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Integrable functions for the Bernoulli measures
of rank 1

Hamadoun Maïga

Abstract

In this paper, following the p-adic integration theory worked out by A. F.
Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooĳ and W. H.
Schikhof [6, 7] for the spaces which are not σ-compacts, we study the class of
integrable p-adic functions with respect to Bernoulli measures of rank 1. Among
these measures, we characterize those which are invertible and we give their inverse
in the form of series.

1. Preliminaries.

In what follows, we denote by p a prime number, Q the field of rational
numbers provided with the p-adic absolute value, Qp the field of p-adic
numbers that is the completion of Q for the p-adic absolute value and by
Zp the ring of p-adic integers. We denote by vp the normalized valuation
of Qp.

Let X be a totally discontinuous compact space and Ω(X) the Boolean
algebra of closed and open subsets of X. If U belongs to Ω(X), one denotes
by χU the characteristic function of U which is a continuous function. For
K a complete ultrametric valued field, C(X,K) is the Banach algebra
of the continuous functions from X into K provided with the norm of
uniform convergence, ‖f‖∞ = supx∈X |f(x)|.

Definition 1.1. A measure on X is an additive map µ : Ω(X)→ K such
that

‖µ‖ = sup
V ∈Ω(X)

|µ(V )| < +∞.

One denotes by M(X,K) the space of measures on X. Provided with
the norm ‖µ‖ = supU∈Ω(X) |µ(U)|, it is an ultrametric K-Banach space.

Keywords: integrable functions, Bernoulli measures of rank 1, invertible measures.
Math. classification: 46S10.
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Let µ be a measure on X; for any locally constant function

f =
n∑
j=1
λjχUj ,

putting ϕµ(f) =
∑n
j=1 λjµ(Uj), one defines on the space Loc(X,K) of the

locally constant functions a continuous linear form such that
|ϕµ(f)| ≤ ‖µ‖‖f‖∞,

then
‖ϕµ‖ = sup

f 6=0

|ϕµ(f)|
‖f‖∞

≤ ‖µ‖.

The linear form ϕµ on Loc(X, K) associated to µ being continuous for
the uniform norm on Loc(X, K) and since this space is a dense subspace
of C(X, K), one sees that ϕµ extends to an unique continuous linear form
on C(X, K) with the same norm and also noted ϕµ.

On the other hand, if ϕ is a continuous linear form on the Banach space
C(X,K), by setting for any closed and open subset U of X: µϕ(U) =
ϕ(χU ), one defines a measure µϕ on X such that ‖µϕ‖ ≤ ‖ϕ‖.

Therefore, a measure µ = µϕ on X which corresponds to some continu-
ous linear form ϕ on C(X,K) is such that ϕ = ϕµ and ‖ϕµ‖ = ‖µ‖. Hence
one sees that M(X, K) is isometrically isomorphic to the dual Banach
space C(X, K)′ of C(X, K).

Let µ be a measure on X and ϕµ the continuous linear form associated
to µ. One defines an ultrametric seminorm on C(X, K) by setting, for
f ∈ C(X, K):

‖f‖µ = sup
g∈C(X, K), g 6=0

|µ(fg)|
‖g‖∞

,

where µ(f) = ϕµ(f) for f ∈ C(X, K).
Let us remind some fundamental notions on p-adic integration theory.

Theorem 1.2 (Schikhof). For any µ ∈ M(X, K), there exists a unique
upper semicontinuous function Nµ : X → [0, ∞) such that

‖f‖µ = sup
x∈X
|f(x)|Nµ(x).

The function Nµ is given by the formula
Nµ(x) = inf

U∈Ω(X),x∈U
‖χU‖µ.
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µ1,α-integrable functions

Proof. See [7, page 278] or [6, Lemma 7.2] for a proof of the theorem. �

For any closed and open subset U ∈ Ω(X)
‖χU‖µ = sup

V⊂U,V ∈Ω(X)
|µ(V )|.

