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Largeness and equational probability in groups

Khaled Jaber
Frank O. Wagner

Abstract

We define k-genericity and k-largeness for a subset of a group, and determine the value of k for which
a k-large subset of Gn is already the whole of Gn , for various equationally defined subsets. We link this
with the inner measure of the set of solutions of an equation in a group, leading to new results and/or
proofs in equational probabilistic group theory.

1. Introduction

In probabilistic group theory we are interested in what proportion of (tuples of) elements
of a group have a particular property; if this property is given by an equation, we talk
about equational probability. In [9] a notion of largeness was introduced for a subset of a
group, and it was shown that certain equational properties of a group hold everywhere
as soon as they hold largely. In this paper, we shall introduce a quantitative version of
largeness, and deduce some results in equational probabilistic group theory.

Throughout this paper, G will be a group and µ a left-invariant probability measure on
some algebra of subsets of G.

Example 1.1.

(1) G finite, µ the counting measure.

(2) G1 a group, µ1 a left-invariant measure on G1, and G = Gn
1 with the product

measure µ = µn1 .

(3) More generally, G1 a group, G ≤ Gn
1 and µ a left-invariant measure on G.

(4) G arbitrary and themeasure algebra reduced to {∅,G}.While this set-up trivialises
the probability statements, the largeness results remain meaningful.

If X is a measurable subset of G we can interpret µ(X) as the probability that a random
element of G lies in X . If H is another group, f : G→ H is a function and c ∈ H some
constant, we put µ( f (x) = c) = µ({g ∈ G : f (g) = c}).

The second author was partially supported by the ANR-DFG project AAPG2019 GeoMod.
Keywords: probabilistic group theory, largeness.
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Example 1.2. Let G1 be a group, G ≤ Gn
1 a subgroup, ḡ ∈ Gm

1 constants, and w(x̄, ȳ) a
word in x̄ ȳ and their inverses, with | x̄ | = n and | ȳ | = m. Then w(x̄, ḡ) induces a function
from G to G1.

We shall now list some known results, starting with Frobenius in 1895.

Fact 1.3. Let G be a finite group.

• Frobenius 1895 [5] If n divides |G | then the number of solutions of xn = 1 is a
multiple of n. In particular, µ(xn = 1) ≥ n

|G | .

• Miller 1907 [14] If G is non-abelian, then µ(x2 = 1) ≤ 3
4 .

• Laffey 1976 [11] If G is a 3-group not of exponent 3 then µ(x3 = 1) ≤ 7
9 .

• Laffey 1976 [12] If p is prime and divides |G |, but G is not a p-group, then
µ(xp = 1) ≤ p

p+1 .

• Laffey 1979 [13] If G is not a 2-group, then µ(x4 = 1) ≤ 8
9 .

• Iiyori, Yamaki 1991 [8] If n divides |G | and X = {g ∈ G : gn = 1} has cardinality
n, then X forms a subgroup of G.

• Erdős, Turan, 1968 [3] If k(G) is the number of conjugacy classes in G, then
µ([x, y] = 1) = k(G)

|G | .

• Joseph 1977 [10], Gustafson 1973 [6] If G is non-abelian, then µ([x, y] = 1) ≤ 5
8 .

• Neumann, 1989 [16] For any real r > 0 there are n1(r) and n2(r) such that if
µ([x, y] = 1) ≥ r then G contains normal subgroups H ≤ K such that K/H is
abelian, |G : K | ≤ n1(r) and |H | ≤ n2(r).

• Barry, MacHale, Ní Shé, 2006 [1] If µ([x, y] = 1) > 1
3 then G is supersoluble.

• Heffernan, MacHale, Ní Shé, 2014 [7] If µ([x, y] = 1) > 7
24 then G is metabelian.

If µ([x, y] = 1) > 83
675 then G is abelian-by-nilpotent.

In Section 2 we shall introduce largeness and prove the main connection between
largeness and measure, Lemma 2.5, which will be used throughout the rest of the paper.
Section 3 deals with central elements, or more generally FC and BFC groups. We shall
treat equations of the form xn = c for arbitrary c in Section 4, recovering Miller’s result
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for n = 2, and a weaker bound than Laffey for n = 3 (namely 6
7 ). In Section 5 we

shall consider commutator equations; while our methods allow us to deal with more
complicated commutators, they are too general to obtain the bounds from Fact 1.3.
Section 6 deals with nilpotent groups via linearisation, and the short Section 7 places
Sherman’s autocommutativity degree in our context.

Notation. We shall write xy = y−1xy, x−y = (x−1)y = y−1x−1y and [x, y] = x−1y−1xy =
y−x y = x−1xy .

2. Largeness and Probability

The following notion of largeness was introduced in [9].

Definition 2.1. If X ⊆ G, we say that X is k-large in G if the intersection of any k left
translates of X is non-empty, and X is k-generic in G if k left translates of X cover G. A
subset X is large if it is k-large for all k; it is generic if it is k-generic for some k.

