ANNALES MATHÉMATIQUES

Minggen Cui, Xueqin Lv
 Weyl-Heisenberg frame in p-adic analysis

Volume 12, $\mathrm{n}^{\circ} 1$ (2005), p. 195-203.
http://ambp.cedram.org/item?id=AMBP_2005__12_1_195_0
© Annales mathématiques Blaise Pascal, 2005, tous droits réservés.
L'accès aux articles de la revue «Annales mathématiques Blaise Pascal» (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand - France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Weyl-Heisenberg frame in p-adic analysis

Minggen Cui Xueqin Lv

Abstract

In this paper, we establish an one-to-one mapping between complexvalued functions defined on $R^{+} \cup\{0\}$ and complex-valued functions defined on p-adic number field Q_{p}, and introduce the definition and method of Weyl-Heisenberg frame on hormonic analysis to p-adic anylysis.

1 Introduction

Wavelet transform was introduced to the field of p-adic numbers in [1]. In [4],[3] some theory of wavelet analysis and affine frame introduced to the field of p-adic numbers,respectively,on the basis of a mapping $P: R^{+} \cup\{0\} \rightarrow$ Q_{p} (field of p -adic numbers). This paper considers on the basis of the mapping P, gives the Weyl-Heisenberg frame in field of p-adic numbers.

The field Q_{p} of the p-adic numbers is defined as the completion of field Q of rational with respect to the p-adic metric induced by the p-adic norm $|\cdot|_{p},($ see $[5])$. A p-adic number $x \neq 0$ is uniquely represented in the canonical form

$$
\begin{equation*}
x=p^{-r} \sum_{k=0}^{\infty} x_{k} p^{k}, \quad|x|_{p}=p^{r} \tag{1.1}
\end{equation*}
$$

where p is prime and $r \in Z$ (Z is integer set), $0 \leq x_{k} \leq \mathrm{p}-1, x_{0} \neq 0$. For $x, y \in Q_{p}$, we define $x<y$, either when $|x|_{p}<|y|_{p}$ or when $|x|_{p}=|y|_{p}$, but there exists an integer j such that $x_{0}=y_{0}, \cdots, x_{j-1}=y_{j-1}, x_{j}<y_{j}$ from viepoint of (1.1).By interval $[a, b]$, we mean the set defined by $\left\{x \in Q_{p} \mid a \leq\right.$ $x \leq b\}$.

It is known that if $x=p^{r} \sum_{k=0}^{n} x_{k} p^{-k} \in R^{+} \cup\{0\}$ and $x_{0} \neq 0,0 \leq x_{k} \leq$ $p-1, k=1,2, \cdots$, then there is another expression;

$$
\begin{equation*}
x=p^{r}\left(\sum_{k=0}^{n-1} x_{k} p^{-k}+\left(x_{n}-1\right) p^{-n}+(p-1) \sum_{k=n+1}^{\infty} p^{-k}\right) \tag{1.2}
\end{equation*}
$$

M. G. Cui and L. Q. Lv

But we won't use that expression (1.2) in this paper.
A mapping $P: R^{+} \cup\{0\} \rightarrow \mathbf{Q}_{\mathbf{p}}$ was introduced in [4],[3],[2], as for $x=p^{r} \sum_{x=0}^{\infty} x_{k} p^{-k} \in R, x_{0} \neq 0,0 \leq x_{k} \leq p-1, k=1,2, \cdots$

$$
P(x)=p^{-r} \sum_{k=0}^{\infty} x_{k} p^{k}
$$

Let $M_{p}=P\left(M_{R}\right)$,
$M_{R}=\left\{x_{R} \mid x_{R}=p^{r} \sum_{k=0}^{n-1} x_{k} p^{-k}+(n-1) p^{-n}+(p-1) \sum_{k=0}^{\infty} p^{-k}, n \in Z^{+} \cup\{0\}\right\}$
In the following to distinguish between real number field R and p-adic number field Q_{p}, number in R denotes by the subscript R, and number with the subscript p belongs to Q_{p}. For example x_{R}, a_{R}, b_{R} in $R ; x_{p}, a_{p}$ in Q_{p}.

