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On a conjecture about cellular characters for the complex reflection
group G(d, 1, n)

Abel Lacabanne

Abstract

We propose a conjecture relating two different sets of characters for the complex reflection group
G(d, 1, n). Fromone side, the characters are afforded byCalogero–Moser cells, a conjectural generalisation
of Kazhdan–Lusztig cells for a complex reflection group. From the other side, the characters arise from a
level d irreducible integrable representations of Uq (sl∞). We prove this conjecture in some cases: in full
generality for G(d, 1, 2) and for generic parameters for G(d, 1, n).

Using Cherednik algebras and Calogero–Moser spaces, Bonnafé and Rouquier devel-
oped in [4] the notions of cells (right, left or two-sided) and of cellular characters of a
complex reflection group W . Whenever this group is a Coxeter group, they conjectured
in [4, Chapter 15] that these notions coincide with the corresponding notions in the
Kazhdan–Lusztig theory. As for Hecke algebras with unequal parameters, these notions
heavily depend on some parameter c defined on the reflections of W and invariant by
conjugation. In this paper, we are mainly interested in the notion of cellular characters for
the complex reflection group G(d, 1, n). If d = 1, the group G(d, 1, n) is nothing else than
the Weyl group of type An−1, and if d = 2, we recover the Weyl group of type Bn. Bonnafé
and Rouquier showed that if the Calogero–Moser space with parameter c associated to
W is smooth then the cellular characters are irreducible. This implies that their notion
of Calogero–Moser cellular characters coincides with the notion of Kazhdan–Lusztig
cellular characters in type A. Even in type B, we only have a complete description for
B2 [4, Chapter 19]. For the dihedral group G(d, d, 2), a description of Calogero–Moser
families and of Calogero–Moser cellular characters has been given by Bonnafé [3], and
these are compatible with Kazhdan–Lusztig theory.

Lusztig defined in [13, Chapter 22] a notion of constructible characters of a Coxeter
group, using the so-called truncated induction. He conjectured that these constructible
characters are exactly the characters carried by the Kazhdan–Lusztig left cells, and proved
the result in the equal parameter case. These characters surprisingly appeared in the work
of Leclerc and Miyachi [10]. They obtained a closed formula for canonical bases of a
level 2 irreducible integrable representation V(Λr1 +Λr2 ) ofUq(sl∞) (here the Λi are the
fundamental weights). By evaluating these expressions at q = 1, Leclerc and Miyachi
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A. Lacabanne

retrieved Lusztig’s constructible characters for Weyl groups of type B and D. With a level
d irreducible integral representation V

( ∑d
i=1 Λri

)
, one obtains some characters of the

complex reflection group G(d, 1, n) in a similar manner and Leclerc and Miyachi asked
whether these characters are a good analogue of constructible characters in type B.

Thus, we have two sets of characters for the complex reflection group G(d, 1, n), namely
the Calogero–Moser cellular characters and the constructible characters of Leclerc and
Miyachi. Both sets of characters depend heavily on some parameters (c or r = (r1, . . . , rd)),
and up to a suitable change of parameters, we conjecture that these two sets of characters
are equal.

Conjecture A (Conjecture 4.1). Let r be a d-tuple of integers. Then there exists an
explicit choice of parameter c for the complex reflection group G(d, 1, n) such that the set
of Calogero–Moser c-cellular characters and the set of Leclerc–Miyachi r-constructible
characters coincide.

We refer to the statement in Section 4 for the precise relation between the parameters c
and r. The main result of this paper is a proof of this conjecture in two different cases.

Theorem A (Theorem 4.2). Conjecture A is true in the following two cases:

(1) for G(d, 1, 2) and any parameters,

(2) for G(d, 1, n) and generic parameters.

We refer to Corollary 1.11 for the notion of generic parameters. To support this
conjecture, it would be interesting to retrieve some known properties of the Calogero–
Moser cellular characters, for example the fact that for any Calogero–Moser cellular
character there exists a unique irreducible constituent with minimal b-invariant, and its
multiplicity is one. This fact is already known for constructible characters of an irreducible
finite Coxeter group [2].

The paper is organized as follows. In the first Section, we define the first set of
characters we are interested in, the Calogero–Moser cellular characters. There are several
equivalent definitions of these characters in [4] and we choose to use a definition using
the so-called Gaudin algebra, which is a commutative subalgebra of the group algebra of
G(d, 1, n) over a localization of a polynomial ring. Using this definition, we give another
proof of the irreducibility of Calogero–Moser cellular characters for a parameter outside
of the essential hyperplanes defined by Chlouveraki. We rely on some results proven in
the Appendix. In Section 2, we set up notation and define the second set of characters
we are interested in, the Leclerc–Miyachi constructible characters. We show that in the
asymptotic situation, these characters are irreducible. In the third section, we compute
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Calogero–Moser vs. Leclerc–Miyachi

explicitly the Calogero–Moser cellular and Leclerc–Miyachi constructible characters for
the complex reflection group G(d, 1, 2). On the Calogero–Moser side, we diagonalize the
action of the Gaudin algebra on representations of G(d, 1, 2) and on the Leclerc–Miyachi
side, we compute the canonical bases using the algorithm introduced by Leclerc and
Toffin in [11]. Finally, in the last section, we state precisely the conjecture relating these
characters, and show that it is valid for G(d, 1, 2) and any choice of parameters, and for
G(d, 1, n) for generic parameters.

1. Calogero–Moser cellular characters

We introduce the set of Calogero–Moser c-cellular characters of a complex reflection
group, which we define using the notion of Gaudin algebra, see [4]. In the specific case of
G(d, 1, n), we introduce a commutative subalgebra JMc generated by the so-called Jucys–
Murphy elements. Using results of the Appendix, we show that the cellular characters of
G(d, 1, n) for the algebra JMc are sums of Calogero–Moser characters. For specific values
of c, we show that the cellular characters of G(d, 1, n) for the algebra JMc are irreducible,
then so are the Calogero–Moser c-cellular characters.

1.1. Notations

WefixV a finite dimensionalC-vector space, denote by det : GL(V) → C∗ the determinant
and by 〈·, ·〉 : V × V∗ → C the duality between V and the space V∗ of linear forms on V .
We choose for each positive integer d a d-th root of unity ζd such that ζd/l

d
= ζl for all l

dividing d. The group of d-th roots of unity will be denoted by µd .
Let W ⊂ GL(V) be a finite complex reflection group. We denote by Ref(W) the set of

pseudo-reflections of W and for each s ∈ Ref(W), we choose αs ∈ V∗ and α∨s ∈ V such
that

ker(s − IdV ) = ker(αs) and Im(s − IdV ) = Cα∨s .
We denote by A the set of reflecting hyperplanes of W as well as by V reg the open

subset V \
⋃

H ∈A H. A theorem of Steinberg [6, Theorem 4.7] shows that V reg is the
subset of elements of V with trivial stabilizers with respect to the action of W .

For H ∈ A, the pointwise stabilizer WH of H is a cyclic group of order eH with a
chosen generator sH ∈ Ref(W). If Ω ∈ A/W , we denote by eΩ the common value of eH
for H ∈ Ω. With these notations, the set of reflections of W is

Ref(W) =
{
s jH

��� H ∈ A, 1 ≤ j ≤ eH − 1
}
,

and two reflections s jH and s j
′

H′ are conjugate if and only if the hyperplanes H and H ′ are
in the same orbit under the action of W and j = j ′.
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A. Lacabanne

We also fix c : Ref(W) → C, s 7→ cs a function which is invariant by conjugation. For
any H ∈ A and 0 ≤ i ≤ eH − 1, we define

kH,i =
1

eH

eH−1∑
k=1

ζ
k(1−i)
eH cskH ,

which satisfy
∑eH−1

i=0 kH,i = 0; we will often consider indices modulo eH and set
kΩ,i = kH,i for Ω ∈ A/W and any H ∈ Ω. We recover the function c via

csiH =
eH−1∑
j=0

ζ
i(j−1)
eH kH, j .

1.2. Gaudin algebra and Calogero–Moser cellular characters

For any y ∈ V , we define an element Dy in the group ring of W with coefficients in
C[V reg]:

Dy =
∑

s∈Ref(W )
cs det(s)

〈y, αs〉

αs
s.

