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Quasimodular forms: an introduction

Emmanuel Royer

Abstract

Quasimodular forms were the heroes of a Summer school held June 20 to
26, 2010 at Besse et Saint-Anastaise, France. We give a short introduction to
quasimodular forms. More details on this topics may be found in [1].

Formes quasimodulaires : une introduction
Résumé

Les formes quasimodulaires furent les héroines d’une école d’été qui s’est tenue
du 20 au 26 juin 2010 à Besse et Saint-Anastaise, France. On donne une courte
introduction aux formes quasimodulaires. Une présentation plus large est donnée
dans [1].

1. Besse summer school on quasimodular forms

The birth house of Bourbaki, at Besse et Saint-Anastaise, hosted from
20 to 26 June 2010 a summer school on quasimodular forms and appli-
cations. This summer school, organised with the financial support of the
ANR project Modunombres, was attended by 29 participants. Beside short
conferences by some of the participants, six experts of modular and quasi-
modular forms gave courses. The aim of this volume is to provide the
lectures of four of the lecturers.

The algebra of modular forms is not stable by differentiation. This is
one of the reasons why quasimodular forms are an interesting extension
of modular forms. Rankin-Cohen brackets are combination of modular
forms and their derivatives that are modular. Michaël Pevzner (Univer-
sité de Reims) gave a lecture Rankin–Cohen brackets and representations
of conformal Lie groups. He presented Rankin-Cohen brackets through
the theory of unitary representations of conformal Lie groups. Min Ho
Lee (University of Northern Iowa) is an expert on quasimodular forms. He
presented a survey of his work in his course Quasimodular forms and quasi-
modular polynomials. In Quasi-modular forms attached to elliptic curves,

297



E. Royer

I, Hossein Movasati (Instituto de Matematica Pura e Aplicada) developed
the theory of quasimodular forms in the framework of Algebraic Geometry.
He gave a geometric interpretation of quasimodular forms using moduli
of elliptic curves with marked elements in their de Rham cohomologies.
Marios Petropoulos (École polytechnique) gave a course on quasimodular
forms in physics. He wrote notes with Pierre Vanhove (Institut des Hautes
Études Scientifiques) Gravity, strings, modular and quasimodular forms.
In thses notes, they exhibit the role played by modular and quasimodualar
forms in gravity and string theory.

2. Modular forms

A reference for this part is [2]. Let

SL2(Z) :=
{(

a b
c d

)
: (a, b, c, d) ∈ Z4, ad− bc = 1

}
.

be the modular group. It is well known that it is generated by

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

The Poincaré upper half plane is the set

H := {z ∈ C : Imz > 0}.

We add to H the set Q ∪ {∞} to obtain H. The modular group acts on
H: if

(
a b
c d

)
∈ SL2(Z) and z ∈ H, then

(
a b
c d

)
z :=


az+b
cz+d if z ∈ H \ {∞,−d

c}
∞ if z = −d

c
a
c if z =∞.

Definition 2.1. Let k be an integer. A modular form of weight k over
SL2(Z) is a holomorphic function f : H → C such that :

(1) for any matrix
(
a b
c d

)
in SL2(Z) and any z ∈ H,

(cz + d)−kf
(
az + b

cz + d

)
= f(z) ;

(2) the holomorphic function f is holomorphic at infinity.
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Quasimodular forms

The first condition implies that f is periodic of period 1. This implies
that f admits a Fourier expansion. The second condition requires that
this Fourier expansion has no coefficients with negative index:

f(z) =
+∞∑
n=0

f̂(n)e2πinz.

We write Mk for the vector space of modular forms of weight k over
SL2(Z). It is finite dimensional.

Theorem 2.2. (1) If k < 0 or if k is odd, thenMk = {0}.

(2) if k ≥ 0 is even, then

dimMk =


⌊
k

12

⌋
if k ≡ 2 (mod 12)⌊

k

12

⌋
+ 1 otherwise.

We consider now that k is always nonnegative and even. A modular
form is said to be parabolic if its Fourier expansion has no constant term:

f(z) =
+∞∑
n=1

f̂(n)e2πinz.

We write Sk for the subspace of parabolic forms inMk. If k ≥ 4, we have
Mk = Sk ⊕ CEk where Ek is the weight k Eisenstein series defined by

Ek(z) = 1− 2k
Bk

+∞∑
n=1

σk−1(n)e2iπnz

where
σk−1(n) =

∑
d|n

dk−1

and
+∞∑
n=0

Bn
tn

n! = t

et − 1 .

