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Perturbed linear rough differential equations

Laure Coutin
Antoine Lejay

Abstract

We study linear rough differential equations and we solve perturbed linear
rough differential equations using the Duhamel principle. These results provide
us with a key technical point to study the regularity of the differential of the Itô
map in a subsequent article. Also, the notion of linear rough differential equations
leads to consider multiplicative functionals with values in Banach algebras more
general than tensor algebras and to consider extensions of classical results such as
the Magnus and the Chen-Strichartz formula.

Équations différentielles linéaires rugueuses perturbées
Résumé

Nous étudions les équations différentielles linéaires rugueuses et résolvons des
équations linéaires rugueuses perturbées à l’aide du principe de Duhamel. Ces
résultats donnent un argument technique pour étudier la différentiabilité de l’ap-
plication d’Itô. La notion d’équation différentielle rugueuses nous condition à consi-
dérer des fonctionnelles multiplicatives à valeurs dans des algèbres de Banach plus
générales que celle des algèbres tensorielles, ainsi que des extensions de résultats
classiques tels que les formules de Magnus et Chen-Strichartz.

1. Introduction

Linear Rough Differential Equations (RDE) have been considered by sev-
eral authors since they are an essential tool for studying the derivative of
the Itô map and its flow properties (See the bibliography in [19]). How-
ever, with the exception of the works of D. Feyel, A. de la Pradelle and
G. Mokobodzki [27] and S. Aida [1], linear RDE have hardly been consid-
ered as objects as such with their own properties, excepted to control the
growth of the solution as in [28, 36]. Instead, they are generally presented

Keywords: Rough paths, Rough differential equations, Banach algebra, Magnus formula
Chen-Strichartz formula, perturbation formula, Duhamel’s principle.
Math. classification: 34A25, 60H10.

103



L. Coutin & A. Lejay

as a special case of RDE. However, the Baker-Campbell-Hausdorff-Dynkin
formula was among the inspirations of the theory of rough paths [3, 9].
The algebraic view of solution of controlled differential equations through
for example Chen-Fliess series [17] as well as some numerical simulation
algorithms stem directly from the theory of linear controlled ordinary dif-
ferential equations (See [7] for an overview and [28, 29, 43, 42, 18, 44] for
the relationship between algebra and RDE). Linear equations are among
the first examples given in the article [43] and the book [42] as motivation
for developing rough paths theory.

The main goal of this article is then to study linear RDE in a general
setting. For this, we define the notion of p-rough resolvent, which is an
extension of the notion of multiplicative functionals [43, 42] taking their
values in a Banach algebra. Chen series, and their rough paths extensions
which are the core of the theory, are solutions to linear RDE taking their
values in tensor spaces, for which more precise results could be given.

Our initial motivation for this article was to consider the perturbation
of the Itô map. We then deal with a variation of constant/Duhamel prin-
ciple for perturbed linear RDE. Yet we also extend the Chen-Strichartz
formula, and the Magnus formula providing exponential representations
of solutions.

The content of this article may be applied to bounded linear oper-
ators on an infinite dimensional Banach space. Of course, dealing with
unbounded family of operators, for example for solving Stochastic Partial
Differential Equations, is much more intricate and needs specific treat-
ments. The reader is referred to the quickly growing literature on these
subjects [30, 29, 21, 10, 11], ... The variation of constant principle is also
linked to Volterra equations which have been studied in the rough path
context by A. Deya [22, 23].

In Section 3, we define for any p ≥ 1 the notion of rough resolvent which
is a family of linear operators giving the solutions to the linear RDE. The
idea is to solve

Yt = Id +
∫ t

0
Ys dAs

when (At)t∈[0,T ] is an operator values path of finite p-variation through
the constitutive relation Yr,t = Yr,sYs,t for any 0 ≤ s ≤ r ≤ t ≤ T with
Ys,t = Y−1

s Yt. For this, we find an approximation Bs,t of Ys,t when t− s is
small enough. The sewing lemma, which is the technical core of the theory
of rough paths, is then extended to transform Bs,t into Ys,t.
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In Section 4, we provide a series expansion for such solutions when
the solutions are represented in the formal algebra of power series. As
a byproduct, we obtain an exponential representation of the p-rough re-
solvents, at least for a small time. This provides us with extensions of
the Magnus [7] and Chen-Strichartz formula [53]. Although these formu-
lae were already known for the (fractional) Brownian motion (See e.g.
[4, 5, 12, 6]), it was not clear whether or not it could be extended easily
to the case of drivers of finite p-variation as soon as p < 1.

In Sections 5 and 6.1, we consider perturbed linear RDE of type

Yt = Id +
∫ t

0
Ys dAs + Bt

and we show a variation of constant/Duhamel principle. Of course, when
p ∈ [2, 3), we need to know some appropriate extensions of both A• and B•.

In Section 6.2, we show that our notion is well adapted for the kind
of linear equations which arise when one differentiates the Itô map with
respect to its starting point. In a subsequent article [19], we use these
properties to show that the Itô map is differentiable with a Lipschitz or
Hölder continuous Fréchet derivative.

Acknowledgements. This work has been supported by the ANR Ecru
(ANR-09-BLAN-0114-01/02). A. Lejay also wants to thank the Centre In-
traFacultaire Bernoulli (CIB) and the NSF (National Science Foundation)
for its kind hospitality during the SPDE Semester in 2012.

2. Notations and standard results

By C, we denote a constant whose value may vary from line to line.
We set K = R or C and V denotes a Banach space over K with a

norm | · | and its dual V∗.
When V = U ⊕ W for two Banach spaces U and W, we denote by

πU : V→ U the projection onto U orthogonal to W.
We also denote by L a Banach algebra with a norm ‖·‖ (See Section 2.2

below for a definition). The unit element of L is constantly denoted by Id.

105



L. Coutin & A. Lejay

2.1. Times, multiplicative properties and control
Fix 0 ≤ S < T . Let

∆+
2 (S, T ) := {(s, t)|S ≤ s ≤ t ≤ T},

∆−2 (S, T ) := {(s, t)|S ≤ t ≤ s ≤ T},
∆+

3 (S, T ) := {(s, r, t)|S ≤ s ≤ r ≤ t ≤ T}
and ∆−3 (S, T ) := {(s, r, t)|S ≤ t ≤ r ≤ s ≤ T}.

For i = 2, 3, we write ∆±i (S, T ) to denote either ∆+
i (S, T ) or ∆−i (S, T )

depending on the context. When S = 0, we set ∆±i (T ) := ∆±i (S, T ).
For the sake of simplicity, a family (At)t∈T is also denoted by A• when

this notation introduces no ambiguity.
For a family (At)t∈T of elements of L indexed by a set T, we write

A]• := sup
t∈T
‖At‖.

Definition 2.1. A family (As,t)(s,t)∈∆±2 (T ) is said to satisfy the right/left
multiplicative property if

As,rAr,t = As,t for (s, r, t) ∈ ∆±3 (T ). (2.1)

By this, we mean that a family (As,t)(s,t)∈∆+
2 (T ) satisfies the right mul-

tiplicative property if As,rAr,t = As,t for (s, r, t) ∈ ∆+
3 (T ), and a family

(At,s)(s,t)∈∆+
2 (T ) satisfies the left multiplicative property if At,rAr,s = At,s

for (s, r, t) ∈ ∆+
3 (T ). This notational trick will be widely used below.

Definition 2.2 (Control). A control is a function ω : ∆+
2 (T )→ R+ which

is continuous close to its diagonal and such that ω(s, r) + ω(r, t) ≤ ω(s, t)
for all (s, r, t) ∈ ∆+

3 (T ).

We extend a control ω on [0, T ]2 by setting ω(t, s) = ω(s, t) for (s, t) ∈
∆+

2 (T ).
Given a control ω, a constant C and p ≥ 1, we write

A• ≺ Cω1/p to mean that ‖As,t‖ ≺ Cω(s, t)1/p for (s, t) ∈ ∆±2 (T )
for a family (As,t)(s,t)∈∆±2 (T ) of elements of L.

Remark 2.3. Of course, since ω(t, t) = 0 for t ∈ [0, T ], A• ≺ Cω1/p implies
that At,t = 0 for any t ∈ [0, T ].
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A family indexed by t ∈ [0, T ] may be transformed into a family indexed
by (s, t) ∈ ∆±(T ) satisfying the left/right multiplicative property.

Lemma 2.4. Given a family (At)t∈[0,T ] of invertible elements in L, we set
As,t := A−1

s At for (s, t) ∈ [0, T ]2. Thus (As,t)(s,t)∈∆+
2 (T ) satisfies the right

multiplicative property and (At,s)(s,t)∈∆+
2 (T ) satisfies the left multiplicative

property.

2.2. Associative algebras and Banach algebras
A Banach algebra L is a unital algebra (L,+, ·) over K with a unit Id
which is a Banach space with a norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖ · ‖b‖ for
any a, b ∈ L, ‖λa‖ = |λ| · ‖a‖ for λ ∈ K and ‖Id‖ = 1 (See [24]).

2.2.1. Inverse, exponential and logarithm.

Several operations on L may be defined using series representations. For
example, when converging (for example when ‖a− Id‖ < 1),

a−1 :=
+∞∑
i=0

(−1)k(a− Id)k (2.2)

is a left and right inverse of a. The exponential and logarithm maps are
defined by

exp(a) = Id+
+∞∑
k=1

1
k!ak and log(a) =

+∞∑
k=1

(−1)k−1

k
(a−Id)k when a ∈ exp(L).

(2.3)
In particular, a condition for the existence of the logarithm is ‖a− Id‖ < 1.
In this case, ‖ log(a)‖ ≤ ‖a− Id‖/(1− ‖a− Id‖).

Lemma 2.5. For a, b ∈ L,
‖ exp(a)− exp(b)‖ ≤ ‖a− b‖ exp(‖a‖+ ‖b‖),

‖ log(a− Id)− log(b− Id)‖ ≤ ‖a− b‖
‖a‖+ ‖b‖ log 1

1− ‖a‖ − ‖b‖
for ‖a‖+ ‖b‖ < 1,

‖a−1 − b−1‖ ≤ ‖b− a‖
1− ‖a− Id‖ − ‖b− Id‖ for ‖a− Id‖+ ‖b− Id‖ < 1.
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Proof. All these inequalities stem from the following result easily shown
by recurrence ‖an − bn‖ ≤ ‖a− b‖(‖a‖+ ‖b‖)n−1 for any n ≥ 1. �

There are several kind of associative algebras and Banach algebra we
consider in this article.

2.2.2. Space of operators

Let L = L(V,V) be the space of linear bounded operators on V. The norm
of L is ‖A‖ = supu∈V, |u|=1 |Au|.

An operator in L(V,V) will be seen as an operator acting on the right,
will an operator in L(V∗,V∗) is seen as an operator acting on the left.

Then V = Kd, we identify L(V,V) with the space of matricesMd×d(K).

2.2.3. Space of sequences

An element a of LZ+ will be written a = (a0, a1, . . . , ). Let πk : LZ+ → L

and π≤k : LZ+ → LZ+ be defined
πk(a) = ak and π≤k(a) = (a0, . . . , ak, 0, . . . ).

Let 1 := (Id, 0, . . . ). We also consider L = {a ∈ LZ+ ;π0(a) = αId, α ∈ K}
and we identify (α, a1, a2, . . . ) with (αId, a1, a2, . . . ) for a ∈ L.

For a subspace X of LZ+ , we set π≤kX = {π≤k(a); a ∈ X}.
The space (L,+,�) is an algebra with the convolution product � de-

fined by

πk(a� b) =
k∑
i=0

aibn−i for k = 0, 1, 2, . . . .

For a ∈ L, set ‖a‖sum :=
∑
i≥0 ‖πi(a)‖.

Lemma 2.6. S = {a ∈ L; ‖a‖sum < +∞}, equipped with addition + and
product �, is a Banach algebra with unit 1.