The Gaudin algebra Gauc(W) is the sub-C[V]-algebra of C[V reg]W generated by (Dy)y∈V .

Proposition 1.1 ([4, 13.4.B]). The algebra Gauc(W) is commutative.

Therefore we are in the situation of the Appendix if we set E = CW , A = CW acting on
E by left multiplication, P = C[V reg] and Di = Dyi acting on E by right multiplication,
where (yi)i is a basis of V . The following is Definition A.1 in our setting.

Definition 1.2. The set of cellular characters for the algebra Gauc(W) is called the set of
Calogero–Moser c-cellular characters, or for short c-cellular characters. The c-cellular
character associated to L ∈ Irr(C(V)Gauc(W)) is

γ
Gauc(W )
L =

∑
χ∈Irr(W )

[
ResC(V )W

C(V )Gauc(W )
(C(V)Vχ) : L

]
χ,

where Vχ is a representation of W affording the character χ and [X : L] is the multiplicity
of L in the module X .

Remark 1.3. IfW is a Coxeter group and c has positive values, there is a notion of c-cellular
characters arising from the Kazhdan–Lusztig theory of Hecke algebras. It is conjectured
by Bonnafé and Rouquier [4, 15.2, Conjecture L] that the set of Kazhdan–Lusztig cellular
characters and of Calogero–Moser characters coincide.
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For all z ∈ V reg, we can specialize Dy to an element of CW , by evaluating the
coefficients in C[V reg] at z: ∑

s∈Ref(W )
cs det(s)

〈αs, y〉

〈αs, z〉
s ∈ CW .

Choosing z = y, one obtains a central element of CW , called the Euler element, which
does not depend on y:

euc =
∑

s∈Ref(W )
cs det(s)s.

Lemma 1.4. Let χ ∈ Irr(W). Given Ω ∈ A/W and H ∈ Ω, we define m j
Ω,χ
= 〈χ|WH

,

det−j
|WH
〉WH , where 〈 · , · 〉WH denotes the scalar product of characters of WH . The Euler

element euc acts on a representation affording the character χ by multiplication by∑
Ω∈A/W

eΩ∑
j=0

|Ω|eΩm j
Ω,χ

χ(1)
kΩ, j .

Proof. See [4, Lemma 7.2.1]. �

1.3. The imprimitive reflection group G(d, 1, n)

In this subsection, V is of dimension n with a chosen basis (y1, . . . , yn) with dual basis
(x1, . . . , xn). Using this choice of basis, we identify GL(V) to GLn(C). We also fix a
positive integer d and denote by ζ the d-th root of unity ζd .

1.3.1. The group G(d, 1, n) and its reflections

It is easy to describe the group G(d, 1, n) in terms of matrices: it is the subgroup of GLn(C)

with elements the monomial matrices with coefficients in µd. The permutation matrix
corresponding to the transposition (i j) will be denoted by si, j and the diagonal matrix
with diagonal entries (1, . . . , 1, ζ, 1, . . . , 1), with ζ at the i-th position will be denoted
by σi .

The set of reflections of G(d, 1, n) splits into d conjugacy classes:

Ref(G(d, 1, n)) =
d−1⊔
k=0

Ref(G(d, 1, n))k,

where Ref(G(d, 1, n))0 =
{
σr
i si, jσ−ri

�� 1 ≤ i < j ≤ n, 0 ≤ r ≤ d − 1
}
and for 1 ≤ k ≤

d − 1, Ref(G(d, 1, n))k =
{
σk
i

�� 1 ≤ i ≤ n
}
.

We now give an explicit choice for αs and α∨s for any reflection s. For the reflection
si, j,r = σr

i si, jσ−ri , the reflecting hyperplane Hi, j,r is given by the kernel of the linear
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form αi, j,r = xi − ζr xj and the eigenspace associated to the eigenvalue −1 is spanned
by α∨i, j,r = ζ

r yi − yj . For the reflection σk
i , the reflecting hyperplane Hi is given by the

kernel of the linear form αi = xi and the eigenspace associated to the eigenvalue ζk is
spanned by α∨i = yi .

Under the action of G(d, 1, n), the set of reflecting hyperplanes A has only two orbits,
Ω0 =

{
Hi, j,r

�� 1 ≤ i < j ≤ n, 0 ≤ r < d − 1
}
and Ω1 = {Hi | 1 ≤ i ≤ n} which are of

respective cardinal d n(n−1)
2 and n.

Given a function c : Ref(W) → C constant on the conjugacy classes, we denote its
value on Ref(G(d, 1, n))k by ck and will write ki instead of kΩ1,i . We will try not to
introduce the parameters kΩ0,0 and kΩ0,1 which are respectively equal to − c0

2 and c0
2 .

Finally, the Euler element associated to G(d, 1, n) and c will be denoted by euc,n.

1.3.2. Representations and d-partitions

The representation theory of G(d, 1, n) is well known and is governed by the combinatorics
of d-partitions of n, see [8, Section 5.1] for example. A partition of n is a finite sequence
of integers λ = (λ1, . . . , λr ) adding up to n such that λ1 ≥ λ2 ≥ · · · λr > 0, and
we set |λ | = n. A d-partition of n is a d-tuple (λ(1), . . . , λ(d)) of partitions such that∑d

i=1 |λ
(i) | = n. The isomorphism classes of irreducible complex representations of

G(d, 1, n) are parameterized by d-partitions of n, and for such a d-partition λ, we denote
by Vλ the corresponding representation.

One can describe the branching rule G(d, 1, n) ⊂ G(d, 1, n + 1) in terms of Young
diagrams. The Young diagram [λ] of a d-partition λ of n is the set{

(a, b, c) ∈ Z>0 × Z>0 × {1, . . . , d}
��� 1 ≤ b ≤ λ(c)a

}
,

whose elements will be called boxes. The content cont(γ) of a box γ = (a, b, c) is the
integer b − a. A box γ of [λ] is said to be removable if [λ] \ {γ} is the Young diagram of
a d-partition µ of n − 1, and in this case, the box γ is said to be addable to µ.

Proposition 1.5 ([8, Proposition 5.1.8]). Let λ be a d-partition of n. Then

IndG(d,1,n+1)
G(d,1,n) (Vλ) =

⊕
µ

Vµ

where µ runs over the d-partitions of n + 1 with Young diagram obtained by adding an
addable box to the Young diagram of λ. Concerning the restriction,

ResG(d,1,n)
G(d,1,n−1)(Vλ) =

⊕
µ

Vµ

where µ runs over the d-partitions of n − 1 with Young diagram obtained by removing a
removable box from the Young diagram of λ.
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Using this branching rule, we define a basis ofVλ in terms of standard λ-tableaux, which
are bijections t : [λ] → {1, . . . , n} such that for all boxes γ = (a, b, c) and γ′ = (a′, b′, c)
we have t(γ) < t(γ′) if a = a′ and b < b′ or a < a′ and b = b′. Giving a standard
λ-tableau is then equivalent to giving a sequence of d-partitions (λt[i])1≤i≤n such that
[λt[i]] = t−1({1, . . . , i}). Therefore Vλ is the direct sum of one dimensional spaces
Dt, where for all 1 ≤ i ≤ n the space Dt is in the irreducible component Vλt[i] of
ResG(d,1,n)

G(d,1,i) (Vλ).

1.3.3. A commutative subalgebra of CG(d, 1, n)

For 1 ≤ k ≤ n, we define the following elements of CG(d, 1, n):

Jk = euc,k − euc,k−1 =
∑

s∈Ref(G(d,1,k))
s<Ref(G(d,1,k−1))

cs det(s)s.

If d = 1, these elements are the usual Jucys–Murphy elements for the symmetric group
Sk , multiplied by the scalar c0.

Lemma 1.6. For all 1 ≤ i, j ≤ n, the Jucys–Murphy elements Ji and Jj commute and
Ji+1 = si,i+1,0Jisi,i+1,0 − c0

∑d−1
r=0 si,i+1,r .

Proof. It is immediate to check that the Jucys–Murphy element Ji is equal to

Ji = −c0
∑

1≤p<i

d−1∑
r=0

sp,i,r +
d−1∑
r=1

cr ζrσr
i .

