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Homogenization of nonconvex unbounded
singular integrals

OMAR ANzA HAFSA
N1corLAs CLOZEAU
JEAN-PHILIPPE MANDALLENA

Abstract

We study periodic homogenization by I'-convergence of integral functionals
with integrands W (z, ) having no polynomial growth and which are both not nec-
essarily continuous with respect to the space variable and not necessarily convex
with respect to the matrix variable. This allows to deal with homogenization of
composite hyperelastic materials consisting of two or more periodic components
whose the energy densities tend to infinity as the volume of matter tends to zero,
ie, W(z,§) = ZjeJ 1v, (x)H;(§) where {V;} e is a finite family of open disjoint
subsets of RY, with |dV;| = 0 for all j € J and [RY \ UjeJ V;| = 0, and, for each
j€J, Hi(§) — oo as det& — 0. In fact, our results apply to integrands of type
W(z,&) = a(x)H(€) when H(E) — oo as deté — 0 and a € L= (RY;[0,00[) is
1-periodic and is either continuous almost everywhere or not continuous. When a
is not continuous, we obtain a density homogenization formula which is a priori
different from the classical one by Braides—Miiller. Although applications to hy-
perelasticity are limited due to the fact that our framework is not consistent with
the constraint of noninterpenetration of the matter, our results can be of technical
interest to analysis of homogenization of integral functionals.

1. Introduction

In this paper we prove homogenization theorems (see Theorems 2.8, 2.19
and 2.33) in the sense of De Giorgi’s I'-convergence (see Definition 2.1)

for functionals of type
/ W (‘”,w(x)) d, (1.1)
0 g

where Q C RY is a bounded open set and ¢ € WP(Q;R™) with p > 1,
when the 1-periodic integrand W : RN x M™ ¥ — [0, 00] has not p-
growth and is both not necessarily continuous with respect to its first

Keywords: Homogenization, I'-convergence, Unbounded integrand, Singular growth, De-
terminant constraint type, hyperelasticity.
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variable and not necessarily convex with respect to the second variable.
Our homogenization results can be summarized as follows (see §1.1 for
details on the classes of integrands).

Theorem. If W € I8, U Jlh, UKD,
the homogenized functional

/ Whom(Vu(z)) dz
Q

Ifw e I8, U JE, then Whom is given by the classical density homoge-
nization formula of Braides—Miiller, i.e.,

Whom(€> = IHW(‘O

:= inf inf{ W(z,& + Vo(x))dr: ¢ € Wol’p(k‘Y;Rm)},
k>1 kY

then (1.1) I'-converges as € — 0 to

where Y = ]-1 L[V and Wol’p(k:Y;]Rm) denotes the space of p-Sobolev
functions from kY to R™ which are null on the boundary of kY .
If W € KB_. then Whom 15 given by a priori different formula from the

per
classical one, i.e.,

Whom (§) = H[GW](£)
with

GW (2,€) o= ;ig%inf{ W€+ Vo) dy o € Affo@p(w);Rm)},
oz

where Q,(z) =z + pY and Affo(Q,(x); R™) denotes the space of contin-

uous piecewise affine functions from Q,(x) to R™ which are null on the

boundary of Q,(x).

The distinguishing feature of our homogenization results is that they
can be applied with integrands W : RN x MV*¥ — [0, 00] having a
singular behavior of the type

li w = 1.2
Jim W) = o, (12)
i.e., when W(z,-) is compatible with one of the two basic facts of hypere-
lasticity, namely the necessity of an infinite amount of energy to compress
a finite volume into zero volume (see Corollaries 2.13, 2.17, 2.22 and 2.36).
However, our results are not consistent with the noninterpenetration of the
matter.
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HOMOGENIZATION OF SINGULAR INTEGRALS

The plan of the paper is as follows. In the next section we state our
main results, see Theorems 2.8, 2.19 and 2.33 and Corollaries 2.13, 2.17,
2.22 and 2.36 (see also Remark 2.37) establishing new homogenization
results for functionals with 1-periodic integrands W which are consistent
with (1.2). Theorems 2.8, 2.19 and 2.33 are proved in Section 4. The proofs
of Theorems 2.8 and 2.19 use both Braides—Miiller’s homogenization the-
orem (see Theorem 2.2) and new relaxation theorems (see Theorems 3.8
and 3.15) whose statements and proofs are given in Section 3. In the ap-
pendix, we recall some standard and less standard results on relaxation
of singular integrands (see §A.1), approximation of the relaxation formula
(see §A.2), approximation of the homogenization formula (see §A.3) and
integral representation of the Vitali envelope of a set function (see §A.4).
In fact, Corollaries 2.13 and 2.17 are based upon Theorem 2.12 which is
proved in §A.1. On the other hand, Theorem A.4 is used in the proof of
Corollary 2.22, and Propositions A.5 and A.8 and Theorem A.16 are used
in the proof of Theorem 2.33.

1.1. Notation, hypotheses and classes of integrands

Troughout the paper, the symbol f stands for the mean value integral,

B fo(x)dx: ’;‘/Bf(x)dx.

Several general hypotheses are stated troughout the paper. For the con-
venience of the reader we summarize it below.

(Ag) W is p-coercive, i.e., W(z, &) > C|¢|P for all (z,€) € RN x Mm™*N
and some C' > 0.

(A1) W is 1-periodic, i.e., for every £ € M™*N and everyi € {1,..., N},
W(x +e;,&) = W(x,§€) for a.a. 2 € RV, where (eq,...,ey) is the
standard basis of RV,

(A2) there exists a function w : [0, co[— [0, 00| continuous at the origin
with w(0) = 0 such that for every x1,z2 € RV and every ¢ €
meN’

W(z1,§) < w(lwy — 22])(1+ W(x2,8)) + W(22,€).
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(Az) ZW : RN x M™*N — [0, 00| defined by
2W(e,)i=int { [ Win.&+ o) dy: o € W= (viRm)}
Y

has p-growth, i.e., ZW(x,&) < c(1 + [£P) for all (x,€&) € RY x
M™*N and some ¢ > 0.

(A4) there exists A\ € £ such that for every z1,2o € RY and every
g c meN,
W(z1,€) < [Az1) = Az2)[(1 + W (22, €)) + W(22,8).
(As) SgV(U) < c|U|(1 + [£]P) for all £ € M™*¥ | all bounded open sets
U c RY and some ¢ > 0, where

SgV(U) := inf {/UW(y,£+ Vo(y))dy : ¢ € Affo(U;]Rm)}.

(Ag) GW(x, ) < W(x,-) for a.a. x € RV, where
STQ,)

GW(z,¢) = limy W.

(A7) Z[H[GW]] < H[GW], where, for L : M™N — [0, 0],

ZL(6) = in {/Y L€+ Vo(y)) dy : o € Aﬂ:’g(Y;Rm)}
and

HIGWI(E) o= it inf { f GW(u.¢ + Vow)dy s o € Affo(kYR™) .
= kY

Other more particular hypotheses are stated troughout the paper. For
the convenience of the reader, we list the main ones below.

(P) for every bounded open subset U of RV with |[0U| = 0 and every
d €0, 60] with 69 > 0 small enough, there exists a compact K5 C U
such that

|0Ks| =0
U\ Ks| <6

Ak, is continuous

with U denoting the closure of U.
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HOMOGENIZATION OF SINGULAR INTEGRALS

(H) there exist a, 8 > 0 such that for every & € MV*V,
if det £ > a then H(£) < A1+ [£7).

(S) there exist a finite family {V;};c; of open disjoint subsets of R¥,
with [0V;| = 0 for all j € J and [RY \ Ujes Vil = 0, and a finite
family {Hj : MmN 0, oo]} - of Borel measurable functions

j
such that W is defined by

W(x,€) = > Ty, (2) H;j().

jeJ

Several different classes of integrands are defined troughout the paper
(see Definitions 2.6, 2.9, 2.10, 2.14, 2.18, 2.20, 2.25, 2.34, 2.40). For the

convenience of the reader, we summarize it below.

e 7P denotes the class of Borel measurable functions W : RN x
M™*N 5 [0, oo] satisfying (Ag), (A3) and (Ay), see Definition 2.6,
and

P, = {W € IP : W satisfies (Al)}.

per

e JP? denotes the class of Borel measurable functions W : RV x
MmN [0, 00] satisfying (Ag) and (A3z) and (S), see Defini-
tion 2.18, and

Ty 7= {W € JP : W satisfies (Al)}.

The Borel measurable functions W belonging to ZP or J? (and so to
I8, or IB.,) are continuous almost everywhere with respect to the space
variable (see Lemma 2.5). We consider subclasses S; (see Definition 2.10)
and Sy (see Definition 2.14) of 78, and S (see Definition 2.20) of J5,, of
W having separated space and matrix variables. These classes are defined
through the class H (see Definition 2.9) of functions H : MV XN — [0, o]
satisfying (H) which are consistent with the singular behavior H(§) — oo

as det & — 0.

e Kb, denotes the class of Borel measurable functions W : RN x

MmN _y [0, 0] satistfying (Ag), (A1), (As), (Ag) and (A7), see
Definition 2.25.
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The Borel measurable functions W belonging to Kf,, are not necessarily
continuous with respect to the space variable. We consider the subclass
Sy of Kb, of W having separated space and matrix variables which is
defined through the class Hyse :== {H € H : H is upper semicontinuous}
(see Definition 2.34). Finally, to make clear the link between the almost
continuous case to the non-continuous one, we consider the classes 7P and

ff)’er ={W e 7P : W satisifes (Ao)}, see Definition 2.40 and Remark 2.37.

2. Main results

Consider the family of integral functionals {I. : W1P(Q;R™) — [0, 00|}
defined by

e>0

L(g) = /Q W (Z.Vo()) de, (2.1)

where p > 1, ¢ > 0 is a (small) parameter, Q C RY is a bounded open
set with |092| = 0, where |-| denotes the Lebesgue measure in RV and
W RN x M™N [0, 00] is a Borel measurable function, where M™*¥
denotes the space of real m x N matrices with m, N > 1 two integers,
which satisfies the following two assumptions:

(Ag) W is p-coercive, i.e., W(z, &) > C|£|P for all (z,€) € RN x Mm™*N
and some C > 0;

(A1) W is 1-periodic, i.e., for every ¢ € M"™*N and everyi € {1,...,N},
W(x + e, &) = W(x, &) for a.a. x € RY, where (eq,...,ex) is the
standard basis of RY.

In [14] (see also [16, Theorem 14.5]) Braides (and independently Miiller
in [24]) proved the following homogenization theorem (see Theorem 2.2)
in the sense of De Giorgi’s I'-convergence whose definition is given below.

Definition 2.1. We say that I. I-converges to Inom : WIP(Q;R™) —
[0, o] with respect to the LP(€2; R™)-convergence as € — 0, and we write
[-lim. 0 Ie = Ihom, if

<r- limfg) (¢) = <F-gig(1)1}) (¢) = Iom (o)

e—0
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for all ¢ € WHP(Q; R™) with:
(r-nsz) (6) i= inf {lim 1.(6.): 6. — & in Lp(Q;Rm)};

(rlz;) (¢) := inf {1;; 1(62) 6. = 6 in LY(R™) .

(For more details on the concept of I'-convergence, we refer the reader
to [20, 16, 15].)

Theorem 2.2. Under (Ag) and (A1) if in addition W has p-growth,
i.e., there exists ¢ > 0 such that W(z,£) < c¢(1 + [¢|P) for all (z,§) €
RN x M™*N then

(F-lim 15) (6) = / Whom(Vé(x))dz  for all 6 € W'P(Q:R™) (2.2)
e—0 Q

with Whom : M™*N [0, 00] given by

Wian(©) = jaf it {f W(a.€+ Vila) das o € WP GYiR™) |, (23

where Y :=1]—%3 1[NV and Wy P(kY;R™) = {p € W'P(kY;R™) : =0
on O(kY)}.