This relation is important for many computations which will follow.
If µ is a measure on X and f : X → K a locally constant function, one

sets ϕµ(f) =
∫
X f(x)dµ(x), called the integral of f with respect to µ.

Definition 1.3 (µ-integrable functions). Let µ be a measure on X and
f : X → K a function; one puts

‖f‖s = sup
x∈X
|f(x)|Nµ(x).

One says that :

• f is µ-negligible if ‖f‖s = 0 and a subset U of X is µ-negligible if
‖χU‖s = 0.

• f is µ-integrable if there exists a sequence (fn)n of locally constant
functions such that limn→+∞ ‖f − fn‖s = 0.

One sets
∫
X f(x)dµ(x) = limn→+∞

∫
X fn(x)dµ(x), which is seen to be

independent of the sequence (fn)n.

For x ∈ X and µ be a measure on X, one has Nµ(x) ≤ ‖µ‖ and one
can show that ‖f‖s = ‖f‖µ for any continuous functions f : X → K.

In the sequel, one denotes by L1(X, µ) the spaces of µ-integrable func-
tions and by L1(X, µ) the quotient space L1(X, µ)/<, where < is the
equivalence relation defined by f<g if f − g is µ-negligible.

For any continuous function f : X → K, one has ‖f‖s ≤ ‖µ‖‖f‖∞.
Since the space of locally constant functions is uniformly dense in the

space of continuous functions, one sees that any continuous function is
µ-integrable, in other words : C(X, K) ⊆ L1(X, K).

Furthermore if f ∈ C(X, K), one has
∫
X f(x)dµ(x) = ϕµ(f).

2. Integrable functions for the Bernoulli measures of rank 1.

We assume now that the complete valued field K is a valued extension
of Qp and we let α be a p-adic unit. Let us remind that the Bernoulli
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polynomials (Bn(x))n≥0 are defined by
text

et − 1
=
∑
k≥0
Bk(x)

tk

k!
.

Definition 2.1 (Koblitz [3], Proposition, page 35). Let k ≥ 1 be a fixed
integer and Bk(x) be the k-th Bernoulli polynomial. For any integer n ≥ 1
and a ∈ {0, 1, · · · , pn − 1}, put

µk(a+ pnZp) = pn(k−1)Bk(
a

pn
).

If U =
⋃N
i=1(ai+pniZp) is a partition of the closed and open subset U of

Zp, setting µk(U) =
∑N
i=1 µk(ai+pniZp), one can prove, with properties of

Bernoulli polynomials, that this sum is independent of any such partition
of U and one obtains an additive map µk : Ω(Zp)→ K called the Bernoulli
distribution of rank k.

Definition 2.2 (B. Mazur). Let k ≥ 1 be a fixed integer and α be a p-
adic unit. The Bernoulli measure of rank k normalized by α is the measure
defined by setting for any closed and open set U ∈ Ω(Zp)

µk,α(U) = µk(U)− α−kµk(αU). (2.1)

Let a be a p-adic integer, whose Hensel expansion is a =
∑
i≥0 aip

i. For
an integer n ≥ 1, one puts

(a)n =
∑
i<n

aip
i and [a]n =

∑
i≥0
an+ip

i.

One has then

[a]n = a
pn
− (a)n
pn
∈ Zp and [aα]n = aα

pn
− (aα)n
pn
∈ Zp.

Setting U = a + pnZp for any integer a ∈ {0, 1, . . . , pn − 1} and k = 1
in the relation (2.1), one has µ1,α(a+ pnZp) = B1( apn )− α−1B1( (aα)n

pn ).
As B1(x) = x− 1/2, one obtains

µ1,α(a+ pnZp) = ( a
pn
− 1

2
)− α−1(aα

pn
− [aα]n −

1
2

).