Since the conjugate of sp,i,r by si,i+1,0 is sp,i+1,r and the conjugate of σr
i by si,i+1,0 is

σr
i+1, we have that

si,i+1,0Jis−1
i,i+1,0 = −c0

∑
1≤p<i

d−1∑
r=0

sp,i+1,r +

d−1∑
r=1

cr ζrσr
i+1,

and we obtain the induction formula.
Since euc,i commutes with every element ofCG(d, 1, i), one see that Ji = euc,i−euc,i−1

commutes with every element of CG(d, 1, i − 1), and therefore with J1, . . . , Ji−1. �

The commutative subalgebra of CG(d, 1, n) generated by the elements J1, . . . , Jn is
denoted by JMc(d, n). On the representation Vλ, the action of the Jucys–Murphy elements
is simultaneously diagonalizable, and one can easily compute the eigenvalues using
Lemma 1.4.
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Proposition 1.7. Let λ be a d-partition of n and γ = (a, b, c) a removable box of [λ].
Then Jn acts on the component Vλ\{γ} of ResG(d,1,n)

G(d,1,n−1)(Vλ) by multiplication by the scalar

d(k1−c − c0(b − a)).

Proof. We start by computing the action of the Euler element on Vλ, and therefore we
need the values of the integers mχλ

Ω, j
, for Ω ∈ A/W and 0 ≤ j ≤ eeΩ − 1, where χλ is the

character of Vλ. From [14, Lemma 6.1] we have

1
χλ(1)

〈(χλ) |〈s0〉
, detj〉〈s0 〉 =

|λ(j+1) |

n

and
1

χλ(1)
〈(χλ) |〈s1〉

, det〉〈s1 〉 =
1
2
−

1
n(n − 1)

∑
γ∈[λ]

cont(γ).

Therefore, using Lemma 1.4, euc,n acts on Vλ by multiplication by the scalar

ωλ(euc,n) =

d−1∑
j=0

k−j
dn
χλ(1)

〈(χλ) |〈s0〉
, detj〉〈s0 〉

+
c0
2

dn(n − 1)
χλ(1)

(〈(χλ) |〈s1〉
, det〉〈s1 〉 − 〈(χλ) |〈s1〉

, 1〉〈s1 〉).

But 〈(χλ) |〈s1〉
, 1〉〈s1 〉 = χλ(1) − 〈(χλ) |〈s1〉

, det〉〈s1 〉 , so that

ωλ(euc,n) = d
d−1∑
j=0

k−j |λ(j+1) | − dc0
∑
γ∈[λ]

cont(γ)

and we obtain the desired formula because Jn = euc,n − euc,n−1. �

Corollary 1.8. Let λ be a d-partition of n, t be a standard λ-tableau and 1 ≤ k ≤ n. The
element Jk acts on Dt by multiplication by d(k1−c − c0(b − a)), where t−1(k) = (a, b, c).

1.3.4. Cellular characters for JMc(d, n) and c-cellular characters

As well as for the Gaudin algebra, we define cellular characters for the algebra JMc(d, n).
We are again in the situation of the Appendix if we set E = CG(d, 1, n), A = CG(d, 1, n)
acting on E by left multiplication, P = C and Di = Ji acting on E by right multiplication.
The following is Definition A.1 in our setting.

Definition 1.9. The c-cellular character associated to L ∈ Irr(JMc(d, n)) is

γ
JMc(d,n)
L =

∑
χ∈Irr(W )

[
ResCG(d,1,n)JMc(d,n)

(Vχ) : L
]
χ,

where Vχ is a representation of W affording the character χ.
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These characters are easier to compute than the c-cellular characters, since JMc(d, n)
is commutative and split, and are close to c-cellular characters in the following sense.

Theorem 1.10. Every cellular character for the algebra JMc(d, n) is a sum of Calogero–
Moser c-cellular characters.

Proof. We denote by Gau(0)c (d, n) the sub-C[V]-algebra of C[V reg]G(d, 1, n) generated by

xkDyk =

d−1∑
r=1

cr ζrσt
k − c0

d−1∑
r=0

©­«
∑

1≤i<k

−ζr xk
xi − ζr xk

si,k,r +
∑

k< j≤n

xk
xk − ζr xj

sk, j,r
ª®¬ ,

for 1 ≤ k ≤ n. Since xk is invertible in C(V) for all k, the algebras C(V)Gauc(G(d, 1, n))
and C(V)Gau(0)c (d, n) are equal, and the c-cellular characters are therefore equal to the
cellular characters for Gau(0)c (d, n). We then specialize the algebra Gau(0)c (d, n) with
respect to the following increasing sequence of prime ideals

0 ⊂ p1 ⊂ p2 ⊂ · · · ⊂ pn

where pi is the prime ideal of C[V] generated by x1, . . . , xi . We define recursively the
algebra Gau(i)c (d, n) by

Gau(i)c (d, n) = Gau(i−1)
c (d, n)/xi Gau(i−1)

c (d, n),

and we denote by π(i) : Gau(i)c (d, n) → Gau(i+1)
c (d, n) the corresponding quotient map,

and Π(i) = π(i−1) ◦ · · · ◦ π(0). The algebra Gau(n)c (d, n) is hence a subalgebra of CG(d, 1, n).
By Proposition A.3, the cellular characters for the algebra Gau(i)c (d, n) are sums of

cellular characters for the algebra Gau(i−1)
c (d, n), and therefore the cellular characters for

the algebra Gau(i)c (d, n) are sums of c-cellular characters.
An easy induction shows that if i ≥ k then

Π
(i)(xkDk) =

d−1∑
r=1

cr ζrσr
k − c0

d−1∑
r=0

∑
1≤ j<k

sj,k,r,

and if i < k then

Π
(i)(xkDk) =

d−1∑
r=1

cr ζrσr
k

− c0

d−1∑
r=0


i∑

j=1
sj,k,r +

∑
i< j<k

−ζr xk
xj − ζr xk

sj,k,r +
∑

k< j≤n

xk
xk − ζr xj

sk, j,r

 .
The algebra Gau(n)c (d, n) is thus equal to JMc(d, n) since Π(n)(xkDk) = Jk , which

ends the proof. �
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As a Corollary, we retrieve the fact that the c-cellular characters are generically
irreducible, see [4, Theorem 14.4.1] or [1, Theorem 10(3)].

Corollary 1.11. Suppose that the parameter c is such that

c0 , 0 and (kp − kq) − c0 j , 0,

for all 1 ≤ p , q ≤ d and −n < j < n. Then the Calogero–Moser c-cellular characters
of G(d, 1, n) are irreducible.

Proof. Since JMc(d, n) ⊂ CG(d, 1, n), any simple representation occurs in some Vλ and
is therefore of the form Dt for t a standard λ-tableau. It suffices to show that these one
dimensional representations of JMc(n, d) are pairwise non-isomorphic. Indeed, if λ and
µ are different d-partitions we have

ResG(d,1,n)JMc(d,n)
(Vλ) =

⊕
t

Dt and ResG(d,1,n)JMc(d,n)
(Vµ) =

⊕
s

Ds,

where t (resp. s) runs in the set of standard λ-tableaux (resp. µ-tableaux). Therefore the
restrictions of Vλ and Vµ to JMc(d, n) have no common constituent if λ , µ and for any
standard λ-tableau, the multiplicity of Dt in ResG(d,1,n)JMc(d,n)

(Vλ) is 1.
Let t be a standard λ-tableau and t′ be a standard λ′-tableau, where λ and λ′ are two

non necessarily different d-partitions of n. We suppose that t , t′ and we prove that the
sequences

(k1−cp − c0(bp − ap))1≤p≤n and (k1−c′p − c0(b′p − a′p))1≤p≤n

are different, where (ap, bp, cp) = t−1(p) and (a′p, b′p, c′p) = (t′)−1(p). Let 1 ≤ p ≤ n be
the minimal integer such that t−1(p) and (t′)−1(p) are different. Denote by µ the common
partition λt[p − 1] = (λ′)t′[p − 1].

