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Convergence of nonlinear integrodifferential reaction-diffusion
equations via Mosco×Γ-convergence

Omar Anza Hafsa
Jean Philippe Mandallena
Gérard Michaille

Abstract

We study the convergence of sequences of nonlinear integrodifferential reaction-diffusion equations
when the Fickian terms belong to a class of convex functionals defined on a Hilbert space, equipped
with the Mosco-convergence, and the non Fickian terms belong to a class of convex functionals, whose
restrictions to a compactly embedded subspace are equipped with the Γ-convergence. As a consequence
we prove a homogenization theorem for this class under a stochastic homogenization framework.

1. Introduction

In the spirit of [2, 4], we investigate the compactness or the stability in terms of convergence,
of integrodifferential reaction-diffusion problems defined in 𝐿2 (0, 𝑇, 𝑋) by

(P)


d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢(𝑠)) d𝑠 3 𝐹 (𝑡, 𝑢(𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ),

under suitable variational convergences on the classes of functionals Φ and Ψ (see
Theorem 5.1). As usually the integral in the first member is taken in the sense of Bochner.
The domain of the lower semicontinuous convex functionals Φ,Ψ : 𝑋 → R ∪ {+∞} is
a subspace 𝑉 compactly embedded in the Hilbert space 𝑋 . More precisely, the class of
functionals Φ is equipped with the Mosco-convergence; the class of the restrictions to 𝑉
of functionals Ψ, is equipped with the sequential Γ-convergence associated with the weak
topology of 𝑉 (for definitions see Appendix D, and for more details on Γ-convergence
we refer to [5, 13]). When dealing with concrete functionals Φ and Ψ of the calculus of
variations, problems of type (P) arise from the conservation of mass when the flux is
splitted into two terms: the Fickian flux whose divergence is 𝜕Φ(𝑢(𝑡, · )) and the non
Fickian flux which takes time memory effects into account, and whose divergence is∫ 𝑡

0 𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢(𝑠)) d𝑠; we refer to Section 6 for various examples in the framework of
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stochastic homogenization. For integrodifferential equations and non-local effects induced
by homogenization see [3] and references therein.
We say that 𝑢 is a solution of (P) if 𝑢 ∈ 𝐿2 ( [0, 𝑇], 𝑋) is absolutely continuous in

time and satisfies (P). Well posedness in the sense of existence of solutions has been
extensively studied using maximal monotone operator techniques under an extrinsic
condition involving the scalar product of 𝜕Φ with the Yosida approximation of 𝜕Ψ, not
easy to handle, even for elementary examples; see [12, Example 2]. We refer to the
pioneers [7, 8, 12, 18, 24] and references therein when 𝐹 is a source without reaction
term. In the paper we treat the problem under a coercivity condition on 𝜕Φ ◦ (𝜕Ψ)−1,
which is more flexible and stable for the product of the Mosco-convergence with the Γ-
convergence. For existence of solutions of nonlinear Volterra integrodifferental equations
under a weak formulation but with nonsmooth kernels, refer to [15]. For existence results
related to integrodifferential equations of non convolution type or to integrodifferential
equations whose source includes a delay term see [10, 11, 24]. For recent developments
in non-Fickian diffusion and its applications to viscoelastic materials, we refer to [14, 16]
and references therein.

Plan of the paper

In Section 2, we make precise the structure of the first member of (P) and discuss on
the coercivity condition on 𝜕Φ ◦ (𝜕Ψ)−1 and its stability with respect to the variational
convergences of functionals Φ and Ψ. Section 3 and 4 are devoted to local and global
existence respectively. Precisely in Theorems 4.1, 4.4 we establish existence of a strong
solution of (P) with a right derivative at each 𝑡 ∈ [0, 𝑇 [. The main result of the paper is
stated in Section 5, Theorem 5.1, where we establish the convergence of sequences in the
class of problems (P) when the classes of functionals Φ and Ψ are equipped with the two
variational convergences mentioned above. This theorem can be seen as a compactness
result for the class of problems (P), and, under some additional conditions, as a stability
result (see Remark 5.2). In the concrete case when 𝑋 = 𝐿2 (Ω), in Theorem 5.3, we extend
the convergence to reaction diffusion problems. In Section 6 we apply Theorem 5.3 to
the stochastic homogenization analysis of problems of the type (P) when Φ and Ψ are
concrete random functionals of the calculus of variations. More precisely, in Section 6.1
we address the stochastic homogenization of a random problems modeled from a Fick’s
law with delay: the non Fickian flux is superimposed on the first flow at each time 𝑡.
According to the models, it may account for maturation period, resource regeneration
time, mating processes, or incubation period. In Section 6.2, we treat the stochastic
homogenization of general nonlinear integrodifferential reaction-diffusion equations in
one dimension space in the setting of a Poisson point process. The general problem
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considered is a randomization of [12, Example 2] with a reaction source. For recent
developments in periodic homogenization of parabolic problems in 𝐿2 (0, 𝑇, 𝐿2 (R𝑑))
with a convolution type operator, refer to [22, 23]. By contrast, our results fall within the
scope of stochastic homogenization of parabolic problems with non-local operators in the
context of boundary value problems.

