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Finiteness of the image of the Reidemeister torsion of a splice

Teruaki Kitano
Yuta Nozaki

Abstract

The set RT(M) of values of the SL(2, C)-Reidemeister torsion of a 3-manifold M can be both finite
and infinite. We prove that RT(M) is a finite set if M is the splice of two certain knots in the 3-sphere.
The proof is based on an observation on the character varieties and A-polynomials of knots.

1. Introduction

Let K be the figure-eight knot and E(K) the exterior of an open tubular neighborhood
of K in the 3-sphere S3. The first author [13] computed the SL(2,C)-Reidemeister
torsion τρ(E(K)) for any acyclic irreducible representation ρ : π1(E(K)) → SL(2,C). As
a consequence, for the double M = E(K) ∪id E(K) of E(K), the set RT(M) of values
of the SL(2,C)-Reidemeister torsion τρ(M) is the set of all complex numbers C. In
contrast, his computation also shows that RT(Σ(K,K)) is a finite set. Here, for knots K1
and K2 in S3, let Σ(K1,K2) denote the closed 3-manifold E(K1) ∪h E(K2), where h is
an orientation-reversing homeomorphism ∂E(K1) → ∂E(K2) interchanging meridians
and preferred longitudes of the knots. We call Σ(K1,K2) the splice of E(K1) and E(K2)

(or simply the splice of K1 and K2). By definition, a splice is an integral homology
3-sphere. Recently, Zentner [20] showed that the fundamental group of any integral
homology 3-sphere M admits an irreducible SL(2,C)-representation, and therefore, it is
worth studying RT(M).

The purpose of this paper is to generalize the above result on splices to a certain class of
knots. We focus on the character variety X(E(K)) and A-polynomial AK (L, M) ∈ Z[L, M]
of a knot K and prove the following main theorem and its corollary.

Theorem 1.1. Suppose that knots K1 and K2 in S3 satisfy the following conditions:

• for any irreducible component C ⊂ X(E(Ki)) (i = 1, 2), either dim C = 0, or
dim C = 1 and its image under the map X(E(Ki)) → X(∂E(Ki)) is not a point.

• gcd(AK1 (L, M), AK2 (M, L)) = 1.

Then RT(Σ(K1,K2)) is a finite set.

Keywords: Reidemeister torsion, A-polynomial, character variety, splice, bending, Riley polynomial.
2020 Mathematics Subject Classification: 57M27, 57M25, 20C99, 14M99.
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Corollary 1.2. For any 2-bridge knots K1 and K2, the set RT(Σ(K1,K2)) is finite.

Curtis [5, 6] defined an SL(2,C)-Casson invariant λSL(2,C)(M) for any homology
3-sphere M. Roughly speaking, this invariant counts the number of isolated points of
X(M). It is known that λSL(2,C)(Σ(K1,K2)) is vanishing for any K1,K2 by Boden and
Curtis [2]. By definition, this implies that there are no isolated points in X(Σ(K1,K2))

and any connected component of X(Σ(K1,K2)) has a positive dimension. However by
the main theorem RT(Σ(K1,K2)) is a finite set for any knots with the above conditions.
In fact, we concretely describe X(Σ(K,K)) for the cases where K is the trefoil knot or
figure-eight knot in Section 4.

Recently Abouzaid and Manolescu defined an SL(2,C)-Floer homology and also a full
Casson invariant by taking its Euler characteristic in [1]. That is a problem to study a
relation with our Reidemeister torsion for a splice.
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2. Character variety, A-polynomial and Reidemeister torsion

2.1. Representation variety and character variety

Let Γ be a finitely generated group. We define the SL(2,C)-representation variety R(Γ) of
Γ to be the affine algebraic set Hom(Γ, SL(2,C)) over C. Considering the GIT quotient of
R(Γ) by the action of SL(2,C) by conjugation, one obtains the SL(2,C)-character variety
X(Γ) := R(Γ)//SL(2,C) of Γ (see [9, Section 2] for instance). The character variety X(Γ)
is again an affine algebraic set and not necessarily irreducible. Let Rirr(Γ) denote the
subset of irreducible representations and X irr(Γ) the image of Rirr(Γ) under the projection
R(Γ)� X(Γ). It is known that the induced map Rirr(Γ)/SL(2,C) → X irr(Γ) is bijective.

We focus on the case Γ = π1(M) for a connected compact manifold M and call
R(M) := R(π1(M)) (resp. X(M) := X(π1(M))) the representation variety (resp. character
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variety) of M . For instance, the character variety of a torus T2 is described explicitly as
follows: Let λ, µ be generators of π1(T2) = Z2 and ρ ∈ R(T2). Since λ and µ commute,
there exists a representation ρ′ such that ρ′ is conjugate to ρ and both ρ′(λ) and ρ′(µ)
are upper triangular. Considering the (1, 1)-entries of these matrices, one can define
the map θ : R(T2) → (C×)2/∼ by θ(ρ) = (ρ′(λ)11, ρ

′(µ)11), where (L, M) ∼ (L ′, M ′) if
L = L ′, M = M ′ or L−1 = L ′, M−1 = M ′.