The interest of Theorem 2.2 is to establish a suitable variational frame-
work to deal with nonconvex homogenization problems in the vectorial
case: it is the point of departure of many works on the subject related
to hyperelasticity. However, because of the p-growth assumption on the
integrand W, Theorem 2.2 is not consistent with (1.2).

In the present paper we establish new homogenization results (see §2.1,
§2.2 and §2.3) which are consistent with (1.2). (For other works on ho-
mogenization related to hyperelasticity we refer the reader to [21, 6, 7, 10]
and the references therein.)

2.1. Homogenization with singular integrands which are con-
tinuous almost everywhere with respect to the space
variable

In [2] it was proved the following homogenization theorem whose dis-
tinguishing feature is to be consistent with (1.2) even though it is not
consistent with the noninterpenetration of the matter, see [2, §4] for more
details.
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Theorem 2.3. Under (Ag) and (A1) if in addition W satisfies the fol-

lowing two conditions:

(Ag) there exists a function w : [0, 00[— [0, 00| continuous at the origin

with w(0) = 0 such that for every xi,xo € RN and every & €
meN

W(xlag) < w(’xl - IB2|)(1 + W(‘r27£)) + W($27§);
(Az) ZW RN x M™N — [0, 00] defined by
ZW (2, €) = inf { /Y Wz, &+ Ve(y)dy : ¢ € W&’”(Y;Rm)} (2.4)

has p-growth, i.e., ZW(z,£) < c(1 + [£]P) for all (x,&) € RN x
M"™*N and some ¢ > 0,

then (2.2) holds with Whom given by (2.3).

However, since the condition (Ag) implies the continuity of W with
respect to its first variable, Theorem 2.3 cannot be applied with W of the
form

W(z,§) = a(x)H(E)

if E
with a(x) = n 1 TEE nd lim H(¢) =00, (2.5)
vo if x € Eo det {0

where v1,72 > 0 and E; is a l-periodic open subset of R such that
|0F1| =0 and Ey := RN \ E;.

Theorem 2.8 below improves Theorem 2.3 by allowing to the integrand
W not to be necessarily continuous with respect to its first variable. The-
orem 2.8 can be applied with 1-periodic integrands W as in (2.5), see
Corollary 2.17.

To state Theorem 2.8 we need to introduce a new class of 1-periodic in-
tegrands. Let £ be the class of A € L>(R; [0, oc[) satisfying the following

property:

(P) for every bounded open subset U of RY with |0U| = 0 and every
§ €0, 80) with 5o > 0 small enough, there exists a compact K5 C U
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such that
|0Ks| =0
U\ Ks| <6
Ak, is continuous
with U denoting the closure of U.
Remark 2.4. If X\ is continuous then the property (P) is trivially verified

with K5 = U. On the other hand, if X is continuous almost everywhere,
i.e.,

|IN| =0 where N := {ZL‘ € RY : \ is not continuous at :U},

and if
lim |Vs| = 0 and |0Vs| = 0 where Vs := {:U e U :dist(z,N) < 5},
0—0

then (P) is verified with K5 = U \ V.
On the other hand, we have
Lemma 2.5. If (P) is verified then \ is continuous almost everywhere.

Proof. Arguing by induction, it is easily seen that from (P) we can deduce
that there exists a disjointed sequence { Ky, },>1 of compact subsets of RN
such that o
K, C B
K, C B, \ U?:_II K; for alln > 2,
and for every n > 1,
|Bn \ Uz K| < 52
|0K,| =0 (2.6)
Ak, is continuous,

where §y > 0 is given by (P) and B,, denotes the open ball in R" centered
at the origin and of radius n. It is sufficient to prove that

RN\ @in‘c(Ki) =0. (2.7)

(Indeed, since |k, is continuous, also is A|in(k,) and so )\|Uoo () 18
i=1 4

continuous because {int(K;)}i>1 is a disjointed sequence of open subsets
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of RY.) Using the second equality in (2.6) and the fact that RY = (J°°, B,
we have

|]RN \ fj int(K;)
=1

(G0

n=1 i=1 i=1

But, for each n > 1, B, \U;2; K; C B, \Uj=; K; hence | B, \U;2; Ki| < %0
by using the first inequality in (2.6). Consequently lim,_,« | By \Uje; Ki| =
0, which gives (2.7). O

Definition 2.6. We denote by ZP the class of Borel measurable func-
tions W : RV x M™*N — [0, oc] satisfying (Ag), (A3) and the following
additional condition:

(A4) there exists A € L such that for every zi,z9 € RY and every
£ e MmN
b

W(z1,8) < [Mz1) = Aa2)|(1+ W (22, ) + W (22,6).

Let us set

Dy = {W € IP : W satisfies (Al)}.
Remark 2.7. The following are elementary properties whose the proofs are
left to the reader.

9, ) for all

(a) If W satisfies (A4) then domW(z1,-) = dom W (xa,
) = {& € M™XN .

r1,29 € RN where, for 2 € RY, dom W (a, -
W(z,§) < oo}

(b) If X is continuous then (As) is satisfied with w given by the modulus
of continuity of A.

(c) If W satisfies (A4) and if X is continuous at = € RY then W (-, &)
is continuous at x for all & € M™*¥_ More generally, if (A4) holds
and if \|x is continuous for K C RY then W (-, &)|x is continuous
for all £ € M™*V,
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(d) If W satisfies (A4) then for every z1,2o € RY and every ¢ €
I\/meN7
ZW(21,€) < [A(@1) = Aa2)[(1+ ZW (22, §)) + ZW (22, €) -

Hence, if (A4) holds and if A|x is continuous for K C RY then
ZW (-, €)|k is continuous for all £ € M™*N and dom ZW (z1,-) =
dom ZW (x5, ) for all z1, 2o € RV,

(e) As a consequence of (c) and (d), if W satisfies (A4) then W(-,¢)
and ZW (-, £) are continuous almost everywhere for all £ € M™*¥
because A is continuous almost everywhere by Lemma 2.5.

Here is the first homogenization result of the paper.

Theorem 2.8. If W € ID, then (2.2) holds with Whom given by (2.3).

er
Definition 2.9. We denote by H the class of p-coercive and Borel mea-
surable functions H : MV*N — [0, 0o] with the following property:

(H) there exist a, 3 > 0 such that for every & € MV*V,

if |det €] > a then H(€) < B(1+ [¢P).

Note that the property (H) is compatible with the singular behavior

lim H(&) = cc.
aam, (&) = 0o

A typical example of a function belonging to the class H is given by
H (&) = [¢]P 4 h(det &)

where h : R — [0,00] is a measurable function for which there exist
5,8 > 0 such that h(t) < ¢ for all |t| > §. For example, given s > 0 and
T > 0 (possibly very large), this latter condition is satisfied with § = 2T
and ¢’ = max {ﬁ, T} when h is of type

T ift<-T
h(t) = oo ifte[-T,0]

1

— if ¢t > 0.

tS
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Definition 2.10. We denote by S; the class of 1-periodic and Borel mea-
surable functions W : RN x MN*N — [0, oo] for which there exist H € H
and a € £ with a(z) > 7 for all z € RV and some 5 > 0 such that W is
defined by

W(z,€) = a(x)H(E).

If W € &; then it is compatible with (1.2) and can be as in (2.5). In
fact, we have
Lemma 2.11. Let m = N. The class S is a subclass of I
S C Iger.
Proof. Let W € S;. Firstly, it is clear that (Ag) and (A;) are verified
and (A4) holds with A = %a. Secondly, The condition (As) follows from
the following theorem which was proved in [2].

Theorem 2.12. Let W : RN x MV*N — [0, 00] be a Borel measurable
function satisfying the following property:

(ﬁ) there exist a, B > 0 such that for every (z,€) € RV x MN*N,
if |det §| > & then W (z,€) < B(1+[¢P).
Then ZW has p-growth, i.e., W satisfies the condition (Ag).

(For the convenience of the reader, the proof of Theorem 2.12 will be
given in appendix.) Indeed, since H € H, there exist o, > 0 such that
for every & € MV*N if |det £| > o then H(&) < B(1+[¢|P). Setting @ := a
and 3 := f||al|pe, it is then clear that W satisfies (H). O

o L€,

The following result is a direct consequence of Theorem 2.8 (which will
be proved in Section 4) and Lemma 2.11.

Corollary 2.13. Letm = N. If W € &1 then (2.2) holds with Whom given
by (2.3).

Another application of Theorem 2.8 can be obtained by introducing the
following class of integrands.

Definition 2.14. We denote by Ss the class of 1-periodic and Borel mea-

surable functions W : RY x MN*N — [0, oo] for which there exist Borel

measurable functions Hy, Hy : MY XN — [0, cc] with
{H2 eH

(2.9)
Hy, < Hy <~H> for some v > 1
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such that W is defined by

where Ej is a l-periodic open subset of RY such that |[0E;| = 0 and
Ey :=RN\ Ey, with 1 g, and 1g, denoting the characteristic functions of
FE1 and FEs respectively.

Remark 2.15. If Hy < H; < vHs for some v > 1 then dom H; = dom Hs
and if futhermore Hy € H then Hqi € H.

The following lemma makes clear the link between Sz and 75,

Lemma 2.16. Let m = N. The class Sy is a subclass of 1P
Sa C Iger'

Proof. Let W € Ss. Then, by definition, W is given by (2.10) with Hy, Hy €
‘H (see Remark 2.15). As (Ag) and (A;) are clearly verified, to prove that
W € Ib,, it is sufficient to show that the conditions (A3) and (A4) are
satisfied.

Proof of (As). The condition (Ajz) follows from the following Theo-
rem 2.12. Indeed, since Hy, Hy € HP, for i = 1,2 there exist «;,3; > 0
such that for every ¢ € MM*N if |det &| > a; then H;(€) < Bi(1 + [£]P).

Setting @ := min{aj, @z} and § := max{f, 52}, it is then clear that W
satisfies (H).

Proof of (A4). We are going to prove that (A4) is verified with A\ =
(v — 1)1, where v > 1 is given by (2.9). (Clearly (v — 1)1g, € L, see
Remark 2.4.) Fix 21,20 € RY and ¢ € MV*VN. By definition of SPer
we have dom H; = dom Hj (see Remark 2.15) and so dom W (zy,-) =
dom W (zsy,-). Hence, without loss of generality we can assume that
W(x;, &) < oo for i = 1,2. Then, we have

W(z1,8) — W(z2,€)
= (Lp,(z1) — 1p, (%2)) H1(§) + (Lp,(21) — LE,(22)) H2(§)
— (1, (21) — L, (2)) (FL (€) — Ha(€))
< L, (1) — 1, (22)] (L () — Ha(©).
because 1g, =1 —1g, and H; > Hs. Let us set
{fn(s) = L HI () — S Ha(©)
(&) = 25 Ha() — L H(€).

s 0.6,
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Then, it is easy to see that
() — H2() = H,(€) — Ha($)
Hy(§) > Ha(§) > 0 by using the inequalities in (2.9)
W(w2,€) = (Lgy (22) + 527 ) H1(€) + (Lia(2) + 547) Ha(6).

From the above it follows that

W(x1,§) — W(ze,8)

< (= 1) [ty 1) = Ly a)| (1, (02) + — ) F(6)

which proves the condition (Ay). O

As a direct consequence of Theorem 2.8 and Lemma 2.16 we have the
following result.

Corollary 2.17. Letm = N. If W € Sy then (2.2) holds with Whom given
by (2.3).