2. Preliminaries

In the following 𝑋 denotes a Hilbert space endowed with a scalar product denoted by
〈 · , · 〉 and its associated norm ‖ · ‖𝑋 . In Section 5.2 and Section 6, 𝑋 = 𝐿2 (Ω) where
Ω is a 𝐶1-regular domain in R𝑁 . We denote by 𝑉 a reflexive Banach space compactly
embedded in 𝑋 , by ‖ · ‖𝑉 its norm, and by 𝑉 ′ its dual. Therefore, for 𝑇 > 0 fixed all along
the paper, the following continuous and compact embeddings hold:

𝑉 ↩−↩→ 𝑋 ↩−↩→ 𝑉 ′

𝐿2 (0, 𝑇,𝑉) ↩−↩→ 𝐿2 (0, 𝑇, 𝑋) ↩−↩→ 𝐿2 (0, 𝑇,𝑉 ′)

where 𝑋 and 𝐿2 (0, 𝑇, 𝑋) are identified with their duals. For a proof and general results
concerning compact embeddings for vector valued spaces, refer to [1] and references
therein. We assume that 〈𝑢, 𝑣〉𝑉 ′,𝑉 = 〈𝑢, 𝑣〉 whenever 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑉 .

2.1. Structure of the first member of (P)

We are given two lower-semicontinuous (lsc in short) convex proper functionals Φ,Ψ :
𝑋 → ]−∞, +∞] with domain 𝑉 , satisfying inf𝑋 Φ > −∞, inf𝑋 Ψ > −∞, and such that
dom(𝜕Φ) ⊂ dom(𝜕Ψ). We denote by Ψ b𝑉 the restriction of Ψ to 𝑉 . Clearly, since
dom(Ψ) = 𝑉 , the subdifferentials of Ψ b𝑉 and Ψ are connected through the relation

𝜕Ψ = 𝜕 (Ψ b𝑉 ) ∩ 𝑋.

When there is no ambiguity, to simplify the notation, for 𝑢 ∈ dom(𝜕Φ) we write 𝜕Φ(𝑢)
and 𝜕Ψ(𝑢) to denote any element of the sets 𝜕Φ(𝑢) and 𝜕Ψ(𝑢) respectively. However,
generally speaking, the element considered in each set remains fixed in the equation at
hand. We assume that 0 ∈ dom(𝜕Ψ) with 𝜕Ψ(0) = {0}. The functional Ψ b𝑉 is assumed
to be strongly convex in the following sense:〈

𝜕 (Ψ b𝑉 ) (𝑢) − 𝜕 (Ψ b𝑉 ) (𝑣), 𝑢 − 𝑣
〉
𝑉 ′,𝑉 ≥ 𝛼Ψ‖𝑢 − 𝑣‖2𝑉

for all (𝑢, 𝑣) ∈ dom(𝜕 (Ψ b𝑉 ))2. (2.1)
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Note that when (𝑢, 𝑣) ∈ dom(𝜕Ψ)2, then (2.1) yields

〈𝜕Ψ(𝑢) − 𝜕Ψ(𝑣), 𝑢 − 𝑣〉 ≥ 𝛼Ψ‖𝑢 − 𝑣‖2𝑉 ,

hence, since 𝜕Ψ(0) = {0}, for all 𝑢 ∈ dom(𝜕Ψ), we infer that

〈𝜕Ψ(𝑢), 𝑢〉 ≥ 𝛼Ψ‖𝑢‖2𝑉 .

