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Solution of a class of reaction-diffusion systems
via logarithmic Sobolev inequality

Pierre Fougères
Ivan Gentil

Boguslaw Zegarliński

Abstract

We study global existence, uniqueness and positivity of weak solutions of a class
of reaction-diffusion systems coming from chemical reactions. The principal result
is based only on a logarithmic Sobolev inequality and the exponential integrability
of the initial data. In particular we develop a strategy independent of dimensions
in an unbounded domain.

Résumé

Nous étudions l’existence globale, l’unicité et la positivité de solutions faibles
pour une classe de systèmes de réaction-diffusion provenant d’équations chimiques.
Le théorème principal repose uniquement sur une inégalité de Sobolev logarith-
mique et sur l’intégrabilité exponentielle des conditions initiales. En particulier
nous développons une stratégie indépendante de la dimension dans un domaine
non borné.

1. Introduction

In this paper we consider chemical reactions between q > 2 species Ai,
i = 1, . . . , q, as follows

q∑
i=1

αiAi 

q∑
i=1

βiAi ,

where αi, βi ∈ N. We assume that for any 1 ≤ i ≤ q, αi − βi 6= 0 which
corresponds to the case of a reaction without a catalyst.

This research was supported by the ANR project STAB (ANR-12-BS01-0019) and the
GDR project AFHP.
B.Z. was supported by Royal Society Wolfson Research Merit Award.
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For ~u = (u1, . . . , uq) denoting the concentration of the species Ai,
the law of action mass, proposed by Waage and Guldberg in 1864 (see
e.g. [32]), is that the concentrations are solutions of a system of ordinary
differential equations, for all i ∈ {1, . . . , q},

d
dtui = (βi − αi)

k q∏
j=1

u
αj
j − l

q∏
j=1

u
βj
j

.
Here k, l > 0 are rate constants of the two reactions.

If the concentrations of substances distributed in the space change not
only under the influence of the chemical reactions, but also due to a diffu-
sion of the species, one needs to consider a model described by a chemical
reaction-diffusion system of equations,

∂tui = Liui + (βi − αi)

k q∏
j=1

u
αj
j − l

q∏
j=1

u
βj
j

,
where (Li)1≤i≤q are operators which describes how the substance diffuse.

To start with, let us assume that Li = CiL for some diffusion coef-
ficients Ci > 0 and some reference operator L. When not all diffusion
coefficients are equal, this provides us with a very challenging problems in
the reaction-diffusion theory which is still far from being fully understood,
(see e.g. [33, Remark 5.15 and bottom part of Problem 1 in §7] and [11,
p. 1188] and also [10]). In [11] (among other interesting things) existence
of weak solution of a general reaction-diffusion system is obtained under
a suitable bound on variation of diffusion coefficients. In that paper the
authors consider a strictly elliptic second order partial differential genera-
tor of diffusion (with bounded coefficients) confined in a bounded domain
with sufficiently smooth boundary.

By a change of variables, one can assume that there exist constants
λi > 0 such that the system of reaction-diffusion is given by

∂tui = CiLui + λi(βi − αi)

 q∏
j=1

u
αj
j −

q∏
j=1

u
βj
j

, (1.1)

where ~u(t, x) = (u1(t, x), · · · , uq(t, x)) with t > 0 and x belongs to an
underlying space. In our case, unlike in the conventional PDE setup, the
underlying space can be any Polish space including ones of infinite dimen-
sion.
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Solution of reaction-diffusion systems

One of the simplest non trivial example is the two-by-two system which
describes the chemical reaction of the following type

A1 +A2 
 B1 + B2 ,

Then the corresponding system of equations can by formulated as follows
∂tu1 = C1Lu1 − λ (u1u2 − v1v2)
∂tu2 = C2Lu2 − λ (u1u2 − v1v2)
∂tv1 = C3Lv1 + λ̃ (u1u2 − v1v2)
∂tv2 = C4Lv2 + λ̃ (u1u2 − v1v2)

(1.2)

where λ, λ̃ > 0 and ui denote the concentration of the specie Ai and vi
the concentration of the specie Bi for i = 1, 2. Without restricting the
generality, to make the exposition even simpler, later we will assume that
λ = λ̃.

More general reaction-diffusion systems, of the following form{
∂t~u = C∆x~u+ F (t, x, ~u) , t > 0 , x ∈ Ω
~u(0) = ~u0 ,

(1.3)

with prescribed boundary conditions, were intensively studied in the past.
Here, Ω is a (possibly unbounded sufficiently smooth) domain of Rn, ~u
takes values in Rq, C is a usually diagonal q × q matrix which can be
degenerate, and F (t, x, · ) is a vector field on Rq.

Depending on specific choices for C and F (t, x, · ), such systems can
present various behaviour with respect to global existence and asymptotic
behaviour of the solution. Paragraph 15.4 in [39] is a nice introduction
with many classical references.

In the above setting, local existence follows from general textbooks on
parabolic type partial differential equations (see [22], [29], or for fully
general boundary value problems [1]).

Global existence question (or how to prevent blow up) gave rise to
extensive efforts and to different methods adapted to specific cases (see [2,
especially Remark 5.4.a], [11], [33], [36] and references therein). Most of
these methods consist in deducing L∞ bounds on the maximal solution
from bounds in weaker norms.

The survey [33] provides a lot of references, positive and negative re-
sults, together with a description of open problems. Its first observation is
that, for numerous reaction-diffusion systems of interest in applications,
the nonlinearity satisfies two general conditions which ensure respectively
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positivity and a control of the mass (i.e. the L1 norm) of a solution.
M. Pierre investigates how these L1 estimates (as well as L1 bounds on
the nonlinearity) help to provide global existence; see also [10], [11] for
description of some more recent results.

Further works provide results on asymptotic behaviour. Spectral gap,
logarithmic Sobolev inequality and entropy methods are often used to
quantify exponential convergence of the solution of an equation to equi-
librium, and in the context of reaction-diffusion equations (mostly of
type (1.1)) they were used to study the convergence (to constant steady
states) in [11], [15], [16], [17], [24]. Geometric characteristics and approxi-
mations of global and exponential attractors of general reaction-diffusion
systems may be found in [19], [44], [45] (and references therein) in terms
of precise estimates of their Kolmogorov ε-entropy. In these papers, C is of
positive symmetric part and the nonlinearity must satisfy some moderate
growth bound involving the dimension n to ensure global existence. Other
cross-diffusion systems are studied by entropy methods in [12].

One way or another, local or global existence results in the above setting
rely on regularity theory for the heat semigroup, the maximum principle,
Sobolev inequality through one of its consequences, Gagliardo–Nirenberg
inequalities or ultracontractivity of the semigroup. (Note nevertheless that
an approach based on a nonlinear Trotter product formula is proposed
in [39], but seems to impose some kind of uniform continuity of the semi-
group).

The aim of this article is to prove global existence of a non-negative
solution of the reaction-diffusion system (1.1) with possibly unbounded
initial data in an unbounded domain. We restrict ourselves to polyno-
mial nonlinearities. In the finite dimensional setting with equal diffusion
coefficients, L∞ bounds of the solution (and so global existence) is well
known; or if one side of the reaction containing no more than two molecules
global existence was proven in [33], with much more involved arguments.
More recently a more general nice existence result for a system with vari-
able diffusion coefficients satisfying suitable bound (which also depends
on dimension) was provided in [11]. In our strategy, Sobolev inequality is
replaced by a logarithmic Sobolev inequality (or other coercive inequali-
ties which survive the infinite dimensional limit; see [5], [6], [7], [35]). In
this framework we are able to consider systems in unbounded domains
where invariant measure for the diffusion (or sub-elliptic diffusion) is a
probability measure and moreover we can treat the difficult case when
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Solution of reaction-diffusion systems

diffusion coefficients are possibly non equal and no restriction on number
of molecules on either side of the reaction is imposed (i.e. going beyond
the problem indicated in [33, Remark 5.15 and Problem 1 in §7] as well
as complementary to some of the ones considered in [11]).

Our approach does not depend on dimension of the underlying space
and opens an interesting direction of study of reaction-diffusion systems
as a part of other large interacting systems.

The celebrated paper [25] of L. Gross established equivalence of loga-
rithmic Sobolev inequality and hypercontractivity of the semigroup, but
no compactness embeddings hold in this context. For a wide variety of
strongly mixing Markov semigroups, logarithmic Sobolev inequality holds
for the corresponding Dirichlet form of the generator. For diffusion semi-
groups on Riemannian manifolds, logarithmic Sobolev inequality follows
from positive bound from below of the Ricci curvature (of the generator
L), via so called Bakry–Emery, Γ2 or CD(ρ,∞) criterion (see [4]). Exten-
sion to a more general setting involving subelliptic Markov generators was
provided in [27], [30]. In infinite dimensional spaces, logarithmic Sobolev
inequality for spin systems has been extensively studied (see [8], [26], [38],
[40], [42], [43] etc.; and in subelliptic setting, [28], [30] etc.). In the present
paper, logarithmic Sobolev inequality plays a key role to study existence
results in a finite or an infinite dimensional setting, by a constructive
approximation approach.

The paper is organized as follows. In the next section we describe the
framework and the main result of the paper. In the two-by-two case, we
assume these three conditions:

(1) C1 = C3 and C2 = C4 and otherwise they are different,

(2) the linear diffusion term satisfies logarithmic Sobolev inequality,

(3) the initial datum ~f is nonnegative and satisfies some exponential
integrability properties (made more precise later).

Under these assumptions we prove that there exists a unique weak solu-
tion of the system of reaction-diffusion equation (1.2) which is moreover
nonnegative. Section 3 presents the iterative procedure we follow to ap-
proximate weak solutions of our reaction-diffusion problem. This is based
on some cornestone linear problem which is stated there. The two follow-
ing sections are devoted to the details of the proof: Section 4 provides the
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convergence of the iterative procedure to the unique nonnegative weak
solution of the nonlinear Cauchy problem, whereas Section 5 focuses on
the cornerstone linear problem.

In Section 6 we extend our result to the general case of system (1.1),
and discuss how operators CiL can be modified.

We recall or detail tools used in the proof in three appendices: the
entropic inequality, basics on Orlicz spaces, and finally some further topics
on Markov semigroups and Orlicz spaces.

2. Framework and main result

An abstract Reaction-Diffusion equation

In the following we will consider an underlying Polish space M (possibly
infinite dimensional) equipped with a probability measure µ. Let L be a
(linear) densely defined selfadjoint Markov operator on L2(µ) ≡ L2(M, µ),
that is the infinitesimal generator of a C0 Markov semigroup (Pt)t>0 sym-
metric with respect to µ. It is well known that under these assumptions
there exist a kernel pt(x,dy) on (M,BM), that is a measurable family of
probability measures such that, for any t > 0, any f ∈ L1(µ), and for µ
almost every x ∈M,

Ptf(x) =
∫
M
f(y) pt(x, dy) . (2.1)

Let us consider the following equation{
∂
∂t~u(t) = CL~u(t) +G(~u(t))~λ, t > 0
~u(0) = ~f

(RDP)

where, in the two-by-two case,

• the unknown ~u(t, x) = (u1(t, x), u2(t, x), u3(t, x), u4(t, x)) is a func-
tion from [0,∞) × M to R4; and L~u = (Lu1, Lu2, Lu3, Lu4) is
defined componentwise.

• ~λ = (λ1, λ2, λ3, λ4) = λ(−1,−1, 1, 1) ∈ R4, with λ ∈ R+;

• the nonlinearity G is quadratic: G(~u) = u1u2 − u3u4.
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Solution of reaction-diffusion systems

• C is a diagonal matrix of the following form

C =


C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 C4

 ,
where we assume that C1 = C3 and C2 = C4. (This condition
is weakened in Section 6 where we also allow for (networks of)
multi-molecular reactions).

• the initial datum is ~f = (f1, f2, f3, f4).

Dirichlet form and logarithmic Sobolev inequality

Let (E ,D) be the Dirichlet form associated to (L, µ) (see e.g. [9], [14], [23],
[31]; or for a minimal introduction [21]). For any u ∈ D(L) (the domain
of L) and v ∈ D (the domain of the Dirichlet form), one has

E(u, v) = −µ(v Lu) .

We will denote E(u) ≡ E(u, u), for any u ∈ D. Recall that D is a real
Hilbert space with associated norm

‖u‖D =
(
µ(u2) + E(u)

)1/2
.