2.2. Homogenization with a sum of singular integrands
We introduce the following class of integrands.

Definition 2.18. We denote by JP? the class of Borel measurable func-
tions W : RV x M™*N — [0, 0o] satisfying (Ag) and (A3) and the following
condition:

(S) there exist a finite family {V;};cs of open disjoint subsets of RV,
with |V} = 0 for all j € J and [RN \ U;c; V;| = 0, and a finite
family {Hj : MmN 0, oo]} o of Borel measurable functions

J

such that W is defined by
W(z,&) =) Ly, () H;(€). (2.11)

jedJ
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Let us set
Ther = {W € JP : W satisfies (Al)}
= {W € J? : 1y, is 1-periodic for all i € J}.

Here is the second homogenization result of the paper.

Theorem 2.19. If W € JE  then (2.2) holds with Whom given by (2.3).

per

Definition 2.20. Let S3 be the class of 1-periodic and Borel measurable
functions W : RY x MM*N — 10, 00| satisfying (S) with H; € H for all
jed.

The following lemma makes clear the link between S and JF,,.

Lemma 2.21. Let m = N. The class S3 is a subclass of Tk, i.e.,
S3 C j}?er'

Proof. Let W € S3. Then, by definition, W is given by (2.11) with H; € H
for all j € J. Firstly, (Ag) and (A;) are clearly verified. Secondly, since
every H; belongs to H, for each j € J there exists a;, 8; > 0 such that
for every & € MM*N if |det&| > «; then H;(€) < B;(1 + |£[P). Setting
a :=min{a; : j € J} and B = max{f; : j € J}, it is then clear that W
satisfies (H) and (A3) follows from Theorem 2.12. O

As a direct consequence of Theorem 2.19 and Lemma 2.21 we have the
following result.

Corollary 2.22. Let m = N. If W € S3 then (2.2) holds with Whom given
by (2.3).

Remark 2.23. The class Sy is a subclass of Ss, i.e., So C S3. (Indeed, if W
is given by (2.10) then (2.11) holds with J = {1,2}, Vi = E; and V2 =
int(Ey), where int(E2) denotes the interior of Es.) Thus, Corollary 2.22
generalizes Corollary 2.17.

2.3. Homogenization with singular integrands which are not
continuous with respect to the space variable

Let Op(RY) be the class of bounded open subsets of RY. Given any U €
Ob(RN ), we denote the space of continuous piecewise affine functions from
U to R™ by Aff(U;R™), i.e., ¢ € Aff(U; R™) if and only if ¢ is continuous
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and there exists a finite family {U;};cs of open disjoint subsets of U such
that |OU;| =0 for all i € I, |[U \ U;e; Us| = 0 and for every i € I, Vo = §;
in U; with & € M™N and we set Affo(U;R™) := {p € Aff(U;R™) :
¢ =0 on OU}. Given any Borel measurable function L : RY x M™*¥N —
[0, 0], we define SgL : Op(RY) = [0,00] with € € M™N GL : RN x
M™*N [0, 00] and HL, HL : M™*N — [0, 00] by:

o SHU) =t { /U Ly & + Vo) dy s ¢ € AfTo(USR™)

L(

_ nmmf{][
p—0

o AL(E) = jutint { £ L€+ Voo dy ¢ € Afo(kYiR™) |

¥, &+ Vo(y)dy: p € Aﬁo(Qp(m);Rm)};

p

o HLQ) = jutint {f L6+ Vo) dy: o € WY R™) |

where Y :=]—3, [V and Q,(z) := z + pY.

Remark 2.24. If L does not depend on the space variable then SEL(U) =
|U|ZL( ) for all U € O (RY) with [0U| = 0 and all £ € M™*V where
s M™*N 5 [0, oc] is defined by

Z0() = int { | L6+ Vo) dy: ¢ € A(ViR™) |

Consequently, in such a case we have GL = ZL (see also Remark 2.37).

Definition 2.25. We denote by KB, the class of Borel measurable func-

tions W : RN x M™*N — [0, oc] satisfying (Ag), (A1) and the following
additional conditions:

(As) SgV(U) < c|U|(1 + [£]P) for all € € M™N all U € Op(RY) and
some ¢ > 0;

(Ag) GW(x,-) < W(z,-) for a.a. z € RY;
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(A7) Z[H[GW]] < HIGW].

Remark 2.26. If (As) holds then GIWW has p-growth.

Remark 2.27. If W(z,€) = a(x)H(¢) with a € L>®(RY;[0,00[) and H :
M™*N — [0, 0o] Borel measurable such that ZH has p-growth, then (As)
holds.

Remark 2.28. Tt is clear that GW (x,&) < W(x,€) for all (z,€) € RV x
M™*N such that W (z,£) = oo. On the other hand, if for ¢ € M™*V
one has W(-,¢&) € LYRY) then lim, pr(w) W(y,&)dy = W(x,&) for
aa. r € RV and so GW(z,&) < W(z,§) for a.a. 2 € RN, Thus, if
W(x, &) = a(x)H(€) with a € L*(RY;[0,00[) and H : M™N — [0, o0]
Borel measurable, then such a W satisfies (Ag).

Remark 2.29. One always has H[GW] > H[GW]. On the other hand, we
have:

Lemma 2.30. If GW has p-growth, i.e., GW(x,-) < c(1 + |- [P) for all
r € RN, and if GW (x,-) is upper semicontinuous (usc) for a.a. v € RV,
then H[GW] < H[GWV].

Hence, under the assumption of Lemma 2.30, H[GW] = H[GW] and
so (A7) holds because Z[H[GW]] < H[GW].

Proof of Lemma 2.30. Fix € € M™N_ Let L : RV x M™N — [0, 00] be
defined by
L(z,¢) == c(1 + [ +¢[P) = GW(z,§ + C).

Fix any £ > 1 and any ¢ € Wol’p(k:Y;]Rm). As Affo(kY;R™) is str-
ongly dense in Wol P(KY;R™) we can assert that there exists {ypn}n C
Affo(kY; R™) such that:

Vo, — Ve in LP(EY;R™); (2.12)
Vn(z) = Ve(x) for a.a. z € kY. (2.13)

By Fatou’s lemma we have

lim L(z,Vn(x))dx 2/ lim L(z,Vyp(z))de.
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But, by using (2.12) and (2.13) we see that:
lim L(z,Vop(x))de = / c(1+ £+ Vo(2)|P)de
n—00 Jky kY

— lim GW (z,& + V() dx;

lim L(z, Vipn(2)) = c(1 +[§ + V() [?)

n—oo

- n@o GW (z,& + Vn(x)) for a.a. v € kY,

and consequently

lim QW(x,§+Vg0n(x))dx§/ lim GW (2, £+Vip,(z))dz. (2.14)
k —

As GW (x,-) is usc for a.a. x € R, taking (2.13) into account we have
n@o GW(z, £+ Vep(z)) < GW(x,& + Vp(x)) for a.a. z € kY. (2.15)

From (2.14) and (2.15) it follows that

lim GW (z,§+ Ve (z))de < GW (2, &+ Vp(z))dz.
o Jky kY
But, for each n > 1, H[GW](€) < f,,y GW (2, € + Vipn(2)) da, hence

H[GW](€) < . GW (z, € + Vo(z)) da

for all k> 1 and all ¢ € Wy ?(kY;R™),
which gives the result. (I

Remark 2.31. When W(y, &) = a(y)H (&) with a € LY(RY;[0,00[) and
H : M™ — [0, 0o] Borel measurable, we have

Lemma 2.32. If a is lower semicontinuous (lsc) a.e., H is upper semi-
continuous (usc) and ZH is finite, then GW (z,-) is usc for a.a. x € RV,

Proof. Let x € RN, As a € L'(RY;[0,00[), up to a set of zero measure,
we can assert that

lim la(y) — a(x)|dy =0 (2.16)
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for all bounded open set U C RY. Without loss of generality we can also
assume that a is Isc at 2. Let & € M™*Y and let {&,}, € M"™*¥ be such
that &, — &| — 0. We have to prove that

T GW (2, 6,) < GW (x,6). (2.17)

Fix any & > 0. By definition of ZH (£), there exists ¢35 € Affo(Y; R™) such
that

| H(E+ i) dy < ZH(E) + 5,
and multiplying by a(z) we obtain

(@) [ H(E+ sl dy < a0 ZHE +a@s.  (218)
Since a is Isc at x, there exists ps > 0 such that
inf a(y) > a(x)+9. (2.19)
YEQps (z

Fix any p € |0, ps[. Taking Proposition 3.1(a) and Remark 3.2 into ac-
count, from (2.19) we see that

8¢ (Qp(2))
|Qp ()]

= inf {][ . )a(y)H(é +Vo(y))dy:p € Affo(Qp(x);Rm)}

> (a(x) +0) mf{][ H(+Vo(y))dy soeAffo(Qp()Rm)}

= (a(z) + 6)ZH(E),
and, recalling that ZH () < oo, it follows that

~ SV T ~
a(z)ZH() < W —§ZH(¢). (2.20)
Combining (2.18) with (2.20) we obtain
S (Qp(2)) S
) [ i+ eosto) dy < ZZEE 6 (ate) - 2H(6). (221

Since p5 € Affo(Y; R™), there exists a finite family {U; };cs of open disjoint
subsets of Y such that |0U;| = 0 for all i« € I, |Y \ U;c; Ui|] = 0 and
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for every i € I, Vs = (; in U; with ¢; € M™*N  For each i € I, set
0; = limy, oo H(&, + (). As I is finite we can assert that there exists
ng > 1 such that

H(& +¢)<6;+dforalliel and all n > ng.
But H is usc and |&, — &| — 0, hence 0; < H({ + ¢;) for all ¢ € I, and so
H( +G) <H(E+¢)+0foralliel and all n > ny. (2.22)
Fix any n > ns. Using (2.22) we have
) [ Hia+ Vs(w) dy = ofe) Y H(&n + IV
el
)Y H(E+ G Ul + alx)s
el
o) [ HE+ Tesy) dy-+ a(a)s.
and taking (2.21) into account we get

SY(Qp(x))
1’)/ H (& + Vs(y)) dy < W

Thus, by using (2.23), we deduce that

S < oy (e ves (155 )

]ép o) (60+ Vs (=) ) ay
ook eren (5

(a(z + py) — a(2))H (& + Ves(y)) dy

+3 (2a(x) - ZH(S)). (2.23)

| /\

~

z) /Y H(En + Vips(y)) dy

<Y H(&n + Gl + pUi| la(y) — a(x)|dy
iel z+pUi

SV (Q,(x) ]
+ W +4 <2a(x) — ZH(&))
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for all p € ]0, ps| and all n > ns. Taking (2.16) into account, by letting
p — 0 and then n — oo we conclude that

. — — SM(Qp(x))
w3 I &) = i I oo
— S (Qp(x)) 5
<m0 (2a(x) - ZH(9))
= GW (x,€) + 6 (2a(x) - ZH()),
and (2.17) follows by letting § — 0. U

Here is the third homogenization result of the paper.
Theorem 2.33. If W € K2, then (2.2) holds with Wyom = H[GW].

per

Let us set Hyse := {H € H : H is usc} and let us introduce the following
class of integrands.