Moreover, if k ≥ 12, then Sk = ∆Mk−12 where

∆ = 1
1728(E3

4 − E2
6).

It can be shown that ∆ vanishes only at ∞ and that this zero has order
1.
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3. Definition of quasimodular forms

The notion of quasimodular forms is due to Kaneko & Zagier. Werner
Nahm gave the definition we use. The theory has been developped by Don
Zagier [3]. Define

D := 1
2iπ

d
dz .

The following proposition (proved recursively) implies that the derivatives
of a modular form are not modular forms.

Proposition 3.1. Let f ∈Mk and r ∈ N. Let
(
a b
c d

)
∈ SL2(Z). Then

(cz + d)−(k+2m) Dmf

(
az + b

cz + d

)
=

m∑
j=0

(
m

j

)
(k +m− 1)!

(k +m− j − 1)!

( 1
2iπ

)j
Dm−jf(z)

(
c

cz + d

)j
.

This proposition is used to define quasimodular functions.

Definition 3.2. Let f : H → C be a holomorphic function, k and s ≥ 0
be integers. The function f is a quasimodular function of weight k and
depth s if there exist holomorphic functions f0, . . . , fs over H with fs non
identically zero, such that

(cz + d)−kf
(
az + b

cz + d

)
=

s∑
j=0

fj(z)
(

c

cz + d

)j
(3.1)

for any matrix
(
a b
c d

)
∈ SL2(Z) and any z ∈ H. By convention, the zero

function is quasimodular of depth 0 for any weight.

With the notation of definition 3.2, we write Qj(f) := fj . The applica-
tion (

a b
c d

)
7→ f |

k

(
a b
c d

)
where

f |
k

(
a b
c d

)
(z) := (cz + d)−kf

(
az + b

cz + d

)
(3.2)
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is an action of SL2(Z) on the holomorphic functions over H . Finally, for
any A =

(
a b
c d

)
∈ SL2(Z), we define

X(A) : H → C
z 7→ c

cz + d
.

With all these definitions (3.1) is rewritten

f |
k
A =

s∑
j=0

Qj(f) X(A)j . (3.3)

For any quasimodular form f , we have Q0(f) = f . Moreover, f is periodic
of period 1. Indeed we prove in the next proposition that each Qj(f) is
itself a quasimodular function.

Proposition 3.3. Let f be a quasimodular form of weight k and depth s.
For any m ∈ {0, . . . , s}, we have

Qm(f) |
k−2m

A =
s−m∑
v=0

(
m+ v

v

)
Qm+v(f) X(A)v

for any A ∈ SL2(Z).

Proof. Since f |
k
AB =

(
f |
k
A

)
|
k
B, we have

f |
k
(AB) =

s∑
n=0

(
Qn(f) |

k−2n
B

)
·
(

X(A)|
2
B

)n
.

Since X(A)|
2
B = X(AB)−X(B), it follows that

f |
k
(AB) =

s∑
j=0

 s∑
n=j

(
n

j

)
(−X(B))n−j

(
Qn(f) |

k−2n
B

)X(AB)j .

Comparing with the expression of f |
k
AB, we obtain

Qj(f) =
s∑

n=j

(
n

j

)
(−X(B))n−j

(
Qn(f) |

k−2n
B

)
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for any j. Let

M(x) =
((

β − 1
α− 1

)
xβ−α

)
1≤α≤s+1
α≤β≤s+1

.

The matrixM(x) is invertible and upper triangular with inverseM(x)−1 =
M(−x). We rewrite these equations as

M (−X(B))


Q0(f)|

k
B

...
Qs(f) |

k−2s
B

 =

Q0(f)
...

Qs(f)


so that 

Q0(f)|
k
B

...
Qs(f) |

k−2s
B

 = M (X(B))

Q0(f)
...

Qs(f)

 .
Finally

Qn(f) |
k−2n

B =
s∑

n=j

(
n

j

)
Qn(f) X(B)n−j

for any n. This concludes the proof. �

It follows from proposition 3.3 that, if f is a quasimodular function of
weight k and depth s then Qj(f) is a quasimodular function of weight
k − 2j and depth s − j. We add a condition so that Qs(f) is indeed a
modular form.

Definition 3.4. A quasimodular function f of weight k and depth s is a
quasimodular form if the Fourier expansions of each Qj(f) have no terms
of negative index :

Qj(f)(z) =
+∞∑
n=0

Q̂j(f)(n)e2iπnz

for any j ∈ {0, . . . , s}.