Of course, analogous notions exist for right and two-sided genericity/largeness. Both
genericity and largeness are notions of prominence, increasing with k for largeness and
decreasing with k for genericity. Clearly, if X ⊆ G and X is (k-)large/generic, so is any
left or right translate or superset of X . Largeness and genericity are co-complementary:

Lemma 2.2. Let X ⊆ G. Then X is 1-large if and only if X , ∅, and X is 1-generic if
and only if X = G. More generally, X is k-large if and only if G \ X is not k-generic.
Finally, X is k-generic/large if and only if X ∩ Y , ∅ for all k-large/generic Y ⊆ G.

Proof. We only show the last assertion. If X is not k-generic/large, then Y := G \ X is
k-large/generic, and X ∩ Y = ∅. Conversely, if X is k-generic, say G =

⋃
i<k giX , and Y

is k-large, then

∅ ,
⋂
i<k

giY = G ∩
⋂
i<k

giY =
⋃
i<k

giX ∩
⋂
i<k

giY

=
⋃
i<k

(
giX ∩

⋂
i<k

giY

)
⊆

⋃
i<k

(giX ∩ giY ) =
⋃
i<k

gi(X ∩ Y ).

Thus X ∩ Y , ∅. �

Remark 2.3. If φ : G → H is an epimorphism and X ⊆ G is (k-)large/generic, so is
φ(X) ⊆ H. Conversely, if Y ⊆ H is (k-)large/generic in H, so is φ−1[X] in G.

In particular, if X ⊆ G×H is (k-)large/generic, so are the projections to each coordinate.
Conversely, if X ⊆ G and Y ⊆ H are (k-)large, so is X × Y ⊆ G × H; if X is k-generic
and Y is `-generic, X × Y is k`-generic.
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Lemma 2.4. Suppose X is k`-large in G and H ≤ G is a subgroup of index k. Then
X ∩ H is `-large in H.

Proof. Let (gi : i < k) be coset representatives of H in G, and consider (hj : j < `) in
H. By k`-largeness of X in G there is x ∈

⋂
i<k, j<` gihjX . As

⋃
i<k giH = G, there is

i0 < k with x ∈ gi0 H. But then

g−1
i0

x ∈ H ∩
⋂

i<k, j<`

g−1
i0
gihjX ⊆ H ∩

⋂
j<`

hjX =
⋂
j<`

hj(X ∩ H),

so X ∩ H is `-large. �

The link between largeness and probability is given by the following lemma, which
will be used throughout the paper. Recall that the inner measure of an arbitrary subset X
of a measurable group G is

µ∗(X) = sup{µ(Y ) : Y ⊆ X measurable},

and the outer measure is given by

µ∗(X) = inf{µ(Y ) : Y ⊇ X measurable}.

Clearly the inner measure is superadditive, the outer measure is subadditive, and µ∗(X) +
µ∗(G \ X) = 1.

Lemma 2.5. If X is k-generic in G, then µ∗(X) ≥ 1
k . If µ∗(X) > 1 − 1

k then X is k-large
in G.

Proof. If X is k-generic there are g1, . . . , gk in G with G =
⋃

i≤k giX . Hence

1 = µ∗(G) = µ∗
(⋃
i≤k

giX

)
≤

∑
i≤k

µ∗(giX) = k µ∗(X)

by left invariance, whence µ∗(X) ≥ 1
k .

Now if X is not k-large, its complement is k-generic, so µ∗(G \ X) ≥ 1
k . But then

µ∗(X) ≤ 1 − 1
k . �

These bounds are strict, as we can take X a subgroup of index k (resp. its complement).

Remark 2.6. For any group G the set (G× {1})∪ ({1} ×G) is 2-large in G2; if G is infinite
it is of measure 0.

We shall now prove some results about finite groups, which owing to their non-linearity
do not generalise easily to the measurable context.
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Remark 2.7. Let G be a finite group of order n, and X ⊆ G a non-empty proper subset of
size m. Then X is (n−m+ 1)-generic and at most m-large, since we can form the union of
X with n − m translates of X to cover all the n − m points of G \ X , and we can intersect
X with m translates of X to remove all m points of X .

Theorem 2.8. Let G be a finite group of order n, and X ⊆ G a non-empty proper subset
of size m. If m > n − 1

2 −
√

n − 3
4 , then X is 2-generic. Hence if m < 1

2 +
√

n − 3
4 then X

is not 2-large.

Proof. If m > n − 1
2 −

√
n − 3

4 , then

n −
3
4
> (n − m −

1
2
)2 = (n − m)(n − m − 1) +

1
4
.

Put Z = {xy−1 : x, y ∈ G \ X}. Then

|Z | ≤ (n − m)(n − m − 1) + 1 < n,

so there is g ∈ G\Z . But if h ∈ G\(X∪gX), then h, g−1h ∈ G\X , and g = h(g−1h)−1 ∈ Z ,
a contradiction. Thus G = X ∪ gX and X is 2-generic.