Thus, for all integers n ≥ 1 and a ∈ {0, 1, . . . , pn − 1},

µ1,α(a+ pnZp) = 1
2α

(1− α+ 2[aα]n). (2.2)
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µ1,α-integrable functions

Proposition 2.3. The measure µ1,−1 is equal to −δ0, where δ0 is the
Dirac measure at 0. The space of µ1,−1-integrable functions is equal to the
space of all functions f : Zp → K.

Proof. Let n ≥ 1 be an integer, and a be an integer such that 0 ≤ a ≤ pn−
1; according to the relation (2.2), one has : µ1,−1(a+ pnZp) = −1− [−a]n.

• For a = 0, it follows that µ1,−1(pnZp) = −1.

• For 1 ≤ a ≤ pn − 1, one has −(pn − 1) ≤ −a ≤ −1 and
1 ≤ pn − a ≤ pn − 1.

As −1 =
∑
i≥0(p− 1)pi, one has

−a = (pn − a)− pn = (pn − a) + pn
∑
i≥0

(p− 1)pi.

Hence, one has [−a]n =
∑
i≥0(p− 1)pi = −1 and µ1,−1(a+ pnZp) = 0.

Let δ0 be the Dirac measure at 0. It is readily seen that µ1,−1 = −δ0
and L1(Zp, µ1,−1) is algebraically isomorphic to K. �

We now assume that α is a p-adic unit different from 1 and of −1 and
we set γα = infx∈Zp Nµ1,α(x).

Let j ≥ 1 be an integer; for any integer a ∈ {0, 1, · · · , pj − 1}, one has

|µ1,α(a+ pjZp)| = |
1

2α
(1− α+ 2[aα]j)| ≤ max(|1− α|, |2[aα]j |) ≤ 1.

Let us remind that any closed and open subset V of Zp can be written as
disjoint union V =

⊔m
k=1(ak + pjkZp). Hence, one has

|µ1,α(V )| ≤ max
1≤k≤m

|µ1,α(ak + pjkZp)| ≤ 1.

Thus, for all integer n ≥ 1 and a such that 0 ≤ a ≤ pn − 1, one has
‖χa+pnZp‖µ1,α = sup

V⊂a+pnZp
|µ1,α(V )| ≤ 1

Moreover, we have Nµ1,α(x) ≤ ‖µ1,α‖ ≤ 1, for any p-adic integer x.

Lemma 2.4. Let α = 1 + bpr be a principal unit of the ring of p-adic
integer, different from 1, with r = vp(α − 1) ≥ 1. For any p-adic integer
x, one has

• Nµ1,α(x) ≥ 1
pr , if p is odd;
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• Nµ1,α(x) ≥ 1
2r−1 , if p = 2 and r ≥ 2.

Therefore γα ≥ 1
pr if p 6= 2 and γα ≥ 1

2r−1 if p = 2 and r ≥ 2.

Proof. Let us remind that

µ1,1+bpr(a+ pnZp) = 1
α

([
aα
]
n
− 1

2
bpr
)
,

where n and a be an integers such that n ≥ 1 and a ∈ {0, 1, . . . , pn − 1},
and where r = vp(α− 1) ≥ 1. One has two cases :

First case : p odd.

• If a = 0, one has |µ1,α(pnZp)| = 1
pr ; it follows that ‖χpnZp‖µ1,α ≥

1
pr .

• Now, assume that 1 ≤ a ≤ pn − 1;
(1) If |[aα]n| < 1

pr , one has |µ1,1+bpr(a+ pnZp)| = |12bp
r| = 1

pr ;
(2) If |[aα]n| > 1

pr , one has |µ1,1+bpr(a+ pnZp)| = |[aα]n| > 1
pr .

In these two cases, one obtains ‖χa+pnZp‖µ1,α ≥ 1
pr .

