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Norm inequalities in some subspaces
of Morrey space

Justin Feuto

Abstract

We give norm inequalities for some classical operators in amalgam spaces and
in some subspaces of Morrey space.

Inégalités en norme dans certains sous-espaces
d’espaces de Morrey

Résumé
Nous établissons des inégalités en norme pour certains opérateurs classiques

dans les amalgames et certains sous-espaces d’espaces de Morrey.

1. Introduction

For 1 ≤ p, q ≤ ∞, the amalgam of Lq and Lp is the space (Lq, `p) of
functions f on the d-dimensional euclidean space Rd which are locally in
Lq and such that the sequence

{
‖fχQk‖q

}
k∈Zd

belongs to `p(Zd), where
Qk =

∏d
i=1 [ki, ki + 1), χQk denoting the characteristic function of Qk and

‖·‖q the usual Lebesgue norm in Lq.
Amalgams arise naturally in harmonic analysis and were introduced

by N. Wiener in 1926. But its systematic study goes back to the work
of Holland [18]. We refer the reader to the survey paper of Fournier and
Stewart [14] for more information about these spaces. We list here some
of their basic properties.

Let 1 ≤ p, q ≤ ∞.

• (Lq, `q) = Lq

Keywords: Amalgams spaces, fractional maximal operator, Riesz potential, Hilbert
transform.
Math. classification: 42B35, 42B20, 42B25.
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• Lq ∪ Lp ⊂ (Lq, `p) if q ≤ p,

• (Lq, `p) ⊂ Lq ∩ Lp if p ≤ q,

• (Lq, `p) is a Banach space when equipped with the norm

‖f‖q,p =
∥∥∥∥{‖fχQk‖q}k∈Zd

∥∥∥∥
`p

if we identify functions that differ only on null subset of Rd.

• For 1 ≤ p, q <∞, the dual space of (Lq, `p) is (Lq′ , `p′).

In this definition of amalgam spaces, we can replace the cubes Qk of
side length 1 by cubes Qrk =

∏d
i=1 [rki, r(ki + 1)) of side length r or by

balls, and we can also consider continuous summation instead of discrete.
More precisely, for r > 0, we put

r ‖f‖q,p :=
∥∥∥∥{∥∥∥fχQrk∥∥∥q

}
k∈Zd

∥∥∥∥
`p

and

r‖̃f‖q,p =


(∫

Rd
∥∥∥fχB(y,r)

∥∥∥p
q
dy

) 1
p

if p <∞

ess supy∈Rd
∥∥∥fχB(y,r)

∥∥∥
q

if p =∞
,

where B(y, r) is the ball centered at y with radius r. It is easy to see that
for any r > 0, and f ∈ (Lq, `p), there exists a constant Cr > 0 depending
only on r such that

C−1
r ‖f‖q,p ≤ r ‖f‖q,p ≤ Cr ‖f‖q,p ,

while
r‖̃f‖q,p ≈ r

d
p ‖f‖q,p .

1 (1.1)
We can also consider on amalgam spaces, the continuous norm described

in Dobler’s master thesis [6] (see also [9] in the case of Wiener algebra).
Many classical results established in Fourier analysis on Lebesgue spaces

have extensions in amalgams. For example, Hölder and Young inequalities
are just a consequence of the analog in Lebesgue space [14, 3]. The Hardy-
Littlewood-Sobolev inequality for fractional integrals has been generalized

1Hereafter we propose the following abbreviation A ≈ B for the inequalities C−1A ≤
B ≤ CA, where C is a positive constant independent of the main parameters.
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to amalgam spaces by Cowling et al in [5]. In fact, they proved a more
general result which can be formulated as follows: let Q = [−1, 1)d and
K : Rd → C be a measurable function such that

|K(x)| ≤ D |x|γ−d χQ(x) +D |x|β−d χRd\Q(x) (1.2)

where 0 < γ, β < d. Then the operator Iβγ defined by

Iβγ f(x) =
∫
Rd
K(x− y)f(y)dy

is bounded from (Lq, `p) to (Lq∗ , `p∗), with 0 < 1
q∗ = 1

q −
γ
d and 0 < 1

p∗ =
1
p −

β
d . An immediate consequence of the above result is the boundedness

of the Riesz potential Iγ from (Lq, `p) to (Lq∗ , `p∗). We recall that Iγf is
defined by

