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The RFD and Kac quotients of the Hopf∗-algebras of universal
orthogonal quantum groups

Biswarup Das
Uwe Franz
Adam Skalski

Abstract

We determine the Kac quotient and the RFD (residually finite dimensional) quotient for the Hopf∗-
algebras associated to universal orthogonal quantum groups.

1. Introduction

Compact quantum groups of Woronowicz [21] are often studied via their associated
Hopf∗-algebras, the so-called CQG algebras [11]. The CQG algebra carries all the group-
theoretic information about the associated quantum group, such as its representation
theory, the lattice of quantum subgroups (described via the lattice of the CQG quotients
of the original algebra), or Kac property, but also for example encodes approximation
properties of the natural operator algebraic completions.
When studying a particular property describing a “simpler” class of objects, it is natural

to ask whether a general object admits a largest subobject with the given property. And
thus Sołtan, motivated by the considerations concerning quantum group compactifications,
showed in [14] (see also [16]) that every compact quantum group admits a unique maximal
subgroup of Kac type; in other words, every CQG algebra admits a maximal Kac type
quotient. He also computed such Kac quotients in some explicit examples, including
the universal unitary quantum groups𝑈+

𝑄
of Wang and Van Daele. The same paper also

saw the first seeds of the study of residually finite dimensional CQG algebras, fully
developed ten years later by Chirvasitu [9]. The latter article shows that every CQG
algebra admits the RFD quotient, which roughly speaking is the largest quotient which has
“sufficiently many” finite dimensional representations, discusses various stability results
for the RFD property and most importantly proves that the CQG algebras of free unitary
and orthogonal quantum groups,𝑈+

𝑛 and 𝑂+
𝑛 are RFD for all 𝑛 ≠ 3. The case of 𝑛 = 3 was

established later in [10]. One should note that already combining [14], [9] and [10] leads
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to the description of the RFD quotient of the CQG algebras of all𝑈+
𝑄
. We also refer to

these papers and their introduction for further motivation behind studying these concepts.
In this short note we compute the Kac and RFD quotients for the Hopf∗-algebras

associated to universal orthogonal quantum groups𝑂+
𝐹
ofWang and Van Daele, exploiting

earlier results of Chirvasitu, the classification of 𝑂+
𝐹
up to isomorphism essentially due to

Banica and Wang (formulated explicitly in [13]), and the direct computations using the
defining commutation relations. The main results are Theorems 3.3 and 3.4.

2. Preliminaries

We begin by recalling the basic objects and notions studied in this paper.

2.1. Universal compact quantum groups

We will study compact quantum groups in the sense of [21] via the associated CQG
(compact quantum group) algebras. These are involutive Hopf algebras which are spanned
by the coefficients of their finite-dimensional unitary corepresentations, see, e.g., [12,
Section 11.3]; each of them admits a unique bi-invariant state, called the Haar state. Note
that Hopf∗-quotients of CQG algebras are again CQG algebras, and the category of CQG
algebras admits a natural free product construction (see for example [19]). If G1 and G2
are two compact quantum groups with CQG algebras Pol(G1) and Pol(G2), resp., then the
usual free product Pol(G1)FPol(G2) =: Pol(G1★̂G2) in the category of unital algebras
is again a CQG algebra, of a compact quantum group which can be denoted by G1★̂G2.
The universal compact quantum groups𝑈+

𝑄
and𝑂+

𝐹
were introduced by Van Daele and

Wang [18]. Let 𝑁 ∈ N, let 𝐹 ∈ 𝑀𝑁 (C) be invertible, and put 𝑄 = 𝐹∗𝐹. The universal
unitary CQG algebra Pol(𝑈+

𝑄
), also denoted 𝐴𝑢 (𝑄), is generated by the 𝑁2 coefficients

of its fundamental corepresentation𝑈 = (𝑢 𝑗𝑘 )1≤ 𝑗 ,𝑘≤𝑁 , subject to the conditions that𝑈
and 𝐹𝑈𝐹−1 are unitaries in 𝑀𝑁

(
Pol(𝑈+

𝑄
)
)
. This means that for all 1 ≤ 𝑗 , 𝑘 ≤ 𝑁 we have

𝑁∑︁
ℓ=1

𝑢 𝑗ℓ𝑢
∗
𝑘ℓ = 𝛿 𝑗𝑘1 =

𝑁∑︁
ℓ=1

𝑢∗ℓ 𝑗𝑢ℓ𝑘 , (U1)

𝑁∑︁
ℓ,𝑟 ,𝑠=1

𝑢ℓ 𝑗 (𝐹∗𝐹)ℓ𝑟𝑢∗𝑟𝑠 (𝐹∗𝐹)−1𝑠𝑘 = 𝛿 𝑗𝑘1 =
𝑁∑︁

ℓ,𝑟 ,𝑠=1
(𝐹∗𝐹) 𝑗𝑟𝑢∗𝑟𝑠 (𝐹∗𝐹)−1𝑟ℓ 𝑢𝑘ℓ . (U2)