Suppose first that −n < cont(t−1(p)) − cont((t′)−1(p)) < n. If cp , c′p then the
hypothesis on the parameter c implies that k1−cp − c0(bp − ap) , k1−c′p − c0(b′p − a′p).
If cp = c′p then both t−1(p) and (t′)−1(p) are addable boxes of µ(cp ). Since there exists
at most one addable box to a Young diagram with a given content, we deduce that the
contents of t−1(p) and (t′)−1(p) are different, and as c0 , 0 we have k1−cp − c0(bp − ap) ,

k1−cp − c0(b′p − a′p).
Therefore we may and will assume that |cont(t−1(p)) − cont((t′)−1(p))| ≥ n. Since

the absolute value of the content of a box of a d-partition of n cannot exceed n − 1, the
contents of t−1(p) and of (t′)−1(p) are of different signs. Up to exchanging t and t′, we
suppose that the content t−1(p) is equal to x > 0 and the content of (t′)−1(p) is equal to
y < 0 (neither x nor y can be equal to 0 since 0 ≤ x < n, −n < y ≤ 0 and x − y ≥ n).
The Young diagram [µ] must contain a box of content x − 1 and a box of content y + 1,
and therefore has at least x − y − 1 boxes. Since x − y ≥ n, we obtain that p − 1 ≥ n − 1
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and hence p = n. If cp , c′p then the d-partition µ has at least x − y boxes, which is
impossible, so that cp = c′p . But k1−cp − c0x , k1−cp − c0y because c0 , 0. �

2. Leclerc–Miyachi constructible characters

Let q be an indeterminate overQ. In this section, we introduce other characters ofG(d, 1, n),
whose definition was given by Leclerc and Miyachi in [10], using canonical bases of some
representations over the quantum group Uq(sl∞). If d = 2, Leclerc and Miyachi have
shown that these characters are equal to Lusztig’s constructible characters [13, Chapter 22]
of the Coxeter group of type Bn, conjectured to be equal to the Kazhdan–Lusztig cellular
characters.

2.1. The algebraUq(sl∞)

The quantum groupUq(sl∞) associated with the doubly infinite Dynkin diagram A∞ is
the Q(q)-algebra generated by Ei, Fi and K±1

i for i ∈ Z subject to the following relations:

KiK−1
i = 1 = K−1

i Ki, KiKj = KjKi,

KiEj = q−δi, j−1+2δi, j−δi, j+1 EjKi, KiFj = qδi, j−1−2δi, j+δi, j+1 FjKi,

EiFj − FjEi = δi, j
Ki − K−1

i

q − q−1 ,

EiEj = EjEi if |i − j | > 1,

E2
i Ej − (q + q−1)EiEjEi + EjE2

i = 0 if |i − j | = 1,
FiFj = FjFi if |i − j | > 1,

F2
i Fj − (q + q−1)FiFjFi + FjF2

i = 0 if |i − j | = 1,

for all i, j ∈ Z. We can endowUq(sl∞) with many bialgebra structures, and we choose
the following comultiplication ∆:

∆(Ki) = Ki ⊗ Ki ∆(Ei) = Ei ⊗ 1 + K−1
i ⊗ Ei ∆(Ei) = Fi ⊗ Ki + 1 ⊗ Fi

This bialgebra structure will allow us to consider tensor products of representations of
Uq(sl∞).

The fundamental roots of sl∞ are denoted by (Λi)i∈Z. For all i ∈ Z, we denote by
V(Λi) the integrable irreducible representation of highest weight Λi . It admits (vβ)β as
a Q(q)-basis, where β runs in Bi = {(βk)k≤i | βk < βk+1, βk = k for k � 0}. We will
identify such a β in this set with the corresponding subset {βk | k ≤ i} of Z and may
write j ∈ β or β ∪ {l} if l < β. On this basis (vβ)β , the action of the generators Ei, Fi and
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Ki are [10]:

Eivβ =

{
vγ if i < β and i + 1 ∈ β, with γ = (β \ {i + 1}) ∪ {i},
0 otherwise,

Fivβ =

{
vγ if i ∈ β and i + 1 < β, with γ = (β \ {i}) ∪ {i + 1},
0 otherwise,

Kivβ =


qvβ if i ∈ β and i + 1 < β,
q−1vβ if i < β and i + 1 ∈ β,
vβ otherwise.

The highest weight vector is vβi where βi = Z≤i .

2.2. Fock spaces, canonical bases and constructible characters

2.2.1. Fock space of a representation

Let r = (r1, . . . , rd) be a d-tuple of integers with r1 ≥ r2 ≥ · · · ≥ rd and we consider
the fundamental weight Λr =

∑d
i=1 Λri . The integrable irreducibleUq(sl∞)-module of

highest weight Λr is denoted by V(Λr). Denote by F(Λr) = V(Λr1 ) ⊗ · · · ⊗ V(Λrd ) the
associated Fock space, which admits vβr1 ⊗ · · · ⊗ vβrd as a highest weight vector of weight
Λr. From now on, we view the module V(Λr ) inside the Fock space F(Λr ). The module
F(Λr) has a basis S(Λr) given by

S(Λr) =
{
vβ1 ⊗ · · · ⊗ vβd

�� βi ∈ Bri

}
.

This is the standard basis of F(Λr) and we prefer to write its indexing set as a set of
d-symbols

S =

©­­­­­«
β1
β2
...

βd

ª®®®®®¬
,

where βi = (βi,k)k≤ri is a sequence of integers with βi,k < βi,k+1 and βi,k = k for k � 0.
The height of such a symbol is the integer

∑d
i=1

∑
k≤ri (βi,k − k). The highest weight vector

vβr1 ⊗ · · · ⊗ vβrd of weight Λr corresponds to vS0 , where S0 is the d-symbol with i-th
line equal to βri . Finally, a d-symbol is said to be standard if βi,k < βj,k for all i < j and
k ≤ rj .
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Example 2.1. The 3-symbols of height 2 with r = (1, 1, 0) are the following

©­­«
. . . 0 1
. . . 0 3
. . . 0

ª®®¬ ,
©­­«
. . . 0 1
. . . 0 1
. . . 2

ª®®¬ ,
©­­«
. . . −1 0 1
. . . −1 0 1
. . . 0 1

ª®®¬ ,
©­­«
. . . 0 2
. . . 0 2
. . . 0

ª®®¬ ,
©­­«
. . . 0 1
. . . 0 2
. . . 1

ª®®¬ ,©­­«
. . . 0 3
. . . 0 1
. . . 0

ª®®¬ ,
©­­«
. . . 1 2
. . . 0 1
. . . 0

ª®®¬ ,
©­­«
. . . 0 1
. . . 1 2
. . . 0

ª®®¬ ,
©­­«
. . . 0 2
. . . 0 1
. . . 1

ª®®¬ .
The five first symbols are standard and the four last symbols are not standard.

2.2.2. Canonical bases

Let x 7→ x be the involution ofUq(sl∞) defined as the unique Q-linear ring morphism
satisfying

q = q−1, Ki = K−1
i Ei = Ei, Fi = Fi .

Since V(Λr) is a highest weight module with highest weight vector vS0 , any element
v ∈ V(Λr) can be written v = xvS0 , with x ∈ Uq(sl∞), and we set v = xvS0 .

Let R be the subring of Q(q) of rational functions which are regular at q = 0. Let
FR(Λr) be the R-sublattice of F(Λr) spanned by the standard basis S(Λr).

The canonical basis (bΣ)Σ of V(Λr) is indexed by the set of standard d-symbols and is
characterized by the following properties:

bΣ ≡ vΣ mod qFR(Λr) and bΣ = bΣ .

Canonical bases were introduced in [12], see also [9]. We will denote this basis by B(Λr).

2.2.3. Constructible characters

In [10], a closed expression of any bΣ ∈ B(Λr ) in the standard basis is given when d = 2,
and is compared to Lusztig’s constructible characters. Leclerc and Miyachi then propose
a definition of constructible characters via canonical bases for the complex reflection
group G(d, 1, n).

To any d-symbol of height n, we associate a d-partition (λ(1), . . . , λ(d)) of n by setting

λ
(i)
j = βi,ri−j+1 − (ri − j + 1).