It is easy to see that this map gives an identification θ : X(T2) → (C×)2/∼.
The character variety of the complement E(K) of a knot K is complicated in general.

However, it is well known that if K is a 2-bridge knot then X(E(K)) does not have an
irreducible component of dimension larger than one. More generally, if a 3-manifold M
contains no irreducible closed surface and ∂M � T2, then dim C = 1 for every irreducible
component C of X(M) (see [3, Section 2.4]).

2.2. A-polynomial of knots

We briefly review the A-polynomial introduced by Cooper, Culler, Gillet, Long, and
Shalen [3] (see also [4]) and a relation with the boundary slopes of knots. For an oriented
knot K , let r : X(E(K)) → X(∂E(K)) denote the regular map between affine algebraic
sets induced by the inclusion and let π : (C×)2 → (C×)2/∼ be the natural projection. Here
one takes λ, µ ∈ π1(E(K)) as a pair of a longitude λ and a meridian µ. We take λ to
be homologically trivial in H1(E(K);Z). By using these λ and µ one can also identify
π1(∂E(K)) with Z2.

For any [ρ] ∈ X(E(K)) one can take [ρ′] = [r(ρ)]. To define the A-polynomial of a
knot, we write L for ρ′(λ)11 and M for ρ′(µ)11 as above.

Then, the Zariski closure of π−1(θ ◦ r(X(E(K)))) ⊂ C2 is an affine algebraic set whose
irreducible components are curves C1, . . . ,Cn and some points. Since codim Cj = 1,
the ideal I(Cj) is known to be principal, namely I(Cj) = ( fj) for some fj ∈ C[L, M].
It is known that there is c ∈ C such that c f1(L, M) · · · fn(L, M) ∈ Z[L, M] and its
coefficients have no common divisor. The A-polynomial AK (L, M) of K is now defined
by AK (L, M) = c f1(L, M) · · · fn(L, M) up to sign, and it is independent of the choice of
an orientation of K .

Remark 2.1. Since AK (L, M) has the factor L − 1 coming from abelian representations
of π1(E(K)), the A-polynomial is sometimes defined to be AK (L, M)/(L − 1). This is not
essential in our main theorem due to Lemma 2.2.

Lemma 2.2. If θ ◦ r(ρ) = (L, 1), then L = 1. In particular, the A-polynomial AK (L, M)
does not have the factor M − 1.
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Proof. It follows from r(ρ) = (L, 1) that ρ(µ) is equal to the identity matrix I2 or
( 1 1

0 1
)

up to conjugate. In the case ρ(µ) = I2, ρ is trivial. In the latter case, ρ(λ) is of the form( 1 u
0 1

)
for some u ∈ C, and hence L = 1. �

We next see a relation between the A-polynomial and boundary slopes of K . The rest
of this subsection is devoted to proving Corollary 2.6 which is used in Corollary 1.2, not
in Theorem 1.1. Here, p/q ∈ Q ∪ {∞} is called a boundary slope of K if there exists
a properly embedded incompressible surface S in E(K) such that ∂S is parallel copies
of a simple closed curve of slope p/q, namely the homology class of each boundary
component of S equals pµ + qλ ∈ H1(E(K)) up to sign. We denote by BS(K) the set of
boundary slopes of K .

For a polynomial f (L, M) =
∑

i, j ai jLiM j ∈ Z[L, M], the Newton polygon N( f ) of f
is defined by N( f ) = Conv({(i, j) ∈ Z2 | ai j , 0}), where Conv(T) denotes the convex
hull of a subset T in R2.

We write by SS(P) ⊂ Q ∪ {∞} the set of slopes of the sides of a polygon P. Note that
SS(N( f )) = ∅ if and only if f is a monomial. The set SS(N(AK )) is closely related to
BS(K).

Theorem 2.3 ([3, Theorem 3.4]). The inclusion SS(N(AK )) ⊂ BS(K) holds for every
knot K .

Let us review some facts about the Minkowski sum. For subsets T and U of R2, the
Minkowski sum T +U is defined by T +U = {t +u ∈ R2 | t ∈ T, u ∈ U}. One can see that
Conv(T +U) = Conv(T) + Conv(U), and hence N( f g) = N( f ) + N(g). The following
proposition is well known and plays a key role in the next lemma.

Proposition 2.4 (see [7, Section 15.1] for example). Let P and Q be convex polygons.
Then SS(P +Q) = SS(P) ∪ SS(Q).

For a subset S of Q ∪ {∞}, we denote by S−1 the set {s−1 ∈ Q ∪ {∞} | s ∈ S},
where we use the convention 0 · ∞ = 1. Also, for a polynomial f ∈ Z[L, M], we define
f T ∈ Z[L, M] by f T (L, M) = f (M, L).