Thus the CQG algebra Pol(𝑈+
𝐹 ∗𝐹 ) depends only on the positive invertible matrix 𝑄,

which, up to isomorphism, we can assume to be diagonal, 𝑄 = (𝛿 𝑗𝑘𝑞 𝑗 )1≤ 𝑗 ,𝑘≤𝑁 , with
0 < 𝑞1 ≤ 𝑞2 ≤ · · · ≤ 𝑞𝑁 .
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If 𝐹 satisfies furthermore 𝐹𝐹 ∈ R𝐼𝑁 , then we define the universal orthogonal CQG
algebra Pol(𝑂+

𝐹
), also denoted by 𝐵𝑢 (𝐹) or 𝐴𝑜 (𝐹), as the quotient of Pol(𝑈+

𝑄
) by the

additional relation

𝑈 = 𝐹𝑈𝐹−1. (H)

Up to isomorphism of CQG algebras, it is sufficient to consider the following two families,
see [20] and [13, Remark 1.5.2].

Case I. 𝐹𝐹 = 𝐼𝑁 , and 𝐹 can be written as

𝐹 =
©«
0 𝐷 0
𝐷−1 0 0
0 0 𝐼𝑁−2𝑘

ª®®¬ (2.1)

with

𝐷 =
©«
𝑞1

. . .

𝑞𝑘

ª®®¬
a diagonal matrix with coefficients 0 < 𝑞1 ≤ 𝑞2 ≤ · · · ≤ 𝑞𝑘 < 1.

Case II. 𝐹𝐹 = −𝐼𝑁 , 𝑁 is even, and 𝐹 can be written as

𝐹 =

(
0 𝐷

−𝐷−1 0

)
(2.2)

with

𝐷 =
©«
𝑞1

. . .

𝑞𝑁 /2

ª®®¬
a diagonal matrix with coefficients 0 < 𝑞1 ≤ 𝑞2 ≤ · · · ≤ 𝑞𝑁 /2 ≤ 1.

Note that the eigenvalues of 𝑄 = 𝐹∗𝐹 are given by

Case I: 0 < 𝑞21 ≤ · · · ≤ 𝑞2𝑘 < 1 < 𝑞
−2
𝑘 ≤ · · · ≤ 𝑞−21 ,

Case II: 0 < 𝑞21 ≤ · · · ≤ 𝑞2
𝑁 /2 ≤ 1 ≤ 𝑞−2

𝑁 /2 ≤ · · · ≤ 𝑞−21 ,

where in Case I, 1 is an eigenvalue only if 2𝑘 < 𝑁 .
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2.2. Kac quotient and RFD quotient

If 𝐴 = Pol(G) is the CQG algebra of some compact quantum group, then the Kac ideal of
𝐴 is defined as the intersection of the (left) null spaces of all tracial states on 𝐴:

JKAC = {𝑎 ∈ 𝐴; 𝜏(𝑎∗𝑎) = 0 for all tracial states 𝜏 on 𝐴},

and the Kac quotient is 𝐴KAC = 𝐴/JKAC. One can show that 𝐴KAC is again a CQG
algebra, which corresponds to the largest quantum subgroup of G which is of Kac type.
The last statement means that the associated Haar state is a trace, cf. [22, Theorem 1.5]
for a list of equivalent characterisations of compact quantum groups of Kac type.
Sołtan [14, Appendix A] [15, Section 5] worked with the Kac quotient for C∗-algebras

associated with compact quantum groups, but here we prefer to use a version for CQG
algebras, which is also the setting in [9]. See Subsection 2.4 below for a brief discussion
of the relation between CQG-algebraic and C∗-algebraic Kac or RFD quotients.
Motivated by a question about Bohr compactifications of discrete quantum groups,

Chirvasitu introduced in [9] the RFD property (where RFD stands for “residually finite
dimensional”) for CQG algebras and showed that Pol(𝑈+

𝑁
) = 𝐴𝑢 (𝐼𝑁 ) and Pol(𝑂+

𝑁
) =

𝐵𝑢 (𝐼𝑁 ) = 𝐴𝑜 (𝐼𝑁 ) have this property, implying that the discrete quantum groups𝑈+
𝑁
and

𝑂+
𝑁
are maximal almost periodic in the sense of [14, 15]. See also the related more recent

paper [6].
The RFD quotient is defined as the biggest quotient of a CQG algebra that has the

RFD property. We recall the relevant definitions from [9].

Definition 2.1. [9, Definition 2.6] A *-algebra 𝐴 has property RFD, if for any 𝑎 ∈ 𝐴,
𝑎 ≠ 0, there exists a finite-dimensional representation (i.e. a unital ∗-homomorphism)
𝜋 : 𝐴→ 𝑀𝑛 (C) with 𝜋(𝑎) ≠ 0.
The RFD quotient 𝐴RFD of a *-algebra 𝐴 is the quotient of 𝐴 by the intersection of the

kernels of all representations 𝜋 : 𝐴→ 𝑀𝑛 (C), with 𝑛 ∈ N.