This is a canonical bijection between the set of d-partitions of n and the set of d-symbols
of height n.
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Definition 2.2 ([10, 6.3]). For a standard d-symbol Σ of height n, we write the expression
of bΣ in terms of the standard basis

bΣ =
∑
S

aS
Σ
(q)vS,

with S running in the set of d-partitions of n. The Leclerc–Miyachi r-constructible
character of G(d, 1, n) corresponding to the standard d-symbol Σ is

γΣ =
∑
S

aS
Σ
(1)χS,

where χS is the character of the representation of G(d, 1, n) associated with the partition
corresponding to the d-symbol S.

2.3. The asymptotic case

Since we aim to compare the set of Calogero–Moser cellular characters and the set of
Leclerc–Miyachi constructible character, we expect that the Leclerc–Miyachi constructible
characters enjoy a generic property similar to Corollary 1.11. This generic property on
the parameter c will turn out to be an asymptotic property on the parameter r.

Lemma 2.3. Let r = (r1, . . . , rd) and n ∈ N. We suppose that ri − ri+1 ≥ n for all
1 ≤ i ≤ d − 1. Then every d-symbol of height at most n is standard.

Proof. Let S = (βi)1≤i≤d be a symbol of height smaller than n. By the hypothesis on the
parameters, we necessarily have βi,k = k for k ≤ ri+1. Therefore if i < j and k ≤ rj we
have βi,k = k ≤ βj,k and the d-symbol S is standard. �

If ri − ri+1 ≥ n then the number of r-constructible characters of G(d, 1, n) is the
same as the number of irreducible characters of G(d, 1, n). It remains to show that these
r-constructible characters are irreducible.

Theorem 2.4. Let r = (r1, . . . , rd) and n ∈ N. We suppose that ri − ri+1 ≥ n for all
1 ≤ i ≤ d − 1. For any d-symbol Σ of height at most n we have bΣ = vΣ.

Proof. This is an application of the algorithm presented in [11] for the computation of the
canonical basis. We show that the intermediate basis (AΣ)Σ of [11, Section 4.1] satisfies
AΣ = vΣ, which implies that bΣ = vΣ since AΣ = AΣ. We proceed by induction on n.

For n = 1, any d-symbol of height 1 is given by Sl = (βi)1≤i≤d with βi,k = k for every
1 ≤ i ≤ d and k ≤ ri except for βl,rl = rl + 1. We immediately obtain that ASl = Frl vS0 .
By the hypothesis on r, the only line βk of Σ with rl ∈ βk and rl + 1 < βk is βl . Therefore
Frl vS0 = vSl .
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Suppose that for all parameters r such that ri − ri+1 ≥ n for all 1 ≤ i ≤ d we have
AΣ = vΣ for all standard d-symbols Σ of height n. Let r be a parameter such that
ri − ri+1 ≥ n + 1 for all 1 ≤ i ≤ d and Σ = (βi)1≤i≤d be a standard d-symbol of height
n + 1. Let i0 be the greatest integer such that βi0 , β

ri0 and k0 the smallest integer such
that βi0,k0 > k0. We write βi0,k0 = k ′0 + 1 with k ′0 ≥ k0. Since the height of Σ is n + 1,
we have βi0,k0 − k0 ≤ n + 1 so that k ′0 ≤ n + k0. In order to apply the algorithm of
Leclerc–Toffin, one must find the smallest integer k such that there exists 1 ≤ i ≤ d and
l ≤ k with βi,l = k + 1. Let us show that this integer is k ′0.

Fix k < k ′0, 1 ≤ i ≤ d and l ≤ k. Suppose first that i > i0. By definition of i0, we
have βi,l = l , k + 1. Now suppose that i = i0. If l < k0 then by definition of k0 we
have βi0,l = l , k + 1. If l ≥ k0 then βi0,l ≥ βi0,k0 = k ′0 + 1 > k + 1. Finally, suppose
that i < i0. Since l ≤ k, we have l ≤ k ′0 + 1 ≤ k0 + n + 1. Since Σ is of height n + 1, if
l ≤ ri − (n + 1 − (βi0,k0 − k0)) we have βi,l = l. But ri − (n + 1) ≥ ri+1 ≥ ri0 and therefore
ri − (n + 1 − (βi0,k0 − k0)) ≥ ri0 + k ′0 + 1 − k0. As obviously k0 ≤ ri0 we obtain that
ri − (n + 1 − (βi0,k0 − k0)) ≥ k ′0 + 1 ≥ k. Hence if l ≤ k then βi,l = l , k + 1.

Therefore we obtain

AΣ = Fk′0
AΣ′,

where Σ′ is the standard d-symbol obtained from Σ by replacing only βi0,k0 by k ′0. Then
Σ′ is of height n, and the induction hypothesis shows that AΣ′ = vΣ′ .

In order to conclude, it remains to show that Fk′0
vΣ′ = vΣ. If i > i0 then βi = βri and

since k ′0 ≥ k0 > ri neither k0 nor k ′0 appear in βi . If i < i0, we have already shown that if
l ≤ ri − (n+ 1− (βi0,k0 − k0)) we have βi,l = l and that ri − (n+ 1− (βi0,k0 − k0)) ≥ k ′0 + 1
so that βi,k′0+1 = k ′0 + 1 and βi,k′0 = k ′0 and both k ′0 and k ′0 + 1 appear in βi . Hence, from
the definition of the action of Fk′0

via the comultiplication, we find that Fk′0
vΣ′ = vΣ. �

The following corollary translates Theorem 2.4 in terms of Leclerc–Miyachi con-
structible characters for G(d, 1, n).

Corollary 2.5. Let r = (r1, . . . , rd) and n ∈ N and suppose that ri − ri+1 ≥ n for all
1 ≤ i ≤ d−1. Then the Leclerc–Miyachi r-constructible characters for the groupG(d, 1, n)
are the irreducible characters.

3. Computations for G(d, 1, 2) and comparison

In this section, we compute explicitly the set of c-cellular characters for the group
G(d, 1, 2) for any choice of parameter c. We also compute explicitly the Leclerc–Miyachi
r-constructible characters for any choice of parameter r.
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3.1. On the Calogero–Moser side

We will freely use the notations of Section 1, but simplify them in the special case of
G(d, 1, 2). For simplicity, we prefer to denote by (x, y) the standard basis of C2 and by
(X,Y ) its dual basis. Let s be the reflection denoted by s1,2,0 and t be the reflection denoted
by σ1, so that G(d, 1, 2) has the following presentation〈

s, t
�� s2 = 1, td = 1, stst = tsts

〉
.

We also denote by sk the reflection s1,2,k . There are 2d +
(d
2
)
irreducible representations

of G(d, 1, 2), namely ηi, η′i of dimension 1 for 1 ≤ i ≤ d and ρi, j of dimension 2 for
1 ≤ i < j ≤ d. Their respective characters are denoted by ξi, ξ ′i and χi, j and the values of
the representations on the generators are given in Table 3.1

Table 3.1. Action of s and t on irreducible repesentations of G(d, 1, 2)

s t
ηi, 1 ≤ i ≤ d 1 ζ i−1

η′i, 1 ≤ i ≤ d −1 ζ i−1

ρi, j, 1 ≤ i < j ≤ d
(
0 1
1 0

) (
ζ i−j 0
0 ζ j−i

)
Finally we choose a parameter c : Ref(G(d, 1, 2)) → C, define k#

i = k1−i and we again
set ζ = ζd .

The Gaudin algebra Gauc over C[X,Y ] is generated by the following two elements

Dx =

d−1∑
k=0

ckζk
1
X
σk

1 −c0

d−1∑
k=0

1
X− ζkY

sk and Dy =

d−1∑
k=0

ckζk
1
Y
σk

2 +c0

d−1∑
k=0

ζk

X− ζkY
sk .

Since C(X,Y )Gauc ⊂ C(V)G(d, 1, 2), every irreducible C(X,Y )Gauc-module appears in
the restriction of an irreducible representation of G(d, 1, 2) over C(X,Y ). We then denote
by Li (resp. L ′i , resp. Li, j) the restriction of C(V)ηi (resp. C(V)η′i , resp. C(V)ρi, j) to
C(X,Y )Gauc. The following easy lemma will be useful in the computations.