Lemma 2.5. Let f1, f2 ∈ Z[L, M]. If SS(N( f1)) ∩ SS(N( f2))−1 = ∅, then gcd( f1, f T2 ) is a
monomial.

Proof. Let g = gcd( f1, f T2 ). Then g | f1 and gT | f2. By Proposition 2.4, we have
SS(N(g)) ⊂ SS(N( f1)) and SS(N(gT )) ⊂ SS(N( f2)). Since SS(N(g)) = SS(N(gT ))−1, the
assumption implies that SS(N(g)) = ∅, namely g is a monomial. �

Corollary 2.6. If K1 and K2 be any 2-bridge knots, then it holds that gcd(AK1, AT
K2
) = 1.
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Proof. By [8, Theorem 1(b)], BS(Ki) ⊂ 2Z holds. It follows from Theorem 2.3 that
SS(N(AK1 )) ∩ SS(N(AK2 ))

−1 = ∅, and hence gcd(AK1, AT
K2
) is a monomial by Lemma 2.5.

Here, in general, the A-polynomial of a knot K is divided by neither L nor M by definition.
Therefore, the monomial must be 1. �

2.3. The SL(2,C)-Reidemeister torsion of 3-manifolds

For precise definitions of a Reidemeister torsion, please see Johnson [10], Kitano [12, 13]
and Milnor [14, 15] as references.

Let M be a 3-manifold and let ρ ∈ R(M) be an acyclic representation. That is,
C∗(M;C2

ρ) is an acyclic chain complex with twisted coefficients.
Then one gets a nonzero complex number τρ(M) ∈ C× for an acyclic chain complex

C∗(M;C2
ρ). We call it the SL(2,C)-Reidemeister torsion of M for ρ.

Remark 2.7. Throughout this paper, we set τρ(M) = 0 if ρ is not acyclic. Then τρ(M)
can be regarded as a function on R(M) and also on X(M).

One can use the well-known multiplicativity of the Reidemeister torsion to compute it
as below.

Proposition 2.8. Let M be a 3-manifold decomposed into M1 and M2 by an embedded
torus T2. Let ρ : π1(M) → SL(2,C) be a representation. Suppose that ρ is acyclic on
π1(T2). Then it holds that ρ is acyclic on π1(M) if and only if it is acyclic on both π1(M1)

and π1(M2). Further in this case it holds that

τρ(M) = τρ(M1)τρ(M2).

One needs the acyclicity of representations to use the above. First we mention the
following lemma.

Lemma 2.9. Let ρ be a representation π1(T2) → SL(2,C). Then it holds that ρ is acyclic
if and only if ρ is not parabolic. Here ρ is said to be parabolic if tr ρ(x) = 2 for any
x ∈ π1(T2).

Proof. First note that for a basis {x, y} of π1(T2) the chain complex C∗(T2;C2
ρ) is given by

0→ C2 ∂2
−−→ C2 ⊕ C2 ∂1

−−→ C2 → 0,

where

∂2 =
(
−(ρ(y) − I2) ρ(x) − I2

)
, ∂1 =

(
ρ(x) − I2
ρ(y) − I2

)
.

We here show that ρ is not parabolic if and only if H0(T2;C2
ρ) = 0. If ρ is not parabolic,

then there is a basis {x, y} such that det(ρ(x) − I2) , 0, and thus H0(T2;C2
ρ) = 0.
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Conversely, if ρ is parabolic, then ρ(x) and ρ(y) are simultaneously of the form
( 1 ∗

0 1
)
by

taking conjugate, and therefore H0(T2;C2
ρ) , 0.

Next, if H0(T2;C2
ρ) = 0, then ρ is acyclic. Indeed, by Kronecker duality (or

the universal coefficient theorem) and Poincaré duality, H2(T2;C2
ρ) � H0(T2;C2

ρ̌),
where ρ̌(γ) := tρ(γ)−1. When ρ is parabolic, so is ρ̌. It follows from χ(T2) = 0 that
H1(T2;C2

ρ) = 0. �

3. Proof of the main theorem

Recall that Σ(K1,K2) denotes the splice. The following lemma is shown in [2, Proof of
Corollary 3.3]. We give a proof to be self-contained.

Lemma 3.1. If ρ is irreducible on π1(Σ(K1,K2)), then the restrictions of ρ on π1(E(K1))

and π1(E(K2)) are also irreducible.

Proof. Assume that ρ is reducible on π1(E(K1)). Then we may take ρ as an upper
triangular representation on it. Since the longitude λ1 of K1 belongs to the commutator
subgroup [π1(E(K1)), π1(E(K1))], then one can see that L1 is an upper triangular parabolic
matrix as L1 = ρ(λ1) =

( 1 α
0 1

)
.

If α = 0, then L1 is the identity and hence X2 = L1 is also the identity matrix. This
means that ρ must be trivial on π1(E(K2)) and this is a contradiction.

