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The linear symmetric systems associated with
the modified Cherednik operators and

applications

Hatem Mejjaoli

Abstract

We introduce and study the linear symmetric systems associated with the
modified Cherednik operators. We prove the well-posedness results for the Cauchy
problem for these systems. Eventually we describe the finite propagation speed
property of it.

Les systèmes symétriques linéaires associés aux opérateurs de
Cherednik modifiés et applications

Résumé
Nous présentons et étudions les systèmes symétriques linéaires associés aux

opérateurs de Cherednik modifiés. Nous prouvons que le problème de Cauchy pour
ces systèmes sont bien posé. Finalement nous en décrivons le principe de vitesse
finie.

Dedicated to Khalifa Trimèche for his 66th birthday

1. Introduction

Let a be a real Euclidean vector space of dimension d and let R be a root
system in a. A multiplicity function is a complex-valued function k on R
which is invariant with respect to the Weyl group of R. In the mid 1990s,
Ivan Cherednik associated with a triplet (a, R, k) a commutative family of
first order differential-reflection operators, nowadays known as Cherednik

Keywords: Modified Cherednik operators, modified Cherednik symmetric systems, en-
ergy estimates, finite speed of propagation, generalized wave equations with variable
coefficients.
Math. classification: 35L05, 22E30.
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operators or trigonometric Dunkl operators. The original motivation for
the study of these operators came from the theory of invariant differen-
tial operators: if the triplet (a, R, k) arises from the structure theory of
a Riemannian symmetric space of the non-compact type G/K, then it is
possible to explicitly construct all radial components of the W−invariant
differential operators on G/K using the Cherednik operators. The joint
spectral theory of Cherednik operators is therefore naturally related to the
harmonic analysis on Reimannian symmetric spaces (and to the more gen-
eral theory of hypergeometric functions in several variables of Heckman
and Opdam). But it is also related with the representation theory of the
graded Hecke algebra of Lusztig. There are many references on the subject.
Our starting point will be the following references (cf. [3, 12, 13, 15]).

In this paper, we are interested in studying to the modified Cherednik-
linear symmetric system

(S)


∂tu(t, x)−

d∑
j=1

AjTju(t, x)−A0u(t, x) = f(t, x), (t, x) ∈ I ×Rd

u |t=0 = v,

where Tj , j = 1, . . . , d, are the modified Cherednik operators, I be an in-
terval of R, (Ap)0≤p≤d a family of functions from I ×Rd into the space of
m×mmatrices with real coefficients ap,i,j(t, x) which areW -invariant with
respect to x, symmetric (i.e. ap,i,j(t, x) = ap,j,i(t, x)) and whose all deriva-
tives in x ∈ Rd are bounded and continuous functions of (t, x), the initial
data belongs to generalized Sobolev spaces [Hs

k(Rd)]m and f is a continu-
ous function on an interval I with value in [Hs

k(Rd)]m. In the classical case,
the Cauchy problem for symmetric hyperbolic systems of first order, it has
been introduced and studied by Friedrichs (cf. [6]). The Cauchy problem
will be solved with the aid of energy integral inequalities, developed for
this purpose by Friedrichs. Such energy inequalities have been employed
by Weber [18], Zaremba [19] to derive various uniqueness theorems, and
by Courant-Friedrichs-Lewy [5], Friedrichs [6] to derive existence theo-
rems. In all these treatments the energy inequality is used to show that
the solution, at some later time, depends boundedly on the initial val-
ues in an appropriate norm. To derive an existence theorem however one
needs, in addition to the a priori energy estimates, auxiliary constructions.
Thus motivated by these methods we will prove by energy methods and
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Symmetric systems and applications

Friedrichs approach local well-posedness and principle of finite speed of
propagation for the system (S).

Let us first summarize our well-posedness results and finite speed of
propagation (Theorem 4.3 and Theorem 5.2).

Well-posedness for DLS. For all given f ∈ [C(I,Hs
k(Rd))]m and v ∈

[Hs
k(Rd)]m, there exists a unique solution u of the system (S) in the space

[C(I,Hs
k(Rd))]m

⋂
[C1(I,Hs−1

k (Rd))]m.

In the classical case, a similar result can be found in [2], where the authors
used another method based on the symbolic calculations for the pseudo-
differential operators that we can not adapt for the system (S) at the
moment. Our method use some ideas inspired by the works [2, 6, 7, 8, 9,
10, 11, 5, 14].

Finite speed of propagation. Let (S) as above. We assume that f
belongs to [C(I,H1

k(Rd))]m and v ∈ [H1
k(Rd)]m.

• There exists a positive constant C0 such that, for any positive real
R satisfying{

f(t, x) ≡ 0 for ‖x‖ < R− C0t
v(x) ≡ 0 for ‖x‖ < R,

the unique solution u of the system (S) verifies
u(t, x) ≡ 0 for ‖x‖ < R− C0t.

• If the given f and v are such that{
f(t, x) ≡ 0 for ‖x‖ > R+ C0t
v(x) ≡ 0 for ‖x‖ > R,

then the unique solution u of the system (S) satisfies
u(t, x) ≡ 0 for ‖x‖ > R+ C0t.

In the classical case, similar results can be found in [2, 11, 16].
A standard example of the modified Cherednik linear symmetric system

is the generalized wave equations with variable coefficients defined by:
∂2
t u− divk[A.∇k,xu] +Q(t, x, ∂tu, Txu), t ∈ R, x ∈ Rd,
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where

∇k,xu := (T1 u, . . . , Td u) , divk (v1, . . . , vd) :=
d∑
i=1

Tivi,

A is a real symmetric matrix which verifies some hypotheses (see subsec-
tion 5.1) and Q(t, x, ∂tu, Txu) is differential-difference operator of degree 1
such that these coefficients are C∞, and all derivatives are bounded. From
the previous results we deduce the well-posedness of the generalized wave
equations (Theorem 5.1):

Well-posedness for GDW. For all s ∈ N, u0 ∈ Hs+1
k (Rd), u1 ∈

Hs
k(Rd) and f ∈ C(R, Hs

k(Rd)), there exists a unique

u ∈ C1(R, Hs
k(Rd)) ∩ C(R, Hs+1

k (Rd))
such that 

∂2
t u− divk[A.∇k,xu] +Q(t, x, ∂tu, Txu) = f

u |t=0 = u0

∂tu |t=0 = u1.

The paper is organized as follows. In Section 2 we recall the main re-
sults about the harmonic analysis associated with the modified Cherednik
operators. In Section 3 we introduce the generalized Sobolev spaces asso-
ciated with modified Cherednik operators and we study these properties.
Section 4 is devoted to study the generalized Cauchy problem of the modi-
fied Cherednik linear symmetric systems. In the last sections we give many
applications. More precisely, we prove the well-posedness of the general-
ized wave equations associated with the modified Cherednik operators.
Next, we prove the principle of finite speed of propagation of the linear
Cherednik symetric systems.

Throughout this paper by C we always represent a positive constant
not necessarily the same in each occurrence.

Acknowledgment. The author gratefully acknowledge the Deanship of
Scientific Research at the University of King Faisal on material and moral
support in the financing of this research project No. 130172. The author is
deeply indebted to the referees for providing constructive comments and
helps in improving the contents of this article.
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Symmetric systems and applications

2. Preliminaries

This section gives an introduction to the theory of modified Cherednik
operators, generalized Fourier transform, and generalized convolution op-
erator. Main references are [1, 4].