Iγf(x) =
∫
Rd

f(y)
|x− y|d−γ

dy (1.3)

when the integral exists.
There are classical properties of Lebesgue spaces which are not fulfilled

in amalgam spaces. For example, when q < p the translation operators
τx : f 7→ f(· − x) for x ∈ Rd which are isometric in Lebesgue spaces are
just uniformly bounded in amalgam spaces equipped with the norm ‖·‖q,p
(it is isometric when one uses the continuous norm of Dobler). Dilation
operators δqr : f 7→ r

d
q f(r·) also behave differently in these spaces. In fact,

there is no real number α > 0 for which we have
‖δqrf‖q,p ≈ ‖f‖q,p r > 0. (1.4)

Fofana in [13] (see also [11, 12]) considered normed spaces denoted (Lq, `p)α
which are subspaces of (Lq, `p), satisfying property (1.4), and named these
spaces integrable fractional mean function spaces. For 1 ≤ q < α fixed and
p going from α to ∞, these spaces form a chain of Banach spaces begin-
ning with Lebesgue space Lα and ending by the classical Morrey’s space
Lq,d(1− q

α
) = (Lq, `∞)α. We will see in the next paragraph that the spaces

in the chain are distinct.
In this paper we give extensions of norm inequalities in Lebesgue or

Morrey spaces to the setting of (Lq, `p)α with 1 ≤ q ≤ α ≤ p ≤ ∞. This
is often done by using the relation (1.4) and known results in amalgam
spaces.

The remaining of this paper is organized as follows:
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In the second paragraph, we recall the definition of (Lq, `p)α spaces and
some of their basic properties. Paragraph three is devoted to some norm
inequalities in amalgams of Lebesgue and Lorentz spaces which we do not
see in the literature, while in paragraph four we establish norm inequalities
for some classical operators in the context of our spaces.

Throughout the paper, the letter C is used for non-negative constants
that may change from one occurrence to another. Constants with sub-
script, such as C0, do not change in different occurrences. If E is a measur-
able subset of Rd, then |E| stands for its Lebesgue measure. The notation
A 4 B will always mean that the ratio A/B is bounded away from zero
by a constant independent of the relevant variables in A and B.

Acknowledgement. The author would like to thank Aline Bonami for
many helpful suggestions and discussions. He also thanks the referee for
his careful and meticulous reading of the manuscript.

2. Definition and basic properties of (Lq, `p)α spaces

For 1 ≤ q, p, α ≤ ∞, the space (Lq, `p)α := (Lq, `p)α(Rd) consists of those
elements of (Lq, `p) such that

‖f‖q,p,α := sup
r>0
‖δαr f‖q,p <∞,

with the usual convention that 1
∞ = 0. As proved in [11, 13] the space

(Lq, `p)α is non trivial if and only if q ≤ α ≤ p; thus in the remaining of
the paper we will always assume that this condition is fulfilled. We have
the following properties.
Proposition 2.1 ([11, 12, 13]).

(1) ((Lq, `p)α, ‖·‖q,p,α) is a complex Banach space.

(2) If 1 ≤ q1 ≤ q2 ≤ α ≤ p1 ≤ p2 ≤ ∞, then we have
‖f‖q1,p2,α

≤ ‖f‖q2,p1,α
≤ C ‖f‖α .

Notice that

r ‖f‖q,p,α := ‖δαr f‖q,p = r
d( 1
α
− 1
q

)
r ‖f‖q,p , (2.1)

so that
‖f‖q,p,α = sup

r>0
r
d( 1
α
− 1
q

)
r ‖f‖q,p ≈ sup

r>0
r
d( 1
α
− 1
p
− 1
q

)
r‖̃f‖q,p. (2.2)
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Proposition 2.2. Let 1 ≤ q ≤ α ≤ p ≤ ∞.

(1) For f ∈ (Lq, `p)α, we have

‖δαr f‖q,p,α = ‖f‖q,p,α .

