn,
b = (b1, . . . , bn) ∈ Nn, c = (c1, . . . , cn) ∈ Nn and |A| = (|a|, |b|, |c|) ∈ N3.
Using this notation, we have the

Definition 3.4: The normal coordinates Nq(A, k) of

n∏
i=1

XAi ∈ C〈x, y, z〉[q]/Iq

are given via the identity

n∏
i=1

XAi =
∑

k∈Nn−1

Nq(A, k)X |A|+(−|k|,|k|,−|k|) (3.1)

where k runs over all vectors k = (k1, . . . , kn−1) ∈ Nn−1 such that 0 ≤ ki ≤
min(|c≤i| − |k<i|, ai+1). We set Nq(A, k) = 0 for k ∈ Nn−1 not satisfying the
previous conditions.

Our next theorem follows from Theorem 3.3 by induction. It gives an
explicit formula for the normal coordinates Nq(A, k) in the q-Weyl algebra

of
n∏

i=1

XAi .

195



R. Díaz and E. Pariguan

Theorem 3.5: Let A, k be as in the previous definition, we have

Nq(A, k) = q
Pn−1

i=1 λ(i)

n−1∏
j=1

χkj
(|c≤j| − |k<j|)[aj+1]kj

,

where λ(i) = bi+1(|c≤i| − |k≤i|) + (ai+1 − ki)(|b≤i|+ |k<i|).
Applying both sides of the identity (3.1) in the representation of the q-

Weyl algebra given in Proposition 3.2 to xt and using Theorem 3.5, we obtain
the remarkable

Corollary 3.6: For any given (t, a, b, c) ∈ N×Nn×Nn×Nn, the following
identity holds

n∏
i=1

qγ(i)[t + |a>i|+ |c>i|]ci
=
∑

k

qβ(k)

(
n−1∏
j=1

χkj
(|c≤j| − |k<j|)[aj+1]kj

)
[t]|c|−|k|

where k ∈ Nn−1 such that 0 ≤ ki ≤ min(|c≤i| − |k<i|, ai+1),

γ(i) = bi(t+|a>i|−|c>i−1|), and β(k) =

(
n−1∑
i=1

λ(i)

)
+ (|b|+ |k|)(t− |c|+ |k|).

Our next theorem provides an explicit formula for the product of m ele-
ments in the algebra Symn(C〈x, y, z〉[q]/Iq). Fix A : [[1, m]]× [[1, n]] −→ N3,
with (Aij) = ((aij), (bij), (cij)). Recall that given σ ∈ Sm

n and j ∈ [[1, n]],
Aσ

j denotes the vector (A1σ−1
1 (j), . . . , Amσ−1

m (j)) ∈ (N3)m and set X
Aij

j =

x
aij

j y
bij

j z
cij

j , for j ∈ [[1, n]]. Set Aσ
j = (|aσ

j |, |bσ
j |, |cσ

j |), where |aσ
j | =

m∑
i=1

aiσ−1
i (j)

and similarly for |bσ
j | and |cσ

j |. We have the following:

Theorem 3.7: For any A : [[1, m]]× [[1, n]] −→ N3, the identity

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑
σ,k

(
n∏

j=1

Nq(A
σ
j , k

j)

)
n∏

j=1

X
|Aσ

j |+(−|kj |,|kj |,−|kj |)
j

where σ ∈ {id} × Sm−1
n and k = (k1, . . . , kn) ∈ (Nm−1)n, holds in

Symn(C〈x, y, z〉[q]/Iq).

Proof:

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑

σ∈{id}×Sm−1
n

n∏
j=1

m∏
i=1

X
A

iσ−1
i

(j)

j
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=
∑

σ

n∏
j=1

(
minj∑
k=0

Nq(Aσ
j , k)x

|aσ
j |−|k|

j y
|bσ

j |+|k|
j z

|cσ
j |−|k|

j

)

=
∑
σ,k

(
n∏

j=1

Nq(A
σ
j , k

j)

)
n∏

j=1

X
|Aσ

j |+(−|kj |,|kj |,−|kj |)
j ,

where minj = min(|aσ
j |, |bσ

j |, |cσ
j |).