Lemma 3.1. In C(V) = C(X,Y ), for every 1 ≤ l ≤ d we have
d−1∑
k=0

ζkl

X − ζkY
=

dX l−1Y d−l

Xd − Y d
. (3.1)

We also give two other generators of C(X,Y )Gauc, which differ from Dx and Dy by
multiplication by a scalar:

D ′x =
X(Xd − Y d)

d
Dx and D ′y =

Y (Xd − Y d)

d
Dy .
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Lemma 3.2. The actions ofD ′x andD ′y on the restrictions of irreducible representations
of G(d, 1, 2) are given in the Table 3.2.

Table 3.2. Actions of D ′x and D ′y

D ′x D ′y

Li, 1 ≤ i ≤ d (Xd − Y d)k#
i − c0Xd (Xd − Y d)k#

i + c0Y d

L ′i, 1 ≤ i ≤ d (Xd − Y d)k#
i + c0Xd (Xd − Y d)k#

i − c0Y d

Li, j, 1 ≤ i < j ≤ d
(
(Xd−Yd )k#

i −c0X
d−( j−i)Y j−i

−c0X
j−iYd−( j−i) (Xd−Yd )k#

j

) (
(Xd−Yd )k#

j c0X
d−( j−i)Y j−i

c0X
j−iYd−( j−i) (Xd−Yd )k#

i

)
Proof. Lets us start with the action of D ′x on Li . It is given by

ηi(D
′
x) =

X(Xd − Y d)

d

(
d∑

r=1

ct ζri

X
− c0

d−1∑
k=0

1
X − ζkY

)
= (Xd − Y d)k#

i − c0Xd,

the last equality following from the definition k#
i and from Lemma 3.1.

Similar computations can be made for the action of D ′y , and for the representation L ′i .
Let 1 ≤ i < j ≤ n and we compute the action of D ′x on Li, j :

ρi, j(D
′
x) =

Xd − Y d

d

(
d−1∑
r=1

cr

(
ζri 0
0 ζr j

)
− Xc0

d−1∑
k=0

1
X − ζkY

(
0 ζk(d−(j−i))

ζk(j−i) 0

))
=

(
(Xd − Y d)k#

i −c0Xd−(j−i)Y j−i

−c0X j−iY d−(j−i) (Xd − Y d)k#
j

)
,

using again the definition of k#
i and k#

j and Lemma 3.1. The action ofD ′y is obtained by a
similar argument. �

The 2-dimensional representations Li, j have different behaviour depending on the
parameter c.

3.1.1. When c0 = 0

In this subsection only, we suppose that c0 = 0. The matrices giving the action of D ′x
and D ′y are all diagonal and we readily see that Li ' L

′
i and that Li, j ' L̃i, j ⊕ L̃ j,i ,

where L̃i, j is the 1-dimensional representation where D ′x acts by (Xd − Y d)k#
i and D

′
y

by (Xd − Y d)k#
j . Notice that with this notation, the module L̃i,i is nothing else than Li .

Moreover, we have an isomorphism between L̃i, j and L̃p,q if and only if k#
i = k#

p and
k#
j = k#

q . We therefore define an equivalence relation on the set {1, . . . , d} by i ∼ j if
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and only if k#
i = k#

j . Simple C(X,Y )Gauc-modules are then parameterized by pairs of
equivalence class for ∼: a representative of the class LO,O′ labeled by O and O ′ is L̃i, j ,
where i ∈ O and j ∈ O ′.

From the above description of restrictions of representations of G(d, 1, 2) to the Gaudin
algebra C(X,Y )Gauc, we obtain:

Proposition 3.3. Let O and O ′ be two equivalence classes for ∼.
The c-cellular character corresponding to the class LO,O is

γO,O =
∑
i∈O

(χi + χ
′
i ) +

∑
i, j∈O
i< j

2χi, j .

The c-cellular character corresponding to the class LO,O′ is

γO,O′ =
∑

i∈O, j∈O′

i< j

χi, j +
∑

i∈O, j∈O′

i> j

χj,i .

By definition, every c-cellular character is equal to one of those above.

3.1.2. When c0 , 0

In this subsection only, we suppose that c0 , 0. The matrices giving the action of D ′x and
D ′y on the representation Li, j are not diagonal, but these representations can still have an
invariant one-dimensional subspace.

Lemma 3.4. Depending on the values of the parameter c, the representation Li, j is
reducible if and only if one of the following is true:

• if k#
i = k#

j and d is even then Li, j is isomorphic to L+i, j ⊕ L
−
i, j , where L

+
i, j and

L−i, j are two non-isomorphic one-dimensional representations, which are not
isomorphic to some Lk or L ′k ,

• if k#
i − k#

j = c0 then Li, j ' Li ⊕ L
′
j ,

• if k#
i − k#

j = −c0 then Li, j ' L
′
i ⊕ L j .

Proof. We diagonalize the matrices ρi, j(D ′x) and ρi, j(D ′y). Note that these two matrices
have the same trace and determinant, and therefore the same characteristic polynomial
equal to

t2 − (Xd − Y d)(k#
i + k#

j )t + (X
d − Y d)2k#

i k#
j − c2

0 XdY d .
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This polynomial is split in C(X,Y ) if and only if its discriminant

(Xd − Y d)2(k#
i + k#

j )
2 − 4((Xd − Y d)2k#

i k#
j − c2

0 XdY d)

= (k#
i − k#

j )
2X2d + 2(2c2

0 − (k
#
i − k#

j )
2)XdY d + (ki − k j)Y2d

is a square in C(X,Y ). This homogeneous polynomial is then a square in C(X,Y ) if and
only if d is even and k#

i = k#
j or c2

0 = (k
#
i − k#

j )
2.

Suppose first that k#
i = k#

j and d is even. One check that the vectors(
Xd/2−(j−i)

−Y d/2−(j−i)

)
and

(
Xd/2−(j−i)

Y d/2−(j−i)

)
are common eigenvectors for ρi, j(D ′x) and ρi, j(D ′y) with respective eigenvalues

(Xd − Y d)k#
i + c0Xd/2Y d/2 and (Xd − Y d)k#

i − c0Xd/2Y d/2

for ρi, j(D ′x) and

(Xd − Y d)k#
i − c0Xd/2Y d/2 and (Xd − Y d)k#

i + c0Xd/2Y d/2

for ρi, j(D ′y). This shows the first assertion of the lemma.
Now, suppose that k#

i − k#
j = c0. We check that(

Y j−i

X j−i

)
and

(
Xd−(j−i)

−Y d−(j−i)

)
are common eigenvectors for ρi, j(D ′x) and ρi, j(D ′y) with respective eigenvalues

k#
j Xd − k#

i Y
d and k#

i Xd − k#
jY

d

for ρi, j(D ′x) and
k#
i Xd − k#

jY
d and k#

j Xd − k#
i Y

d

for ρi, j(D ′y). Moreover, using the equality c0 = k#
i − k#

j , it is easy to see that this gives an
isomorphism Li, j ' Li ⊕ L

′
j .

If k#
i − k#

j = −c0, a similar argument shows that Li, j ' L
′
i ⊕ L j , which ends the proof

of the lemma. �

We now have a complete description of simple C(X,Y )Gauc-modules, and of the
restrictions of the representations of G(d, 1, 2) to C(X,Y )Gauc. The only isomorphism
between simple modules are the following:

• if k#
i = k#

j then Li ' L j and L ′i ' L
′
j ,

• if c2
0 , (k

#
i − k#

j )
2, c2

0 , (k
#
p − k#

q)
2, k#

i = k#
p and k#

j = k#
q then Li, j ' Lp,q ,
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• if d is even and k#
i = k#

j = k#
p = k#

q then L+i, j ' L
+
p,q and L−i, j ' L

−
p,q .

We again define an equivalence relation on the set {1, . . . , d} by i ∼ j if and only
if k#

i = k#
j . We can parameterize the classes of simple modules using the equivalence

classes of ∼:

• for O an equivalence class, we have two classes LO and LO′ with a respective
representative Li and L ′i for i ∈ O.