(2) The space (Lq, `p)α is the biggest norm space which is continuously
included in (Lq, `p) and for which supr>0 ‖δαr f‖ <∞.

Proof. The first assertion is an immediate consequence of the definition of
the norm ‖·‖q,p,α. For the second, let (E, ‖·‖) be a norm space for which
there exists C > 0 such that we have

‖f‖q,p ≤ C ‖f‖ and sup
r>0
‖δαr f‖ <∞, (2.3)

for all f ∈ E. Then for f ∈ E, we have

sup
r>0
‖δαr f‖q,p ≤ C sup

r>0
‖δαr f‖ <∞,

so that f ∈ (Lq, `p)α by definition. �

As we say in the introduction, the family {(Lq, `p)α}α≤p≤∞ consists
of distinct spaces. To see this on the real line, we let q = 1. A positive
function f on R belongs to (L1, `p)α if and only if there exists a constant
C <∞ such that

r
1
α ‖Erf‖`p ≤ C, r > 0 (2.4)

where Erf is the sequence defined by

(Erf)k = 1
r

∫
r(k+I)

f(y)dy,

where I = [0, 1). Notice that it is enough to have condition (2.4) just for
r = 2m,m ∈ Z. Let 1 ≤ p1 < p2 < ∞, and a = (an)n∈N be a sequence of
positive reals numbers which belongs to `p2 without being in `p1 . Put for
all k ∈ Z

λk =
{

0 if k 6= 2n for all n ∈ N
an if k = 2n ,

and let us consider the function f defined by f(x) = λk if x ∈ k+I, k ∈ Z.
We claim that f ∈ (L1, `p2)α \ (L1, `p1)α. The function does not belong to
(L1, `p1), since the sequence a /∈ `p1 . Let us prove now that f ∈ (L1, `p2)α.
Fix r = 2m, with m ∈ Z.
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• If m ≤ 0 then (rk, r(k + 1)) ∩ Z = ∅, so that f(x) = λbrkc for all
x ∈ Irk . Thus

1
r

∥∥∥fχIr
k

∥∥∥
1

= 1
r

∫ r(k+1)

rk
f(x)dx = λbrkc,

and

r
1
α

∥∥∥∥{1
r

∥∥∥fχIr
k

∥∥∥
1

}
k∈Z

∥∥∥∥
`p2

= r
1
α

∥∥∥∥{λbrkc}k∈Z
∥∥∥∥
`p2

= r
1
α ‖a‖`p2

≤ ‖a‖`p2 .

• If m > 0 then [rk, r(k + 1)) = ∪r(k+1)−1
j=rk [j, j + 1), such that

r
1
α

∥∥∥∥{1
r

∥∥∥fχIr
k

∥∥∥
1

}
k∈Z

∥∥∥∥
`p2

= r
1
α
−1

∥∥∥∥∥∥

r(k+1)−1∑
j=rk

λj


k∈Z

∥∥∥∥∥∥
`p2

= r
1
α
−1 ‖a‖`p2

≤ ‖a‖`p2 .

The assumption follows.
For q < α < p, the weak Lebesgue space Lα,∞ is a subset of (Lq, `p)α.

Moreover,
‖f‖q,p,α ≤ C ‖f‖

∗
α,∞ ,

where the quasi-norm ‖·‖∗p,q is defined by

‖f‖∗p,q =


[
p
q

∫∞
0

(
t

1
p f∗(t)

)q
dt
t

] 1
q

if 1 ≤ p, q <∞

supt>0 t
1
p f∗(t) if 1 ≤ p ≤ ∞ and q =∞

,

and f∗ being the non increasing function rearrangement of f on Rd, i.e.,

f∗(t) = inf
{
α > 0 :

∣∣∣{x ∈ Rd : |f(x)| > α
}∣∣∣ ≤ t} , t > 0.