(3) If |[aα]n| = 1
pr , consider cn + cn+1p + · · · + cn+rp

r + · · · the
Hensel expansion of [aα]n. One then has cn = cn+1 = · · · =
cn+r−1 = 0 and cn+r 6= 0. It follows that [aα]n+1 = cn+rp

r−1+
cn+r+1p

r + · · · ; since |2[aα]n+1| = |[aα]n+1|, one has

|µ1,α(a+ pn+1Zp)| =
1
pr−1 ≥

1
pr

and ‖χa+pnZp‖µ1,α ≥ 1
pr .

Let Vx be an open and closed neighborhood of x. There exists
an integer j0 ≥ 1 such that x + pj0Zp ⊂ Vx. Thus, one has
‖χx+pj0Zp‖µ1,α ≤ ‖χVx‖µ1,α .

It follows that ‖χVx‖µ1,α ≥ 1
pr . Taking infimum, one obtains

Nµ1,α(x) ≥ 1
pr
.

Second case : p = 2 and r ≥ 2. Putting α = 1 + 2rb, one has

µ1,α(a+ 2nZ2) = 1
α

([aα]n − 2r−1b).
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• If a = 0, for any integer n ≥ 1, one has |µ1,α(2nZ2)| = 1
2r−1 .

It follows that ‖χ2nZ2‖µ1,α ≥ 1
2r−1 .

• Let us suppose that 1 ≤ a ≤ 2n − 1.

(1) If |[aα]n| < 1
2r−1 , one has |µ1,α(a+ 2nZ2)| = 1

2r−1 ;
(2) If |[aα]n| > 1

2r−1 , one has |µ1,α(a+ 2nZ2)| = |[aα]n| > 1
2r−1 .

In these two cases, one obtains ‖χa+2nZ2‖µ1,α ≥ 1
2r−1 .

(3) If |[aα]n| = 1
2r−1 , as in the First case (3), one shows that

‖χa+2nZ2‖µ1,α ≥ 1
2r−1 .

Let x ∈ Z2; one shows as in the First case that Nµ1,α(x) ≥ 1
2r−1

and again that γα ≥ 1
2r−1 .

�

Lemma 2.5. Let p be an odd prime number, α = α0+bpr be a p-adic unit,
where α0 is an integer such that 2 ≤ α0 ≤ p− 1 and r = vp(α− α0) ≥ 2.
One has Nµ1,α(x) ≥ 1

pr for any p-adic integer x and γα ≥ 1
pr .

Proof. Let p be an odd prime number and α = α0 + bpr be a p-adic unit,
where α0 is an integer such that 2 ≤ α0 ≤ p− 1 and r = vp(α− α0) ≥ 2.
Let us remind that, for all integers n ≥ 1 and a such that 0 ≤ a ≤ pn− 1,
one has

µ1,α(a+ pnZp) = 1
α

([aα]n + 1− α
2

) = 1
α

[([aα]n −
α0 − 1

2
)− 1

2
bpr].

• If a = 0, one has |µ1,α(pnZp)| = |1−α2α | = 1;

• Let us suppose that a ∈ {1, 2, · · · , pn − 1}.

(1) If |[aα]n− α0−1
2 | <

1
pr , one has |µ1,α(a+pnZp)| = |12bp

r| = 1
pr .

(2) If |[aα]n − α0−1
2 | >

1
pr , one has |µ1,α(a+ pnZp)| > 1

pr .
In these two cases, one obtains ‖χa+pnZp‖µ1,α ≥ 1

pr .
(3) If |[aα]n − α0−1

2 | = 1
pr , let cn + cn+1p + . . . be the Hensel

expansion of [aα]n; there is two cases according to the parity
of α0:
First case : α0 odd.
One has cn = α0−1

2 , cn+1 = · · · = cn+r−1 = 0 and cn+r 6= 0.
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Hence [aα]n+1 = cn+rp
r−1 + cn+r+1p

r + . . . . It follows that

|[aα]n+1 −
α0 − 1

2
| = |α0 − 1

2
| = 1

and |µ1,α(a+ pn+1Zp)| = 1.
Second case : α0 even.
The Hensel expansion of α0−1

2 is
α0 − 1

2
= p+ α0 − 1

2
+
∑
i≥1

p− 1
2
pi.