We will assume that the Dirichlet structure (E , µ) satisfies logarithmic
Sobolev inequality with constant CLS ∈ (0,∞), that is

Entµ(u2) ≡ µ
(
u2 log u2

µ(u2)

)
≤ CLSE(u) , (2.2)

for any u ∈ D. We recall a well known fact (see e.g. [26] and references
therein) that under this inequality all Lipschitz functions f are exponen-
tially integrable (in fact even exp(εf2) is finite for such functions provided
a constant ε ∈ (0,∞) is sufficiently small). Moreover, the relative entropy
inequality (see Appendix A)

µ

(
u2 log v2

µ(v2)

)
≤ Entµ(u2) ,
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can be used to get quadratic form bounds as follows∣∣∣µ(u2v2)∣∣∣ ≤ 1
γ
µ

(
u2 log eγv

2

µ(eγv2)

)
+ 1
γ
µ(u2) logµ(eγv2)

≤ CLS
γ
E(u) + 1

γ
µ(u2) logµ(eγv2) ,

which will be one of our key devices frequently used later on.

Classical function spaces

Here we begin an introduction of the functional spaces in which we will
study our Reaction-Diffusion problem. Let I = [0, T ]. For any Banach
space (X, ‖ · ‖X), we shall denote by C(I,X) the Banach space of contin-
uous functions from I to X equipped with the supremum norm

sup
t∈I
‖u(t)‖X .

Let also L2(I,X) be the space of (a.e. equivalence classes of) Bochner
measurable functions from I to X such that

∫ T
0 ‖u(t)‖2Xdt < ∞. As for

vector valued functions, let L2(I,X4) be the space of Bochner measurable
functions t ∈ I 7→ (u1(t), u2(t), u3(t), u4(t)) ∈ X4 such that∫ T

0

4∑
i=1
‖ui(t)‖2Xdt <∞ .

All these are Banach spaces.
We will furthermore consider the space L∞(I,X) of Bochner measur-

able X-valued functions on I such that
ess sup0≤t≤T ‖u(t)‖X < +∞ .

The reader may refer to [37] for Bochner measurability, Bochner inte-
gration and other Banach space integration topics.

Bochner measurability in an Orlicz space

Let Φ : R → R+ given by Φ(x) = exp(|x|) − 1 and Φα(x) = Φ(|x|α),
α > 1. These are Young functions and the Orlicz space associated to Φα

is denoted by LΦα(µ). This is the space of measurable functions f such
that

µ(Φα(γf)) <∞ (2.3)
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for some γ > 0 (or functions whose α power is exponentially integrable).
An important closed subspace EΦα(µ) of LΦα(µ) consists of those func-

tions such that (2.3) holds for any γ > 0. This is the closure of the space
of simple functions (finitely valued measurable functions) in LΦα(µ).

A striking property of Markov semigroups is that C0 property in L2(µ)
implies C0 property in any Lp(µ); 1 ≤ p < +∞ (see [14]). We will need
the following weakened result in the context of Orlicz spaces.

Proposition 2.1. Let f ∈ EΦα(µ), α > 1. Then the linear semigroup
is Bochner measurable in time in EΦα(µ). More precisely, the mapping
t ∈ [0,∞) 7→ Ptf ∈ EΦα(µ) belongs to L∞([0,∞), EΦα(µ)) and

ess sup0≤t<∞‖Ptf‖EΦα (µ) ≤ ‖f‖EΦα (µ) .

The proof is given in Appendix C.3.

First regularity result and weak solutions

The following lemma exhibits the main role the entropic inequality (see
Appendix A) and the logarithmic Sobolev inequality play to deal with
the nonlinearity we consider. In short, the multiplication operator by a
function in LΦ2(µ) is a bounded operator, mapping the domain of the
Dirichlet form D to L2(µ).

Lemma 2.2 (Regularity property). Assume the Dirichlet structure (µ, E)
satisfies logarithmic Sobolev inequality with constant CLS ∈ (0,∞). Let
Φ(x) = exp(|x|) − 1 and Φ2(x) = Φ(x2). Let u ∈ L2(I,D) and v ∈
L∞(I,LΦ2(µ)). Then uv ∈ L2(I,L2(µ)) and the bilinear mapping

(u, v) ∈ L2(I,D)× L∞(I,LΦ2(µ)) 7→ u v ∈ L2(I,L2(µ)) (2.4)
is continuous. Consequently,

(φ, u, v) ∈ L2(I,L2(µ))× L2(I,D)× L∞(I,LΦ2(µ))
7→ φu v ∈ L1(I,L1(µ)) (2.5)

is trilinear continuous.

We will use this lemma to define properly a weak solution of the non-
linear problem below.

Proof. Note that f ∈ LΦ2(µ) iff f2 ∈ LΦ(µ) and that
‖f2‖Φ = ‖f‖2Φ2 . (2.6)
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First we show that the bilinear mapping

(u, v) ∈ D × LΦ2(µ) 7→ uv ∈ L2(µ) (2.7)

is continuous. Fix 0 < γ < ‖v2‖−1
LΦ(µ). Then, µ(exp(γv2)) − 1 ≤ 1 and

so µ(eγv2) ≤ 2. Hence, using the entropic inequality (A.1), and then the
logarithmic Sobolev inequality, one gets,

µ(u2v2) ≤ 1
γ
µ

(
u2 log

(
u2

µ(u2)

))
+ µ(u2)

γ
logµ

(
eγv

2)
≤ 1
γ

(
CLSE(u) + log 2µ(u2)

)
≤ max(log 2, CLS)

γ
‖u‖2D .

Letting γ go to ‖v2‖−1
LΦ(µ)), using (2.6) one gets the announced continuity.

If now u ∈ L2([0, T ],D) and v ∈ L∞([0, T ],LΦ2(µ)), there exist two
sequences of simple functions (see e.g. [37]) (un)n ⊂ SI,D and (vn)n ⊂
SI,LΦ2 converging to u (resp. v) a.e. in D (resp. LΦ2). The continuity
of (2.7) shows that (un vn)n is a sequence of simple functions with values
in L2(µ) which converges a.e. in L2(µ) to u v. Bochner measurability of
u v from I to L2(µ) follows.

As for continuity of (2.4), what precedes shows that, for any t a.e.,

‖u(t)v(t)‖2L2(µ) ≤ max(log 2, CLS) ‖v‖2L∞([0,T ],LΦ2 (µ)) ‖u(t)‖2D .

Integrating w.r.t. t on [0, T ], one gets the result. Finally, continuity of the
trilinear mapping follows by Cauchy–Schwarz inequality in L2. �

Weak solutions

Let T > 0. We say that a function

~u ∈
(
L2([0, T ],D) ∩ C([0, T ],L2(µ)) ∩ L∞([0, T ],LΦ2(µ))

)4
(2.8)
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Solution of reaction-diffusion systems

is a weak solution of (RDP) on [0, T ] provided, for any ~φ ∈ C∞([0, T ],D4)
and any t ∈ [0, T ),

−
∫ t

0

4∑
i=1

µ(ui(s)∂sφi(s)) ds+
[ 4∑
i=1

µ(ui(t)φi(t)− ui(0)φi(0))
]

= −
∫ t

0

4∑
i=1

CiE(ui(s), φi(s)) ds+
∫ t

0

4∑
i=1

λiµ(φi(s)G(~u(s))) ds.

(weak-RDP)

When this is satisfied for any T > 0, we will say that ~u is a weak solution
on [0,∞).

Main result: two-by-two case

Theorem 2.3. Let (L, µ) be a selfadjoint Markov generator satisfying log-
arithmic Sobolev inequality (2.2) with constant CLS ∈ (0,∞). Let Φ2(x) =
exp(x2) − 1. Assume ~f > 0 is a nonnegative initial datum and ~f ∈
(EΦ2(µ))4.

Then, for any diffusion coefficients C1 > 0 and C2 > 0 and any reaction
rate λ > 0, there exists a unique nonnegative weak solution ~u of (RDP)
on [0,∞).

Moreover, for any α > 1, any γ > 0 and any i = 1, . . . , 4, if we have
µ(eγ(f1+f3)α) <∞ and µ(eγ(f2+f4)α) <∞, then

∀ t a.e. in [0,∞), µ
(
eγu

α
i (t)
)
≤ max

(
µ
(
eγ(f1+f3)α

)
, µ
(
eγ(f2+f4)α

))
.

Remark. In Section 6, we will discuss the extension of this theorem to the
general problem (1.1).

In short, to prove this theorem, we linearize the system of equations
by means of an approximation sequence (~u(n))n. We show recursively that
~u(n)(t) is nonnegative, belongs to L∞([0, T ],LΦ2(µ)) so that Lemma 2.2
guarantees ~u(n+1) is well defined. This propagation is made precise in a
lemma studying the linear cornerstone problem which underlies the recur-
sive approach.

We will first focus our efforts on proving the convergence of the ap-
proximation sequence in the space

(
L2([0, T ],D) ∩ C([0, T ],L2(µ))

)4. Af-
terwards, we detail a way to study the cornerstone existence lemma.

11
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Remark 2.4. In Appendix B we give a sufficient condition to ensure that
f ∈ EΦα(µ), namely, that there exist β > α and γ0 > 0 such that
µ(eγ0|f |β ) < +∞. In particular, it implies that, provided ~f > 0 belongs to
(EΦ2(µ))4, one may choose γ > 0 large enough such that

4
min(C1, C2) λCLS < γ ,

and ~f still satisfies µ(eγfi) <∞, i = 1, . . . , 4
(2.9)

which will be useful in the proof of existence and uniqueness.

3. Iterative procedure

Let us define the approximation sequence (~u(n))n∈N in the following way.
(Note that the parenthesis in ~u(n) has nothing to do with differentiation,
and has been introduced to distinguish the index from powers).

• for all n ∈ N, ~u(n)(t = 0) = ~f ∈ (EΦ2(µ))4;

• for n = 0, ∂t~u(0)(t) = CL~u(0)(t), t > 0;

• for any n > 1, and t > 0,
∂tu

(n)
1 (t) = C1Lu

(n)
1 (t)−λ

(
u

(n−1)
2 (t)u(n)

1 (t)−u(n−1)
4 (t)u(n)

3 (t)
)
,

∂tu
(n)
3 (t) = C1Lu

(n)
3 (t)+λ

(
u

(n−1)
2 (t)u(n)

1 (t)−u(n−1)
4 (t)u(n)

3 (t)
)
,

∂tu
(n)
2 (t) = C2Lu

(n)
2 (t)−λ

(
u

(n−1)
1 (t)u(n)

2 (t)−u(n−1)
3 (t)u(n)

4 (t)
)
,

∂tu
(n)
4 (t) = C2Lu

(n)
4 (t)+λ

(
u

(n−1)
1 (t)u(n)

2 (t)−u(n−1)
3 (t)u(n)

4 (t)
)
.

(RDPn)

Knowing ~u(n−1) ∈
(
L2([0, T ],D) ∩ C([0, T ],L2(µ)) ∩ L∞([0, T ],LΦ2(µ))

)4,
(which is the case for any T > 0 under our hypothesis for ~u(0) by Proposi-
tion 2.1), this system may be reduced to the four independent affine scalar
equations, with t > 0,

∂tu
(n)
1 = C1Lu

(n)
1 − λPC2t(f2 + f4)u(n)

1 + λPC1t(f1 + f3)u(n−1)
4 ,

∂tu
(n)
3 = C1Lu

(n)
3 − λPC2t(f2 + f4)u(n)

3 + λPC1t(f1 + f3)u(n−1)
2 ,

∂tu
(n)
2 = C2Lu

(n)
2 − λPC1t(f1 + f3)u(n)

2 + λPC2t(f2 + f4)u(n−1)
3 ,

∂tu
(n)
4 = C2Lu

(n)
4 − λPC1t(f1 + f3)u(n)

4 + λPC2t(f2 + f4)u(n−1)
1 .

(3.1)
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Solution of reaction-diffusion systems

The existence, uniqueness and positivity of a solution on [0, T ] follows
from Lemma 3.1 below, with A(t) = λPC2t(f2 + f4) and B(t) =
λPC1t(f1 + f3)u(n−1)

4 (or similarly), using also Proposition 2.1 and
Lemma 2.2.

Lemma 3.1 (Cornerstone existence lemma). Let L be a Markov generator
satisfying logarithmic Sobolev inequality with constant CLS ∈ (0,∞). Let
T > 0 and A = A(t) ∈ L∞([0, T ],LΦ2(µ)) and B ∈ L2([0, T ],L2(µ)). Then
the Cauchy problem{

∂tu(t) = Lu(t)−A(t)u(t) +B(t) ,
u(0) = f , f ∈ L2(µ),

(CS)

has a unique weak solution on [0, T ]. Furthermore, provided f , A and B
are assumed nonnegative, the solution u is nonnegative.