In [2] a measure is constructed using the mapping P from $R^{+} \cup\{0\}$ into $Q_{p} \backslash M_{p}$ and Lebesgue measure on $R^{+} \cup\{0\}$, the symbol \sum is the set of all compact subsets of Q_{p}, and S is the $\sigma-\operatorname{ring}$ generated by \sum.

Definition 1.1: ${ }^{[2]}$ Let $E \in S$, and put $E_{P}=E \backslash M_{P}$, and $E_{R}=P^{-1}\left(E_{P}\right)$.If E_{R} is a measurable set on $R^{+} \cup\{0\}$, the we call E is a measurable set on Q_{p}, and define a set function $\mu_{p}(E)$ on S

$$
\mu_{p}(E)=\frac{1}{p} \mu\left(E_{R}\right)
$$

where $\mu\left(E_{R}\right)$ is the Lebesgue measure on E_{R}. This $\mu_{p}(E)$ is called the measure on E.

By the Definition 1.1, some examples can given immediately:
(1) Let $a_{p}, b_{p} \in Q_{P}$, then $\mu_{p}\left\{\left[a_{p}, b_{p}\right]\right\}=\left(b_{R}-a_{R}\right) / p$
(2) Let $B_{r}(0)=\left\{\left.x_{p}| | x_{p}\right|_{p} \leq p^{r}, x_{p} \in Q_{p}\right\}$, then $\mu_{p}\left\{B_{r}(0)\right\}=p^{r}$
(3) Let $S_{r}(0)=\left\{\left.x_{p}| | x_{p}\right|_{p}=p^{r}, x_{p} \in Q_{p}\right\}$, then $\mu_{p}\left\{S_{r}(0)\right\}=p^{r}\left(1-\frac{1}{P}\right)$
(4) $\mu_{p}\left\{M_{p}\right\}=0$

According to the above definition 1.1 of measure, we can define integration over measurable sets E in Q_{p}

$$
\int_{E} f\left(x_{p}\right) d \mu_{p}\left(x_{p}\right) \quad \text { or } \quad \int_{E} f\left(x_{p}\right) d x_{p}
$$

By the definition 1.1 of measure we have following theorem.
Theorem 1.2: (see [2]) Suppose $f\left(x_{p}\right)$ is a Complex-Valued function on Q_{p}, the $f\left(x_{p}\right)$ is integrable over the interval $\left[a_{p}, b_{p}\right]\left(a_{p}, b_{p} \in Q_{p}\right)$, if and if the real function $f_{R}\left(x_{R}\right)$ defined on $R^{+} \cup\{0\}$ is Lebesgue integrable over the interval $\left[a_{R}, b_{R}\right]$, and

$$
\begin{equation*}
\int_{\left[a_{p}, b_{p}\right]} f\left(x_{p}\right) d x_{p}=\frac{1}{p} \int_{a_{R}}^{b_{R}} f\left(x_{R}\right) d x_{R} \tag{1.3}
\end{equation*}
$$

where $f_{R}\left(x_{R}\right)$ is defined

$$
f\left(x_{p}\right)=f\left(P \circ P^{-1}\left(x_{p}\right)\right)=(f \circ P)\left(x_{R}\right) \stackrel{\text { def }}{=} f_{R}\left(x_{R}\right), x_{p}=P\left(x_{R}\right) \in Q_{p} \backslash M_{p}
$$

2 Weyl-Heisenberg frame on p-adic number field

In real analysis, if there exists constants A and $\mathrm{B}, A, B>0$, such that

$$
A\|f\|_{L^{2}(R)}^{2} \leq \sum_{m, n}\left|\left(f, g_{m, n}\right)_{L^{2}(R)}\right|^{2} \leq B\|f\|_{L^{2}(R)}^{2}
$$

holds for $\forall f \in L^{2}(R)$, then $g_{m n}(x)$ is called the Weyl-Heisenberg frame, where $g \in L^{2}(R), p_{0}, q_{0} \in R, g_{m n}(x)=g\left(x-n q_{0}\right) e^{2 \pi i m p_{0} x}, m, n \in Z$ and $\left(f, g_{m n}\right)_{L^{2}(R)}$ is inner product in $L^{2}(R)$,