• for O and O ′ two equivalence classes such that c2
0 , (k

#
i − k#

j )
2 for any i ∈ O

and j ∈ O ′, the classification depends moreover on the parity of d:

(1) if d is odd, we have one class of simple modules LO,O′ with representative
Li, j with i ∈ O, j ∈ O ′ and i < j (or L j,i with i ∈ O, j ∈ O ′ and j < i),

(2) if d is even and O , O ′, we have one class LO,O′ with representative Li, j

with i ∈ O, j ∈ O ′ and i < j (or L j,i with i ∈ O, j ∈ O ′ and j < i),
(3) if d is even, O = O ′ and |O| ≥ 2, we have two classes L+

O,O′
and L−

O,O′

with respective representatives L+i, j and L
−
i, j for i, j ∈ O and i < j.

Note that the classes LO,O , L+O,O and L−
O,O

only exist if |O| ≥ 2. From the above
description of restrictions of representations of G(d, 1, 2) to C(X,Y )Gauc, we obtain:

Proposition 3.5. Let O and O ′ be two equivalence classes for ∼.
The c-cellular character corresponding to the class LO is

γO =
∑
i∈O

©­«χi +
∑

j∈O′,i< j

χi, j +
∑

j∈O′, j<i

χj,i
ª®¬ ,

where O ′ is an equivalence class for ∼ such that k#
i − k#

j = c0 (if such a class exists, it is
unique).

The c-cellular character corresponding to the class L ′
O
is

γ′
O
=

∑
i∈O

©­«χ′i +
∑

j∈O′,i< j

χi, j +
∑

j∈O′, j<i

χj,i
ª®¬ ,

where O ′ is an equivalence class for ∼ such that k#
i − k#

j = −c0 (if such a class exists, it
is unique).

If c2
0 , (k

#
i − k#

j )
2, the c-cellular character corresponding to the class LO,O′ is

γO,O′ =
∑

i∈O, j∈O′

i< j

χi, j +
∑

i∈O, j∈O′

j<i

χj,i .
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The c-cellular character corresponding to the classes LO,O , L+O,O and L−
O,O

is

γO,O =
∑
i, j∈O
i< j

χi, j .

By definition, every c-cellular character is equal to one of those above.

3.2. Vectors of height 2 of the canonical basis

Now, we turn to the Leclerc–Miyachi constructible characters for G(d, 1, 2) and we use
the notation of Section 2. Fix r = (r1, r2, . . . , rd) ∈ Zd and we compute the vectors of the
canonical basis of height 2 of V(Λr). We set some notations for the d-symbols of height
2. Let 0 = i0 < i1 < · · · < ip = d such that for all 1 ≤ k ≤ p − 1 we have rik+1 < rik and
for all 1 ≤ k ≤ p and ik−1 < i ≤ ik we have ri = rik . By convention, we let r0 = −∞ and
rd+1 = +∞. The d-symbols S = (βi)1≤i≤d of height 2 are the following:

• for 1 ≤ i < j ≤ d, the d-symbol Si, j with βi,ri = ri +1, βj,rj = rj +1 and βk,l = l
for all other values of k and l,

• for 1 ≤ i ≤ d, the d-symbol Si with βi,ri = ri + 2 and βk,l = l for all other values
of k and l,

• for 1 ≤ i ≤ d, the d-symbol S′i with βi,ri = ri + 1, βi,ri−1 = ri and βk,l = l for all
other values of k and l.

Among these symbols, the following are standard:

• for 1 ≤ k < l ≤ p the d-symbol Sik,il is standard,

• for 1 ≤ k ≤ p such that ik − ik−1 ≥ 2 the d-symbol Sik−1,ik is standard,

• for 1 ≤ k ≤ p the d-symbol Sik is standard,

• for 1 ≤ k ≤ p such that rik − rik+1 ≥ 2 the d-symbol S′ik is standard.

For these standard d-symbols, we now apply the algorithm of [11] and show that the
element AΣ of the intermediate basis already satisfies AΣ ≡ vΣ mod qFR(Λr).

We denote by S̃i the symbol of height 1 with βi,ri = i + 1 and βk,l = l for all other
values of k, l. If 1 ≤ k ≤ p, we have

Fik vS0 =
∑

ik−1<i≤ik

qik−ivS̃i
. (H1)
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Let 1 ≤ k < l ≤ p and consider Σ = Sik,il . We obtain AΣ = Fil Fik vS0 . Then for
ik−1 < i ≤ ik , the value of Fil vS̃i

depends on rik − ril

Fil vS̃i
=


qil−1−il+1vS′i +

∑
il−1< j≤il

qil−jvSi, j if rik = ril + 1,∑
il−1< j≤il

qil−jvSi, j otherwise.

From the above formula and (H1), one obtains

AΣ =


∑

ik−1<i≤ik

qik−i

(
qil−1−il+1vS′i +

∑
il−1< j≤il

qil−jvSi, j

)
if rik = ril + 1,∑

ik−1<i≤ik

∑
il−1< j≤il

qik−i+il−jvSi, j otherwise,

and it is readily checked that AΣ ≡ vΣ mod qFR(Λr). Note that if rik = ril + 1 then
k = l + 1.

Let 1 ≤ k ≤ p such that ik − ik−1 ≥ 2 and consider Σ = Sik−1,ik . We obtain
(q + q−1)AΣ = F2

ik
vS0 . Then for ik−1 < i ≤ ik , we have

Fik vS̃i
=

∑
ik−1< j<i

qik−1−2vSi, j +
∑

i< j≤ik

qik−ivS j, i ,

so that from the above formula and (H1), one obtains

F2
ik
vS0 = (q + q−1)

∑
ik−1<i< j≤ik

q2ik−i−j−1vSi, j .

It is readily checked that AΣ ≡ vΣ mod qFR(Λr).
Let 1 ≤ k ≤ p and consider Σ = Sik . We obtain AΣ = Fik+1Fik vS0 . Then for

ik−1 < i ≤ ik , the value of Fik+1vS̃i
depends on rik−1 − rik :

Fik+1vS̃i
=


vSi +

∑
ik−2< j≤ik−1

qik−1−j+1vSi, j if rik−1 = rik + 1,

vSi otherwise.

Hence

AΣ =


∑

ik−1<i≤ik

qik−i

(
vSi +

∑
ik−2< j≤ik−1

qik−1−j+1vSi, j

)
if rik−1 = rik + 1,∑

ik−1<i≤ik

qik−ivSi otherwise,

and we indeed have AΣ ≡ vΣ mod qFR(Λr).
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Finally, let 1 ≤ k ≤ p such that rik − rik+1 ≥ 2 and consider Σ = S′ik . We obtain
AΣ = Fik−1Fik vS0 . Then for ik−1 < i ≤ ik , we have

Fik−1vS̃i
= vS′i ,

since rik − rik+1 ≥ 2. Therefore

AΣ =
∑

ik−1<i≤ik

qik−ivS′i ,

and AΣ ≡ vΣ mod qFR(Λr).
From this, we obtain the Leclerc–Miyachi r-constructible characters. The bijections

between d-symbols of height 2 and irreducible characters of G(d, 1, 2) is given by

Si, j ↔ χi, j, Si ↔ χi and S′i ↔ χ′i .

Proposition 3.6. For 1 ≤ k < l ≤ p, the Leclerc–Miyachi r-constructible character
corresponding to the standard d-symbol Sik,il is

γSik , il =


∑

ik−1<i≤ik

(
χ′i +

∑
il−1< j≤il

χi, j

)
if rik = ril + 1,∑

ik−1<i≤ik

∑
il−1< j≤il

χi, j otherwise.

For 1 ≤ k ≤ p such that ik − ik−1 ≥ 2, the Leclerc–Miyachi r-constructible character
corresponding to the standard d-symbol Sik−1,ik is

γSik−1, ik
=

∑
ik−1<i< j≤ik

χi, j .

For 1 ≤ k ≤ p, the Leclerc–Miyachi r-constructible character corresponding to the
standard d-symbol Sik is

γSik =


∑

ik−1<i≤ik

(
χi +

∑
ik−2< j≤ik−1

χj,i

)
if rik−1 = rik + 1,∑

ik−1<i≤ik

χi otherwise.