The second assertion follows by taking complements. �

Theorem 2.9. Let G be a finite group of order n. If the exponent of G does not divide `
then µ(x` = 1) ≤ 1 − 1√

2n
, where µ is the counting measure.

Proof. Put X = {g ∈ G : g` = 1}, of size m < n, and take any g ∈ G \ X . Note that
X ∩ gX ∩ CG(g) is empty, as otherwise there would be y ∈ CG(g) with y` = 1 = (gy)` ,
whence g` = 1 and g ∈ X .

Thus |CG(g)| ≤ 2 |G \ X |. Moreover gG ∩ X = ∅, and

|G |/|CG(g)| = |g
G | ≤ |G \ X |.

Thus n = |G | ≤ 2 |G \ X |2 and
√

n
2 ≤ n − m, whence

µ(x` = 1) =
m
n
≤

n −
√

n
2

n
= 1 −

1
√

2n
. �

Definition 2.10. Let f : G → H be a function, and c ∈ H. The equation f (x) = c is
k-largely satisfied in G if {g ∈ G : f (g) = c} is k-large in G. By abuse of notation,
if G = Gn

1 and x = (x1, . . . , xn), we shall also say that f (x1, . . . , xn) = c is k-largely
satisfied in G1.
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3. FC-Groups

In this section we shall work in the set-up of Example 1.2: G1 will be a group, G ≤ Gn
1 ,

w(x̄, ȳ) a word in x̄ ȳ and their inverses with n = | x̄ | and m = | ȳ |, ḡ ∈ Gm
1 and c ∈ G1

constants, and f (x̄) = w(x̄, ḡ).
Recall that a group is FC if the centraliser of any element has finite index; it is BFC if

the index is bounded independently of the element.
We shall first need a preparatory lemma. For two tuples ḡ = (gi : i < k) and

ḡ′ = (g′i : i < k) in Gk
1 we shall put ḡ−1 = (g−1

i : i < k) and ḡ · ḡ′ = (gig
′
i : i < k).

Lemma 3.1. Suppose ḡ, ḡ′ ∈ Gm
1 and h̄, h̄′ ∈ Gn

1 are such that all elements from ḡh̄
commute with all elements from ḡ′h̄′. Then

w(h̄ · h̄′, ḡ · ḡ′) = w(h̄, ḡ)w(h̄′, ḡ′).

Proof. Obvious. �

Theorem 3.2. Let G1 be an FC-group. If the equation w(x̄, ḡ) = c is largely satisfied in
G then it is identically satisfied in G.

Proof. Consider h̄ ∈ G, and C = CG1 (ḡ, h̄), a subgroup of finite index in G1. Put
H = Cn ∩ G, a subgroup of finite index in G, and X = {h̄′ ∈ G : w(h̄′, ḡ) = c}. Then
X ∩ h̄−1X ∩ H is large in H, whence non-empty. So there is x̄ ∈ H with

w(1̄, ḡ)w(x̄, 1̄) = w(x̄, ḡ) = c = w(h̄ · x̄, ḡ) = w(h̄, ḡ)w(x̄, 1̄).

Hence w(h̄, ḡ) = w(1̄, ḡ) for all h̄ ∈ G, and w(1̄, ḡ) = w(x̄, ḡ) = c. �

For a BFC-group, we can bound the degree of largeness needed:

Theorem 3.3. Suppose every centraliser of a single element has index at most k in G1. If
the equation w(x̄, ḡ) = c is 2kn2+mn-largely satisfied in G then it is identically satisfied
in G.

Proof. In the notation of the previous proof, C = CG1 (ḡ, h̄) has index at most kn+m in
G1, so

|G : H | = |G : G ∩ Cn | ≤ |Gn
1 : Cn | = |G1 : C |n ≤ (kn+m)n = kn2+mn.

Now 2kn2+mn-largeness of X in G implies kn2+mn-largeness of X ∩ h̄−1X in G, whence
1-largeness of X ∩ h̄−1X ∩ H in H. So we can find the x̄ required to finish the proof. �

Corollary 3.4. Suppose every centraliser of a single element has index at most k in G1.
If w(x̄, ḡ) = c is not an identity on G, then

µ∗(w(x̄, ḡ) = c) ≤ 1 −
1

2kn2+mn
.
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Proof. If µ∗(w(x̄, ḡ) = c) > 1 − 1
2kn2+mn

, then { x̄ ∈ G : w(x̄, ḡ) = c} is 2kn2+mn-large in
G by Lemma 2.5, and w(x̄, ḡ) = c is identically satisfied in G by Theorem 3.3. �

Remark 3.5. This holds in particular for the equation x` = c, with n = 1 and m = 0.

If the group is central-by-finite, the largeness needed does not depend on the number
of parameters.

Corollary 3.6. Suppose Z(G1) has index k in G1. If the equation w(x̄, ḡ) = c is 2kn-
largely satisfied in G then it is identically satisfied in G.