$$
\left(f, g_{m n}\right)_{L^{2}(R)}=\int_{R} f(x) \overline{g_{m n}}(x) d x
$$

In this section we give the definition of a Weyl-Heisenberg frame in Q_{p} by

$$
\begin{equation*}
g_{m n}\left(x_{p}\right)=g\left(\alpha_{m n}\left(x_{p}\right)-x_{p}\right) \exp \left(2 \pi i m p_{0} \rho\left(x_{p}\right)\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{m n}\left(x_{p}\right)=P\left(\left|x_{R}+n q_{0}\right|\right)+x_{p} \tag{2.2}
\end{equation*}
$$

and $m, n, p_{0}, q_{0} \in Z, x_{R}=P^{-1}\left(x_{p}\right), x_{p} \in Q_{p} \backslash M_{p}$. If $g_{m n}\left(x_{p}\right)$ satisfies the frame condition :

$$
A\|f\|_{L^{2}}^{2} \leq \sum_{m, n}\left|\left(f, g_{m, n}\right)_{L^{2}}\right|^{2} \leq B\|f\|_{L^{2}}^{2}, A, B>0, \forall f \in L^{2}\left(Q_{p}\right)
$$

M. G. Cui and L. Q. Lv

then we have

$$
f\left(x_{p}\right)=\sum_{m, n}\left(f, g_{m, n}^{*}\right)_{L^{2}} g_{m, n}\left(x_{p}\right)=\sum_{m, n}\left(f, g_{m, n}\right) g_{m, n}^{*}\left(x_{p}\right), x_{p} \in Q_{p}
$$

where $\left\{g_{m, n}^{*}\right\}$ is the dual frame of $\left\{g_{m, n}\right\}$:

$$
g_{m, n}^{*}=S^{-1} g_{m, n}
$$

and S is the frame operator:

$$
S f=\sum_{m, n}\left(f, g_{m, n}\right)_{L^{2}} g_{m, n}
$$

and

$$
\left(f, g_{m n}\right)_{L^{2}}=\int_{Q_{p}} f\left(x_{p}\right) g_{m n}(x) d x
$$

Theorem 2.1: Suppose $f, g \in L^{2}\left(Q_{p}\right)$ are complex-valued functions defined on $Q_{p}, p_{0}=p^{r_{p}}, q_{0}=p^{r_{q}}, r_{p}, r_{q} \in Z$, if support $\widehat{g_{R}}(|w|) \subset\left[\frac{-1}{2 q_{0}}, \frac{1}{2 q_{0}}\right]$, and $\exists A, B>0$, such that

$$
A \leq \sum_{m \in Z}\left|\widehat{g_{R}}\left(\left|w-m p_{0}\right|\right)\right|^{2} \leq B, w \in R, \forall w \neq 0
$$

then functions $g_{m n}\left(x_{p}\right)$ defined by (2.1) construct a frame of $L^{2}\left(Q_{p}\right)$, where $g_{R}(|t|)=(g \circ P)(|t|)=g\left(x_{p}\right),\left(P(|t|)=x_{p}, g_{R}=g \circ P\right), t \in R$, and $\widehat{g_{R}}(|w|)$ is the Fourier transform of $g_{R}(|t|)$ in real analysis

$$
\widehat{g_{R}}(|w|)=\int_{R} g_{R}(|t|) \exp (-2 \pi i w t) d t
$$

Proof. From formula (2.2) or $\left.g_{(} \alpha_{m n}\left(x_{p}\right)-x_{p}\right)=(g \circ P)\left(\left|x_{R}+n q_{0}\right|\right)=$ $g_{R}\left(\left|x_{R}+n q_{0}\right|\right)$, for $\forall f \in L^{2}\left(Q_{p}\right)$, we have

$$
\begin{aligned}
& \sum_{m, n \in Z}\left|\left(f, g_{m, n}\right)_{L^{2}}\right|^{2}=\sum_{m, n \in Z}\left|\int_{Q_{p}} f\left(x_{p}\right) \overline{g_{m, n}}\left(x_{p}\right) \mathrm{d} x_{p}\right|^{2} \\
= & \sum_{m, n \in Z}\left|\int_{Q_{p}} f\left(x_{p}\right) \bar{g}\left(\alpha_{m}^{(n)}\left(x_{p}\right)-x_{p}\right) \exp \left(-2 \pi i m p_{0} \rho\left(x_{p}\right)\right)\right|^{2}
\end{aligned}
$$