2.2.4. Graded algebra

An associative algebra L is a graded algebra if it may be decomposed as
L = K ⊕ L1 ⊕ L2 ⊕ · · · where the Li’s are vector spaces and ab ∈ Li+j
when a ∈ Li and b ∈ Lj for i, j ≥ 1. We call Li the subspace of elements
homogeneous of degree j.
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When L is a graded algebra, there exists an isomorphism φ between
(L,+) and (L,+) by setting πkφ(a) = ak for a = a0Id + a1 + · · · with ak ∈
Lk. We then define a norm ‖ · ‖sum on L by setting ‖a‖sum := ‖φ(a)‖sum.
Note that ‖a‖ ≤ ‖a‖sum. We then extend naturally πk and π≤k to a graded
algebra L.

On the graded algebra, we define

‖a‖hom := sup
i≥1
{‖πi(a)‖1/i}. (2.4)

2.2.5. Tensor algebra

Given a vector space U, we construct a tensor algebra by

T(U) = K⊕U⊕ (U⊗U)⊕ (U⊗U⊗U)⊕ · · ·

with the tensor product ⊗. This is a graded algebra.
The tensor space (U)⊗` is endowed with a norm | · | such that |a⊗ b| ≤

|a| · |b| for any a ∈ (U)⊗`′ and b ∈ (U)⊗(`−`′), `′ = 1, . . . , `− 1 [24, Ex. 1.36
and 2.31]. This norm is then extended to T(U).

For the sake of notational simplicity, for k = 1, . . . ,∞, we write Tk(U)
for the subset of elements a of π≤kT(U) with ‖a‖sum < +∞.

With the tensor product⊗k defined by a⊗kb = π≤k(a⊗b), (Tk(U),+,⊗k)
is a Banach algebra with ‖ · ‖sum. The space Tk(U) is the quotient space
T∞(U)/ ∼k with a ∼k b when π≤k(a− b) = 0. To simplify the notations,
when there is no ambiguity we simply write ‖ · ‖ for ‖ · ‖sum and ⊗ for ⊗k.

Remark 2.7. With φ : x ∈ V 7→ 1 + x ∈ T1(V), we embed V into T1(V).
Since exp(V) = {1+x ∈ T1(V);x ∈ V} forms a group, (V,+) is isomorphic
to (exp(V),⊗1). Besides, |x| ≤ ‖φ(x)‖sum and ‖φ(x) − 1‖sum = 0 implies
that x = 0.

2.2.6. Algebra of words

Fix d ∈ N, let us consider the algebra of words W whose basis is

{∅} ∪ {I = (i1, . . . , ik) with (i1, . . . , ik) ∈ {1, . . . , d}k, k ∈ N}.

The multiplication on W is defined by the concatenation

IJ = (i1, . . . , ik, j1, . . . , j`) for I = (i1, . . . , ik) and J = (j1, . . . , jk),
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and ∅I = I∅ = I. The word ∅ is the null word. For I = (i1, . . . , ik), we
write |I| = k, the length of I, and |∅| = 0. The algebra of words is a graded
algebra K⊕W1 ⊕ · · · where Wk = Span{I; |I| = k}.

When U is a finite dimensional vector space with basis {e1, . . . , ed},
then W is homomorphic to T(U) through φ by setting

φ(I) = eI := ei1 ⊗ · · · ⊗ eik when I = (i1, . . . , ik).

More generally, for a finite family X := {a1, . . . , ad} of d elements, called
the alphabet, we write aI := ai1 · · · aik for I = (i1, . . . , ik). This way, to X
is associated T(X) = K⊕ L1 ⊕ · · · which is isomorphic to T(Rd) through
the isomorphism defined by φ(aI) = eI for any word I.

2.2.7. Free Lie algebra and groups

A Lie algebra l is a vector space over K with a bilinear mapping [·, ·]
satisfying [a, b] = −[b, a] and the Jacobi identity [a, [b, c]] + [c, [a, b]] +
[b, [c, a]] = 0 for any a, b, c ∈ l. For a, b ∈ L, [a, b] = ab− ba defines a Lie
bracket [33].

Let X = {a1, . . . , ad} be a finite set of d elements. A free Lie algebra
on X is a Lie algebra Lie(X) and a map ı : X → Lie(X) such that for
any Lie algebra g and any  : X → g there exists a unique Lie algebra
morphism k : Lie(X)→ g such that k ◦ ı =  (See e.g. [9, 51]). In addition,
the Lie algebra Lie(X) is isomorphic to the Lie algebra Lie(Rd) where for
a d-dimensional vector space V with basis {ei}i=1,...,d,

Lie(V) :=
⊕
k≥1

Liek(V), Lie1(V) := V

and Liek+1(V) := Span{[a, b]; a ∈ V, b ∈ Liek(V)}

with [ei, ej ] = ei⊗ej−ej⊗ei. Indeed, Lie(V) is the smallest Lie subalgebra
of T(V) containing V.

Basically, in the theory of rough paths, there are three kinds of free Lie
algebras that are under consideration:

• Tensor algebras and tensor Lie algebras, which allows one to de-
fine rough paths, following the work of K.T. Chen on iterated
integrals [14].
• Lie groups of matrices, in which live the flows of some linear dif-
ferential equations [3].
• Left-invariant vector fields [8].
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2.2.8. Baker-Campbell-Hausdorff-Dynkin formula

For a and b in a Banach algebra L, the Baker-Campbell-Hausdorff-Dynkin
(BCHD) formula states that under appropriate conditions, there exists c
such that exp(a) exp b = exp(c) with

c :=
+∞∑
j=1

j∑
n=1

∑
(H,K)∈Wn

|H|+|K|=j

1
H!K!(h1 + · · ·+ hn + k1 + · · ·+ kn)Dh,k(a, b)

(2.5)
with H! = h1! · · ·hn!,

DH,K(a, b) =
h1 times︷ ︸︸ ︷
[a, · · · [a,

k1 times︷ ︸︸ ︷
[b, · · · [b, · · ·

hn times︷ ︸︸ ︷
[a, · · · [a,

kn times︷ ︸︸ ︷
[b, [· · · , b]]] · · · ] · · · ] · · · ]] · · · ],

and
Wn =

{
(I, J) ∈ (Z+)n; (i1, j1), . . . , (in, jn) 6= (0, 0)

}
.

When this formula holds, we write a ? b := c. If L is a nilpotent matrix
group, then a ? b is always defined. Otherwise, for a simply connected
group, it holds for elements with norms small enough. A detailed discus-
sion in given in [9, Sect. 5.5]. The BCHD formula stems from combinatorial
considerations, so that (2.5) is formally valid in associative algebras.

Theorem 2.8 (Convergence of the BCHD formula [9, Theorem 5.54,
p. 341]). For a, b ∈ L with max{‖a‖, ‖b‖} ≤ 1

4 log(2), the series in (2.5)
is absolutely convergent. Besides, the series in (2.5) is totally convergent
on any set {(a, b), ‖a‖+ ‖b‖ ≤ δ}, 0 < δ < 1

2 log 2.

There exist several alternative representations for the series giving a?b.
We refer to [9] for a detailed account on this rich topic and various proofs.

2.2.9. Shuffle algebra and Lie elements

The shuffle algebra is the main tool to relate Lie elements and elements
in tensor algebras.

Definition 2.9 (Shuffle product and shuffle algebra). For words I =
(i1, . . . , i|I|) and J = (j1, . . . , j|J |), let Sh(I, J) be the set of words of type
K = (k1, . . . , k|I|+|J |) such that each letter of K corresponds exactly to
one letter of I or J and the order of the letters of I and the order of the
letters in J is preserved.
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Hence the shuffle product on two words is defined by linearity from
I ~ J =

∑
K∈Sh(I,J)K for words I and J in W, and (W,+,~) is the

shuffle algebra.

Definition 2.10 (Lie element). An element x =
∑
I eIx

I of T(Rd) is
called a Lie element if x∅ = 0 and for each k, the homogeneous term∑
I;|I|=k eIx

I of length k belongs to Liek(Rd).

Since T(Rd) is a unital algebra, we define inverse, exponential and log-
arithm by power series using formal series given by (2.2) and (2.3). We
set

gr(Rd) = exp(Lie(Rd)) ⊂ T(Rd).

Hence, if x is a Lie element, then exp(x) ∈ gr(Rd) and such an element is
called group like, and (gr(Rd),⊗) is a group, as exp(x)⊗exp(y) = exp(x?y)
with x ? y given formally by (2.5).

Remark 2.11. When l is a matrix Lie algebra, then exp(l) is a matrix Lie
group with respect to the product of matrices [3].

Following the work of K.T. Chen [15], R. Ree has proved the following
result.

Theorem 2.12 (R. Ree [50, Theorem 2.5]). For elements x ∈ T(Rd) of
type

x = 1 +
∑

I;|I|≥1
eIα

I , αI ∈ K,

then log(x) is a Lie element if and only if the linear map φ : W → K
defined by φ(∅) = 1 and φ(I) = αI is an algebra homomorphism between
(T(Rd),+,⊗) and (W,+,~), that is if and only if αIαJ =

∑
K∈Sh(I,J) α

K

for any words I and J .
Besides, if the coefficients satisfies the shuffle relation,

x−1 = 1 +
∑
k≥0

∑
I;|I|=k

(−1)kα
←−
I eI

with ←−I = (ik, . . . , i1) when I = (i1, . . . , ik).
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Example: The Heisenberg group. The Heisenberg group provides us
with a simple non trivial example of a non-commutative matrix Lie group,
which is nilpotent of step 2. The Heisenberg algebra is

h :=


0 a c

0 0 b
0 0 0

 (a, b, c) ∈ R3

 .
The space h is the Lie algebra of the Heisenberg group

H :=


1 a c

0 1 b
0 0 1

 (a, b, c) ∈ R3

 = exp(h).

The product of 3 matrices in h equals 0. Indeed, h is a simply connected nil-
potent Lie algebra of step 2. Let A =

[ 0 1 0
0 0 0
0 0 0

]
, B =

[ 0 0 0
0 1 0
0 0 0

]
and C =

[ 0 0 1
0 0 0
0 0 0

]
.

Then [A,B] := AB − BA = C so that the Lie algebra h is generated by
the two matrices A and B, although h is a vector space of dimension 3.

The BCHD formula is always valid, with

exp(A) exp(B) = exp(A ?B) with A ?B = A+B + 1
2[A,B] for A,B ∈ h.

2.3. Spaces of functions

2.3.1. Chen series and Chen-Strichartz formula

The notion of Chen series, initiated by K.T. Chen in the 50’s, provides us
with a way to transform a regular path x : [0, T ] → Rd into an algebraic
object taking its values in T(Rd). This is one of the core ideas of the theory
of rough paths to extend this theory to paths of irregular variations.

In the next statement, formula (2.7) has been given by R. Strichartz
in [53] and relies on the Baker-Campbell-Hausdorff-Dynkin formula.

Theorem 2.13 (K.T. Chen [16, 14, 15], R. Strichartz [53]). Let x be a
path of bounded variation with values in Rd. Then the solutions, called
Chen series, to

xt = 1 +
∫ t

0
xs ⊗ dxs and yt = 1−

∫ t

0
dxs ⊗ ys (2.6)
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are such that for any t ∈ [0, T ], xt = y−1
t ,

xt = 1 +
∑

I;|I|≥1
eIxI0,t and yt = 1 +

∑
I;|I|≥1

eIx
←−
I
0,t with xIjs,t =

∫ t

s
xIs,r dxjr.

Besides, log(xs,t) and log(ys,t) are Lie elements in T(Rd), and for e[I] =
[ei1 , [ei2 , . . . , [eik−1,eik

] · · · ]],

log(xs,t) =
∑
k≥1

∑
I;|I|=k

γI(s, t)e[I] with γI(•) :=
∑

σ∈Permk

(−1)e(σ)

k2(k−1
e(σ)
) xσ(I)
•

(2.7)
where Permk is the set of permutations of {1, . . . , k},

σ(I) := (σ(i1), . . . , σ(ik)) for I = (i1, . . . , ik)
and e(σ) := #{j ∈ {1, . . . , k − 1};σ(j) > σ(j + 1)}.