Proof. H = G ∩ Z(G1)
n has index at most kn in G. We finish as in Theorem 3.3. �

Corollary 3.7. If |G1 : Z(G1)| ≤ k and w(x̄, ḡ) = c is not an identity in G, then
µ∗(w(x̄, ḡ) = 1) ≤ 1 − 1

2kn .

Of course, for an abelian group G1 we have k = 1 in the above results.

Remark 3.8. If w(x̄, ḡ) = c is 2-largely satisfied in Gn, then it is identically satisfied
in the abelian quotient G/G′. If moreover G is a BFC-group, then G′ is finite by B.H.
Neumann’s Lemma [15], and Gn satisfies a finite disjunction

∨
c′∈G′ w(x̄, ḡ) = cc′.

We can also deduce results for central elements just from 2-largeness (although for
infinite index |G1 : Z(G1)| there is no reason that if X is large in G the intersection X ∩
Z(G1)

n is still large in G ∩ Z(G1)
n).

Theorem 3.9. If w(x̄, ḡ) = c is 2-largely satisfied in G, then w(x̄, 1̄) = 1 identically on
G ∩ Z(G1)

n.

Proof. Consider h̄ ∈ G ∩ Z(G1)
n. Put X = {h̄′ ∈ G : w(h̄′, ḡ) = 1}. Then X ∩ h̄−1X is

non-empty, so there is x̄ ∈ G with

w(x̄, ḡ) = c = w(h̄ · x̄, ḡ) = w(h̄, 1̄)w(x̄, ḡ).

Hence w(h̄, 1̄) = 1. �

Corollary 3.10. If xk1
1 . . . xknn = c is 2-largely satisfied in Gn and k = gcd(k1, . . . , kn),

then xk = 1 identically on Z(G).

Proof. We have xk1
1 . . . xknn = 1 on Z(G). Putting xi = g ∈ Z(G) and xj = 1 for j , i we

have gki = 1 for all 1 ≤ i ≤ n. The result follows. �

Corollary 3.11. If the exponent of Z(G) does not divide gcd(k1, . . . , kn), then

µ∗(x
k1
1 . . . xknn = c) ≤

1
2
.
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4. Burnside and Engel Equations

In Remark 3.5 we have already seen that if every centraliser of a single element has index
at most k in G, then µ∗(xm = c) ≤ 1 − 1

2k unless the exponent of G divides m. In this
case necessarily c = xm = 1.

We shall first prove Miller’s Theorem mentioned in the introduction.

Theorem 4.1. Let c ∈ G. If x2 = c is 4-largely satisfied in G, then G is abelian of
exponent 2, and c = 1.

Proof. Fix g, h ∈ G. Then there is x with c = x2 = (gx)2 = (hx)2 = (ghx)2. But this
implies x−1gx = g−1, x−1hx = h−1 and x−1ghx = (gh)−1. On the other hand,

x−1ghx = x−1gx x−1hx = g−1h−1 = (hg)−1.

Hence gh = hg and G is abelian. But now c = x2 = (gx)2 = g2x2 = g2c, whence
g2 = 1. �

If G satisfies 4-largely xax = b for some a, b ∈ G, then it satisfies 4-largely (ax)2 = ab,
whence x2 = ab. Hence G is abelian of exponent 2, and a = b.

Corollary 4.2. If G is not of exponent 2 or a , b, then µ∗(xax = b) ≤ 3
4 .

Recall that the nth Engel condition is the condition [x,n y] = 1, where [x,1 y] = [x, y]
and [x,n+1 y] = [[x,n y], y]. Note that

[x, y, y] = [y−x y, y] = y−1yx y−1y−x yy = [y−x, y]y .

Thus the 2-Engel condition [x, y, y] = 1 is equivalent to [y−x, y] = 1, that is all conjugacy
classes being commutative.

Theorem 4.3. If G satisfies 7-largely x3 = 1 then G is 2-Engel.

Proof. Put X = {g ∈ G : g3 = 1}. For g, h ∈ G consider

x ∈ X ∩ g−1X ∩ h−1X ∩ gX ∩ (gh)−1X ∩ gh−1X ∩ gh−1g−1X .

Then (yx)3 = 1 for y ∈ {1, g, h, g−1, gh, hg−1, ghg−1}, which means that xyx =
y−1x−1y−1. We calculate the product xhx2gx in two ways:

xhx2gx = (xhx)(xgx) = h−1(x−1h−1g−1x−1)g−1

= h−1ghxghg−1

and

xhx2gx = xh(g−1x)−1x = xh(g−1x)2x = (xhg−1x)g−1x2

= gh−1(x−1gh−1g−1x−1) = gh−1ghg−1xghg−1.
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Thus h−1gh = gh−1ghg−1 and ghg = ggh. As h ∈ G was arbitrary, the conjugacy class
of g is commutative; as g was arbitrary, all conjugacy classes are commutative. �

Theorem 4.4. Let G be 2-Engel. If G satisfies 2-largely x3 = 1 then G has exponent 3.

Proof. For any g ∈ G there is x ∈ G with x3 = (gx)3 = 1. As xG is commutative,

gxg−1gx
−1
= x−1gxg−1xgx−1 = gx−gxxgx−1 = gx−gxgxx−1 = g.