It is well known that supt>0 t
1
p f∗(t) = supα>0 α

∣∣∣{x ∈ Rd : |f(x)| > α
}∣∣∣ 1

p .
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3. Some new results in amalgams

It is a classical result (see [3, 11, 14]) that if f ∈ (Lq1 , `p1) and g ∈ (Lq2 , `p2)
with 1

p1
+ 1
p2
≥ 1 and 1

q1
+ 1
q2
≥ 1, then f ∗g ∈ (Lq, `p), where 1

p = 1
p1

+ 1
p2
−1

and 1
q = 1

q1
+ 1

q2
− 1 . Moreover,

‖f ∗ g‖q,p ≤ C ‖f‖q1,p1
‖g‖q2,p2

.

The proof of this result uses the Young inequality in Lebesgue spaces and
in the space of real sequences. We can weaken the second member of the
inequality if instead of the Young inequality we use the following result.
Theorem 3.1 (Theorem 2.10.1 [20]). Let 1 ≤ p1, p2, q1, q2 ≤ ∞ with
1
p1

+ 1
p2
> 1. If f ∈ Lp1,q1 and g ∈ Lp2,q2 then f ∗ g ∈ Lp,q, where

1
p1

+ 1
p2
− 1 = 1

p

and q ≥ 1 such that
1
q1

+ 1
q2
≥ 1
q
.

Moreover, we have
‖f ∗ g‖∗p,q ≤ C ‖f‖

∗
p1,q1
‖g‖∗p2,q2

.

Let 1 ≤ p, q, t, s ≤ ∞. The amalgam of the Lorentz space Lp,q and
its discrete version `t,s is the space of measurable functions f locally in
Lp,q and such that the sequence (‖fχQk‖

∗
p,q)k∈Zd belongs to `t,s. We put

‖f‖(Lq,p,`t,s) =
∥∥∥(‖fχQk‖∗p,q)k∈Zd∥∥∥∗t,s. The following result is established as

the classical one in amalgams, just by replacing the Young inequality by
that of Theorem 3.1.
Theorem 3.2. Let{

1 ≤ p1, p2, q1, q2 ≤ ∞
1 ≤ r1, r2, s1, s2 ≤ ∞ with

{ 1
p1

+ 1
p2

> 1
1
r1

+ 1
r2

> 1 ,

f ∈ (Lp1,q1 , `r1,s1) and g ∈ (Lp2,q2 , `r2,s2). Then f ∗ g ∈ (Lp,q, `r,s), where{ 1
p = 1

p1
+ 1

p2
− 1

1
r = 1

r1
+ 1

r2
− 1 and

{ 1
q1

+ 1
q2
≥ 1

q
1
s1

+ 1
s2
≥ 1

s

.

Moreover, there exists a constant C > 0 such that
‖f ∗ g‖(Lp,q ,`r,s) ≤ C ‖f‖(Lp1,q1 ,`r1,s1 ) ‖g‖(Lp2,q2 ,`r2,s2 ) .

27



J. Feuto

This result can be seen as one realization of the general result (convo-
lution triples) stated in Theorem 3 of [10].

The next result follows immediately using the fact that Lp,p = Lp.

Corollary 3.3. Let 1 ≤ p1, p2 ≤ ∞ with 1
p1

+ 1
p2
> 1 and 1 < q1, q2 <∞

with 1
q1

+ 1
q2
> 1. If f ∈ (Lq1 , `p1) and g ∈ (Lq2,∞, `p2,∞) then f ∗ g ∈

(Ls, `r), where 1
r = 1

p1
+ 1

p2
−1 and 1

s = 1
q1

+ 1
q2
−1. Moreover, there exists

C > 0 such that

‖f ∗ g‖s,r ≤ C ‖f‖q1,p1
‖g‖(Lq2,∞,`p2,∞) .

Notice that a functionK which satisfies (1.2) belongs to (L
d
d−γ ,∞, `

d
d−β ,∞)

so that the boundedness of the operator Iβγ from (Lq, `p) to (Lq∗ , `p∗) is
just a consequence of Corollary 3.3.

The next result which gives the continuity of the Hilbert transform in
the amalgam spaces is well known. However, since we couldn’t find its
proof in the literature, we give one here. We recall that in the case d = 1,
the Hilbert transform of a function f is the function Hf defined by

Hf(x) = 1
π

v.p
∫ +∞

−∞

f(y)
x− y

dy,

where v.p denotes the Cauchy principal value.