For 1 ≤ k ≤ p such that rik − rik+1 ≥ 2, the Leclerc–Miyachi r-constructible character
corresponding to the standard d-symbol S′ik is

γS′ik
=

∑
ik−1<i≤ik

χ′i .
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4. A conjecture relating cellular and constructible characters

We now state precisely the conjecture relating Calogero–Moser c-cellular characters and
Leclerc–Miyachi r-constructible characters for the complex reflection group G(d, 1, n).
Let c : Ref(G(d, 1, n)) → C. We suppose that c0 , 0 and that for every 1 ≤ i ≤ d we
have ki ∈ −Nc0. Finally, suppose also that

k#
1

c0
≤

k#
2

c0
≤ · · · ≤

k#
d

c0
.

Conjecture 4.1. Let r = −c−1
0 (k

#
1, k#

2, . . . , k#
d
). Then the set of Calogero–Moser c-cellular

characters and the set of Leclerc–Miyachi r-constructible characters coincide.

If d = 2 this conjecture is equivalent to the conjecture that Calogero–Moser c-cellular
characters for the Weyl group of type Bn are Lusztig’s constructible characters obtained
via truncated induction [13, Chapter 22].

Theorem 4.2. If the parameter c is generic in the sense of Corollary 1.11 then Conjec-
ture 4.1 is true.

For the group G(d, 1, 2) the Conjecture 4.1 is true for any c.

Proof. With the change of parameters between c and r, the generic case for the c-cellular
characters translates into the asymptotic case for the constructible characters. The result
therefore follows from Corollary 1.11 and Corollary 2.5.

For G(d, 1, 2), we describe the equivalence relation ∼ introduced in Section 3.1.2.
Using the notation (ij)−1≤ j≤p+1 introduced in Section 3.2, the equivalence classes of ∼
are the sets Oj = {ij−1 + 1, ij−1 + 2, . . . , ij} for 1 ≤ j ≤ p.

Using the explicit descriptions of the c-cellular characters given in Proposition 3.5 and
of the r-constructible characters given in Proposition 3.6 we check that:

• for any 1 ≤ k < l ≤ p, the Leclerc–Miyachi r-constructible character γSik , il is
equal to the Calogero–Moser c-cellular character γ′

Ok
if rik = ril + 1 and to the

Calogero–Moser c-cellular character γOk,Ol otherwise,

• for any 1 ≤ k ≤ p such that ik − ik−1 ≥ 2, the Leclerc–Miyachi r-constructible
character γSik−1, ik

is equal to the Calogero–Moser c-cellular character γOk,Ok ,

• for any 1 ≤ k < l ≤ p, the Leclerc–Miyachi r-constructible character γSik is
equal to the Calogero–Moser c-cellular character γOk ,

• for any 1 ≤ k < l ≤ p such that ik−ik−1 ≥ 2, the Leclerc–Miyachi r-constructible
character γS′ik is equal to the Calogero–Moser c-cellular character γ′

Ok
.
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It is easy to check that every Calogero–Moser c-cellular character appears as a Leclerc–
Miyachi r-constructible character. �

Appendix A. Cellular characters

This appendix aims to define a general notion of cellular characters of a commutative
algebra A, and is largely inspired from [5, Appendix II]. We fix k a field of characteristic 0,
E a finite dimensional k-vector space, A a split subalgebra of Endk(E) and P an integral
and integrally closed subalgebra with fraction field K .

Given R a commutative k-algebra, we denote by RE (resp. RA) the extension of
scalars R ⊗k E (resp. R ⊗k A). Let D1, . . . ,Dn be some pairwise commuting elements of
EndPA(PE). If p is a prime ideal of P, we denote by Kp(p) the residue field at p and by
Di(p) the image of Di in EndP/pA(P/pE). Finally, let D = (D1, . . . ,Dn) and P[D] be the
subalgebra of EndPA(PE) generated by D1, . . . ,Dn.

We are interested in the decomposition of the vector space KE as a K[D] ⊗K K A-
module, and more precisely of its class in the Grothendieck group K0(K[D] ⊗K K A) of
finite dimensional K[D] ⊗K K A-modules.

Since the algebra A is split, we obtain (cf. [7, Propositions 3.56 and 7.7]) a bijection
Irr(K[D]) × Irr(K A) → Irr(K[D] ⊗K K A) given by tensoring modules. This bijection
induces an isomorphism of Z-modules K0(K[D]) ⊗Z K0(K A) → K0(K[D] ⊗K K A). We
therefore decompose [KE] in K0(K[D]) ⊗Z K0(K A) as follows:

[KE] =
∑

L∈Irr(K[D])
[L] ⊗ γP[D]L ,

with γP[D]L ∈ K0(K A). Since A is split, we usually think of γP[D]L as an element of K0(A).

Definition A.1. The set of cellular characters for P[D] is the set of γP[D]L ∈ K0(A) for L
running over the set of irreducible K[D]-modules.

Remark A.2. It may happen that γP[D]L = γ
P[D]
L′ for two non-isomorphic K[D]-modules.

By extending the scalars to P[X] = P[X1, . . . , Xn] and by setting D = X1D1 + · · · +

XnDn, it is shown in [5] that the set of cellular characters for P[D] coincides with the set
of cellular characters for P[X][D]. We therefore may and will suppose that n = 1 and set
D = D1.

It is now easy to describe all the irreducible K[D]-modules. Denote by Π the
characteristic polynomial of D, which is a unital polynomial in P[t]. We then decompose
Π into a product of irreducible unital polynomials in K[t]

Π = Π
n1
1 · · ·Π

nr
r .
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We also denote by Πsem the product of the Πi’s without multiplicity. Since P is integrally
closed, the polynomialsΠi andΠsem have their coefficients in P andwe setLi = P[t]/〈Πi〉.
The set of irreducible K[D]-modules are therefore the extensions to K of the P[D]-
modules Li:

Irr(K[D]) = {KL1, . . . ,KLr }.

The main advantage of working over P is that we can easily reduce modulo a prime ideal
p of P. Let ∆ be the discriminant of the polynomial Πsem, and denote by ∆(p) its reduction
modulo a prime ideal p of P.

Proposition A.3. Let p be a prime ideal of P such that P/p is integrally closed. Then the
cellular characters for P/p[D(p)] are sums of cellular characters for P[D]. If moreover
∆(p) , 0 then the sets of cellular characters for P/p[D(p)] and for P[D] coincide.

Proof. We start by decomposing the reductionΠ(p)modulop into a product of irreducible
polynomials with coefficients in kP(p):

Πi(p) =

di∏
j=1

π
ei, j
i, j ,

where πi, j ∈ kP(p)[t] is unital and irreducible, ei, j ∈ Z>0 and πi, j , πi, j′ for j , j ′. Since
P/p is integrally closed, the polynomials πi, j have their coefficients in P/p.

For 1 ≤ i ≤ r and 1 ≤ j ≤ di , we denote byLi, j the P/p[D(p)]-module (P/p)[t]/〈πi, j〉.
In the Grothendieck group of KP(p)[D(p)] we therefore have the following equality

[kP(p)Li] =

di∑
j=1

ei, j[kP(p)Li, j]. (A.1)

Since k has characteristic 0, an equality between elements of K0(K[D] ⊗K K A) is
equivalent to an equality between the corresponding characters, so that we can specialize
modulo p the equality

[KE] =
r∑
i=1
[KLi] ⊗ γ

P[D]
KLi

into

[kP(p)E] =
r∑
i=1
[kP(p)Li] ⊗ γ

P[D]
KLi

.

Using (A.1), we see that the cellular characters for P/p[D(p)] are sums of cellular
characters for P[D].
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If moreover ∆(p) , 0, then ei, j = 1 for all 1 ≤ i ≤ r and 1 ≤ j ≤ di and πi, j = πl,m if
and only if (i, j) = (l,m). Then

[kP(p)E] =
r∑
i=1

di∑
j=1
[kP(p)Li, j] ⊗ γ

P[D]
i

and the set
{
kP(p)Li, j

�� 1 ≤ i ≤ r, 1 ≤ j ≤ di
}
is exactly the set of irreducible represen-

tations of kP(p)[D(p)], so that γP/p[D(p)]kP (p)Li, j
= γ

P[D]
KLi

for all 1 ≤ i ≤ r and 1 ≤ j ≤ di . �
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