4 Symmetric h-Weyl algebra

In this section we introduce the h-analogue of the Weyl algebra in the h-
calculus, and study its symmetric powers. A basic introduction to h-calculus
may be found in [13].

Definition 4.1: The operators ∂h, sh, x̂, ĥ : C[x, h] −→ C[x, h] are given by

∂hf(x) = f(x+h)−f(x)
h

sh(f)(x) = f(x + h) x̂(f) = xf ĥ(f) = hf

for f ∈ C[x, h]. We call ∂h the h-derivative and sh the h-shift.

Definition 4.2: The h-Weyl algebra is the algebra C〈x, y, z〉[h]/Ih, where Ih

is the ideal generated by the following relations:

yx = xy + z zx = xz + zh yz = zy

Proposition 4.3: The map ρ : C〈x, y, z〉[h]/Ih −→ End(C[x, h]) given by
ρ(x) = x̂, ρ(y) = ∂h, ρ(z) = sh and ρ(h) = ĥ defines a representation of the
h-Weyl algebra.

Notice that if we let h → 0, z becomes a central element and we recover
the Weyl algebra. We order the letters on the h-Weyl algebra as follows
x < y < z < h. Also, for a ∈ N and k = (k1, . . . , kn) ∈ Nn, we set(

a

k

)
:=

a!∏
ki!(a− |k|)!

. With this notation, we have the

Theorem 4.4: Given a, b ∈ N, the following identities hold in C〈x, y, z〉[h]/Ih
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1. zaxb =
b∑

k=0

(
b

k

)
akxb−kzahk.

2. zayb = ybza.

3. yaxb =
∑
k∈Na

(
b

k

)
xb−|k|ya−s(k)zs(k)h|k|−s(k), where k ∈ Na is such that

0 ≤ |k| ≤ b and s(k) = ]({i : ki 6= 0}).

Proof: 2. is obvious and 3. is similar to 1. We prove 1. by induction. It is
easy to check that zax = xza + azah. Furthermore,

zaxb+1 =
b∑

k=0

(
b

k

)
akxb−k(zax)hk

=
b∑

k=0

(
b

k

)
akxb+1−kzahk +

b+1∑
k=1

(
b

k − 1

)
akxb+1−kzahk

=
b+1∑
k=0

(
b + 1

k

)
akxb+1−kzahk.

Assume we are given A = (A1, . . . , An) ∈ (N3)n and Ai = (ai, bi, ci), for
i ∈ [[1, n]]. Set XAi = xaiybizci for i ∈ [[1, n]]. We set a = (a1, . . . , an) ∈ Nn,
b = (b1, . . . , bn) ∈ Nn, c = (c1, . . . , cn) ∈ Nn and |A| = (|a|, |b|, |c|) ∈ N3.
Using this notation, we have the

Definition 4.5: The normal coordinates Nh(A, p, q) of
n∏

i=1

XAi ∈ C〈x, y, z〉[h]/Ih

are given via the identity
n∏

i=1

XAi =
∑
p,q

Nh(A, p, q)Xr(A,p,q)h|q|+|p|−s(p) (4.1)

where the sum runs over all vectors q = (q1, . . . , qn−1) ∈ Nn−1 such that
0 ≤ qj ≤ aj+1 and p = (p1, . . . , pn−1) with pj ∈ N|b≤j |−|s(p<j)|.
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Also, r(A, p, q) = (|a|−|p|−|q|, |b|−s(p), |c|+s(p)), where s(p) =
∑n−1

j=1 s(pj).
We set Nh(A, p, q) = 0 for p, q not satisfying the previous conditions.

The condition for p and q in the definition above might seem unmotivated.
They appear naturally in the course of the proof of Theorem 4.6 below, which
is proved using induction and Theorem 4.4.

Theorem 4.6: Let A, p and q be as in the previous definition, we have

Nh(A, p, q) =
n−1∏
i=1

(
ai+1

qi

)(
ai+1 − qi

pi

)
(|c≤i|+ |s(p<i)|)qi .

Figure 2 illustrates the combinatorial interpretation of Theorem 4.6. As
we try to moves the z’s or the y’s above the ‘x’, a subset of the x may get
killed. The z’s do not die in this process but the y’s do turning themselves
into z’ s.

y yz zx x

Figure 2: Combinatorial interpretation of Nh.