We recall that u ∈ L2([0, T ],D) ∩ C([0, T ],L2(µ)) is a weak solution
of (CS) provided, for any φ ∈ C∞([0, T ],D), and any 0 ≤ t ≤ T ,

−
∫ t

0
µ(u(s)∂sφ(s)) ds+ µ (u(t)φ(t)− u(0)φ(0))

= −
∫ t

0
E(u(s), φ(s)) ds

+
∫ t

0
µ
(
φ(s)

[
−A(s)u(s) +B(s)

])
ds . (weak-CS)

Recursive equivalence of both systems RDPn and (3.1) may be seen as
follows. Starting from RDPn, one gets

∂t
(
u

(n)
1 + u

(n)
3

)
= C1L

(
u

(n)
1 + u

(n)
3

)
∂t
(
u

(n)
2 + u

(n)
4

)
= C2L

(
u

(n)
2 + u

(n)
4

)
.

Hence using u(n)
3 (t) = PC1t(f1 + f3)− u(n)

1 (t), (and similarly for the other
coordinates), gives the announced decoupled system. Conversely, deducing
from the decoupled system that u(n)

1 +u
(n)
3 = PC1t(f1 +f3) (and similarly)

follows by induction and uniqueness in Lemma 3.1.

13
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To be able to define ~u(n+1), and hence prove that the iterative sequence
is well defined, it remains to check that u(n)

i ∈ L∞([0, T ],LΦ2(µ)), for all
i = 1, . . . , 4. This is based on results stated in Appendix C and can be
shown as follows.

We may focus on u(n)
1 (t) by symmetry. By positivity of the u(n)

i ’s and
constraint u(n)

1 + u
(n)
3 = PC1t(f1 + f3), the contraction property of the

semigroup stated in Lemma C.1 implies that, for any γ > 0, for any t a.e.,

µ
(
eγ(u(n)

1 (t))2) ≤ µ (eγ(f1+f3)2)
< +∞ . (3.2)

So that, in particular, for any t ∈ [0, T ], u(n)
1 (t) ∈ EΦ2(µ). Following

Lemma C.2, what remains to be checked is Bochner measurability of the
mapping t 7→ u

(n)
1 (t) ∈ EΦ2(µ).

From the corresponding weak formulation (weak-CS) applied to a con-
stant (in time) test function φ(t) ≡ ϕ ∈ D,

µ
(
u

(n)
1 (t)ϕ

)
= µ(f1ϕ)− C1

∫ t

0
E
(
u

(n)
1 (s), ϕ

)
ds

+
∫ t

0
µ
(
ϕ(−λPC2s(f2 + f4))u(n)

1 (s) + λPC1s(f1 + f3)u(n−1)
4 (s)

)
ds.

Hence, the function t 7→ µ
(
u

(n)
1 (t)ϕ

)
is continuous, for any fixed ϕ ∈

D. Now, D is a dense subspace of the dual space (EΦ2)′ = LΦ∗2(µ) (see
Appendix C), so that weak measurability of t 7→ u

(n)
1 (t) ∈ EΦ2 follows.

By Pettis measurability theorem1 and separability of EΦ2(µ), t ∈ [0, T ] 7→
u

(n)
1 (t) ∈ EΦ2(µ) is Bochner measurable.

4. Proof of Theorem 2.3

Convergence of the approximation procedure (RDPn)

From now on, we will use the notation

|~u|2 =
4∑
i=1

u2
i and E(~u) =

4∑
i=1
E(ui) .

1see [18], [37] or [41] for a proof, and [20, Appendix E.5, Theorem 7] for a statement.
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Solution of reaction-diffusion systems

The main idea is to show that, with

Σn(t) = µ
(
|~u(n) − ~u(n−1)|2

)
(t) + 2κ

∫ t

0
E
(
~u(n) − ~u(n−1)

)
(s) ds, (4.1)

for some κ > 0 (specified later), the supremum supt∈[0,T ] Σn(t) goes to 0
exponentially fast as n goes to ∞ provided T > 0 is small enough.
From Lemma 3.1, ~u(n) is defined recursively as a weak solution of the
cornerstone linear problem. To make things simpler at this stage, we here
perform formal computations to get a priori estimates. Getting the esti-
mates rigorously makes use of Steklov regularisation, which we will detail
in the proof of the next proposition.

Estimate of the L2-norm derivative

We will focus on the L2-norm of u(n)
1 .

1
2

d
dt µ

[(
u

(n)
1 − u(n−1)

1

)2
]

= C1µ
[(
u

(n)
1 − u(n−1)

1

)
L
(
u

(n)
1 − u(n−1)

1

)]
− λµ

[(
u

(n)
1 − u(n−1)

1

) (
u

(n)
1 u

(n−1)
2 − u(n)

3 u
(n−1)
4

−u(n−1)
1 u

(n−2)
2 + u

(n−1)
3 u

(n−2)
4

)]
,

and after natural multilinear handlings,

1
2

d
dt µ

[(
u

(n)
1 − u(n−1)

1

)2
]

= −C1E
[
u

(n)
1 − u(n−1)

1

]
− λµ

[(
u

(n)
1 − u(n−1)

1

)2
u

(n−1)
2

]
− λµ

[(
u

(n)
1 − u(n−1)

1

) (
u

(n−1)
2 − u(n−2)

2

)
u

(n−1)
1

]
+ λµ

[(
u

(n)
1 − u(n−1)

1

) (
u

(n)
3 − u(n−1)

3

)
u

(n−1)
4

]
+ λµ

[(
u

(n)
1 − u(n−1)

1

) (
u

(n−1)
4 − u(n−2)

4

)
u

(n−1)
3

]
.
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Since ~u(n−1) is nonnegative, using the quadratic inequality ab ≤ a2/2 +
b2/2, one gets
1
2

d
dt µ

[(
u

(n)
1 − u(n−1)

1

)2
]

≤ −C1E
[
u

(n)
1 − u(n−1)

1

]
+ λ

2 µ
[(
u

(n)
1 − u(n−1)

1

)2
u

(n−1)
1

]
+ λ

2 µ
[(
u

(n−1)
2 − u(n−2)

2

)2
u

(n−1)
1

]
+ λ

2 µ
[(
u

(n)
1 − u(n−1)

1

)2
u

(n−1)
4

]
+ λ

2 µ
[(
u

(n)
3 − u(n−1)

3

)2
u

(n−1)
4

]
+ λ

2 µ
[(
u

(n)
1 − u(n−1)

1

)2
u

(n−1)
3

]
+ λ

2 µ
[(
u

(n−1)
4 − u(n−2)

4

)2
u

(n−1)
3

]
.

All the similar terms are then estimated thanks to the relative entropy
inequality (A.1). For instance,

µ

[(
u

(n)
1 − u(n−1)

1

)2
u

(n−1)
1

]
≤ 1
γ

Entµ
[(
u

(n)
1 − u(n−1)

1

)2
]

+ 1
γ
µ

[(
u

(n)
1 − u(n−1)

1

)2
]

logµ
[
eγu

(n−1)
1

]
.

The logarithmic Sobolev inequality (2.2) and bound (3.2) give

µ

[(
u

(n)
1 −u

(n−1)
1

)2
u

(n−1)
1

]
≤ CLS

γ
E
[
u

(n)
1 −u

(n−1)
1

]
+D

γ
µ

[(
u

(n)
1 −u

(n−1)
1

)2
]
,

where
D = max

{
logµ

(
eγ(f1+f3)), logµ

(
eγ(f2+f4))}. (4.2)

Using the same arguments for all the terms leads to
1
2

d
dt µ

[(
u

(n)
1 −u

(n−1)
1

)2
]

≤ −C1E
[
u

(n)
1 −u

(n−1)
1

]
+ λCLS

2γ
(
3E
[
u

(n)
1 −u

(n−1)
1

]
+E

[
u

(n−1)
2 −u(n−2)

2

]
+ E

[
u

(n)
3 −u

(n−1)
3

]
+E

[
u

(n−1)
4 −u(n−2)

4

])
+D

λ

2γ

(
3µ
[(
u

(n)
1 −u

(n−1)
1

)2
]

+µ

[(
u

(n−1)
2 −u(n−2)

2

)2
]

+ µ

[(
u

(n)
3 −u

(n−1)
3

)2
]

+µ

[(
u

(n−1)
4 −u(n−2)

4

)2
])
.
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Completely similar terms are obtained when dealing with the L2-norms of
the other components. After summation in all the components, one gets

1
2

d
dt µ

[∣∣∣~u(n) − ~u(n−1)
∣∣∣2]

≤ −min(C1, C2)E
[
~u(n) − ~u(n−1)

]
+ λCLS

2γ
(
4E
[
~u(n) − ~u(n−1)

]
+ 2E

[
~u(n−1) − ~u(n−2)

])
+ Dλ

2γ

(
4µ
[∣∣∣~u(n) − ~u(n−1)

∣∣∣2]+ 2µ
[∣∣∣~u(n−1) − ~u(n−2)

∣∣∣2]) .
Let κ ≡ min(C1, C2) − 2λCLS

γ which is positive provided we assume γ >
2λCLS

min(C1,C2) (which is weaker than the already mentionned constraint (2.9)).
Use the absolute continuity and the positivity of

∫ t
0 E(~u(n)−~u(n−1))(s)ds,

to get

1
2

d
dt

(
µ

[∣∣∣~u(n) − ~u(n−1)
∣∣∣2]+ 2κ

∫ t

0
E
[
~u(n) − ~u(n−1)

]
(s) ds

)
≤ D 2λ

γ

(
µ

[∣∣∣~u(n) − ~u(n−1)
∣∣∣2]+ 2κ

∫ t

0
E
[
~u(n) − ~u(n−1)

]
(s) ds

)
+D

λ

γ

(
µ

[∣∣∣~u(n−1) − ~u(n−2)
∣∣∣2]+ CLS

D
E
[
~u(n−1) − ~u(n−2)

])
.

Reminding the definition (4.1) of Σn and that ~u(n)(0) = ~u(n−1)(0), after
integration over [0, t], t ∈ [0, T ], we obtain the following key estimate

Σn(t) ≤ D 4λ
γ

∫ t

0
Σn(s) ds

+D
2λ
γ

(∫ t

0
µ

[∣∣∣~u(n−1) − ~u(n−2)
∣∣∣2](s) ds

+ CLS
D

∫ t

0
E
[
~u(n−1) − ~u(n−2)

]
(s) ds

)
. (4.3)
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Gronwall argument and convergence

Gronwall type arguments applied to the estimate (4.3) give for any t ∈
[0, T ],

Σn(t) ≤ D 2λ
γ
e
D 4λ

γ
t
(∫ t

0
µ

(∣∣∣~u(n−1) − ~u(n−2)
∣∣∣2)(s) ds

+ CLS
D

∫ t

0
E
(
~u(n−1) − ~u(n−2)

)
(s) ds

)
.

It follows that
sup
t∈[0,T ]

Σn(t) ≤ η(T ) sup
t∈[0,T ]

Σn−1(t) ,

where η(T ) = 2λ
γ e

D 4λ
γ
T (DT + CLS

2κ ).
Condition (2.9) implies that there exists T (D) > 0 (non increasing in

D) such that, for any 0 < T ≤ T (D), η(T ) < 1 since limT→0 η(T ) = λCLS
γκ .

We choose T ∈ (0, T (D)]: (~u(n))n∈N satisfies

max
{∫ T

0
E
(
~u(n) − ~u(n−1)

)
(s) ds, sup

t∈[0,T ]
µ

(∣∣∣~u(n) − ~u(n−1)
∣∣∣2)(s)

}
≤ η(T )n−1 sup

t∈[0,T ]
Σ1(t) .

Performing a similar estimate for 1
2

d
dtµ((u(n)

i (t))2), one gets the uniform
bound

∀ n,∀ t ∈ [0, T ],Σn(t) ≤ 2e
2λD
γ
t
µ
(
|~f |2

)
. (4.4)

It follows that∥∥∥~u(n) − ~u(n−1)
∥∥∥2

L2([0,T ],D4)∩C([0,T ],L2(µ)4)
≤ 4e

2λD
γ
T
µ
(
|~f |2

)
η(T )n−1.

Hence, (~u(n))n∈N is a Cauchy sequence: it converges to some function ~u(∞)

in L2([0, T ],D4) ∩ C([0, T ],L2(µ)4).