In other words, 𝐴RFD = 𝐴/JRFD with

JRFD = {𝑎 ∈ 𝐴;∀ 𝜋 : 𝐴→ 𝑀𝑛 (C) a representation, 𝜋(𝑎) = 0}.

One can show that the RFD quotient of a CQG algebra is again a CQG algebra.
Note that RFD is a weaker property than inner linearity (defined in [4], see also [5]),

but no example of an inner linear compact quantum group that is not RFD seems to be
known. In general the relationship between various possible notions of residual finiteness
for quantum groups remains not fully clarified (see for example the comments in [6]).
Chirvasitu proved the following three results.
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Proposition 2.2. [9, Last sentence of Section 2.4] If a CQG algebra has property RFD,
then it is of Kac type.

Proposition 2.3. [9, Proposition 2.10] If two *-algebras 𝐴 and 𝐵 have property RFD,
then their free product 𝐴 ★ 𝐵 also has property RFD.

Theorem 2.4. [9, Theorem 3.1], [10, Theorem 2.4] The CQG algebras Pol(𝑈+
𝑁
) and

Pol(𝑂+
𝑁
) have property RFD for 𝑁 ≥ 2.

Remark 2.5. For 𝑁 = 1 we have Pol(𝑈+
1 ) = CZ and Pol(𝑂

+
1) = CZ2, so property RFD

also holds for 𝑁 = 1, cf. [9, Remark 3.2]. (More generally any commutative *-algebra
that embeds into some C∗-algebra has RFD, cf. [9, Remark 2.7]).
The proofs in [9] do not include 𝑁 = 3; this case is dealt with in [10].

The quotient CQG-algebras 𝐴RFD and 𝐴KAC yield quantum subgroupsGRFD andGKAC
of G. Since JKAC ⊆ JRFD, we have GRFD ⊆ GKAC, i.e. 𝐴RFD is a quotient of 𝐴KAC.

2.3. RFD quotient of universal unitary quantum groups

The Kac quotients and the RFD quotients for the universal unitary quantum groups are
already known, although the latter result has not been explicitly stated in the literature.

Theorem 2.6. [14, 9, 10] Let 𝑄 ∈ 𝑀𝑑 (C) be an invertible positive matrix with 𝑟 distinct
eigenvalues 𝑞1, . . . , 𝑞𝑟 , which have multiplicities 𝑀1, . . . , 𝑀𝑟 .

Then the Kac quotient and the RFD quotient of the CQG algebra Pol(𝑈+
𝑄
) are equal

to the free productF𝑟
a=1 Pol(𝑈

+
𝑀a

).

Remark 2.7. Sołtan showed that this is the Kac quotient, cf. [14, Theorem 4.9] and [15,
Section 7]. Chirvasitu’s results, i.e., Proposition 2.3 and Theorem 2.4, show that this free
product is RFD, and therefore it is also the RFD quotient.

2.4. CQG-algebraic quotients vs. C*-algebraic quotients

Let G = (A,Δ) be a compact quantum group with C∗-algebra A and CQG algebraA. The
C∗-algebraic Kac ideal and RFD ideal are

JKAC = {𝑎 ∈ A; 𝜏(𝑎∗𝑎) = 0 for all tracial states 𝜏 on A},

with JKAC = A if A has no tracial states, and

JRFD = {𝑎 ∈ A; 𝜋(𝑎) = 0 for all fin.-dim. repr. 𝜋 of A},

with JRFD = A if A has no finite-dimensional representations.

145



Biswarup Das & Uwe Franz & Adam Skalski

Again we can define AKAC and ARFD as respective quotients of A by JKAC and JRFD,
and again the RFD quotient is a quotient of the Kac quotient.
Since we can restrict tracial states or finite-dimensional representations of A to A, we

have
JKAC ⊆ JKAC ∩ A and JRFD ⊆ JRFD ∩ A.

In general this inclusion can be proper. If A = 𝐶𝑢 (G) is the universal C∗-algebra of G,
then we have equality, since every state and representation on A extends to 𝐶𝑢 (G).

Example 2.8. [7, Proposition 2.4] showed that a compact quantum group is coamenable
if and only its reduced C∗-algebra admits a finite-dimensional representation. Therefore,
using the results of Banica from [1], [2] and [3] we have 𝐶𝑟 (𝑈+

𝑄
)RFD = {0} for 𝑁 ≥ 2,

and 𝐶𝑟 (𝑂+
𝐹
)RFD = {0} for 𝑁 ≥ 3.

