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On a conjecture about cellular characters for the complex reflection
group G(d, 1,n)

ABEL LACABANNE

Abstract

‘We propose a conjecture relating two different sets of characters for the complex reflection group
G(d, 1, n). From one side, the characters are afforded by Calogero—Moser cells, a conjectural generalisation
of Kazhdan—Lusztig cells for a complex reflection group. From the other side, the characters arise from a
level d irreducible integrable representations of U (sle). We prove this conjecture in some cases: in full
generality for G(d, 1, 2) and for generic parameters for G(d, 1, n).

Using Cherednik algebras and Calogero—Moser spaces, Bonnafé and Rouquier devel-
oped in [4] the notions of cells (right, left or two-sided) and of cellular characters of a
complex reflection group W. Whenever this group is a Coxeter group, they conjectured
in [4, Chapter 15] that these notions coincide with the corresponding notions in the
Kazhdan-Lusztig theory. As for Hecke algebras with unequal parameters, these notions
heavily depend on some parameter ¢ defined on the reflections of W and invariant by
conjugation. In this paper, we are mainly interested in the notion of cellular characters for
the complex reflection group G(d, 1, n). If d = 1, the group G(d, 1, n) is nothing else than
the Weyl group of type A,_1, and if d = 2, we recover the Weyl group of type B,,. Bonnafé
and Rouquier showed that if the Calogero—-Moser space with parameter ¢ associated to
W is smooth then the cellular characters are irreducible. This implies that their notion
of Calogero—Moser cellular characters coincides with the notion of Kazhdan—Lusztig
cellular characters in type A. Even in type B, we only have a complete description for
B [4, Chapter 19]. For the dihedral group G(d, d, 2), a description of Calogero—Moser
families and of Calogero—Moser cellular characters has been given by Bonnafé [3], and
these are compatible with Kazhdan—Lusztig theory.

Lusztig defined in [13, Chapter 22] a notion of constructible characters of a Coxeter
group, using the so-called truncated induction. He conjectured that these constructible
characters are exactly the characters carried by the Kazhdan—Lusztig left cells, and proved
the result in the equal parameter case. These characters surprisingly appeared in the work
of Leclerc and Miyachi [10]. They obtained a closed formula for canonical bases of a
level 2 irreducible integrable representation V(A,, + A,,) of U, (sl ) (here the A; are the
fundamental weights). By evaluating these expressions at ¢ = 1, Leclerc and Miyachi
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A. Lacabanne

retrieved Lusztig’s constructible characters for Weyl groups of type B and D. With a level
d irreducible integral representation V ( Zflzl A,,), one obtains some characters of the
complex reflection group G(d, 1, n) in a similar manner and Leclerc and Miyachi asked
whether these characters are a good analogue of constructible characters in type B.

Thus, we have two sets of characters for the complex reflection group G(d, 1, n), namely
the Calogero—Moser cellular characters and the constructible characters of Leclerc and
Miyachi. Both sets of characters depend heavily on some parameters (corr = (ry, . . ., rg)),
and up to a suitable change of parameters, we conjecture that these two sets of characters
are equal.

Conjecture A (Conjecture 4.1). Let r be a d-tuple of integers. Then there exists an
explicit choice of parameter ¢ for the complex reflection group G(d, 1, n) such that the set
of Calogero—Moser c-cellular characters and the set of Leclerc—Miyachi r-constructible
characters coincide.

We refer to the statement in Section 4 for the precise relation between the parameters ¢
and r. The main result of this paper is a proof of this conjecture in two different cases.

Theorem A (Theorem 4.2). Conjecture A is true in the following two cases:
(1) for G(d, 1,2) and any parameters,
(2) for G(d, 1, n) and generic parameters.

We refer to Corollary 1.11 for the notion of generic parameters. To support this
conjecture, it would be interesting to retrieve some known properties of the Calogero—
Moser cellular characters, for example the fact that for any Calogero—Moser cellular
character there exists a unique irreducible constituent with minimal b-invariant, and its
multiplicity is one. This fact is already known for constructible characters of an irreducible
finite Coxeter group [2].

The paper is organized as follows. In the first Section, we define the first set of
characters we are interested in, the Calogero—Moser cellular characters. There are several
equivalent definitions of these characters in [4] and we choose to use a definition using
the so-called Gaudin algebra, which is a commutative subalgebra of the group algebra of
G(d, 1, n) over a localization of a polynomial ring. Using this definition, we give another
proof of the irreducibility of Calogero—Moser cellular characters for a parameter outside
of the essential hyperplanes defined by Chlouveraki. We rely on some results proven in
the Appendix. In Section 2, we set up notation and define the second set of characters
we are interested in, the Leclerc—Miyachi constructible characters. We show that in the
asymptotic situation, these characters are irreducible. In the third section, we compute
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Calogero—Moser vs. Leclerc—Miyachi

explicitly the Calogero—Moser cellular and Leclerc—Miyachi constructible characters for
the complex reflection group G(d, 1, 2). On the Calogero—Moser side, we diagonalize the
action of the Gaudin algebra on representations of G(d, 1, 2) and on the Leclerc—Miyachi
side, we compute the canonical bases using the algorithm introduced by Leclerc and
Toffin in [11]. Finally, in the last section, we state precisely the conjecture relating these
characters, and show that it is valid for G(d, 1, 2) and any choice of parameters, and for
G(d, 1, n) for generic parameters.

1. Calogero—Moser cellular characters

We introduce the set of Calogero—Moser c-cellular characters of a complex reflection
group, which we define using the notion of Gaudin algebra, see [4]. In the specific case of
G(d, 1, n), we introduce a commutative subalgebra JM, generated by the so-called Jucys—
Murphy elements. Using results of the Appendix, we show that the cellular characters of
G(d, 1, n) for the algebra JM, are sums of Calogero—Moser characters. For specific values
of ¢, we show that the cellular characters of G(d, 1, n) for the algebra JM, are irreducible,
then so are the Calogero—Moser c-cellular characters.

1.1. Notations

We fix V a finite dimensional C-vector space, denote by det: GL(V) — C* the determinant
and by (-, -): V X V* — C the duality between V and the space V* of linear forms on V.
We choose for each positive integer d a d-th root of unity {; such that g“j/ I = {; for all
dividing d. The group of d-th roots of unity will be denoted by (.

Let W c GL(V) be a finite complex reflection group. We denote by Ref(W) the set of
pseudo-reflections of W and for each s € Ref(W), we choose a5 € V* and asv € V such
that

ker(s — Idy) = ker(e;) and Im(s —Idy) = Ca; .

We denote by A the set of reflecting hyperplanes of W as well as by V"€ the open
subset V \ Ugecq H. A theorem of Steinberg [6, Theorem 4.7] shows that V™ is the
subset of elements of V with trivial stabilizers with respect to the action of W.