Global existence of the weak solution

Let T > 0 be fixed as in the previous computation. We will first prove that
the limit ~u(∞) is a weak solution of (RDP) in [0, T ]. Let φ ∈ C∞([0, T ],D)
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and use the weak formulation of RDPn for ~φ ≡ (φ, 0, 0, 0). For any t ∈
[0, T ],

−
∫ t

0
µ
(
u

(n)
1 (s)∂sφ

)
ds+ µ

(
u

(n)
1 (t)φ(t)

)
− µ (f1φ(0))

= −C1

∫ t

0
E
(
φ, u

(n)
1

)
(s) ds

− λ
∫ t

0
µ
(
φu

(n)
1 u

(n−1)
2

)
(s) ds+ λ

∫ t

0
µ
(
φu

(n)
3 u

(n−1)
4

)
(s) ds.

We now show we can pass to the limit n → ∞ in all the terms. (Deal-
ing with other coordinates u(n)

i is similar by symmetry). Thanks to the
continuity of the scalar product in L2([0, T ],D), we have

lim
n→∞

∫ t

0
µ
(
u

(n)
1 ∂sφ

)
(s) ds =

∫ t

0
µ
(
u

(∞)
1 ∂sφ

)
(s) ds

and

lim
n→∞

∫ t

0
E
(
φ, u

(n)
1

)
(s) ds =

∫ t

0
E
(
φ, u

(∞)
1

)
(s) ds.

Moreover, as the convergence also holds in C([0, T ],L2(µ)), then

lim
n→∞

µ
(
u

(n)
1 φ

)
(t) = µ

(
u

(∞)
1 φ

)
(t)

and

µ(f1φ(0)) = lim
n→∞

µ
(
u

(n)
1 φ

)
(0) = µ

(
u

(∞)
1 φ

)
(0) .

Dealing with the convergence of the term
∫ t
0 µ(φu(n)

1 u
(n−1)
2 )(s) ds (and

similarly of
∫ t

0 µ(φu(n)
3 u

(n−1)
4 )(s) ds) is more intricate. The difficulty is to

show that u(∞)
1 belongs to L∞([0, T ], EΦ2) which will follow indirectly.

The details are as follows.
By Lemma 2.2, τn ≡ τ

(12)
n ≡ µ(φu(n)

1 u
(n−1)
2 ) ∈ L1([0, T ]). Let us show

that this sequence is Cauchy, and so converges to, say, τ (12) in L1([0, T ]).
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Indeed,

‖τn − τm‖1 ≤
∫ T

0
µ
(
|φ(s)| ·

∣∣∣u(n)
1 u

(n−1)
2 (s)− u(m)

1 u
(m−1)
2 (s)

∣∣∣) ds

≤
∫ T

0
µ
(
|φ| ·

∣∣∣u(n)
1 − u(m)

1

∣∣∣ · ∣∣∣u(n−1)
2

∣∣∣)(s) ds

+
∫ T

0
µ
(
|φ| ·

∣∣∣u(n−1)
2 − u(m−1)

2

∣∣∣ · ∣∣∣u(m)
1

∣∣∣)(s) ds .

But by (3.2), and again entropic and log-Sobolev inequalities,∫ T

0
µ
(
|φ| ·

∣∣∣u(n)
1 − u(m)

1

∣∣∣ · ∣∣∣u(n−1)
2

∣∣∣)(s) ds

≤
(max(CLS , logMγ0)

γ0

)1/2
‖φ‖L2(I,L2(µ))

∥∥∥u(n)
1 − u(m)

1

∥∥∥
L2(I,D)

(4.5)

with Mγ0 ≡ max(µ(eγ0(f1+f3)2), µ(eγ0(f2+f4)2)) < ∞, for some fixed γ0.
This goes to 0 as n,m→ +∞.

Now, for any t ∈ [0, T ], u(n)
1 (t) → u

(∞)
1 (t) in L2(µ), so that along a

subsequence it converges µ a.s.. Hence first u(∞)
1 (t) is nonnegative (µ a.s.)

and secondly by Fatou lemma

µ

(
eγ̃(u(∞)

1 (t))2
)
≤ lim inf

n
µ

(
eγ̃(u(n)

1 (t))2
)
≤Mγ̃ <∞

for any t a.e. in [0, T ]. And this for any γ̃ > 0. Consequently, for any t
a.e., u(∞)

1 (t) ∈ EΦ2 .
From Lemma C.2, what remains to do is to prove EΦ2 Bochner measur-

ability. Let us summarize what we obtained. After taking limit n→ +∞,
one has

−
∫ t

0
µ
(
u

(∞)
1 (s)∂sφ

)
ds+ µ

(
u

(∞)
1 (t)φ(t)

)
− µ(f1φ(0))

= −C1

∫ t

0
E
(
φ, u

(∞)
1

)
(s) ds− λ

∫ t

0
τ (12)(s) ds+ λ

∫ t

0
τ (34)(s) ds.

In particular, choosing φ(t) = ϕ ∈ D, the mapping

t ∈ [0, T ] 7→ µ
(
ϕu

(∞)
1 (t)

)
∈ R

is continuous. Then, arguments detailed on page 14 ensure that u(∞)
1 ∈

L∞(I, EΦ2).
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Furthermore,∣∣∣∣∫ t

0
µ
(
φu

(n)
1 u

(n−1)
2

)
(s) ds−

∫ t

0
µ
(
φu

(∞)
1 u

(∞)
2

)
(s) ds

∣∣∣∣
≤
∫ t

0
µ
(
|φ| ·

∣∣∣u(n)
1 − u(∞)

1

∣∣∣ · ∣∣∣u(n−1)
2

∣∣∣)(s) ds

+
∫ t

0
µ
(
|φ| ·

∣∣∣u(n−1)
2 − u(∞)

2

∣∣∣ · ∣∣∣u(∞)
1

∣∣∣)(s) ds.

Performing the same computations as in (4.5) shows that∫ t

0
µ
(
φu

(n)
1 u

(n−1)
2

)
(s) ds→

∫ t

0
µ
(
φu

(∞)
1 u

(∞)
2

)
(s) ds.

All this implies that

~u(∞) =
(
u

(∞)
1 , u

(∞)
2 , u

(∞)
3 , u

(∞)
4

)
∈
(
L2(I,D) ∩ C(I,L2(µ)) ∩ L∞(I, EΦ2)

)4

is a nonnegative weak solution of (RDP).
From the local existence in [0, T ] to a global existence in [0,∞) it is

enough to prove that we can repeat the method on the interval [T, 2T ].
This follows from the estimates

µ

(
eγ(u(∞)

1 +u(∞)
3 )(T )

)
≤µ

(
eγ(f1+f3)

)
, µ

(
eγ(u(∞)

2 +u(∞)
4 )(T )

)
≤µ

(
eγ(f2+f4)

)
.

See Lemma C.1.

Proposition 4.1 (Uniqueness). Let ~f > 0 such that, for some γ > 0,

M ≡ max
{
µ
(
eγ(f1+f3)

)
, µ
(
eγ(f2+f4)

)}
<∞ .

Assume the diffusion coefficients C1 and C2, the logarithmic Sobolev con-
stant CLS of L, the reaction rate λ and the exponential integrability pa-
rameter γ are linked by the constraint

4 λCLS
min(C1, C2) ≤ γ .

Then a weak solution of the Reaction-Diffusion problem (RDP) with initial
datum ~f is unique.
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We recall basics on Steklov calculus (see [29] for instance), i.e. appro-
priate time regularization to deal with weak solutions. For any Banach
space X, and any v ∈ L2([0, T ], X), the Steklov average, defined by

ah(v)(t) =
{

1
h

∫ t+h
t v(τ) dτ 0 ≤ t ≤ T − h,

0 T − h < t ≤ T ,

converges to v in L2([0, T ], X) when h goes to 0. Moreover, provided v ∈
C([0, T ], X), ah(v) ∈ C1([0, T − h], X), d

dtah(v)(t) = 1
h(v(t+ h)− v(t)) in

X, and ah(v)(t) converges to v(t) in X, for every t ∈ [0, T ). The space X
will be here L2(µ) or D depending on the context.

Proof of Proposition 4.1. Let ~u and ~v be two weak solutions of (RDP) with
the same initial datum ~f > 0. Let M ∈ (0,∞) such that, ∀ i = 1, . . . , 4,
µ(eγ|ui(t)|) ≤M , t a.e., (and similarly for ~v). Let ~w ≡ ~u−~v and ah(wi)( · )
the Steklov average of the i-th component of w as defined before. Let t ∈
[0, T ). Integrating 1

2
d
dsµ

(
(ah(wi)(s))2

)
= µ(ah(wi)(s)∂sah(wi)) on [0, t],

one gets

µ
(
(ah(wi)(t))2

)
= µ

(
(ah(wi)(0))2

)
+ 2

∫ t

0
dsµ

(
ah(wi)(s)

1
h

(wi(s+ h)− wi(s))
)
. (4.6)

We then use the definition of a weak solution with the constant test func-
tion ah(wi)(s) ∈ D on the interval [s, s+ h] to get

µ

(
ah(wi)(s)

1
h

(wi(s+ h)− wi(s))
)

= −Ci
1
h

∫ s+h

s
E(ah(wi)(s), wi(τ)) dτ

+ λi
1
h

∫ s+h

s
dτµ

(
ah(wi)(s)

{
(u1u2 − u3u4)(τ)− (v1v2 − v3v4)(τ)

})
Now, we have first,

1
h

∫ s+h

s
E(ah(wi)(s), wi(τ)) dτ = E(ah(wi)(s), ah(wi)(s))
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and the other term is bounded from above by

λ

h2

∫
[s,s+h]2

dτdτ ′µ
(
|ui−vi|(τ ′)

{
|u1−v1|(τ)|u2|(τ) + |v1|(τ)|u2−v2|(τ)

+ |u3−v3|(τ)|u4|(τ) + |v3|(τ)|u4−v4|(τ)
})
.

We can deal with the four similar terms by the same way: let us focus on
the first one. One first uses

µ
(
|ui − vi|(τ ′)|u1 − v1|(τ)|u2|(τ)

)
≤ 1

2µ
(
(ui − vi)2(τ ′)|u2|(τ) + (u1 − v1)2(τ)|u2|(τ)

)
.

Once again, entropic inequality followed by logarithmic Sobolev inequal-
ity give

λ

h2

∫
[s,s+h]2

dτdτ ′µ
(
|ui − vi|(τ ′)|u1 − v1|(τ)|u2|(τ)

)
≤ λ

2γ
1
h

∫ s+h

s

(
CLSE(ui − vi)(τ ′) + logMµ

(
(ui − vi)2(τ ′)

))
dτ ′

+ λ

2γ
1
h

∫ s+h

s

(
CLSE(u1 − v1)(τ) + logMµ

(
(u1 − v1)2(τ)

))
dτ.

Note that, up to a constant, the first term of the RHS is the Steklov average
of the L1([0, T ]) function CLSE(ui−vi)( · )+logMµ((ui−vi)2( · )), so that,
as h → 0, it converges in L1([0, T ]) to that function. Going back to (4.6)
and performing all the explained bounds before passing to the limit h→ 0,
one gets the estimate (note that wi(0) = 0)

µ
(
w2
i (t)

)
≤ 2

∫ t

0
ds
(
−CiE(wi)(s) + λCLS

2γ
[
4E(wi)(s) + E(~w)(s)

]
+ λ logM

2γ
[
4µ
(
w2
i (s)

)
+ µ

(
|~w|2

)
(s)
])
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Summing over all i’s, one gets

µ
(
|~w|2

)
(t)

≤ 2
(
−min(C1, C2)+4λCLS

γ

)∫ t

0
dsE(~w)(s) + 8λ logM

γ

∫ t

0
dsµ

(
|~w|2

)
(s)

≤ 8λ logM
γ

∫ t

0
dsµ

(
|~w|2

)
(s)

provided the announced constraint 4λCLSγ ≤ min(C1, C2) is satisfied.
Uniqueness follows by Gronwall arguments. �

5. Proof of Lemma 3.1

Our approach to study the cornerstone linear problem introduced in Lem-
ma 3.1 will be as follows. We first complete regularity Lemma 2.2 by
another preliminary lemma (related to differentiability) which allows us
to perform a recursive approximation of the solution of a mollified, (with
a small action of the semigroup on the extra affine term), problem. On
the way, we show a priori estimates which will be useful later to remove
the mollification and get a solution of our initial problem. Uniqueness and
preservation of positivity are tackled later in the corresponding sections.

Such an approach was already proposed in [21], and computations look
quite similar. The main difference consists in the fact that, as A(t) ∈
LΦ2(µ), then one has µ(eγ|A(t)|) <∞ for any γ (see Appendix B), so that,
by using of the entropic inequality, contribution of the affine extra term
may be made small enough to be dominated by the log-Sobolev constant
without further constraint.