Weyl-Heisenberg frame in p-adic analysis

$$
\begin{equation*}
=\frac{1}{p} \sum_{m, n \in Z}\left|\int_{R^{+}} f_{R}\left(x_{R}\right) \overline{g_{R}}\left(\left|x_{R}+n q_{0}\right|\right) \exp \left(-2 \pi i m p_{0} x_{R}\right) \mathrm{d} x_{R}\right|^{2} \tag{2.3}
\end{equation*}
$$

where we used (1.3) and $f_{R}\left(x_{R}\right)=\left(f \circ P^{-1}\right)\left(x_{p}\right)$ in section 1
Let

$$
f_{R}^{+}(x)=\left\{\begin{array}{c}
f_{R}(x), \quad x \geq 0 \\
0, \quad x<0
\end{array}\right.
$$

From (2.3), we obtain

$$
\begin{gather*}
\sum_{m, n \in Z}\left|\left(f, g_{m, n}\right)\right|^{2} \\
=\sum_{m, n \in Z} \mid \int_{R} f_{R}^{+}(x)\left(\left.\overline{g_{R}}\left(\left|x+n q_{0}\right|\right) \exp \left(-2 \pi i m p_{0} x\right) d x\right|^{2}\right. \\
=\sum_{m, n \in Z} \mid \int_{R} \widehat{f_{R}^{+}}(w)\left[\left.\overline{\left.g_{R}\left(\left|\cdot+n q_{0}\right|\right) \exp \left(2 \pi i m p_{0} \cdot\right)\right]^{\wedge}}(w) \mathrm{d} w\right|^{2}\right. \tag{2.4}
\end{gather*}
$$

where sign "." is the argument on the function, for Fourier transform. But

$$
\begin{aligned}
& {\left[g_{R}\left(\left|\cdot+n q_{0}\right|\right) \exp \left(2 \pi i m p_{0} \cdot\right)\right]^{\wedge}(w) } \\
= & \widehat{g_{R}}\left(\left|w-m p_{0}\right|\right) \exp \left(2 \pi i n q_{0}\left(w-m p_{0}\right)\right)
\end{aligned}
$$

Hence from the support $\hat{g} \subset\left[-\frac{1}{2 q_{0}}, \frac{1}{2 q_{0}}\right]$ in condition of the theorem and (2.4) we have

$$
\begin{gather*}
\sum_{m, n \in Z}\left|\left(f, g_{m n}\right)\right|^{2} \\
=\sum_{m, n \in Z}\left|\int_{R} \widehat{f_{R}^{+}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|) \exp \left(-2 \pi i n q_{0} w\right) \mathrm{d} w\right|^{2} \\
=\sum_{m, n \in Z}\left|\int_{-\frac{1}{2 q_{0}}}^{\frac{1}{2 q_{0}}} \widehat{f_{R}^{+}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|) \exp \left(-2 \pi i n q_{0} w\right) \overline{d w}\right|^{2} \tag{2.5}
\end{gather*}
$$

M. G. Cui and L. Q. Lv

We know that

$$
c_{n}=q_{0} \int_{\frac{-1}{2 q_{0}}}^{\frac{1}{2 q_{0}}} \widehat{f_{R}^{+}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|) \exp \left(-2 \pi i n q_{0} w\right) \mathrm{d} w, n \in Z
$$

are Fourier coefficient of $\widehat{f_{R}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|)$ on $\left[\frac{-1}{2 q_{0}}, \frac{1}{2 q_{0}}\right]$. Hence by virtue of Parseval equality we have

$$
\begin{align*}
& =\sum_{n \in Z}\left|c_{n}\right|^{2} \\
& =\sum_{n=-\infty}^{\infty}\left|q_{0} \int_{\frac{-1}{2 q_{0}}}^{\frac{1}{2 q_{0}}} \widehat{f_{R}^{+}}\left(w-m p_{0}\right) \widehat{g_{R}}(|w|) \exp \left(-2 \pi i n q_{0} w\right) \mathrm{d} w\right|^{2} \\
& =q_{0} \int_{-\frac{1}{2 q_{0}}}^{\frac{1}{2 q_{0}}}\left|\widehat{f_{R}^{+}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|)\right|^{2} \mathrm{~d} w \\
& =q_{0} \int_{R}\left|\widehat{f_{R}^{+}}\left(w+m p_{0}\right) \widehat{g_{R}}(|w|)\right|^{2} d w \\
& =q_{0} \int_{R}\left|\widehat{f_{R}^{+}}(w) \widehat{g_{R}}\left(\left|w-m p_{0}\right|\right)\right|^{2} \mathrm{~d} w \tag{2.6}
\end{align*}
$$