Proposition 3.4. Let d = 1 and 1 < q, p <∞. The Hilbert transform H
is bounded on (Lq, `p).

Proof. To simplify the formulas, we adopt the abbreviation fk for fχQk .
Let m ∈ Z. We have

(Hf)m =
∑

n−m∈Q̃

Hfnχ[m,m+1) +
∑

n−m/∈Q̃

Hfnχ[m,m+1) = Fm +Gm

where Q̃ = (−2, 2). Since the Hilbert transform is bounded in Lq it follows
that

‖Fm‖q ≤ C
∑

n−m∈Q̃

‖fn‖q

so that (∑
m

‖Fm‖pq

) 1
p

≤ C
(∑

n

‖fn‖pq

) 1
p

.
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For x ∈ Qm and n−m /∈ Q̃, we have

Hfn(x) = 1
π

( 1
m− n

∫
R
fn(y)dy +

∫
R

( 1
x− y

− 1
m− n

)fn(y)dy
)
,

with ∣∣∣∣ 1
x− y

− 1
m− n

∣∣∣∣ ≤ 2
(|m− n| − 1) |m− n| , for y ∈ Qn.

So, if u is the sequence defined by un =
∫ n+1
n f(y)dy, then we have

‖Hu‖`p ≤ C ‖u‖`p = C ‖f‖q,p .

Besides,∑
m∈Z

∫ m+1

m

∣∣∣∣∣∣
∑

n−m/∈Q̃

∫
R

( 1
x− y

− 1
m− n

)fn(y)dy

∣∣∣∣∣∣
q

dx


p
q


1
p

≤

∑
m∈Z

 ∑
n−m/∈Q̃

2
(|m− n| − 1) |m− n|

∫
R
|fn(y)| dy

p
1
p

.

(3.1)

Thus, if we consider the sequences v and w defined respectively by v0 = 0
and vn = 1

n2 for n 6= 0, and wn =
∫
R |fn(y)| dy, we have v ∈ `1 and w ∈ `p

with
‖w‖`p ≤ ‖f‖q,p .

Since the second member of (3.1) is the `p norm of v ∗ w, it is less than
‖v‖`1 ‖f‖q,p . It follows that∑

m∈Z
‖Gm‖pq

 1
p

≤ C ‖f‖q,p ,

which ends the proof. �

4. Norm inequalities involved in (Lq, `p)α spaces

The Riesz potential Iγf (0 < γ < d) of a function f as defined by (1.3) is
closely related to the fractional maximal functionMγf defined by

Mγf(x) = sup
r>0
|B(x, r)|

γ
d
−1
∫
B(x,r)

|f(y)| dy.

29



J. Feuto

It follows from the definitions that

Mγf ≤ Iγ |f | . (4.1)

Let r > 0 and α ≥ 1. We have

Iγ(δαr f) = δα
∗

r (Iγf) andMγ(δαr f) = δαr (Mγf) (4.2)

with 1
α∗ = 1

α −
γ
d and, on the real line,

H(δαr f) = δαr (Hf), (4.3)

so that the next proposition follows from the definition of (Lq, `p)α spaces,
the boundedness of Iγ from (Lq, `p) to (Lq∗ , `p∗) and the boundedness of
Hilbert transform on (Lq, `p) in the case d = 1.

Proposition 4.1. Let 1 < q ≤ α ≤ p <∞ and γ
d ≤

1
p .

(1) The Riesz potential Iγ and the associated fractional maximal op-
eratorMγ are bounded from (Lq, `p)α to (Lq∗ , `p∗)α∗.

(2) When d = 1, the Hilbert transform is bounded on (Lq, `p)α.

We will prove that we can have a result better than the above for
Riesz potential. For this purpose, we need a control of the classical Hardy-
Littlewood maximal operatorM0. We recall that for a locally integrable
function f , the (centered) Hardy-Littlewood maximal function M0f is
defined by

M0f(x) = sup
r>0
|B(x, r)|−1

∫
B(x,r)

|f(z)| dz.