Therefore we may assume α , 0. Since X1 commutes with L1, then X1 is also an upper
triangular matrix as X1 =

(
±1 β
0 ±1

)
(β , 0). Hence the image ρ(π1(E(K1))) is an upper

triangular subgroup. Since this is an abelian subgroup in SL(2,C), then L1 must be also
the identity. This is a contradiction. �

Remark 3.2. By the above arguments, it can be seen that there exists no reducible
representation except the trivial representation.

Next we can see the following.

Proposition 3.3. If ρ : π1(Σ(K1,K2)) → SL(2,C) be an acyclic representation, then its
restriction ρ|π1(T 2) is also acyclic.

Proof. Assume that ρ|π1(T 2) is not acyclic. Consider the homology long exact sequence
for

0→ C∗(T2;C2
ρ) → C∗(E(K1);C2

ρ) ⊕ C∗(E(K2);C2
ρ) → C∗(Σ(K1,K2);C2

ρ) → 0.

Here we simply write ρ for each of ρ|π1(T 2), ρ|π1(E(K1)), and ρ|π1(E(K2)).
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Since C∗(Σ(K1,K2);C2
ρ) is acyclic, we have the exact sequences

0→ H2(T2;C2
ρ) → H2(E(K1);C2

ρ) ⊕ H2(E(K2);C2
ρ) → 0,

0→ H1(T2;C2
ρ) → H1(E(K1);C2

ρ) ⊕ H1(E(K2);C2
ρ) → 0,

0→ H0(T2;C2
ρ) → H0(E(K1);C2

ρ) ⊕ H0(E(K2);C2
ρ) → 0.

Since ρ is not acyclic on π1(T2), ρ is parabolic on it by Lemma 2.9. If it is trivial on
π1(T2), it should be trivial on π1(Σ(K1,K2)). Then it is not acyclic on Σ(K1,K2). For any
non-trivial parabolic representation ρ on π1(T2), it is easy to see

H2(T2;C2
ρ) � H0(T2;C2

ρ) � C, H1(T2;C2
ρ) � C

2

by the proof of Lemma 2.9. If ρ is irreducible, then both ρ|π1(E(K1)) and ρ|π1(E(K2)) are
irreducible by Lemma 3.1. Then it holds that H0(E(K1);C2

ρ) and H0(E(K2);C2
ρ) are

vanishing. Therefore H0(T2;C2
ρ) is vanishing in this case by the above exact sequences. It

is contradiction.
Next assume that ρ is reducible. Now we may assume that the image of ρ belongs to

the upper triangular subgroup. It is easily seen that the images of the longitudes are trivial
I2 or

( 1 ∗
0 1

)
since the longitudes belong to the commutator subgroup. Therefore the image

of each meridian is in the upper triangular parabolic subgroup by the definition of a splice,
and thus ρ is abelian. This contradicts the fact that the abelianization of π1(Σ(K1,K2)) is
trivial. �

Lemma 3.4. Let f : X → Y be a non-constant regular map between affine algebraic sets
X and Y . If X is irreducible and dim X = 1, then f −1({y}) is a finite (possibly empty) set
for any y ∈ Y .

Proof. The inverse image f −1({y}) is a closed subset of X , namely f −1({y}) is a finite
union of irreducible algebraic sets. Since they are proper algebraic subsets of X , they are
of dimension zero. �

The next lemma follows from Lemma 3.4 or Bézout’s theorem.

Lemma 3.5. Let f , g ∈ C[L, M]. Then { f = g = 0} ⊂ C2 is a finite set if and only if
gcd( f , g) = 1.

Using the above lemmas and propositions, we prove the main theorem.

Proof of Theorem 1.1. First note that gcdZ[L,M]( f , g) = gcdC[L,M]( f , g) holds for f , g ∈
Z[L, M] up to multiplication by elements of C×. By Lemma 3.5, the intersection

{(L, M) ∈ C2 | AK1 (L, M) = AT
K2
(L, M) = 0}
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of the algebraic curves defined by AK1 and AT
K2

is a finite set A. Let us prove that the
image of X(Σ(K1,K2)) → X(E(Ki)) is a finite set Xi for i = 1, 2. Then Propositions 2.8
and 3.3 complete the proof.

By the definition of the A-polynomial, θ ◦ ri(Xi) ⊂ A. It follows from Lemma 3.4 and
the second condition in Theorem 1.1 that r−1

i (θ
−1(A)) is a finite set. Thus, Xi is also a

finite set. �

We next prove Corollary 1.2. Let K be a 2-bridge knot. Take and fix a presentation of
π1(E(K)) and write φ(s, t) to its Riley polynomial (see Section 4). Then the following
lemma is a consequence of [19, Lemma 2].

Lemma 3.6. The coefficient of the leading term of φ(s, t) ∈ Z[s±1, t] with respect to t is a
monomial of s.

Proof of Corollary 1.2. It suffices to check that any pair of 2-bridge knots K1 and K2
satisfies the conditions in Theorem 1.1. First, Corollary 2.6 implies gcd(AK1 (L, M),
AK2 (M, L)) = 1. Let C be an irreducible component of X(E(Ki)).

