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Touchdown is the Only Finite Time Singularity
in a Three-Dimensional MEMS Model

Philippe Laurençot
Christoph Walker

Abstract

Touchdown is shown to be the only possible finite time singularity that may take place in a free
boundary problem modeling a three-dimensional microelectromechanical system. The proof relies on
the energy structure of the problem and uses smoothing effects of the semigroup generated in L1 by the
bi-Laplacian with clamped boundary conditions.

La désactivation est la seule singularité en temps fini possible
dans un modèle de MEMS tridimensionnel

Résumé
Nous montrons que la désactivation est la seule singularité en temps fini pouvant se produire dans un

problème à frontière libre décrivant un microsystème électromécanique tridimensionnel. La démonstration
repose sur la structure variationnelle du modèle et utilise les propriétés régularisantes du semi-groupe
engendré dans L1 par le bi-Laplacien avec conditions aux bords encastrées.

1. Introduction

We consider a model for a three-dimensional microelectromechanical system (MEMS)
including two components, a rigid ground plate of shape D ⊂ R2 and an elastic plate
of the same shape (at rest) which is suspended above the rigid one and clamped on its
boundary, see Figure 1. Both plates being conducting, holding them at different voltages
generates a Coulomb force across the device. This, in turn, induces a deformation of the
elastic plate, thereby modifying the geometry of the device and transforming electrostatic
energy into mechanical energy. When applying a sufficiently large voltage difference, a
well-known phenomenon that might occur is that the two plates come into contact; that is,
the elastic plate touches down on the rigid plate. For this feature (usually referred to as
pull-in instability or touchdown [6, 19]) some mathematical models have been developed
recently [3, 6, 15, 18, 19]. Since the pioneering works [3, 7, 10, 18], their mathematical
analysis has been the subject of numerous papers. We refer to [5, 14] for a more complete
account and an extensive list of references.
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Figure 1.1. Cross section of an idealized MEMS device

We focus here on a model describing the evolution of the vertical deformation of the
elastic plate from rest and the electrostatic potential between the plates. More precisely,
we assume that D is a bounded and convex domain in R2 with a C∞-smooth boundary.
Then, after an appropriate rescaling and neglecting inertial forces, the ground plate is
located at z = −1 while the elastic plate’s rest position is at z = 0, and the evolution of
the vertical deformation u = u(t, x) of the elastic plate at time t > 0 and position x ∈ D is
given by

∂tu + β∆2u −
(
τ + a‖∇u‖2L2(D)

)
∆u = −λ g(u) , x ∈ D , t > 0 , (1.1a)

where

g(u(t))(x) := ε2 |∇ψu(t)(x, u(t, x))|2 + |∂zψu(t)(x, u(t, x))|2 , x ∈ D , t > 0 . (1.1b)

Throughout the paper, ∇ and ∆ denote the gradient and the Laplace operator with respect
to x ∈ D, respectively. We supplement (1.1a) with clamped boundary conditions

u = ∂Nu = 0 , x ∈ ∂D , t > 0 , (1.1c)

and initial condition
u(0, x) = u0(x) , x ∈ D . (1.1d)

As for the electrostatic potential ψu(t)(x, z), it is defined for t > 0 and (x, z) ∈ Ω(u(t)),
where Ω(u(t)) is the three-dimensional cylinder

Ω(u(t)) := {(x, z) ∈ D × (−1,∞) : −1 < z < u(t, x)}
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enclosed within the rigid ground plate at z = −1 and the deflected elastic plate at z = u(t).
For each time t > 0, the electrostatic potential ψu(t) solves the rescaled Laplace equation

ε2
∆ψu(t) + ∂

2
zψu(t) = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (1.2a)

supplemented with non-homogeneous Dirichlet boundary conditions

ψu(t)(x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)) , t > 0 . (1.2b)

In (1.1)–(1.2), the aspect ratio ε > 0 is the ratio between vertical and horizontal
dimensions of the device while λ > 0 is proportional to the square of the applied voltage
difference. The parameters β > 0, τ ≥ 0, and a ≥ 0 result from the modeling of the
mechanical forces and are related to bending and stretching of the elastic plate, respectively.
We emphasize that (1.1)–(1.2) is a nonlinear and nonlocal system of partial differential
equations featuring a time-varying boundary, which makes its analysis rather involved.
Still, its local in time well-posedness can be shown in a suitable functional setting, as
we recall below, and the aim of this note is to improve the criterion for global existence
derived in [12].