2.1. The eigenfunctions of the modified Cherednik operators
The basic ingredient in the theory of modified Cherednik operators is
finite reflection groups, acting on Rd with the standard Euclidean scalar
product 〈., .〉 and ‖x‖ =

√
〈x, x〉. On Cd, ‖.‖ denotes also the standard

Hermitian norm, while 〈z, w〉 =
∑d
j=1 zjwj .

Let (ej)j=1,...,d be the Euclidean bases of Rd, let e∨j = 2ej be the coroot
associated to ej and let

rej (x) = x− 〈e∨j , x〉ej (2.1)

be the reflection in the hyperplane Hej ⊂ Rd orthogonal to ej . The re-
flections rej , j = 1, . . . , d, generate a finite group W ⊂ O(d), called the
reflection group associated with (ej)j=1,...,d.

Moreover, let Ak denotes the weight function

∀ x ∈ Rd , Ak(x) = 2γ
d∏
j=1
| sinh(〈ej , x〉)|2kj cosh2lj (〈ej , x〉), (2.2)

with kj ≥ lj ≥ 0 and kj 6= 0, and γ :=
∑d
j=0(kj + lj).

In the following we denote by

• C(Rd) the space of continuous functions on Rd.

• C0(Rd) the space of continuous functions on Rd vanishing at in-
finity.

• Cp(Rd) the space of functions of class Cp on Rd.

• Cpb (Rd) the space of bounded functions of class Cp.

• E(Rd) the space of C∞-functions on Rd.

• S(Rd) the Schwartz space of rapidly decreasing functions on Rd.
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• D(Rd) the space of C∞-functions on Rd which are of compact
support.

• S ′(Rd) the space of temperate distributions on Rd.

The modified Cherednik operators Tj , j = 1, . . . , d, on Rd are given by

Tjf(x) := ∂

∂xj
f(x)+

[
kj coth(〈ej , x〉)+lj tanh(〈ej , x〉)

](
f(x)−f(rej (x))

)
.

(2.3)
Some properties of the Tj , j = 1, . . . , d, are given in the following: for

all f and g in C1(Rd) with at least one of them is W -invariant, we have

Tj(fg) = (Tjf)g + f(Tjg), j = 1, . . . , d. (2.4)

For f of class C1 on Rd with compact support and g of class C1 on Rd,
we have for j = 1, 2, . . . , d :∫

Rd
Tjf(x)g(x)Ak(x)dx = −

∫
Rd
f(x)Tjg(x)Ak(x)dx. (2.5)

The modified Cherednik operators form a commutative system of dif-
ferential-difference operators. The modified Heckman-Opdam Laplacian
4k is defined by

4kf(x) :=
d∑
j=1

T 2
j f(x) (2.6)

= 4f(x) +
d∑
j=1

[
2kj coth(〈ej , x〉) + 2lj tanh(〈ej , x〉)

]
〈∇f(x), ej〉

−
d∑
j=1

[ kj
(sinh(〈ej , x〉))2 −

lj
(cosh(〈ej , x〉))2

](
f(x)− f(rej (x))

)
,

where 4 and ∇ are respectively the Laplacian and the gradient on Rd.
The modified Heckman-Opdam Laplacian on W -invariant functions in

denoted by 4W
k and has the expression

4W
k f(x) = 4f(x) +

d∑
j=1

[
2kj coth(〈ej , x〉) + 2lj tanh(〈ej , x〉)

]
〈∇f(x), ej〉.
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Example 2.1. For d = 1, and k ≥ l ≥ 0 and k 6= 0, the modified Heckman-
Opdam Laplacian 4W

k is the Jacobi operator defined for even functions f
of class C2 on R by

4W
k f(x) = d2

dx2 f(x) +
[
2k coth(x) + 2l tanh(x)

] d
dx
f(x).

We denote by Gλ the eigenfunction of the operators Tj , j = 1, 2, . . . , d.
It is the unique analytic function on Rd which satisfies the differential-
difference system{

Tju(x) = λju(x), j = 1, 2, . . . , d, x ∈ Rd
u(0) = 1.

It is called the modified Opdam-Cherednik kernel.
We consider the function Fλ defined by

∀ x ∈ Rd , Fλ(x) = 1
|W |

∑
w∈W

Gλ(wx).

This function is the unique analytic W -invariant function on Rd, which
satisfies the differential equations{

p(T )u(x) = p(λ)u(x), x ∈ Rd, λ ∈ Rd
u(0) = 1,

for all W -invariant polynomial p on Rd and p(T ) = p(T1, . . . , Td). In par-
ticular for all λ ∈ Rd we have

4W
k Fλ(x) = ‖λ‖2Fλ(x).

The function Fλ is called the modified Heckman-Opdam kernel.
The functions Gλ and Fλ possess the following properties

i) For all x ∈ Rd, the functions Gλ and Fλ are entire on Cd.

ii) There exists a positive constant M0 such that

∀ x ∈ Rd , ∀ λ ∈ Rd, |Giλ(x)| ≤M0.

iii) Let p and q be polynomials of degree m and n. Then there exists
a positive constant M ′ such that for all λ ∈ Cd\{0} and for all
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x ∈ Rd, we have

|p( ∂
∂λ

)q( ∂
∂x

)Gλ(x)| ≤M ′
d∏
j=1

(1 + |xj |)n
(1 + |λj |+ γ)m

|λj |
emaxw∈W (Re〈wλ,x〉).

(2.7)

Example 2.2. When d = 1 and W = Z2, the modified Opdam-Cherednik
kernel Gλ(x) is given for all λ ∈ C and x ∈ R by

Gλ(x) =
{
ϕ

(k− 1
2 ,l−

1
2 )

µ (x) + 1
λ
d
dxϕ

(k− 1
2 ,l−

1
2 )

µ (x), if λ ∈ C\{0},
1, if λ = 0,

with λ2 = µ2 + (k + l)2 and ϕ(k− 1
2 ,l−

1
2 )

µ the Jacobi function given by

ϕ
(k− 1

2 ,l−
1
2 )

µ (x) = 2F1(k + l + iµ

2 ,
k + l − iµ

2 ; k + 1
2;−(sinh x)2), (2.8)

where 2F1 is the Gauss hypergeometric function.
In this case the modified Heckman-Opdam kernel Fλ(x) is given for all

λ ∈ C and x ∈ R by

Fλ(x) = ϕ
(k− 1

2 ,l−
1
2 )

λ (x).

2.2. The generalized Fourier transform

We denote by
S2(Rd) the space of C∞-functions on Rd such that for all `, n ∈ N, we

have

sup
|µ|≤n, x∈Rd

(1 + ‖x‖)`
d∏
j=1

(cosh(xj))2(kj+lj)|Dµf(x)| <∞,

where

Dµ = ∂|µ|

∂µ1x1 . . . ∂µdxd
, µ = (µ1, . . . , µd) ∈ Nd.

PW(Cd) the space of entire functions on Cd, which are rapidly decreas-
ing and of exponential type.
S ′2(Rd) the topological dual of S2(Rd).
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LpAk(Rd), 1 ≤ p ≤ ∞, the space of measurable functions f on Rd satis-
fying

‖f‖LpAk (Rd) =
(∫

Rd
|f(x)|pAk(x)dx

)1/p
<∞, if 1 ≤ p <∞

‖f‖L∞Ak (Rd) = ess sup
x∈Rd

|f(x)| <∞.