Let us consider a family A1, . . . ,Ad of elements in B as well as a path
x : R+ → Rd of bounded variation. Set At =

∑d
i=1 Aixit for t ∈ [0, T ]. The

linear equation

Yt = Id +
∫ t

0
Yr dAr = Id +

∫ t

0
Yr

d∑
i=1

Ai dxir (2.8)

is easily solved by considering the algebra homomorphism ψ : T(Rd)→ B
by ψ(eI) = AI with the conventions of Section 2.2.6. Indeed, for x solution
to (2.6) with xt =

∑d
i=1 eix

i
t, Yt = ψ(xt), t ∈ [0, T ].

The proof of eq. 2.7 relies on the Baker-Campbell-Hausdorff-Dynkin
formula, and contains it. For this, simply set x1

t = t1t∈[0,1] + 11t∈(1,2] and
x2
t = (t − 1)1t∈[1,2] for t ∈ [0, 2]. Then log(Y2) = log(exp(A1) exp(A2))

with Y• solution to (2.8) by applying the homomorphism φ to (2.7).
For an operators-valued path (At)t∈[0,T ] of bounded variation and a

partition {tni }ni=0 of [0, T ], we may consider solving

Ynt = Id +
∫ t

0
Ynr

n−1∑
i=0

1r∈[tni ,t
n
i+1)Atni ,tni+1

. (2.9)

This means that (2.9) may be seen as a special case of (2.8) with

d = n, ei = Atni ,tni+1
and xit = (t− tni )1t∈[tni ,t

n
i+1) + (tni+1 − tni )1t∈[tni ,t

n
i+1].
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With Theorem 2.12, Yt may be expressed as the exponential of operators
defined as series defined in the Lie algebra containing the At, t ∈ [0, T ].
This remains true as n→∞ [53].

The Magnus formula, and its variant, gives an explicit expression for
this formula, and could be thought as a “continuous analogue of the Baker-
Campbell-Hausdorff-Dynkin formula”. We refer to [47, 7, 48] on this topic.

2.4. Functions of finite p-variation
For p ≥ 1, let Rp(V) be the set of continuous paths with values in V such
that |x0| < +∞ and x• ≺ Cω1/p, which means with our conventions of
Section 2.1 and Remark 2.7, that

‖x‖p := sup
(s,t)∈∆+

2 (T )

|xs,t|
ω(s, t)1/p < +∞ with xs,t := xt − xs.

Note that ‖ · ‖p is just a semi-norm, but x 7→ ‖x‖p + |x0| defines a norm.
An element in Rp(V) is called a function of finite p-variation controlled
by ω. Under the condition that ω(s, t) = t − s, then paths in Rp(V) are
α-Hölder continuous with α = 1/p.

For a ∈ V, we set Rpa(V) the subset of paths x ∈ Rp(V) with x0 = a.
For θ > 1, if |xs,t| ≤ Cω(s, t)θ for (s, t) ∈ ∆+

2 (T ), then x is constant
since for any partition {ti}i=0,...,n of [s, t],

|xs,t| ≤
n−1∑
i=0
|xti,ti+1 | ≤ ω(0, T ) sup

i=0,...,n−1
ω(ti, ti+1)θ−1.

2.5. Rough paths
Let us consider a control ω : ∆2(T )→ R+.

Definition 2.14 (p-rough path). A p-rough path x of order ` is a path
taking its values in T`(V) with
(i) The order ` satisfies ` ≥ bpc, where bac is the integer part of a.
(ii) For any t ∈ [0, T ] π0(xt) = 1 and xt is invertible in T`(V).
(iii) With (2.4), ‖x•‖hom ≺ Cω1/p.

We write
xs,t =

∑
k≥0

x(k)
s,t with x(k)

s,t =
∑

words I, |I| = k

eIxIs,t
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with e∅ = 1 and x∅s,t = 1 for the null word ∅.
We denote by RPp` (Rd) the set of p-rough paths. This space is equipped

with the semi-norm

‖x‖p := sup
(s,t)∈∆+

2 (T )
sup

k=1,...,`

|x(k)
s,t |

ω(s, t)k/p

and the norm ‖x‖∞,p := supt∈[0,T ] |xt|+ ‖x‖p.
As we can see, a rough path is an extension of a function of finite

p-variation and RPp(Rd) = Rp(Rd) for p ∈ [1, 2).
Let us present briefly some particular classes of rough paths (See [28, 42]

for a detailed account on these notions).
• A smooth rough path is a rough path x ∈ RPp` (Rd) whose projection
on Rd is a smooth path from [0, T ] to Rd and such that

xIs,t =
∫∫

0≤s1<···<sk≤t
dxi1s,t1 · · · dxiks,sk

for any word I = i1 · · · ik, k ≤ `. Such a path takes its values in
π≤`gr(Rd). It is the projection onto T`(Rd) of the Chen series of Theo-
rem 2.13 above a given path.
• A geometric rough path is the closure in RPp` (Rd) with respect ‖ · ‖∞,p
of the set of smooth rough paths.
• A weak geometric rough path is a rough path taking its values in G`(Rd).
The set of such paths is denoted by WGRPp` (Rd).
Indeed, any path in WGRPp` (Rd) is the limit of a sequence of smooth

rough paths in RPq`(Rd) for q > p. Besides, for p ∈ [2, 3), non-geometric
rough paths may be interpreted as geometric ones lying above a path with
values in Rd ⊕ (Rd ⊗ Rd) [40]. With the appropriate algebraic structure
involving trees, a similar result also holds for any value of p [32].

We refer to [43, 42, 28, 35, 37] among others for the properties of rough
paths.

2.6. Young integrals

The theory of rough paths is an extension of the theory of Young integrals
[42, 54, 27].

Let X, Y and Z be Banach spaces with a product (x, y) ∈ X × Y 7→
xy ∈ Z, such that |xy| ≤ |x| · |y|.
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Let x and y be two paths of finite p-variation controlled by ω with p < 2
respectively with values in X and Y.

In the sequel, we make use of the following inequalities:

‖xy‖p ≤ ‖x‖py]• + ‖y‖px]• and x]• ≤ |x0|+ ω(0, T )1/p‖x‖p. (2.10)

For any (s, t) ∈ ∆+
2 (T ),

∫ t
s yr dxr may be defined as a Young inte-

gral, that is as limit of Riemann sums
∑n−1
i=0 ytni (xtni+1

− xtni ) for partitions
{tni }ni=0 whose meshes decrease to 0.

Let us recall some standard results about Young integrals.

Proposition 2.15. With the above setting,
(i) If u ∈ Rp(Z) satisfies for C ≥ 0 and θ > 1,

u0 = 0 and (ut − us − ysxs,t)(s,t)∈∆+
2 (T ) ≺ Cω

θ,

then ut =
∫ t

0 ys dxs for t ∈ [0, T ].
(ii) For any (s, t) ∈ ∆+

2 (T ),∣∣∣∣∫ t

s
yr dxr − ys(xt − xs)

∣∣∣∣ ≤ ζ(2p)‖x‖p‖y‖pω(s, t)2/p (2.11)

with ζ(q) :=
∑
n≥1 1/nq, q > 1.

(iii) The following control holds:∥∥∥∥∫ ·
0
yr dxr

∥∥∥∥
p
≤ (|y0|+ ‖y‖pω(0, T )1/p)‖x‖p + ζ(2p)‖x‖p‖y‖pω(0, T )1/p.

(2.12)

This construction is very general. We will either use X = Y = Z = L
for an algebra L defined as in Section 3.3, or X = Z = V and Y = L(V,V)
for a Banach space V.

We present only Young integrals. From the results in Proposition 2.15,
differential equations driven by finite p-variation paths with p < 2 are easy
to consider [38].

2.7. The Gamma function and the neo-classical inequality

Let Γ(z) :=
∫+∞

0 e−ttz−1 dt be the Gamma function [52, Chap. 6, p .76].
We use a majoration as in [1].
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Lemma 2.16. Let x be a positive real and p ≥ 1. Then for ` ≥ bpc,

∑
k≥`

xk/p

Γ(k/p) ≤ (1 + bpc) exp(x) xb`/pc+1

Γ(b`/pc+ 1)(1 ∨ x).

Proof. For an integer i, the set of integers k such that bk/pc = i is
included in {dipe, . . . , bp(i + 1)c}. This set contains at most (bpc + 1)
elements. Hence,

∑
k≥`

xk/p

Γ(k/p) ≤
∑

i≥b`/pc+1

∑
k∈N s.t. bk/pc=i

xi(x ∨ 1)
Γ(i+ (k/p− i)) .

The Γ function is increasing, so that

∑
k≥`

xk/p

Γ(k/p) ≤
∑

i≥b`/pc
(bpc+ 1)x

i(x ∨ 1)
Γ(i) ≤ (bpc+ 1)(x ∨ 1)

∑
i≥b`/pc

xi

Γ(i) .

Again with the properties of the Gamma function,

∑
i≥k

xi

Γ(i) ≤
xk

Γ(k) exp(x).

since Γ(i+ k) ≥ Γ(i)Γ(k) for i, k ≥ 1 [52]. Hence the result. �

We give give now the so-called neo-classical inequality, proved first by
T. Lyons [43] and then improved by K. Hara and H. Masanori [34].

Proposition 2.17. [Neo-classical inequality, [42, Theorem 3.1.1, p.35],
[34]] For any p ≥ 1, n ∈ N and a, b ≥ 0,

n∑
i=0

ai/pb(n−i)/p

Γ
(
i
p

)
Γ
(
n−i
p

) ≤ p(a+ b)n/p

Γ
(
n
p

) . (2.13)

3. Rough resolvent

Before introducing our main result, we present the features of linear RDE
in the case p < 2 which motivates our definition of a rough resolvent.
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3.1. Linear RDE in the Young case

Let A : [0, T ] → L be a path of finite p-variation with 1 ≤ p < 2, that is
A ∈ Rp(L).

Let us consider the equations

Yt = Id +
∫ t

0
Yr dAr (3.1)

and Zt = Id−
∫ t

dArZr for t ∈ [0, T ]. (3.2)

Proposition 3.1. The following properties hold:
(i) There exist unique solutions Y and Z to (3.1) and (3.2).
(ii) For some constant C and (s, t) ∈ ∆+

2 (T ),

‖Yt − Ys − YsAs,t‖ ≤ Cω(s, t)2/p and ‖Zt − Zs +As,tZs‖ ≤ Cω(s, t)2/p

(3.3)
and Y,Z ∈ RpId(L).

(iii) Any paths Y and Z in RpId(L) satisfying (3.3) are solutions to equa-
tions (3.1) and (3.2).

(iv) For any t ∈ [0, T ], YtZt = ZtYt = Id.
(v) For As,t := Y−1

s Yt with (s, t) ∈ [0, T ]2, (As,t)(s,t)∈∆±2 (T ) satisfies the
right/left multiplicative property.

(vi) For (s, t) ∈ ∆±2 (T ),

‖As,t − Id−As,t‖ ≤ Cω(s, t)2/p. (3.4)

Proof. Fix T1 ≤ T and consider only t ∈ [0, T1]. Set Y(0)
t = Id and Y(k+1)

t =
Id +

∫ t
0 Y(k)

s dAs. From the properties of the Young integral, since p ≤ 2
and Y(0) ∈ RpId(L), an induction proves that Y(k) ∈ RpId(L). Besides, the
Young integral is linear, so that

‖Y(k+1) − Y(k)‖p ≤ ζ(2p)‖Y(k) − Y(k−1)‖p‖A‖pω(0, T1)1/p. (3.5)

For T1 such that ζ(2p)‖A‖pω(0, T1)1/p < 1, (Y(k))k∈N is a Cauchy se-
quence inRp(L) which converges in q-variation for any q > p to Y ∈ Rp(L)
which is solution to (3.1).