We assume that the subdifferentials 𝜕Φ and 𝜕Ψ are connected via the following
coercivity condition on 𝜕Φ ◦ 𝜕Ψ−1: there exist two constants 𝛼Φ,Ψ > 0 and 𝛽Φ,Ψ ≥ 0
such that for all 𝑢∗ ∈ 𝑅𝜕Φ (𝜕Ψ),〈

𝜕Φ((𝜕Ψ)−1 (𝑢∗)), 𝑢∗
〉
≥ 𝛼Φ,Ψ‖𝑢∗‖2𝑋 − 𝛽Φ,Ψ. (2.2)

For the definition of (𝜕Ψ)−1 and the relative range of 𝐴 with respect to 𝐵, refer to
Appendix C. Here 𝑅𝜕Φ (𝜕Ψ) = 𝜕Ψ(dom(𝜕Φ)), since dom(𝜕Φ) ⊂ dom(𝜕Ψ). This
condition must be understood in the sense of a set relation, i.e. for any 𝑢∗ in dom(𝜕Φ ◦
(𝜕Ψ)−1), for any corresponding 𝑢 such that 𝑢∗ ∈ 𝜕Ψ(𝑢) (i.e. 𝑢 ∈ (𝜕Ψ)−1 (𝑢∗)) and also
𝑢 ∈ dom(𝜕Φ), and for any 𝜉∗ ∈ 𝜕Φ(𝑢) we have

〈𝜉∗, 𝑢∗〉 ≥ 𝛼Φ,Ψ‖𝑢∗‖2𝑋 − 𝛽Φ,Ψ.

In short, 2.2 is equivalent to

〈𝜕Φ(𝑢), 𝜕Ψ(𝑢)〉 ≥ 𝛼Φ,Ψ‖𝜕Ψ(𝑢)‖2𝑋 − 𝛽Φ,Ψ

for all 𝑢 ∈ dom(𝜕Φ), with the following notation convention: let 𝐴 and 𝐵 be two sets of
Hilbert space (𝑋, ‖ · ‖𝑋 ), then

• 〈𝐴, 𝐵〉 := {〈𝑎, 𝑏〉 : 𝑎 ∈ 𝐴, 𝐵 ∈ 𝐵};

• 〈𝐴, 𝐵〉 ≥ ‖𝐵‖2
𝑋
stands for 〈𝑎, 𝑏〉 ≥ ‖𝑏‖2

𝑋
for all 〈𝑎, 𝑏〉 ∈ 〈𝐴, 𝐵〉.

Condition (2.2) replaces condition

〈𝜕Φ(𝑢), 𝜕Ψ𝜆 (𝑢)〉 ≥ −𝛽(‖𝜕Φ(𝑢)‖2𝑋 + ‖𝑢‖2𝑋 + 1) for all 𝑢 ∈ dom(𝜕Φ) (2.3)

in [8, 12, 24], or [7, (d) p. 253], which links 𝜕Φ and 𝜕Ψ𝜆, the subdifferential of the
Moreau–Yosida envelope at 𝜆 > 0 of Ψ. We say that (2.1) and (2.2) hold uniformly if the
constants 𝛼Ψ, 𝛼Φ,Ψ and 𝛽Φ,Ψ do not depend on the functionals Φ and Ψ.

Example 2.1. Consider Ψ : 𝑋 → ]−∞, +∞] lsc convex proper, and let 𝐺 : 𝑋 →
]−∞, +∞[ be a lsc convex functional, continuous at a point of 𝑉 . Assume that there exists
𝛽Ψ,𝐺 ≥ 0 such that

inf
𝑢∈dom(𝜕Ψ)∩dom(𝜕𝐺)

〈𝜕Ψ(𝑢), 𝜕𝐺 (𝑢)〉 ≥ −𝛽Ψ,𝐺 (2.4)
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in the sense that inf𝑢∈dom(𝜕Ψ)∩dom(𝜕𝐺) inf 𝜉 ∈𝜕Ψ(𝑢) ,𝜁 ∈𝜕𝐺 (𝑢) 〈𝜉, 𝜁〉 > −∞. Assume further-
more that 𝜕Ψ is single valued, then the functional Ψ and its perturbation Φ = Ψ + 𝐺 by
𝐺, satisfy (2.2).
Indeed, dom(𝜕Φ) = dom(𝜕Ψ) ∩dom(𝜕𝐺) ⊂ dom(𝜕Ψ), and from [6, Theorem 9.5.4],

𝜕Φ = 𝜕Ψ + 𝜕𝐺. Hence for all 𝑢 ∈ dom(𝜕Φ)

〈𝜕Φ(𝑢), 𝜕Ψ(𝑢)〉 = ‖𝜕Ψ(𝑢)‖2𝑋 + 〈𝜕Ψ(𝑢), 𝜕𝐺 (𝑢)〉

≥ ‖𝜕Ψ(𝑢)‖2𝑋 + inf
𝑢∈dom(𝜕Ψ)∩dom(𝜕𝐺)

〈𝜕Ψ(𝑢), 𝜕𝐺 (𝑢)〉

≥ ‖𝜕Ψ(𝑢)‖2𝑋 − 𝛽Ψ,𝐺 .