The generalized Fourier transform of a function f in D(Rd) is given by

Fk(f)(λ) =
∫

Rd
f(x)G−iλ(x)Ak(x)dx, for all λ ∈ Rd. (2.9)

Proposition 2.3. The transform Fk is a topological isomorphism from

(i) D(Rd) onto PW(Cd).

(ii) S2(Rd) onto S(Rd).

The inverse transform is given by

∀ x ∈ Rd, (Fk)−1(h)(x) =
∫
Rd
h(λ)Giλ(x)dνk(λ), (2.10)

where dνk(λ) := Ck(λ)dλ is the spectral measure (cf. [1, 4]).

Remark 2.4. The function Ck is a positive, continuous on Rd and satisfies
the estimate

∀ λ ∈ Rd, |Ck(λ)| ≤ const.(1 + ‖λ‖)b,
for some b > 0.

Proposition 2.5.

(i) Plancherel formula: For all f, g in D(Rd) (resp. S2(Rd)) we have∫
Rd
f(x)g(x)Ak(x)dx =

∫
Rd
Fk(f)(λ)Fk(g)(λ)dνk(λ). (2.11)

(ii) Plancherel theorem: The generalized Fourier transform Fk extends
uniquely to an isometric isomorphism of L2

Ak
(Rd) into L2

νk
(Rd),

where L2
νk

(Rd) denotes the space of measurable functions f on Rd

satisfying

‖f‖L2
νk

(Rd) =
( ∫

Rd
|f(x)|2 dνk(x)

)1/2
<∞.
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2.3. Generalized convolution operator
Definition 2.6. Let y be in Rd. The generalized translation operator
f 7→ τyf is defined on S2(Rd) by

Fk(τyf)(x) = G−iy(x)Fk(f)(x), for all x ∈ Rd. (2.12)
Using the generalized translation operator, we define the generalized

convolution product of functions as follows.
Definition 2.7. The generalized convolution product of f and g in S2(Rd)
is the function f ∗k g defined by

f ∗k g(x) =
∫

Rd
τxf(−y)g(y)Ak(y)dy, for all x ∈ Rd. (2.13)

For the remainder of this subsection we collect some results proved in
[1].
Proposition 2.8. Let f be in L1

Ak
(Rd) and g in L2

Ak
(Rd). Then

i) The function f ∗k g defined almost everywhere on Rd by

f ∗k g(y) =
∫
Rd
τyg(−x)f(x)Ak(x)dx,

belongs to L2
Ak

(Rd) and we have
‖f ∗k g‖L2

Ak
(Rd) ≤ C‖f‖L1

Ak
(Rd)‖g‖L2

Ak
(Rd).

ii) We have
Fk(f ∗k g) = Fk(f).Fk(g).

Proposition 2.9. Let ϕ be a positive function in D(Rd) such that supp
ϕ ⊂ B(0, 1) and ‖ϕ‖L1

Ak
(Rd) = 1. For ε > 0, we consider the function ϕε

given by

∀ x ∈ Rd, ϕε(x) =
Ak(xε )
εdAk(x) ϕ(x

ε
).

Then for all f in L2
Ak

(Rd) we have
lim
ε→0
‖f ∗k ϕε − f‖L2

Ak
(Rd) = 0. (2.14)

Definition 2.10. The generalized Fourier transform of a distribution τ
in S ′2(Rd) is defined by

〈Fk(τ), φ〉 = 〈τ,F−1
k (φ)〉, for all φ ∈ S(Rd). (2.15)
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Proposition 2.11. The generalized Fourier transform Fk is a topological
isomorphism from S ′2(Rd) onto S ′(Rd).

3. The generalized Sobolev spaces

Let τ be in S ′2(Rd). We define the distributions Tjτ , j = 1, . . . , d, by
〈Tjτ, ψ〉 = −〈τ, Tjψ〉, for all ψ ∈ S2(Rd). (3.1)

Thus we deduce
〈4kτ, ψ〉 = 〈τ,4kψ〉, for all ψ ∈ S2(Rd). (3.2)

These distributions satisfies the following properties
FD(Tjτ) = iyjFD(τ), j = 1, . . . , d. (3.3)
FD(4kτ) = −‖y‖2FD(τ). (3.4)

Definition 3.1. We define the generalized Sobolev space Hs
k(Rd) as{

u ∈ S ′2(Rd) :
∫

Rd
(1 + ‖λ‖2)s|Fk(u)(λ)|2dνk(λ) <∞

}
.

We provide this space with the scalar product

〈u, v〉Hs
k

(Rd) :=
∫

Rd
(1 + ‖ξ‖2)sFk(u)(ξ)Fk(v)(ξ)dνk(ξ), (3.5)

and the norm
‖u‖2Hs

k
(Rd) := 〈u, u〉Hs

k
(Rd). (3.6)

Proposition 3.2.

(i) The space Hs
k(Rd) provided with the scalar product 〈., .〉Hs

k
(Rd) is

a Hilbert space.

(ii) Let s1, s2 in R such that s1 ≥ s2 then
Hs1
k (Rd) ↪→ Hs2

k (Rd).

(iii) Let s ∈ R. Then D(Rd) is dense in Hs
k(Rd).

(iv) The dual of Hs
k(Rd) can be identified with H−sk (Rd). The relation

of the identification is given by

〈u, v〉k =
∫

Rd
Fk(u)(ξ)Fk(v)(ξ)dνk(ξ),
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with u ∈ Hs
k(Rd) and v ∈ H−sk (Rd).

Proof. (i) It is clear that L2(Rd, (1 + ‖ξ‖2)2sdνk(ξ)) is complete and since
Fk is an isomorphism from S ′2(Rd) onto S ′(Rd), Hs

k(Rd) is then a Hilbert
space. The result (ii) is immediately from definition of the generalized
Sobolev space. As in [17], we can obtain (iii) and (iv). �

Proposition 3.3. Let s1, s, s2 be three real numbers : s1 < s < s2. Then,
for all ε > 0, there exists a nonnegative constant Cε such that for all u in
Hs
k(Rd)

‖u‖Hs
k

(Rd) ≤ Cε‖u‖Hs1
k

(Rd) + ε‖u‖Hs2
k

(Rd). (3.7)

Proof. We consider s = (1 − t)s1 + ts2, (with t ∈ (0, 1)). Moreover it is
easy to see

‖u‖Hs
k

(Rd) ≤ ‖u‖1−tH
s1
k

(Rd)‖u‖
t
H
s2
k

(Rd). (3.8)

Thus
‖u‖Hs

k
(Rd) ≤ (ε−

t
1−t ‖u‖Hs1

k
(Rd))1−t(ε‖u‖Hs2

k
(Rd))t

≤ ε−
t

1−t ‖u‖Hs1
k

(Rd) + ε‖u‖Hs2
k

(Rd).

Hence the proof is completed for Cε = ε−
t

1−t . �

A characterization of Hs
k(Rd), for s = m, a positive integer, is given

below.

Proposition 3.4.