We denote byMs
k the set of quasimodular forms of weight k and depth

s and M≤sk the C-vector space of quasimodular forms of weight k and
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depth less than or equal to s. We define also

M∞k :=
⋃
s∈N
M≤sk .

If f ∈ Ms
k then Qs(f) ∈ Mk−2s. There are no modular forms of odd

weight or negative weight hence k is even and s ≤ k/2.

Theorem 3.5. Let f ∈ Ms
k be non constant. Then Df ∈ Ms+1

k+2. More
precisely,

Q0(Df) = Df,

Qn(Df) = D(Qnf) + k − n+ 1
2iπ Qn−1(f)

if 1 ≤ n ≤ s and

Qs+1(Df) = k − s
2iπ Qs(f).

Proof. Since
D X(A) = − 1

2iπ X(A)2

the derivation of (3.1) leads to

D

(
f |
k
A

)
=

s∑
j=0

(
D (Qj(f)) X(A)j − j

2iπQj(f) X(A)j+1
)
. (3.4)

We compare (3.4) with the equality

D

(
f |
k
A

)
= − k

2iπ
(
f |
k
A
)

X(A) + (Df) |
k+2

A

and use (3.3) to have

(Df) |
k+2

A =
s∑
j=0

(
D (Qj(f)) X(A)j − j

2iπQj(f) X(A)j+1

+ k

2iπQj(f) X(A)j+1
)
. (3.5)

�

Beside the derivatives of modular forms, we can build another quasi-
modular form. Let

E2 = D∆
∆ .
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Like ∆, this function has a Fourier expansion without any coefficient of
negative index. Moreover, it follows from proposition 3.1 that

E2 |
2
A = E2 + 6

iπ
X(A).

for any A ∈ SL2(Z). Then E2 is a quasimodular form of weight 2 and
depth 1. It is less easy (but this justifies the notation) to prove that

E2(z) = 1− 24
+∞∑
n=1

σ1(n)e2iπnz.

4. Structure theorems

We give two structure theorems.

Theorem 4.1. Let f ∈ Ms
k. There exists modular forms Fi ∈ Mk−2i

such that

f =
s∑
i=0

FiE
i
2.

In other words,

M≤sk =
s⊕
i=0
Mk−2iE

i
2.

Proof. The proof is done recursively using the fact that if f has depth less
than or equal to s then

f −
(
iπ

6

)s
Qs(f)Es2

has depth less than or equal to s− 1. �

Theorem 4.2. Let f ∈ Ms
k. There exist a real number α and modular

forms Fi ∈Mk−2i such that

f =



s∑
i=0

DiFi si s < k

2
k/2−2∑
i=0

DiFi + αDk/2−1E2 si s = k

2 .
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In other words,

M∞k =M≤k/2
k =

k/2−2⊕
i=0

DiMk−2i ⊕ CDk/2−1E2.

Proof. We proceed by descent on the depth s based to the following fact.
We need a modular form g ∈ Mk−2s satisfying Qs(Dsg) = Qs(f). It
would follow f−Dsg ∈M≤s−1

k . Consequently, let g ∈Mk−2s. Reiterating
theorem 3.5, we get

Qs(Dsg) = s!
(2iπ)s

(
k − s− 1

s

)
g. (4.1)

If
(k−s−1

s

)
6= 0, wich is the case as soon as s 6= k

2 , we choose

g := (2iπ)s

s!
1(k−s−1
s

)Qs(f).

It belongs to Mk−2s. If s = k
2 , this procedure is not efficient since the

binomial coefficient binomial is vanishing (this corresponds to the fact
thatM0 = C). However, reiterating theorem 3.5, we have

Qk/2
(
Dk/2−1E2

)
= (k/2− 1)!

(2iπ)k/2−1Q1(E2) = (k/2− 1)!
(2iπ)k/2−1

6
iπ
.

Since Qk/2(f) ∈M0 = C, we define

α := iπ

6
(2iπ)k/2−1

(k/2− 1)!Qk/2(f) ∈ C

to obtain f − αDk/2−1E2 ∈M≤k/2−1
k . It follows that

M≤k/2
k =

k/2−1⊕
i=0

DiMk−2i ⊕ CDk/2−1E2.

We conclude usingM2 = {0}. �

Remark 4.3. Do we really need E2? We would like to have a modular form
f ∈ M` and an integer r such that Drf ∈ Mk/2

k . This implies k = `+ 2r
and k/2 = `+ r hence ` = 0. HoweverM0 = C and DM0 = {0}. Hence,
the function E2 acts like ”the nonzero derivative of a modular form of
weight 0”.
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