For H € A, the pointwise stabilizer Wy of H is a cyclic group of order ey with a
chosen generator sy € Ref(W). If Q € A/W, we denote by eq the common value of ey
for H € Q. With these notations, the set of reflections of W is

Ref(W):{s{q‘Heﬂ,lsteH—l},

and two reflections S]é and sﬁ, are conjugate if and only if the hyperplanes H and H’ are
in the same orbit under the action of W and j = j’.
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A. Lacabanne

We also fix ¢: Ref(W) — C, s — ¢, a function which is invariant by conjugation. For
any H e Aand 0 <i < ey — 1, we define

1 eH—l
k(1—i
ki = . Z e,(, l)csg,
H 3
which satisfy 255071 kpi = 0; we will often consider indices modulo ey and set

koi =k ; for Q € A/W and any H € Q. We recover the function ¢ via

1.2. Gaudin algebra and Calogero—Moser cellular characters

For any y € V, we define an element D, in the group ring of W with coefficients in
C[vree]:

Dy, = Z csdet(s)Ms.

a
s€Ref(W) S

The Gaudin algebra Gaue(W) is the sub-C[V]-algebra of C[V™¢]W generated by (D) )yev .
Proposition 1.1 ([4, 13.4.B]). The algebra Gau(W) is commutative.

Therefore we are in the situation of the Appendix if we set E = CW, A = CW acting on
E by left multiplication, P = C[V™¢] and D; = D, acting on E by right multiplication,
where (y;); is a basis of V. The following is Definition A.1 in our setting.

Definition 1.2. The set of cellular characters for the algebra Gau.(W) is called the set of
Calogero—Moser c-cellular characters, or for short c-cellular characters. The c-cellular
character associated to L € Irr(C(V) Gauc(W)) is

Gaue(W) _ CVW )
YL - Z [ReSC(V)Gauc(W)(C(V)VX) : L] X
X €lrr(W)

where V), is a representation of W affording the character y and [X: L] is the multiplicity
of L in the module X.

Remark 1.3. If W is a Coxeter group and ¢ has positive values, there is a notion of e-cellular
characters arising from the Kazhdan-Lusztig theory of Hecke algebras. It is conjectured
by Bonnafé and Rouquier [4, 15.2, Conjecture L] that the set of Kazhdan—Lusztig cellular
characters and of Calogero—Moser characters coincide.
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Calogero—Moser vs. Leclerc—Miyachi

For all z € V™, we can specialize D, to an element of CW, by evaluating the
coefficients in C[V™¢] at z:

Cs det(s)Ms e CW.

seRef(W) (@5, 2)
Choosing z = y, one obtains a central element of CW, called the Euler element, which
does not depend on y:

eu, = Z ¢y det(s)s.

s eRef(W)

Lemma 1.4. Let y € Irr(W). Given Q € A/W and H € Q, we define m{)’X = {(X|Wy>

det[‘i,H YWy, where (-, )w,, denotes the scalar product of characters of Wy. The Euler
element eu acts on a representation affording the character y by multiplication by

Z eZQ |Q|egma){
— kej
QeA/W j=0 x(D)
Proof. See [4, Lemma 7.2.1]. O

1.3. The imprimitive reflection group G(d, 1, n)

In this subsection, V is of dimension n with a chosen basis (y, . . ., y,) with dual basis
(x1,...,xn). Using this choice of basis, we identify GL(V) to GL,,(C). We also fix a
positive integer d and denote by ¢ the d-th root of unity {j.

1.3.1. The group G(d, 1, n) and its reflections

It is easy to describe the group G(d, 1, n) in terms of matrices: it is the subgroup of GL,,(C)
with elements the monomial matrices with coefficients in uy. The permutation matrix
corresponding to the transposition (i j) will be denoted by s; ; and the diagonal matrix
with diagonal entries (1,...,1,Z,1,...,1), with £ at the i-th position will be denoted
by o;.
The set of reflections of G(d, 1, n) splits into d conjugacy classes:
d-1
Ref(G(d, 1,n)) = U Ref(G(d, 1, ).
k=0
where Ref(G(d, 1,n))y = {o-l.’si,jo;" | 1<i<j<n0<r<d- 1} and for 1 < k <
d—1,Ref(G(d, L,n)) = {ok |1 <i<n}.
We now give an explicit choice for @ and @, for any reflection s. For the reflection
sijr = 0y sijo; ", the reflecting hyperplane H; ;- is given by the kernel of the linear
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form a, - = X; —{"xj and the eigenspace associated to the eigenvalue —1 is spanned
by «;’ =4 "yi — yj. For the reflection 0' , the reflecting hyperplane H; is given by the
kernel of the linear form «; = x; and the eigenspace associated to the eigenvalue /¥ is
spanned by ) = y;.

Under the action of G(d, 1, n), the set of reflecting hyperplanes A has only two orbits,
Qo = {Hi,j,r|1§i<j3n,03r<d—1} and Q = {H; |1 <i < n} which are of
respective cardinal d@ and n.

Given a function ¢: Ref(W) — C constant on the conjugacy classes, we denote its
value on Ref(G(d, 1, n))r by cx and will write k; instead of kq, ;. We will try not to
introduce the parameters ko, 0 and ko, which are respectively equal to —C—2° and ‘70

Finally, the Euler element associated to G(d, 1, n) and ¢ will be denoted by eug ,.

1.3.2. Representations and d-partitions

The representation theory of G(d, 1, n) is well known and is governed by the combinatorics
of d-partitions of n, see [8, Section 5.1] for example. A partition of # is a finite sequence
of integers 4 = (4y,...,4,) adding up to n such that 4; > A, > ---4, > 0, and
we set |1| = n. A d-partition of n is a d-tuple (1), ..., A9) of partitions such that
Zil |A9| = n. The isomorphism classes of irreducible complex representations of
G(d, 1, n) are parameterized by d-partitions of n, and for such a d-partition A, we denote
by V, the corresponding representation.

One can describe the branching rule G(d, 1,n) ¢ G(d, 1,n + 1) in terms of Young
diagrams. The Young diagram [1] of a d-partition A of n is the set

{(a,b,c)ez>0xz>0x{1,...,d}(1 gbs/lﬁf)},

whose elements will be called boxes. The content cont(y) of a box y = (a, b, c¢) is the
integer b — a. A box y of [1] is said to be removable if [1] \ {y} is the Young diagram of
a d-partition p of n — 1, and in this case, the box v is said to be addable to p.

Proposition 1.5 ([8, Proposition 5.1.8]). Let A be a d-partition of n. Then
G(d,1,n+1) _
ndg Vv = v
Hu

where u runs over the d-partitions of n + 1 with Young diagram obtained by adding an
addable box to the Young diagram of A. Concerning the restriction,

JRE(CAND
SG(d,1,n- 1)(‘//‘) EB Vi

where u runs over the d-partitions of n — 1 with Young diagram obtained by removing a
removable box from the Young diagram of A.
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Calogero—Moser vs. Leclerc—Miyachi

Using this branching rule, we define a basis of V in terms of standard A-tableaux, which
are bijections t: [1] — {1, ..., n} such that for all boxes y = (a, b,¢) and y’ = (a’, b’, ¢)
we have t(y) < t(y’)ifa = a’ and b < b’ or a < a’ and b = b’. Giving a standard
A-tableau is then equivalent to giving a sequence of d-partitions (1'[i]);<;<, such that
[Ai]] = t7'({1,...,i}). Therefore V, is the direct sum of one dimensional spaces
Dy, where for all 1 < i < n the space Dy is in the irreducible component Vyi[;; of

G(d,1,n)
Rescia iy (Va)-

1.3.3. A commutative subalgebra of CG(d, 1, n)
For 1 < k < n, we define the following elements of CG(d, 1, n):

Ji = €Uy — eUc i) = Z cs det(s)s.
s€Ref(G(d,1,k))
s¢Ref(G(d, 1,k—1))

If d = 1, these elements are the usual Jucys—Murphy elements for the symmetric group
Sk, multiplied by the scalar cp.