If C consists of reducible representations, then dim C = 1 and ri(C) ⊂ X(∂E(Ki)) is
not a point. Otherwise, C is described by an irreducible factor of the Riley polynomial
of Ki , and hence dim C = 1. Assume that ri(C) is a point θ−1(L, M). Then the function
tr ρ(µ) is the constant M + M−1 on C, and thus s − M | φ(s, t). Since M , 0, this
contradicts Lemma 3.6. �

We put the following problem.

Problem 3.7. When RT(Σ(K1,K2)) is an infinite set? Or is it always a finite set?

Here we give an observation when dim C > 1 in Theorem 1.1.

Example 3.8. Let K be the Montesinos knot M(1/3, 1/3, 1/3, 1/3, 1/2) (see Figure 3.1).
Then π1(E(K)) has the presentation〈

µ1, . . . , µ5

����� µiµ−1
i+1µ

−1
i µi+1µ

−1
i = µi+1µ

−1
i+2µi+1µ

−1
i+2µ

−1
i+1µi+2µ

−1
i+1 (i = 1, 2, 3)

µ4µ
−1
5 µ−1

4 µ5µ
−1
4 = µ5µ

−1
1 µ5µ1µ

−1
5

〉
.

Note that µ1 is conjugate to µ−1
2 , µ3, µ−1

4 and µ5. It follows from [18, Theorem 1] that
there is an irreducible component of X(E(K)) with dim ≥ 2. In fact, we construct a
2-parameter family C of representations by a bending (see Section 4) along the sphere S
intersecting K at 4 points illustrated in Figure 3.1.

For s ∈ C× \ {1}, we first define the representation ρs : π1(E(K)) → SL(2,C) by
ρs(µj) =

(
s−1 0

s2−1+s−2 s

)
if j = 1, 3, 5 and ρs(µj) =

( s 1
0 s−1

)
if j = 2, 4. Note that ρs factors

through π1(E(3̄1)) = 〈x, y | xyx = yxy〉, where 3̄1 denotes the right-handed trefoil knot.
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That is, ρs comes from ρ̄s : π1(E(3̄1)) → SL(2,C) by ρ̄s(x) = ρs(µj) if j = 1, 3, 5 and
ρ̄s(y) = ρs(µj)

−1 if j = 2, 4. Here we have ρs(µ′1) = ρs(µ1) since ρs(µ1) = ρs(µ5). By
finding the tangle enclosed by the dotted circle drawn in Figure 3.1 which is a part of 3̄1,
we can see that the restriction of ρs to π1(S \ K) is invariant under conjugation by

Pu =
©«
(
s2−1+s−2

u

)1/2
(
s2−1+s−2

u

)1/2
−

(
s2−1+s−2

u

)−1/2

s−s−1

0
(
s2−1+s−2

u

)−1/2

ª®®®¬ ,
where u ∈ C× (see Lemma 4.1). Therefore, one obtains representations ρs,u : π1(E(K)) →
SL(2,C) by

ρs,u(µj) =

{
ρs(µj) if j = 3,
Puρs(µj)P−1

u if j = 1, 2, 4, 5.

By the above bending construction, the set C = {ρs,u} is still a 2-parameter family in
X(E(K)). Now one can also check it directly

τρs,u (E(K)) =
144s−4(s − 1)8

−s−1(s − 1)2
= −144(tr ρs,u(µ2) − 2)3,

and hence τρs,u (E(K)) depends only on tr ρs,u(µ2) = s + s−1.
On the other hand, to be independent of u, it can be explained by the generalized

multiplicativity of the Reidemeister torsion to the decomposition E(K) = M1∪S0 M2 along
the surface S0 = S ∩ E(K) with 4 boundary components. Although M1, M2 and S0 are not
acyclic, after fixing suitable bases of H1(M1;C2

ρs,u
), H1(M2;C2

ρs,u
) and H1(S0;C2

ρs,u
), we

obtain τρs,u (E(K)) = τρs,u (M1)τρs,u (M2)/τρs,u (S0). By the construction of ρs,u , we see
that the value of the right-hand side is independent of u.

Let RTC be the subset of RT(Σ(K,K)) consisting of τρ(Σ(K,K))’s where the re-
striction of ρ to each E(K) belongs to C. Then RTC is a finite set even though
C ⊂ X(Σ(K,K)) is 2-dimensional. Indeed, one can check that tr ρs,u(λ) = s24 + s−24,
and thus there are finitely many solutions (s1, s2) of tr ρs1,u1 (µ) = tr ρs2,u2 (λ) and
tr ρs1,u1 (λ) = tr ρs2,u2 (µ). We conclude that there are finitely many possibilities of
the value τρ(Σ(K,K)) = τρs1,u1

(E(K))τρs2,u2
(E(K)).