2. Main Result

Expanding upon the above discussion on global existence we recall the following result
established in [12, Theorem 1.1].

Theorem 2.1. Let 4ξ ∈ (7/3, 4), and consider an initial value u0 ∈ W4ξ
2 (D) such that

u0 > −1 in D and u0 = ∂Nu0 = 0 on ∂D.

(i) There is a unique solution u to (1.1) on the maximal interval of existence [0,Tm)

in the sense that

u ∈ C
(
[0,Tm),W

4ξ
2 (D)

)
∩ C

(
(0,Tm),W4

2 (D)
)
∩ C1 ((0,Tm), L2(D)

)
(2.1)

satisfies (1.1) together with

u(t, x) > −1 , (t, x) ∈ [0,Tm) × D ,

and ψu(t) ∈ W2
2
(
Ω(u(t))

)
solves (1.2) in Ω(u(t)) for each t ∈ [0,Tm).

(ii) If Tm < ∞, then

lim
t→Tm

‖u(t)‖
W

4ξ
2 (D)

= ∞ or lim
t→Tm

min
x∈D̄

u(t, x) = −1 . (2.2)
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It is worth pointing out that, sinceΩ(u(t)) is only a Lipschitz domain, theW2
2 -regularity

of ψu(t) does not seem to follow from standard elliptic theory. Actually, this property is
one of the cornerstones in the proof of Theorem 2.1 and guarantees that the function g

in (1.1b) is well-defined (see Proposition 3.1 below).
Further results regarding (1.1)–(1.2) are to be found in [12]. In particular, global

existence holds true under additional smallness assumptions on both λ and u0. Moreover,
stationary solutions exist for small values of λ and, when D is a ball in R2, no stationary
solution exists for λ large enough. This last property is actually connected with the
touchdown phenomenon already alluded to in the introduction. In the same vein, whether
a finite time singularity may occur for the evolution problem for suitable choices of λ and
u0 is yet an open problem, though such a feature is expected on physical grounds.

Coming back to the global existence issue, the criterion (2.2) stated in Theorem 2.1
entails that non-global solutions blow up in finite time in the Sobolev space W4ξ

2 (D) or a
finite time touchdown of the elastic plate on the ground plate occurs, the occurrence of
both simultaneously being not excluded a priori. From a physical point of view, however,
only the latter seems possible. For the investigation of the dynamics of MEMS devices it is
thus of great importance to rule out mathematically the norm blowup in finite time. In [11]
this was done if D = (−1, 1) is one-dimensional, that is, in case the elastic part is a beam or
a rectangular plate that is homogeneous in one direction. The situation considered herein,
where D is an arbitrary two-dimensional (convex) domain, is more delicate. Indeed, the
right-hand side of (1.1) (being given by the square of the gradient trace of the electrostatic
potential) has much less regularity properties due to the fact that the moving boundary
problem (1.2) for the electrostatic potential is posed in a three-dimensional domain
Ω(u). We shall see, however, that we can overcome this difficulty using the gradient flow
structure of the evolution problem along with the regularizing effects of the fourth-order
operator in (negative) Besov spaces. More precisely, we shall show the following result.

Theorem 2.2. Under the assumptions of Theorem 2.1 let u be the unique maximal solution
to (1.1) on the maximal interval of existence [0,Tm). Assume that there are T0 > 0 and
κ0 ∈ (0, 1) such that

u(t) ≥ −1 + κ0 in D , t ∈ [0,Tm) ∩ [0,T0] . (2.3)

Then Tm ≥ T0.
Moreover, if, for each T > 0, there is κ(T) ∈ (0, 1) such that

u(t) ≥ −1 + κ(T) in D , t ∈ [0,Tm) ∩ [0,T] ,

then Tm = ∞.

The second statement in Theorem 2.2 obviously follows from the first one applied to
an arbitrary T0 > 0. The proof of Theorem 2.2 is given in the next section. As mentioned
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above and similarly to the case D = (−1, 1) considered in [11], it relies on the gradient
flow structure of (1.1)–(1.2), where the corresponding energy is given by

E(u) := Em(u) − λEe(u)

with mechanical energy

Em(u) :=
β

2
‖∆u‖2L2(D)

+
τ

2
‖∇u‖2L2(D)

+
a
4
‖∇u‖4L2(D)

and electrostatic energy

Ee(u) :=
∫
Ω(u)

(
ε2 |∇ψu(x, z)|2 + |∂zψu(x, z)|2

)
d(x, z) .