5.1. Preliminaries

We recall that L2(µ) may be continuously embedded in the dual space
D′ of the domain D. From Lemma 2.2, it follows that the multiplication
operator by a function v ∈ L∞([0, T ],LΦ2(µ)) is a particular case of a
Lipschitz continuous operator from L2([0, T ],D) to L2([0, T ],D′). The fol-
lowing lemma may be stated in this more general context (an example of
which was studied in [21]).
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Lemma 5.1 (Absolute continuity, differentiability a.e. and weak solu-
tions). Let z ∈ L2([0, T ],D′), f ∈ L2(µ) and ε > 0. Define

u(t) = Ptf +
∫ t

0
Pt−s+εz(s) ds.

Then u belongs to L2([0, T ],D) ∩ C([0, T ],L2(µ)) and is (strongly) abso-
lutely continuous from [a, T ] to L2(µ), for any 0 < a < T . And conse-
quently, the continuous function t ∈ [0, T ] 7→ µ(u2(t)) ∈ R is absolutely
continuous on [a, T ].

Moreover, for all t a.e. in [0, T ], u(t) is differentiable w.r.t. t in L2(µ),
belongs to the domain of L, and satisfies{

∂
∂tu(t) = Lu(t) + Pε(z(t)), t a.e.
u(0) = f .

(5.1)

As a consequence, u ∈ L2([0, T ],D) ∩ C([0, T ],L2(µ)) is a weak solution
of (5.1), i.e. for any φ ∈ C∞([0, T ],D),

−
∫ t

0
µ(u(s)∂sφ(s)) ds+ µ(u(t)φ(t)− u(0)φ(0))

= −
∫ t

0
E(u(s), φ(s)) ds+

∫ t

0
µ(φ(s)Pεz(s)) ds. (5.2)

Proof. Let us first note that the Markov semigroup itself satisfies all the
announced assertions. We only focus on absolute continuity.

Let ([ai, bi])i=1,...,N be a finite collection of (non empty) non overlapping
subintervals of [a, T ]. Then, Pbif − Paif =

∫ bi−ai
0 PτLPaifdτ so that

‖Pbif − Paif‖L2(µ) ≤ (bi − ai)‖LPaif‖L2(µ) .

Strong absolute continuity follows as, by spectral theory, for any α > 0
and any f ∈ L2(µ),

‖LPαf‖2L2(µ) = µ
((

(−L)Pαf
)2)

= µ
((

(−L)2P2αf
)
f
)

= 1
α2

∫ ∞
0

(αξ)2e−2αξνf (dξ) ≤ C

α2 µ(f2) , (5.3)

for some constant C > 0. (Here, νf denotes the spectral measure of f).
Note that, one also has E(Pεf) ≤ C

ε µ(f2) for any f ∈ L2(µ). It follows
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that ‖Pεf‖D ≤
√

1 + C
ε ‖f‖L2(µ) so that, by duality,

‖Pεz‖L2(µ) ≤

√
1 + C

ε
‖z‖D′ ∈ L2([0, T ]) .

Hence, using (5.3), for any ε > 0,

Pε : D′ → D(L) (5.4)

is continuous. We will write z̃ ≡ Pεz ∈ L2([0, T ],L2(µ)) (or even sometimes
z̃ ≡ Pε/2z).

We now turn our attention to the second term,

Ψε(z)(t) ≡
∫ t

0
Pt−s+εz(s) ds, (ε > 0) .

First, we show absolute continuity on [0, T ] of Ψε(z) in L2(µ). With
([ai, bi])i=1,...,N a finite collection of non overlapping subintervals of [0, T ],

‖Ψε(z)(bi)−Ψε(z)(ai)‖L2(µ)

=
∥∥∥∥∥
∫ bi

ai

Pbi−s+ε(z(s)) ds+
∫ ai

0
ds[Pbi−s − Pai−s](Pεz(s))

∥∥∥∥∥
L2(µ)

≤
∫ bi

ai

‖Pεz(s)‖L2(µ) ds+
∫ ai

0
ds

∫ bi−s

ai−s
dτ ‖PτL(Pεz(s))‖L2(µ)

≤
∫ bi

ai

‖z̃(s)‖L2(µ) ds+ C

ε

√
1 + C

ε
(bi − ai)

∫ T

0
‖z(s)‖D′ ds

by another use of (5.3). (Strong) Absolute continuity follows.
Continuity of u at t = 0 in L2(µ) follows by C0 property of the semi-

group. Indeed, ‖Ψε(z)(t)‖L2(µ) ≤
∫ t
0 ‖z̃(s)‖L2(µ)ds which goes to 0 as t goes

to 0.
As Ψε(z)(t) = P ε

2
(Ψ ε

2
(z)(t)), Ψε(z) ∈ C([0, T ],D).

Now, we show that provided ε > 0, Ψε(z)(t) is differentiable in L2(µ)
for any t a.e. in [0, T ] and,

∀ t a.e. ∂

∂t
Ψε(z)(t) = Pε(z(t)) +

∫ t

0
Pt−sLPεz(s) ds

= Pε(z(t)) + L(Ψε(z)(t)) .
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Let h > 0 (the case when h < 0 can be dealt with in the same way). Let
us consider (in L2(µ)) the difference between the associated differential
ratio and the expected derivative

1
h

[∫ t+h

0
Pt+h−s+εz(s) ds−

∫ t

0
Pt−s+εz(s) ds

]
−
∫ t

0
Pt−sLPεz(s) ds− Pεz(t) .

We split it into three terms. First,

(I) = 1
h

∫ t+h

t

[
Pt+h−s − Id

]
Pεz(s) ds.

Secondly,

(II) = 1
h

∫ t+h

t
Pεz(s) ds− Pεz(t) .

And third,

(III) =
∫ t

0
ds
[(Pt+h−s+ε − Pt−s+ε)

h

(
z(s)

)
− Pt−sLPεz(s)

]
.

Now, these three terms all go to 0 in L2(µ) as 0 < h goes to 0.
Indeed, we deal with the first term as for absolute continuity of Ψε(z)

above. One has∥∥∥1
h

∫ t+h

t
[Pt−s+h − Id] Pεz(s) ds

∥∥∥
L2(µ)

≤ 1
h

∫ t+h

t
ds
∫ t+h−s

0

∥∥∥PτLPεz(s)∥∥∥
L2(µ)

dτ

≤ C

ε

∫ t+h

t

t+ h− s
h

‖z̃(s)‖L2(µ) ds ≤ C

ε

∫ t+h

t
ds‖z̃(s)‖L2(µ) ,

which goes to 0 as h→ 0.
Convergence of (II) to 0 in L2(µ), and this for any t a.e., follows

from the easy part of the fundamental theorem of calculus for Bochner
integrable functions with values in L2(µ) (proved via comparison with
strongly Henstock–Kurzweil integrable functions and Vitali covering ar-
guments in [37, Theorems 7.4.2 and 5.1.4] for instance).

Finally, we focus on (III). For any s a.e., as 0 < h goes to 0,

(Ph+ε − Pε)
h

(
z(s)

)
→ LPεz(s)
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in L2(µ) as Pεz(s) ∈ D(L). And we can use dominated convergence theo-
rem as, for gε(τ, s) ≡ Pτ (Pεz(s)),∥∥∥∥ ∂∂τ gε(τ, s)

∥∥∥∥2

L2(µ)
= ‖Pτ (−L)Pεz(s)‖2L2(µ) ≤

C

ε2 ‖z̃(s)‖
2
L2(µ)

still using (5.3).
At the end of the day, u is a solution a.e. of (5.1). Deducing that u is a

weak solution is easy. If φ ∈ C∞([0, T ],D), by bilinearity, uφ is absolutely
continuous in L1(µ) on [a, T ], 0 < a < T , and so is the real valued func-
tion t 7→ µ(u(t)φ(t)). The weak formulation follows when a → 0 in the
integration by parts formula∫ t

a
dsµ(∂suφ(s)) = µ(u(t)φ(t))− µ(u(a)φ(a))−

∫ t

a
dsµ(u(s) ∂sφ) .

The proof is complete. �

5.2. A mollified problem

Remark 5.2. In Sections 5.2 to 5.4 below, we use notation introduced in
the statement of Lemma 3.1. So T > 0 is fixed, A(t) ∈ L∞([0, T ],LΦ2(µ))
and B(t) ∈ L2([0, T ],L2(µ)).

Let us fix ε > 0 and let us consider the following mollified problem∂tu(ε)(t) = Lu(ε)(t) + Pε
(
−A(t)u(ε)(t) +B(t)

)
,

u(ε)(0) = f, f ∈ L2(µ) .
(CSε)

We will prove that, for any ε > 0 (and with some more work still at
the limit ε → 0), the problem (CSε) has a weak solution in [0, T ] that is
u(ε) ∈ L2([0, T ],D) ∩ C([0, T ],L2(µ)) and, for any φ ∈ C∞([0, T ],D), and
any 0 ≤ t ≤ T ,

−
∫ t

0
µ(u(ε)(s)∂sφ(s)) ds+ µ

(
u(ε)(t)φ(t)− u(ε)(0)φ(0)

)
= −

∫ t

0
E(u(ε)(s), φ(s)) ds+

∫ t

0
µ
(
φ(s)Pε

[
−A(s)u(ε)(s) +B(s)

])
ds.

(weak-CSε)
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To handle this problem, let us consider the following iteration scheme
which, as we will prove later, converge to the unique weak solution u(ε) of
our problem (CSε). Initially,

∂tu
(ε)
0 = Lu

(ε)
0

u
(ε)
0 |t=0 = f

and then define

u
(ε)
n+1(t) ≡ Ptf +

∫ t

0
Pε+t−s(−A(s)u(ε)

n (s) +B(s)) ds . (5.5)

It follows from Lemmas 2.2 and 5.1 that, for any f ∈ L2(µ), u(ε)
n+1 ∈

C([0, T ],L2(µ)) ∩ L2([0, T ],D), and that for any t a.e. in [0, T ], u(ε)
n+1(t) is

differentiable in L2(µ) and

∂tu
(ε)
n+1 = Lu

(ε)
n+1(t) + Pε

(
−A(t)u(ε)

n (t) +B(t)
)
,

u
(ε)
n+1|t=0 = f ,

(5.6)

The convergence scheme we detail below is adapted from the one pre-
sented in [21] in another context.

Proposition 5.3 (Uniform bound). Fix ε > 0 and f ∈ L2(µ). Let u(ε)
n be

the recursive solution of the mollified problem introduced above.
There exists β ∈ (0,+∞) and 0 < T0 ≤ T , both independent of ε and

of the initial condition f , such that for any n ∈ N,

sup
0≤t≤T0

(
µ((u(ε)

n )2(t)) +
∫ t

0
E(u(ε)

n )(s) ds
)

≤ β
(
µ(f2) + ||B( · )||2L2([0.T ],L2(µ))

)
. (5.7)
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Proof. We use the notation ũ(ε)
n = Pεu

(ε)
n . For any t a.e.,

1
2

d
dt µ

((
u

(ε)
n+1

)2
)

= µ
(
u

(ε)
n+1Lu

(ε)
n+1

)
− µ

(
A(t)ũ(ε)

n+1u
(ε)
n

)
+ µ

(
B(t)ũ(ε)

n+1

)
≤ −E

(
u

(ε)
n+1

)
+ 1

2 µ
(
|A(t)|

((
ũ

(ε)
n+1

)2
+
(
u(ε)
n

)2
))

+
(
µ
(
B2(t)

)) 1
2
(
µ
(
ũ

(ε)
n+1

)2
) 1

2

≤ −E
(
u

(ε)
n+1

)
+ 1

2 µ
(
|A(t)|

((
ũ

(ε)
n+1

)2
+
(
u(ε)
n

)2
)

+ 1
2

(1
γ
µ
(
ũ

(ε)
n+1

)2
+ γµ(B2(t)

))
.