Lemma 1.6. Forall 1 <i,j < n, the Jucys—Murphy elements J; and J; commute and
d-1
Jist = 8i,i1,0i80,i41,0 = €O Dy Si,i+1,r-

Proof. Tt is immediate to check that the Jucys—Murphy element J; is equal to

Ji = —cg Z Zsplr+Zcr§ 0'

1<p<i r=0

Since the conjugate of sp,; » by s;i+1,0 iS Sp,i+1,» and the conjugate of o by s; ;11,0 is
we have that

Sii+1,0i Sl l+1 0= —¢o Z ZSle rt Zcré, 0-l+l’

1<p<ir=0

O-l+1’

and we obtain the induction formula.
Since eu, ; commutes with every element of CG(d, 1, 1), one see that J; = eu; —eug;_
commutes with every element of CG(d, 1,i — 1), and therefore with Jy, ..., J;_;. m|

The commutative subalgebra of CG(d, 1, n) generated by the elements Jy, . .., J, is
denoted by JM¢(d, n). On the representation V), the action of the Jucys—Murphy elements
is simultaneously diagonalizable, and one can easily compute the eigenvalues using
Lemma 1.4.
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Proposition 1.7. Let A be a d-partition of n and y = (a, b, ¢) a removable box of [1].

Then J,, acts on the component Vy\ () of Resgg’i’z)_l)(V,l) by multiplication by the scalar

d(ki-c = co(b — a)).
Proof. We start by computing the action of the Euler element on V), and therefore we

need the values of the integers m J ,forQe A/Wand 0 < j < e., — 1, where y, is the
character of V. From [14, Lemma 6.1] we have

|40+

Y (1)<(X/l)\<30>’det >(Y0) =

n

1 1 1
and —— Ldetygy == — —— cont(y).
i = 3 = 2o YGZW @)

Therefore, using Lemma 1.4, eu ,, acts on V; by multiplication by the scalar

wa(eue ) = Z ke )«mké(,y det/) (5,)

D S ) )iy = (0 D)
But (X, Dis1y = xa(l) = {(xa)yyq,)» det)(s,y, so that
d-1
w(eue,) =d Z k_;|AY*D| = dcy Z cont(y)
Jj=0 vela]
and we obtain the desired formula because J,, = eu;, — et 1. m]

Corollary 1.8. Let A be a d-partition of n, t be a standard A-tableau and 1 < k < n. The
element Jy acts on Dy by multiplication by d(ky_. — co(b — a)), where t~1(k) = (a, b, ¢).

1.3.4. Cellular characters for JM.(d, n) and c-cellular characters

As well as for the Gaudin algebra, we define cellular characters for the algebra JMc(d, n).
We are again in the situation of the Appendix if we set E = CG(d, 1,n), A = CG(d, 1, n)
acting on E by left multiplication, P = C and D; = J; acting on E by right multiplication.
The following is Definition A.1 in our setting.

Definition 1.9. The c-cellular character associated to L € Irr(JMc(d, n)) is

IM.(d, CG(d.1, )
yr (dn) _ Z [ResJMc((d’nr)’)(VX). L] X
X Elrr(W)

where V, is a representation of W affording the character y.
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These characters are easier to compute than the c-cellular characters, since JM.(d, n)
is commutative and split, and are close to c-cellular characters in the following sense.

Theorem 1.10. Every cellular character for the algebra JM¢(d, n) is a sum of Calogero—
Moser c-cellular characters.

Proof. We denote by Gau(o)(d, n) the sub-C[V]-algebra of C[V"2]G(d, 1, n) generated by

d-1 d-1 rw .
t -6 Xk k
w0 Sora S 3 s w )
=1 —o\i<i<k * k<j<n "k J

for 1 < k < n. Since xi is invertible in C(V) for all k, the algebras C(V) Gau.(G(d, 1, n))
and C(V) Gau(co)(d n) are equal, and the c-cellular characters are therefore equal to the
cellular characters for Gau(o)(d n). We then specialize the algebra Gau )(d n) with
respect to the following increasing sequence of prime ideals

OCpiCpC---Cpy

where p; is the prime ideal of C[V] generated by xi, ..., x;. We define recursively the
algebra Gauc)(d n) by

Gau(d, n) = Gau""V(d, n)/x; Gau" "V (d, n),

and we denote by a®: Gauy © (d,n) — Gau(Hl)(d, n) the corresponding quotient map,
and TI? = 70Do. .. 070 The algebra Gau”(d, n) is hence a subalgebra of CG(d, 1, n).
By Proposrtron A.3, the cellular characters for the algebra Gau(l) (d, n) are sums of
cellular characters for the algebra Gau 1)(a’ n), and therefore the cellular characters for
the algebra Gau, )(d n) are sums of c-cellular characters.
An easy induction shows that if i > k then

9 (g D) = Zcr/: oy = COZ D Sidrs

r=01<j<k
and if i < k then

d-1

M9aDe) = ) erd"of

r=1

i

d-1
—{" Xk
—C Sjk,r T T Sikr + T Skjr| -
FZ_(]jZl i<jZ<kx_§xk k<jZ<nxk_(
The algebra Gau<")(d, n) is thus equal to JMc(d, n) since I1" (x;, Dy) = Ji, which
ends the proof. O
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As a Corollary, we retrieve the fact that the c-cellular characters are generically
irreducible, see [4, Theorem 14.4.1] or [1, Theorem 10(3)].

Corollary 1.11. Suppose that the parameter ¢ is such that
co#0 and (kp—ky)—coj #0,

foralll < p+q <dand—n < j < n. Then the Calogero—Moser c-cellular characters
of G(d, 1, n) are irreducible.

Proof. Since JM.(d,n) c CG(d, 1, n), any simple representation occurs in some V,; and
is therefore of the form D; for t a standard A-tableau. It suffices to show that these one
dimensional representations of JM,(n, d) are pairwise non-isomorphic. Indeed, if A and
u are different d-partitions we have

RCICARD) _ G(d,1,n) —
S (o) V) = @ D¢ and  Respy (g, (Va) = @ D,
S

where t (resp. ) runs in the set of standard A-tableaux (resp. u-tableaux). Therefore the
restrictions of V4 and V¥ to JM,(d, n) have no common constituent if 1 # u and for any
standard A-tableau, the multiplicity of D; in Res‘lch(,ff’(il”';))(v/l) is 1.