We shall see that assuming the lower bound (2.3) on the solution u provides a control
on the electrostatic energy. Using the gradient flow structure we thus derive a bound on
the (a priori unbounded) mechanical energy and, in turn, on the W2

2 (D)-norm of u(t)
for t ∈ [0,Tm) ∩ [0,T0]. This yields an L1(D)-bound on the right-hand side of (1.1). We
then apply semigroup techniques in negative Besov spaces to obtain a bound on u(t) in
the desired Sobolev norm of W4ξ

2 (D) for t ∈ [0,Tm) ∩ [0,T0] which only depends on T0
and κ0.

Remark 2.3. It is worth pointing out that the issue whether a norm blowup or touchdown
occurs in finite time is still an open problem for the second-order case β = 0 (and τ > 0),
even in the one-dimensional setting D = (−1, 1).

3. Proof of Theorem 2.2

Suppose the assumptions of Theorem 2.1 and let u denote the unique maximal solution
to (1.1) on the maximal interval of existence [0,Tm). We want to show that, if (2.3) is
satisfied, then

‖u(t)‖
W

4ξ
2 (D)

≤ c(T0, κ0) , t ∈ [0,Tm) ∩ [0,T0] ,

so that Theorem 2.1(ii) in turn implies Theorem 2.2. To this end we first need to derive
suitable estimates on the right-hand side g(u) of (1.1) given by the square of the gradient
trace of the electrostatic potential ψu .

3.1. Estimates on the electrostatic potential

In the following we let κ ∈ (0, 1) and set

S(κ) := {v ∈ W2
3 (D) : v = 0 on ∂D and v ≥ −1 + κ in D} .

We begin with the regularity of the variational solution to (1.2), see [12].
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Proposition 3.1. Given v ∈ S(κ), there is a unique solution ψv ∈ W2
2 (Ω(v)) to

ε2
∆ψ + ∂2

zψ = 0 , (x, z) ∈ Ω(v) , (3.1a)

ψ(x, z) =
1 + z

1 + v(x)
, (x, z) ∈ ∂Ω(v) , (3.1b)

in the cylinder

Ω(v) := {(x, z) ∈ D × (−1,∞) : −1 < z < v(x)} .

Furthermore, g(v) ∈ L2(D).

We recall that the L2(D)-integrability of g(v) is a straightforward consequence of
ψv ∈ W2

2 (Ω(v)). Indeed the latter implies that
(
x 7→ ∇ψv(x, v(x))

)
∈ W1/2

2 (D) ↪→ L4(D).
We next provide pointwise estimates on ψv .

Lemma 3.2. Let v ∈ S(κ). Then, for (x, z) ∈ Ω(v),

0 ≤ ψv(x, z) ≤ min
{
1,

1 + z
κ

}
.

Proof. Clearly, (x, z) 7→ m is a solution to (3.1a) for m = 0, 1 and 0 ≤ ψv ≤ 1 on ∂Ω(v)
since v = 0 on ∂D, hence 0 ≤ ψv ≤ 1 in Ω(v) by the comparison principle. Moreover,
setting Σ(x, z) := (1 + z)/κ for (x, z) ∈ Ω(v), it readily follows that Σ is a supersolution
to (3.1) so that ψv ≤ Σ in Ω(v) again by the comparison principle. �

Lemma 3.2 provides uniform estimates on the derivatives of ψv on the v-independent
part of the boundary of Ω(v).

Corollary 3.3. Let v ∈ S(κ). If x ∈ ∂D and z ∈ (−1, 0), then ∂zψv(x, z) = 1, while if
x ∈ D, then

0 ≤ ∂zψv(x,−1) ≤
1
κ
, ∂zψv(x, v(x)) ≥ 0 ,

and
∇ψv(x,−1) = 0 , ∇ψv(x, v(x)) = −∂zψv(x, v(x))∇v(x) .

Proof. The first assertion follows from ψv(x, z) = 1 + z, (x, z) ∈ ∂D × (−1, 0). Next,
from (3.1b) and Lemma 3.2 we derive, for (x, z) ∈ D × (−1, 0),

0 ≤
ψv(x, z) − ψv(x,−1)

1 + z
≤

1
κ
, ψv(x, v(x)) − ψv(x, z) ≥ 0 ,

hence
0 ≤ ∂zψv(x,−1) ≤

1
κ
, ∂zψv(x, v(x)) ≥ 0 .