Banica [2, Theorem 3] showed also that the reduced C∗ algebra of𝑈+
𝑄
admits a unique

trace if 𝑄 ∈ R𝐼𝑁 , and no trace if this is not the case. Thus we get 𝐶𝑟 (𝑈+
𝑁
)KAC = 𝐶𝑟 (𝑈+

𝑁
)

and 𝐶𝑟 (𝑈+
𝑄
)KAC = {0} if 𝑄 ∉ R𝐼 for 𝑁 ≥ 2. Similarly, if 𝑁 ≥ 3 and ‖𝐹‖8 ≤ 3

4 Tr 𝐹𝐹
∗,

then 𝐶𝑟 (𝑂+
𝐹
) has a unique trace if 𝐹∗𝐹 = 𝐼, and no trace if 𝐹∗𝐹 ∉ R𝐼𝑁 , see [17,

Theorem 7.2]. Therefore we get in this case 𝐶𝑟 (𝑂+
𝑁
)KAC = 𝐶𝑟 (𝑂+

𝑁
) and 𝐶𝑟 (𝑂+

𝐹
)KAC =

{0} if 𝐹∗𝐹 ∉ R𝐼𝑁 .

3. RFD quotient of the universal orthogonal quantum groups

Let us now describe the RFD quotients of the free orthogonal quantum groups 𝑂+
𝐹

introduced in the beginning of the last section.

3.1. Two special cases

Let us start with some special cases which will be useful in the next section when we
treat the general situation.

Proposition 3.1. Let 𝑀 ≥ 1 and let 𝐽𝑀 be the standard symplectic matrix

𝐽𝑀 =

(
0 𝐼𝑀

−𝐼𝑀 0

)
Then the CQG algebra Pol(𝑂+

𝐽𝑀
) has property RFD.

Proof. For 𝑀 = 1, we have 𝑂+
𝐽1

= 𝑆𝑈 (2) and the result is true (as the algebra in question
is commutative, see Remark 2.5).
For the general case we can use the same proof as in [9, Section 3].
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Step 1. The natural analog of [9, Proposition 3.3] holds. Denote by 𝐴′ the unital *-
subalgebra of 𝐴 = Pol(𝑈+

2𝑀 ) generated by 𝑢∗
𝑗𝑘
𝑢ℓ𝑚, 1 ≤ 𝑗 , 𝑘, ℓ, 𝑚 ≤ 2𝑀 and by 𝐵′ the

unital *-subalgebra of 𝐵 = Pol(𝑂+
𝐽𝑀

) generated by 𝑢∗
𝑗𝑘
𝑢ℓ𝑚, 1 ≤ 𝑗 , 𝑘, ℓ, 𝑚 ≤ 2𝑀. Then

there exists a unique CQG algebra isomorphism 𝐴′ � 𝐵′ such that 𝐴′ 3 𝑢∗
𝑗𝑘
𝑢ℓ𝑚 ↦→

𝑢∗
𝑗𝑘
𝑢ℓ𝑚 ∈ 𝐵′.
This isomorphism is simply the restriction to 𝐴′ of the embedding of Pol(𝑈+

2𝑀 ) into
CZFPol(𝑂+

𝐽𝑀
) defined in [2, Théorème 1(iv)] by

𝑢 𝑗𝑘 ↦→ 𝑧𝑢 𝑗𝑘 , 𝑗 , 𝑘 = 1, . . . , 2𝑀,

where 𝑧 denotes the generator of Z viewed as an element of CZ.

Step 2. The center ofPol(𝑂+
𝐽𝑀

) is given by themorphismofCQGalgebra 𝛾 : Pol(𝑂+
𝐽𝑀

)→
CZ2 with 𝛾(𝑢 𝑗𝑘 ) = 𝛿 𝑗𝑘 𝑡 (where 𝑡 denotes the generator of Z2). The cocenter (i.e. the
Hopf kernel HKer(𝛾) of 𝛾, see [8, Definition 2.10]) is exactly 𝐵′. Indeed, 𝛾 is central,
i.e., it satisfies

(𝛾 ⊗ id)Δ = (𝛾 ⊗ id) ◦ Σ ◦ Δ : Pol(𝑂+
𝐽𝑀

) → CZ2 ⊗ Pol(𝑂+
𝐽𝑀

)

whereΣ denotes the flip, and any other central map can be factored through 𝛾. Furthermore,
we have

𝐵′ = HKer(𝛾) = {𝑏 ∈ Pol(𝑂+
𝐽𝑀

) : (𝛾 ⊗ id)Δ(𝑏) = 1 ⊗ 𝑏}.

Step 3. We can therefore apply [9, Theorem 3.6] to prove an analogue of [9, Proposi-
tion 3.8]: Pol(𝑂+

𝐽𝑀
) is RFD if and only if Pol(𝑈+

2𝑀 ) is, and deduce from Theorem 2.6
above that Pol(𝑂+

𝐽𝑀
) indeed has property RFD. �

Let us consider next the case where 𝐹∗𝐹 has only two eigenvalues: 𝑞2 < 1 < 𝑞−2.