(i) For m ∈ N the space Hm
k (Rd) coincides with the space Em given

by

Em =
{
u ∈ L2

Ak
(Rd) : Tαu ∈ L2

Ak
(Rd), |α| ≤ m

}
, (3.9)

where Tα = Tα1
1 ⊗ · · · ⊗ Tαdd , α = (α1, . . . , αd) ∈ Nd and |α| =

α1 + · · ·+ αd.

(ii) The norm ‖.‖m,k is equivalent to the norm

‖u‖2m,k =
∑
|ν|≤m

‖T νu‖2L2
Ak

(Rd). (3.10)

For prove this proposition we need the following lemma.

224



Symmetric systems and applications

Lemma 3.5. Let m ∈ N\{0}. For all α ∈ Nd with 0 < |α| ≤ m, there
exists C > 0 such that

∀ξ ∈ Rd,
d∏
j=1
|ξj |2αj ≤ (1 + ‖ξ‖2)m ≤ C(1 +

∑
0<|α|≤m

d∏
j=1
|ξj |2αj ). (3.11)

Proof of Proposition 3.4. Let u be in Hm
k (Rd), hence u ∈ L2

Ak
(Rd). Using

Lemma 3.5 we deduce that for all α ∈ Nd with |α| ≤ m, there exists a
positive constant C such that

∑
0<|α|≤m

∫
Rd

(
d∏
j=1
|ξj |2αj )|Fk(u)(ξ)|2dνk(ξ)

≤ C
∫

Rd
(1 + ‖ξ‖2)m|Fk(u)(ξ)|2dνk(ξ). (3.12)

But from (3.3) we have for all ξ ∈ Rd:
Fk(Tαu)(ξ) = i|α|ξα1

1 . . . ξαdd Fk(u)(ξ).
Thus from (3.12) we deduce that∑

0<|α|≤m

∫
Rd
|Tαu(x)|2Ak(x) ≤ C‖u‖2Hm

k
(Rd).

Then u belongs to Em, and
‖u‖2m,k ≤ C‖u‖2Hm

k
(Rd).

Reciprocally let u be in Em. From Lemma 3.5 we deduce that for all
α ∈ Nd with |α| ≤ m, there exists a positive constant C ′ such that∫

Rd
(1 + ‖ξ‖2)m|Fk(u)(ξ)|2dνk(ξ)

≤ C ′
[
‖u‖22,k +

∑
0<|α|≤m

∫
Rd
|Tαu(x)|2Ak(x)

]
.

Thus u belongs to Hm
k (Rd) and
‖u‖2Hm

k
(Rd) ≤ C

′‖u‖2m,k.

�
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Proposition 3.6.

(i) For s ∈ R and µ ∈ Nd, the Dunkl operator Tµ is continuous from
Hs
k(Rd) into Hs−|µ|

k (Rd).

(ii) Let p ∈ N. An element u is in Hs
k(Rd) if and only if for all µ ∈ Nd,

with |µ| ≤ p, Tµu belongs to Hs−p
k (Rd), and we have

‖u‖Hs
k

(Rd) ∼
∑
|µ|≤p

‖Tµu‖Hs−p
k

(Rd).

Proof. (i) Let u be in Hs
k(Rd). From (3.3) we have∫

Rd
(1 + ‖ξ‖2)s−|µ||Fk(Tµu)(ξ)|2dνk(ξ)

=
∫

Rd
(1 + ‖ξ‖2)s−|µ|‖ξµ‖2|Fk(u)(ξ)|2dνk(ξ).

Thus∫
Rd

(1 + ‖ξ‖2)s−|µ||Fk(Tµu)(ξ)|2dνk(ξ)

≤
∫

Rd
(1 + ‖ξ‖2)s|Fk(u)(ξ)|2dνk(ξ) < +∞.

Then Tµu belongs to Hs−|µ|
k (Rd), and

‖Tµu‖
H
s−|µ|
k

(Rd) ≤ ‖u‖Hs
k

(Rd).

(ii) We consider p ∈ N and u ∈ Hs
k(Rd). From (i) and Proposi-

tion 3.2 (ii) for all µ ∈ Nd, with |µ| ≤ p, we have

Tµu ∈ Hs−|µ|
k (Rd) ⊂ Hs−p

k (Rd).

Then there exists a positive constant C such that

‖Tµu‖Hs−p
k

(Rd) ≤ C‖u‖Hs
k

(Rd).

This implies that ∑
|µ|≤p

‖Tµu‖Hs−p
k

(Rd) ≤ C
′‖u‖Hs

k
(Rd),

where C ′ is a positive constant.
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Reciprocally let p ∈ N as for all µ ∈ Nd with |µ| ≤ p, Tµu belongs to
Hs−p
k (Rd), then

‖u‖2Hs
k

(Rd) =
∫

Rd
(1 + ‖ξ‖2)s|Fk(u)(ξ)|2dνk(ξ)

=
∫

Rd
(1 + ‖ξ‖2)s−p(1 + ‖ξ‖2)p|Fk(u)(ξ)|2dνk(ξ).

But from Lemma 3.5, there exists a positive constant C such that

(1 + ‖ξ‖2)p ≤ C
∑
|µ|≤p

‖ξµ‖2.

Hence from (3.3) we deduce that

‖u‖2Hs
k

(Rd) ≤ C
∑
|µ|≤p

‖Tµu‖2
Hs−p
k

(Rd).

This implies that u is in Hs
k(Rd). �

Proposition 3.7. Let p ∈ N and s ∈ R such that s > b+d+p
2 , then

Hs
k(Rd) ↪→ Cp(Rd),

with b the positive constant given in Remark 2.4.

Proof. Let u be in Hs
k(Rd) with s ∈ R such that s > b+d

2 .
We have∫

Rd
|Fk(u)(λ)|dνk(λ) =

∫
Rd

(1 + ‖λ‖2)−
s
2 (1 + ‖λ‖2)

s
2 |Fk(u)(λ)|dνk(λ).

Using Hölder inequality we obtain∫
Rd
|Fk(u)(λ)|dνk(λ) ≤

( ∫
Rd

(1 + ‖λ‖2)−sdνk(λ)
) 1

2 ‖u‖Hs
k

(Rd).

Thus from Remark 2.4, we deduce that there exists a positive constant C
such that

‖Fk(u)‖L1
νk

(Rd) ≤ C‖u‖Hs
k

(Rd). (3.13)
Then

Fk(u) ∈ L1
νk

(Rd).
Thus from (2.10) we have

u(x) =
∫

Rd
Fk(u)(λ)Giλ(x)dνk(λ), a.e. x ∈ Rd.
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We identify u with the second member, then we deduce that u belongs to
C(Rd) and using (3.13) we show that the injection of Hs

k(Rd) into C(Rd)
is continuous.

Now let u be in Hs
k(Rd) with s ∈ R such that s > b+d+p

2 with p belongs
to N\{0}. From (2.7), for all x, λ ∈ Rd, and ν ∈ Nd such that |ν| ≤ p, we
have

|Dν
xGiλ(x)| ≤ C‖λ‖p.

Using the same method as for p = 0, and the derivation theorem under
the integral sign we deduce that

∀x ∈ Rd, Dνu(x) =
∫

Rd
Fk(u)(λ)Dν

xGiλ(x)dνk(λ).