Since gG is commutative, we have

g3 = g2gxg−1gx
−1
= g2g−1gx

−1
gx = (gx)3 = 1. �

Corollary 4.5. If G satisfies 7-largely x3 = 1, then G has exponent 3. If G is not of
exponent 3 then µ∗(x3 = 1) ≤ 6

7 . If moreover G is 2-Engel, then µ∗(x3 = 1) ≤ 1
2 .

Note that the bound 6
7 is not as good as Laffey’s bound 7

9 cited in the introduction.

Problem 4.6. A group which satisfies 5-largely x3 = 1, is it 2-Engel? This would improve
our bound to 4

5 .

Corollary 4.7. If |G : Z(G)| ≤ 7 and G satisfies 7-largely x3 = c for some c ∈ G, then
c = 1 and G has exponent 3.

Proof. {x ∈ G : x3 = c} ∩ Z(G) is 1-large, whence non-empty, and contains an element
z. But now there is x ∈ G with x3 = 1 = (zx)3 = z3x3 = cx3, whence c = 1. We finish by
Corollary 4.5. �

If |G : Z(G)| is prime, then G is abelian, and 2-largeness is sufficient by Corollary 3.10.

5. Commutator Equations

Consider the equation [x, g] = c for some c, g ∈ G. Since {x ∈ G : [x, g] = c} is a coset
of CG(g) or empty, and a coset of a proper subgroup cannot be 2-large, it follows that
if G satisfies 2-largely [x, g] = c then g ∈ Z(G) and c = 1. The following argument
generalises this result.

Theorem 5.1. Suppose f : G→ H satisfies f (xx ′) = f (x)h f (x ′) for some h ∈ H which
depends on x, x ′ ∈ G. If G0 and G1 are groups, f0 : G0 → H and f1 : G1 → H are
functions such that G0 ×G ×G1 satisfies k-largely f0(x0) f (x) f1(x1) = c for some k ≥ 2,
then f (G) = 1 and G0 × G1 satisfies k-largely f0(x0) f1(x1) = c.

Proof. Fix g ∈ G. By 2-largeness there is (x0, x, x1) ∈ G0 × G × G1 such that

f0(x0) f (x) f (x1) = c = f0(x0) f (gx) f (x1).

9
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Thus f (x) = f (gx) = f (g)h f (x) and f (g) = 1. It follows that f0(x0) f (x) f1(x1) =

f0(x0) f1(x1) on G0 × G × G1. The result follows. �

Corollary 5.2. If G satisfies 2-largely
∏

i<n[xi, gi] = c for some gi ∈ G, then gi ∈ Z(G)
for all i < n and c = 1. If not all gi are central or c , 1 then µ∗(

∏
i<n[xi, gi] = c) ≤ 1

2 .

Proof. We have [xx ′, y] = [x, y]x
′

[x ′, y]. Now use Theorem 5.1. �

Remark 5.3. Theorem 5.1 also holds if f (xx ′) = f (x ′) f (x)h , with almost the same proof.
Hence Corollary 5.2 also holds if some factors are of the form [gi, xi].

Gustafson [6] has shown that µ2([x, y] = 1) ≤ 1
2 (1 + µ(Z(G)) ≤

5
8 for a non-abelian

compact topological group G, where µ is the Haar measure on G and µ2 the product
measure on G2. Pournaki and Sobhani [17] have generalised this to calculate that
µ([x, y] = g) < 1

2 for any g , 1 in a finite group, using Rusin’s classification [18] of all
finite groups with µ([x, y] = 1) > 11

32 (see also [4]). We have only been able to establish
results using 4-largeness, giving the bound of 3

4 in Corollary 5.7, so the following two
problems remain open:

Problem 5.4.

(1) If G satisfies 2-largely [x, y] = 1, is G′ = C2 and G/Z(G) of exponent 2, or
G′ = C3 and G/Z(G) = S3?

(2) If G satisfies 2-largely [x, y] = c for some c ∈ G, is c = 1?

Theorem 5.5. If w(x̄, ḡ)[x, y] = c is satisfied 4-largely in Gn+1, where x ∈ x̄ and y < x̄,
then G is abelian and w(x̄, ḡ) = c.

Proof. For any h ∈ G the set

{(x̄, x, y) : w(x̄, ḡ)[x, y] = c = w(x̄, ḡ)[x, hy]}

is 2-large in Gn+1. Hence {(x, y) ∈ G2 : [x, y] = [x, hy]} is 2-large in G2. Now
[x, hy] = [x, y][x, h]y , so [x, h] = 1 is satisfied 2-largely in G, whence h ∈ Z(G). It
follows that G is abelian. But then w(x̄, ḡ) = c is satisfied 4-largely in Gn, and must be an
identity in G by commutativity and Corollary 3.6. �

Corollary 5.6. If G is a group with µ∗(w(x̄, ḡ)[x, y] = c) > 3
4 , then G is abelian satisfying

w(x̄, ḡ) = c.