Definition 2.34. Let S; be the class of Borel measurable functions
W RN x MM — [0, 00] for which there exist H € Hys and a €
L>®(RY; [0, 00]) such that a is Isc and 1-periodic, a(z) > 7 for all z € RY
and some n > 0, and W is defined by

W(z,€) = a(x)H(E). (2.24)
Here is the link between Sy and KT,

Lemma 2.35. Let m = N. The class Sy is a subclass of KL, i.e.,
Sy C ngr-

Proof. Let W € S4. Then, by definition, W is given by (2.24) with H €
Huse and a € L®°(RYM; [0, co[) which is Isc and 1-periodic and such that
a(-) > n > 0. It is thus clear that (Ag) and (A1) are verified. So it remains
to prove that (As), (Ag) and (A7) hold. Firstly, since H € Hyse C H, by
Theorem A.4 we deduce that ZH has p-growth. Hence (As) holds because
a € L™®(R¥;[0,00[). Secondly, by Remark 2.28 we can assert that (Ag) is
satisfied. Finally, GIWW has p-growth because (Aj) is verified and, since a
is Isc, H is usc and ZH is finite, we can assert that GW (x,-) is usc for
a.a. r € RV, see Remark 2.31 and Lemma 2.32. Consequently, (A7) holds
by using Remark 2.29 and Lemma 2.30. O

As a direct consequence of Theorem 2.33 and Lemma 2.35 we have the
following result.
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Corollary 2.36. Let m = N. If W € S, then (2.2) holds with Wyom =
HIGW].

Remark 2.37 (link between the almost continuous case and the non-contin-
uous one). In Theorems 2.8 and 2.19 and Corollaries 2.13, 2.17 and 2.22,
the homogenized density Wy, is given by Braides—Miiller’s homogeniza-
tion formula, i.e., Wyhom = HW. On the other hand, in Theorem 2.33 and
Corollary 2.36, the homogenized formula Wyey, is given by another for-
mula, i.e., Wyom = H[GW], which is a priori different from the classical
one by Braides—Miiller. To make clear the link between these two formulas,
we begin with the following proposition whose proof is given below.

Proposition 2.38. If W satisfies (A4) then:

(a) Sgw(U) < / ZAW(y,g) dy for all € € M™N and all U € Oy (RN);
U

(b) ZW (z,&) < GW (x,£€) for a.a. € RN and all £ € M™*N
where ZW : RN x M™*N — [0, 00] is defined by
ZW(2,€) = inf {/ W, + Vl(y)dy: o € AFEO(Y;]Rm)} . (2.25)
Y

As a consequence, we have
Corollary 2.39. Assume that W satisfies (A4) and the following condi-

tion:

(A3) ZW has p-growth, i.e., ZW (2,€) < c(1 + [£|P) for all (z,€) €
RN x M™N and some ¢ > 0.

Then GW (x,€) = ZW (x,€) for all ¢ e M™N and a.a. z € RV,

Proof. Taking Proposition 2.38 (b) into account, we see that it suffices to
prove that GW (z,£) < ZW(z,£) for all £ € M™ N and a.a. z € RV,
First of all, by (Ag), ZW has p-growth, and so EW( -, &) € LY(RYN) for
all £ € M™* N Hence, for every £ € M™*YN and a.a. z € RV,

lim ZW(y, &) dy = ZW (x,£). (2.26)
p=0 Qp(z)
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On the other hand, by Proposition 2.38(a) we see that for every x € RY
and every & € M"™*V,

— §(Qp(2)) 5
GW (z,8) = Iim """ < lim ZW(y,€)dy,
p—0  [Qp()] P=0JQ, ()
which gives the desired inequality when combining with (2.26). O

Definition 2.40. We denote by 7P the class oof Borel measurable functions
W RN x M™*N 5 [0, oo satisfying (Ag), (A3) and (A4). (Note that (As)
implies (A3) and so ZP C ZP.)

Proposition 2.41. If W € I? then H[GW] = HW .
Proof. From Corollary 2.39 we have GW (z,§) = ZZ’W(:U,&) for all & €

-~ ~

M™N and a.a. x € RY, and so H[GW]| = H[ZW]. But H[ZW] = HW

by Lemma 4.4, and the result follows. (I
Let us set fger .= {W € I? : W satisifes (Ag)}. From the above we

have

Lemma 2.42. The class fger is a subclass of KB, i.e., fger C K-

Proof. Let W € fﬁer. It suffices to show that W satisfies (As), (Ag)
and (A7). Since W verifies (A3), ZW has p-growth, and so (As) holds by
Proposition 2.38(a). By Corollary 2.39 we have GW = ZW, hence (Ag)
is satsified because ZW < W. From Proposition 3.1 (c) and Remark 3.2
we can assert that ZW = GW is continuous with respect to the matrix
variable. Hence H[GW] = H[GW] by Lemma 2.30, which implies that (A7)
holds. g

As a direct consequence of Theorem 2.33 and Proposition 2.41 we have

Corollary 2.43. If W € fg then (2.2) holds with Wyom = HW .

er
To conclude Remark 2.37, here is the proof of Proposition 2.38.

Proof of Proposition 2.38. Assertion (a) is just Lemma 3.14 (see Rem-

ark 3.12). So, we only need to prove (b). Let A € L be given by (Ay4), where

the class £ is defined at p. 142. Let (x,&) € RY x M™*¥ . By Lemma 2.5,

up to a set of zero measure, we can assert that X\ is continuous at z. So,
there exists {ps}s>0 C ]0, 00[ such that ps — 0 as 6 — 0 and

for each 6 > 0, if y € Qp,(x) then |[A(z) — A(y)| < 6. (2.27)
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SW (Qpg (@)

Fix any § > 0 and set 05 := Q@] Then

—_—S(Qp(2))

- — o¢ (&p

< —_ " = . 2.2

T S N NE I 229
Let ¢5 € Affo(Qp;(x); R™) be such that

L W Vet du <o (2:29)

ps\T

Taking (2.27) into account, from (A4) we see that

Wiz, + Vs(y))
< IM@) = A1+ W (y, €+ Vos(y) + W(y, &+ Vs(y))
<O+ W(y, &+ Ves(y) + Wy, &+ Vs(y))

for all y € Q,;(z), and so, by using (2.29), we get
][ W(a,€ + Vis(y)) dy < 62+ 6+ (6 + 1)65.
ng(x)

Moreover, by using Proposition 3.1 (a) and Remark 3.2, we have
2W(az,§) = inf {]é " Wiz, +Vo(y))dy : ¢ € Affy (Qp, (x),Rm)}
ps\T

sf W(a,€ + Vios(y)) dy.
Qps (z)

Hence, for every ¢ > 0,
ZW(x,6) <82+ 6+ (0 + 1),
which gives ZW (z,&) < GW (x,€) by letting § — 0 and using (2.28). O

3. Auxiliary relaxation theorems

Given a Borel measurable function W : RNV x M™*N — [0, 00|, where
M™*N denotes the space of real m x N matrices with m, N > 1 two
integers, we consider ZW : RN x M™*N — [0, cc] defined by

ZW (z,§) := inf {/Y W(z,é+Vo(y))dy: ¢ € WOI’OO(Y;Rm)}
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with Y = |- 1[N. The following result is due to Fonseca (see [22,

lemma 2.16, Theorem 2.17 and Proposition 2.3]).

Proposition 3.1. The function ZW satisfies the following properties.

(a) For every bounded open set U C RN with |0U| = 0 and every
(z,6) € RN x MmN,
2W (e, = int {f W&+ Vely)) dy s 0 € W (Ui R™) |
U
= ZyW(z,§).

More precisely, we have ZyW < ZW for all bounded open set
UCRY, and ZW < ZyW for all bounded open set U C RN with
|oU| = 0.

(b) For every x € RN, if ZW (x,-) is finite then ZW (x,-) is rank-one
conver, i.e., for every &,& € M™N with rank(¢ — ¢') <1,

ZW (2, X+ (1= N)E) S AZW(2,8) + (1 - A)2W(2,£).
(c) For every x € RN, if ZW (x,-) is finite then ZW (x,-) is contin-
wous, i.e., ZW is a Carathéodory integrand® whenever ZW is

finite.

(d) For every bounded open set U C RY with |0U| = 0, every (z,£) €
RN x M"™*N and every ¢ € Affo(U;R™),

ZW(,€) < ]{] ZW(a, € + Voly)) dy.

Remark 3.2. Proposition 3.1 is also valid with “ZW?” instead of “ZW”
(see [5, Proposition 2.3]) where ZW : RN x M™*N — [0, 0o] is given by

ZW (z,€) := inf {/ W(z,6+Vo(y))dy: p € AEO(Y;Rm)}.
Y
In particular, Proposition 3.1(d) can be rewritten as Z[ZW] = ZW.

WA function W : RY xM™* ¥ — [0, 00] is called a Carathéodory integrand if W (z, £)
is measurable in z and continuous in .

159



O. ANzA HAFSA, N. CLOZEAU & J.-P. MANDALLENA

Given z € RY we say that W(xz, ) is quasiconvex (in the sense of
Morrey [23]) if for every ¢ € M™ ¥ every bounded open set U C RV
with [0U| = 0 and every ¢ € Wol’oo(U;Rm),

W(a.€) < 7{] W (€ + Ve(y)) dy.

By the quasiconvex envelope of W (x,-), that we denote by QW (x,-),
we mean the greatest quasiconvex function which less than or equal
to Wi(x,-). (Clearly, W(x,-) is quasiconvex if and only if QW (x,-) =
W(x,-).) The concept of quasiconvex envelope was introduced by Da-
corogna (see [17]) who proved the following theorem (see [18, Theorem 6.9]).
Theorem 3.3. If W is finite then QW = ZW =ZW.
The following result is a slight generalization of Theorem 3.3 (see [2]).

Theorem 3.4. If ZW is finite then QW = ZW. In particular, ZW (z,-)
is quasiconvex for all x € RY.

Remark 3.5. Theorem 3.3 can be also generalized as follows: if ZW is
finite then QW = ZW = ZW (see [5, Corollaire 2.17]).

Let p > 1 and let U C RY be a bounded open set such that |0U| = 0.
Let us define E : WYP(U; R™) — [0, 00] by

/Wa:V¢

and let us consider the relaxed functionals E, Ey : WYP(U; R™) — [0, o0]
given by:

E(¢) := inf{ lim E(¢p): ¢ — ¢ in Lp(U;Rm)};

n—oo

Fo(6) = inf{ lim E(¢n) : WeP(U;R™) 5 ¢y — ¢ in LP<U;RW>}

n—oo

with Wy P(U;R™) := {¢ € WIP(U;R™) : ¢ = 0 on OU}. As E and Eq
are not given by explicit formulas, it is of interest to know under which
conditions on W we have:

- / Wz, Vo(z)) do for all ¢ € WEP(U;R™);  (3.1)
U

- . 1,p .m
Eo(¢) = {E<¢> if ¢ € Wy (UsR™) (3.2)

00 otherwise
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with W : RY x M™*N — [0, 00] whose we wish to give a representation
formula. When W has p-growth, such integral representation problems was
studied by Dacorogna (see [17, Theorem 5], see also [18, Theorem 9.1])
and Acerbi and Fusco (see [1, Statement II1.7]) who proved the following
theorem.

Theorem 3.6. Under (Ay) if in addition W is a Carathéodory integrand
having p-growth then (3.1) and (3.2) hold with W = ZW = QW. If
moreover W (z,.) is quasiconvex for all x € RN then W = W.

Because of the p-growth assumption on the integrand W, Acerbi—
Dacorogna—Fusco’s relaxation theorem cannot handle integrands having a
singular behavior of type (1.2) when m = N.

3.1. Relaxation with singular integrands which are continu-
ous almost everywhere with respect to the space vari-
able

In [2] it was proved the following relaxation theorem whose distinguishing
feature is to be consistent with (1.2).

Theorem 3.7. Under (Ag) if in addition W satisfies (Az) and (As)
then (3.1) and (3.2) hold with W = ZW = QW.

Theorem 3.7 was used in [2] to establish Theorem 2.3. However, due
to the assumption (Aj), in Theorem 3.7 the integrand W is necessarily
continuous with respect to its first variable, and so this latter theorem
cannot be used to prove Theorem 2.8. The following relaxation theorem
improves Theorem 3.7 by allowing to the integrand W not to be necessarily
continuous with respect to its first variable and will play an essential role
in the proof of Theorem 2.8.