Let t be a standard A-tableau and t’ be a standard A’-tableau, where A and A’ are two
non necessarily different d-partitions of n. We suppose that t # t” and we prove that the

sequences
(ki-c, = colbp —ap)isp<n  and  (ki-c;, = co(b), = ap)1<p<n

are different, where (a,, by, ¢,) = t71(p) and (ap, by, c,) = () (p). Let 1 < p <nbe
the minimal integer such that t=!(p) and (t")~!(p) are different. Denote by y the common
partition A'[p — 1] = (A)'[p - 1].

Suppose first that —n < cont(t™'(p)) — cont((t")"'(p)) < n. If cp # ¢, then the
hypothesis on the parameter ¢ implies that k1., — co(bp — ap) # ki—e;, = c()(b;j - a;,).
If ¢;, = ¢, then both t=!(p) and (t")~!(p) are addable boxes of u(°r). Since there exists
at most one addable box to a Young diagram with a given content, we deduce that the
contents of t~!(p) and (t")~! (p) are different, and as co # 0 we have k_, — co(bp —ap) #
kl—c,, - CO(b;; - 1/7)

Therefore we may and will assume that |cont(t~!(p)) — cont((t")"!(p))| > n. Since
the absolute value of the content of a box of a d-partition of n cannot exceed n — 1, the
contents of t~!(p) and of (t")~!(p) are of different signs. Up to exchanging t and t’, we
suppose that the content t~!(p) is equal to x > 0 and the content of (t')~!(p) is equal to
y < 0 (neither x nor y can be equal to O since 0 < x <n,-n <y <0and x —y > n).
The Young diagram [u] must contain a box of content x — 1 and a box of content y + 1,
and therefore has at least x — y — 1 boxes. Since x —y > n, we obtain thatp — 1 > n -1
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Calogero—Moser vs. Leclerc—Miyachi

and hence p = n. If ¢, # c,, then the d-partition y has at least x — y boxes, which is
impossible, so that ¢, = cl',. But kl—c,, —CoxX # kl—c,, — coy because ¢y # 0. ]

2. Leclerc—Miyachi constructible characters

Let g be an indeterminate over Q. In this section, we introduce other characters of G(d, 1, n),
whose definition was given by Leclerc and Miyachi in [10], using canonical bases of some
representations over the quantum group U, (sle). If d = 2, Leclerc and Miyachi have
shown that these characters are equal to Lusztig’s constructible characters [13, Chapter 22]
of the Coxeter group of type B,, conjectured to be equal to the Kazhdan—Lusztig cellular
characters.

2.1. The algebra U, (sl)

The quantum group U, (sl ) associated with the doubly infinite Dynkin diagram A, is
the Q(q)-algebra generated by E;, F; and K;—'l for i € Z subject to the following relations:

KK'=1=K"'K;, KK;=KK,
KiE; = qfai,,»_ﬁzé,,jfé,;jﬂEjKi’ KiF; = qai,j_lfzai,_,m,;,ﬂFjKi’
Ki—K!
q-q"’
EE; = E;E; if i — j| > 1,
EPE; —(q+q DEEE + E;E} = 0if |i - j| = 1,
FiFj = FiF;if|i - j| > 1,
F F;=(q+q YEFF + FF = 0if|i - j| = 1,

EiFj = FjE; = 6i;

for all i, j € Z. We can endow U, (sl.) with many bialgebra structures, and we choose
the following comultiplication A:

A(Ki)ZK,'@Ki A(Ei)ZE,'@l-i-K[_]@Ei A(Ei)=F,'®Ki+1®F,‘

This bialgebra structure will allow us to consider tensor products of representations of
Uy (5Te0).

The fundamental roots of sl are denoted by (A;);cz. For all i € Z, we denote by
V(A;) the integrable irreducible representation of highest weight A;. It admits (vg)g as
a Q(g)-basis, where B runs in B; = {(Bx)k<i | Bx < Br+1,Brx = k for k < 0}. We will
identify such a B in this set with the corresponding subset {8y | k < i} of Z and may
write j € Sor SU {/} if [ ¢ B. On this basis (vg)g, the action of the generators E;, F; and

47



A. Lacabanne

K; are [10]:

vy, ifi¢pBandi+1e€p withy=(B8\{i+1}) Ui},
E,‘VB =
0  otherwise,
vy, ifiepBandi+1¢p, withy=(B8\{i})u{i+1},
Fivg =
0  otherwise,
qvs ifieBandi+1¢p,
K[V’g: q_IV'B 1fl¢,8andz+1 G,B,

vg otherwise.

The highest weight vector is vz where ' = Z;.

2.2. Fock spaces, canonical bases and constructible characters
2.2.1. Fock space of a representation

Letr = (ry,...,rq) be a d-tuple of integers with r| > r, > --- > rq and we consider
the fundamental weight A, = Z;jzl A,,. The integrable irreducible U, (sl )-module of
highest weight A, is denoted by V(Ar). Denote by F(Ay) = V(A,,) ® --- ® V(A,,) the
associated Fock space, which admits vgri ® - - - ® vgra as a highest weight vector of weight
Ay. From now on, we view the module V(A,) inside the Fock space F(A,). The module
F(Ay) has a basis S(Ay) given by

S(Al‘) = {Vﬁl ® "'®Vﬁd |ﬁl € Br,—

This is the standard basis of F(A;) and we prefer to write its indexing set as a set of
d-symbols

Bi

B2

Ba
where 8; = (Bix)ik<r, is a sequence of integers with 8; x < Bir+1 and B x = k for k < 0.
The height of such a symbol is the integer ¥, ¥y <r; (Bi.x — k). The highest weight vector
vgr ® -+ ® vgra of weight A, corresponds to vgo, where 5 is the d-symbol with i-th

line equal to B"i. Finally, a d-symbol is said to be standard if 8; x < Bj« for alli < j and
k<r e
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Example 2.1. The 3-symbols of height 2 with r = (1, 1, 0) are the following

0 1 0 1 -1 0 1 .0 2 0 1
0 3], 0 1], -1 0 1}, .0 2], 0 2],
0 2 0 1 .0 1

0 3 I 2 0 1 0 2

o 1f, ... 0 1}, 1 2], 0 1.

0 ... 0 0 1

The five first symbols are standard and the four last symbols are not standard.

2.2.2. Canonical bases

Let x X be the involution of U, (sl.) defined as the unique Q-linear ring morphism
satisfying

7=q", K =K' E; = E, F; = F.

Since V(A;) is a highest weight module with highest weight vector vgo, any element
v € V(A;) can be written v = xvgo, with x € U, (slw), and we set v = Xvgo.

Let R be the subring of Q(g) of rational functions which are regular at ¢ = 0. Let
Fr(Ay) be the R-sublattice of F(A,) spanned by the standard basis S(Ay).

The canonical basis (by)s of V(A;) is indexed by the set of standard d-symbols and is
characterized by the following properties:

by =vs mod gFgr(A;) and by = by.

Canonical bases were introduced in [12], see also [9]. We will denote this basis by B(Ay).