Corollary 5.7. If G satisfies 4-largely [x, y] = c, then G is abelian and c = 1. If G is not
abelian or c , 1, then µ∗([x, y] = c) ≤ 3

4 .
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Remark 5.8. The same holds for the equation xcy = yc′x with c , c′: putting x ′ = xc
and y′ = yc′, this is equivalent to [x ′, y′] = c−1c′.

Theorem 5.9. Let g, h ∈ G and k = min{|G : CG(g)|, |G : CG(h)|}. If G satisfies
k-largely [g, hx] = 1, then gG and hG commute.

Proof. If k = |G : CG(h)|, then {x ∈ G : [g, hx] = 1} ∩ CG(h) is 1-large, whence
non-empty, and [g, h] = 1. Now note that for any a ∈ G also |G : CG(ha)| = k and
[g, hax] = 1 is satisfied k-largely, whence [g, ha] = 1 and [g, hG] = 1.

If k = |G : CG(g)|, then {x ∈ G : [gx−1
, h] = 1} ∩ CG(g) is 1-large (still on the left)

and non-empty, whence [g, h] = 1 and we finish as above. �

Corollary 5.10. If [gG, hG] is non-trivial for some g, h ∈ G, then µ∗([g, hx] = 1) ≤ 1− 1
k ,

where k = min{|G : CG(g)|, |G : CG(h)|}.

Theorem 5.11. If g, h, c ∈ G and [x, g, h] = c is 2k-largely satisfied, where k = |G :
CG(h)|, then [G, g, h] = 1. Similarly, if [g, x, h] = c is 2k-largely satisfied for some
c ∈ Z(G), then [g,G, h] = 1.

Proof. Choose a ∈ G. Then the set X = {x ∈ G : [x, g, h] = c = [ax, g, h]} is k-large,
and for x ∈ X we have

[x, g, h] = c = [ax, g, h] = [[a, g]x[x, g], h] = [[a, g]x, h][x,g][x, g, h],

whence [[a, g]x, h] = 1. By Theorem 5.9 we have [a, g, h] = 1.
If [g, x, h] = c is 2k-largely satisfied with c ∈ Z(G), then for a ∈ G we obtain a k-large

X ⊆ G such that for x ∈ X we have

[g, x, h] = c = [g, ax, h] = [[g, x][g, a]x, h] = [g, x, h][g,a]
x

[[g, a]x, h],

whence [[g, a]x, h] = 1, and [g, a, h] = 1 by Theorem 5.9. �

Corollary 5.12. If g,h∈G and k= |G : CG(h)|, then [G,g,h],1 implies µ∗([x,g,h]=c)≤
1− 1

2k for any c ∈ G, and [g,G, h] , c implies µ∗([g, x, h] = c) ≤ 1− 1
2k for any c ∈ Z(G).

We shall now generalise Corollary 5.7 to higher nilpotency classes. However, the proof
requires an additional assumption.

Theorem 5.13. Suppose s < ω is such that for all i < k there is a set Ai of size at most s
such that Z(G/Zi(G)) = CG/Zi (G)(Ai). If G satisfies 2(s+ 1)k-largely [x0, x1, . . . , xk] = c,
then c = 1 and G is nilpotent of class at most k.

Proof. We use induction on k. For k = 1 note that s ≥ 1 (otherwise G is abelian and we
are done), so the result follows from Corollary 5.7.

11
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Now suppose the assertion is true for k, and

X = { x̄ ∈ Gk+2 : [x0, x1, . . . , xk+1] = c}

is 2(s + 1)k+1-large in Gk+2. If A0 = {ai : i < s} consider the projection Y of X ∩⋂
i<s(1, . . . , 1, a−1

i )X to the first k + 1 coordinates, and note that it is 2(s+ 1)k-large. Then
for all (x0, . . . , xk) ∈ Y there is y ∈ G such that

[x0, . . . , xk, y] = c = [x0, . . . , xk, aiy] = [x0, . . . , xk, y] [x0, . . . , xk, ai]y

for all i < s, whence [x0, . . . , xk] ∈ Z(G). By inductive assumption G/Z(G) is nilpotent
of class at most k, and we are done. �

Corollary 5.14. Let s be as above. If G is not nilpotent of class at most k or c , 1, then
µ∗([x0, x1, . . . , xk] = c) ≤ 1 − 1

2 (s + 1)−k .

Remark 5.15. Recall that anMc-group is a group G such that for every subset A there
is a finite subset A0 ⊆ A such that CG(A) = CG(A0). Equivalently, G satisfies the
ascending (or the descending) chain condition on centralisers. Roger Bryant [2] has
shown that in anMc-group, for every iterated centre Zi(G) there is a finite set Ai such
that Z(G/Zi(G)) = CG/Zi (G)(Ai). So in anMc-group we can find some s as needed for
Theorem 5.13 and Corollary 5.14.