In this case, one has : cn = p+α0−1
2 and for j ∈ {n+1, . . . , n+

r − 1}, cj = p−1
2 . Hence,

[aα]n+1 =
r−2∑
i=0

p− 1
2
pi +

∑
i≥r−1

cn+i+1p
i.

Therefore

[aα]n+1 −
α0 − 1

2
= −α0

2
+

∑
i≥r−1

(cn+i+1 −
p− 1

2
)pi.

Thus, one has |[aα]n+1 − α0−1
2 | = | −

α0
2 | = 1 and

|µ1,α(a+ pn+1Zp)| = 1.
Finally, in these two cases, we have proved that

‖χa+pnZp‖µ1,α ≥
1
pr
.

As in the proof of Lemma 2.4, one proves that Nµ1,α(x) ≥ p−r, for any
p-adic integer x and γα = infx∈Zp Nµ1,α(x) ≥ p−r. �

Lemma 2.6. • Let p be an odd prime number and α be an integer
≥ 2 which is a p-adic unit not congruent to 1 modulo p, then
γα = 1.

• Let α be a negative integer < −1 which is a p-adic unit; one has
then

γα ≥ min
(∣∣1− α

2
∣∣, ∣∣1 + α

2
∣∣) > 0.
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Proof. Let us remind that µ1,α(a + pnZp) = 1
2α(1 − α + 2[aα]n), for all

integers n ≥ 1 and a ∈ {0, 1, . . . , pn − 1}.

• Let p be an odd prime number and α ≥ 2 be an integer which is a
p-adic unit such that α 6≡ 1 (mod p) and n ≥ 1 be a fixed integer;
let us consider an integer a such that 0 ≤ a ≤ pn − 1.
If a = 0, one has ‖χpnZp‖µ1,α ≥ |µ1,α(pnZp)| = |α− 1| = 1.
Now, let us suppose that 1 ≤ a ≤ pn − 1 and let us consider an
integer j such that pj ≥ αpn−α+ 1; one has α ≤ aα ≤ αpn−α <
pj . It follows that (aα)j = aα and [aα]j = 0. In this case, one has
|µ1,α(a + pjZp)| = 1. Hence, one has ‖χa+pnZp‖µ1,α ≥ 1, for all
integers n and a such that n ≥ 1 and a ∈ {0, 1, · · · , pn − 1}.
Thus, as in the proof of Lemma 2.4, we have Nµ1,α(x) ≥ 1, for any
p-adic integer x. Since Nµ1,α(x) ≤ 1, for any p-adic integer x, the
function Nµ1,α is constant and Nµ1,α(x) = 1 = γα.

• Let α be a negative integer < −1 which is a p-adic unit, n ≥ 1
be an integer and a ∈ {1, 2, · · · , pn − 1}. One obtains a strictly
positive integer while setting m = −aα; let us denote by s(m)
the highest power of p in the Hensel expansion of m. One has two
cases:
First case : m = ps(m). One has aα = −m = ps(m)∑

k≥0(p−1)pk.
Thus [aα]j =

∑
i≥0(p− 1)pi = −1 and µ1,α(a+ pjZp) = −α+1

2α , for
any integer j > max(s(m), n). It follows that

|µ1,α(a+ pjZp)| = |
α+ 1

2α
| = |α+ 1

2
| ≤ ‖χa+pnZp‖µ1,α .

Second case : m 6= ps(m). One has −m = (ps(m)+1−m)−ps(m)+1;
the Hensel expansion of aα = −m is given by

aα =
s(m)∑
`=0
β`p
` +

∑
j≥0

(p− 1)ps(m)+1+j .

Thus, for any integer j > max(s(m) + 1, n), one has [aα]j =∑
i≥0(p− 1)pi = −1 and

|µ1,α(a+ pjZp)| = |
α+ 1

2
| ≤ ‖χa+pnZp‖µ1,α .
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On other hand, one has

‖χpnZp‖µ1,α ≥ |µ1,α(pnZp)| = |
α− 1

2
|.