The formulas for ∇ψv follow immediately from ψv(x,−1) = 0 and ψv(x, v(x)) = 1 for
x ∈ D due to (3.1b). �
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Given v ∈ S(κ) we next introduce the notation

γ(x) := ∂zψv(x, v(x)) , γb(x) := ∂zψv(x,−1) (3.2)

for x ∈ D and recall the following identity, which is proven in [4, Lemma 5] in the
one-dimensional case D = (−1, 1),

Lemma 3.4. Let v ∈ S(κ). Then, with the notation (3.2),∫
D

(
1 + ε2 |∇v |2

) (
γ2 − 2γ

)
dx =

∫
D

(
γ2
b − 2γb

)
dx .

Proof. We recall the proof for the sake of completeness and point out that it is somewhat
related to the Rellich equality [17, Equation (5.2)]. We multiply the rescaled Laplace
equation (3.1a) by ∂zψv − 1 and integrate over Ω(v). Denoting the outward unit normal
vector field to ∂D and the surface measure on ∂D by N and σ, respectively, we deduce
from Green’s formula that

0 =
∫
Ω(v)

(
ε2
∆ψv + ∂

2
zψv

)
(∂zψv − 1) d(x, z)

= ε2
∫
∂D

∫ 0

−1
(∂zψv − 1) ∇ψv · N dz dσ

− ε2
∫
D

(∂zψv(x, v(x)) − 1) ∇ψv(x, v(x)) · ∇v(x) dx

− ε2
∫
Ω(v)

∇ψv · ∂z∇ψv d(x, z) +
∫
D

(
(∂zψv(x, v(x)))2

2
− ∂zψv(x, v(x))

)
dx

−

∫
D

(
(∂zψv(x,−1))2

2
− ∂zψv(x,−1)

)
dx .

Due to Corollary 3.3 the first integral on the right-hand side vanishes while the others can
be simplified to get

0 = −ε2
∫
D

(γ(x) − 1)∇ψ(x, v(x)) · ∇v(x) dx −
ε2

2

∫
D

|∇ψv(x, v(x))|2 dx

+
ε2

2

∫
D

|∇ψv(x,−1)|2 dx +
∫
D

(
γ2

2
− γ

)
dx −

∫
D

(
γ2
b

2
− γb

)
dx

= ε2
∫
D

(γ − 1)γ |∇v |2 dx −
ε2

2

∫
D

γ2 |∇v |2 dx

+

∫
D

(
γ2

2
− γ

)
dx −

∫
D

(
γ2
b

2
− γb

)
dx
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=

∫
D

(
γ2

2
− γ

) (
1 + ε2 |∇v |2

)
dx −

∫
D

(
γ2
b

2
− γb

)
dx ,

which yields the assertion. �

Given v ∈ S(κ) we recall that

g(v)(x) := ε2 |∇ψv(x, v(x))|2 + |∂zψv(x, v(x))|2 , x ∈ D ,

with ψv still denoting the solution to (3.1). The next result bounds the L1(D)-norm of
g(v) in terms of the H1(D)-norm of v.

Corollary 3.5. For v ∈ S(κ),

‖g(v)‖L1(D) ≤

(
4 +

2
κ2

)
|D| + 4ε2‖∇v‖2L2(D)

.

Proof. Since

g(v)(x) = ε2 |∇ψv(x, v(x))|2 + |∂zψv(x, v(x))|2 =
(
1 + ε2 |∇v(x)|2

)
γ(x)2

for x ∈ D by Corollary 3.3, we deduce from Corollary 3.3 and Lemma 3.4 that

‖g(v)‖L1(D) = 2
∫
D

(
1 + ε2 |∇v |2

)
γ dx +

∫
D

(γ2
b − 2γb) dx

≤
1
2

∫
D

(
1 + ε2 |∇v |2

)
γ2 dx + 2

∫
D

(
1 + ε2 |∇v |2

)
dx +

|D |
κ2

≤
1
2
‖g(v)‖L1(D) + 2ε2‖∇v‖2L2(D)

+

(
2 +

1
κ2

)
|D | ,

from which the assertion follows. �

We next recall the following identity for the electrostatic energy established in [13,
Equation (3.13)] in the one-dimensional case D = (−1, 1). We extend it here to the
two-dimensional setting, also providing a simpler proof below.