Let Mγ ∈ [1,∞) such that

∀ t a.e., µ(eγ|A|(t)) ≤Mγ . (5.8)

Such Mγ exists for any γ > 0 since A ∈ L∞([0, T ],LΦ2(µ)).
By a similar argument, the entropic and the logarithmic Sobolev in-

equalities give

µ

(
|A(t)|

(
ũ

(ε)
n+1

)2
)
≤ 1
γ

Entµ
((
ũ

(ε)
n+1

)2
)

+
µ

((
ũ

(ε)
n+1

)2
)

γ
logµ

(
eγ|A(t)|

)

≤ CLS
γ
E
(
ũ

(ε)
n+1

)
+
µ

((
ũ

(ε)
n+1

)2
)

γ
logMγ ,

and similarly for the other term. So that

1
2

d
dt µ

((
u

(ε)
n+1

))2

≤ −E
(
u

(ε)
n+1

)
+ CLS

2γ
[
E
(
ũ

(ε)
n+1

)
+ E

(
u(ε)
n

)]
+ 1 + logMγ

2γ

[
µ

((
ũ

(ε)
n+1

)2
)

+ µ

((
u(ε)
n

)2
)]

+ γ

2 µ
(
B2(t)

)
.
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Using E(ũ(ε)
n+1) ≤ E(u(ε)

n+1) and µ((ũ(ε)
n+1)2) ≤ µ((u(ε)

n+1)2) and integrating
with respect to t,

µ

((
u

(ε)
n+1

)2
(t)
)

+ 2
(

1− CLS
2γ

)∫ t

0
E
(
u

(ε)
n+1

)
(s) ds

≤ µ(f2) + 1 + logMγ

γ

∫ t

0
µ

((
u

(ε)
n+1

)2
)

(s) ds

+ 1 + logMγ

γ

∫ t

0
µ

((
u(ε)
n

)2
)

(s) ds

+ CLS
γ

∫ t

0
E
(
u(ε)
n

)
(s) ds+ γ||B( · )||2L2([0.T ],L2(µ)) .

Choosing γ > CLS
2 , κγ ≡ 1− CLS

2γ > 0 and setting

θn(t) = µ

((
u(ε)
n

)2
)

(t) + 2κγ
∫ t

0
E
(
u(ε)
n

)
(s) ds,

the above inequality implies

θn+1(t) ≤ µ(f2) + γ||B( · )||2L2([0.T ],L2(µ)) + 1 + logMγ

γ

∫ t

0
θn+1(s) ds

+ 1 + logMγ

γ

∫ t

0
θn(s) ds+ CLS

2γκγ
θn(t) .

Hence, by Gronwall type arguments, one gets

θn+1(t) ≤ e
1+logMγ

γ
t

[
α+ 1 + logMγ

γ

∫ t

0
θn(s) ds+ CLS

2γκγ
θn(t)

]
,

where
α = µ(f2) + γ||B( · )||2L2([0.T ],L2(µ)) .

It gives, for any 0 < T0 ≤ T ,

sup
t∈[0,T0]

θn+1(t)

≤ e
1+logMγ

γ
T0α+ e

1+logMγ
γ

T0
[1 + logMγ

γ
T0 + CLS

2γ − CLS

]
sup

t∈[0,T0]
θn(t)

Let us denote Zn = supt∈[0,T0] θn(t).
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Now, provided we choose γ > CLS , CLS
2γ−CLS < 1, so that, for T0 > 0

small enough,

ηT0 = e
1+logMγ

γ
T0
[1 + logMγ

γ
T0 + CLS

2γ − CLS

]
< 1 .

we end up with

Zn+1 ≤ e
1+logMγ

γ
T0α+ ηT0Zn ,

Hence, by induction,

Zn ≤ αe
1+logMγ

γ
T0(1 + · · ·+ ηn−1

T0
) + ηnT0Z0 .

Note that

Z0 = sup
t∈[0,T0]

{
µ
(
Pt(f)2

)
+ 2κγ

∫ t

0
E(Ps(f)) ds

}

≤ sup
t∈[0,T0]

{
µ
(
Pt(f)2

)
+ 2

∫ t

0
E(Ps(f)) ds

}
≤ µ(f2) ≤ α,

since the map t 7→ µ(Pt(f)2) + 2
∫ t

0 E(Ps(f))ds is decreasing. It follows
that, for any n > 0,

Zn ≤ αe
1+logMγ

γ
T0(1 + · · ·+ ηnT0) ≤ αe

1+logMγ
γ

T0 1
1− ηT0

,

which is the expected bound. �

Proposition 5.4 (Existence for mollified problem; ε > 0). For any ε > 0
and any initial datum f ∈ L2(µ), there exists a weak solution u(ε) on [0, T ]
of the mollified problem (CSε) as defined in (weak-CSε).

Proof. Let w(ε)
n+1 = u

(ε)
n+1 − u

(ε)
n and w̃(ε)

n = Pε(w(ε)
n ). For any t > 0 a.e.,

1
2

d
dt µ

((
w

(ε)
n+1

)2
)

= −E
(
w

(ε)
n+1

)
− µ

(
w̃

(ε)
n+1A(t)w(ε)

n

)
.

Again thanks to the entropic and the logarithmic Sobolev inequalities,

1
2

d
dt µ

((
w

(ε)
n+1

)2
)
≤ −E

(
w

(ε)
n+1

)
+ CLS

2γ
[
E
(
w̃

(ε)
n+1

)
+ E

(
w(ε)
n

)]
+ logMγ

2γ

[
µ

((
w̃

(ε)
n+1

)2
)

+ µ

((
w(ε)
n

)2
)]

,
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where Mγ were defined in the proof of Proposition 5.3. By the same ar-
guments as before,

µ

((
w

(ε)
n+1

)2
(t)
)

+ 2κγ
∫ t

0
E
(
w

(ε)
n+1

)
(s) ds

≤ logMγ

γ

∫ t

0
µ

((
w

(ε)
n+1

)2
)

(s) ds+ logMγ

γ

∫ t

0
µ

((
w(ε)
n

)2
)

(s) ds

+ CLS
γ

∫ t

0
E
(
w(ε)
n

)
(s) ds,

with again κγ = 1− CLS
2γ > 0 provided we choose γ > CLS

2 .
Fixing 0 < T̃0 ≤ T0, where T0 was defined in the previous proposition,

and mimicking what we have done to prove that proposition, this leads to
sup

t∈[0,T̃0]
{θ̃n+1(t)} ≤ η̃T̃0

sup
t∈[0,T ]

{θ̃n(t)} ,

where θ̃n(t) = µ((w(ε)
n+1)2) + 2κγ

∫ t
0 E(w(ε)

n+1)(s)ds and where

η̃T̃0
= (Mγ)

T̃0
γ

[ logMγ

γ
T̃0 + CLS

2γ − CLS

]
.

If we choose γ > CLS , we may take 0 < T̃0 ≤ T0 small enough (and
independent of the initial condition f) so that η̃T̃0

< 1.
Iterating and using uniform bound (5.7) for n = 1 (and n = 0), one

gets

sup
t∈[0,T̃0]

{
θ̃n+1(t)

}
≤ β̃

(
µ
(
f2
)

+ ||B( · )||2L2([0.T ],L2(µ))

)
η̃n
T̃0
.

It follows that (u(ε)
n )n∈N is a Cauchy sequence in L2([0, T̃0],D) ∩

C([0, T̃0],L2(µ)).
It converges to some u(ε) which is a weak solution in [0, T̃0] of (CSε)

(see page 18, but note that things are much simpler here). As T̃0 does
not depend on f , one easily extends the solution to the entire interval
[0, T ]. �

5.3. Uniqueness
We now state uniqueness of a weak solution for both cases : with or without
a mollification.
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Proposition 5.5 (Uniqueness). For any ε > 0, a weak solution u(ε) on
[0, T ] of the problem (CSε) with initial datum f ∈ L2(µ) is unique.

We omit the proof which is quite similar to the one of Proposition 4.1.

5.4. Existence for the cornerstone linear problem

Recall Remark 5.2: T > 0 is fixed and A(t) ∈ L∞([0, T ],LΦ2(µ)) and
B(t) ∈ L2([0, T ],L2(µ)).

Proposition 5.6 (Removing the smoothing). Let f ∈ L2(µ). There exists
0 < T0 ≤ T (independent of f) such that the weak solution u(ε), ε > 0, of
the mollified problem (CSε), (with the same initial datum f) converges as
ε goes to 0, to some limit function u in L2([0, T0],D) ∩ C([0, T0],L2(µ)).
Moreover, u may be extended to a weak solution of the cornerstone linear
problem (CS), with initial datum f , on [0, T ].
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Proof. Let ε1 > ε0 > 0 and let u0 = u(ε0) and u1 = u(ε1) be the associated
solutions of the mollified problem weak-CSε. Using Steklov calculus as
already mentionned, we get the same estimate as if we were dealing with
strong solutions. Here we avoid such technicalities to focus on the main
arguments. Let us denote w = u1 − u0 and w̃ = Pε1w. One has

1
2

d
dt µ(w2)

= −E(w) + µ
(
w[Pε1(−A(t)u1 +B(t))− Pε0(−A(t)u0 +B(t))]

)
= −E(w) + µ

(
wPε1(−A(t)w)

)
︸ ︷︷ ︸

(I)

+µ
(
w(Pε1 − Pε0)(−A(t)u0 +B(t))

)
.

Term (I) is bounded by CLS
γ E(w(t)) + log(Mγ)

γ µ(w2(t)). After integration,
using symmetry of the semigroup, one gets

µ(w2(t)) +
(

1− CLS
γ

)∫ t

0
E(w(s)) ds

≤ log(Mγ)
γ

∫ t

0
µ(w2(s)) ds

+
∫ t

0
µ
(
(Pε1 − Pε0)(w) (−A(s)u0(s) +B(s))

)
ds︸ ︷︷ ︸

(II)

,

(which is the estimate we would get rigorously after letting h → 0 in the
Steklov regularisation). After using Gronwall type arguments and taking
the supremum over t ∈ [0, T0], 0 < T0 ≤ T , we note that, if we prove that
the term (II) goes to 0 as ε1 > ε0 > 0 both go to 0, then (u(ε))ε>0 is Cauchy
(as ε goes to 0) in the Banach space L2([0, T0],D)∩C([0, T0],L2(µ)). Now,
by Cauchy–Schwarz inequality,

(II) ≤
(∫ t

0
ds µ[(Pε1 − Pε0) (w(s))]2

) 1
2

×
(1

2

∫ t

0
ds µ

(
A2(s)u2

0(s) +B2(s)
)) 1

2
. (5.9)
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Following Lemma 2.2,∫ t

0
ds µ

(
A2(s)u2

0(s) +B2(s)
)

≤ ‖Au0‖2L2([0,T ],L2(µ)) + ‖B‖2L2([0,T ],L2(µ))

≤ max(log(2), CLS)‖A‖2L∞([0,T ],LΦ2 (µ)) ‖u
(ε0)‖2L2([0,T ],D)

+ ‖B‖2L2([0,T ],L2(µ)) .

Choosing T0 as in Proposition 5.3, one may pass to the limit n → ∞ in
the uniform bound (5.7) to get that, for any ε > 0,

‖u(ε)‖2L2([0,T ],D) ≤ β (T0 + 1)
(
µ(f2) + ‖B‖2L2([0,T ],L2(µ))

)
. (5.10)

So the second factor of (5.9) is bounded uniformly in ε0. In order to
prove convergence to 0 of the other factor

∫ t
0 dsµ [(Pε1 − Pε0) (w(s))]2 when

ε1 > ε0 > 0 both go to 0, one makes use of spectral theory and the above
uniform bound (5.10). Details are given in [21, Theorem 4.10].

Eventually, the limit u of (u(ε))ε>0 (as ε goes to 0) in L2([0, T0],D) ∩
C([0, T0],L2(µ)) is a weak solution, which can be extended to a weak
solution on the entire interval [0, T ] as T0 doesn’t depend on the initial
datum f . �

5.5. Non-negativity

We prove here that, provided A and B are nonnegative, the weak solution
u of problem (CS), with a nonnegative initial datum f , is nonnegative.

Let us define u− = (−u)+ = max(−u, 0). Then, formally,

1
2

d
dt µ

(
(u−(t))2

)
= −µ(u−(t)∂tu)

= −µ(u−(t)Lu(t)) + µ(u−(t)A(t)u(t))− µ(u−(t)B(t))

≤ −µ
(
A(t) (−u)+(t)(−u)(t)︸ ︷︷ ︸

=((−u)+(t))2

)
+ E(u−(t), u(t)) ≤ 0

using positivity of A( · ) and B( · ), and

E(u−(t), u(t)) ≤ −E(u−(t), u−(t)) ≤ 0 .
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Rigorous arguments to get this are as follows. We consider the Steklov
average ah(u)(t) and its negative part a−h (u)(t) ≡ max(0,−ah(u)(t)). Re-
call that, as h goes to 0, for any t ∈ [0, T ], a−h (u)(t)→ u−(t) in L2(µ) and
ah(u) → u in L2([0, T ],D). It follows that a−h (u) → u− in L2([0, T ],D).
Namely, from any sequence going to 0, extract a subsequence (hn) such
that, for any t a.e. in [0, T ], ahn(u)(t)→ u(t) in D. By continuity of con-
tractions [3], it follows a−hn(u)(t)→ u−(t) , in D, t a.e. and one may check
easily that the sequence (‖a−hn(u)(t) − u−(t)‖2D)n is uniformly integrable
in L1([0, T ]).