It follows that ‖χa+pnZp‖µ1,α ≥ min
(
|α+1

2 |, |
α−1

2 |
)
, for any integer

n ≥ 1 and any integer a ∈ {0, 1, · · · , pn − 1}. One concludes that
γα > 0.

�

Theorem 2.7. Let α be a p-adic unit of one of the following forms :

• α = 1 + bpr, where r = vp(α − 1) is such that r ≥ 1 if p 6= 2 and
r ≥ 2 if p = 2;

• α = α0 + bpr, if p 6= 2, α0 ∈ {2, . . . , p−1} and r = vp(α−α0) ≥ 2;

• α ≥ 2 is an integer such that α 6≡ 1 (mod p) (with p odd).

• α is a negative integer different from −1.
The space L1(Zp, µ1,α) of µ1,α-integrable functions is equal to the
space of continuous functions C(Zp, K).

Furthermore, one has L1(Zp, µ1,α) = C(Zp, K).

Proof. Let us suppose that the conditions on α (of Theorem 2.7) are sat-
isfied. According to Lemmas 2.4, 2.5 and 2.6, one has γα > 0. Hence, one
has γα ≤ Nµ1,α(x) ≤ 1 for any p-adic integers x. Thus, for any function
f : Zp → K, one has

γα‖f‖∞ ≤ ‖f‖s ≤ ‖f‖∞.
Let us assume that f : Zp → K is a µ1,α-integrable function. There exists
a sequence (fn)n≥0 of locally constant functions such that limn→+∞ ‖f −
fn‖s = 0. Since γα‖f−fn‖∞ ≤ ‖f−fn‖s, f is a uniform limit of continuous
functions. Hence f is continuous. It follows that L1(Zp, µ1,α) = C(Zp, K).

Moreover the null function is the only µ1,α-negligible function and one
has L1(Zp, µ1,α) = C(Zp, K). �

Remark 2.8. It remains to characterize the µ1,α-integrable functions, where
α = α0 + bp is not an integer, α0 ∈ {2, . . . , p− 1} and vp(α− α0) = 1 for
p 6= 2 and α = 1 + 2b not a negative integer ≤ −1 with v2(α− 1) = 1 for
p = 2.
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µ1,α-integrable functions

3. Inversibility of measures µ1,α.

In what follows, if n ≥ 1 is an integer, we denote by s(n) the highest power
of p in the Hensel expansion of n.

Lemma 3.1. Let p be a prime number and α = 1+bpr be a principal unit
of the ring of p-adic integer different of 1 (with r = vp(α− 1) ≥ 1).

There exists an integer n ≥ 1 such that |[nα]s(n)+1| = 1.

Proof. Let α = 1 + bpr be a principal unit of the ring of p-adic integer
different from 1 (with r = vp(α − 1) ≥ 1) and m be an integer such that
m ≥ r. Let us consider the positive integer n = pm−r+1(1+p+ · · ·+pr−1);
one has s(n) = m and n = ps(n)−r+1 + · · ·+ ps(n). Hence, one has

nα = [ps(n)−r+1 + · · ·+ ps(n)](1 + bpr)
= ps(n)−r+1 + · · ·+ ps(n) + bps(n)+1(1 + p+ · · ·+ pr−1)

It follows that [nα]s(n)+1 = b(1 + p+ · · ·+ pr−1) and |[nα]s(n)+1| = 1. �

Definition 3.2. Let n be an integer ≥ 0, and x be a p-adic integer.
The integer n is called an initial part of x, and one notes n/x if |x−n| < 1

n .

M. van der Put could showed that the sequence of functions (en)n de-

fined by en(x) = { 1 if n / x
0 overwise . is an orthonormal base of C(Zp, K);

(en)n is called the van der Put base.