Proposition 4.2. (1) Let 1 < q ≤ α ≤ p ≤ ∞. Then

‖M0f‖q,p,α ≤ C ‖f‖q,p,α . (4.4)

(2) For q = 1, we have

‖M0f‖(L1,∞,Lp)α ≤ C ‖f‖q,p,α , (4.5)

where for f ∈ L1,∞
loc , and p <∞,

‖f‖(L1,∞,Lp)α := sup
r>0

r
d( 1
α
− 1
p
−1)

[∫
Rd

(
∥∥∥fχB(y,r)

∥∥∥∗
1,∞

)pdy
] 1
p

.
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Proof. If α ∈ {q, p} then we recover the classical result in Lebesgue spaces.
We just have to consider the cases where 1 < q < α < p ; but, if p = ∞
this is nothing but Theorem 1 of [4]. We suppose now that p <∞. Using
the classical inequality∫

Rd
(M0f)q(x)φ(x)dx ≤ C

∫
Rd
|f(x)|q (M0φ)(x)dx, (4.6)

for all measurable functions f and φ > 0 given by Theorem 2.12 of [15]
with the characteristic function of a ball as φ, and proceeding as in the
proof of Theorem 1 of [4], we obtain

r
˜‖M0f‖

q

q,p ≤ C
{

2r‖̃f‖
q

q,p +
∞∑
k=1

1
(2k−1)d 2k+1r‖̃f‖

q

q,p

}
,

for f ∈ (Lq, `p)α. Let us multiply both sides by rdq(
1
α
− 1
q
− 1
p

), we obtain

(rd( 1
α
− 1
q
− 1
p

)
r
˜‖M0f‖q,p)

q 4 2−dq(
1
α
− 1
q
− 1
p

) ‖f‖qq,p,α

+
∞∑
k=1

2(k+1)dq( 1
q

+ 1
p
− 1
α

)

(2k−1)d ‖f‖qq,p,α

4 ‖f‖qq,p,α ,

since dq(1
q + 1

p −
1
α)− d = d( qp −

q
α) < 0. Thus, taking the supremum over

r > 0, we obtain
‖M0f‖q,p,α ≤ C ‖f‖q,p,α ,

using Relation (2.2).
As for the case q = 1, the proof is the same using the following inequality∫
{x∈Rd:M0f(x)>t}

χB(y,r)(x)dx ≤ C

t

∫
Rd
|f(x)| (M0χB(y,r))(x)dx

instead of (4.6). �

We now use the Proposition 4.2 to give some estimates of the Riesz
potential in (Lq, `p)α spaces.

Theorem 4.3. Let 1 ≤ q ≤ α ≤ p ≤ ∞ and 0 < γ
d <

1
α . Put

1
α∗ = 1

α −
γ
d .

(1) If 1 < q then we have

‖Iγf‖q̃,p̃,α∗ ≤ C ‖f‖
1−α

d
γ

q,p,α ‖f‖
α
d
γ

q,∞,α (4.7)

with 1
q̃ = 1

q −
α
q
γ
d and 1

p̃ = 1
p −

α
p
γ
d .
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(2) If q = 1 then we have

‖Iγf‖(L1,∞,Lp̃)α∗ ≤ C ‖f‖
1−α

d
γ

1,p,α ‖f‖
α
d
γ

1,∞,α . (4.8)

Proof. Let 1 ≤ q ≤ α ≤ p ≤ ∞, 0 < γ < d and f ∈ (Lq, `p)α.
If p =∞, then the theorem is exactly Theorem 3.1 of [1]. We consider

the case where 1 ≤ q ≤ α ≤ p <∞. Since for α ∈ {q, p} the space (Lq, `p)α
is equal to the Lebesgue space Lα, we just have to look at the case where
1 ≤ q < α < p <∞.