Moreover, in W 1,2((0, T ),L2(µ)),

∂sa
−
h (u)(s) = −∂sah(u)(s)χ{ah(u)(s)≤0} = −1

h
(u(s+h)−u(s))χ{ah(u)(s)≤0}

where χ denotes the indicator function. Hence, using the definition of a
weak solution (with the constant test function a−h (u)(s) ∈ D), we get

1
2 µ
(
a−h (u)(t)

)2

= 1
2 µ
(
a−h (u)(0)

)2
+ 1

2

∫ t

0
ds ∂sµ

(
a−h (u)(s)

)2

= 1
2 µ
(
a−h (u)(0)

)2
−
∫ t

0
ds µ

(
a−h (u)(s) 1

h
(u(s+ h)− u(s))

)
= 1

2 µ
(
a−h (u)(0)

)2
+
∫ t

0
ds 1
h

∫ s+h

s
dτ
[
E
(
a−h (u)(s), u(τ)

)
+ µ

(
a−h (u)(s)

(
A(τ)u(τ)−B(τ)

))]
= 1

2 µ
(
a−h (u)(0)

)2
+
∫ t

0
ds
[
E
(
a−h (u)(s), ah(u)(s)

)
+ µ

(
a−h (u)(s) ah

(
A( · )u( · )−B( · )

)
(s)
)]
.

We can pass to the limit with h→ 0 which yields (as µ
(
(f−)2) = 0)

1
2 µ
(
u−(t)

)2 =
∫ t

0
ds E(u−(s), u(s)) + µ

(
u−(s) (A(s)u(s)−B(s)

))
≤ 0 ,

for the same reason as above.
The proof of Lemma 3.1 is complete.
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6. Extension to the general case

The chemical reactions we consider in this section are of the following
form ∑

i∈F
αiAi 


∑
i∈F

βiAi ,

for some given (non negative) integers αi 6= βi, for any i ∈ F where
F = {1, . . . , q} is a finite set. The associated reaction-diffusion equation
is (after appropriate change of variables)∂tui = Liui + λi(βi − αi)

(∏q
j=1 u

αj
j −

∏q
j=1 u

βj
j

)
ui|t=0 = fi, i ∈ F

(6.1)

This equation is a particular form of the abstract equation (RDP) with
constant vector λi(βi − αi), i = 1, . . . , q and nonlinearity G(~u) =∏q
j=1 u

αj
j −

∏q
j=1 u

βj
j . The method we detailed for the two-by-two case

may be adapted to this general situation provided the following assump-
tions hold.

Linearity assumptions

(1) For any i ∈ F , one has the following:
(a) Li is a Markov generator with (selfadjoint in the L2 space

associated with the) invariant probability measure µi on
(M,BM) (with the same assumptions as in page 6).

(b) (Li, µi) satisfies logarithmic Sobolev inequality with constant
Ci ∈ (0,+∞).

(2) The measures (µi)i∈F are mutually equivalent in the strong sense
that there exists a measure µ on (M,BM) and C ∈ (1,+∞) such
that

∀ i ∈ F, 1
C
≤ dµi

dµ ≤ C µ a.s.

Nonlinearity assumptions

We assume that F may be partitioned as F = tk∈KFk so that, for any
k ∈ K,

(1) ∀ i, j ∈ Fk, (Li, µi) = (Lj , µj) ≡ (L̃k, µ̃k),
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(2) provided we define F−k = {i ∈ Fk, βi − αi < 0} and F+
k =

{i ∈ Fk, βi − αi > 0}, then, F−k and F+
k are not empty.

(Note that this replaces, in the present context, the hypothesis we made
in the two-by-two case that C1 = C3 and C2 = C4.)

Initial data assumptions

We assume the following common exponential integrability on the initial
data.

Common integrability assumption. We assume that, for any i =
1, . . . , q, fi ∈ EΦ2θ(µ), where θ ≡ max(

∑q
i=1 αi,

∑q
i=1 βi)− 1.

Iterative sequence

We now define an approximation sequence (~u(n)(t))n∈N which converges
to the solution of problem (6.1). It is obtained recursively as solutions of
the following linear problems.

Let us fix a nonnegative initial datum ~f satisfying the integrability
assumptions introduced before.

For any n > 0, we will impose ~u(n)(0) = ~f and, for n = 0, ∂tu(0)
i =

Liu
(0)
i , i = 1, . . . , q.
Let Nk = |Fk|, N+

k = |F+
k | and N−k = |F−k |. Assume N−k > N+

k (the
other case is similar by symmetry). Let us label elements of F±k in the
following way

F−k = {ik−1 , . . . , ik−
N−
k

} and F+
k = {ik+

1 , . . . , ik+
N+
k

}.

We consider an onto mapping νk : F−k → F+
k defined by

νk
(
ik−l

)
= ik+

m provided l −m ∈ N+
k Z.

Define furthermore, for any i, j ∈ F ,

α
(i)
j =

{
αj if j 6= i

αj − 1 if j = i

and similarly for β’s. Let us note here that, for any i ∈ F+
k and j ∈ F−k ,

βi > 0 and αj > 0. Finally, let δi = λi|βi − αi| > 0, for any i ∈ F .
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The iterated sequence is then defined as follows2. In the case i ∈ F−k ,

∂tu
(n)
i = L̃ku

(n)
i − δi

 q∏
j=1

(
u

(n−1)
j

)α(i)
j
u

(n)
i −

q∏
j=1

(
u

(n−1)
j

)β(νk(i))
j

u
(n)
νk(i)

.
(6.2)

And, in the case i ∈ F+
k ,

∂tu
(n)
i = L̃ku

(n)
i

+ δi
Zk,i

∑
r∈ν−1

k
(i)

δr

 q∏
j=1

(
u

(n−1)
j

)α(r)
j
u(n)
r −

q∏
j=1

(
u

(n−1)
j

)β(i)
j
u

(n)
i

.
(6.3)

where Zk,i =
∑
r∈ν−1

k
(i) δr.

Why the sequence is well defined.

Recall the sequence starts with the heat semigroups associated to the Li’s

u
(0)
i (t) ≡ etLifi , i ∈ F .

It follows from Appendix C.3 that under our assumptions on ~f , u(0)
i ∈

L∞([0, T ], EΦ2θ(µ)). We hence assume we have proved, ~u(n−1) is well de-
fined, for some n > 1 and that

~u(n−1) ∈
(
L∞

(
[0, T ], EΦ2θ(µ)

))q
, (6.4)

for any T ∈ (0,+∞). Lemma 6.1 below ensures that, for any i ∈ F , the

mapping (u1, . . . , uq) ∈ (EΦ2θ(µ))q 7→
∏q
j=1 u

α
(i)
j

j ∈ EΦ2(µ) is continuous,
so that

q∏
j=1

(
u

(n−1)
j

)α(i)
j ∈ L∞

(
[0, T ], EΦ2(µ)

)
(and similarly for β’s).

2We recommend to translate at first reading the following general case in the simpler
two-by-one case A1 + A2 
 A3 with the same diffusion operator.
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Lemma 6.1. Let N > 1. Assume p1, . . . , pN > r > 1, such that
1
p1

+ · · ·+ 1
pN

= 1
r . Let Φ(x) = exp(|x|)− 1 and recall Φρ(x) = Φ(|x|ρ), for

any ρ > 1. Then the N -linear mapping

(u1, . . . , uN ) ∈ LΦp1 (µ)× · · · × LΦpN (µ) 7→ u1 . . . uN ∈ LΦr(µ)

is continuous. Moreover, provided there exists i0 such that ui0 ∈ E
Φpi0 (µ),

then u1 . . . uN ∈ EΦr(µ).

Proof. Assume ui 6= 0, for all i = 1, . . . , N and denote γi ≡ ‖ui‖−1
LΦpi

. Then
one has

∀ i = 1, . . . , N , µ
(
exp

(
|γiui|pi

))
≤ 2 .

The result will follow if we show that

µ
(
exp

(
|γ1 . . . γN u1 . . . uN |r

))
≤ 2 .

Recall Young inequality: for any a1, . . . , aN > 0,

1
r
ar1 . . . a

r
N ≤

ap1
1
p1

+ · · ·+ apNN
pN

.

Hence, using also Hölder inequality,

µ
(
e(γ1|u1|)r...(γN |uN |)r)

)
≤ µ

(
e
r
p1

(|γ1u1|p1 )
. . . e

r
pN
|γNuN |pN ))

≤ µ
(
e|γ1u1|p1 )

) r
p1 . . . µ

(
e|γNuN |

pN )
) r
pN

≤ 2
r
p1

+···+ r
pN = 2 .

(6.5)

Finally, fix γ > 0. Provided u1 ∈ EΦp1 (µ), and we choose γi > 0, such that
µ
(
e|γiui|

pi )
)
< ∞, i = 2, . . . , N , inequality (6.5) with γ1 = γ

γ2...γN
shows

that µ
(
exp(|γu1 . . . uN |r)

)
< +∞. And this, for any γ > 0. �

To prove recursively that the sequence (~u(n))n is well defined, we have
to split the cornerstone existence lemma into the following two lemmas.

Lemma 6.2 (Matrix cornerstone existence lemma). Let (L, µ) be a
Markov generator satisfying logarithmic Sobolev inequality with constant
CLS ∈ (0,∞). Let T > 0 and A = A(t) be an N × N matrix with co-
efficients in L∞([0, T ],LΦ2(µ)) and ~B ∈ (L2([0, T ],L2(µ)))N . Then the
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Cauchy problems {
∂t~u(t) = L~u(t) +A(t) ~u(t) + ~B(t) ,
~u(0) = ~f, ~f ∈ (L2(µ))N

(MCS)

and {
∂t~u(t) = L~u(t) +A(t) ~u+(t) + ~B(t) ,
~u(0) = ~f, ~f ∈ (L2(µ))N ,

(MCS+)

with ~u+ = ((u1)+, . . . (uq)+), both have a unique weak solution on [0,∞)

Note that we use that u 7→ u+ is a contraction so that it contracts both
the L2(µ) norm and the Dirichlet form E .

In the system defined by (6.2) and (6.3) only blocks made of some
i ∈ F+

k and j’s in ν−1
k (i) (or conversely) interact. We now focus on these

coordinates. The following lemma ensures that positivity and Bochner
measurability (6.4) propagate along the approximation sequence.

Lemma 6.3 (Positivity and propagation of measurability.). Let N > 2
and let δ1, . . . , δN−1 > 0 such that Z ≡

∑N−1
i=1 δi > 0, and δN > 0. Assume

furthermore ~B(t) = ~0 and A(t) is of the following form

A(t) =


−a1(t) 0 0 . . . 0 δ1aN (t)

0 −a2(t) 0 . . . 0 δ2aN (t)
· · · . . . · ·
0 0 . . . 0 −aN−1(t) δN−1aN (t)

δN
Z a1(t) δN

Z a2(t) δN
Z a3(t) . . . δN

Z aN−1(t) −δNaN (t)


(6.6)

where ai ∈ L∞([0, T ], EΦ2(µ)), i = 1, . . . , N , are all nonnegative. As-
sume the initial datum ~f ∈ (L2(µ))N is nonnegative. Then the solution ~u
of (MCS) is nonnegative. Moreover, one has

δN

N−1∑
i=1

ui(t) + ZuN (t) = etL
(
δN

N−1∑
i=1

fi + ZfN

)

and consequently, provided ~f ∈ EΦ2θ(µ) for some θ > 1/2, then ~u ∈
L∞([0, T ], EΦ2θ(µ)).

It is easy to check that v(t) ≡ δN
∑N−1
i=1 ui(t) + ZuN (t) satisfies ∂tv =

Lv(t). We detail a bit positivity argument (the remaining is similar to the
two-by-two case).
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Let ~v be the unique weak solution of problem (MCS+) with initial
condition ~f . We now show ~v is nonnegative and so it coincides to the
unique solution of (MCS) with initial condition ~f . Thanks to Steklov
calculus, the following computation is made rigorous. We focus on the last
component (which is the most complicated one). Let v−N ≡ max(−vN , 0).
One has
1
2

d
dt µ

(
(v−N )2

)
= −µ(v−N ∂tvN )

= −µ(v−NLvN ) + δNµ(aN (t)v+
Nv
−
N )− δNµ

(
N−1∑
i=1

ai
Z
v+
i v
−
N

)
.