Theorem 3.8. If W € IP then (3.1) and (3.2) hold with W = ZW =
ow.

Proof. Let ZE : W1P(U;R™) — [0, <] be defined by
ZE(¢) = /UZW(x,VgZ)(x)) dz (3.3)
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and let ZE, ZEy : WHP(U;R™) — [0, 00] be given by:

ZE(¢) := inf{ lim ZE(¢p): ¢pn — ¢ in LP(U;Rm)}; (3.4)

n—oo
ZFo(0) = inf{ lim ZE(én) : WEP(U;R™) 3 6 — ¢ in L”(U;Rm)}.
n—oo
(3.5)
We need the following lemma whose proof is given below.

Lemma 3.9. Under (Ay) if ¢ € AfF(U;R™) (resp. ¢ € Affo(U;R™)) then
E() < | 2W (@, Vo(x)) do
U

(resp. Eo(¢) §/UZW($,V¢($))C1.T>. (3.6)

As ZW has p-growth and Aff(U;R™) (resp. Affo(U;R™)) is strongly
dense in W1P(U;R™) (resp. W&’p(U;Rm)), from Lemma 3.9 we deduce
that (3.6) holds for all ¢ € WHP(U;R™) (resp. ¢ € Wol’p(U;]Rm)). Thus
E < ZF (resp. Eg < ZEy). Moreover, ZFE < E (resp. ZFy < FEy), hence

E=ZE (resp. Eo = ﬁo). (3.7)

Since W is p-coercive, also is ZW. Moreover, as ZW is finite (because (A3)
holds) we see that ZW is a Carathéodory integrand by Proposition 3.1(c)
and ZW (z, - ) is quasiconvex for all z € RY by Theorem 3.4. From Acerbi-
Dacorogna—Fusco’s relaxation theorem (see Theorem 3.6) it follows that

=5 == _ |ZE PP(U;R™
ZE=Z2ZF resp. ZEy = on Wy(U; )
00 elsewhere

which gives the theorem when combined with (3.7). O

Proof of Lemma 3.9. Let ¢ € Aff(U;R™) (resp. ¢ € Affo(U;R™)). With-
out loss of generality we can assume that

/UZW($, Vo(z))der < co. (3.8)

By definition, there exists a finite family {U;};c; of open disjoint subsets
of U such that |0U;| = 0 for all i € I, |U \ U;c; Uil = 0 and, for every
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i€ I, Vo =E¢ in U; with & € M™*N, Thus

/ ZW (z,Vé(r))dr = Z/iZW(x,fi)dx. (3.9)

el

In particular, from (3.8) and Remark 2.7(d) we see that ZW (z,§;) < 0o
for all i € I and all z € RY. Let A € £ be given by (Ay). Then, for each
i € I and each 6 € |0, dp] with dp > 0 small enough, there exists a compact
K;;C U; such that

|0K; | =0
|UZ' \ KZ"5| <0
Ak, 5 is continuous.

Fix any 6 € ]0,00). By Remark 2.7(d) we see that for every
i € I, ZW(-,&)|Kk,, is continuous and so, since int(K;s) C Kjs,
ZW(- ,&)|m is Riemann integrable, where int(K; ) denotes the in-
terior of K 5 (2). Hence, for each i € I and each k > 1, there exists a finite
family {Ui’fj}jejf of disjoint subsets of int(K;s) with |OUF ;| =0 for all
j € JF and |int(K; ) \ Ujejik Ui]fj| = 0 such that:

1
diam(UZIfj) <z for all j € J¥; (3.10)
hm Z U, J]ZW ”,fl) —/ ZW(x,&;)dx, (3.11)
JeJk int(K; s)

where xﬁj € Uilfj and, for X ¢ RY, diam(X) := sup{|z; — 22| : 1,22 €
X}. On the other hand, as for every i € I, A, ; is continuous with I
finite and Kj; s compact, we deduce that there exists 7 > 0 such that for
every ¢ € I,

if x,y € K5 and |z —y| <n then |A(z) — A(y)| < 9. (3.12)

@ For every i € I, int(K;;5) # 0 because |0K;s| = 0 and |U; \ K, 5| < & where
without loss of generality we can assume that 6 < min;ez |Us].
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Fix any k& > % As ZW (x,&;) < oo for all i € I and all z € RY, for each
i € I and each j € JF, there exist ¢; j, §; € Wol’OO(Y;Rm) such that:

/ W (. &+ Vi (y) dy < ZW(a};, &) + 6 (3.13)
Y
/ W(0,& +Vi(y) dy < ZW(0,&) + 6. (3.14)
Y
For every n > 1, from Vitali’s covering theorem we can assert that:

e there exists a finite or countable family {Y; j s := a; j ¢+ oY }eer, ;
of disjoint subsets of Ui]fj with a; ;¢ € RY and 0 < ;e < % such

k _ N _ k .

that [U75 \ User, ; Yijel = 0 (and so 3opep, - a5 0 = [U7]);

e there exists a finite or countable family {}7}7(1 = Qiq+ QiqY beeq, of
disjoint subsets of U; \ K; 5 with a;4 € RY and 0 < Qg < % such
tEit (Ui \ Kis) \ Ugeo, Yi¢| =0 (and so > 4c; afYq =|U; \ Kis| =
\Ui \ K 5| <9).

Since |0K; 5| = 0 for all i € I, we can define {¢,}n>1 C W&’OO(U;]Rm) by

L — Qg :
Qi 0Pi,j <M> if z € Yiju
Un(z) = R (3.15)
~ o~ T — Qjq . %
0 ¢ Di > if x €Y.
1/7q

It is then easy to see that
1 ~
[%n | oo (Uimmy < - max {H%,jHLoo(Y;Rm), H%’HLOO(Y;RW)}
jeJk

for all n > 1, and so ¢, — 0 in L*®(U;R™). Thus {¢ + ¢¥p}n>1 C
WLP(U;R™) (resp. {¢ + tntn>1 C WoP(U;R™)) and ¢ + ¢ — ¢ in
LP(U;R™). Hence, to prove (3.6) it is sufficient to show that for every
n>1,

/W($,V¢($)+V¢n(:n))dx§/ZW(x,VgZ)(:v))dx. (3.16)
U U
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Let n > 1. Using the fact that |0K; ;| = 0 for all ¢ € I we see that

/U W, Vo(z)+ Vi (2)) do
/ W (& + Vin(2)) dz

el

—Z/ Wz, & + Vi (2)) da

el \Kz §

W(z, &+ Vipp(z))d
%[nt( K;s) ! e

=> W(x,& + Vipp(x)) da

icl YUNK; 5

+> > /k_W(x,&Jrvwn(a:))dx. (3.17)

iel jegk U,
Using (A4) we see that for every i € I,

Wz, & + Vipn(2)) < [Ma) = MO)[(1 4+ W(0,& + Vin(z)))
+ W(0,& + Vibn(z))
< 2[[Al[zee + 2 Az +1) W(0,& + Vion(x))

for all 2 € RY, and taking (3.15) and (3.14) into account we deduce that

[ W+ @)
U\K; 5
< 2| Ml |Us \ Kigl

+ @ e +1) Y / (0,&- Y VG (‘T — a"")) da
(67
qu ,q

< 2/ Mz [Ui \ Kisl

+ (2| M|l + 1) (Za )/ (0,& + V3i(y)) dy

q€Q;
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< 2| Alzee Ui \ K
+ (2[[Allzee + 1) (Z ) (ZW(0,&) +9).

q€Q;

As Y eq, Ay = Ui\ Kis| = |Us \ Kis| <6 for all i € I, it follows that
/ Wz, & + Viou(x)) dz < A(9) (3.18)
el Ui \Kz 5

with A(9) := 6 (2||A[|pee + (2|| AL~ + 1) (max;er ZW(0,&;) + 6)) where
lim A(9) = 0. (3.19)
6—0

Using again (A4) we can assert that for every i € I, every j € Jik and

every x € U”,

W (@, & + Vn(@) < (@) = Maf )| (14 W (), & + Vou(@))
+ W@y, & + Vipn ().

But xfj € U’g and U’C C K;s and by (3.10) we have diam(Uk-) < 1

where + < 1, hence |)\( ) — Az J)| < ¢§ for all x € U”C by (3.12). So, for

every x e UZ’“J,

W (@, & + Vipn(2)) < 8+ (8 + W (@, & + Viu(@)),
and taking (3.15) and (3.13) into account we deduce that

W(z,& + Vibn(z)) da
Ut

< 4|, ]y+(5+1) / w
leL; ;7 Yij

T — QG 59
x”, & + Vi <%>> dz
c OZZJ:Z
<SS+ (6 +1) (
leL; ;

W (a:ﬁj, & + V%’,j(?J)) dy

~
/N

< §|Uf

™
Q
<=
NN
S—
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AsYyer,, of, = |UF;| foralli € Tand all j € JF and 3cp 3 e 0 [UF;] <
|U| because > je gk UF; | = |int(K;5)] < |Us] and 3cr [Ui| = |U], it follows
that

> Wx§z+wn( ) da

i€l je gk Uy,
<(20+82) U+ (6+1)D Y (UKIZW(af,,&). (3.20)
i€l ]Ejk

Combining (3.18) and (3.20) with (3.17) we obtain
[ W ola) + T (a) da
U
<SAG)+ (204 8) [U1+ @+ 1) D U1 ZW (2, 6).

el je gk

Letting £ — oo and using (3.11) and (3.9) we conclude that
[ W, ola) + T (a) da
U
< A®G) + (204 682) [U] + (5 +1 Z/ W (z,&)dz

el lnt(Kz 8

< A(8) + (25+52)\U|+ (6+1 Z/ ZW (z,&) dz

i€l
— A@) + (25 +8?) U\+((5+1)/UZW(:J:,V¢(JU))d3:

and (3.16) follows by letting § — 0 and using (3.19). O

Remark 3.10. By allalysing the proof of Lemma 3.9 we see that this lemma
is also valid with “ZW?”, defined in (2.25), instead of “ZW”. Thus, by the
same method we can also establish the following analogue of Theorem 3.8.

Theorem 3.11. If W € P, with I? defined in Remark 2.37, then (3.1)
and (3.2) hold with W = ZW = QW. (In fact, since IP C I, we have
W=Z2W=ZW =QW.)

Remark 3.12. Tt is easily seen that from the proof of Lemma 3.9 we can
extract the following result.
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Lemma 3.13. Under (Ay), for every &€ € M™N we have
VW) < [ 2W.eda
for all bounded open set U C RN with
SV (U) = inf {/U W(a, €+ Vib(a)) da : 1 € W&’“(U;Rm)}.

By the same reasoning, in replacing “VVO1 %97 by “Affy” and “ZW” by
“ZW?” defined in (2.25), we can also prove the following result.

Lemma 3.14. Under (A4), for every & € M™*N we have
SV < [ 2WG.g)da
for all bounded open set U C RN with

SV (U) = inf {/U W(a, €+ Vio(a)) de : v € AHO(U;Rm)}.

3.2. Relaxation with a sum of singular integrands
The following relaxation theorem is a variant of Theorem 3.8.

Theorem 3.15. If W € J? then (3.1) and (3.2) hold with W = ZW =
ow.