With an inequality similar to (3.5), the solution Y to (3.1) is unique,
and by linearity, the solution to yt = a +

∫ t
0 ys dAs is given by yt = aYt,

t ∈ [0, T1].
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As the choice of the maximal time T1 depends only on ω, ‖A‖p and p,
it is possible to extend the solution to [T1, T2] with ζ(2p)‖A‖pω(T1, T2)1/p

by solving yt = YT1 +
∫ t
0 ys dAT1+s for t ∈ [0, T2 − T1], then Yt = yt−T1 for

t ∈ [T1, T2], and so on... Since ω is continuous close to its diagonal, it is
possible to find a finite family (Ti)i≥0 such that ω(Ti, Ti+1) < δ for any
δ > 0 and Tj = T for some j ≥ 1.

A similar reasoning applies to Z•.
Inequalities (3.3) in (ii) follow immediately from (2.11). It is then im-

mediate that Y and Z belong to RpId(L).
Conversely, that (3.3) characterizes uniquely (3.1) and (3.2) follows from

Proposition 2.15(i).
For (s, t) ∈ ∆+

2 (T ),
YtZt−YsZs = (Yt−Ys−YsAs,t)Zt−Ys(Zt−Zs+As,tZs)+YsAs,t(Zt−Zs).
Thus t 7→ YtZt is a continuous path of p/2-finite variation and then con-
stant and equal to Id since Y0 = Z0 = Id.

The multiplicative properties in (iv) are immediate from the construc-
tion of As,t.

Finally, (3.4) in (vi) follows by multiplying Yt − Ys − YsAs,t by YtY−1
s

and using the fact that Y• is bounded. �

3.2. Rough resolvent
Based on the previous computations, we define, using the vocabulary of
differential equations, the notion of rough resolvent, which is a multiplica-
tive functional [42, 43] taking its values in the Banach space L.

Definition 3.2 (Rough resolvent). A family (As,t)(s,t)∈∆±2 (T ) of elements
in L satisfying the right/left multiplicative property (2.1) and

A• − Id ≺ Cω1/p (3.6)
for some constant C is called a right/left p-rough resolvent.

Let us start with some simple properties.

Lemma 3.3 (Extension property). Assuming that on a partition 0 =
T0 < T1 < · · · < Tk = T of [0, T ], we have a family of p-rough resolvents
(Ais,t)(s,t)∈∆±2 (Ti,Ti+1). Then there is a right resolvent (As,t)(s,t)∈∆±2 (T ) such
that As,t = Ais,t for (s, t) ∈ ∆±2 (Ti, Ti+1), i = 0, . . . , k − 1.
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Proof. For s, t ∈ ∆±2 (Ti, Ti+1), set As,t = Ais,t. For s ∈ [Ti, Ti+1) and
t ∈ [Tj , Tj+1) with i < j, set As,t = Ais,Ti+1

· · ·AjTj ,t. Then (As,t)(s,t)∈∆+
2 (T )

satisfies the multiplicative property (2.1) and

As,t − Id = (Ais,Ti+1 − Id)Ai+1
Ti+1,Ti+2

· · ·AjTj ,t + Ai+1
Ti+1,Ti+2

· · ·AjTj ,t.

Iterating this procedure leads to (3.6). A similar construction holds for
left p-rough resolvent. �

Lemma 3.4 (Existence of an Inverse). For any (As,t)(s,t)∈∆±2 (T ) that is
a right/left p-rough resolvent, there exists a left/right p-rough resolvent
(At,s)(s,t)∈∆±2 (T ) such that As,tAt,s = At,sAs,t = Id, that is At,s = A−1

s,t for
(s, t) ∈ ∆±2 (T ).

Proof. Using the extension property of Lemma 3.3, it is sufficient to prove
the existence of an inverse of As,t for ω(s, t) small enough, whose existence
follows from (2.2) and (3.6). �

The next proposition is the converse of Lemma 2.4.

Proposition 3.5. A path (At)t∈[0,T ] ∈ R
p
Id(L) may be associated to a

right/left p-rough resolvent A•.

Proof. For a right p-rough resolvent (As,t)(s,t)∈∆+
2 (T ), At := A0,t is such

that As,t = A−1
s At, since A0,sAs,t = A0,t for (s, t) ∈ ∆+

2 (T ). Besides,

‖At − As‖ = ‖AsA−1
s (At − As)‖ ≤ A]•‖As,t − Id‖ ≤ A]•Cω(s, t)1/p.

Thus, t 7→ At ∈ RpId(L). Similar results hold for left p-rough multiplicative
resolvent with At = At,0, t ∈ [0, T ]. �

Lemma 3.6 (Uniqueness of a p-rough resolvent). Let A• and B• be two
left/right p-rough resolvents such that A• ' B•. Then A• = B•.

Proof. Let us consider that A• and B• are right p-rough resolvents. Then
for f(t) := A0,tB−1

0,t ,

f(t)− f(s) = A0,s(As,tB−1
s,t − Id)C−1

0,s

and then
|f(t)− f(s)| ≤ A]•(B−1

• )]‖As,tB−1
s,t − Id‖.

Since
As,tB−1

s,t − Id = (As,tB−1
s,t − Id)Bs,tB−1

s,t = (As,t − Bs,t)B−1
s,t ,
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it follows easily that f is a finite θ-variation with θ > 1 and then that
A0,t = B0,t for any t ∈ [0, T ]. This leads to A• = B•. �

3.3. From almost rough resolvent to rough resolvent: the
sewing lemma

As in this article, we focus on linear RDE, we introduce some vocabu-
lary which refers to the theory of linear differential equations. Thus, L
is thought as a space of operators. However, the proofs may be used for
tensor algebras.

Following the construction proposed by T. Lyons, we construct a rough
resolvent from an almost rough resolvent. However, our proof borrows
some ideas from the elegant proof of Theorem 10 in [27] where ω(s, t) =
V (t − s) provided that for some θ > 2,

∑
n≥0 θ

nV (t2−n) < +∞ for any
t > 0, as well as the ones from [2] regarding the composition of flows.

Definition 3.7 (Almost rough resolvent). A family (Bs,t)(s,t)∈∆±2 (T ) of
elements of L satisfying for some constants p ≥ 1, θ > 1, C ≥ 0, B ≥ 0
and for any (s, r, t) ∈ ∆±3 (T ),

B• − Id ≺ Bω1/p, (3.7)
‖Bs,r,t‖ ≤ Cω(s, t)θ for (s, r, t) ∈ ∆±3 (T ) with Bs,r,t := Bs,rBr,t − Bs,t

(3.8)

is called an almost right/left p-rough resolvent.

The next lemma is similar to the extension Lemma 3.3.

Lemma 3.8. Let us consider η > 0 and a family (Ti)i=0,...,N of times
such that T0 = 0, TN = T and ω(Ti, Ti+1) ≤ η. For each i, consider a
family (B(i)

s,t)(s,t)∈∆+
2 (Ti,Ti+1) of almost right p-rough resolvents, each with

the same constant C and B in (3.7)–(3.8). Now

As,t :=
{

B(i−1)
s,Ti

B(i)
Ti,Ti+1

· · ·B(j)
Tj−1,Tj

BTj ,t if Ti−1 ≤ s < Ti ≤ Tj < t ≤ Tj+1,

Bs,t if Ti ≤ s ≤ t ≤ Ti+1.

Then A• is an almost right p-rough resolvent with

A•− Id ≺ BN(1 +Bη1/p)N−1ω1/p and ‖Ar,s,t‖ ≤ C(1 +Bη1/p)N−1ω(r, t)θ

for (s, r, t) ∈ ∆+
3 (T ).
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Proof. Fix (r, s, t) ∈ ∆+
3 (T ) and consider the indexes i, j, k such that r ∈

[Ti, Ti+1], s ∈ [Tj , Tj+1], t ∈ [Tk, Tk+1], Then
Ar,sAs,t − Ar,t = Ar,Ti(ATj ,rAr,Tj+1 − ATj ,Tj+1)ATj+1,t,

so that
‖Ar,s,t‖ ≤ (1 +Bη1/p)N−1ω(Tj , Tj+1)θ ≤ (1 +Bη1/p)N−1Cω(r, t)θ.

In addition
Ar,t − Id = (Ar,Ti − Id)ATi,Ti+1 · · ·ATk,t + ATi,Ti+1 · · ·ATk,t − Id

so that

‖Ar,t − Id‖ ≤ Bω(r, Ti)1/p(1 +Bη1/p)N−1 + ‖ATi,Ti+1 · · ·ATk,t − Id‖

≤ B(1 +Bη1/p)N−1

ω(r, Ti)1/p +
j∑
`=i

ω(T`, T`+1)1/p + ω(Tj , t)1/p


≤ BN(1 +Bη1/p)N−1ω(r, t)1/p.

Hence the result. �

For an almost right/left p-rough resolvent (Bs,t)(s,t)∈∆±2 (T ) and a family
(Cs,t)(s,t)∈∆±2 (T ) we write B• ' C• when there exist constants C and θ > 1
such that

B• − C• ≺ Cωθ.

Lemma 3.9. If B• is an almost p-rough resolvent and C• ' B• for a
family C•, then C• is an almost p-rough resolvent.

Proposition 3.10. Let B• be an almost right p-rough resolvent. Then
there exists a constant L such that for any partition π = {ti}i=0,...,n of
[0, T ],

Bπs,t :=
{

Bs,tiBti,ti+1· · ·Btj−1,tjBtj ,t with s ∈ (ti, ti+1], t ∈ (tj , tj+1], i ≤ j,
Bs,t if ti ≤ s < t ≤ ti+1

(3.9)
satisfies Bπ• − B• ≺ Lωθ, so that Bπ is an almost right p-rough resolvent.
A similar result holds for almost left p-rough resolvents.

Proof. Set f(η, L) := 1+Bη1/p+Lηθ for η, L > 0 and consider L solution
to

C(2θζ(θ)f(η, L)2 + 1) = L,
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where ζ is the zeta function defined in Proposition 2.15. This is a second
order polynomial equation in L which has some solutions provided that

(1− 2(1 +Bη1/p)ηθC2θζ(θ))2 ≥ 4(1 + 2θζ(θ)(1 +Bη1/p)2)C22θζ(θ)η2θ.

For η small enough, depending only on θ, B and C, this is always possible.
Now, let us construct recursively a sequence (Tk)k≥0 such that T0 = 0

and ω(Tk, Tk+1) < η. As ω is continuous close to its diagonal, there exists
a choice of such a sequence which forms a finite partition of [0, T ].

Let us fix (s, t) ∈ ∆+
2 (Tk, Tk+1). Let us proceed by induction over the

number of points in the partition π that belongs to [s, t].
Our induction hypothesis is that

‖Bπs,t − Bs,t‖ ≤ Lnω(s, t)θ with Ln := C

(
1 +

n−1∑
k=1

f(η, L)22θ

kθ

)
≤ L,

as soon as #(π ∩ [s, t]) = n for some n ≥ 1.
For i = j, that is n = 1, then |Bπs,t − Bs,t| ≤ Cω(s, t)θ and L1 = C.
If the induction hypothesis is satisfied at step n, then

‖Bπs,t‖ ≤ 1 +Bω(Tk, Tk+1)1/p + Lnω(Tk, Tk+1)θ ≤ f(η, L)

for any partition π with #(π ∩ [s, t]) = n.
Let us consider π be a partition of size n + 1. As soon as n ≥ 1, it is

possible to choose t` ∈ (ti, tj) (where ti and tj are defined by (3.9)) such
that

ω(t`−1, t`+1) ≤ 2ω(σ, τ)
n

(3.10)

(see equation (1.4) page 11 of [44]). Set π̂ = π \ {t`}. Then from the
induction hypothesis,

‖Bπs,t − Bs,t‖ ≤ ‖Bπs,t − Bπ̂s,t‖+ Lnω(s, t)θ

≤ ‖Bπs,t`−1‖ × ‖Bt`−1,t`,t`+1‖ × ‖Bπs,t`−1‖+ Lω(s, t)θ

≤
(

2θ · f(T, η)2 · C
nθ

+ Ln

)
ω(s, t)θ ≤ Ln+1ω(s, t)θ.