First, −µ(v−NLvN ) = −E((−vN )+,−vN ) ≤ 0 as for any u ∈ D, 0 ≤
E(u+, u+) ≤ E(u+, u). Secondly, µ(aNv+

Nv
−
N ) = 0. And the third term

is trivially nonpositive as the ai’s are assumed nonnegative. Hence,
µ((v−N )2) ≤ µ((f−N )2) = 0.

We can state the following theorem.

Theorem 6.4. Let Li, i = 1, . . . , q, be Markov generators satisfying the
linearity assumptions described before. Assume the nonlinearity assump-
tions are satisfied as well and that ~f > 0 belongs to EΦ2θ(µ), with θ as in
the initial data assumption.

Then, for any reaction rates λi > 0, there exists a unique nonnegative
weak solution ~u of problem (6.1) on [0,∞).

Remark. Under similar assumptions, by similar techniques one can deal
with invertible reaction networks.

Appendix A. The entropic inequality

Let µ be a probability measure. Let f > 0 be a measurable function s.t.
f 6= 0 µ-a.e. Then the two following assertions are equivalent:

(1) f ∈ L1(µ) and f log
(

f
µ(f)

)
∈ L1(µ),

(2) f log+ f ∈ L1(µ).

Let us extend L1(µ) to the space L1,−
ext (µ) of measurable functions f

such that µ(f+) < +∞ and define µ(f) ≡ µ(f+) − µ(f−) ∈ R ∪ {−∞} if
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f ∈ L1,−
ext (µ). (Define also symmetrically L1,+

ext (µ)). Note that f ∈ L1,−
ext (µ)

and g ∈ L1(µ) implies f + g ∈ L1,−
ext (µ) and µ(f + g) = µ(f) + µ(g).

Moreover, for any f, g ∈ L1,−
ext (µ), f ≤ g implies µ(f) ≤ µ(g).

Lemma A.1 (Entropic inequality). Let µ be a probability measure and
let f and g be two measurable functions. Assume f > 0 (excluding f = 0
µ-a.e.) such that f log+ f ∈ L1(µ) and µ(eγg) < +∞ for some γ > 0.
Then fg ∈ L1,−

ext (µ) and

µ(fg) ≤ 1
γ
µ

(
f log f

µ(f)

)
+ µ(f)

γ
logµ (eγg) (A.1)

in R ∪ {−∞}.
The proof is based on the following inequality ∀ x ∈ R+,∀ y ∈ R,

x y ≤ x log x− x+ ey.

Appendix B. Basics on Orlicz spaces

Classical properties of Orlicz spaces can be found in [34].

Young functions

Let Φ be a Young function, that is Φ : R → R convex, even, such that
Φ(0) = 0 and Φ is not constant. Note that from this, it follows that
Φ(x) > 0, that Φ(x) → +∞ when x → ∞ and that Φ is an increasing
function on [0,+∞).

Associated Orlicz spaces

The space LΦ(µ) = {u ∈ L0(µ) : ∃ ε > 0 s.t. µ(Φ(εu)) < ∞} is a vector
subspace of L0(µ).

Gauge norm

Let BΦ = {u ∈ L0(µ) : µ(Φ(u)) ≤ 1}. Then BΦ is a symmetric (BΦ =
−BΦ) convex set in LΦ(µ) containing 0 and satisfying

LΦ(µ) = ∪λ>0λBΦ . (B.1)
From these properties, it follows that the gauge norm

‖u‖Φ ≡ inf{λ > 0 : u ∈ λBΦ}
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associated to BΦ is indeed a norm. One has
‖u‖−1

Φ = sup{γ > 0 : µ(Φ(γu)) ≤ 1}. (B.2)
The space (LΦ(µ), ‖ · ‖Φ) is a Banach space.

Comparison of norms

We often have to compare Orlicz norms associated to different Young
functions.

Definition B.1 (Comparison of Young functions). Let us denote Φ(x) �
Φ̃(x) if there exist x0 > 0 and C ∈ (0,+∞) such that ∀ x > x0, Φ(x) ≤
CΦ̃(x). Furthermore, Φ(x) ' Φ̃(x) will mean Φ(x) � Φ̃(x) and Φ̃(x) �
Φ(x).

Any Young function Φ satisfies |x| � Φ(x). It leads to the following
lemma.

Lemma B.2. Any Orlicz space may be continuously embedded in L1(µ).
More precisely, let M and τ in (0,∞) such that |x| ≤ τ Φ(x) for any
|x| >M . Then, for any f ∈ LΦ,

‖f‖1 ≤ (M + τ) ‖f‖Φ . (B.3)
Consequently, if Φ and Ψ are two Young functions satisfying, for some
constants A,B > 0, Φ(x) ≤ A|x|+BΨ(x), then

‖f‖Φ ≤ max
(
1, A‖Id‖LΨ→L1

+B
)
‖f‖Ψ . (B.4)

Remark B.3. Let Φ and Φ̃ be two Young functions. The existence of a
constant A such that

∀ x > 0,Φ(x) ≤ A
(
|x|+ Φ̃(x)

)
is equivalent to the comparison

Φ(x) � Φ̃(x) .
The previous lemma then claims briefly that comparison of Young func-
tions induces comparison of norms.

Indeed, first assume ∀ x > 0, Φ(x) ≤ A
(
|x|+ Φ̃(x)

)
. As |x|�Φ̃(x)) as

x goes to +∞, there exist x0 and B s.t. ∀ x > x0, |x| ≤ BΦ̃(x). So that
∀ x > x0,Φ(x) ≤ A(B + 1)Φ̃(x).
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Conversely, Ψ(x) ≡ |x|+ Φ̃(x) is a Young function, so that Ψ(x)
x is non

decreasing on (0,∞) and ∀ x > 0, Ψ(x)
x > Ψ′(0+) > 1. Hence, for any

0 < x ≤ x0,
Φ(x)
Ψ(x) = Φ(x)

x

x

Ψ(x)︸ ︷︷ ︸
≤1

≤ Φ(x)
x
≤ Φ(x0)

x0
.

The result follows with A = max(C, Φ(x0)
x0

).
We will also need to deduce bounds on conjugate functions from bounds

on Young functions. Recall that the conjugate function Φ∗ of a Young
function Φ is the Young function defined by

Φ∗(y) ≡ sup
x>0

(x|y| − Φ(x)) . (B.5)

Lemma B.4 ([34, Proposition II.2]). Let Φ and Ψ be Young functions
and Φ∗ and Ψ∗ their conjugate functions. Assume there exits x0 > 0 such
that

∀ x > x0, Φ(x) ≤ Ψ(x) .

Then, there exists y0 > 0 such that

∀ y > y0, Ψ∗(y) ≤ Φ∗(y) .

Exponential type Young functions and their conjugates

Let us recall we considered Young functions of exponential type

Φα(x) = exp(|x|α)− 1, α > 1 .

A direct computation shows that, for y > 0,

Φ∗1(y) =
{

0 if y ≤ 1
y log y − y + 1 if y > 1.

As a consequence, Φ∗1(y) ' h(y) ≡ y log+ y and Φ∗1 is ∆2. Here log+ y =
max(log y, 0). Using Lemmas B.4 and B.2, it follows that, provided 1 ≤
α ≤ β <∞

Φ∗β � Φ∗α � h � x2 so that ‖·‖Φ∗
β
� ‖·‖Φ∗α � ‖·‖h � ‖·‖2 . (B.6)
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More on EΦα(µ)

One may change parameters in Young inequality to get: for any α > 1 and
any δ, r > 0, one has ∀ s > 0, exp(δs) ≤ exp(α−1

α (rα/δα)
1

1−α ) exp(rsα). It
follows that, for any α > 1,

∪β>αLΦβ (µ) ⊂ EΦα(µ) .

Lemma B.5 (Separability). Assume M is a separable metric space. Then,
for any Young function Φ, EΦ(µ) is separable.

(Use that BM is countably generated, monotone class theorem and den-
sity of simple functions).

Duality

What follows may be found in [13].
A Young function Ψ : R→ R is said to satisfy the ∆2 condition if there

exist K ∈ (0,∞) and x0 > 0 such that, for any x > x0, Ψ(2x) ≤ KΨ(x).
In the case of Young functions with rapid growth (as the Φα’s intro-

duced before), ∆2 condition fails. Consequently EΦ(µ) is a proper Banach
subspace of LΦ(µ) (assuming the support of µ is infinite) and LΦ(µ) is not
separable.

The dual space of EΨ(µ) is EΨ(µ)′ = LΨ∗(µ). But when ∆2 condition
fails, the dual space of LΨ(µ) is more complicated: this is a direct sum of
LΨ∗(µ) with some nontrivial subspace made of singular linear forms. As
a consequence, neither LΦα(µ), EΦα(µ) nor LΦ∗α(µ) is reflexive.

Appendix C. Markov Semigroups and Orlicz spaces

C.1. Contraction property
Lemma C.1. Let Φ : R → R+ be a nonnegative convex function. Let
(Pt)t>0 be a Markov semigroup on L2(µ), for a probability measure µ, as
introduced in Section 2. Then, for any f ∈ L1(µ) and any t > 0,

µ(Φ(Ptf)) ≤ µΦ(f) . (C.1)
In particular, in the case when Φ is a Young function (with domain R),
provided f ∈ LΦ(µ), then Ptf ∈ LΦ(µ) and (Pt)t>0 is a contraction semi-
group on LΦ(µ).
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Proof. Let f ∈ L1(µ), t > 0 and Φ : R → R+ be convex. Nonnegativity
of Φ allows to use Jensen inequality for the Markov probability kernels
pt(x,dy). Indeed, for µ almost every x ∈ M (such that the representa-
tion (2.1) holds) and any y ∈M, by convexity,

Φ(f(y)) > Φ(Ptf(x)) + Φ′((Ptf(x))+) (f(y)− Ptf(x)) .
Integrating w.r.t. pt(x,dy) leads to

Pt(Φ(f))(x) > Φ(Ptf(x)) > 0 .
Then (C.1) follows by integration w.r.t. µ and invariance property of Pt.

Let now Φ be a Young function. Assume f 6= 0 in LΦ(µ)(⊂ L1(µ)).
Recall (B.2) and choose 0 < γ ≤ ‖f‖−1

LΦ . Applying (C.1) to Φ(γ·) instead
of Φ shows that

µ(Φ(γPtf)) ≤ 1
so that γ ≤ ‖Ptf‖−1

LΦ . And the announced contraction property follows. �

C.2. Density of the Dirichlet domain
Using comparison (B.6), one gets continuous embedding

D ↪→ L2(µ) ↪→ LΦ∗α(µ) , (C.2)
for any α > 1. As Φ∗α is ∆2, the space of simple functions, and so L2(µ)
as well, is dense in LΦ∗α(µ). Now, D is dense in L2(µ), and so in LΦ∗α(µ).

C.3. Bochner measurability
Let X be a Banach space. Recall that an X-valued function u : I → X
defined on a compact interval I is Bochner measurable provided it is an
a.e. limit of a sequence of X-valued simple functions on I (see [37] for
instance).

The L∞([0,T],LΦ(µ)) space

Lemma C.2. Let Φ : R→ R be a Young function, (M,BM, µ) a probability
space and u ∈ C([0, T ],L2(µ)). We assume that x2 � Φ(x). Then u ∈
L∞([0, T ],LΦ(µ)) iff u : t → u(t, · ) ∈ LΦ(µ) is Bochner measurable and
there exist γ,M ∈ (0,∞) s.t., for any t a.e. in [0, T ], µ(Φ(γu(t))) ≤ M.

In which case, one has, for any t a.e., ‖u(t)‖LΦ(µ) ≤
max(M,1)

γ .
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This is just rewritting the definitions. In particular, provided M > 1,
and µ(Φ(γu(t)))≤M , then by convexity, µ(Φ( γM u(t)))≤ 1

M µ(Φ(γu(t)))≤
1 so that ‖u(t)‖LΦ(µ) ≤ M

γ .

Proof of Proposition 2.1

By density of L2(µ) in LΦ∗α and contraction of Pt in LΦ∗α , C0 property of
Pt in LΦ∗α follows from C0 property in L2(µ). Indeed, let f ∈ LΦ∗α . ε > 0
being fixed, let g ∈ L2(µ) such that ‖f − g‖Φ∗α <

ε
3 . Then

‖Ptf − f‖Φ∗α ≤ 2‖f − g‖Φ∗α + ‖Ptg − g‖Φ∗α ≤
2ε
3 + C‖Ptg − g‖2

allows to conclude. As a consequence, provided f ∈ EΦα , t 7→ Ptf ∈ EΦα

is weakly continuous, and so Bochner measurable as EΦα is separable,
following Pettis measurability theorem (see page 14 for references).
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