Thus Dnu belongs to C(Rd), for all n ∈ N such that |ν| ≤ p. Then we
show that u is in Cp(Rd) and the injection of Hs

k(Rd) into Cp(Rd) is
continuous. �

4. Cherednik linear symmetric systems

Notation 4.1. For any interval I of R we define the mixed space-time
spaces C(I,Hs

k(Rd)), for s ∈ R, as the spaces of functions from I into
Hs
k(Rd) such that the map

t 7→ ‖u(t, .)‖Hs
k

(Rd)

is continuous.

In this section, I designates the interval [0, T ), T > 0 and

u = (u1, . . . , um), up ∈ C(I,Hs
k(Rd)),

a vector with m components elements of C(I,Hs
k(Rd)). Let (Ap)0≤p≤d a

family of functions from I×Rd into the space of m×m matrices with real
coefficients ap,i,j(t, x) which are W -invariant with respect to x and whose
all derivatives in x ∈ Rd are bounded and continuous functions of (t, x).

For a given f ∈ [C(I,Hs
k(Rd))]m and v ∈ [Hs

k(Rd)]m, we find u in
[C(I,Hs

k(Rd))]m satisfying the following system (S)
∂tu(t, x)−

d∑
j=1

(AjTju)(t, x)− (A0u)(t, x) = f(t, x), (t, x) ∈ I ×Rd

u|t=0 = v.
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We shall first define the notion of symmetric systems.

Definition 4.2. The system (S) is symmetric, if and only if, for any
p ∈ {1, . . . , d} and any (t, x) ∈ I×Rd the matrices Ap(t, x) are symmetric
i.e. ap,i,j(t, x) = ap,j,i(t, x).

In this section, we shall assume s ∈ N and denote by ‖u(t)‖s,k the norm
defined by

‖u(t)‖2s,k =
∑

1≤p≤m
0≤|µ|≤s

‖Tµx up(t)‖2L2
Ak

(Rd).

The aim of this section is to prove the following theorem.

Theorem 4.3. Let (S) be a symmetric system. Assume that f is con-
tained in [C(I,Hs

k(Rd))]m and v in [Hs
k(Rd)]m, then there exists a unique

solution u of (S) in

[C(I,Hs
k(Rd))]m

⋂
[C1(I,Hs−1

k (Rd))]m.

The proof of this theorem will be made in several steps:

A: We prove a priori estimates for the regular solutions of the sys-
tem (S).

B: We apply the Friedrichs method.

C: We pass to the limit for regular solutions and we obtain the ex-
istence in all cases by the regularization of the Cauchy data.

D: We prove the uniqueness using the existence result of the adjoint
system.

A: Energy estimates. The symmetric hypothesis is crucial for the en-
ergy estimates which are only valid for regular solutions. More precisely
we have

Lemma 4.4. (Energy Estimate in [Hs
k(Rd)]m). For any positive integer

s, there exists a positive constant λs such that, for any function u in
[C1(I,Hs

k(Rd))]m
⋂

[C(I,Hs+1
k (Rd))]m, we have

‖u(t)‖s,k ≤ eλst‖u(0)‖s,k +
∫ t

0
eλs(t−t

′)‖f(t′)‖s,kdt′, (4.1)
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for all t ∈ I,with

f = ∂tu−
d∑
p=1

ApTpu−A0u.

To prove Lemma 4.4, we need the following Lemma.

Lemma 4.5. Let g a C1-function on [0, T ), a and b two positive contin-
uous functions. We assume

d

dt
g2(t) ≤ 2a(t)g2(t) + 2b(t)|g(t)|. (4.2)

Then, for t ∈ [0, T ), we have

|g(t)| ≤ |g(0)| exp
∫ t

0
a(s)ds+

∫ t

0
b(s) exp

( ∫ t

s
a(τ)dτ

)
ds.

Proof. To prove this lemma, let us set for ε > 0, gε(t) =
(
g2(t) + ε

) 1
2 ; the

function gε is C1, and we have |g(t)| ≤ gε(t). Thanks to the inequality
(4.2), we have

d

dt
(g2)(t) ≤ 2a(t)g2

ε(t) + 2b(t)gε(t).

As d
dt(g

2)(t) = d
dt(g

2
ε)(t). Then

d

dt
(g2
ε)(t) = 2gε(t)

dgε
dt

(t) ≤ 2a(t)g2
ε(t) + 2b(t)gε(t).

Since for all t ∈ [0, T ) gε(t) > 0, we deduce then
dgε
dt

(t) ≤ a(t)gε(t) + b(t).

Thus
d

dt

(
gε(t) exp

(
−
∫ t

0
a(s)ds

))
≤ b(t) exp

(
−
∫ t

0
a(s)ds

)
.

So, for t ∈ [0, T ),

gε(t) ≤ gε(0) exp
∫ t

0
a(s)ds+

∫ t

0
b(s) exp

( ∫ t

s
a(τ)dτ

)
ds.

Thus, we obtain the conclusion of the lemma by tending ε to zero. �
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Proof. of Lemma 4.4. We prove this estimate by induction on s. We firstly
assume that u belongs to [C1(I, L2

Ak
(Rd))]m

⋂
[C(I,H1

k(Rd))]m. We then
have f ∈ [C(I, L2

Ak
(Rd))]m, and the function t 7→ ‖u(t)‖20,k is C1 on the

interval I. By definition of f we have

d

dt
‖u(t)‖20,k = 2〈∂tu, u〉L2

Ak
(Rd)

= 2〈f, u〉L2
Ak

(Rd) + 2〈A0u, u〉L2
Ak

(Rd) + 2
d∑
p=1
〈ApTpu, u〉L2

Ak
(Rd).

We will estimate the third term of the sum above by using the symmetric
hypothesis of the matrix Ap. In fact from (2.4) and (2.5) we have

〈ApTpu, u〉L2
Ak

(Rd) =
∑

1≤i,j≤m

∫
Rd
ap,i,j(t, x)[(Tp)x uj(t, x)]ui(t, x)Ak(x)dx

= −
∑

1≤i,j≤m

∫
Rd
ap,i,j(t, x)[(Tp)x ui(t, x)]uj(t, x)Ak(x)dx

−
∑

1≤i,j≤m

∫
Rd

[(Tp)x ap,i,j(t, x)]uj(t, x)ui(t, x)Ak(x)dx.

The matrix Ap being symmetric, we have

−
∑

1≤i,j≤m

∫
Rd
ap,i,j(t, x)Tpui(t, x)uj(t, x)Ak(x)dx = −〈ApTpu, u〉L2

Ak
(Rd).

Thus

〈ApTpu, u〉L2
Ak

(Rd) =

− 1
2

∑
1≤i,j≤m

∫
Rd

(Tp ap,i,j(t, x))ui(t, x)uj(t, x)Ak(x)dx.

Since the coefficients of the matrix Ap, as well as their derivatives are
bounded on I ×Rd, there exists a positive constant λ0 such that

d

dt
‖u(t)‖20,k ≤ 2‖f(t)‖0,k‖u(t)‖0,k + 2λ0‖u(t)‖20,k. (4.3)

To complete the proof of Lemma 4.4 in the case s = 0 it suffices to apply
Lemma 4.5. We assume now that Lemma 4.4 is proved for s.
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Let u the function of [C1(I,Hs+1
k (Rd))]m ∩ [C(I,Hs+2

k (Rd))]m, we now
introduce the function (with m(d+ 1) components) U defined by

U = (u, T1u, . . . , Tdu).