The induction hypothesis is then true at step n+1.Combined to Lemma3.8,
this leads to the conclusion. �

Theorem 3.11 (The sewing lemma). Let (Bt,s)(s,t)∈∆+
2 (T ) be an almost

right p-rough resolvent as in Definition 3.7. Then there exists a unique
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right p-rough resolvent (As,t)(s,t)∈∆+
2 (T ) such that

A• − B• ≺ Lωθ (3.11)
for some constant L that depends only on B and C in (3.7)–(3.8) and T .
Of course, a similar result holds for almost left p-rough resolvents.

Proof. The uniqueness follows from Lemma 3.6.
We consider only the proof for right p-rough resolvents. We use the trick

introduced in [26, Remark 2, p. 862] to reduce the analysis to the case of
ω(s, t) = t− s. Let us consider φ(t) = ω(0, t) for t ∈ [0, T ] and

φ−1(u) := inf{t ∈ [0, ω(0, T )] |φ(t) ≥ u},
the generalized left-continuous inverse which is such that φ(φ−1(t)) = t.

As ω is super-additive, it holds that ω(s, t) ≤ ω(0, t)−ω(0, s) and then
ω(φ−1(s), φ−1(t)) ≤ t− s.

Set Cs,t := Bφ−1(s),φ−1(t) for (s, t) ∈ ∆+
2 (φ(T )) so that

‖Cs,r,t‖ ≤ C|t− s|θ and ‖Cs,t − Id‖ ≤ B|t− s|1/p.
Define recursively

C1
s,t = Cs,t and Cn+1

r,t = Cnr,sCns,t with s = r + t

2 .

We prove by induction that for any n,
‖Cns,t − Cn−1

s,t ‖ ≤ Cκn−2|t− s|θ (3.12)
with

κ := DT

2θ−1 and DT := C

1− κT
θ +BT 1/p + 1,

provided that T is small enough so that κ < 1. Here, B and C are the
constants in (3.7)–(3.8). The existence of such a choice for κ < 1 is proved
by considering solving

κ = αT
(1− κ) + βT with αT =: CT

θ

2θ−1 and βT := 1 +BT 1/p

2θ−1 .

This equation has a solution κ < 1 as soon as

1 + βT −
√

(1 + βT )2 − 4αT < 2,

and then if 1 + BT 1/p < 2θ−1, which is possible since θ > 1 and then
2θ−1 > 1.
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This choice implies that if (3.12) is true for up to order n, then

‖Cns,t‖ ≤ ‖Cns,t−Cs,t‖+‖Cs,t− Id‖+1 ≤ 1+B|t−s|1/p+ C

1− κ |t−s|
θ ≤ DT .

Clearly, C2
r,t − C1

r,t = Cr,s,t so that the induction hypothesis is true at
step 1. If it is true at step n,

Cn+1
r,t − Cnr,t = Cnr,s(Cns,t − Cn−1

s,t )− (Cn−1
r,s − Cnr,s)Cn−1

s,t

and then, because s− r = t− r = (t− s)/2,

‖Cn+1
r,t − Cnr,t‖ ≤ C

DT

2θ−1κ
n−1|t− r|θ ≤ Cκn|t− r|θ.

This means that our induction step is true at step n+ 1. Thus, (Cnr,t)n∈N
is a Cauchy sequence for any (r, t) ∈ ∆2(T ). Let Dr,t be its limit. To proof
that Dr,t is a multiplicative functional is the same as in [27] so that we
skip it.

Finally, we set At := D0,φ(t) and As,t = D−1
0,φ(s)D0,φ(t) for (s, t) ∈ ∆+

2 (T ).
As such, it holds that for some universal constant C ′ and θ > 0,

‖As,t − Br,t‖ ≤ C ′|ω(0, t)− ω(0, s)|θ, (s, t) ∈ ∆+
2 (0, T ).

Fixing r ∈ [0, T ) and applying the same argument to (Bs,t)(s,t)∈∆+
2 (r,T )

leads to the existence of right p-rough resolvent (As,t(s))(s,t)∈∆+
2 (α,T ) such

that
‖As,t(r)− Bs,t‖ ≤ C ′|ω(r, t)− ω(r, s)|θ, (s, t) ∈ ∆+

2 (r, T ).

From Lemma 3.6 on the uniqueness, Ar,t(α) = As,t for any (s, t) ∈ ∆+
2 (r, T ).

In particular, for s = r,
‖Ar,t(r)− Br,t‖ = ‖Ar,t(r)− Br,t‖ ≤ C ′|ω(r, t)− ω(r, r)|θ

for 0 ≤ r ≤ t ≤ T . Then A• ' B•.
As the choice of T depends only on ω, B and C, the extension property

(Lemma 3.3) proves the existence of A• on [0, T ] for any time horizon T .
�

From the very construction of a p-rough resolvent from a resolvent, we
deduce the following results.

Corollary 3.12. Let G be a close subgroup of L for the multiplication
and an almost p-rough path B• which takes its values in G.

(i) The p-rough resolvent A• generated by B• also takes its values in G.
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(ii) Let ρ : G→ R+ be a continuous function such that ρ(ab) ≤ ρ(a) +
ρ(b), a, b ∈ G. If ρ(B•) ≺ ω, then ρ(A•) ≺ ω.

Remark 3.13. Using the group isomorphism between a vector space (V,+)
and the group (exp(V),⊗) of the Banach algebra (T1(V),+,⊗) given in
Remark 2.7, Theorem 3.11 contains the additive sewing lemma which im-
plies 2.15(i) and from which rough integrals are constructed.

Corollary 3.14. Let B• be an almost p-rough resolvent and let C• ' B•.
Then C• generates the same p-rough resolvent as B•.

Proof. With Lemma 3.9, C• is an almost p-rough resolvent. The proof
follows then from the uniqueness in Theorem 3.11, which follows from
Lemma 3.6. �

The proof of the next continuity result is similar to the one of Theo-
rem 3.11 so we skip it. It is an extension of Theorem 3.2.2 in [42].

Corollary 3.15 (Continuity property). Let B• and B′• be two almost p-
rough resolvents such that for some ε ≥ 0,

B• − B′• ≺ εω1/p and ‖Bs,r,t − B′s,r,t‖ ≤ εω(s, t)θ for any (s, r, t) ∈ ∆±3 (T ).
Then there exists a constant L such that

‖As,t − Bs,t − (A′s,t − B′s,t)‖ ≤ εLω(s, t)θ for any (s, t) ∈ ∆±2 (T ),

where A (resp A′) is the p-rough resolvent associated to B (resp. B′).

Corollary 3.16. Let (At)t∈[0,T ] and (Bt)t∈[0,T ] in R
p
Id(L) such that (AB)• '

Id with (AB)s,t = A−1
s AtBtB−1

s for (s, t) ∈ ∆±2 (T ). Then Bt = A−1
t for

t ∈ [0, T ].

Proof. For (s, t) ∈ ∆±2 (T ),

AtBt − AsBs = AsA−1
s (AtBt − AsBs)B−1

s Bs = As(As,tBt,s − Id)Bs.
Thus,

‖AtBt − AsBs‖ ≤ A]•B]•Cω(s, t)θ.
As θ > 1, this implies that AtBt is constant and equal to Id since A0 =
B0 = Id. Thus, At = B−1

t for t ∈ [0, T ]. �

Lemma 3.17. Let (Bs,t)(s,t)∈∆±2 (T ) be an almost p-rough resolvent. Let δ
be such that Bs,t is invertible when ω(s, t) < δ and (B−1

s,t )(s,t)∈∆±2 (T ),ω(s,t)≤δ
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is uniformly bounded. Let (Ct,s)(s,t)∈∆pm2(T ) be a family in L such that
(Ct,sBs,t)(s,t)∈∆±2 (T ) ' Id. Then C• ' B−1

• .

Proof. Set εs,t = Ct,sBs,t − Id, so that ε• ' 0 and εs,tB−1
s,t = Ct,s − B−1

s,t

when ω(s, t) ≤ δ. Hence the result. �

Proposition 3.18. Let (Bs,t)(s,t)∈∆+
2 (T ) be an almost right p-rough resol-

vent generating the right p-rough resolvent (As,t)(s,t)∈∆+
2 (T ). Then there ex-

ists δ>0 such that for ω(s, t) ≤ δ, Bs,t is invertible and (B−1
s,t )(s,t)∈∆+

2 (T );ω(s,t)≤δ

is an almost left p-rough resolvent generating the left p-rough resolvent
(A−1

t,s )(s,t)∈∆+
2 (T ).

A similar result holds for almost left p-rough resolvent.
Proof. For (s, r, t) ∈ ∆±3 (T ),

‖Bs,rBr,t − Id‖ ≤ Cω(s, t)1/p(1 + B]•).
Choose δ such that
‖Bs,rBr,t − Id‖+ ‖Bs,t − Id‖ < 1 for (s, r, t) ∈ ∆+

3 (T ), ω(s, t) ≤ δ.
For this choice of δ, Bs,t is invertible when ω(s, t) ≤ δ and B−1

• − Id ≺
C(1− Cδ)−1ω1/p. Besides,
‖B−1

s,t − B−1
r,t B−1

s,r‖ = ‖B−1
s,t − (Bs,rBr,t)−1‖ ≤ ‖B−1

s,t − (Bs,r,t + Bs,t)−1‖.
With Lemma 2.5 and the definition of Bs,r,t in (3.8),

‖B−1
s,t − B−1

r,t B−1
s,r‖ ≤

Cω(s, t)θ

1− ‖Bs,t − Id‖ − ‖Bs,r,t + Bs,t − Id‖ ≤
C

1− δω(s, t)θ.

Let (Ct,s)(s,t)∈∆2(T ) be the p-rough resolvent associated to (B−1
s,t )(s,t)∈∆2(T ).

For (s, t) ∈ ∆±2 (T ),
As,tCt,s = As,t(Ct,s − B−1

s,t ) + (As,t − Bs,t)B−1
s,t + Id

from which we deduce that (AC)• ' Id and then that Ct,s = A−1
s,t from

Corollary 3.16. �

Remark 3.19. If A ∈ Rp(L) with 1 ≤ p < 2 is a path of finite p-variation
and Y and Z are the solutions to Yt = Id +

∫ t
0 Yr dAr and Zt = Id −∫ t

0 dArZr understood in the Young sense, then Y• and Z• are paths of
finite p-variation in RpId(L) associated to the almost p-rough resolvents
(Id±As,t)(s,t)∈∆±2 (T ) or exp(±As,t)(s,t)∈∆±2 (T ), respectively.
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3.4. Using the Baker-Campbell-Hausdorff-Dynkin formula
Unless L is nilpotent where we set L(δ) := L, we then consider a subset

L(δ) := {b ∈ L | ‖b‖ < δ with δ < log(2)/4}.
This way, log(b) exists and (2.5) holds for any a, b ∈ L(δ).

The next theorem is a direct consequence of Lemma 2.5.
Theorem 3.20. Let ρ ∈ (0,+∞]. Let us consider a family (Ωs,t)(s,t)∈∆+

2 (T )
such that for ω(s, t) ≤ ρ, Ωs,t ∈ L(δ).

We assume that for some constants C1, C2 and θ > 1,
Ω• ≺ C1ω

1/p,

‖Ωs,r ? Ωr,t − Ωs,t‖ ≤ C2ω(s, t)θ for (s, r, t) ∈ ∆+
3 (T ).

Then there exists a family (Θs,t)(s,t)∈∆2(T ),ω(s,t)≤ρ such that Θs,r ? Θr,t =
Θs,t and for some constants K1 and K2, Θ• ≺ K1ω

1/p and Θ• − Ω• ≺
K2ω

θ.
Remark 3.21. Of course, one may also deduce the construction of the
family (Θt,s)(t,s)∈∆+

2 (T ),ω(s,t)≤ρ satisfying Θt,r ? Θr,s = Θt,s for (s, r, t) ∈
∆+

3 (T ) from a family Ω• satisfying ‖Ωt,r ? Ωr,s − Ωt,s‖ ≤ C2ω(s, t)θ.
Remark 3.22. Using Theorem 2.8, if Ωs,t belongs to a free Lie algebra l,
then Θs,t also belongs to l for any (s, t) ∈ ∆±2 (T ).
Remark 3.23. Despite Θs,t may be defined for sufficiently small (s, t), A• =
exp(Θ•) may be extended to a p-rough resolvent for any (s, t) ∈ ∆±2 (T )
thanks to Lemma 3.3.