Proof. Let ZE,ZE,ZEy : WHP(U;R™) — [0,00] be defined by (3.3),
(3.4) and (3.5) respectively. The proof of Theorem 3.15 follows from
Lemma 3.16 below by using the same arguments as in the proof of
Theorem 3.8. (I

Lemma 3.16. If W is given by (2.11) then for each ¢ € Aff(U;R™) (resp.
¢ € Affo(U;R™) ) we have

B(0) < [ 2W (2. Vola)) da
<resp. Folo) < /U Zw (m,qu(x))dx). (3.21)
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Proof. Let ¢ € Aff(U;R™) (resp. ¢ € Affo(U;R™)). By definition, there
exists a finite family {U; };cs of open disjoint subsets of U such that |0U;| =
0 forallie I, |U\ Uy Uil =0 and, for every i € I, V¢ = §; in U; with
& € M™ N Thus

/zwst ydz = ZW:U&

el
By assumption, there exist a finite family {Vj}je 7 of open disjoint subsets
of RY, with |0V;| = 0 for all j € J and [RY \ U;c; V)| = 0, and a finite
family {H 5 MmN 0, oo]} o of Borel measurable functions such that
J

W is given by
= 1y, (x)H;(¢
JjeJ
Then, we have ZW (z,§) = 3y Ly, (2)ZH;() for all z € RY and all
& € M™*N_ Hence

/ZW:U Vo(z))dz =3 Y |Us;

el jeJ

ZH;(&) (3.22)

with U; j == U; N'Vj;. Fix any 6 > 0. Given any ¢« € [ and any j € J we
consider ; ; € WOI’OO(Y;Rm) such that
5

/ Hy(& + Vipig) dy < ZH;(€) + 7
Y T

For every n > 1, by Vitali’s covering theorem, there exists a finite or

countable family {a; ;¢ + ;Y }eer,; of disjoint subsets of U;;, where

a; e € RN and 0 < Qe < %, such that |Ui,j \UZELi,j (ai7j7g+ai,j7gY)‘ =0
i

(and s0 3 pep, O‘gj,z = |U; ;). Define {¢y, }n>1 C Wy (U;R™) by

(3.23)

L= az7.]7£ 1
QZJTL(IB) = az,j,é(pl,] lf S ai7j7£ + ai7j7zy'
Q45,0

It is then easy to see that
1
lonllzee @imemy < — max [|i,j| Loo (v;mm)
jeJ
for all n > 1, and so ¢, — 0 in L>®(U;R™). Thus {¢ + ¢¥p}n>1 C
WLP(U;R™) (resp. {¢ + Yn}n>1 C Wol’p(U;Rm)) and ¢ + Y, — ¢ in
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LP(U;R™). Moreover, using (3.23) and (3.22), for every n > 1, we have
/ W(x,Vip(x) + Vipp(z)) de = Z/ W(x,& + Vipp(z)) de
U iel VUi
=S5 [ Hi+ V@) s
iel jeg /Ui
=S YUl [ Hi(& + Vo) dy
iel jeJ Y
<> > Ui jlZH;(&) +9
icl jeJ
_ / ZW (2, Vé(x)) de + 5.
U

It follows that
(o) < / ZW (2, Vo(x)) do + 6
U

(resp. Eo(¢) < /UZW(CC, Vo(z))dr + 5),

and (3.21) follows by letting 6 — 0.

4. Proof of the homogenization theorems

4.1. Singular integrands which are continuous almost every-
where with respect to the space variable

In this section we prove Theorem 2.8 by following the same lines as in
the proof of [2, Theorem 3.4]. We will need Theorems 3.8 and 2.2 and the
following classical property of the I'-convergence.

Proposition 4.1. The I'-limit is stable by substituting I. by its relazed
functional I., i.e.,

I-lim I, =T-limI. and T-limI. =TI-limI1,,
e—0 e—0 e—0 e—0

where, for each e > 0, I : WHP(Q; R™) — [0, 00] is given by

1.(¢) == inf{ lim I.(¢p) : ¢p — @ in LP(Q;Rm)}.

n—o0
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Proof of Theorem 2.8. By Proposition 4.1 it suffices to prove Theorem 2.8
with “I.” instead of “I.”. Fix any € > 0 and consider W : RN x Mm*N _y
[0,00] given by We(x,§) := W(Z,€). As W € IB, and ZW.(z,§) =
ZW(Z,¢) for all (z,€) € RY x M™N it is easy to see that W. € IP.
Applying Theorem 3.8 to W, we deduce that for every ¢ > 0,

1.(6) = /Q 2w (Vo) ) do.

where ZW is clearly p-coercive, 1l-periodic and has p-growth. From
Braides—Miiller’s homogenization theorem (see Theorem 2.2) it follows
that Inom = [-lim._,o I with Iom defined by (2.2) and Wiep : M™*N —
[0, o0] given by

Whon(€) = inf inf{ ZW (2, €+ V() da : o € Wol’p(k:Y;Rm)}

kY
= H[ZW](&)-

Fix any k& > 1, any ¢ € M™% and consider W : RY x M™%V —
[0, 00] given by We(z,() := W(z,§ + (). As W € I8, and ZWe(x,() =
ZW (x, &+ ) for all (z,¢) € RN x M™*¥ it is easy to see that W € ZP.
Applying again Theorem 3.8 to W, with U = kY we see that (3.2) holds
with W = ZWe. Consequently, for every k > 1 and every £ € M™*N | we
have

HW(E) = inf W(x, &+ Vo(x)) dx
peW, P (kY R™) JEY

= inf ][ We(z, Vo(zx)) da
PeW, P (kY R™) JEY

= inf ZWe(z, Vo(z)) da
eeEW, P (kY R™) J kY

= inf ][ ZW(z,& 4+ V(x))dx
eeEW, P (kY R™) J kY
=H[ZW](E),

and the proof of Theorem 2.8 is complete. U
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Remark 4.2. From the proof of Theorem 2.8 we can extract the following
result.

Lemma 4.3. If W € IP then H[ZW] = HW.

In the same way, by using Theorem 3.11 (see Remark 3.10) instead of
Theorem 3.8, we can also establish the following result.

Lemma 4.4. If W € IP, with IP defined in Remark 2.37, then H[ZW] =
HW.

4.2. Sum of singular integrands

In this section we prove Theorem 2.33 by using Theorems 3.15 and 2.2
and Proposition 4.1.

Proof of Theorem 2.19. 1t is the same proof than the one of Theorem 2.8
where we replace “Theorem 3.8” by “Theorem 3.15”, “ZP” by “JP” and
Lpr ” by “jé)er”~ D

per
4.3. Singular integrands which are not continuous with re-
spect to the space variable

In this section we prove Theorem 2.33.

Proof of Theorem 2.33. Using (Ag) we deduce that I'-lim. oI, >
[-lim._,,GI. where, for each ¢ > 0, GI. : WIP(Q;R™) — [0,00] is
given by

GL.(¢) = /ﬂgw (‘Z,vqs(:c)) dz.

But, by (As) we see that GW has p-growth, and so, by Braides—Miiller’s
homogenization theorem (see Theorem 2.2), it follows that

(r-1m01.) (0) = [ HIGWI(Vo(e) ds
for all ¢ € WHP(Q;R™). Consequently

@um@y@zéﬁmmwmmm

e—0
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for all ¢ € WHP(Q;R™). Taking (A7) into account, it remains to prove
that for every ¢ € WHP(Q; R™),

(r-Tm ) ) / ZIAGW])(Vo(x)) d (4.1)

Since GW has p-growth, so is H[GW]. Hence Z[H[GW]] has p-growth
and, by Proposition 3.1 and Remark 3.2, we can assert that Z [ﬁ[QW]] is
continuous. Thus, as Aff(£2;R™) is strongly dense in WP(Q; R™), we are
reduced to prove (4.1) for all ¢ € Aff(Q;R™).

If we prove that

I.(u) < GI.(u) for all e > 0 and all u € Aff(Q;R™) (4.2)

then (4.1) holds for all ¢ € Aff(Q2;R™). Indeed, fix ¢ € Aff(Q;R™). By
definition, there exists a finite family {U;};er of open disjoint subsets of
Q such that |0U;| = 0 for all ¢ € I, |2\ U;c; Ui| = 0 and, for every i € I,
V¢ = & in U; with & € M™Y. Then

/ Z[HGW])(Vo(x) de = 3 (U Z[HIGW]) ().
el

Fix any i € I. Using Proposition A.5 with L = H[GW] and A = U; we
can assert that there exists {¢; 1} C Affo(U;; R™) such that:

Jim HSDi,kHLW(Ui;Rm) =0; (4.3)

Jlim Uﬂ[gwmﬁwzk( x)) da = |U;| Z[HIGW]] (&) (4.4)

Fix any k > 1. By definition, there exists a finite family {V}};cs of open
disjoint subsets of U; such that [0V;| =0 for all j € J, [U; \ U;e; Vj| =0
and, for every j € J, Vy; x = (; in V; with ¢; € M™*N . Then

/ AGW(& + Veir(a) de = 3 [VIHIGW](& + ).

Jje€J

Fix any j € J. Recalling that GW has p-growth, by using Proposition A.8
with L = GW and A = V; we can assert that there exists {1; ji o} C
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Affo(V;; R™) such that:
lim %35kl Lo (v;;mm) = 03 (4.5)

liﬂ(l) gw <$a£2’ + ¢+ V@Zﬁ,j,k,a(fﬂ)) dz = |VJ|7Q[QW] (& +¢). (4.6)
E—r V] &

For each ¢ > 0, defining v; . € Affo(U;; R™) by s k() = i jre(x) if
x € Vj, from (4.5) and (4.6) we deduce that:

Ui (1905 e[| oo (07:mm) = 0 (4.7)

i [ GW (2.6 + Viin(e) + Vipelo) ) da
e—0 U; IS

~ | AGWI(E + Vouslade. (18)

For each £k > 1 and each ¢ > 0, we define g, ¥y € Affg(Q;R™)
by ¢r(x) = pix(z) if € U; and ¢ (2) = ¥ () if © € U;. Then,
from (4.3), (4.4), (4.7) and (4.8) we see that:

i [[orl o (@m) = 0; (4.9)

—00

Jim [ AGW)(Vo(e) + Ver(a)) de = [ ZRIGWI)(Vo(a)) da. (4.10)
iig(l) ¥k ell oo (rmy = 0 for all k > 1; (4.11)

timy | GW (£.V6(0) + Vipu(a) + Vihola) ) da
= /Q H[GW](Vo(z) + Vop(z))dz forall k>1. (4.12)

Define {¢p}ip e C AE(;R™) by ¢p e := ¢ + ¢k + Y. Combining (4.9)
with (4.11) and (4.10) with (4.12) we deduce that:

Jim T [ ¢ — ¢ oo (umem) = 0

lim lim GI.(¢pe) = /Z (Vo(z)) dz

k—o0 e—0
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By diagonalization there exists a mapping € — k. with k. — cc as e — 0
such that:

lim [|¢e = @l oo (mm) = 0; (4.13)
li 01.(6-) = [ Z[AIGWI)(Vo(w) do. (4.14)
E—r Q

where ¢. = ¢, .. But, by (4.2) we have I.(¢:) < GI.(¢c) for all € >
0, and so ma—mja(d)e) < lim. gIa(fﬁa)‘ Then, (F‘ma—m Ia) (¢) <
lim._,0 G1.(¢) because ¢. — ¢ in LP(2;R™) by (4.13), and (4.1) follows
by using (4.14).

Finally, to complete the proof of Theorem 2.33, we have to prove (4.2).

Proof of (4.2). Fix € > 0 and u € Aff(2;R™). Denote the class of open
subsets of Q by O(Q2) and define m,, : O(Q2) — [0, o] by

my(A) = inf {/A % (g Vuly) + w(;,)) dy : o € Affo(A: Rm)}.