As a particular case, take Ψ satisfying (2.1), and 𝐺 = 𝑏‖ · ‖2
𝑋
where 𝑏 ≥ 0. For all

𝑢 ∈ dom(𝜕Ψ) we have from (2.1)

〈𝜕Ψ(𝑢), 𝜕𝐺 (𝑢)〉 = 2𝑏 〈𝜕Ψ(𝑢), 𝑢〉 ≥ 2𝑏‖𝑢‖2𝑉 .

Consequently Ψ and 𝐺 satisfy (2.4) since

inf
𝑢∈dom(𝜕Ψ)∩dom(𝜕𝐺)

〈𝜕Ψ(𝑢), 𝜕𝐺 (𝑢)〉 ≥ 0.

Therefore the functionals Ψ and Φ = Ψ + 𝑏‖ · ‖2
𝑋
satisfy (2.2). Existence in the case when

𝑏 = 0, i.e.Φ = Ψ has been established in [19]. Other examples are provided in Section 6.2.

Remark 2.2. Without being able to prove it, it seems that (2.2) and (2.3) are not comparable.
Nevertheless if we assume that 𝜕Ψ is univalent and we let 𝜆 → 0 in (2.3), we obtain
(see [6, Proposition 17.2.2])

〈𝜕Φ(𝑢), 𝜕Ψ(𝑢)〉 ≥ −𝛽(‖𝜕Φ(𝑢)‖2𝑋 + ‖𝑢‖2𝑋 + 1)

which is less restrictive than (2.2). This is why we can only say that at the limit, i.e.
when 𝜆 → 0, (2.3) is less restrictive than (2.2). However from Remark 2.4 below, in the
absence of equi-coercivity of the class of functionals Ψ b𝑉 , we can suspect that they are
not equivalent.

Define the class F of pairs of functionals (Φ,Ψ) by

(Φ,Ψ) ∈ F ⇐⇒


Φ,Ψ : 𝑋 → ]−∞, +∞] are lsc convex proper,
dom(Φ) = dom(Ψ) = 𝑉,
dom(𝜕Φ) ⊂ dom(𝜕Ψ),
0 ∈ dom(𝜕Ψ) and 𝜕Ψ(0) = {0},
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and let (Φ𝑛,Ψ𝑛)𝑛∈N be a sequence of F . Then we write

Φ𝑛

M−→ Φ,

Ψ𝑛 b𝑉
Γ𝑤-𝑉−→ Ψ b𝑉 ,

to denote the Mosco-convergence of the sequence (Φ𝑛)𝑛∈N to some lsc convex proper
functional Φ : 𝑋 → ]−∞, +∞] and the Γ𝑤-𝑉 -convergence of the sequence (Ψ𝑛 b𝑉 )𝑛∈N
to the restriction to 𝑉 of some lsc convex proper functional Ψ : 𝑋 → ]−∞, +∞] with
dom(Ψ) = 𝑉 . Let us equip 𝑋 × 𝑋 with the strong topology product, 𝑉 × 𝑉 ′ with the
product of the weak topology of 𝑉 with the strong topology of 𝑉 ′, and denote by 𝐺𝑠,𝑠 and
𝐺𝑤,𝑠 the associated graph convergence (see Appendix C). Then the following implications
hold (see Theorem C.5):

Φ𝑛

M−→ Φ =⇒ 𝜕Φ𝑛

𝐺𝑠,𝑠−→ 𝜕Φ,

Ψ𝑛 b𝑉
Γ𝑤-𝑉−→ Ψ b𝑉 =⇒ 𝜕 (Ψ𝑛 b𝑉 )

𝐺𝑤,𝑠−→ 𝜕 (Ψ b𝑉 ).
(2.5)

Note that converse implications hold true, up to normalization.
Acccording to above considerations, we endow F with the product M × Γ𝑤-𝑉 -

convergence. The class F is not closed for this convergence, however the proposition
below shows that conditions (2.1) and (2.2), which are essential in establishing existence
in Sections 3 and 4, are in some sense stable in F , then well suited to the convergence
analysis of Section 5 (see Remark 5.2), and Section 6.