Comparing (2.5) and (2.6), we have

$$
\begin{equation*}
\sum_{m, n \in Z}\left|\left(f_{p}, g_{m, n}\right)_{L^{2}}\right|^{2}=\frac{1}{q_{0}} \int_{R}\left|\widehat{\left.\right|_{R} ^{+}}(w)\right|^{2} G(w) \mathrm{d} w \tag{2.7}
\end{equation*}
$$

where

$$
G(w)=\sum_{m \in Z}\left|\widehat{g_{R}}\left(\left|w-m p_{0}\right|\right)\right|^{2}
$$

Finally, by virtue of the conditions of the theorem, we have

$$
\sum_{m \in Z, n \in Z}\left|\left(f, g_{m, n}\right)_{L^{2}}\right|^{2}=\left\{\begin{array}{l}
\geq \frac{A}{q_{0}} \int_{R}\left|\widehat{f_{R}^{+}}(w)\right|^{2} \mathrm{~d} w \\
\leq \frac{B}{q_{0}} \int_{R}\left|\widehat{f_{R}^{+}}(w)\right|^{2} \mathrm{~d} w
\end{array}\right.
$$

But

$$
\int_{R}\left|\widehat{f_{R}^{+}}(w)\right|^{2} \mathrm{~d} w=\int_{R}\left|f_{R}^{+}(x)\right|^{2} \mathrm{~d} x=\int_{R^{+}}\left|f_{R}\left(x_{R}\right)\right|^{2} \mathrm{~d} x_{R}=\int_{Q_{p}}\left|f\left(x_{p}\right)\right|^{2} \mathrm{~d} x_{p}=\|f\|_{L^{2}}
$$

Hence we completed our proof.

3 Dual frame

In the section, we will give a formula to calculate the dual frame. By (2.7), we have

$$
\begin{gathered}
(S f, f)_{L^{2}}=\sum_{m, n \in Z}\left|\left(f, g_{m, n}\right)_{L^{2}}\right|^{2}=\frac{1}{q_{0}} \int_{R} \widehat{f_{R}^{+}}(w) G(w) \widehat{f_{R}^{+}}(w) d w \\
=\frac{1}{q_{0}} \int_{R}\left(\widehat{f_{R}^{+}}(\cdot) G(\cdot)\right)^{\vee}(x) \overline{f_{R}^{+}}(x) \mathrm{d} x \\
=\frac{1}{q_{0}} \int_{R^{+}}\left(\widehat{f_{R}^{+}}(\cdot) G(\cdot)\right)^{\vee}\left(x_{R}\right) \overline{f_{R}\left(x_{R}\right)} \mathrm{d} x_{R}
\end{gathered}
$$

where sign " v " is the inverse Fourier transform. Therefore

$$
\begin{aligned}
(S f, f)_{L^{2}} & =\frac{1}{q_{0}} \int_{Q_{p}}\left(\widehat{f_{R}^{+}}(\cdot) G(\cdot)\right)^{\vee}\left(P^{-1}\left(x_{p}\right)\right) \overline{f\left(x_{p}\right)} \mathrm{d} x_{p} \\
& =\frac{1}{q_{0}}\left(\left(\widehat{f_{R}^{+}}(\cdot) G(\cdot)\right)^{\vee}\left(P^{-1}\left(x_{p}\right)\right), f\left(x_{p}\right)\right)_{L^{2}}
\end{aligned}
$$