3.5. Linear differential equations in the Heisenberg group
We consider the simplest non-trivial example. The results of this section
may be extended to Carnot groups which are described for example in [8].

We now consider that L = H, the Heisenberg group introduced in Sec-
tion 2. As H is a nilpotent group of step 2,

log(A− Id) = A− 1
2A

2 for A ∈ H and exp(B) = Id + B + 1
2B

2 for B ∈ h.

It is then easily checked that for A,B ∈ h,

A ? B = A+ B + 1
2[A,B]. (3.13)

129



L. Coutin & A. Lejay

Let x, y : [0, T ] → R be two paths of finite p-variation, 1 ≤ p < 2, and
consider the controlled linear differential equation

Ut = Id +
∫ t

0
AUs dxs +

∫ t

0
BUs dys, Ut ∈M3×3(R) (3.14)

for A and B in h.

Proposition 3.24. The solution (Ut)t∈[0,T ] ∈ R
p
Id(H) to (3.14) is defined

by U−1
s Ut = exp(Θs,t) with

Θs,t := Axs,t + Bys,t −
1
2[A,B]

(∫ t

s
xs,r dyr −

∫ t

s
ys,r dxr

)
. (3.15)

Proof. For a constant matrix F ∈ M3×3(R), the linear equation Ut =
Id +

∫ t
0 FUs ds is solved by Ut = exp(tF) [3]. When F ∈ h, then Ut ∈ H

for any t ≥ 0.
This suggests to use as an approximation of the flow exp(Ωs,t) with

Ωs,t := Axs,t + Bys,t. Then

‖Ωs,t‖ ≤ (‖A‖‖x‖p + ‖B‖‖y‖p)ω(s, t)1/p

and
Ωr,t ? Ωs,r = Ωs,t −

1
2[A,B](xr,tys,r − xs,ryr,t)

so that
‖Ωr,t ? Ωs,r − Ωs,t‖ ≤ ‖A‖‖B‖‖x‖p‖y‖pω(s, t)2/p

and 2/p > 1. This gives the existence of Ξ• for any (s, t) ∈ ∆+
2 (T ) such

that Ξr,t ? Ξs,r = Ξr,t and ‖Ξs,t −Ωs,t‖ ≤ Kω(s, t)2/p. On the other hand,
it is easily checked that Θ• defined by (3.15) satisfies these conditions so
that Ξ• = Θ•. �

Remark 3.25. A slightly different construction of the flow may be given by
the Trotter-Kato formula, which is slightly different: For this, we would
have considered as an approximation of the flow

Bs,t = exp(Axs,t) exp(Bys,t) = exp
(
Axs,t + Bys,t + 1

2[A,B]xs,tys,t
)
.

This would however have led to similar computations.
For a short proof of the Trotter-Kato formula in the context of p-rough

paths, p < 2, see [27].
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Using approximations of weak geometric p-rough paths by smooth rough
paths and the results of [40] for non-weak geometric rough paths, we get
the following corollary.

Corollary 3.26. For x• ∈ RPp2(R2) with p ∈ [2, 3), write

xs,t := 1 +
∑
i=1,2

xis,tei +
∑

i,j=1,2
xijs,tei ⊗ ej

(i) If x ∈ WGRPp2(R2) and

Θs,t := Ax1
s,t + Bx2

s,t −
1
2[A,B](x12

s,t − x21
s,t),

then exp(Θ•) defines a left p-rough resolvent in H.
(ii) If x ∈ RP2

2(R2) \ WGRP2
2(R2), then xs,t may be decomposed as

xs,t = ys,t + φs,t for φ ∈ R2p(R2 ⊗ R2) which is symmetric, that is
φs,t =

∑
i,j=1,2 φ

ij
s,tei ⊗ ej with φij = φji. With

Θs,t := Ay1
s,t + By2

s,t −
1
2[A,B](y12

s,t − y21
s,t)

+ (AB + BA)φ12
s,t +A2φ11

s,t + B2φ22
s,t,

exp(Θs,t) defines a left p-rough resolvent in H.

4. Series expansions

4.1. Extension theorem

Let us fix p ≥ 1 and β ≥ p. For a ∈ L, set

γa = (a0, βΓ(1/p)a1, βΓ(2/p)a2, . . . ) .

Recall that L and S have been defined in Section 2.2.3.
Let us consider the following subspaces of L:

B :=
{

a ∈ L; a0 = 1, ‖γa‖hom := sup
i≥1

(βΓ(i/p)‖ai‖)1/i < +∞
}
,

D :=
{

a ∈ L; a0 = 0, ‖a‖hom := sup
i≥1
‖ai‖1/i < +∞

}
.

The next lemma is immediate from the properties given in Section 2.7.
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Lemma 4.1. The space B is a close subset of S for ‖ · ‖sum and stable
under �. Besides,
‖γ(a� b)‖hom ≤ (‖γa‖phom + ‖γb‖phom)1/p ≤ ‖γa‖hom + ‖γb‖hom (4.1)

for a, b ∈ B.

With Lemma 2.16, ‖a‖sum < +∞ when ‖γa‖hom < +∞. However, the
finiteness of ‖a‖hom is not sufficient to ensure that ‖a‖sum is finite.

Lemma 4.2. If a ∈ D, ‖a‖hom < 1, then a ∈ S and ‖a‖sum ≤ ‖a‖hom/(1−
‖a‖hom). In addition,

‖a− π≤`(a)‖sum ≤
‖a‖`+1

hom
1− ‖a‖hom

. (4.2)

Lemma 4.3. Let f(z) =
∑
m≥0 cmz

m be an analytic power series with
c0 = 0. Assume that for some constant L,

1
βΓ
(
k
p

) k∑
m=0
|cm|mk/p ≤ Lk for all k ∈ Z+. (4.3)

Then for a ∈ L with a0 = 0 and ‖γa‖hom < 1/L, f(a) belongs to D ∩ S
with
‖f(a)‖hom ≤ L‖γa‖hom and ‖f(a)‖sum ≤ L‖γa‖hom/(1− L‖γa‖hom).

Proof. Let a ∈ L with a0 = 0 and ‖γa‖hom < +∞. Then

πk((a)�m) =
∑

i1+···+im=k
i1,...,im∈{0,...,k}

ai1 · · · aim and πk(f(a)) =
∑
m≥1

cmπk((a)�m).

Since a0 = 0, any product ai1 · · · aim for which one of the ij ’s is equal to
0 vanishes. This is necessarily the case as soon as i1 + · · · + im = k and
m > k. Using the neo-classical inequality (2.13),∥∥∥∥∥∥∥∥∥

∑
i1+···+im=k

i1,...,im∈{0,...,k}

ai1 · · · aim

∥∥∥∥∥∥∥∥∥ ≤

‖γa‖khom

mk/p

βΓ
(
k
p

) if m ≤ k,

0 otherwise.

It follows that

‖πk(f(a))‖ ≤ ‖γa‖khom

βΓ
(
k
p

) k∑
m=1
|cm|mk/p ≤ ‖γa‖khomL

k.
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The result follows then from Lemma 4.2. �

Corollary 4.4. There exists a constant ρ, depending only on p, such that
z 7→ z−1 − 1 and z 7→ log(z) map B := {a ∈ B; ‖γa‖hom ≤ ρ} into D ∩S
with

‖a−1 − 1‖hom ≤ C1‖γa‖hom and ‖ log(a)‖hom ≤ C2‖γa‖hom.

In addition, if for a, b ∈ B and some ε > 0,

‖γ(a− b)‖hom ≤ ε then ‖f(a)− f(b)‖hom ≤ εC3

for f(z) = log(z) and f(z) = z−1 − 1.

Proof. Note first that ‖a‖hom = ‖a− 1‖hom and ‖γa‖hom = ‖γ(a− 1)‖hom
since ‖ · ‖hom does not depend on the first term.

For f(z) = log(1 + z) =
∑
k≥1(−1)kzk/k, it holds that

k∑
m=1
|cm|mk/p ≤ kk/p.

On the other hand (see e.g. [52, 6.1.39, p. 78]),

Γ
(
k

p

)
∼
√

2πe−k/p
(
k

p

) k
p
− 1

2
.

Thus, for η > 1,

1
k

log(kk/p)− 1
k

log
(
ηβ−1√2πe−k/p

(
k

p

) k
p
− 1

2
)

= 1
p

+ 1
p

log(p) + log(k)
2k + 1

k

(
−1

2 log(p)− log(ηβ−1√2π)
)

−−−→
k→∞

γp := 1
p

+ 1
p

log(p).

Hence, for some κ > 0, the condition (4.3) is satisfied with L = eκγp .
For f(z) = (1 + z)−1 − 1, c0 = 0 and ck = (−1)k for k ≥ 0, the

conclusions are the same.
For the continuity, note first that when i1 + · · ·+ im = k,

ai1 · · · aim − bi1 · · · bim =
m∏
j=1

ai1 · · · aij−1(aij − bij )bij+1 · · · bim .
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Iterating the neo-classical inequality,

‖ai1 · · · aim − bi1 · · · bim‖ ≤ εk
kmk/p

βΓ
(
k
p

) m∏
j=1
‖γa‖i1+···+ij−1

hom ‖γb‖ij+1+···+im
hom

≤ εk km
k/p

βΓ
(
k
p

)(1 ∨ ‖γa‖hom ∨ ‖γb‖hom)k.

Hence the result since ρ < 1. �

For ` ∈ N, set
a�` b := π≤`(a� b), a, b ∈ L.

Lemma 4.5. For ` ∈ N, π≤`B is a close subset of the Banach algebra
(π≤`S,+,�`) stable under �` and ‖γ(a �` b)‖hom ≤ ‖γa‖hom + ‖γb‖hom
for a, b ∈ π≤`B. Besides, there exists ρ > 0 such that for any a ∈ π≤`B
with ‖γa‖hom < ρ, then π≤`(a−1) ∈ π≤`B.
Proof. Of course, the properties of Lemma 4.1 are still true when B is
replaced by π≤`B. The existence of an inverse in a small ball follows from
Corollary 4.4. �

Proposition 4.6. For bpc ≤ ` < +∞, let (bs,t)(s,t)∈∆±2 (T ) be a p-rough
resolvent in (π≤`S,+,�`) taking its values in π≤`B with ‖γb•‖hom ≤ ω1/p.
(i) The family b• is an almost p-rough resolvent in (S,+,�) generating a

p-rough resolvent a• that satisfies ‖γa•‖hom ≺ ω1/p and π≤`(a•) = b•.
(ii) For p ≥ 1, k ≥ ` and (s, t) ∈ ∆±2 (T ),

‖as,t−π≤k(as,t)‖sum ≤ (1 + bpc)(1∨ω(s, t))ω(s, t)(b(k+1)/pc+1

Γ(bk/pc+ 1) exp(ω(s, t)).

(iii) The p-rough resolvent a−1
• satisfies ‖γ(a−1

• −1)‖hom ≺ Cω1/p for some
constant C.

Remark 4.7. This theorem is a variation of the extension theorem of
T. Lyons [42, Theorem 3.2.1] which allows one to pass from a p-rough
path of finite order to a p-rough path of infinite order. This theorem itself
may be seen as a generalization of the notion of Chen series (see Theo-
rem 2.13).
Remark 4.8. Of course, the extension is continuous and the proof relies
on similar arguments so that we skip it. However, we could consider esti-
mating the distance between two extensions in (S,+,�) with ‖ · ‖sum or
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with ‖γ · ‖hom. In the later case, stronger constraints on β could lead to
different bounds [46].

Proof. For (s, r, t) ∈ ∆±3 (T ),

bs,r � br,t = bs,t + cs,r,t

where πkcs,r,t =
{∑k

j=0 πj(bs,r)πk−j(br,t) if k = `+ 1, . . . , 2`,
0 otherwise.