Proposition 2.3. Assume that (2.1) and (2.2) are satisfied uniformly with respect to
all elements of F . For every sequence (Φ𝑛,Ψ𝑛)𝑛∈N of F and every lsc convex proper
functionals Φ,Ψ : 𝑋 → ]−∞, +∞], if dom(Ψ) = 𝑉 , Φ𝑛

M→ Φ and Ψ𝑛 b𝑉
Γ𝑤-𝑉→ Ψ b𝑉 , then

(Φ,Ψ) satisfies (2.1), (2.2) and dom(𝜕Φ) ⊂ dom(𝜕Ψ).

Proof. We denote by 𝛼Ψ and 𝛼Φ,Ψ the two uniform constants appearing in (2.1) and (2.2).

Stability of (2.1). According to (2.5), 𝜕 (Ψ𝑛 b𝑉 )
𝐺𝑤,𝑠→ 𝜕 (Ψ b𝑉 ). Hence, from Proposi-

tion C.4, for (𝑢, 𝑣) ∈ dom(𝜕 (Ψ b𝑉 ))2 there exists (𝑢𝑛, 𝑣𝑛) ∈ dom(𝜕 (Ψ𝑛 b𝑉 ))2 such
that 

𝑢𝑛 −⇀ 𝑢 weakly in 𝑉,
𝜕 (Ψ𝑛 b𝑉 ) (𝑢𝑛) −→ 𝜕 (Ψ b𝑉 ) (𝑢) strongly in 𝑉 ′,

𝑣𝑛 −⇀ 𝑣 weakly in 𝑉,
𝜕 (Ψ𝑛 b𝑉 ) (𝑣𝑛) −→ 𝜕 (Ψ b𝑉 ) (𝑣) strongly in 𝑉 ′

where, by notation convention, 𝜕 (Ψ𝑛 b𝑉 ) (𝑢𝑛) → 𝜕 (Ψ b𝑉 ) (𝑢) and 𝜕 (Ψ𝑛 b𝑉 ) (𝑣𝑛) →
𝜕 (Ψ b𝑉 ) (𝑣) stand for 𝑢∗𝑛 → 𝑢∗ and 𝑣∗𝑛 → 𝑣∗ with 𝑢∗𝑛 ∈ 𝜕 (Ψ𝑛 b𝑉 ) (𝑢𝑛), 𝑣∗𝑛 ∈ 𝜕 (Ψ𝑛 b𝑉 ) (𝑣𝑛),
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and 𝑢∗ ∈ 𝜕 (Ψ b𝑉 ) (𝑢𝑛), 𝑣∗ ∈ 𝜕 (Ψ b𝑉 ) (𝑣𝑛). From now on, we use a similar notation
convention for all convergences below. The claim then follows from the convergences
above by passing to the limit on

〈𝜕 (Ψ𝑛 b𝑉 ) (𝑢𝑛) − 𝜕 (Ψ𝑛 b𝑉 ) (𝑣𝑛), 𝑢𝑛 − 𝑣𝑛〉𝑉 ′,𝑉 ≥ 𝛼Ψ‖𝑢𝑛 − 𝑣𝑛‖2𝑉 .

Stability of (2.2) associated with (2.1). Let 𝑢 ∈ dom(𝜕Φ). From 𝜕Φ𝑛

𝐺𝑠,𝑠→ 𝜕Φ and
Proposition C.4, there exists 𝑢𝑛 ∈ dom(𝜕Φ𝑛) such that{

𝑢𝑛 −→ 𝑢 strongly in 𝑋,
𝜕Φ𝑛 (𝑢𝑛) −→ 𝜕Φ(𝑢) strongly in 𝑋.

(2.6)

For all 𝑛 ∈ N we have

〈𝜕Φ𝑛 (𝑢𝑛), 𝜕Ψ𝑛 (𝑢𝑛)〉 ≥ 𝛼Φ,Ψ‖𝜕Ψ𝑛 (𝑢𝑛)‖2𝑋 − 𝛽Φ,Ψ. (2.7)

From (2.6) and (2.7) we deduce that

sup
𝑛∈N

‖𝜕Ψ𝑛 (𝑢𝑛)‖𝑋 < +∞,

which combined with (2.1) gives

sup
𝑛∈N

‖𝑢𝑛‖𝑉 < +∞.