2.2.3. Constructible characters

In [10], a closed expression of any by € B(A,) in the standard basis is given when d = 2,
and is compared to Lusztig’s constructible characters. Leclerc and Miyachi then propose
a definition of constructible characters via canonical bases for the complex reflection
group G(d, 1, n).

To any d-symbol of height n, we associate a d-partition (11, . .., 1)) of n by setting

A = By = (= j+1).

This is a canonical bijection between the set of d-partitions of n and the set of d-symbols
of height n.
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Definition 2.2 ([10, 6.3]). For a standard d-symbol X of height n, we write the expression
of by in terms of the standard basis

bs =) as(q)vs,
s
with S running in the set of d-partitions of n. The Leclerc—Miyachi r-constructible
character of G(d, 1, n) corresponding to the standard d-symbol X is

ye = as(lxs,
S
where ys is the character of the representation of G(d, 1, n) associated with the partition
corresponding to the d-symbol S.

2.3. The asymptotic case

Since we aim to compare the set of Calogero—Moser cellular characters and the set of
Leclerc—Miyachi constructible character, we expect that the Leclerc—Miyachi constructible
characters enjoy a generic property similar to Corollary 1.11. This generic property on
the parameter ¢ will turn out to be an asymptotic property on the parameter r.

Lemma 2.3. Let r = (ry,...,rq) and n € N. We suppose that r; — riy1 > n for all
1 <i <d— 1. Then every d-symbol of height at most n is standard.

Proof. Let S = (B;)1<i<aq be a symbol of height smaller than n. By the hypothesis on the
parameters, we necessarily have g; x = k for k < r;;1. Therefore if i < j and k < r; we
have B; x = k < B}« and the d-symbol § is standard. O

If r; — rix1 = n then the number of r-constructible characters of G(d, 1, n) is the
same as the number of irreducible characters of G(d, 1, n). It remains to show that these
r-constructible characters are irreducible.

Theorem 2.4. Letr = (ry,...,rq) and n € N. We suppose that r; — riz1 > n for all

1 <i <£d - 1. For any d-symbol T of height at most n we have by = vs.

Proof. This is an application of the algorithm presented in [11] for the computation of the
canonical basis. We show that the intermediate basis (Ay)s of [11, Section 4.1] satisfies
As = vy, which implies that by = vy since As = As. We proceed by induction on n.

For n = 1, any d-symbol of height 1 is given by S; = (8;)1<i<a With B x = k for every
1 <i<dandk <r; except for 8, = r; + 1. We immediately obtain that As, = F}, vgo.
By the hypothesis on r, the only line B of X with r; € S and r; + 1 ¢ S is B;. Therefore
F v = vs,.
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Suppose that for all parameters r such that r; — r;4; > nforall 1 <i < d we have
Ay = vy for all standard d-symbols X of height n. Let r be a parameter such that
ri—riqp=n+1foralll <i <dandZX = (8;)<i<q be a standard d-symbol of height
n+ 1. Let i be the greatest integer such that 8;, # 87 and k¢ the smallest integer such
that Bk, > ko. We write Bk, = k{ + 1 with k| > ko. Since the height of Z is n + 1,
we have Bk, — ko < n+ 1 so that k| < n + ko. In order to apply the algorithm of
Leclerc—Toffin, one must find the smallest integer k such that there exists 1 <i < d and
I < k with B;; = k + 1. Let us show that this integer is k.

Fix k < kj, 1 <i < dand ! < k. Suppose first that i > io. By definition of iy, we
have B;; =1 # k + 1. Now suppose that i = ip. If [ < k¢ then by definition of ko we
have B;,; =1 # k+ 1. If | > ko then Biy1 > Bipk, = ké + 1 > k + 1. Finally, suppose
thati < io. Since [ < k, we have [ < kj+ 1 < ko +n + 1. Since X is of height n + 1, if
I <ri—(n+1-(Bik — ko)) wehave B;; = . Butr; — (n+1) > ri11 > rj, and therefore
ri—(m+ 1= (Biyky — ko)) = riy + k[ + 1 — ko. As obviously ko < r;, we obtain that
ri —(n+1=(Bipk, — ko)) = ky+ 1 > k. Hence if I < k then B;; =1 # k + 1.

Therefore we obtain

Ay = Fiy Ay,

where ¥’ is the standard d-symbol obtained from X by replacing only S;, x, by k. Then
%’ is of height n, and the induction hypothesis shows that Ay = vs/.

In order to conclude, it remains to show that Fk() vy = vy. If i > iy then B; = 8" and
since k(’) > ko > r; neither kg nor k(') appear in 3;. If i < ip, we have already shown that if
I <ri=(n+1~(Biyk — ko)) we have B;; = [ and that r; — (n + 1 = (Biy.ky — ko)) = kj+ 1
so that B k1 = ki + 1 and B;x; = kj and both kj and k( + 1 appear in ;. Hence, from
the definition of the action of Fi via the comultiplication, we find that Figvsy =vs. O

The following corollary translates Theorem 2.4 in terms of Leclerc—Miyachi con-
structible characters for G(d, 1, n).

Corollary 2.5. Letr = (ri,...,rq) and n € N and suppose that r; — riy1 > n for all
1 <i < d—1. Then the Leclerc—Miyachi r-constructible characters for the group G(d, 1, n)
are the irreducible characters.

3. Computations for G(d, 1,2) and comparison
In this section, we compute explicitly the set of c-cellular characters for the group

G(d, 1,2) for any choice of parameter ¢. We also compute explicitly the Leclerc—-Miyachi
r-constructible characters for any choice of parameter r.
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3.1. On the Calogero—Moser side

We will freely use the notations of Section 1, but simplify them in the special case of
G(d, 1,2). For simplicity, we prefer to denote by (x, y) the standard basis of C> and by
(X, Y) its dual basis. Let s be the reflection denoted by 51,20 and # be the reflection denoted
by o1, so that G(d, 1, 2) has the following presentation

(s,t | §2 = 1,ld =1, stst = tsts) .

We also denote by sy the reflection sy 2 x. There are 2d + (g) irreducible representations
of G(d, 1,2), namely 7;,n; of dimension 1 for I < i < d and p; ; of dimension 2 for
1 <i < j < d. Their respective characters are denoted by &;, &/ and y;,; and the values of
the representations on the generators are given in Table 3.1

TaBLE 3.1. Action of s and ¢ on irreducible repesentations of G(d, 1, 2)

s t
n,1<i<d 1 7!
n,1<i<d -1 I

. 0 1 Y0
pijl<i<j<d (1 O) (O {j_i)

Finally we choose a parameter ¢: Ref(G(d, 1,2)) — C, define kf = ki-; and we again

set £ = {y.
The Gaudin algebra Gau, over C[X, Y] is generated by the following two elements

d-1 1 d-1 | d-1 1 d-1 &
Dy = clF=ak-¢ ——sx and D, = =k +¢ : Sk.
x kzz()ké’X1 O;X_fkyk ) kzzok{YQ O;X_fkyk

Since C(X,Y) Gau, ¢ C(V)G(d, 1,2), every irreducible C(X, Y) Gauc.-module appears in
the restriction of an irreducible representation of G(d, 1, 2) over C(X,Y). We then denote
by £; (resp. L], resp. L; ;) the restriction of C(V)n; (resp. C(V)n;, resp. C(V)p;,;) to
C(X,Y) Gau,. The following easy lemma will be useful in the computations.