Since f is an arbitrary function in $L^{2}\left(Q_{p}\right)$, we conclude that

$$
(S f)\left(x_{p}\right)=\frac{1}{q_{0}}\left(\widehat{f_{k}^{+}}(\cdot) G(\cdot)\right)^{\vee}\left(P^{-1}\left(x_{p}\right)\right)
$$

or for $x \in R^{+} \bigcup\{0\}$ we conclude that

$$
\begin{equation*}
(S f)_{R}\left(x_{R}\right)=\frac{1}{q_{0}}\left(\widehat{f_{R}^{+}}(\cdot) G(\cdot)\right)^{\vee}\left(x_{R}\right), x_{R} \geq 0 \tag{3.1}
\end{equation*}
$$

where $(S f)_{R}=(S f) P^{-1}$
Bases on (3.1), we will extend the domain of $(S f)_{R}\left(x_{R}\right)$ from $R^{+} \bigcup\{0\}$ onto R such that $(S f)_{R}(t), t \in R$ is an even function on R. Taking Fourier transform on both sides of (3.1), we have

$$
\begin{equation*}
\left((S f)_{R} \wedge^{\wedge}(w)=\frac{1}{q_{0}} \widehat{f_{R}^{+}}(w) G(w)\right. \tag{3.2}
\end{equation*}
$$

M. G. Cui and L. Q. Lv

After replace f with $S^{-1} f$ in formula (3.2), we have

$$
\widehat{f_{R}}(w)=\frac{1}{q_{0}}\left\{\left(S^{-1} f\right)_{R}^{+}\right\}^{\wedge}(w) G(w)
$$

Which leads to

$$
\begin{equation*}
\left\{\left(S^{-1} f\right)_{R}^{+}\right\}^{\wedge}(w)=\frac{q_{0} \widehat{f_{R}}(w)}{G(w)} \tag{3.3}
\end{equation*}
$$

Then we take Fourier inverse transformation on both sides of (3.3), we have

$$
\left(S^{-1} f\right)_{R}^{+}(x)=\left\{\frac{q_{0} \widehat{f_{R}}(\cdot)}{G(\cdot)}\right\}^{\vee}(x)
$$

So, for $x \geq 0$,

$$
\left(S^{-1} f\right)_{R}\left(x_{R}\right)=\left\{\frac{q_{0} \widehat{f_{R}(\cdot)}}{G(\cdot)}\right\}^{\vee}\left(x_{R}\right)
$$

is valied or

$$
\begin{equation*}
\left(S^{-1}\right) f\left(x_{p}\right)=\left\{\frac{q_{0} \widehat{f_{R}(\cdot)}}{G(\cdot)}\right\}^{\vee}\left(P^{-1}\left(x_{p}\right)\right) \tag{3.4}
\end{equation*}
$$

Finally, let $f\left(x_{p}\right)=g_{m n}\left(x_{p}\right)$ in formula (3.4), we obtain

$$
g_{m, n}^{*}\left(x_{p}\right)=\left\{\frac{q_{0} \widehat{f_{R}(\cdot)}}{G(\cdot)}\right\}^{\vee}\left(P^{-1}\left(x_{p}\right)\right)
$$

References

[1] MingGen Cui and GuangHong Gao. On the wavelet transform in the field \mathbb{Q}_{p} of p-adic numbers. Applied and Computational Hormonic Analysis, 13:162-168, 2002.
[2] MingGen Cui and YanYing Zhang. The Heisenberg uncertainty relation in harmonic analysis on p-adic numbers field. Dans ce fascicule des Annales Mathématiques Blaise Pascal.

Weyl-Heisenberg frame in p-adic analysis

[3] HuanMin Yao MingGen Cui and HuanPing Liu. The affine frame in p adic analysis. Annales Mathématiques Blaise Pascal, 10:297-303, 2003. math.66.
[4] S.V.Kozyrev. Wavelet theory as p-adic spectral analysis. Izv.Russ.Akad.Nauk,Ser, 2:149-158, 2002.
[5] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov. p-adic Analysis and Mathematical Physics. World Scientific, 1994.

Minggen Cui
Harbin Institute of Technology
Department of Mathematics WEN HUA XI ROAD
WEIHAI Shan Dong, 264209
P.R.China
cmgyfs@263.net

Xueqin Lv
Harbin Normal University
Department of Information Science
HE XING ROAD
Harbin HeiLongJiang, 150001
P.R.China
lvxueqin@163.net