Problem 3.9. Can we relax the assumption “either dim C = 0, or dim C = 1 and its
image under the map X(E(Ki)) → X(∂E(Ki)) is not a point” in Theorem 1.1?
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Figure 3.1. The Montesinos knot K = M(1/3, 1/3, 1/3, 1/3, 1/2).

4. Computational observation

4.1. Concrete description of X irr(Σ(K1,K2))

In this section we observe some examples of splices. We use Mathematica to compute
matrices. Recall that X irr(M) is identified with Rirr(M)/SL(2,C). The construction of
deformations of a representation used in this section is called a bending construction or
simply a bending. See [11, 17] as a reference.

Here we compute X irr(Σ(K,K)) for the trefoil knot and the figure-eight knot K by
using a presentation of a twist knot. Let J(2, 2q) be a twist knot where q is a nonzero
integer. Please see [16] as a reference for twist knots.

A presentation of π1(E(J(2, 2q))) is given as

π1(E(J(2, 2q))) = 〈x, y | zq x = yzq〉 , z = [y, x−1]

We take a representation ρ : 〈x, y〉 → SL(2,C) from the free group 〈x, y〉 in SL(2,C) by
the correspondence

ρ(x) =
(
s 1
0 1/s

)
, ρ(y) =

(
s 0
−t 1/s

)
(s, t ∈ C×).

We use a small letter for a group element and its capital letter for the image of a small
letter, like X for ρ(x). For ρ(zq) = Zq , we put the matrix Zq =

( z11 z12
z21 z22

)
.

We define the Riley polynomial to be φq(s, t) = z11 + (1/s − s)z12. It can be checked
that the previous representation gives an irreducible representation of π1(E(J(2, 2q))) in
SL(2,C) if and only if (s, t) satisfies φq(s, t) = 0.

It is seen that any [ρ] ∈ X(E(J(2, 2q))) can be parametrized by

ξ = tr ρ(x) = tr ρ(y) = s + 1/s,

tr ρ(xy) = s2 + 1/s2 − t = (s + 1/s)2 − t − 2 = ξ2 − t − 2,
and then by ξ and t.
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Here we take other words z̃ = [x, y−1] and λ = z̃qzq . This x gives a meridian of
J(2, 2q) and this λ does the corresponding longitude for x. Here λ is homologically trivial.
Therefore 〈x, λ〉 is the free abelian group of rank 2 and ρ(x) = X commutes with ρ(λ) = L.
We can find another matrix which commutes with X and L by direct computations.

Lemma 4.1. Any matrix A which commutes with X =
(
s c2

0 1/s
)
(s , ±1, c , 0) has a

form of

A =

(
a a−1/a

s−1/s c2

0 1/a

)
for some a ∈ C×.

Now we consider two copies K1,K2 of J(2, 2q) and

π1(E(K1)) =
〈
x1, y1 | z

q
1 x1 = y1zq1

〉
, z1 = [y1, x−1

1 ],

π1(E(K2)) =
〈
x2, y2 | z

q
2 x2 = y2zq2

〉
, z2 = [y2, x−1

2 ].

Further
π1(Σ(K1,K2)) = π1(E(K1)) ∗π1(T 2) π1(E(K2))

=
〈
x1, y1, x2, y2 | z

q
1 x1 = y1zq1 , zq2 x2 = y2zq2 , x1 = λ2, λ1 = x2

〉
.

We consider an irreducible representation ρ : π1(Σ(K1,K2)) → SL(2,C). Up to conju-
gate, we can set that

X1 = ρ(x1) =

(
s1 1
0 1/s1

)
, Y1 = ρ(y1) =

(
s1 0
−t1 1/s1

)
.

First note that we treat cases of s1 , ±1. Further we may assume that X2 is conjugate
to

( s2 1
0 1/s2

)
, and Y2 to

( s2 0
−t2 1/s2

)
simultaneously, as

X2 = H
(
s2 1
0 1/s2

)
H−1, Y2 = H

(
s2 0
−t2 1/s2

)
H−1

for some H ∈ SL(2,C).
Here we require the conditions

X1 = L2, L1 = X2

to get a representation on π1(Σ(K1,K2)). It can be seen that L1 is an upper triangular
matrix and then X2 is also an upper triangular matrix. By taking

H =
(
c 0
0 1/c

)
(c , 0),
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one has

X2 = H
(
s2 1
0 1/s2

)
H−1 =

(
s2 c2

0 1/s2

)
,

Y2 = H
(

s2 0
−t2 1/s2

)
H−1 =

(
s2 0
−t2/c2 1/s2

)
.

Here L2 is also an upper triangular matrix and L2 = X1. Now any [ρ] = [ρ1 ∗ ρ2] ∈

X(Σ(K1,K2)) is corresponding to (X1,Y1, X2,Y2) = (X1,Y1, L1,Y2) of the above forms. For
a ∈ C× we define Aa by

Aa =

(
a a−1/a

s1−1/s1

0 1/a

)
and now consider deformations [ρa] = [(Aaρ1 A−1

a ) ∗ ρ2] of [ρ] = [ρ1 ∗ ρ2] as

(AaX1 A−1
a , AaY1 A−1

a , X2,Y2) = (X1, AaY1 A−1
a , X2,Y2).