Lemma 3.1. In C(V) = C(X,Y), for every 1 <1 < d we have

d-1 (kl daxl-lyd-1
X—gkY: ~a_ya (3.1
k=0

We also give two other generators of C(X, Y) Gaue, which differ from D, and D, by
multiplication by a scalar:
_X(x4-Y9)

Y(X4-y4d
y D, and D':gﬂ.

‘D),C y d y
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Lemma 3.2. The actions of Dy and D, on the restrictions of irreducible representations
of G(d, 1,2) are given in the Table 3.2.

TaBLE 3.2. Actions of D} and Dy

D D
L,l1<i<d (X9 —YNk¥ - coX? (X —YDKF + coY?
L, 1<i<d (X —YDkF + coX? (X4 —y)k¥ — oY
L. x4yt —coxd-U-DyJs-i X4yt  coxd-U-iyi-i
.Li,j, 1<i<j<d (_COXj-in-U-i) (Xd_Yd)k;# cOXf*"Yd*(.ij*” (xd_yit

Proof. Lets us start with the action of Dy, on ;. It is given by

o x(xd -y (&Gt S
ni(Dx) = d Z tX —C0 Z X——(kY = (Xd - Yd)ki“t - CQXd,
r=1 k=0 -

the last equality following from the definition kf and from Lemma 3.1.
Similar computations can be made for the action of Z);, and for the representation £ l’ .
Let1 <i < j < nand we compute the action of D; on .L;; :

, Xd _ Yd d-1 é'ri 0 d-1 1 0 é'k(d—(j—i))
pij(Dx) = ——— (; cr ( 0 é«rj) - XCokZ:O Xy (gk(j—i) 0 )

(X -YDKF —coxdU=DyI
_COXj—in—(j—i) (Xd _ Yd)k# )
J

using again the definition of k? and kf and Lemma 3.1. The action of Dy is obtained by a
similar argument. O

The 2-dimensional representations .£; ; have different behaviour depending on the
parameter c.

3.1.1. Whenc¢y =0

In this subsection only, we suppose that cp = 0. The matrices giving the action of ~Z))'C
and D; are all diagonal and we readily see that £; ~ L] and that £;; ~ L;; & L},
where £; ; is the 1-dimensional representation where D/, acts by (X¢ - Y¥)k¥ and Dy
by (X4 —y4 )k;.*. Notice that with this notation, the module £; ; is nothing else than £;.

Moreover, we have an isomorphism between Z,-, jand L p.q if and only if kf = kﬁ and
kf = kg. We therefore define an equivalence relation on the set {1,...,d} by i ~ j if
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and only if k? = kf. Simple C(X, Y) Gauc-modules are then parameterized by pairs of
equivalence class for ~: a representative of the class Lo, o labeled by O and O’ is f,-, s
wherei € O and j € O’.

From the above description of restrictions of representations of G(d, 1, 2) to the Gaudin
algebra C(X, Y) Gau,, we obtain:

Proposition 3.3. Let O and O’ be two equivalence classes for ~.
The c-cellular character corresponding to the class Lo, o is

Y0.0 = Z()a + i)+ Z 2xij-
i€e0 i,jeO
i<j

The c-cellular character corresponding to the class Lo, o' is

By definition, every c-cellular character is equal to one of those above.

3.1.2. When ¢y # 0

In this subsection only, we suppose that ¢y # 0. The matrices giving the action of Dy, and
D;; on the representation £; ; are not diagonal, but these representations can still have an
invariant one-dimensional subspace.

Lemma 3.4. Depending on the values of the parameter ¢, the representation L; ; is
reducible if and only if one of the following is true:

o H# _ # . e . + — +
o ifkl = kj and d is even then L, j is isomorphic to .[Zl.,j @ Li’j, where .[Zl.,j and

Li‘j are two non-isomorphic one-dimensional representations, which are not
isomorphic to some Ly or L},

° lfkjqé - kf = ¢q then .Ei,j ~ L @L;,
. lfkiqE - kj?e = —co then L;; ~ -El/ ® L.
Proof. We diagonalize the matrices p; j(Dy) and p; ;(Dy). Note that these two matrices

have the same trace and determinant, and therefore the same characteristic polynomial
equal to

t* — (X =Yk + kDt + (X! -y kIKE - Gxre.
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This polynomial is split in C(X, Y) if and only if its discriminant
(X! =Y Pk + K - a(x! - YD K - x4y )
= (kf = KX + 225 - (K} = kDHXY! + (ki = kY™

is a square in C(X, Y). This homogeneous polynomial is then a square in C(X, Y) if and
only if d is even and k¥ = k% or ¢§ = (kf — k¥)*.

Suppose first that k? = kf and d is even. One check that the vectors

xd/2~(-1) xdi2~G-)
(_Yd/Z—(i—i)) and (yd/Z—u—i))

are common eigenvectors for p; ;(Dy) and p; j(Dy,) with respective eigenvalues
X =YD+ cox Y2 and (X4 - YK - cox 92y

for p; ;(Dy) and
X - YOk - cox Y2 and (X4 - YK + cox 92y

for p;, ;(Dy). This shows the first assertion of the lemma.
Now, suppose that kf - kf = cp. We check that

Yj—i Xd—(j—i)
( x| and (_yd—(i—i)
are common eigenvectors for p; ;(Dy) and p; ;(Dy,) with respective eigenvalues
KIX?—kfy? and  kfX? - kiy?
for p; j(Dy) and
KX -y and KX - Ky
for p; j(Dy)). Moreover, using the equality co = kf - kf, it is easy to see that this gives an
isomorphism £; ; ~ L; ® LJ’..

If k¥ — kf = —cy, a similar argument shows that £; ; ~ £/ ® L;, which ends the proof
of the lemma. o

We now have a complete description of simple C(X, Y) Gauc-modules, and of the
restrictions of the representations of G(d, 1,2) to C(X, Y) Gau,. The only isomorphism
between simple modules are the following:

o if kf = k¥ then £; ~ L; and L] = L],
o if g # (K} = k%), g # (K — k§)*, ki = k) and k¥ = k) then L ; =~ £, 4,
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e if d is even and k# k# k# = k# then £+ =~ L and Li_’j =L,

We again define an equivalence relation on the set {1,...,d} by i ~ j if and only
if k? = kf. We can parameterize the classes of simple modules using the equivalence
classes of ~:

e for O an equivalence class, we have two classes Lo and Lo with a respective
representative £; and L] fori € O.

e for O and O’ two equivalence classes such that g # (kf — k¥)* forany i € O
and j € O’, the classification depends moreover on the parity of d:

(1) if d is odd, we have one class of simple modules L o with representative
Li;withi€ O,jeO andi < j(or L;; withi € O, j € O’ and j < i),

(2) if d is even and O # O’, we have one class L, o with representative L; ;
withi € O, j € O"andi < j (or Lj; withi € O, j € O"and j < i),

(3) if dis even, O = O’ and |O| = 2, we have two classes LO o and L,
with respective representatives £+ and .[Z fori,j e Oandi < j.