Proposition 3.2. Let 𝑀 ∈ N, 𝑞 ∈ (0, 1), 𝜖 ∈ {−1, 1} and set

𝐹 =

(
0 𝑞𝐼𝑀

𝜖𝑞−1𝐼𝑀 0

)
Then the RFD quotient and the Kac quotient of the CQG algebra Pol(𝑂+

𝐹
) are both equal

to the CQG algebra Pol(𝑈+
𝑀
).

Proof. This proof is similar to those of Theorems 3.3 and 3.4 in the next subsection,
therefore we will give a rather detailed argument here, and later sketch only the main
steps. We decompose the fundamental corepresentation𝑈 as

𝑈 =

(
𝐴 𝐵

𝐶 𝐷

)
,
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with

𝐴 = (𝑢 𝑗𝑘 )1≤ 𝑗 ,𝑘≤𝑀 , 𝐵 = (𝑢 𝑗𝑘 ) 1≤ 𝑗≤𝑀
𝑀+1≤𝑘≤2𝑀

, 𝐶 = (𝑢 𝑗𝑘 )𝑀+1≤ 𝑗≤2𝑀
1≤𝑘≤𝑀

,

𝐷 = (𝑢 𝑗𝑘 )𝑀+1≤ 𝑗 ,𝑘≤2𝑀 ∈ 𝑀𝑀

(
Pol

(
𝑂+
𝐹 )

)
.

The defining relation (H) of Pol(𝑂+
𝐹
) means that

𝑈 = 𝐹𝑈𝐹−1 =

(
𝐷 𝜖𝑞2𝐶

𝜖𝑞−2𝐵 𝐴

)
.

So we can write𝑈 as

𝑈 =

(
𝐴 𝜖𝑞2𝐶

𝐶 𝐴

)
,

and therefore

𝑈∗ =

(
𝐴∗ 𝐶∗

𝜖𝑞2𝐶𝑡 𝐴𝑡

)
.

The unitarity condition for𝑈 now reads(
𝐴𝐴∗ + 𝑞4𝐶𝐶𝑡 𝐴𝐶∗ + 𝜖𝑞2𝐶𝐴𝑡
𝐶𝐴∗ + 𝜖𝑞2𝐴𝐶𝑡 𝐶𝐶∗ + 𝐴𝐴𝑡

)
=

(
𝐼𝑀 0
0 𝐼𝑀

)
=

(
𝐴∗𝐴 + 𝐶∗𝐶 𝜖𝑞2𝐴∗𝐶 + 𝐶∗𝐴

𝜖𝑞2𝐶𝑡 𝐴 + 𝐴𝑡𝐶 𝑞4𝐶𝑡𝐶 + 𝐴𝑡 𝐴

)
. (3.1)

The equalities of upper left corners of (3.1) mean that for all 𝑗 , 𝑘 = 1, . . . , 𝑀
𝑀∑︁
ℓ=1

(𝑢 𝑗ℓ𝑢∗𝑘ℓ + 𝑞
4𝑢∗𝑗+𝑀,ℓ𝑢𝑘+𝑀,ℓ) = 𝛿 𝑗𝑘1 =

𝑀∑︁
ℓ=1

(𝑢∗ℓ 𝑗𝑢ℓ𝑘 + 𝑢
∗
ℓ+𝑀, 𝑗𝑢ℓ+𝑀,𝑘 ).

Setting 𝑗 = 𝑘 and taking the sum, we get
𝑀∑︁
𝑗 ,ℓ=1

(𝑢 𝑗ℓ𝑢∗𝑗ℓ − 𝑢
∗
𝑗ℓ𝑢 𝑗ℓ) =

𝑀∑︁
𝑗 ,ℓ=1

(1 − 𝑞4)𝑢∗𝑗+𝑀,ℓ𝑢 𝑗+𝑀,ℓ .

Let 𝜏 be a tracial state on Pol(𝑂+
𝐹
). The equality above implies that

𝜏(𝑢∗𝑗+𝑀,ℓ𝑢 𝑗+𝑀,ℓ) = 0

for all 𝑗 , ℓ ∈ {1, . . . , 𝑀}. So the generators 𝑢 𝑗𝑘 with 𝑀 + 1 ≤ 𝑗 ≤ 2𝑀 and 1 ≤ 𝑘 ≤ 𝑀,
which form the matrix 𝐶, belong to the Kac ideal JKAC.
If we divide by the *-ideal generated by the coefficients of 𝐶, then we see from

Equation (3.1) that the remaining generators 𝑢 𝑗𝑘 with 1 ≤ 𝑗 , 𝑘 ≤ 𝑀, which form the
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matrix 𝐴 (or rather their images in the quotient *-algebra) have to satisfy exactly the
defining relations of Pol(𝑈+

𝑀
), i.e.,

𝐴𝐴∗ = 𝐼𝑀 = 𝐴∗𝐴 and 𝐴𝐴𝑡 = 𝐼𝑀 = 𝐴𝑡 𝐴.