For each § > 0 and each A € O(Q2), denote the class of countable families
{Qi}ier of disjoint open cubes such that diam(Q;) € ]0,0[ for all ¢ € I and
|A\ Ujes Qi] = 0 by Vs(A), consider m : O(Q) — [0, o0] given by

m)(A) := inf {Z my(Q;) : {Qitier € V(;(A)},

el
and define m} : O(2) — [0, 00| by

m?(A) == supm®(A) = lim m(A).
>0 0—0

The set function m is called the Vitali envelope of m,,, see §A.4 for more
details.

First of all, it is easy to see that m,, is subadditive. On the other hand,
as u € Aff(;R™), there exists a finite family {U;};es of open disjoint
subsets of (2 such that [0U;| = 0 for all j € J, [\ U;e; Uj| = 0 and, for
every j € J, Vu=¢;in U; with §; € M™*N  Hence, given any A € O(1),
we have A\ U;ec,(ANUj)| = 0, and so, by subadditivity of m,, it follows
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that

my, (A)
< Z m,, (A NUj)
JjeJ

= Zinf {/AmUj W (g,gj +V<p(y)> dy : p € Affp(AN Uj;Rm)}

jeJ

:ZENinf{ W (y,& + Vo(y)) dy - ¢ € Aff (i(AﬂUj);Rm>}.

jeJ (AOUJ)

Using (As) we see that

<YV (ZUnmy) < EevelSnup|a+ gp)
jeJ jedJ

=S elANU; (1 + 1)

jed

= c/ (14 |Vu(y)|P)dy =: v(A).
A

Thus m,(A) < v(A) for all A € O(Q) where v is a finite Radon measure
on €2 which is absolutely continuous with respect to the Lebesgue measure.
Applying Theorem A.16 with ©® = m,,, we deduce that m, is differentiable,
i.e., see Definition A.12,

) i @)
dm(2) =l =0 )

exists and is finite for a.a. x € €,

dm, € L'(Q) and
m;(A) = /Admu(x) dx (4.15)

for all A € O(12). But, given any x € €2 such that lim,_g ‘é) { ()‘)) exists
and z € U, Uj, we have x € Uj, for some jy € J and @, (:c) C Uj, for

0
all p € ]0, po[ and some pg > 0, and so, for each p € |0, po[, Vu = §j, in

176



HOMOGENIZATION OF SINGULAR INTEGRALS

Qp(x). Hence, by a change of variable, we see that for every p € |0, po|,

@ (2)]

mf{]z

]épz (v, o + Veoly ))dyisOEAff()(Qp(:);Rm)}

= inf {][ @0 + V(y )) dy : p € Affg (Qsp(m);Rm)}
Qsp(z

X

W (y, Vu(x) + Ve(y)) dy : ¢ € Affo (Qp () ;Rm>}

m\H

{ VU(y) + V@@)) dy : ¢ € Affy (er(x);Rm)}
QSP(»"‘

_ My Q&p

Qep(x )I

Consequently

() = T Q@) _ o Q@) Fuie) (G (2)
d u( ) - ;%O |Q,0(«T)| B 2%0 ‘Qap(x)’ B ;ﬁxo ’Qp (%)|

for a.a. x € Q. From (4.15) we deduce that m}(Q) = Gl.(u). (So, in
particular, we have m}(2) < oo because GIWW has p-growth.) Thus, to
establish (4.2) it remains to prove that

T.(u) < m3(9). (4.16)

Fix any § > 0. By definition of m®(Q) there exists {Q;}ics € Vs(Q)
such that

)
Y my(Qi) <m)(Q) + 5.
; 2
el
Given any i € I, by definition of m,(Q);) there exists ¢; € Affo(Q;; R™)
such that

(4.17)

/ w (L9u) + Vel ) dy < ma(@0) + 52“%1' | (4.18)
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Define s € WL (Q;R™) by ¢s = u + ¢; in Q;. Then ¢s — u €
W, °(Q; R™). From (4.17) and (4.18) we see that
Jw (Lvst) ) dy < mi(e) +5. (119)
Q

On the other hand, we have

s~ wlzsamn) = [ 10s) = u@Pdy = [ el dy. (1.20)
Q icl V Qi
But, since diam(Q;) € ]0,4[ for all i € I, by using Poincaré’s inequality
we deduce that there exists K > 0, which depends only on p and N, such
that for every ¢ € I,

[ lewray < g [ [weamla
Qi Qi
and so, taking (4.20) into account, we get

s — ullmzm < KPS /Q Vi) dy

il

— KoY /Q Vs(y) — Vuly)P dy

<2k ([ Ve ay+ [ [VuwPdy). (@21)

Using (Ao) and (4.19), from (4.21) we deduce that
1
s = ul ey < 2K (Gb()+0) + [ V()P dy).

which shows that 15 — u in LP(€; R™) because lims_,o mS () = m*(Q) <
0o, and (4.15) follows from (4.19) by letting 6 — 0 (and by noticing
that I.(u) < lims .o [o W (%, Vibs(y)) dy). This completes the proof of

Theorem 2.33. |
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Appendix

A.1. Relaxation of singular integrands

Here we give the proof of Theorem 2.12. For this, we need the following
two lemmas. The first is a special case of a theorem due to Dacorogna
and Ribeiro (see [19, Theorem 1.3], see also [18, Theorem 10.29]) and the
second is a special case of a theorem due to Ben Belgacem (see [11], see
also [5, Théoreme 3.25] for a proof).

Lemma A.l. Given t; < to and & € MYV with t; < deté < to there
exists p € Wy (Y;RN) such that det(E+Vo(y)) € {t1,t2} fora.a. y €Y.

Lemma A.2. Let W : RV x M¥*N 5 [0,00] be a Borel measurable
function. If W satisfies (ﬁ) then RW has p-growth, where for every x €
RN, RW (x,-) denotes the rank-one convex envelope of W(x,-), i.e., the
greatest rank-one convex function which less than or equal to W (z,-).

Proof of Theorem 2.12. Fix any € RY and any ¢ € MV*N_ Clearly, if
|det £] > @ then ZW (z,£) < oo. On the other hand, if |det £| < @ then, by
Lemma A.1, there exists ¢ € Wy >°(Y; RY) such that |det(¢ + V()| = a
for a.a. y € Y, and using (H) we see that

W (x,€) < /Y W (. € + Vp(y)) dy

< 2B (1+ [P + 1Y@l gy ) < 00

Thus ZW (z,£) < oo for all £ € MYV ie., ZW(x,-) is finite. From
Proposition 3.1(b) we deduce that ZW (z,-) is rank-one convex. Hence
ZW(z, ) < RW(z,-) for all z € RY, i.e., ZW < RW, and the theorem
follows from Lemma A.2. O

Remark A.3. By the same method, in using [4, Lemma 4.2] (instead of
Lemma A.1) to establish that ZH is finite when H € H, we can also prove
the following result.

Theorem A.4. If H € H then ZH has p-growth.
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A.2. Approximation of the relaxation formula

Given a Borel measurable function L : M™*¥ — [0, oc] we consider ZL
M™*N — [0, 0o] defined by

ZL() = int { [ Lie+ Vo) dy: o € Af(ViR™) .
Y
The following proposition can be found in [6, Proposition 3.17] (see
also [3, 4]).

Proposition A.5. Given & € M™*YN and a bounded open set A C RN
there exists {pp}r C Affo(A; R™) such that:

li oo grm) = 0
o Hm [op]|Loo(amm) = 0;

o lim  L(£+ Vop(x))dz = ZL(€).

k—o0 A

Proof. Given ¢ € M™*¥ there exists {¢, }n C Affg(Y;R™) such that

Jim [ L€+ Tou) dy = ZL(9). (A1)
Y

Fix any n > 1 and k£ > 1. By Vitali’s covering theorem there exists a
finite or countable family {a; + ;Y };cr of disjoint subsets of A, where
a; € RV and 0 < o; < ¢, such that |4\ Ujes(a;i + a;Y)| = 0 (and so
SicraN = |A|). Define ¢, 1 € Affo(4;R™) by

xr — a;

@n,k(x) = QiPn < > if x € a; + ;Y.

i
Clearly [|nkll Lo (amm) = £ llnll Lo (virm), hence
Jm flon kll Lo (am) = 0
for all £ > 1, and consequently
lim Um (o k| Lo (aipm) = 0. (A.2)

n—0o0 k—s

On the other hand, we have

/A(£+V<pnk dx—Za/ £+ Von(y))dy

el

— |4 /Y L(E + Vg (y)) dy
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for all n > 1 and all £ > 1. Using (A.1) we deduce that

lim lim 4 L({+ Ve, i(z))de = ZL(E), (A.3)
n—00 k—oo J 4
and the result follows from (A.2) and (A.3) by diagonalization. O

Remark A.6. By the same method, in replacing “Affy” by “Wol’oo”, we can
establish the same approximation for ZL : M™*N — [0, oc] given by

21 =it { | L&+ Vow)dy: o e Wi=(virm)}.

Proposition A.7. Given ¢ € M™N and a bounded open set A C RN
there exists {pp}r C Wy ™ (A; R™) such that:

o Hm [yl Lo (amm) = 0;

o lim 4 L({+ Vyg(x))de = ZL(E).

k—oo J 2

A.3. Approximation of the homogenization formula

Given a Borel measurable function L : RN x M™ ¥ — [0, co] which is 1-
periodic with respect to its first variable and for which there exists ¢ > 0
such that

L(x,8) < c(1+[¢P) (A4)
for all (z,¢) € RV x M™*N | we consider HL - MmN [0, 00] defined by

HL(E) := inf inf {][kY L(z, £+ Ve(x))dz: p € Affo(k:Y;Rm)}.

k>1

The following proposition is essentially due to [24, Lemma 2.1(a)] (see
also [6, Proposition 3.18]).

Proposition A.8. Under (A.4), given & € M™ N and a bounded open
set A C RN there exists {p:}e C Affg(A;R™) such that:

J ii_f)%H%HLoo(A;Rm) =0;

, x
e lim AL <€,§ + Vgpg(x)> dz = HL(E).

e—0
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Proof. Given ¢ € M™% there exists {ky; $n }n such that:
On € Affo(k,Y;R™) for all n > 1;

lim L(z,§ + Vén(z))de = HL(E). (A5)

n—00 kenY

For each n > 1 and € > 0, denote the k,Y -periodic extension of ¢, by v,
consider A, . C A given by

Ape = U e(z+ k,Y)

ZEIn,E

with I, . := {2z € ZV : (2 + k,Y) C A}, where card([,, ) < 0o because A
is bounded, and define ¢, . € Affo(A4;R™) by

One(z) :==cpp (j) ifrxeA,e.