Since

∂tu = f +
d∑
p=1

ApTpu+A0u,

for any j ∈ {1, . . . , d}, applying the operator Tj on the last equation and
using (2.4), we obtain

∂t(Tju) =
d∑
p=1

ApTp(Tju) +
d∑
p=1

(TjAp)Tpu+ Tj(A0u) + Tjf.

We can then write

∂tU =
d∑
p=1

BpTpU +B0U + F,

with
F = (f, T1f, . . . , Tdf),

and

Bp =


Ap 0 . . 0
0 Ap 0 . .
. 0 . . .
. . . . 0
0 . . 0 Ap

 , p = 1, . . . , d,

and the coefficients of B0 can be calculated from the coefficients of Ap
and from TjAp with (p = 0, . . . , d) and (j = 1, . . . , d). Using the induction
hypothesis we then deduce the result, and the proof of Lemma 4.4 is
finished. �

B: Estimate about the approximated solution. We notice that
the necessary hypothesis to the proof of the inequalities of Lemma 4.4
require exactly one more derivative than the regularity which appears
in the statement of the theorem that we have to prove. We then have
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to regularize the system (S) by adapting the Friedrichs method. More
precisely we consider the system (Sn) defined by

(Sn)


∂tun −

d∑
p=1

Jn(ApTp(Jnun))− Jn(A0Jnun) = Jnf

un |t=0 = Jnu0,

with Jn is the cut off operator given by

Jnw := (Jnw1, . . . , Jnwm) and Jnwj := F−1
k (1B(0,n)(ξ)Fk(wj)), (4.4)

for j = 1, . . . ,m.
Now we state the following proposition (cf. [2] p. 389) which we need

in the sequel of this step.

Proposition 4.6. Let E be a Banach space, I an open interval of R,
f ∈ C(I, E), u0 ∈ E and M be a continuous map from I into L(E),
the set of linear continuous applications from E into itself. There exists a
unique solution u ∈ C1(I, E) satisfying{

du
dt = M(t)u+ f
u |t=0 = u0.

By taking E = [L2
Ak

(Rd)]m, and using the continuity of the operators
TpJn on [L2

Ak
(Rd)]m, the system (Sn) appears as an evolution equation{

dun
dt = Mn(t)un + Jnf
un |t=0 = Jnu0

on [L2
Ak

(Rd)]m, where

t 7→Mn(t) :=
d∑
p=1

JnAp(t, .)TpJn + JnA0(t, .)Jn,

is a continuous application from I into L([L2
Ak

(Rd)]m). Then from Propo-
sition 4.6 there exists a unique function un continuous on I with val-
ues in [L2

Ak
(Rd)]m. Moreover, as the matrices Ap are C∞ functions of t,

Jnf ∈ [C(I, L2
Ak

(Rd))]m and un verify
dun
dt = Mn(t)un + Jnf.
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Then dun
dt ∈ [C(I, L2

Ak
(Rd))]m which implies that un ∈ [C1(I, L2

Ak
(Rd))]m.

Moreover, as J2
n = Jn, it is obvious that Jnun is also a solution of (Sn).

We apply Proposition 4.6 we deduce that Jnun = un. The function un is
then belongs to [C1(I,Hs

k(Rd))]m for any integer s and so (Sn) can be
written as

(Sn)


∂tun −

d∑
p=1

Jn(ApTpun)− Jn(A0un) = Jnf

un |t=0 = Jnu0.

Now, let us estimate the evolution of ‖un(t)‖s,k.

Lemma 4.7. For any positive integer s, there exists a positive constant
λs such that for any integer n and any t in the interval I, we have

‖un(t)‖s,k ≤ eλst‖Jnu(0)‖s,k +
∫ t

0
eλs(t−t

′)‖Jnf(t′)‖s,kdt′.

Proof. The proof uses the same ideas as in Lemma 4.4. �

C: Construction of solution. This step consists on the proof of the
following existence and uniqueness result:

Proposition 4.8. For s ≥ 0, we consider the symmetric system

(S)


∂tu−

d∑
p=1

ApTpu−A0u = f

u |t=0 = v,

with f in [C(I,Hs+3
k (Rd))]m and v in [Hs+3

k (Rd)]m. There exists a unique
solution u belonging to the space [C1(I,Hs

k(Rd))]m ∩ [C(I,Hs+1
k (Rd))]m

and satisfying the energy estimate :

‖u(t)‖σ,k ≤ eλst‖v‖σ,k +
∫ t

0
eλs(t−τ)‖f(τ)‖σ,kdτ, (4.5)

for all σ ≤ s+ 3 and t ∈ I.

Proof. Us consider the sequence (un)n defined by the Friedrichs method
and let us prove that this sequence is a Cauchy one in [L∞(I,Hs+1

k (Rd))]m.
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We put Vn,p = un+p − un, we have
∂tVn,p −

d∑
j=1

Jn+p(AjTjVn,p)− Jn+p(A0Vn,p) = fn,p

Vn,p |t=0 = (Jn+p − Jn)v,

with

fn,p = −
d∑
j=1

(Jn+p − Jn)(AjTjVn,p)

− (Jn+p − Jn)(A0Vn,p) + (Jn+p − Jn)f.

From Lemma 4.7 it follows that the sequence (un)n∈N is bounded in
[L∞(I,Hs+3

k (Rd))]m. Moreover, by a simple calculation we find

‖(Jn+p − Jn)(AjTjVn,p)‖s+1,k ≤
C

n
‖AjTjVn,p‖s+2,k ≤

C

n
‖un(t)‖s+3,k.

Similarly, we have

‖(Jn+p−Jn)(A0Vn,p)+(Jn+p−Jn)f‖s+1,k ≤
C

n

(
‖un(t)‖s+3,k+‖f(t)‖s+3,k

)
.

By Lemma 4.7 we deduce that

‖Vn,p(t)‖s+1,k ≤
C

n
eλst.

Then (un)n is a Cauchy sequence in [L∞(I,Hs+1
k (Rd))]m. We then have

the existence of a solution u of (S) in [C(I,Hs+1
k (Rd))]m. Moreover by the

equation stated in (S) we deduce that ∂tu is in [C(I,Hs
k(Rd))]m, and so u

is in [C1(I,Hs
k(Rd))]m. The uniqueness follows immediately from Lemma

4.7.
Finally we will prove the inequality (4.5). From Lemma 4.7 we have

‖un(t)‖s+3,k ≤ eλst‖Jnu(0)‖s+3,k +
∫ t

0
eλs(t−τ)‖Jnf(τ)‖s+3,kdτ.

Thus

lim sup
n→∞

‖un(t)‖s+3,k ≤ eλst‖v‖s+3,k +
∫ t

0
eλs(t−τ)‖f(τ)‖s+3,kdτ.
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Since for any t ∈ I, the sequence (un(t))n∈N tends to u(t) in [Hs+1
k (Rd)]m,

(un(t))n∈N converge weakly to u(t) in [Hs+3
k (Rd)]m, and then

u(t) ∈ [Hs+3
k (Rd)]m and ‖u(t)‖s+3,k ≤ lim

n→∞
sup ‖un(t)‖s+3,k.