Our next result provides an explicit formula for the product of m elements
in the algebra Symn(C〈x, y, z〉[h]/Ih). Fix A : [[1, m]]× [[1, n]] −→ N3, with
(Aij) = ((aij), (bij), (cij)). Recall that given σ ∈ Sm

n and j ∈ [[1, n]], Aσ
j de-

notes the vector (A1σ−1
1 (j), . . . , Amσ−1

m (j)) ∈ (N3)m and set X
Aij

j = x
aij

j y
bij

j z
cij

j ,

for j ∈ [[1, n]]. Set Aσ
j = (|aσ

j |, |bσ
j |, |cσ

j |), where |aσ
j | =

m∑
i=1

aiσ−1
i (j) and simi-

larly for |bσ
j | and |cσ

j |.

Theorem 4.7: For any A : [[1, m]]× [[1, n]] −→ N3, the identity

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑
σ,p,q

(
n∏

j=1

Nh(A
σ
j , p

j, qj)

)
n∏

j=1

X
r(Aσ

j ,pj ,qj)

j hkj(p,q)
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holds in Symn(C〈x, y, z〉/Ih), where σ ∈ {id} × Sm−1
n , pj, qj are such that

(Aσ
j , p

j, qj) satisfy the condition of the definition above. r(Aσ
j , p

j, qj) = (|aσ
j |−

|pj| − |qj|, |bσ
j | − s(pj), |cσ

j |+ s(pj)) and kj(p, q) = |qj| − |pj| − s(pj).

Theorem 4.7 is proven similarly to Theorem 3.7.

5 Deformation quantization of (sl∗2)
n/Sn

We denote by sl2 the Lie algebra of all 2× 2 complex matrices of trace zero.
sl∗2 is the dual vector space. It carries a natural structure of Poisson manifold.
We consider a deformation quantization of the Poisson orbifold (sl∗2)

n/Sn. It
is proven in [4] that the quantized algebra of the Poisson manifold sl∗2 is
isomorphic to U(sl2) the universal enveloping algebra of sl2, after setting the
formal parameter ~ appearing in [4] to be 1. Thus we regard (U(sl2)

⊗n)Sn ∼=
Symn(U(sl2)) as the quantized algebra associated to the Poisson orbifold
(sl∗2)

n/Sn. It is well-known that U(sl2) can be identified with the algebra
C〈x, y, z〉/Isl2 where Isl2 is the ideal generated by the following relations:

zx = xz + y yx = xy − 2x zy = yz − 2z

The next result can be found in [2],[5].

Proposition 5.1: The map ρ : C〈x, y, z〉/Isl2 −→ End(C[x1, x2]) given by

ρ(x) = x2
∂

∂x1

, ρ(y) = x1
∂

∂x1

− x2
∂

∂x2

and ρ(z) = x1
∂

∂x2

defines a represen-

tation of the algebra C〈x, y, z〉/Isl2.

Given s, n ∈ N with 0 ≤ s ≤ n, the s-th elementary symmetric function∑
1≤i1<...<is≤n

xi1 . . . xis on variables x1, . . . , xn is denoted by en
s (x1, . . . , xn). For

b ∈ N, the notation en
s (b) := en

s (b, b − 1, . . . , b − n + 1) we will used. Given
a, n ∈ N such that a ≤ n, we set (a)n = a(a− 1) . . . (a− n + 1).

Theorem 5.2: Given a, b ∈ N, the following identities hold in C〈x, y, z〉/Isl2

1. zaxb =
∑
s,k

(a)k(b)k

k!
ek

k−s(−a− b + 2k)xb−kysza−k,

where the sum runs over all k, s ∈ N such that 0 ≤ s ≤ k ≤ min(a, b).

2. zayb =
b∑

k=0

(
b

k

)
(−2a)kyb−kza.
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3. yaxb =
a∑

k=0

(
a

k

)
(−2b)kxbya−k.