The result now follows, since Chirvasitu proved that Pol(𝑈+
𝑀
) is RFD, cf. Theorem 2.4. �

3.2. Case I: 𝐹𝐹 = 𝐼𝑁

We now look at the case 𝐹𝐹 = 𝐼𝑁 , where we can assume that 𝐹 has the form given in
Equation (2.1). But we will permute the rows and columns of 𝐹 to organize 𝐹 in blocks
corresponding to the eigenvalues of 𝐹∗𝐹.

Theorem 3.3. Let 𝐹 be of the form

𝐹 =

©«

0 𝑞1𝐼𝑀1
𝑞−11 𝐼𝑀1 0

. . .

0 𝑞𝑟 𝐼𝑀𝑟
𝑞−1𝑟 𝐼𝑀𝑟 0

𝐼𝑁−2𝐾

ª®®®®®®®®®¬
with 0 < 𝑞1 < · · · < 𝑞𝑟 < 1 and 𝐾 = 𝑀1 + · · · + 𝑀𝑟 .

Then the RFD quotient and the Kac quotient of the CQG algebra Pol(𝑂+
𝐹
) are both

equal to the free product (
F𝑟
a=1 Pol(𝑈

+
𝑀a

)
)
FPol(𝑂+

𝑁−2𝐾 ).

Proof. The proof is similar to that of Proposition 3.2.
Writing𝑈 as a block matrix and using the relation between the blocks that follow from

(H), we can express𝑈 as

𝑈 =

©«

𝐴11 𝑞21𝐶11 𝐴12 𝑞1𝑞2𝐶12 . . . 𝑅1

𝐶11 𝐴11 𝐶12 𝑞1𝑞
−1
2 𝐴12 . . . 𝑞−11 𝑅1

𝐴21 𝑞2𝑞1𝐶21 𝐴22 𝑞22𝐶22 . . . 𝑅2

𝐶21 𝑞2𝑞
−1
1 𝐴21 𝐶22 𝐴22 . . . 𝑞−12 𝑅2

...
...

...
...

. . .
...

𝑋1 𝑞1𝑋1 𝑋2 𝑞2𝑋2 . . . 𝑍

ª®®®®®®®®®®®®®¬
, (3.2)

where furthermore the coefficients of 𝑍 are hermitian, i.e., 𝑍 = 𝑍 .
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If we look at the diagonal blocks of the unitarity condition𝑈∗𝑈 = 𝐼𝑁 = 𝑈𝑈∗, we get
for every ` = 1, . . . , 𝑟

𝑟∑︁
𝜌=1

(
𝐴∗
𝜌`𝐴𝜌` + 𝐶∗

𝜌`𝐶𝜌`

)
+ 𝑋∗

`𝑋` = 𝐼𝑀`

=

𝑟∑︁
𝜌=1

(
𝐴`𝜌𝐴

∗
`𝜌 + 𝑞2`𝑞2𝜌𝐶`𝜌𝐶𝑡`𝜌

)
+ 𝑅`𝑅∗

`, (3.3)

𝑟∑︁
𝜌=1

(
𝑞2`𝑞

2
𝜌𝐶

𝑡
𝜌`𝐶𝜌` + 𝑞2𝜌𝑞−2` 𝐴𝑡𝜌`𝐴𝜌`

)
+ 𝑞2`𝑋 𝑡`𝑋` = 𝐼𝑀`

=

𝑟∑︁
𝜌=1

(
𝐶`𝜌𝐶

∗
`𝜌 + 𝑞2`𝑞−2𝜌 𝐴`𝜌𝐴𝑡`𝜌

)
+ 𝑞−2` 𝑅`𝑅𝑡`, (3.4)

𝑍 𝑡𝑍 +
𝑟∑︁
𝜌=1

(
𝑅∗
`𝑅` + 𝑞−2` 𝑅𝑡𝜌𝑅𝜌

)
= 𝐼𝑁−2𝐾 = 𝑍𝑍 𝑡 +

𝑟∑︁
𝜌=1

(
𝑋𝜌𝑋

∗
𝜌 + 𝑞2𝜌𝑋𝜌𝑋 𝑡𝜌

)
. (3.5)

Note that if
𝐴 = (𝑎 𝑗𝑘 ) 1≤ 𝑗≤𝐽

1≤𝑘≤𝐾
∈ 𝑀𝐽×𝐾 (A)

is a matrix with coefficients in some *-algebra A and 𝜏 is a tracial state on A, then we
have

𝜏 ◦ Tr(𝐴∗𝐴) =
𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝜏(𝑎∗𝑗𝑘𝑎 𝑗𝑘 ) = 𝜏 ◦ Tr(𝐴𝐴
∗) = 𝜏 ◦ Tr(𝐴𝐴𝑡 ) = 𝜏 ◦ Tr(𝐴𝑡 𝐴).