0,0’

Note that the classes Lo 0, L], , and L, , only exist if [O| > 2. From the above
description of restrictions of representations of G(d, 1, 2) to C(X, Y) Gau,, we obtain:

Proposition 3.5. Let O and O’ be two equivalence classes for ~.
The c-cellular character corresponding to the class Lo is

'YO:Z Xi+ Z Xij t Z Xii |

i€0 JEOi<j JEO j<i
where O’ is an equivalence class for ~ such that k? - kf = ¢ (if such a class exists, it is
unique).
The c-cellular character corresponding to the class Ly, is

)’é):Z Xi+ Z Xij * Z Xiji |

i€ jeoi<j JeO,j<i
where O is an equivalence class for ~ such that kf - kf = —cg (if such a class exists, it
is unique).
If cg * (k;’l - kf)z, the c-cellular character corresponding to the class Lo o is

Yo.,or = Z Xijt Z Xj,i+

i€0,je0’ i€0,je0’
i<j Jj<i
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The c-cellular character corresponding to the classes Lo, o, -55 oand L, ,is

Yo,0o = Z Xij-

i,jeO
i<j

By definition, every c-cellular character is equal to one of those above.

3.2. Vectors of height 2 of the canonical basis

Now, we turn to the Leclerc—Miyachi constructible characters for G(d, 1, 2) and we use
the notation of Section 2. Fix r = (r|,7r2,...,rq4) € 79 and we compute the vectors of the
canonical basis of height 2 of V(A;). We set some notations for the d-symbols of height
2.Let0=1ip<iy <---<ip=dsuchthatforall 1 <k <p-1wehaver; B <r, and
forall 1 < k < pandix_1 <i < i we have r; = r;, . By convention, we let ryp = —co and
ra+1 = +00. The d-symbols S = (B;)1<i<q of height 2 are the following:

e forl <i < j <d,thed-symbol S; ; with §; ,, = r; + L Bjr, =ri+1 and By =1
for all other values of k and [,

e forl <i < d, the d-symbol S; with §; ,, = r; +2 and Bi,; = [ for all other values
of k and [,

e for 1 <i < d, the d-symbol S/ with B; ,, =r; + 1, B;,—1 = r; and B, = [ for all
other values of k and /.

Among these symbols, the following are standard:

e for 1 < k <1 < pthe d-symbol §;, ;, is standard,

[
e for 1 < k < p such that iy —ix_; > 2 the d-symbol S;, _; ;, is standard,
e for 1 < k < p the d-symbol §;, is standard,

e for1 < k < psuchthatr; —r;,, > 2 thed-symbol S; is standard.

For these standard d-symbols, we now apply the algorithm of [11] and show that the
element Ay of the intermediate basis already satisfies Ay = vs mod gFgr(Ay).
We denote by S; the symbol of height 1 with 5; ,, =i+ 1 and S ; = [ for all other
values of k,[. If 1 < k < p, we have
Fyvso = Z q* s, (H1)

-1 <i<ig
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Let1 < k <[ < p and consider ~ = §;, ;,. We obtain Ay = F;, Fj, vso. Then for
ix-1 < i < i, the value of F;, Vs, depends on r;, — r;,

i —ig+1 i—j ;
g s + E q"vs,; ifry =+,
L=
F; ve = o uasysh
Lo5i i1—j .
qt s ; otherwise.

i-1<j<ig

From the above formula and (H;), one obtains

ie—i | ip_i—ip+1 i1—j .
Z 7 N7 vs; + Z q’fvsw. ifry, =r;, +1,

As = 4 ik-1<i<ig i-1<j<i

Z Z g g, ; otherwise,

-1 <i<ig i1-1<j<ip
and it is readily checked that Ay
k=1+1.

Let 1 < k < p such that iy —ix_; > 2 and consider X = S;, _1; . We obtain
(g +qg HAs = Flzk vgo. Then for ix_; < i < iy, we have

— ir—1-2 ix—i
Fika‘i_ Z q* vsi; Z q* VSj.i»

ip-1<j<i i<j<ip

vs mod gFg(Ay). Note that if r;, = r;, + 1 then

so that from the above formula and (H;), one obtains
Fii vso = (q + qil) Z Clziriijilvsi,j'
-1 <i<j<iy
It is readily checked that Ay = vy mod gFgr(Ay).
Let 1 < k < p and consider ¥ = §; . We obtain Ay = F;, +1F;, vgo. Then for

ix-1 < i < iy, the value of Fj, 4 Vg, depends on r;, | —r;; :

i )
vs, + Z g " s, if g =+,

Fik+lV§i = ik—2<J<ir-
Vs, otherwise.
Hence
ir—i ip_1—j+1 . _
Z q'* " |vs, + Z g vs,; | ifri =r+ 1,
AZ = Q I-1<i<ig Ik—2<J<ik_1

q*'vs, otherwise,
ip—1 <i<ip

and we indeed have Ay = vs mod gFgr(Ay).
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Finally, let I < k < p such that rj, —r,, > 2 and consider X = § . We obtain
As = Fj _1F;, vgo. Then for ix_1 < i < ix, we have

Fy-1vg, = vsi,

since ry, — 1y, = 2. Therefore
ix—i
Ay = Z q* " vs,
Q-1 <i<ig

and Ay = vy mod gFgr(Ay).
From this, we obtain the Leclerc—Miyachi r-constructible characters. The bijections
between d-symbols of height 2 and irreducible characters of G(d, 1, 2) is given by

Sij < Xij» Sie xi and S] & y/.

Proposition 3.6. For 1 < k < I < p, the Leclerc—Miyachi r-constructible character
corresponding to the standard d-symbol S;, ;, is

’ .
Z Xi + Z Xij| orip=r+1,
ysik»fl = R Ip-1<i<ig 1<j<i;
Z Z Xi,j otherwise.
-1 <i<ig [j-1<J<ig

For 1 < k < p such that iy — ix—1 > 2, the Leclerc—Miyachi r-constructible character
corresponding to the standard d-symbol S;, _1 ;, is

YSip iy = 2 Xij-
-1 <i<j<ig

For 1 < k < p, the Leclerc—Miyachi x-constructible character corresponding to the
standard d-symbol S;, is

2,

= Qip-1<i<i
ysik = § k-1<t=ik

Xi+ Z Xj,i) Uric, =r +1,
ik—2<J <ik-1
Xi otherwise.

T <i<ig

For1 < k < p such that r;, —r;,, > 2, the Leclerc—Miyachi r-constructible character
corresponding to the standard d-symbol S i/k is

Vs, = Z X;-

-1 <i<ig
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4. A conjecture relating cellular and constructible characters

We now state precisely the conjecture relating Calogero—Moser c-cellular characters and

Leclerc—Miyachi r-constructible characters for the complex reflection group G(d, 1, n).