Hence, there exist a (non relabeled) subsequence (𝑢𝑛)𝑛∈N and 𝜉 ∈ 𝑋 such that{
𝑢𝑛 −⇀ 𝑢 weakly in 𝑉 (and strongly in 𝑋),
𝜕Ψ𝑛 (𝑢𝑛) −⇀ 𝜉 weakly in 𝑋 thus 𝜕Ψ𝑛 (𝑢𝑛) −→ 𝜉 strongly in 𝑉 ′.

(2.8)

Since 𝜕 (Ψ𝑛 b𝑉 )
𝐺𝑤,𝑠→ 𝜕 (Ψ b𝑉 ), we conclude from above that 𝜉 ∈ 𝜕 (Ψ b𝑉 ) (𝑢) ∩𝑋 = 𝜕Ψ(𝑢).

From (2.6) and (2.8), and by passing to the limit 𝑛→ +∞ on (2.7), we obtain

〈𝜕Φ(𝑢), 𝜕Ψ(𝑢)〉 ≥ 𝛼Φ,Ψ lim inf
𝑛→+∞

‖𝜕Ψ𝑛 (𝑢𝑛)‖2𝑋 − 𝛽Φ,Ψ ≥ 𝛼Φ,Ψ‖𝜕Ψ(𝑢)‖2𝑋 − 𝛽Φ,Ψ

where 𝜉 is denoted by 𝜕Ψ(𝑢). This completes the proof. �

Remark 2.4. It is not clear that (2.3) is stable in the following sense: let ((Φ𝑛,Ψ𝑛)𝑛∈N,
(Φ,Ψ)) be a sequence of lsc convex proper functionals from 𝑋 into ]−∞, +∞] with
dom(Ψ𝑛) = dom(Ψ) = 𝑉 such that (Φ𝑛,Ψ𝑛) satisfies (2.3) and converges to (Φ,Ψ) for the
product M × Γ𝑤-𝑉 -convergence, then (Φ,Ψ) satisfies (2.3). However under an additional
equi-coerciveness condition, one can establish this stability. Indeed, let (Φ𝑛,Ψ𝑛)𝑛∈N
be a sequence of lsc convex proper functionals Φ𝑛,Ψ𝑛 : 𝑋 → ]−∞, +∞] such that
dom(Ψ𝑛) = 𝑉 , which satisfy (2.3), and let Φ,Ψ : 𝑋 → ]−∞, +∞] be lsc convex proper
functionals such that dom(Ψ) = 𝑉 and (Φ𝑛,Ψ𝑛) → (Φ,Ψ) for the product M × Γ𝑤-𝑉
convergence. Assume furthermore that (Ψ𝑛)𝑛∈N fulfills the following equi-coerciveness

7
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condition: for all 𝑟 ∈ R, there exists a weakly compact subset 𝐾𝑟 of 𝑉 such that for all
𝑛 ∈ N

[Ψ𝑛 b𝑉 ≤ 𝑟] ⊂ 𝐾𝑟 .

We claim that (Φ,Ψ) satisfies (2.3). Indeed take 𝑢 ∈ dom(𝜕Φ). From 𝜕Φ𝑛

𝐺𝑠,𝑠→ 𝜕Φ and
Proposition C.4 we infer that there exists 𝑢𝑛 ∈ dom(𝜕Φ𝑛) satisfying (2.6). From (2.3) we
have

〈𝜕Φ𝑛 (𝑢𝑛), 𝜕Ψ𝑛,𝜆 (𝑢𝑛)〉 ≥ −𝛽(‖𝜕Φ𝑛 (𝑢𝑛)‖2𝑋 + ‖𝑢𝑛‖2𝑋 + 1). (2.9)

Since 𝜕Ψ𝑛,𝜆 is Lipschitz continuouswith Lipschitz constant 1𝜆 (see [6, Proposition 17.2.1]),
we have

‖𝜕Ψ𝑛,𝜆 (𝑢𝑛) − 𝜕Ψ𝑛,𝜆 (𝑢)‖𝑋 ≤ 1
𝜆
‖𝑢𝑛 − 𝑢‖𝑋 . (2.10)