So if 𝜏 is a tracial state on Pol(𝑂+
𝐹
) and we apply 𝜏 ◦ Tr to Equation (3.5), then we get

𝑟∑︁
𝜌=1

(1 + 𝑞2𝜌)𝜏
(
Tr(𝑋∗

𝜌𝑋𝜌)
)
=

𝑟∑︁
𝜌=1

(1 + 𝑞−2𝜌 )𝜏
(
Tr(𝑅∗

𝜌𝑅𝜌)
)
. (3.6)

If we now take the sum over ` of the difference between the left-hand-side and the
right-hand-side in Equations (3.3) and (3.4), and apply 𝜏 ◦ Tr, then we get

𝑟∑︁
𝜌,`=1

(1 − 𝑞2`𝑞2𝜌)𝜏
(
Tr(𝐶∗

𝜌`𝐶𝜌`)
)
+

𝑟∑̀︁
=1
𝜏
(
Tr(𝑋∗

`𝑋`)
)
−

𝑟∑̀︁
=1
𝜏
(
Tr(𝑅∗

`𝑅`))
)
= 0,

𝑟∑︁
𝜌,`=1

(1 − 𝑞2`𝑞2𝜌)𝜏
(
Tr(𝐶∗

𝜌`𝐶𝜌`)
)
+

𝑟∑̀︁
=1
𝑞2`𝜏

(
Tr(𝑋∗

`𝑋`)
)
−

𝑟∑̀︁
=1
𝑞−2` 𝜏

(
Tr(𝑅∗

`𝑅`)
)
= 0.

Adding these two relations and takingEquation (3.6) into account,we get 𝜏
(
Tr(𝐶∗

𝜌`𝐶𝜌`)
)
=

0 for all 𝜌, ` ∈ {1, . . . , 𝑟}; by positivity this means that all the generators that appear in
the 𝐶-blocks are contained in the Kac ideal JKAC.
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By (3.3), we then also have 𝜏
(
Tr(𝑋∗

`)𝑋`
)
= 𝜏

(
Tr(𝑅∗

`𝑅`)
)
, so, plugging this into (3.6),

𝑟∑︁
𝜌=1

(𝑞−2𝜌 − 𝑞2𝜌)𝜏
(
Tr(𝑋∗

𝜌𝑋𝜌)
)
= 0,

and we get 𝜏
(
Tr(𝑋∗

`𝑋`)
)
= 0 = 𝜏

(
Tr(𝑅∗

`𝑅`)
)
for ` = 1, . . . , 𝑟, since all terms in the

above sum are non-negative. Once again using the fact that 𝜏 is positive we deduce that
all the generators that appear in the 𝑋- and 𝑅-blocks are contained in the Kac ideal JKAC.
Denote by

𝐴 = (𝐴𝜌`)1≤𝜌,`≤𝑟 ∈ 𝑀𝐾
(
Pol(𝑂+

𝐹 )
)

the matrix obtained from𝑈 by deleting the generators in the even rows and columns in
the block decomposition in Equation (3.2), as well as the last row and column.
If we divide the *-algebra Pol(𝑂+

𝐹
) by the *-ideal generated by all 𝐶𝜌`, 𝑋` and 𝑅`,

then unitarity relation𝑈∗𝑈 = 𝐼𝑁 = 𝑈𝑈∗ reduces to

𝐴∗𝐴 = 𝐼𝐾 = 𝐴𝐴∗ and 𝐷𝐴𝐷−1𝐴𝑡 = 𝐼𝐾 = 𝐴𝑡𝐷𝐴𝐷−1,

𝑍 = 𝑍 and 𝑍𝑍 𝑡 = 𝐼𝑁−2𝐾 = 𝑍 𝑡𝑍,

where

𝐷 =
©«
𝑞21𝐼𝑀1

. . .

𝑞2𝑟 𝐼𝑀𝑟

ª®®¬ .
This means that the quotient Pol(𝑂𝐹 )/〈𝐶𝜌`, 𝑋`, 𝑅` : 𝜌, ` = 1, . . . , 𝑟〉 is equal to the free
product of a copy of Pol(𝑈+

𝐷
), generated by the coefficients of the 𝐴𝜌`, 𝜌, ` = 1, . . . , 𝑟,

and a copy of Pol(𝑂+
𝑁−2𝐾 ), generated by the coefficients of 𝑍 .

Now we can conclude with Theorem 2.6. �

3.3. Case II: 𝐹𝐹 = −𝐼𝑁
Let us now consider the case 𝐹𝐹 = −𝐼𝑁 and 𝐹 a matrix of the form given in Equation (2.2).

Theorem 3.4. Let 𝑁 be an even positive integer and let 𝐹 ∈ 𝑀𝑁 be of the form

𝐹 =

©«

0 𝑞1𝐼𝑀1
−𝑞−11 𝐼𝑀1 0

. . .