For all ε > 0, we have

Iγf(x) =
∫
|x−y|≤ε

f(y)
|x− y|d−γ

dy +
∫
|x−y|>ε

f(y)
|x− y|d−γ

dy. (4.9)

We recall that (Lq, `p)α is a subspace of the Morrey space Lq,d(1− q
α

), so that
M0f is finite almost everywhere in Rd. Following the proof of Theorem 2
in [4], we can say that∣∣∣∣∣

∫
|x−y|≤ε

f(y)
|x− y|d−γ

dy

∣∣∣∣∣ ≤ CεγM0f(x),

and ∣∣∣∣∣
∫
|x−y|>ε

f(y)
|x− y|d−γ

dy

∣∣∣∣∣ ≤ Cεγ− d
α ‖f‖q,∞,α .

It comes that

|Iγf | ≤ C
(
εγM0f + εγ−

d
α ‖f‖q,∞,α

)
.

Taking ε =
(
M0f
‖f‖q,∞,α

)−α
d

, we have

Iγf ≤ C(M0f)−
αγ
d

+1 ‖f‖
α
d
γ

q,∞,α .

The inequalities (4.7) and (4.8) follow respectively from the inequalities
(4.4) and (4.5). �

The following corollary is a consequence of the fact that ‖f‖q,∞,α ≤
C ‖f‖q,p,α for all 1 ≤ q ≤ α ≤ p ≤ ∞.

Corollary 4.4. Let 1 ≤ q ≤ α ≤ p ≤ ∞ and 0 < γ
d <

1
α . Put

1
α∗ = 1

α −
γ
d
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(1) If 1 < q then we have

‖Iγf‖q̃,p̃,α∗ ≤ C ‖f‖q,p,α (4.10)

with 1
q̃ = 1

q −
α
q
γ
d and 1

p̃ = 1
p −

α
p
γ
d .

(2) If q = 1 then we have

‖Iγf‖(L1,∞,Lp̃)α∗ ≤ C ‖f‖1,p,α . (4.11)

Using a different method, Dosso et al in [7] proved that if 0 < γ
d <

1
α−

1
p

then
‖Iγf‖q∗,p,α∗ ≤ C ‖f‖q,p,α (4.12)

where 1
q∗ = 1

q −
γ
d . The next result is a generalization of Theorem 2.1 of

[8], and its proof is just an adaptation of that given there.

Theorem 4.5. Let 1 < q <∞ and q ≤ α ≤ p. If T is a sublinear operator
which is bounded on Lq and satisfy

|Tf(x)| ≤ C
∫
Rd

|f(y)|
|x− y|d

dy x /∈ suppf, (4.13)

for any f ∈ L1 with compact support, then T is also bounded on (Lq, `p)α.

Proof. We assume that 1 < q < α < p < ∞, since the case p = ∞ is
Theorem 2.1 of [8] and when α ∈ {q, p} we have nothing to prove. Fix
y ∈ Rd and r > 0 we have

f = fχB(y,2r) +
∞∑
k=1

fχB(y,2k+1r)\B(y,2kr)

so that taking the Lq-norm on the ball B(y, r), we obtain∥∥∥TfχB(y,r)

∥∥∥
q
≤ C

(∥∥∥fχB(y,2r)

∥∥∥
q

+
∞∑
k=1

(2k)−
d
p

∥∥∥fχB(y,2k+1r)

∥∥∥
q

)
,

using the Lq boundedness of T and relation (4.13). Taking the Lp-norm
of both sides with respect to y, it comes that

r‖̃Tf‖q,p ≤ C
(

2r‖̃f‖q,p +
∞∑
k=1

(2k)−
d
q 2k+1r‖̃f‖q,p

)
. (4.14)
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We multiply both sides of (4.14) by rd( 1
α
− 1
p
− 1
q

). It follows that

r
d( 1
α
− 1
p
− 1
q

)
r‖̃Tf‖q,p ≤ C

(
1 +

∞∑
k=1

(2k)d( 1
p
− 1
α

)
)
‖f‖q,p,α , r > 0.

Taking the supremum over r > 0, Relation (2.2) yields the result. �

As mentioned in [8], Condition (4.13) can be satisfied by many oper-
ators such as Bochner-Riesz operators at the critical index, Ricci-Stein’s
oscillatory singular integral, C. Fefferman’s singular multiplier, and some
Calderón-Zygmund operators.