By combining (2.9) and (2.10), we infer that

〈𝜕Φ𝑛 (𝑢𝑛), 𝜕Ψ𝑛,𝜆 (𝑢)〉

≥ −𝛽(‖𝜕Φ𝑛 (𝑢𝑛)‖2𝑋 + ‖𝑢𝑛‖2 + 1) −
1
𝜆
‖𝜕Φ𝑛 (𝑢𝑛)‖𝑋 ‖𝑢𝑛 − 𝑢‖𝑋 . (2.11)

On the other hand, by using the equi-coerciveness hypothesis and the compact embedding
𝑉 ↩−↩→ 𝑋 , it is easy to show that

Ψ𝑛 b𝑉
Γ𝑤-𝑉−→ Ψ b𝑉 =⇒ Ψ𝑛

M−→ Ψ,

for a proof see Proposition D.2. Consequently (refer to [5, Proposition 3.29])

𝜕Ψ𝑛,𝜆 (𝑢) −→ 𝜕Ψ𝜆 (𝑢)

strongly in 𝑋 for all 𝜆 > 0. Therefore, by passing to the limit 𝑛→ +∞ in (2.10), we obtain

〈𝜕Φ(𝑢), 𝜕Ψ𝜆 (𝑢)〉 ≥ −𝛽(‖𝜕Φ‖2𝑋 + ‖𝑢‖2 + 1),

which completes the claim.

Regarding the kernel of the Bochner integral, we assume that 𝐾 : [0, 𝑇] → R+ belongs
to 𝐶1 ( [0, 𝑇]). For every 𝑣 ∈ 𝐿2 (0, 𝑇, 𝑋) we adopt the notation

𝐾 ★ 𝑣(𝑡) :=
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝑣(𝑠) d𝑠.

In case 𝜕Ψ is linear, to obtain the uniqueness of the solution we assume that 𝐾 satisfies
the additional conditions

𝐾 ∈𝐶2 (]0, 𝑇]), 𝐾 (0) > 0, and (−1)𝑘𝐾 (𝑘) (𝑡) ≥ 0 for 𝑡 ∈ ]0, 𝑇 [ and 𝑘 = 0, 1, 2, (2.12)
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which imply that for every 𝑣 ∈ 𝐿2 (0, 𝑇, 𝑋) such that 𝑣(𝑡) ∈ dom(𝜕Ψ) for a.e. 𝑡 ≥ 0,∫ 𝑡

0
〈𝑣(𝑠), 𝐾 ★ 𝜕Ψ(𝑣(𝑠))〉 d𝑠 ≥ 𝐾 (𝑡)

2

〈
𝜕Ψ

(∫ 𝑡

0
𝑣(𝑠) d𝑠

)
,

∫ 𝑡

0
𝑣(𝑠) d𝑠

〉
≥ 0 for all 𝑡 ≥ 0. (2.13)

For a proof see [8, 17].

2.2. Structure of the reaction functional

The reaction functional 𝐹 : [0, 𝑇] × 𝑋 → 𝑋 is a Borel measurable map satisfying:

(C1) there exists 𝐿 ∈ 𝐿2 (0, 𝑇) such that ‖𝐹 (𝑡, 𝑢) − 𝐹 (𝑡, 𝑣)‖𝑋 ≤ 𝐿 (𝑡)‖𝑢 − 𝑣‖𝑋 for all
(𝑢, 𝑣) ∈ 𝑋2 and all 𝑡 ∈ [0, 𝑇];

(C2) the map 𝑡 ↦→ ‖𝐹 (𝑡, 0)‖𝑋 belongs to 𝐿2 (0, 𝑇);

(C3) 𝐿 belongs to 𝐿2 (0, 𝑇) ∩𝑊1,1 (0, 𝑇) and there exists a nonnegative Θ ∈ 𝐿1 (0, 𝑇)
such that ‖𝐹 (𝑡, 𝑢) − 𝐹 (𝑠, 𝑢)‖𝑋 ≤

∫ 𝑡

𝑠
Θ(𝜎) d𝜎 for all 𝑠 < 𝑡 and all 𝑢 ∈ 𝑋 .