0 𝑞𝑟 𝐼𝑀𝑟
−𝑞−1𝑟 𝐼𝑀𝑟 0

ª®®®®®®®¬
,

with 0 < 𝑞1 < · · · 𝑞𝑟−1 < 𝑞𝑟 = 1, 𝑀1, . . . , 𝑀𝑟−1 ≥ 1, 𝑀𝑟 ≥ 0, 𝑀1 + · · · + 𝑀𝑟 = 𝑁/2.
Note that 𝑀𝑟 = 0 if 1 is not an eigenvalue of 𝐹∗𝐹.
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The RFD quotient and the Kac quotient of the CQG algebra Pol(𝑂+
𝐹
) are both equal

to the free product (
F𝑟−1
a=1 Pol(𝑈

+
𝑀a

)
)
FPol(𝑂+

𝐽 ),
with

𝐽 =

(
0 𝐼𝑀𝑟

−𝐼𝑀𝑟 0

)
Proof. Like in the proofs of Proposition 3.2 and Theorem 3.3, we write 𝑈 as a block
matrix. Since𝑈 = 𝐹𝑈𝐹, we can write

𝑈 =

©«

𝐴11 −𝑞21𝐴11 𝐴12 −𝑞1𝑞2𝐶12 . . . 𝐴1𝑟 −𝑞1𝑞𝑟𝐶1𝑟
𝐶11 𝐴11 𝐶12 𝑞−11 𝑞2𝐴12 . . . 𝐶1𝑟 𝑞−11 𝑞𝑟 𝐴1𝑟
𝐴21 −𝑞2𝑞1𝐶21 𝐴22 −𝑞22𝐶22 . . . 𝐴2𝑟 −𝑞2𝑞𝑟𝐶2𝑟
𝐶21 𝑞−12 𝑞1𝐴21 𝐶22 𝐴22 . . . 𝐶2𝑟 𝑞−12 𝑞𝑟 𝐴2𝑟
...

...
...

...
. . .

...
...

𝐴𝑟1 𝑞𝑟𝑞1𝐶𝑟1 𝐴𝑟2 −𝑞2𝑞2𝐶𝑟2 . . . 𝐴𝑟𝑟 −𝑞2𝑟𝐶𝑟𝑟
𝐶𝑟1 𝑞−1𝑟 𝑞1𝐴𝑟1 𝐶𝑟2 𝑞−1𝑟 𝑞2𝐴𝑟2 . . . 𝐶𝑟𝑟 𝐴𝑟𝑟

ª®®®®®®®®®®®¬
.

The unitarity conditions on the diagonal blocks read (a = 1, . . . , 𝑟)
𝑟∑̀︁
=1

(
𝐴∗
`a𝐴`a + 𝐶∗

`a𝐶`a

)
= 𝐼𝑀a =

𝑟∑̀︁
=1

(
𝐴a`𝐴

∗
a` + 𝑞2`𝑞2a𝐶`a𝐶𝑡`a

)
, (3.7)

𝑟∑̀︁
=1

(
𝑞2`𝑞

2
a𝐶

𝑡
`a𝐶`a + 𝑞−2` 𝑞2a𝐴𝑡`a𝐴`a

)
= 𝐼𝑀a =

𝑟∑̀︁
=1

(
𝐶a`𝐶

∗
a` + 𝑞−2a 𝑞2`𝐴a`𝐴𝑡a`

)
. (3.8)

Letting 𝜏 be a tracial state on Pol(𝑂+
𝐹
) and applying 𝜏 ◦ Tr to the difference of the

left-hand-side and the right-hand-side in Equation (3.7), we get
𝑟∑︁

a,`=1
(1 − 𝑞2`𝑞2a)𝜏

(
Tr(𝐶∗

`a𝐶`a)
)
= 0,

which implies that the coefficients appearing in all the 𝐶-blocks, except possibly 𝐶𝑟𝑟 ,
belong to the Kac ideal JKAC.
Taking now the differences of the left-hand-sides, or, respectively, right-hand-sides, in

Equations (3.7) and (3.8), we get
𝑟−1∑̀︁
=1
(𝑞−2` 𝑞2a − 1)𝜏

(
Tr(𝐴∗

`a𝐴`a)
)
= 0,

𝑟−1∑̀︁
=1
(1 − 𝑞2`𝑞−2a )𝜏

(
Tr(𝐴a`𝐴a`)∗

)
= 0,
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for a ∈ {1, . . . , 𝑟 − 1}. From these two relations we can prove by induction that
𝜏
(
Tr(𝐴∗

`a𝐴`a)
)
= 0 for all `, a = 1, . . . , 𝑟 − 1 with ` ≠ a.

Denote by J the *-ideal generated by the 𝑢 𝑗𝑘 that have been regrouped in the blocks
𝐶`a with (`, a) ≠ (𝑟, 𝑟), and in the blocks 𝐴`a with ` ≠ a. It is not difficult to show
that Pol(𝑂+

𝐹
)/J �

(
F𝑟
a=1 Pol(𝑈

+
𝑀a

)
)
FPol(𝑂+

𝐹0
). As the latter CQG algebra is RFD

by Chirvasitu’s results, it follows that this is indeed the RFD quotient and also the Kac
quotient of Pol(𝑂+

𝐹
). �
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