Fix any n > 1. It is easy to see that

lonellzoe(airm) = ellénll Lo (kv imm)

for all € > 0, and consequently lim. o [|@nc||oc(a;rm) = 0 for all n > 1.
It follows that

lim_ 1im ([, c | o (agm) = 0. (A.6)

n—oo g—

Remark A.9. We also have lim,,_,oo lim._so HQZ)n,aHLP(A;Rm) = 0. Indeed, it
is easy to see that

[6ncllisamm = [ lonc(o)lP do

n,e

P
= > [ e (E)]
2€Dn.c e(z+knY) €
Al
<A

=N LP (kY R™)
n

for all € > 0, and consequently lime 0 ||¢nellr(arm) = 0 for all n > 1,
hence the result.
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On the other hand, for every n > 1 and every € > 0, we have

/AL <:§,£ + Vgﬁn,g(m)> dz

Ane € A\An,s €
But

[r(ervom)as 5 [ p(Eerva ()

ze
\Anel][ (2, &+ Vo (x))de,
and consequently

AndALO < [ (264 Vonele)) do

< |Arf (2.6 + V(@) dz + c| A\ Ay |(1+ [£17)

by (A.4). As lim. 0|4\ A, | =0 for any n > 1, and by using (A.5), we
see that:

lim [ AN Ay ([L(E) =0

. . A ] |A \ A?’l,&“ P .
Jim lim (ﬁnYL (2, 6+ Vén(x)) do —HL(E) + Al (L+[5P) | =0.
Hence
L x _
Jim T f L (2.6 + Vone(o) do— AL =0, (AT)
and the result follows from (A.6) and (A.7) by diagonalization. O

Remark A.10. By the same method, in using Remark A.9, we can establish
the same approximation for HL : M™*N — [0, o] given by

ML) = inf inf {Jiy L(2,€ + V() de : o € WP (kY Rm)}.

k>1
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Proposition A.11. Under (A.4), given ¢ € M™N and a bounded open
set A C RN there exists {p.}. € Wy (A;R™) such that:

o ilg(l) el r(asmmy = 05

) x
e lim AL (8,5 + ths(ac)> de = HL(E).

e—0

A.4. Integral representation of the Vitali envelope of a set
function

What follows was first developed in [13, 12] (see also [8, 9]). Let Q ¢ RV
be a bounded open set and let O(2) be the class of open subsets of 2. We
begin with the concept of differentiability of a set function.

Definition A.12. We say that a set function © : O(Q2) — R is differen-
tiable (with respect to the Lebesgue measure) if

dO(z) := lim O(Qy()) (A.8)
=0 |Qp()]
exists and is finite for a.a. € Q, where Q,(z) := x + pY with Y :=
J=3 3"
Remark A.13. Tt is easy to see that the limit in (A.8) exists and is finite
if and only if —oo < dTO© < d~O < oo, where ™0 : X — [—o0, 00 and
dtO® : X — |—00, 0] are given by:

d 0O(z) := ;ig% d~O(z,p)

with d”O(x, p) := inf {@|$|2) (Q € Cub(Q,x,p)}; (A.9)
dTe(x) = ;i_% dte(z,p)
with d™O(z, p) := sup {Q‘gf) HONS Cub(Q,:z,p)},

(A.10)

where Cub(€2, x, p) denotes the class of open cubes @ of 2 such that z € @
and diam(Q) € ]0, p[. We then have d® =d~© =d*0O.

Remark A.14. In (A.9) and (A.10) we can replace Cub(2,z,p) by
Cub(A, z, p) whenever A € O(Q2) and z € A.
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For each § > 0 and each A € O(2), we denote the class of countable
families {Q;};cs of disjoint open cubes such that diam(Q;) € ]0,4[ for all
i€ I and |A\ U;c; Qi| =0 by Vs(A).

Definition A.15. Given © : O(Q) — R, for each § > 0 we define @7 :
O(§2) — [-00,00] by

@6(14) := inf {Z @(QZ) : {Qi}ie] S Vg(A)} (A.ll)
el

By the Vitali envelope of © we call the set function ©* : O(Q2) — [—00, 0]

defined by

O*(A) :=sup©°(A) = lim ©°(4). (A.12)

The interest of Definition A.15 comes from the following integral rep-
resentation result whose proof is given below.

Theorem A.16. Let © : O(2) — R be a set function satisfying the
following two conditions:

(a) there exists a finite Radon measure v on S which is absolutely con-

tinuous with respect to the Lebesque measure such that |©(A)| <
v(A) for all A€ O(Q);

(b) © is subadditive, i.e., ©(A) < O(B)+0O(C) forall A,B,C € O(Q)
with B,C C A, BNC =0 and |[A\ BUC| = 0.

Then © is differentiable, d©® € L*(Q) and
0*(A) = / dO(z)dx
A

for all A € O(Q).

Proof. First of all, From (a) we see that —dv < d~© < d*O < dv. Hence
d=0,d"0 € LY(Q) because v is a finite Radon measure which is absolutely
continuous with respect to the Lebesgue measure. So A7 (A4), AT(A) € R
for all A € O(Q), where A~, AT : O(Q) — R are given by:
A (A) = / d”O(x)dx;
A

MHA) = /Ad+®(x) dz.
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In what follows, we consider ©" : O(Q) — R defined by
@*(A) = ggf{; sup {Z O(Q;) : {Qi}icr € Vg(A)} (A.13)
el

(It is clear that ©* < ©". In fact, we are going to prove that under the
assumptions (a) and (b) of Theorem A.16 we have ©*(A) = ©7(A) =
[4dO(z) dz for all A € O(£2).) We divide the proof into three steps.

Step 1: proving that ©* = A~ and 6" = \™.
Define 6,607 : O(Q) — R by:

07(A) == 6(A) = A" (4);

Ot (A) :=6(A) — AT(A).
In what follows, 6* (resp. ') is defined by (A.12) (resp. (A.13)) with ©
replaced by 6~ (resp. 01).
Eﬂemma A.17. Under the assumption (a) of Theorem A.16 we have 8* =
0 =0.

Proof. We only prove that 6* = 0. (The proof of 7" = 0 follows from
similar arguments and is left to the reader.)
First of all, from the assumption (a) it is clear that

67 (A)] < 2(A4) (A.14)

for all A € O(Q2), where ¥ := v+ |v| is absolutely continuous with respect
to Lebesgue measure (with |v| denoting the total variation of v).
Secondly, we can assert that

40~ =0, (A.15)

where for any set function s : O(2) — R, the function d7s : Q — [—o0, 00|
(resp. d*s : Q — ]—o00,00]) is defined by (A.9) (resp. (A.10)) with ©
replaced by s. Indeed, for any x € €1, it is easily seen that

d=O(z,p) —dTA (z,p) <d 0 (z,p) <A O(z,p) —d” A\ (z,p).
for all p > 0, and letting p — 0, we obtain
d O(z) —dtA () <d 0 (z) <d O(z) —d A (z).
But d” A" (z) =d* A (z) = d~O(z), hence d~ 6~ (z) = 0.
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Finally, to conclude we prove that (A.14) and (A.15) imply #* = 0. For
this, we are going to prove the following two assertions:

if A7~ <0 then 6* < 0; (A.16)
under (A.14), if A7~ > 0 then 6" > 0. (A.17)

Proof of (A.16). Fix A € O(Q). Fix any 6 > 0. Then d~ 0~ < §, and
so in particular lim, ,od=67(z,p) < 0 for all x € A. Hence, for each
x € A there exists {pgn}tn C ]0,9] with p;, — 0 as n — oo such that
d707(x,pzn) < 0 for all n > 1. Taking Remark A.14 into account, it
follows that for each x € A and each n > 1 there is Q. ,, € Cub(A, z, pz.n)
such that for each z € A and each n > 1,

0" (Qan)
|Qanl

Moreover, since diam (Q,,) = diam(Qgn) < prn for all z € A and all
n > 1, we have inf { diam (Q,,,) : n > 1} = 0 (where @, ,, denotes the
closed cube corresponding to the open cube Q). Let Fy be the family
of closed cubes of Q) given by

< 4. (A.18)

Fo = {@zvn:xeAanan 1}.

By the Vitali covering theorem, from the above we deduce that there
exists a disjointed countable subfamily {Q,}ier, of closed cubes of Fy
(with Q; C A and diam(Q;) € ]0,[) such that [A\ Use;, Q;] = 0, which
means that {Q;}ier, € Vs(A). From (A.18) we see that 0~ (Q;) < §|Q;] for
all ¢ € Iy, hence

> 07(Qi) <6 |Qil =6A].

i€lp i€ly
Consequently §79(A) < §|A| for all § > 0, where 6~ is defined by (A.11)
with © replaced by 07, and letting § — 0 we obtain 6*(A) < 0.

Proof of (A.17). Fix A € O(R2). By Egorov’s theorem, there exists a se-
quence { By}, of Borel subsets of A such that:

lim |A\ B,| =0; (A.19)
n—oo

lim sup |[d707(z) —d" 0 (2,0)| =0 foralln>1. (A.20)
0—0 $€Bn
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As ¥ is absolutely continuous with respect to the Lebesgue measure,
by (A.19) we have

lim 7(A\ B,) =0. (A.21)

n—oo

Moreover, as d=0~ > 0, from (A.20) we deduce that

lim inf d707 (2,0) >0 foralln >1. (A.22)
§—0TEBy

Fix any n > 1 and any § > 0. By definition of =, there exists {Q;}ics €
Vs(A) such that

A >0 (@) — 4. (A.23)

el

Set I, :={i€I:Q;N B, #0}. Using (A.14) we have

DOT(Qi)=D_07(Q)+ Y. 07(Q

el i€ly, i€I\I,,
>3 07(Q)— Y, Q)
iel, ISIAV S
S d i€I\I,

and, choosing z; € Q; N B, for each i € I,, and noticing that Uy g, @i C
A\ By, it follows that

D 07(Qi) > D A0 (4,0)|Qil —D(A\ By)

iel i€ln

> inf d707(,0) > |Qi| — D(A\ By).

v€Bn i€l
Taking (A.23) into account, we conclude that

67°(A) > inf A0 (2,6) Y |Qil — #(A\ Bn) —

CCEBn iel
n

for all § > 0 and all n > 1, which gives §*(A) > 0 by letting § — 0 and
using (A.22) and then by letting n — oo and using (A.21). O
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As A\~ and AT are absolutely continuous with respect to the Lebesgue
measure, it is easy to see that:

0* =0 —\7;
0°=0"—-\T.
Hence ©* = A~ and ©" = A" by Lemma A.17.

*

Step 2: proving that ©* = 0.

We only need to prove that © < ©*. For this, it is sufficient to show that
for each open cube @ of €2, one has

6(Q) < 0'(Q). (A.24)
Fix any 6 > 0. By definition of ©%, there exists {Q;}ies € V5(Q) such that
> 0(Q:) <O°(Q)+4. (A.25)

icl
Since |Q\ U;er @i| = 0 there is a sequence {1, },, of finite subsets of I such
that

lim
n—oo

Q\ U @i

iEI’IL

U @

=0. (A.26)

= lim
n—oo

Fix any n > 1. As © is subadditive, see the assumption (b), we have

o (U Qi) <37 6(Q).

i€ln i€l,

Q\ [(Uier, Q1) U (@Q\ User, @)]| = 0 because [Q;\ Q| = 0 for

all 4 € I,,, hence

Moreover,

G(Q)SG(U Qi) +6<Q\U@)

i€ln i€ln

by using again the subadditivity of ©, and consequently

Y e@)=e@Q -6 (Q\ U QZ-) :

i€l, i€ln
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Thus, using the assumption (a), we get

>0 = Y 0(Q)+ ) Qi)

i€l ie\Ip, i€l
> ) 0(Qi)+6(Q) -6 (Q\ U Qz-)
iel\I 1€ln

z@(@)—u( U Q@-) —u(Q\LJ@).

1€l\In i€ln

But, v(Q; \ Q;) = 0 for all i € I,, because v is absolutely with respect to
the Lebesgue measure, hence

u(@\ U Qz-) zv(Q\ U Qi) =u< U Qi),
i€l i€l i€\l

> 0(Qi) > 0(Q) —2v ( U Q) (A.27)

iel i€\,

Combining (A.25) with (A.27) we conclude that

and so

9(@)§®5(Q)+2V( U Qi) +4,

i€I\I,
and (A.24) follows by letting n — oo and using (A.26) and then by letting
0 —0.
Step 3: end of the proof.

From steps 1 and 2 we have
/d_@(q:) dz =0*(Q)=0"(Q) = / dte(z)ds.
Q Q)
Thus [;,(d*O(z)—d~O(z)) dz = 0. But d*O > d~0, i.e.,d*0-d"0 >0,

hence d¥O —d~© =0, i.e., dT® = d~O, and the proof of Theorem A.16
is complete. O
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