Lemma 3.6. For v ∈ S(κ),

Ee(v) = |D | −
∫
D

v
(
1 + ε2 |∇v |2

)
γ dx .
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Proof. We multiply the rescaled Laplace equation (3.1a) by ψv(x, z) − 1− z and integrate
over Ω(v). As in the proof of Lemma 3.4 we use Green’s formula to obtain

0 =
∫
Ω(v)

(
ε2
∆ψv + ∂

2
zψv

)
(x, z) (ψv(x, z) − 1 − z) d(x, z)

= ε2
∫
∂D

∫ 0

−1
(ψv(x, z) − 1 − z) ∇ψv · N dz dσ

− ε2
∫
D

(ψv(x, v(x)) − 1 − v(x)) ∇ψv(x, v(x)) · ∇v(x) dx

− ε2
∫
Ω(v)

|∇ψv |
2 d(x, z) +

∫
D

(ψv(x, v(x)) − 1 − v(x)) ∂zψv(x, v(x)) dx

−

∫
D

ψv(x,−1)∂zψv(x,−1) dx −
∫
Ω(v)

(∂zψv − 1) ∂zψv d(x, z) .

Employing (1.2b) we see that the first and the fifth term on the right-hand side vanish
while the others can be gathered due to Corollary 3.3 as

0 = −ε2
∫
D

v |∇v |2γ dx − ε2
∫
Ω(v)

|∇ψv |
2 d(x, z) −

∫
D

vγ dx

−

∫
Ω(v)

(∂zψv)
2 d(x, z) +

∫
D

(ψv(x, v(x)) − ψv(x,−1)) dx .

The last integral being equal to |D | according to (1.2b), we obtain

Ee(v) = |D | −
∫
D

v
(
1 + ε2 |∇v |2

)
γ dx ,

hence the assertion. �

We are now in a position to derive a lower bound on the total energy.

Corollary 3.7. For v ∈ S(κ),

E(v) ≥ Em(v) − 3λε2‖∇v‖2L2(D)
− λ |D |

(
4 +

1
2κ2

)
.

Proof. Since v ≥ −1 in D and, by Corollary 3.3, γ ≥ 0 in D, we infer from Lemma 3.6
that

E(v) = Em(v) − λEe(v) = Em(v) − λ |D | + λ
∫
D

v
(
1 + ε2 |∇v |2

)
γ dx

≥ Em(v) − λ |D | − λ
∫
D

(
1 + ε2 |∇v |2

)
γ dx ,
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so that the Cauchy–Schwarz inequality and Corollary 3.5 imply that

E(v) ≥ Em(v) − λ |D | − λ
(∫

D

(
1 + ε2 |∇v |2

)
dx

)1/2
‖g(v)‖

1/2
L1(D)

≥ Em(v) − λ |D |

− λ

(∫
D

(
1 + ε2 |∇v |2

)
dx

)1/2 (
2|D|
κ2 + 4

∫
D

(
1 + ε2 |∇v |2

)
dx

)1/2

≥ Em(v) − λ |D | −

√
2|D |λ
κ

(∫
D

(
1 + ε2 |∇v |2

)
dx

)1/2

− 2λ
∫
D

(
1 + ε2 |∇v |2

)
dx .

The assertion follows then from Young’s inequality. �

3.2. Estimates on the plate deflection

Under the assumptions of Theorem 2.1 let now u be the unique maximal solution to (1.1)
on the maximal interval of existence [0,Tm). We may assume that 7/3 < 4ξ < 3. Let
κ0 ∈ (0, 1) and T0 > 0 be such that (2.3) holds true; that is,

u(t, x) ≥ −1 + κ0 , t ∈ [0,Tm) ∩ [0,T0] , x ∈ D . (3.3)

Throughout this section, c denotes a positive constant which may vary from line to line
and depends only on β, τ, a, λ, D, ε, u0, κ0, and T0 (in particular, it does not depend
on Tm).

To prove Theorem 2.2 we shall show that

‖u(t)‖
W

4ξ
2 (D)

≤ c , t ∈ [0,Tm) ∩ [0,T0] , (3.4)

the assertion then follows fromTheorem2.1(ii). Note that (3.3) justmeans that u(t) ∈ S(κ0)

for t ∈ [0,Tm) ∩ [0,T0] so that the results of the preceding section apply (with κ = κ0).
We first provide an L2(D)-bound on u. While the previous computations did not make

use of the positivity of the parameter β (i.e. the fourth-order character of (1.1a)), the latter
is instrumental in the proof of the next result.