Lemma 4.2. It holds that AaL1 A−1
a = L1.

Proof. We prove AaL1 A−1
a = L1. We may assume s , ±1. Here we take eigenvectors

u1 =
( 1

0
)
, u2 ∈ C

2 for X1 such that X1u1 = s1u1, X1u2 = s−1
1 u2. Since X1L1 = L1X1, one

has

X1L1u2 = L1X1u2

= L1s−1
1 u2

= s−1
1 L1u2.

Hence there exists a nonzero constant γ such that L1u2 = γu2. This means that L1 has
also u1, u2 ∈ C

2 as eigenvectors. By similar arguments for AaX1 = X1 Aa, one sees Aa

has u1, u2 ∈ C
2 as eigenvectors. Therefore it is seen that X1, L1, Aa are simultaneously

diagonalizable and in particular AaL1 A−1
a = L1. �

By the above lemma, one can see Aaρ1 A−1
a = ρ1 on the subgroup π1(T2) generated by

{x1, l1} = {x2, l2} and then ρa = (Aaρ1 A−1
a ) ∗ ρ2 gives an irreducible representation of

π1(Σ(K1,K2)).
Further if a , 1, then AaY1 A−1

a , Y1. This implies ρa , ρ ∈ R(Σ(K1,K2)). It can be
seen by the following computations. First one sees that

tr(ρ1 ∗ ρ2(y1x2)) = tr(Y1X2)

= s1s2 +
1

s1s2
− c2t1.
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On the other hand, one sees that

tr
(
(Aaρ1 A−1

a ) ∗ ρ2)(y1x2)
)
= tr(AaY1 A−1

a X2)

= s1s2 +
1

s1s2
+

{
(s2 −

1
s2
)

(s1 −
1
s1
)

(
1
a2 − 1

)
−

c2

a2

}
t1.

Therefore we can find one character

[ρ] 7→ tr ρ(y1x2)

which is not constant on X(Σ(K1,K2)) and we know X(Σ(K1,K2)) has at least one
dimension near [ρ].

Proposition 4.3. X(Σ(K1,K2)) has just one dimension near [ρ].

Proof. Take and fix any [ρ] = [ρ1 ∗ ρ2] ∈ X(Σ(K1,K2)). It is seen that the character
variety X(Σ(K1,K2)) has at least one dimension near [ρ] by a bending construction.

Consider another one parameter family

{[ρu]}u = {[ρ1,u ∗ ρ2,u]}u ⊂ X(Σ(K1,K2))

such that [ρ0] = [ρ]. Here recall there exist only finitely many quadruples {(s1, t1, s2, t2)’s}
for this fixed [ρ] = [ρ1 ∗ ρ2] ∈ X(Σ(K1,K2)) by the proof of the main theorem. Then we
may assume that [ρu] = [ρ1,u ∗ ρ2] and [ρ1,u] = [ρ1] ∈ X(K1) for any u. Hence one gets
[ρu] = [ρ1,u ∗ ρ2] = [(Bρ1B−1) ∗ ρ2], where B ∈ SL(2,C). Because B must commute
with X1 and L1, then B has a similar form as Aa in Lemma 4.1. Therefore this is a bending
construction and the dimension of deformations is one. �

4.2. q = 1 Case

Here we put q = 1. This J(2, 2) is the trefoil knot. We write again

X =
(
s 1
0 1/s

)
, Y =

(
s 0
−t 1/s

)
and

Z = [Y, X−1] =

(
1 − s2t 1

s − s(1 + t)
− t

s + st(1 + t) 1 + (2 − 1
s2 )t + t2

)
,

Z̃ = [X,Y−1] =

(
1 −

(
−2 + s2) t + t2 −1+s2−t

s
t(1−s2+t)

s 1 − t
s2

)
,

Z X − Y Z =
(

0 −1 + 1/s2 + s2 − t
s(−1 + 1/s2 + s2 − t) 0

)
.

31



T. Kitano & Y. Nozaki

The condition that (s, t) gives a representation is −1 + 1/s2 + s2 − t = 0. On the other
hand,

φ1(s, t) = w11 + (1/s − s)w12

= 1 − s2t + (1/s − s)(1/s − s(1 + t))

= 1 − s2t + 1/s2 − 1 − t − 1 + s2 + s2t

= −1 + 1/s2 + s2 − t

= ξ2 − 3 − t,

where m = s + 1/s.
Hence in the case of the trefoil knot, one sees

t = ξ2 − 3

and X irr(E(J(2, 2))) is given by

{(ξ, t) ∈ C2 | t = ξ2 − 3, t , 0}.

If t = 0, then the corresponding representation is not irreducible.

Remark 4.4. If s = 1, that is, ξ = 2, then the chain complex is not acyclic. In the other
cases, τρ(E(J(2, 2))) = 2.