Problem 5.16. To what extent do we need theMc-condition (or similar) in Theorem 5.13
and Corollary 5.13? It is not needed for nilpotency class 1 (Corollary 5.7). In general,
assuming just 2k+1-largeness of [x0, . . . , xk] = c, we obtain that { x̄ ∈ Gk : [x0, . . . , xk−1] ∈

CG(g)} is 2k-large in Gk for any g ∈ G. Does this imply γk(G) ≤ CG(g), or even
γk(G) ≤ Z(G)?

6. Nilpotent groups

We shall first introduce the notion of a supercommutator from [9].

Definition 6.1. Any variable and any constant from G is a supercommutator; if v and w

are supercommutators, then v−1 and [v,w] are supercommutators.

Alternatively, we could have said that x, x−1 and g are supercommutators for any
variable x and any g ∈ G, and that if v and w are supercommutators, so is [v,w].

Definition 6.2. The set Var(v) of variables of a supercommutator v is defined by
Var(x) = {x}, Var(g) = ∅, Var(v−1) = Var(v), and Var([v,w] = Var(v) ∪ Var(w). We
put var(v) = |Var(v)|, the variable number of v. If x̄ is a tuple of variables, we put
Varx̄ = Var(v) ∩ x̄, Var′x̄(v) = Var(v) \ x̄, varx̄(v) = |Varx̄(v)| and var′x̄(v) = |Var′x̄(v)|.

12
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Clearly var([v, v′]) ≥ max{var(v), var(v′)}, and similarly for varx̄ and var′x̄ .

Lemma 6.3. Let H E G and v(x̄, z̄) a supercommutator.

(1) v defines a function from H | x̄z̄ | to γvar(v)(H).

(2) If varx̄(v) > 0 and x̄, ȳ and z̄ are pairwise disjoint, then

v(ȳ · x̄, z̄) = v(x̄, z̄) v(ȳ, z̄)Φ(x̄, ȳ, z̄),

where Φ is a product of supercommutators whose factors w satisfy

(†) Varz̄(w) = Varz̄(v), and if xi ∈ Varx̄(v) then xi ∈ Var(w) or yi ∈ Var(w),
and both possibilities occur for at least one i.

(3) If v(x̄, z̄) is a product of supercommutators whose factors w satisfy varx̄(w) > 0
and var′x̄(w) ≥ n, then

v(ȳ · x̄, z̄) = v(x̄, z̄) v(ȳ, z̄)Φ(x̄, ȳ, z̄),

where Φ is a product of supercommutators whose factors w satisfy varx̄(w) > 0
and var′x̄(w) > n.

Proof. (1) is proved as in [9, Lemme 6(1)] by induction, using that γn(H) is characteristic
in H, whence normal in G, and [γn(H), γm(H)] ≤ γn+m(H). We shall show (2) by
induction on the construction of v.

If v = x ∈ x̄ we have v(yx) = yx = xy[y, x] = v(x)v(y)[y, x]; if v = x−1 we have
v(yx) = x−1y−1 = v(x)v(y). This leaves the case v = [v1, v2] for two supercommutators
v1 and v2. We shall assume varx̄(v1) > 0 and varx̄(v2) > 0 (the case varx̄(v1) varx̄(v2) = 0
is analogous, but simpler).

By inductive hypothesis, there are Φi for i = 1, 2, products of supercommutators
satisfying (†) relative to vi , such that

vi(ȳ · x̄, z̄) = vi(x̄, z̄) vi(ȳ, z̄)Φi .

Then
v(ȳ · x̄, z̄) = [v1(ȳ · x̄, z̄), v2(ȳ · x̄, z̄)]

= [v1(x̄, z̄) v1(ȳ, z̄)Φ1, v2(x̄, z̄) v2(ȳ, z̄)Φ2]

= [v1(x̄, z̄), v2(x̄, z̄)] [v1(ȳ, z̄), v2(ȳ, z̄)]Φ = v(x̄, z̄) v(ȳ, z̄)Φ,

where Φ is a product of supercommutators [w,w′]

(i) where w ∈ Φ1 ∪ {v1(x̄, z̄), v1(ȳ, z̄)} and w′ ∈ Φ2 ∪ {v2(x̄, z̄), v2(ȳ, z̄)}, except for
[v1(x̄, z̄), v2(x̄, z̄)] and [v1(ȳ, z̄), v2(ȳ, z̄)]; it is clear that these must satisfy (†).

13
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(ii) where one of w,w′ is from (i), so [w,w′] satisfies (†).

(iii) where one of w,w′ is equal to v(x̄, z̄) and the other contains at least one yi , or one
is equal to v(ȳ, z̄) and the other contains at least one xi; again [w,w′] satisfies (†).

(iv) which are obtained iteratively from supercommutators from (ii) and (iii) by
commutation with other supercommutators, thus satisfying (†).

Here (i) takes care of the commutators of various factors of the two products, while (ii)–(iv)
takes care of the correct order. Note that the only factor without a variable yi is v(x̄, z̄)
and the only factor without a variable xj is v(ȳ, z̄).