Lemma 3.8. There is c > 0 such that

‖u(t)‖L2(D) ≤ c , t ∈ [0,Tm) ∩ [0,T0] .

Proof. Let t ∈ [0,Tm). It readily follows from (1.1) and the lower bounds u(t) ≥ −1 and
g(u(t)) ≥ 0 in D that

1
2

d
dt
‖u(t)‖2L2(D)

+ 2Em(u(t)) = −λ
∫
D

u(t)g(u(t)) dx ≤ λ‖g(u(t))‖L1(D) .
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Now, Corollary 3.5 along with interpolation and Young’s inequality implies, for t ∈
[0,Tm) ∩ [0,T0],

‖g(u(t))‖L1(D) ≤ c
(
1 + ‖∇u(t)‖2L2(D)

)
≤ c

(
1 + ‖u(t)‖L2(D) ‖∆u(t)‖L2(D)

)
≤

1
λ
Em(u(t)) + c

(
1 + ‖u(t)‖2L2(D)

)
.

Combining the two inequalities yields
1
2

d
dt
‖u(t)‖2L2(D)

+ Em(u(t)) ≤ c
(
1 + ‖u(t)‖2L2(D)

)
, t ∈ [0,Tm) ∩ [0,T0] ,

from which the assertion follows. �

We next show that the lower bound (3.3) on u implies that the mechanical energy is
dominated by the total energy.

Lemma 3.9. There is c > 0 such that

E(u(t)) ≥
1
2
Em(u(t)) − c , t ∈ [0,Tm) ∩ [0,T0] .

Proof. We infer from Corollary 3.7 along with interpolation and Young’s inequality that,
for some constant c > 0,

E(u(t)) ≥ Em(u(t)) − c‖u(t)‖L2(D)Em(u(t))
1/2 − c

≥
1
2
Em(u(t)) − c

(
1 + ‖u(t)‖2L2(D)

)
for t ∈ [0,Tm) ∩ [0,T0]. Lemma 3.8 yields the claim. �

We next exploit the gradient flow structure of the evolution problem to obtain additional
estimates.

Corollary 3.10. There is c > 0 such that

‖u(t)‖H2(D) +

∫ t

0
‖∂tu(s)‖2L2(D)

ds ≤ c , t ∈ [0,Tm) ∩ [0,T0] .

Proof. Analogously to [11, Proposition 1.3] (see also [13]) the energy inequality

E(u(t)) +
∫ t

0
‖∂tu(s)‖2L2(D)

ds ≤ E(u0) , t ∈ [0,Tm) ,

holds; that is, due to Lemma 3.9,

E(u0) ≥
1
2
Em(u(t)) − c +

∫ t

0
‖∂tu(s)‖2L2(D)

ds , t ∈ [0,Tm) ∩ [0,T0] .

The claim follows then from the fact that E(u0) < ∞ and the definition of Em. �
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Combining now Corollary 3.5 and Corollary 3.10 we readily obtain an L1(D)-bound
on the right-hand side of (1.1).

Corollary 3.11. There is c > 0 such that

‖g(u(t))‖L1(D) ≤ c , t ∈ [0,Tm) ∩ [0,T0] .

3.3. Proof of Theorem 2.2

It remains to prove that the L1(D)-bound from Corollary 3.11 implies a bound on u in the
Sobolev space W4ξ

2 (D), that is, inequality (3.4).
For this purpose we introduce Bs

1,1,B(D) for s ∈ R \ {1, 2}, i.e. the Besov space Bs
1,1(D)

incorporating the boundary conditions appearing in (1.1c) (if meaningful):

Bs
1,1,B(D) :=


{w ∈ Bs

1,1(D) : w = ∂Nw = 0 on ∂D} , s > 2 ,
{w ∈ Bs

1,1(D) : w = 0 on ∂D} , s ∈ (1, 2) ,
Bs

1,1(D) , s < 1 .

The spaces W s
2,B(D) are defined analogously with Bs

1,1 replaced by W s
2 , but for s > 3/2,

s ∈ (1/2, 3/2), and s < 1/2, respectively.
From now on, we fix α ∈ (4ξ − 3, 0). Hereafter, the constant c may also depend on

ξ and α (but still not on Tm). The dependence upon additional parameters is indicated
explicitly.