As ` ≥ bpc, it follows that b• is an almost p-rough resolvent inS. Hence, (i)
follows from Lemma 4.1 together with Corollary 3.12 used with ρ(a) =
‖γa‖hom.

The control (ii) follows from Lemma 2.16.
When ω(s, t) is small enough, bs,t is invertible in S. With Lemma 4.5

and (4.2),
π≤`(b−1

s,t ) ∈ π≤`B and b−1
• ' π≤`(b−1

• ).

Then π≤`(b−1
• ) is an almost p-rough resolvent in (π≤`S,+,�`) which gives

rise to a p-rough resolvent in (π≤`S,+,�`) still taking its values in π≤`B
by Corollary 3.12. Then (i) may be applied to give rise to a p-rough resol-
vent taking its values in S ∩B. Necessarily, this p-rough resolvent is b−1

•
by the uniqueness in the sewing Lemma, so (iii) is proved. �

4.2. Linear differential equations, 1 ≤ p < 2
We may now consider linear differential equations in the Young sense in
S.

Assume that 1 ≤ p < 2 and let A ∈ Rp0(L).
Set a(t) = (Id,At, 0, . . . ), which defines a path in Rp1(S) that takes its

values in π≤1BId.
Let us consider the linear differential equation in the Young sense

y(t) = 1 +
∫ t

0
y(s)� da(s), y(•) ∈ Rp1(S). (4.4)

Proposition 4.9. Let A ∈ Rp(L) for p ∈ [1, 2). There exists a unique
solution y(•) of (4.4) in Rp1(S). This solution satisfies

‖γy•‖hom ≺ βΓ(1/p)‖A‖pω1/p
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and yk(•) = πk(y(•)) is given by the recursive relation

y0(t) = Id and yk+1(t) =
∫ t

0
yk(s) dAs. (4.5)

Proof. Let us set as,t := (Id,As,t, 0, . . . ) for (s, t) ∈ ∆+
2 (T ).

With Proposition 3.1, there exists a unique solution y ∈ Rp1(S) to (4.4)
and ‖y•− a•‖ ≺ Cω2/p

• . This equation is easily solved recursively by (4.5).
On the other hand, a• defines a p-rough resolvent in (π≤1S,+,�1) that

takes its values in π≤1B. Thanks to Proposition 4.6, it generates an almost
p-rough resolvent c• ∈ S with π≤1c• = a• and ‖c•−a•‖sum ≺ Cω2/p. This
proves that c• = y•. �

The next result is an immediate consequence of Proposition 4.9 and
Corollary 4.4.

Corollary 4.10. There exists C > 0 and δ > 0 such that for (s, t) ∈
∆+

2 (T ), ω(s, t) < δ, log(ys,t) ∈ D ∩S and ‖ log(ys,t)‖hom ≤ Cω(s, t)1/p.

When applying the algebra homomorphism φ : S → L defined by
φ(a) =

∑
k≥0 πk(a), Proposition 4.9 yields a series representations of Dyson

type [25] for the solution to Yt = Id+
∫ t

0 Ys dAs, and the series is normally
convergent in [0, T ].

4.3. Magnus and Chen-Strichartz formula

Combining the previous results with Theorem 2.13 and using a continuity
argument, we may extend the results on Chen series to weak geometric
rough paths, as well as the Chen-Strichartz formula (2.7).

Proposition 4.11. Let x ∈ WGRPp` (Rd) with ` ≥ bpc, and ‖x‖p < C,
then x may be extended to a rough path z in RPp∞(Rd) such that for
some δ > 0 and any (s, t) ∈ ∆+

2 (T ) with ω(s, t) < δ, zs,t is a Lie element,
log(zs,t) belongs to D ∩ T∞(Rd) and (2.7) holds.

For B1, . . . ,Bd ∈ L, let us consider the algebra homomorphism ψ from
(L,+,⊗) to (S,+, ·) defined by

π`(ψ(eI)) =
{
BI if ` = |I|,
0 otherwise.
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For x ∈ WGRPp` (Rd), we then get that for some δ > 0 and that for
(s, t) ∈ ∆+

2 (T ) with ω(s, t) < δ, there exists Ωs,t ∈ L such that

Xs,t :=
∑

I;|I|≥0
BIxIs,t = exp(Ωs,t) (4.6)

and Ωs,t = φ(log(zs,t)). When x• lies above a smooth path x : [0, T ]→ Rd,
then X• is the solution to

Xt = Id +
d∑
i=1

∫ t

0
XsBi dxis.

Remark 4.12. When Bi are the entries of a matrix A, then one recovers
in (2.7) the Magnus formula [47], which is extensively presented in [7].

Other formulas, with various names, may be used to represent this
logarithm [7]. In any case, the Baker-Campbell-Hausdorff-Dynkin formula
is the main tool [9].

Remark 4.13. A large amount of literature is devoted to the construction
of numerical procedures relying on this kind of computation for smooth
paths [7, 31], or for Brownian paths (See [13, 41] for example).

Remark 4.14. Clearly, our estimates for the existence of a logarithm are
not optimal. However, unless one consider nilpotent algebras, one cannot
expect in general that (4.6) converges for any time (s, t). The radius of
convergence of the logarithms of Chen series of paths of bounded variations
is finite in general [45].

In the case of Magnus series, see for example [7, 49]. For stochastic
processes, see [5] regarding the fractional Brownian motion and [6] for the
Brownian motion.

5. Perturbed linear RDE when 1 ≤ p < 2

Throughout all this section, we consider two paths A and B in Rp(L) with
p ∈ [1, 2).

Proposition 5.1 (Duhamel principle/Variation of constant formula). Fix
p ∈ [1, 2). Let Y and Z be the solutions to (3.1) and (3.2). Let us consider
that either

(a) B∗,B ∈ Rp(L), or
(b) B∗ ∈ Rp(V∗) and B ∈ Rp(V).
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Then

St =
(∫ t

0
dB∗sY−1

s

)
Yt and Tt = Zt

(∫ t

0
Z−1
s dBs

)
,

are the unique solutions to

St =
∫ t

0
Ss dAs + B∗0,t and Tt =

∫ t

0
dAsTs + B0,t, (5.1)

where S,T ∈ Rp(L) in case (a) and S ∈ Rp(V∗), T ∈ Rp(V) in case (b).
Besides, there exists a constant C depending only on ω(0, T ) and p such

that

‖S‖p ≤ C(1 + ‖A‖p + ‖A‖2p)‖B∗‖p and ‖T‖p ≤ C(1 + ‖A‖p + ‖A‖2p)‖B‖p.

Proof. The existence and uniqueness of solutions to (5.1) follows from the
same arguments as in Proposition 3.1.

We only consider S, the computations being similar for T. Using the
characterization of the Young integral of Proposition 2.15(i), it is sufficient
to show that

(St − Ss − SsAs,t − B∗s,t)(s,t)∈∆+
2 (T ) ' 0.

We have

St − Ss =
(∫ t

s
dB∗rY−1

r

)
Yt +

(∫ s

0
dB∗rY−1

r

)
(Yt − Ys)

= B∗s,tY−1
s Yt +

(∫ s

0
dB∗rY−1

r

)
YsAs,t + ε

(1)
s,t

= B∗s,t + B∗s,tY−1
s (Yt − Ys) + YsAs,t + ε

(1)
s,t

= B∗s,t + YsAs,t + ε
(2)
s,t

with ε(i)• ≺ Cω2/p, i = 1, 2. Hence the result with Proposition 3.1(vi).
The control on the p-variation follows from (2.10). �

Corollary 5.2. For B∗ ∈ Rp(V∗) and B ∈ Rp(V)), A ∈ Rp(L). Then the
solutions p ∈ 1, 2 and Sa•, Ta• (defined by linearity) to

Sat = a+
∫ t

0
Sas dAs + B∗0,t and Tat = a+

∫ t

0
dAsTas + B0,t

defined flows of homeomorphims a ∈ V∗ 7→ Sat and a ∈ V 7→ Tat .
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Proof. By linearity for a, b ∈ V∗, C• = Sa• − Sb• is solution to Ct = (b −
a) +

∫ t
0 Cs dAs. This proves that Ct = (b− a)Dt with Dt = Id +

∫ t
0 Ds dAs

and D is invertible by Lemma 3.4. This proves that Ct is one-to-one for
any t ∈ [0, T ]. The proof is similar for T·t. �

6. Perturbed linear RDE when 2 ≤ p < 3

6.1. A Duhamel principle
Let us consider now A ∈ Rp(L) with 2 ≤ p < 3.

Let (A(2)
s,t )(s,t)∈∆+

2 (T ) be a family in L such that A(2)
• ≺ Cω2/p and for

As,t := Id +As,t +A(2)
s,t satisfies

‖As,t −As,rAr,t‖ ≤ Cω3/p(s, t) for (s, r, t) ∈ ∆+
3 (T ).

This way, A• is an almost right p-rough resolvent, to which is associated
a right p-rough resolvent R• which satisfies

R• −A• ≺ Cω3/p,

and so that Rt := R0,t ∈ RpId(L) is formally the solution to

Rt = Id +
∫ t

0
Rs dAs.

Let us also consider

Dt,s := Id−As,t −A(2)
s,t +As,t · As,t for (s, t) ∈ ∆+

2 (T ).

It is easily checked that D• is an almost left p-rough resolvent and that

‖Dt,sAs,t‖ ≤ Cω(s, t)3/p.

Thus, D• ' A−1
• when ω(s, t) is small enough and D• generates a left

p-rough resolvent L• which satisfies

L• −D• ≺ Cω3/p.

The path defined by Lt := Lt,0 ∈ RpId(L) is formally the solution to

Lt = Id +
∫ t

0
dDsLs

and Lt = R−1
t for t ∈ [0, T ].
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Definition 6.1 (p-rough lift). For P = L or P = V∗, a right p-rough
lift (B−→s,t)(s,t)∈∆+

2 (T ) of B ∈ Rp(P) with respect to A• is defined as B−→• :=

B• + B(2)
• where B(2)

s,t ∈ P and for some θ > 1,

B• ≺ Cω1/p, B(2)
• ≺ Cω2/p, (6.1)

‖B−→s,t − B−→s,r − B−→r,t − Bs,rAr,t‖ ≤ Cω(s, t)θ for (s, r, t) ∈ ∆+
3 (T ). (6.2)

The smallest constant C for which (6.1) holds is denoted by ‖B−→‖p.
For P = L or P = V, a left p-rough lift (B←−t,s)(s,t)∈∆+

2 (T ) is defined
similarly with (6.2) replaced by

| B←−t,s − B←−r,s − B←−r,s −Ar,tBs,r‖ ≤ Cω(s, t)θ for (s, r, t) ∈ ∆+
3 (T ).

Proposition 6.2. Set P = L or P = V. Assume that B ∈ Rp(P) admits
a right p-rough lift B−→• with respect to A•. Then there exists a path S in
Rp(P) with which satisfies S0 = 0 and

‖St − SsAs,t − B−→s,t‖ ≤ C‖B−→‖pω(s, t)3/p and ‖S‖p ≤ C‖B−→‖p. (6.3)

This path is denoted by St =
∫ t

0 db B−→rRr,t, where the b stands for “back-
ward integration”.

Proof. Set for 0 ≤ s ≤ t ≤ u ≤ T ,

µs,t(u) := B−→s,tRt,u so that µ•(u) ≺ R#
• ‖B−→‖pω

1/p. (6.4)

With (6.4),

µs,r,t(u) := µs,t(u)− µs,r(u)− µr,t(u)
= −(B−→s,rRr,t + B−→r,t − B−→s,t)Rt,u
= −(B−→s,r(Rr,t − Id)− Bs,rAr,t)Rt,u
= −(Bs,r(Rr,t − Id−Ar,t)− B(2)

s,r (Rr,t − Id))Rt,u.

Hence ‖µs,r,t(u)‖ ≤ C‖B−→‖pω(s, t)3/p for (s, t) ∈ ∆+
2 (T ).

With the additive Sewing Lemma, there exists a path νt(u) such that
(µs,t(u)− νt(u)− νs(u))(s,t)∈∆+

2 (T ) ≺ C‖B−→‖pω
3/p.