Theorem 3.3. Let p be a prime number and α 6= 1 be a p-adic unit. Then
‖µ1,α‖ = 1.

Proof. • If p be an odd prime number and α be a p-adic unit of
the form α = α0 + bpr, where α0 ∈ {2, 3, · · · , p − 1} and r =
vp(α − α0) ≥ 1, one has 1 = |1−α2α | = |〈µ1,α, e0〉| ≤ ‖µ1,α‖ ≤ 1.
Hence, one has ‖µ1,α‖ = 1.

• If α = 1 + bpr is a principal unit of the ring of p-adic integers,
different from 1, one has two cases :

(1) p 6= 2 or r ≥ 2.
According to Lemma 3.1, there exists an integer n0 ≥ 1 such
that |[n0α]s(n0)+1| = 1. In this case, one has 1 = |〈µ1,α, en0〉| ≤
‖µ1,α‖ ≤ 1. It follows that ‖µ1,α‖ = 1.
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(2) r = 1 and p = 2.
One has α = 1 + 2b and 〈µ1,1+2b, e0〉 = −2b

2(1+2b) = −b
α .

Hence,

1 = |−b
α
| = |〈µ1,1+2b, e0〉| ≤ ‖µ1,1+2b‖ ≤ 1

and ‖µ1,1+2b‖ = 1.

• If α is a p-adic unit such that 2 ≤ α ≤ p− 1 (with p odd), one has

1 =
∣∣∣1− α2α

∣∣∣ = |〈µ1,α, e0〉| ≤ ‖µ1,α‖ ≤ 1.

It follows that ‖µ1,α‖ = 1.
�

Let δa be the Dirac measure associated to the p-adic integer a. Let
us put ω = δ1 − δ0. It is known that any measure µ ∈ M(Zp, K) can
be written as a pointwise convergent series µ =

∑
n≥0〈µ, Qn〉Q′n, where

(Qn)n≥0 is an orthonormal base of C(Zp, K) called the Mahler basis,
defined by Qn(x) =

(x
n

)
and (Q′n)n≥0 is the dual family of (Qn)n≥0 defined

by 〈Q′n, Qm〉 = δnm . The convolution product Q′n ? Q′m gives Q′n+m; one
deduces that Q′n = Q′n1 . As Q′1 = ω, one has Q′n = ωn; it follows that
µ =

∑
n≥0〈µ, Qn〉ωn. Hence the measure µ corresponds to the formal

power series of bounded coefficients Sµ =
∑
n≥0〈µ, Qn〉Xn. Therefore, the

algebraM(Zp, K), provided with the convolution product, is isometrically
isomorphic to the algebra K〈X〉 of bounded formal power series with
bounded coefficients, the norm being the supremum of the coefficients.

Let us remind (see for instance [2] or [1]) that an element S of the
Banach algebra K〈X〉 is invertible if and only if ‖S‖ = |S(0)| 6= 0.

Theorem 3.4. Let p be a prime number, and α be a p-adic unit.
The measure µ1,α is invertible for the convolution product if and only

if α 6≡ 1 (mod p) if p is odd (resp. α 6≡ 1 (mod 4) for p = 2).
Moreover its inverse να is given by the formula

να =
∑
n≥0
dn(α)ωn,
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where d0(α) = 2α
1−α , d1(α) = 1+α

3(1−α) and for n ≥ 2:

dn(α) = αn( 2α
1− α

)n+1 ∑
1≤j≤n

i1+···+ij=n
i1,...,ij∈{1,...,n}

(−1)j
(
α−1

i1 + 2

)
· · ·
(
α−1

ij + 2

)
.