Now, combining the uniform bounds for(un)n in [L∞(I;Hs+3
k (Rd))]m with

the above result on convergence in [L∞(I;Hs+1
k (Rd))]m and using the

interpolation inequality (3.8), we obtain that for any s′ < s, the se-
quence (un)n converges in [C(I;Hs′+3

k (Rd))]m. Thus, u belongs to the set
[C(I;Hs′+3

k (Rd))]m. Using the fact that u is a solution of (S), we get that
u belongs to [C(I;Hs′+3

k (Rd))]m
⋂

[C1(I;Hs′+2
k (Rd))]m. Thus, by passing

to the limit in Lemma 4.7 we obtain the inequality (4.5). The Proposition
4.8 is thus proved. �

Now we will prove the existence part of Theorem 4.3.

Proposition 4.9. Let s be an integer. If v is in [Hs
k(Rd)]m and f is in

[C(I,Hs
k(Rd))]m, then there exists a solution of a symmetric system (S)

in the space [C(I,Hs
k(Rd))]m ∩ [C1(I,Hs−1

k (Rd))].

Proof. We consider the sequence (ũn)n∈N of solutions of
∂tũn −

d∑
j=1

(AjTj ũn)− (A0ũn) = Jnf

ũn |t=0 = Jnv.

From Proposition 4.8 (ũn)n is in [C1(I,Hs
k(Rd))]m. We will prove that

(ũn)n is a Cauchy sequence in [L∞(I,Hs
k(Rd))]m. We put Ṽn,p = ũn+p−ũn.

By difference, we find
∂tṼn,p −

d∑
j=1

AjTj Ṽn,p −A0Ṽn,p = (Jn+p − Jn)f

˜Vn,p |t=0 = (Jn+p − Jn)v.

By Lemma 4.7 we deduce that

‖Ṽn,p‖s,k ≤ eλst‖(Jn+p − Jn)v‖s,k +
∫ t

0
eλs(t−τ)‖(Jn+p − Jn)f(τ)‖s,kdτ.

Since f is in [C(I,Hs
k(Rd))]m, the sequence (Jnf)n converges to f in

[L∞([0, T ], Hs
k(Rd))]m, and since v is in [Hs

k(Rd)]m, the sequence (Jnv)n
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converge to v in [Hs
k(Rd)]m and so (ũn)n is a Cauchy sequence in

[L∞(I,Hs
k(Rd))]m.

Hence it converges to a function u of [C(I,Hs
k(Rd))]m, solution of the

system (S). Thus ∂tu is in [C(I,Hs−1
k (Rd))]m and the proposition is

proved. �

The existence in Theorem 4.3 is then proved as well as the uniqueness,
when s ≥ 1.

D: Uniqueness of solutions. In the following we give the result of
uniqueness for s = 0 and hence Theorem 4.3 is proved.

Proposition 4.10. Let u be a solution in [C(I, L2
Ak

(Rd))]m of the sym-
metric system

(S)


∂tu−

d∑
j=1

AjTju−A0u = 0

u |t=0 = 0.

Then u ≡ 0.

Proof. Let ψ a function in [D((0, T ), D(Rd))]m; we consider the following
system

(tS)


−∂tϕ+

d∑
j=1

Tj(Ajϕ)− tA0ϕ = ψ

ϕ |t=T = 0.
Since

Tj(Ajϕ) = AjTjϕ+ (TjAj)ϕ,
the system (tS) can be written

(tS)


−∂tϕ+

d∑
j=1

AjTjϕ− Ã0ϕ = ψ

ϕ |t=T = 0,

with

Ã0 = tA0 −
d∑
j=1

TjAj .
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Due to Proposition 4.8, for any integer s there exists a solution ϕ of (tS)
in [C1([0, T ], Hs

k(R))]m. We then have

〈u, ψ〉k = 〈u,−∂tϕ+
d∑
j=1

AjTjϕ− Ã0ϕ〉k

= −
∫
I
〈u(t, .), ∂tϕ(t, .)〉kdt+

d∑
j=1

∫
I×Rd

u(t, x)Tj(Ajϕ)(t, x)Ak(x)dtdx

−
∫
I×Rd

u(t, x) tA0ϕ(t, x)Ak(x)dtdx,

with 〈., .〉k defined by

〈u, χ〉k =
∫
I
〈u(t, .), χ(t, .)〉kdt

=
∫
I×Rd

u(t, x)χ(t, x)Ak(x)dxdt, χ ∈ [S(R,S2(Rd))]m.

By using that u(t, .) is in [L2
Ak

(Rd)]m for any t in I and the fact that Aj
is symmetric we obtain∫

I×Rd
u(t, x)Tj(Ajϕ)(t, x)Ak(x)dtdx = −

∫
I
〈AjTju(t, .), ϕ(t, .)〉kdt.

So

〈u, ψ〉k = −
∫
I
〈u(t, .), ∂tϕ(t, .)〉kdt−

d∑
j=1
〈AjTju+A0u, ϕ〉k.

As u is not very regular, we have to justify the integration by parts in
time on the quantity

∫
I
〈u(t, .), ∂tϕ(t, .)〉kdt. Since Jnu(., x), Jnϕ(., x) are

C1 functions on I, then by integration by parts, we obtain, for any x ∈ Rd,∫
I
Jnu(t, x)∂t(Jnϕ)(t, x)dt = −Jnu(T, x)Jnϕ(T, x)

+ Jnu(0, x)Jnϕ(0, x) +
∫
I
∂tJnu(t, x)Jnϕ(t, x)dt.

Since u(0, .) = ϕ(T, .) = 0, we have

−
∫
I
Jnu(t, x)∂tϕ(t, x)dt =

∫
I
∂t(Jnu)(t, x)Jnϕ(t, x)dt.
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Integrating with respect to Ak(x)dx we obtain

−
∫
I×Rd

Jnu(t, x)∂tJnϕ(t, x)Ak(x)dtdx =
∫
I
〈∂t(Jnu)(t, .), Jnϕ(t, .)〉kdt.

(4.6)
Since u is in [C(I, L2

Ak
(Rd))]m ∩ [C1(I,H−1

k (Rd))]m, we have

lim
n→∞

Jnu = u in [L∞(I, L2
Ak

(Rd))]m

and

lim
n→∞

Jn∂tu = ∂tu in [L∞(I,H−1
k (Rd))]m.

Similarly, we see that

lim
n→∞

Jnϕ = ϕ in [L∞(I,H1
Ak

(Rd))]m

and

lim
n→∞

Jn∂tϕ = ∂tϕ in [L∞(I, L2
k(Rd))]m.

By passing to the limit in (4.6) we obtain

−
∫
I
〈u(t, .), ∂tϕ(t, .)〉kdt =

∫
I
〈∂tu(t, .), ϕ(t, .)〉kdt.

Hence

〈u, ψ〉k =
∫
I
〈∂tu(t, .)−

d∑
j=1
〈AjTju(t, .)−A0u(t, .), ϕ(t, .)〉kdt.