The integral
∫ t

0 db B−→rRr,t is defined as νt(t).
For s ≤ t ≤ v ≤ u, µs,t(u) = µs,t(v)Rv,u so that again by the uniqueness

in the sewing lemma, µt(u) = µt(v)Rv,u for any t ≤ v ≤ u.
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It remains to check the regularity of t 7→ µt(t) and (6.3). For (s, t) ∈
∆+

2 (T ),
µt(t)− µs(s) = µt(t)− µs(t) + µs(s)(Rs,t − Id).

With (6.4), this proves that (νt(t)−νs(s))(s,t)∈∆+
2 (T ) ≺ Cω

1/p. In addition,
R• −A• ' 0, hence (6.3). �

The proofs of the next propositions follow the same lines so that we
skip them.
Proposition 6.3. Set P = L or P = V. Assume that B ∈ Rp(P) admits a
left p-rough lift B←−• with respect to A•. Then there exists a path T ∈ Rp(P)
which satisfies T0 = 0 and
‖Tt −Dt,sTs − B←−t,s‖ ≤ C‖B←−‖pω(s, t)3/p and ‖T‖p ≤ C‖B←−‖p. (6.5)

This path is denoted by Tt =
∫ t

0 Lt,r db B←−r.

Proposition 6.4. Assume that in Propositions 6.2 and 6.3, B ∈ Rq(P)
with q−1 + p−1 > 1. Then one may take B(2)

• = 0 and∥∥∥∥∫ t

0
dbBrRr,t

∥∥∥∥
p
≤ C‖B‖q and

∥∥∥∥∫ t

0
Lt,r dbBr

∥∥∥∥
p
≤ C‖B‖q.

In addition, the “backward integrals” are indeed Young integrals.
Of course, an equivalent of Corollary 5.2 is also true for 2 ≤ p < 3.

6.2. Application to rough differential equations
Let U, V and W be Banach spaces. The space W is assumed to be finite-
dimensional.

Let x ∈ RPp2(U) be a p-rough path controlled by ω with p ∈ [2, 3).
Let us consider a function g : V → L(U,V) such that g is bounded

whose first and second order derivatives ∇g and ∇2g are bounded and
∇2g is γ-Hölder continuous, 2 + γ > p.

These conditions are sufficient [28, 39] to ensure the existence of a
unique solution ya ∈ Rp(V) to

yat = a+
∫ t

0
g(yas ) dxs (6.6)

which satisfies ya0 = a and

|yat − yas − g(yas )x(1)
s,t − g∇g(yas )x(2)

s,t | ≤ Cω(s, t)(2+γ)/p for (s, t) ∈ ∆+
2 (T ).
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In addition, there exists a family (ynxs,t)(s,t)∈∆+
2 (T ) with values in V⊗U

for which

yanxs,t = yanxs,r + yanxr,t + yas,r ⊗ xr,t and |yanx•| ≤ Cω2/p (6.7)

for all (s, r, t) ∈ ∆+
3 (T ).

The map I : a ∈ V 7→ y ∈ Rp(V), called the Itô map, is Lipschitz
continuous [28, 39]. Set It(a) := yt. When x is a smooth rough path, then
y is solution to an ODE and It : V→ V defines a flow of diffeomorphisms
for any t ∈ [0, T ]. Using an approximation argument, P. Friz and N. Victoir
proved in [28] that It is a flow of diffeomorphisms when x ∈ WGRPp2(Rd).
The gradient of It is solution to the Jacobi flow

∇It(a) = Id +
∫ t

0
∇g(yas )∇Is(a) dxs, (6.8)

which is a linear RDE.
In a forthcoming article [19], we provide an alternative proof of these

facts without relying on a regularization argument, which allows to con-
sider x ∈ RPp2(U). Moreover, we show that It is Hölder continuous. The
core idea is the following. For a, h in U, ε > 0, set ∆ε

t(a) = It(a + εh) −
It(a), write a first order Taylor expansion of g(It(a)) as

g(It(a+ εh))− g(It(a)) = ∇g(It(a))∆ε
t(a) +G(It(a+ εh),It(a))

and show that

∆ε
t(a) = εh+

∫ t

0
∇g(It(a))∆ε

t(a) dxs +
∫ t

0
G(It(a+ εh),It(a)) dxs.

Thus, ∆ε
t(a) is solution to a perturbed linear RDE and the convergence

of ε−1∆ε
t(a) towards ∇It(a)h with ∇It(a) given by (6.8) is studied by

giving bounds on
∫ t

0 G(It(a+ εh),It(a)) dxs.
In [19], we also study differentiability properties with respect to per-

turbation of a parametrized family of vector fields f = V (·, λ) or of the
driving path x by a path in Rq(U), q−1 + p−1 > 1. This leads to study

yat = a+
∫ t

0
V (yas , λ) dxs+

∫ t

0
V (yas , λ) dhs, h ∈ Rq(V) with 1/p+1/q > 1

with respect to a, λ and h. In this case, f(·) = ∇V (·, λ). Again, Proposi-
tions 6.3 and 6.4 lead to the conclusion.
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Let us now consider a function f : V → L(W ⊗ U,W) such that f
is bounded with a bounded derivative ∇f , which is γ-Hölder continu-
ous, 1 + γ > p. We also consider a path y ∈ Rp(V) for which a family
(ynxs,t)(s,t)∈∆+

2 (T ) satisfying (6.7) exists. Typically, f = ∇g and y is the
solution to (6.6) as above.

Our first aim is to consider the solution to the differential equation

zt = a+
∫ t

0
f(ys)zs dxs. (6.9)

If U = Rd, V = Rn and W = Rm and x is a smooth rough path living
above x, by an equation of type (6.9), we mean

zit = ai +
∑

k=1,...,d
j=1,...,n

∫ t

0
f i,jk (ys)zjs dxks , i = 1, . . . ,m.

In the sense of Davie, a solution of (6.9) is sought as satisfying for constants
C ≥ 0 and θ > 1, with x(1)

s,t := xt − xs and x(2)
s,t :=

∫ t
s [xr − xs]⊗ dxr,

sup
i=1,...,m

∣∣∣zit − zis − ∑
k=1,...,d
j=1,...,n

f i,jk (ys)zjsx
(1),k
s,t −

∑
k=1,...,d
j=1,...,n
r=1,...,n

∂f i,jk
∂yr

(ys)zjs(ynx)r,ks,t

−
∑

k=1,...,d
j=1,...,n
q=1,...,d
p=1,...,n

f i,jk (ys)f j,pq (ys)zpsx(2),q,k
s,t

∣∣∣ ≤ Cω(s, t)θ, ∀(s, t) ∈ ∆+
2 (T ),

which we write under the more compact form

|zt−zs−f(ys)zsx(1)
s,t −∇f(ys)zsynxs,t−F (ys)zsx(2)

s,t | ≤ Cω(s, t)θ, (6.10)

with Fk,`(ys) = fk(ys)f`(ys) is a matrix in Rm for k, ` = 1, . . . , d, and
then F may be identified with a map from V to L(W⊗U⊗U,W).

Proposition 6.5. Let At =
∫ t
0 f(ys) dxs be the path in Rp(L(W,W))

defined by the rough integral Atz := πW
(∫ t

0 f(ys)z dxs
)
∈ Rp(W) for any

z ∈W. Then there exists a left p-rough lift A of A.
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Proof. For (s, t) ∈ ∆+
2 (T ), let As,t be the linear operator in L(W,W)

defined by

At,sz = z + f(ys)[z]x(1)
s,t +∇f(ys)[z]ynxs,t + F (ys)[z]x(2)

s,t , z ∈W. (6.11)
Then

At,rAr,sz = z + f(ys)[z]x(1)
s,r + f(yr)[z]x(1)

r,t

+∇f(ys)[z]ynxs,r +∇f(yr)[z]ynxr,t
+ F (ys)[z]x(2)

s,r + F (yr)[z]x(2)
r,t

+ f(yr)f(ys)[z]x(1)
s,r ⊗ x(1)

r,t + σ(s, r, t)[z],

where σ(s, r, t)[z] contains all the terms which are smaller than C|z|ω(s, t)3p

for some constant C. Since xs,t = xs,r ⊗ xr,t and then x(2)
s,t = x(2)

s,r + x(2)
r,t +

x(1)
s,r ⊗ x(1)

r,t and using standard computations, this proves that |At,r,s| ≤
Cω(s, t)θ and then that A is an almost left p-rough resolvent. Then A• is
the p-rough resolvent associated to A• through Theorem 3.11. �

Proposition 6.6. Under the above hypotheses on f , x and y, the three
notions (linear RDE, in the sense of A.M. Davie [20] and in the sense of
Lyons) of solution to (6.9) are equivalent.

Proof. The equivalence between solutions in the sense of Davie and in the
sense of Lyons have been proved in [39]. The equivalence with solutions
of linear RDE follows from the sewing lemma and the definition of A• in
(6.11). �

Let us consider now bounded function g : V→ L(U,W) with a bounded
derivative which is γ-Hölder continuous and set

bt :=
∫ t

0
g(ys) dxs.

which means that b• is the unique path in Rp(W) satisfying

|bs,t − g(ys)x(1)
s,t −∇g(ys)ynxs,t| ≤ Cω(s, t)θ

for some θ > 1.
Our second aim is to consider the solution to the differential equation

zt = a+
∫ t

0
f(ys)zs dxs +

∫ t

0
g(ys) dxs. (6.12)
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Proposition 6.7. Under the above hypotheses on f , x and y, there exists
a unique solution to (6.12), and for any t ∈ [0, T ], a 7→ zt defines an
homeomorphism from W to W. Besides,

‖z‖p ≤ C(|a|+ ‖g‖∞ + ‖∇g‖∞ +Hγ(∇g)), (6.13)

where C depends only on ‖f‖∞ ‖∇f‖∞, Hγ(∇f), x, ω(0, T ), p and γ,
and Hγ(∇g) is the γ-Hölder norm of ∇g.

Proof. Let us set for (s, t) ∈ ∆+
2 (T ),

µs,t := 1 +
∫ t

s
f(yr) dxr +

∫ t

s
g(yr) dxr + g(ys)⊗ f(ys)x(2)

s,t .

Let us consider X := 1 ⊕ L(W,W) ⊕ W ⊕ (W ⊗ L(W,W))) which is
a Banach sub-algebra of (T2(L(W,W) ⊕W),+,⊗) when equipped with
a⊗ b = πX(a⊗ b). Thus, working only in X,

µs,t − µs,r ⊗ µr,t = (g(ys)⊗ f(ys)− g(yr)⊗ f(yr))x(2)
r,t

+
(
g(ys)x(1)

s,r −
∫ r

s
g(yu)dxu

)
⊗ f(ys)x(1)

r,t

+
∫ r

s
g(yu)dxu ⊗

(
f(ys)x(1)

r,t −
∫ t

r
f(yu)dxu

)
.

Using the regularity of f and g and the properties of the rough integrals,
it follows that (µs,t)(s,t)∈∆+

2 (T ) is an almost right p-rough resolvent with
values in X. Let (νs,t)(s,t)∈∆+

2 (T ) be the corresponding p-rough resolvent
with values in X given by the sewing lemma. The multiplicative property
νs,t = νs,r ⊗ νr,t implies that

πL(W,W)⊕W(νs,t) =
∫ t

s
f(ys) dxs +

∫ t

s
g(ys) dxs

and ν(2)
s,t = ν(2)

s,r + ν
(2)
r,t + bs,r ⊗A(1)

t,r with ν(2)
s,t := πW⊗L(W,W))(νs,t).

Let us now introduce the linear map from (X,+) to (W,+) defined by
Φ(a) = a, Φ(b) = Φ(c) = 0 and Φ(a ⊗ b) := b[a] for a ∈W, b ∈ L(W,W)
and c ∈ R.

Then B←−t,s := Φ(νs,t) for (s, t) ∈ ∆+
2 (T ) defines a left p-rough lift B←−•

of b. The result follows then from Proposition 6.3 �
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