Proof. Let p be a prime number; let us denote by S1,α(X) the formal
power series with bounded coefficients which corresponds to the measure
µ1,α. One then has S1,α(0) = 〈µ1,α, Q0〉 = 1−α

2α .
The measure µ1,α is invertible in M(Zp, K) (for the convolution prod-

uct) if and only if S1,α is invertible in the Banach algebra K〈X〉 (for the
Cauchy product). According to Theorem 3.3, the norm of measure µ1,α is
equal to 1. Hence, S1,α is invertible in K〈X〉 if and only if:

1 = ‖S1,α‖ = |S1,α(0)| =
∣∣∣1− α2α

∣∣∣ =
∣∣∣1− α2

∣∣∣.
Thus µ1,α is invertible if and only if α − 1 6≡ 0 (mod p) for p 6= 2

(respectively α 6≡ 1 (mod 4) for p = 2).
Since

(1 +X)α−1 =
∑
j≥0

(
α−1

j

)
Xj ,

one obtains
S1,α(X) = Uα(X)[1 +XUα(X)]−1,

where

Uα(X) = α
∑
j≥0

(
α−1

j + 2

)
Xj .

Moreover, if α is a p-adic unit such that α − 1 6≡ 0 (mod p) for p 6= 2
and α 6≡ 1 (mod 4) for p = 2, one has 1 = |1−α2α | = |Uα(0)| ≤ ‖Uα‖ ≤ 1.
One has ‖Uα‖ = |Uα(0)| 6= 0; hence Uα is invertible. It is readily seen
that 1 +XUα is invertible; one deduces that µ1,α = Uα(ω)[1 +ωUα(ω)]−1.
Thus, the convolution inverse να of the measure µ1,α is then given by
να = Uα(ω)−1[1 + ωUα(ω)] = ω + Uα(ω)−1. Setting

cj(α) =
(
α−1

j + 2

)
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for j ≥ 0, b0(α) = 0 and bj(α) = c0(α)−1cj(α) for j ≥ 1, one has

Uα(ω)−1 = α−1c0(α)−1
[
1 +

∑
n≥1
bn(α)ωn

]−1

= α−1c0(α)−1∑
j≥0

(−1)j
[∑
n≥1
bn(α)ωn

]j
= 2α

1− α
+ 2α

1− α
∑
j≥1

∑
n≥1

(−1)jbn(j, α)ωn,

with bn(j, α) =
∑
i1+···+ij=n bi1(α) · · · bij (α).

Since b0(α) = 0,

bn(j, α) =
∑

i1+···+ij=n
bi1(α) · · · bij (α) = 0

for j ≥ n+ 1, one has

bn(j, α) =
∑

i1,...,ij≥1
i1+···+ij=n

bi1(α) · · · bij (α), for j ≤ n.

More precisely, one has

bn(j, α) =
( 2α2

1− α

)n ∑
i1,...,ij∈{1,...,n}
i1+···+ij=n

(
α−1

i1 + 2

)
· · ·
(
α−1

ij + 2

)
, for j ≤ n.

It follows that

Uα(ω)−1 = 2α
1− α

+ 2α
1− α

∑
n≥1

n∑
j=1

(−1)jbn(j, α)ωn

and

να = 2α
1− α

δ0 +
[
1− 2α

1− α
b1(1, α)

]
ω + 2α

1− α
∑
n≥2

n∑
j=1

(−1)jbn(j, α)ωn.

As b1(1, α) = b1(α) =
(α−1

2
)−1(α−1

3
)

= 1−2α
3α , one obtains

να = 2α
1− α

δ0 + 1 + α
3(1− α)

ω + 2α
1− α

∑
n≥2

[ n∑
j=1

(−1)jbn(j, α)
]
ωn

=
∑
n≥0
dn(α)ωn

354



µ1,α-integrable functions

where d0(α) = 2α
1−α , d1(α) = 1+α

3(1−α) and for n ≥ 2 :

dn(α) = 2α
1− α

n∑
j=1

(−1)jbn(j, α)

= αn
( 2α

1− α

)n+1 ∑
1≤j≤n

i1+···+ij=n
i1,...,ij∈{1,...,n}

(−1)j
(
α−1

i1 + 2

)
· · ·
(
α−1

ij + 2

)

�
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