Compute

L = Z̃ Z

=

(
1− t2+ s4t2− t3+ t(1+t)

s2 − s2t(1+ t+ t2)
(1+s2)t(1+t+s4(1+t)−s2(3+3t+t2))

s3
t2(1+s6−s2t−s4t)

s3 1− t2+ t2

s4 − t3+ s2t(1+ t) −
t(1+t+t2)

s2

)
.

By putting t = 1 − (1/s2 + s2), one obtains

L =

(
−s6 −

(1+s2+s4)(1+s6)
s5

0 −1/s6

)
and

tr(L) = −s6 − 1/s6 = −T6(m).

Here T6(x) = x6 − 6x4 + 9x2 − 2 is the normalized Chebyshev polynomial of degree 6.
Remark that T6(x) has the property T6(2 cos θ) = 2 cos 6θ.

By relations x1 = λ2, λ1 = x2, one has

tr(X1) = tr(L2), tr(L1) = tr(X2).

By putting ξ1 = s1 + 1/s1, ξ2 = s2 + 1/s2, one obtains

ξ1 = −T6(ξ2), −T6(ξ1) = ξ2.
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Hence we obtain only one equation

ξ = −T6(−T6(ξ)) = −T6(T6(ξ)).

This equation ξ + T6(T6(ξ)) = 0 is a polynomial equation of degree 36 with distinct 36
roots as follows:

−2 = 2 cos π, 2 cos
kπ
35
(k = 1, 3, . . . , 33), 2 cos

kπ
37
(k = 1, 3, . . . , 35).

It is seen that they are the roots as

T6(T6(−2)) = T6(T6(2 cos π))
= 2 cos 36π = 2,

T6

(
T6

(
2 cos

kπ
35

))
= 2 cos

36kπ
35
= −2 cos

kπ
35
,

T6

(
T6

(
2 cos

kπ
37

))
= 2 cos

36kπ
37
= −2 cos

kπ
37
.

Further one easily sees that ξ = −2 does not give a representation on the splice. The
roots 2 cos kπ

35 (k = 1, 3, . . . , 33) are corresponding to the condition s36
1 = s1 coming from

matrix equations L1 = X2 and L2 = X1.
It can be seen that there exists a k such that tr(ρ(x1)) = 2 cos kπ

35 and tr(ρ(x2)) =

−T6(2 cos kπ
35 ) for any [ρ] ∈ X irr(Σ(K1,K2)). On the other hand, the roots 2 cos kπ

37 (k =
1, 3, . . . , 35) are corresponding to the condition s36

1 = s−1
1 coming from equations L1 = X−1

2
and L2 = X1. They give representations of the splicing of 31 and its mirror image, not 31.

Take [ρ] = [ρ1 ∗ ρ2] ∈ X irr(Σ(K1,K2)) and identify it with (X1,Y1, X2,Y2). Consider

Aa =

(
a a−1/a

s1−1/s1

0 1/a

)
,

where a ∈ C×, s1, s2 ∈ C
× are satisfying s1 + 1/s1 = ξ1, s2 + 1/s2 = ξ2 and ξ1 =

−T6(T6(ξ1)), ξ2 = −T6(ξ1). In this case, one gets

tr
(
(Aaρ1 A−1

a ) ∗ (ρ2)(y1x2)
)

= tr(X2 AaY1 A−1
a )

= s1s2 +
1

s1s2
−

c2

a2 (s
2
1 + 1/s2

1 − 1) +
(1 − a2)(s2 − 1/s2)

(s1 − 1/s1)
(s2

1 + 1/s2
1 − 1).

Here c is determined by X2 = L1, namely

c2 = −
(1 + s2

1 + s4
1)(1 + s4

1)

s5
1

.
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4.3. q = −1 Case

We put q = −1. This J(2,−2) is the figure-eight knot. In this case the Riley polynomial
φ−1(s, t) is given by

φ−1(s, t) = t2 − (s2 + 1/s2 − 3)t − s2 − 1/s2 + 3

= t2 − (ξ2 − 5)t − ξ2 + 5,

where ξ = s + 1/s.
Then the irreducible representation part of X irr(E(J(2, 4))) is

{(ξ, t) ∈ C2 | t2 − (ξ2 − 5)t − ξ2 + 5 = 0, t , 0}.

Under the same notations, one obtains

ξ1 = ξ
4
2 − 5ξ2

2 + 2, ξ4
1 − 5ξ2

1 + 2 = ξ2.

Hence we obtain only one equation

ξ = ξ16 − 20ξ14 + 158ξ12 − 620ξ10 + 1244ξ8 − 1190ξ6 + 487ξ4 − 60ξ2 − 2

and 16 roots ν0 = −2, νi , ±1 (i = 1, . . . , 15). For any νi (i , 0), we can take a bending
construction to do deformations in X irr(Σ(J(2,−2), J(2,−2))).

Remark 4.5. In this case, t is a root of t2 − (ν2
i − 5)t − ν2

i + 5 = 0.
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