However since u is a solution of (S) with f ≡ 0, then u ≡ 0. This ends the
proof. �

5. Applications

5.1. The Cherednik-wave equations with variable coefficients

For t ∈ R and x ∈ Rd, let P (t, x, ∂t, Tx) a differential-difference operator
of degree 2 defined by:

P (u) = ∂2
t u− divk[A.∇k,xu] +Q(t, x, ∂tu, Txu), (5.1)
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where

∇k,xu := (T1 u, . . . , Td u) , divk (v1, . . . , vd) :=
d∑
i=1

Tivi,

A is a real symmetric matrix such that there exists m > 0 satisfying

〈A(t, x)ξ, ξ〉 ≥ m‖ξ‖2, for all (t, x) ∈ R ×Rd, and ξ ∈ Rd (5.2)

and Q(t, x, ∂tu, Txu) is differential-difference operator of degree 1, and
we assume also that the matrix A is W -invariant with respect to x; the
coefficients of A and Q are C∞ and all derivatives are bounded. If we
put B =

√
A it is easy to see that the coefficients of B are C∞ and all

derivatives are bounded.
We introduce the vector U with d+ 2 components

U = (u, ∂tu,B∇k,xu) . (5.3)

Then, the equation P (u) = f can be written as

∂tU =

 d∑
p=1

ApTp

U +A0U + (0, f, 0) , (5.4)

with

Ap =



0 . . . . . 0
. 0 bp 1 . . . bp d
. b1 p 0 . . . 0
. . . . . . .
. . . . . . .
0 bd p 0 . . . 0


and B = (bij). Thus the system (5.4) is symmetric and from Theorem 4.3
we deduce the following.

Theorem 5.1. For all s ∈ N and u0 ∈ Hs+1
k (Rd), u1 ∈ Hs

k(Rd) and f
belongs to C(R, Hs

k(Rd)), there exists a unique solution

u ∈ C1(R, Hs
k(Rd)) ∩ C(R, Hs+1

k (Rd))

such that 
∂2
t u− divk[A.∇k,xu] +Q(t, x, ∂tu, Txu) = f
u |t=0 = u0
∂tu |t=0 = u1.
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5.2. Finite speed of propagation
Theorem 5.2. Let (S) be a symmetric system. There exists a positive
constant C0 such that, for any positive real R, any function

f ∈ [C(I,H1
k(Rd))]m and any v ∈ [H1

k(Rd)]m

satisfying

f(t, x) ≡ 0 for ‖x‖ < R− C0t (5.5)
v(x) ≡ 0 for ‖x‖ < R, (5.6)

the unique solution u of system (S) belongs to [C(I,H1
k(Rd))]m with

u(t, x) ≡ 0 for ‖x‖ < R− C0t.

Proof. For τ ≥ 1, we put

uτ (t, x) = exp
(
τ(−t+ ψ(x))

)
u(t, x),

where the function ψ ∈ E(Rd) will be chosen later.
By a simple calculation we see that

∂tuτ −
d∑
j=1

AjTjuτ −Bτuτ = fτ ,

with

fτ (t, x) = exp
(
τ
[
− t+ψ(x)

])
f(t, x), Bτ = A0 + τ(−Id−

d∑
j=1

(Tjψ)Aj).

There exists a positive constant K such that if ‖Tj ψ‖L∞
k

(Rd) ≤ K for any
j = 1, . . . , d, we have for any (t, x)

〈Re(Bτy), ȳ〉 ≤ 〈Re(A0y), ȳ〉 for all τ ≥ 1 and y ∈ Cm.

We proceed as in the proof of energy estimate (4.1), we obtain the existence
of positive constant δ0, independent of τ , such that for any t in I, we have

‖uτ (t)‖0,k ≤ eδ0t‖uτ (0)‖0,k +
∫ t

0
eδ0(t−t′)‖fτ (t′)‖0,kdt′. (5.7)

We put C0 = 1
K and choose ψ = ψ(‖x‖) such that ψ is C∞ and such that

−2ε+K(R− ‖x‖) ≤ ψ(x) ≤ −ε+K(R− ‖x‖).
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There exists ε > 0 such that ψ(x) ≤ −ε+K(R− ‖x‖). Hence
‖x‖ ≥ R− C0t, for all (t, x) =⇒ −t+ ψ(x) ≤ −ε.

We tend τ to ∞ in (5.7), we deduce that

lim
τ→∞

∫
Rd

exp(2τ(−t+ ψ(x)))‖u(t, x)‖2Ak(x)dx = 0, for all t ∈ I.

Then
u(t, x) = 0 on

{
(t, x) ∈ I ×Rd : t < ψ(x)

}
.

However if (t0, x0) verifies ‖x0‖ < R − C0t0, we can find a function ψ of
precedent type such that t0 < ψ(x0). Thus the theorem is proved. �

Corollary 5.3. Let (S) be a symmetric system. There exists a positive
constant C0 such that, for any positive real R, any function f belongs to
[C(I, L2

Ak
(Rd))]m and any v ∈ [L2

Ak
(Rd)]m satisfying

f(t, x) ≡ 0 for ‖x‖ < R− C0t (5.8)
v(x) ≡ 0 for ‖x‖ < R, (5.9)

the unique solution u of system (S) belongs to [C(I, L2
Ak

(Rd))]m with
u(t, x) ≡ 0 for ‖x‖ < R− C0t.

Proof. If fε ∈ [C(I,H1
k(Rd))]m, vε ∈ [H1

k(Rd))]m are given such that
fε → f in [C(I, L2

Ak
(Rd))]m and vε → v in [L2

Ak
(Rd)]m, we know by

Section 4 that the solution uε belongs to [C(I,H1
k(Rd))]m and verifies

uε → u in [C(I, L2
Ak

(Rd))]m. Therefore, if we construct fε and vε satisfying
(5.8) and (5.9) with R replaced by R−ε, we obtain the result by applying
Theorem 5.2. To this end let us consider χ ∈ D(Rd) and radial such that
suppχ ⊂ B(0, 1) and ∫

Rd
χ(x)Ak(x)dx = 1.

For ε > 0, we put
u0,ε = χε ∗k v := (χε ∗k v1, . . . , χε ∗k vd),
fε(t, .) = χε ∗k f(t, .) := (χε ∗k f1(t, .), . . . , χε ∗k fd(t, .)),

with
χε(x) =

Ak(xε )
εdAk(x)χ(x

ε
).

The hypothesis (5.8) and (5.9) are then satisfied by fε and u0,ε if we replace
R by R− ε. On the other hand the solution uε associated with fε and u0,ε
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is [C1(I,Hs
k(Rd))]m for any integer s. Finally applying Proposition 2.9

and Theorem 5.2 we obtain the result. �

Theorem 5.4. Let (S) be a symmetric system. We assume that the func-
tions f ∈ [C(I,H1

k(Rd))]m and v ∈ [H1
k(Rd)]m verify{

f(t, x) ≡ 0 for ‖x‖ > R+ C0t
v(x) ≡ 0 for ‖x‖ > R.

Then the unique solution u of system (S) belongs to [C(I,H1
k(Rd))]m with

u(t, x) ≡ 0 for ‖x‖ > R+ C0t.

Proof. The proof uses the same ideas as in Theorem 5.2. �

As above we obtain the following result.

Corollary 5.5. Let (S) be a symmetric system. We assume that the func-
tions f ∈ [C(I, L2

Ak
(Rd))]m and v ∈ [L2

Ak
(Rd)]m verify{

f(t, x) ≡ 0 for ‖x‖ > R+ C0t
v(x) ≡ 0 for ‖x‖ > R.

Then the unique solution u of system (S) belongs to [C(I, L2
Ak

(Rd))]m
with

u(t, x) ≡ 0 for ‖x‖ > R+ C0t.
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