Proof: Formula 1. is proved by induction. It is equivalent to another
formula for the normalization of zaxb given in [12]. 2. and 3. are similar to
Theorem 4.4, part 1. Formula 2. express the fact that as we try to move the
z’s above the y’s some of the y’s may get killed. This argument justify the(

b
k

)
factor. The ak factor arises from the fact that each ‘y’ may be killed for

any of the z’s. The (−2)k factor follows from the fact that each killing of a
‘y’ is weighted by a −2.

Assume we are given A = (A1, . . . , An) ∈ (N3)n and Ai = (ai, bi, ci),
for i ∈ [[1, n]]. Set XAi = xaiybizci for i ∈ [[1, n]], furthermore set a =
(a1, . . . , an) ∈ Nn, b = (b1, . . . , bn) ∈ Nn, c = (c1, . . . , cn) ∈ Nn and |A| =
(|a|, |b|, |c|) ∈ N3. Using this notation, we have the

Definition 5.3: The normal coordinates Nsl2(A, k, s, p, q) of
n∏

i=1

XAi in the

algebra C〈x, y, z〉/Isl2 are given via the identity
n∏

i=1

XAi =
∑

k,s,p,q

Nsl2(A, k, s, p, q)Xr(A,k,s,p,q) (5.1)

where k, s, p, q ∈ Nn−1 are such that 0 ≤ si ≤ ki ≤ min(|c≤i| − |k<i|, ai+1),
0 ≤ pi ≤ bi+1, 0 ≤ qi ≤ |b≤i| + |s<i| − |p<i| − |q<i|, for i ∈ [[1, n − 1]].
Moreover, r(A, k, s, p, q) = (|a| − |k|, |b| + |s| − |p| − |q|, |c| − |k|). We set
Nsl2(A, k, s, p, q) = 0 for k, s, p, q not satisfying the previous conditions.

Theorem 5.4 provides an explicit formula for the normal coordinates

Nsl2(A, k, s, t) of
n∏

i=1

XAi . Its proof goes by induction using Theorem 5.2.

Theorem 5.4: With the notation of the definition above, we have

Nsl2(A, k, s, p, q) = (−2)|p|+|q|
n−1∏
i=1

αiβiγi

(
bi+1

pi

)
(|c≤i| − |k≤i|)pi(ai+1 − ki)

qi ,

where αi =
(|c≤i| − |k<i|)ki

(ai+1)ki

ki!
, βi = eki

ki−si
(−ai+1 − |c≤i|+ |k<i|+ 2ki),

and γi =

(
|b≤i|+ |s<i| − |p<i| − |q<i|

qi

)
, for all i ∈ [[1, n− 1]].
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Our final result provides an explicit formula for the product of m elements
in the algebra Symn(C〈x, y, z〉/Isl2). Fix A : [[1, m]] × [[1, n]] −→ N3, with
(Aij) = ((aij), (bij), (cij)). Recall that given σ ∈ Sm

n and j ∈ [[1, n]], Aσ
j de-

notes the vector (A1σ−1
1 (j), . . . , Amσ−1

m (j)) ∈ (N3)m. Set X
Aij

j = x
aij

j y
bij

j z
cij

j , for

j ∈ [[1, n]] and |Aσ
j | = (|aσ

j |, |bσ
j |, |cσ

j |), where |aσ
j | =

m∑
i=1

aiσ−1
i (j) and similarly

for |bσ
j |, |cσ

j |, and k, s, p, q ∈ (Nm−1)n.

Theorem 5.5: For any A : [[1, m]]× [[1, n]] −→ N3, the identity

(n!)m−1

m∏
i=1

n∏
j=1

X
Aij

j =
∑

σ,k,s,p,q

(
n∏

j=1

Nsl2(A
σ
j , k

j, sj, pj, qj)

)
n∏

j=1

X
rj(Aσ

j ,kj ,sj ,pj ,qj)

j

holds in Symn(C〈x, y, z〉/Isl2), where k = (k1, . . . , kn) ∈ (Nm−1)n, and similar
for s, p, q, rj(A

σ
j , k

j, sj, pj, qj) = (|aσ
j | − |kj|, |bσ

j |+ |sj| − |pj| − |qj|, |cσ
j | − |kj|,

and σ ∈ {id} × Sm−1
n .

Theorem 5.5 is proven similarly to Theorem 3.7.
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