Lemma 3.12. The operator A, given by

Av := (−β∆2 + τ∆)v , v ∈ B4+α
1,1,B(D) ,

generates an analytic semigroup {et A : t ≥ 0} on Bα1,1(D) and, when restricted to
W4

2,B(D), on L2(D). Given θ ∈ (0, 1) with θ < {(1 − α)/4, (2 − α)/4}, there are c > 0 and
c(θ) > 0 such that, for t ∈ [0,T0],

‖et A‖
L(W

4ξ
2,B (D))

≤ c and tθ ‖et A‖L(Bα1,1(D),B4θ+α
1,1,B (D))

≤ c(θ) . (3.5)

Proof. We shall apply [8, Theorem 2.18] (recalled in Theorem A.1 below) with A :=
−β∆2 + τ∆ (that is, m = 2), B1 := tr (i.e. the trace operator on ∂D), B2 := N · ∇, and
p = q = 1. Clearly, the symbolA0(iζ) = −β|ζ |4 of the principal part −β∆2 of the operator
A satisfies condition (m), while the boundary operators B := (B1,B2) = (tr, ∂N ) satisfy
condition (n) from Theorem A.1. We next check the Lopatinskii–Shapiro condition (o)
from Theorem A.1. Given x ∈ ∂D, ζ ∈ R2, r ≥ 0, and ϑ ∈ [−π/2, π/2] with ζ · N(x) = 0
and (ζ, r) , (0, 0), this condition requires that zero is the only bounded solution on
[0,∞) to (

A0
(
iζ + N(x)∂t

)
− reiϑ

)
v = 0 , B

(
iζ + N(x)∂t

)
v(0) = 0 . (3.6)
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Now note that the properties ζ · N(x) = 0 and |N(x)| = 1 entail that

A0
(
iζ + N(x)∂t

)
v = −β

(
|N(x)|2∂2

t + 2iζ · N(x)∂t + i2 |ζ |2
)2

v

= −β
(
∂2
t − |ζ |

2
)2

v = −β
(
∂4
t − 2|ζ |2∂2

t + |ζ |
4
)
v

and

B
(
iζ + N(x)∂t

)
v(0) =

(
v(0), (iζ · N(x) + |N(x)|2∂t )v(0)

)
=

(
v(0), ∂tv(0)

)
,

which leads to the explicit formulation of the initial value problem (3.6):

∂4
t v(t) − 2|ζ |2∂2

t v(t) +
(
|ζ |4 + reiϑ

)
v(t) = 0 , t > 0 , (3.7a)

v(0) = ∂tv(0) = 0 . (3.7b)

Introducing

M± :=
√
|ζ |2 ±

√
rei(ϑ+π)/2 , Re M± > 0 ,

the solution to (3.7) is

v(t) =
(
−

M− + M+
2M−

k1 −
M− − M+

2M−
k2

)
e−M−t + k1e−M+t

+

(
−

M− − M+
2M−

k1 −
M− + M+

2M−
k2

)
eM−t + k2eM+t

for t ≥ 0 with k j ∈ R. Since v must be bounded, k1 = k2 = 0 and thus v ≡ 0 as
required. Consequently, assumptions (m), (n), and (o) from [8, Theorem 2.18], see
Theorem A.1 below, are satisfied and it follows that the operator A generates an analytic
semigroup {et A : t ≥ 0} on Bα1,1(D) (recall that α ∈ (4ξ − 3, 0) ⊂ (−2, 1)). Similarly, [1,
Remarks 4.2(b)] ensures that A restricted to W4

2,B(D) generates an analytic semigroup
{et A : t ≥ 0} on L2(D). Notice then that [9, Proposition 4.13] implies that(

Bα1,1(D), B
4+α
1,1,B(D)

)
θ,1 � B4θ+α

1,1,B (D) , 4θ ∈ (0, 4) \ {1 − α, 2 − α} ,

with ( · , · )θ,1 denoting the real interpolation functor. Thus, standard regularizing effects
of analytic semigroups [2, II.Lemma 5.1.3] imply (3.5). �

Proof of Theorem 2.2. To finish off the proof of Theorem 2.2 we first recall the continuity
of the following embeddings

B4+α
1,1,B(D) ↪→ Bs

1,1,B(D) ↪→ B0
1,1,B(D) ↪→ L1(D) ↪→ Bα1,1(D) , s ∈ (0, 4 + α) , (3.8)

bearing in mind that α < 0. Now, introducing

h(t) := −λg(u(t)) + a‖∇u(t)‖2L2(D)
∆u(t) , t ∈ [0,Tm) ,
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we deduce from (3.8), Corollary 3.10, and Corollary 3.11 that