We define the linear commutator [b, T ] by [b, T ] f(x) = T (bf)(x) −
b(x)Tf(x), and recall that the space BMO consists of functions b ∈ L1

loc
satisfying ‖b‖BMO <∞, where

‖b‖BMO := sup
r>0,x∈Rd

1
|B(x, r)|

∫
B(x,r)

∣∣∣b(y)− bB(x,r)

∣∣∣ dy, (4.15)

with bB(x,r) denoting the average over B(x, r) of b.

Theorem 4.6. Let 1 < q < ∞, q ≤ α ≤ p ≤ ∞ and b ∈ BMO. If a
linear operator T satisfies (4.13) and [b, T ] is bounded on Lq, then [b, T ]
is also bounded on (Lq, `p)α.

Proof. If α < p = ∞ then the result is just Theorem 2.2 of [8], and
when α = q or α = p, there is nothing to prove. We suppose now that
1 < q < α < p < ∞. Proceeding as in the proof of Theorem 2.2 [8], we
have that for all y ∈ Rd and r > 0,∥∥∥[b, T ] fχB(y,r)

∥∥∥
q
4
∥∥∥fχB(y,2r)

∥∥∥
q

+
∞∑
k=1

1
(2kr)d

[∫
B(y,r)

(∫
B(y,2k+1r)

|b(x)−b(z)| |f(x)| dx
)q
dz

]1
q

,

so that the use of John-Nirenberg theorem on BMO functions (see The-
orem 7.1.6 in [17]) and the properties of BMO lead to∥∥∥[b, T ] fχB(y,r)

∥∥∥
q
4
∥∥∥fχB(y,2r)

∥∥∥
q

+ ‖b‖BMO

∞∑
k=1

(2k)−
d
q

∥∥∥fχB(y,2k+1r)

∥∥∥
q
.

We end the proof as above. �
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The next result gives a norm equivalence of the Riesz potential and
associated fractional maximal operator when we deal with non negative
measurable functions.

Theorem 4.7. Let 1 ≤ q ≤ α ≤ p ≤ ∞ and 0 < γ < d. For every positive
f ∈ Lqloc, we have

‖Iγf‖q,p,α ≈ ‖Mγf‖q,p,α . (4.16)

Proof. In view of inequality (4.1) it suffices to prove that ‖Iγf‖q,p,α 4
‖Mγf‖q,p,α . We can assume that 1 ≤ q < α < p < ∞, since the case
α ∈ {q, p} is solved in Theorem 1 of [19] while the case p =∞ is Theorem
1.2 of [16] (see also Theorem 4.2 of [2]). For y ∈ Rd and r > 0, we have∥∥∥IγfχB(y,r)

∥∥∥
q
≈
∥∥∥MγfχB(y,r)

∥∥∥
q

+ |B(y, r)|
1
q

∫
Rd\B(y,r)

f(x)
|x− y|d−γ

dx,

(4.17)
according to Lemma 4.2 of [16]. But

|B(y, r)|
1
q

∫
Rd\B(y,r)

f(x)
|x− y|d−γ

dx

=
∞∑
k=0
|B(y, r)|

1
q

∫
2kr≤|x−y|<2k+1r

f(x)
|x−y|d−γ

dx

4
∞∑
k=0

(2k)−
d
q |B(y, r)|

γ
d
−(1− 1

q
)
∥∥∥fχB(y,2k+1r)

∥∥∥
1

4
∞∑
k=0

(2k)−
d
q

∥∥∥MγfχB(y,2k+1r)

∥∥∥
q
,

where the last inequality comes from Theorem 5.2 of [16]. Taking into
account this inequality and the relation (4.17), the Lp-norm of both sides
of the inequality leads to

r‖̃Iγf‖q,p 4 r ‖Mγf‖q,p +
∞∑
k=0

(2k)−
d
q 2k+1r

˜‖Mγf‖q,p.

It follows from the above inequality and Relation (2.2) that

r
d( 1
α
− 1
p
− 1
q

)
r‖̃Iγf‖q,p 4 ‖Mγf‖q,p,α +

∞∑
k=0

(2k)d( 1
p
− 1
α

) ‖Mγf‖q,p,α , r > 0.

Thus the result follows by taking the supremum over r > 0. �
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