To show (3) note first that for a single supercommutator v the factorisation given in (2)
satisfies the requirement. So for a product of supercommutators, we apply (2) to every
factor, and then use commutators to get them into the right order. Note that we never have
to commute a w(x̄, z̄) with a w′(x̄, z̄), or a w(ȳ, z̄) with a w′(ȳ, z̄), as they already appear
in the correct order with respect to one another. It follows that all new commutators
satisfy (†), whence var′x̄ > n. �

Theorem 6.4. If G is nilpotent of class k and v is a product of supercommutators w with
varx̄(w) > 0 and var′x̄(w) ≥ n such that G satisfies max{2k−n, 1}-largely v(x̄, ḡ) = c, then
c = 1.

Proof. This is true for n ≥ k, as then var(w) = varx̄(w) + var′x̄(w) ≥ 1 + n, and

c = w(x̄, ḡ) ∈ γvar(w)G ≤ γn+1G = {1}

for some x̄ ∈ G.
Now suppose it is true for n + 1 ≤ k, and let v(x̄, z̄) be a product of supercommutators

w with varx̄(w) > 0 and var′x̄ ≥ n, such that H satisfies 2k−n-largely v(x̄, ḡ) = c. By
Lemma 6.3 there isΦ, a product of supercommutators whose factors w satisfy varx̄(w) > 0
and var′x̄(w) > n, such that

v(ȳ · x̄, z̄) = v(x̄, z̄) v(ȳ, z̄)Φ(x̄, ȳ, z̄).

Choose h̄ ∈ G with v(h̄, ḡ) = c. If X = { x̄ ∈ G : v(x̄, ḡ) = c}, then X is 2k−n-large, and
Y = X ∩ h̄−1X is 2k−n−1-large. Moreover, for x̄ ∈ Y we have

Φ(x̄, h̄, ḡ) = v(h̄, ḡ)−1v(x̄, ḡ)−1v(h̄ · x̄, ḡ) = c−1c−1c = c−1.

By hypothesis c−1 = 1 and we are done. �

Theorem 6.5. If G is nilpotent of class k and satisfies 2k-largely an equation v(x̄, ḡ) = c,
then it satisfies v(x̄, ḡ) = c.

14
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Proof. Bringing all the constants to the right-hand side, we may assume that v(x̄, z̄) is a
product of supercommutators w with varx̄(w) > 0. By Lemma 6.3 there is Φ, a product
of supercommutators whose factors w satisfy varx̄(w) > 0 and var′x̄(w) > 0, such that

v(ȳ · x̄, z̄) = v(x̄, z̄) v(ȳ, z̄)Φ(x̄, ȳ, z̄).

Fix h̄ ∈ G. Then
Φ(x̄, h̄, ḡ) = v(h̄, ḡ)−1c−1c = v(h̄, ḡ)−1

2k−1-largely on G. By Theorem 6.4 we have v(h̄, ḡ) = 1. So v(x̄, ḡ) is constant. �

Corollary 6.6. If G is nilpotent of class k and xn = c is true 2k-largely, then c = 1 and
the exponent of G divides n.

Proof. Immediate from Theorem 6.5. �

Corollary 6.7. If G is nilpotent of class k and µ∗(xn = c) > 1 − 2−k , then c = 1 and the
exponent of G divides n.

7. Autocommutativity

The notion of autocommutativity has been introduced by Sherman in 1975 [19].

Definition 7.1. Let G be a finite group, Σ a group of automorphisms of G, and H a
subgroup of G. The degree of autocommutativity relative to (H; Σ) is given by

ac(H; Σ) =
|{(σ, g) ∈ Σ × H : σ(g) = g}|

|Σ | · |H |
.

It gives the probability that a random element of H is fixed by a random automorphism
in Σ.

Note that ac(H; Σ) = µ({(σ, g) ∈ Σ×H : σ(g) = g}), where µ is the counting measure
on Σ × H.

Theorem 7.2. Let H ≤ G be finite groups, Σ a group of automorphisms of G, and suppose
that {(σ, g) ∈ Σ × H : σ(g) = g} is 4-large in Σ × H. Then H ≤ Fix(Σ).

Proof. Given σ ∈ Σ and g ∈ H, by 4-largeness there are x ∈ H and τ ∈ Σ with

τ(x) = x, (σ ◦ τ)(x) = x, τ(gx) = gx and (σ ◦ τ)(gx) = gx.

Then
gx = σ(τ(gx)) = σ(gx) = σ(g)σ(x) = σ(g)σ(τ(x)) = σ(g)x,

whence g = σ(g). �
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Corollary 7.3. If H ≤ G are finite groups and Σ is a group of automorphisms of G with
H 6≤ Fix(Σ), then ac(H; Σ) ≤ 3

4 .

Proof. If ac(H; Σ) > 3
4 then {(σ, g) ∈ Σ×H : σ(g) = g} is 4-large in Σ×H by Lemma 2.5.

Hence H ≤ Fix(Σ) by Theorem 7.2. �
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