‖h(t)‖Bα1,1(D) ≤ c ‖h(t)‖L1(D) ≤ c , t ∈ [0,Tm) ∩ [0,T0] . (3.9)

Since α ∈ (4ξ − 3, 0) we can fix θ ∈ (0, 1) and 4ξ1 ∈ (4ξ, 4) \ {3} such that

4θ + α > 4ξ1 + 1 > 4ξ + 1

and, consequently, (see [1, Section 5] for instance),

B4θ+α
1,1,B (D) ↪→ B4ξ1

2,2,B(D) � W4ξ1
2,B(D) ↪→ W4ξ

2,B(D) . (3.10)

Therefore, from (3.5), (3.9), (3.10), and Duhamel’s formula

u(t) = et Au0 +

∫ t

0
e(t−s)Ah(s) ds , t ∈ [0,Tm) ,

(recall that the linear operator A is defined in Lemma 3.12), it follows that

‖u(t)‖
W

4ξ
2,B (D)

≤ ‖et A‖
L(W

4ξ
2,B (D))

‖u0‖
W

4ξ
2,B (D)

+ c(θ)
∫ t

0
‖e(t−s)Ah(s)‖B4θ+α

1,1,B (D)
ds

≤ c + c(θ)
∫ t

0
‖e(t−s)A‖L(Bα1,1(D),B4θ+α

1,1,B (D))
‖h(s)‖Bα1,1(D) ds

≤ c(θ)

for t ∈ [0,Tm) ∩ [0,T0]. We have thus shown (3.4) and the proof of Theorem 2.2 is
complete according to Theorem 2.1. �

Appendix A.

For the sake of completeness, we recall [8, Theorem 2.18], which is at the heart of the
proof of Lemma 3.12.

To set the stage, let O be a bounded open subset of Rn with C∞-smooth boundary ∂O
and consider a partial differential operatorA of order 2m ≥ 2 and m boundary differential
operators (Bk)1≤k≤m given by

A :=
∑
|i | ≤2m

ai∂ix , Bk :=
∑
|i | ≤mk

bk,i∂ix ,

where (mk)1≤k≤m ∈ N
m,

ai ∈ C∞(O) , bk,i ∈ C∞(O) ,
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and where we use the standard notation for multi-indices: i = (ij)1≤ j≤n ∈ Nn, |i | =
i1 + . . . + in, and ∂ix = ∂

i1
x1 . . . ∂

in
xn . Let then

A0(x, ξ) :=
∑
|i |=2m

ai(x)ξi , Bk,0(x, ξ) :=
∑
|i |=mk

bk,i(x)ξi , (x, ξ) ∈ O × Rn ,

denote the symbols of the corresponding principal parts.

Theorem A.1 ([8, Theorem 2.18]). Assume that the following conditions are satisfied:

(m) there is c ∈ (0,∞) such that ReA0(x, iξ) ≤ −c |ξ |2m for (x, ξ) ∈ O × Rn;

(n) the operators (Bk)1≤k≤m form a normal system of boundary operators on ∂O in
the sense of [16, Chapitre 2, Section 1.4] and mk ≤ 2m − 1 for 1 ≤ k ≤ m;

(o) given x ∈ ∂O, (ζ, r) ∈ Rn × (0,∞) \ {(0, 0)}, and θ ∈ [−π/2, π/2] such that
ζ · N(x) = 0, zero is the only bounded solution on [0,∞) to the problem[

A0(x, iζ + N(x)∂t ) − reiθ
]
v(t) = 0 ,[

Bk,0(x, iζ + N(x)∂t )
]
v(0) = 0 , 1 ≤ k ≤ m ,

where N(x) denotes the outward unit normal vector to O at x ∈ ∂O.

Let p ∈ [1,∞], q ∈ [1,∞), and α ∈ R satisfy

max
1≤k≤n

mk +
1
p
− 2m < α < min

1≤k≤m
mk +

1
p
.

Then the (unbounded) operator (A,D(A)) defined by

D(A) :=
{
z ∈ B2m+α

p,q (O) : Bk z = 0 on ∂O , 1 ≤ k ≤ m
}
,

Az := Az , z ∈ D(A) ,

is the infinitesimal generator of an analytic semigroup in Bαp,q(O).
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