Let ¢: Ref(G(d, 1,n)) — C. We suppose that ¢y # 0 and that for every 1 < i < d we
have k; € —N¢y. Finally, suppose also that
# #

ok K

€o €0 €0

g

Conjecture 4.1. Letr = —cal(k#, kg, . kZ). Then the set of Calogero-Moser c-cellular
characters and the set of Leclerc—Miyachi r-constructible characters coincide.

If d = 2 this conjecture is equivalent to the conjecture that Calogero—Moser c-cellular
characters for the Weyl group of type B,, are Lusztig’s constructible characters obtained
via truncated induction [13, Chapter 22].

Theorem 4.2. If the parameter c is generic in the sense of Corollary 1.11 then Conjec-
ture 4.1 is true.
For the group G(d, 1,2) the Conjecture 4.1 is true for any c.

Proof. With the change of parameters between ¢ and r, the generic case for the c-cellular
characters translates into the asymptotic case for the constructible characters. The result
therefore follows from Corollary 1.11 and Corollary 2.5.

For G(d, 1,2), we describe the equivalence relation ~ introduced in Section 3.1.2.
Using the notation (i;)-1<;<p+1 introduced in Section 3.2, the equivalence classes of ~
arethesets O; = {ij_1 + 1,ij_1 +2,...,i;}for1 < j < p.

Using the explicit descriptions of the c-cellular characters given in Proposition 3.5 and
of the r-constructible characters given in Proposition 3.6 we check that:

e forany 1 < k <[ < p, the Leclerc-Miyachi r-constructible character ys, , is
equal to the Calogero—Moser c-cellular character y’ok if r;, =r; + 1 and to the
Calogero—Moser c-cellular character yo, o, otherwise,

e forany 1 < k < p such that ix —ix_; > 2, the Leclerc—Miyachi r-constructible
character ys, _,, is equal to the Calogero-Moser c-cellular character yo,, o, ,

o forany 1 < k <[ < p, the Leclerc-Miyachi r-constructible character yg, is
equal to the Calogero-Moser c-cellular character yo, ,

e forany 1 < k <[ < psuchthatiy —ix_; > 2, the Leclerc—Miyachi r-constructible
character ysr is equal to the Calogero—Moser c-cellular character y’ok .
Lk -
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It is easy to check that every Calogero—Moser c-cellular character appears as a Leclerc—
Miyachi r-constructible character. O

Appendix A. Cellular characters

This appendix aims to define a general notion of cellular characters of a commutative
algebra A, and is largely inspired from [5, Appendix II]. We fix k a field of characteristic 0,
E a finite dimensional k-vector space, A a split subalgebra of Endy(E) and P an integral
and integrally closed subalgebra with fraction field K.

Given R a commutative k-algebra, we denote by RE (resp. RA) the extension of
scalars R ®y E (resp. R ® A). Let Dy, ..., D, be some pairwise commuting elements of
Endpa(PE). If p is a prime ideal of P, we denote by K,(p) the residue field at p and by
D;(p) the image of D; in Endp,,4(P/pE). Finally, let D = (D1, ..., D,) and P[D] be the
subalgebra of Endp4(PE) generated by Dy, . .., Dy,.

We are interested in the decomposition of the vector space KE as a K[D] Qx KA-
module, and more precisely of its class in the Grothendieck group Ko(K[D] ®x KA) of
finite dimensional K[D] ®k K A-modules.

Since the algebra A is split, we obtain (cf. [7, Propositions 3.56 and 7.7]) a bijection
Irr(K[D]) x Irr(KA) — Irr(K[D] ® KA) given by tensoring modules. This bijection
induces an isomorphism of Z-modules Ky(K[D]) ®z Ko(KA) — Ko(K[D] ¢ KA). We
therefore decompose [KE] in Ky(K[D]) ®z Ko(KA) as follows:

P[D
[KE)= > [Lloy ",
Lelrr(K[D])

[D]

with yf[D] € Ko(KA). Since A is split, we usually think of yf as an element of Ky(A).

Definition A.1. The set of cellular characters for P[D] is the set of yf[D] € Ky(A) for L
running over the set of irreducible K[D]-modules.

1

Remark A.2. 1t may happen that yf[D = yf,[m for two non-isomorphic K[D]-modules.

By extending the scalars to P[X] = P[X}, ..., X,;] and by setting D = X; D +--- +
X, D,,, it is shown in [5] that the set of cellular characters for P[D] coincides with the set
of cellular characters for P[X][D]. We therefore may and will suppose that n = 1 and set
D =D,.

It is now easy to describe all the irreducible K[D]-modules. Denote by II the
characteristic polynomial of D, which is a unital polynomial in P[t]. We then decompose
IT into a product of irreducible unital polynomials in K[t]

=10 T
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We also denote by IT**™ the product of the I1;’s without multiplicity. Since P is integrally
closed, the polynomials IT; and IT5°™ have their coefficients in P and we set £; = P[t]/{II;).
The set of irreducible K[D]-modules are therefore the extensions to K of the P[D]-
modules L;:

Irr(K[D]) = {K Ly, ..., KL, }.
The main advantage of working over P is that we can easily reduce modulo a prime ideal

p of P. Let A be the discriminant of the polynomial IT**™, and denote by A(p) its reduction
modulo a prime ideal p of P.

Proposition A.3. Let p be a prime ideal of P such that P/p is integrally closed. Then the
cellular characters for P[p[D(p)] are sums of cellular characters for P[D). If moreover
A(p) # 0 then the sets of cellular characters for P/p[D(p)] and for P[D] coincide.

Proof. We start by decomposing the reduction IT(p) modulo p into a product of irreducible
polynomials with coefficients in kp(p):

d;
ip) = | [0,
j=1

where 7; ; € kp(p)[t] is unital and irreducible, e; ; € Z-¢ and 7; ; # m; j» for j # j’. Since
P/yp is integrally closed, the polynomials 7r; ; have their coefficients in P/5p.

Forl <i<randl < j < d;, wedenote by L; ; the P/p[D(p)]-module (P/p)[t]/{m; ;).
In the Grothendieck group of Kp(p)[D(p)] we therefore have the following equality

d;

)L = 3 e hr(e)£0). (A1)

Jj=1

Since k has characteristic 0, an equality between elements of Ko(K[D] ®x KA) is
equivalent to an equality between the corresponding characters, so that we can specialize
modulo p the equality

=Y KLil@yg,
into
[kp@E] = ) kp(®) L1 ® vy -

Using (A.1), we see that the cellular characters for P/p[D(p)] are sums of cellular
characters for P[D].
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If moreover A(p) # 0, thene; ; = 1foralll <i<randl <j <d;andn;; = m, if
and only if (i, j) = (I, m). Then

r d;

[kp®E] = Y > Tke®) L@y !

i=1 j=1
and the set {kp(p)L;; |1 <i<r1<j<d } is exactly the set of irreducible represen-

tations of kp(p)[D(p)], so that y,i{rgi(f)] = yKL lforalll <i<randl1 <j<d. O
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