When Ω is a bounded domain of R𝑁 and 𝑋 = 𝐿2 (Ω), we specify 𝐹 as follows: let 𝑙 ∈ N∗,
then for all 𝑢 ∈ 𝐿2 (Ω) and for a.e. 𝑥 ∈ Ω, 𝐹 (𝑡, 𝑢) (𝑥) = 𝑟 (𝑡, 𝑥) · 𝑔(𝑢(𝑥)) + 𝑞(𝑡, 𝑥) where

• 𝑟 ∈ 𝐿∞ ((0, 𝑇) × R𝑁 ,R𝑙) ∩𝑊1,1 (0, 𝑇, 𝐿2loc (R
𝑁 ,R𝑙)),

• 𝑞 ∈ 𝐿2 (0, 𝑇, 𝐿2loc (R
𝑁 )) ∩𝑊1,1 (0, 𝑇, 𝐿2loc (R

𝑁 )),

• 𝑔 : R→ R𝑙 is bounded and 𝐿𝑔-lipschitz continuous.

It is easy to check that 𝐹 fulfills the conditions (C1), (C2) and (C3) with 𝐿 =

‖𝑟 ‖𝐿∞ ( (0,𝑇 )×R𝑁 ,R𝑙)𝐿𝑔 and Θ(𝜏) = 𝑀𝑔



 d𝑟
d𝑡 (𝜏, · )




𝐿2 (Ω,R𝑙)+



 d𝑞
d𝑡 (𝜏, · )




𝐿2 (Ω) for all 𝜏 ∈

(0, 𝑇) where 𝑀𝑔 = sup𝑟 ∈R |𝑔(𝑟) |. See Section 5.2 for sequences of functionals of this
type, and Section 6 for more details when 𝐹 is randomized.

3. Existence of a local solution

From now on, to simplify the notation, we assume thatΦ andΨ are Gâteaux-differentiable,
i.e. 𝜕Φ and 𝜕Ψ are univalent. We follow the standard strategy of [7, 8, 12, 24] consisting
in regularizing the non Fickian term

∫ 𝑡

0 𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢(𝑠)) d𝑠 by means of the Yosida
approximation of 𝜕Ψ. The novelty is the presence of a reaction term and the fact that we
assume condition (2.2) in place of (2.3).
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3.1. The regularized problem (P𝜆)

Consider the Cauchy problem

(P)

d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) + 𝐾 ★ 𝜕Ψ(𝑢) (𝑡) = 𝐹 (𝑡, 𝑢(𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ),

and denote by Ψ𝜆 the Moreau–Yosida approximation of index 𝜆 > 0 of Ψ. We begin by
establishing the global existence and uniqueness of a strong solution for the approximate
problem expressed in 𝐿2 (0, 𝑇, 𝑋)

(P𝜆)

d𝑢𝜆
d𝑡

(𝑡) + 𝜕Φ(𝑢𝜆 (𝑡)) + 𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) (𝑡) = 𝐹 (𝑡, 𝑢𝜆 (𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝜆 (0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ).

Set𝐺𝜆 (𝑡, 𝑢𝜆) := 𝐹 (𝑡, 𝑢𝜆 (𝑡)) −𝐾★𝜕Ψ𝜆 (𝑢𝜆) (𝑡) for all 𝜆 > 0 and all 𝑡 ∈ [0, 𝑇]. We rewrite
the approximate equation in (P𝜆) as

d𝑢𝜆
d𝑡

(𝑡) + 𝜕Φ(𝑢𝜆 (𝑡)) = 𝐺𝜆 (𝑡, 𝑢𝜆). (3.1)

Lemma 3.1. Assume that (C1), (C2), and (C3) hold. Then, there exists a unique solution
𝑢𝜆 ∈ 𝐶 ( [0, 𝑇], 𝑋) of (P𝜆). Furthermore d𝑢𝜆d𝑡 ∈ 𝐿2 (0, 𝑇, 𝑋), 𝜕Φ(𝑢𝜆) ∈ 𝐿2 (0, 𝑇, 𝑋), and

(S𝜆) 𝑢𝜆 (𝑡) ∈ dom(𝜕Φ) for all 𝑡 ∈ [0, 𝑇], and admits a right derivative d
+𝑢𝜆
d𝑡 (𝑡) which

satisfies for every 𝑡 ∈ [0, 𝑇 [
d+𝑢𝜆
d𝑡

(𝑡) + 𝜕Φ(𝑢𝜆 (𝑡)) = 𝐺𝜆 (𝑡, 𝑢𝜆).

Proof. Since 𝜕Ψ𝜆 is Lipschitz continuous with Lipschitz constant 1𝜆 , it is easy to show
that for all (𝑢, 𝑣) ∈ 𝐶 ( [0, 𝑇], 𝑋) × 𝐶 ( [0, 𝑇], 𝑋),

‖𝐾 ★ 𝜕Ψ𝜆 (𝑢) − 𝐾 ★ 𝜕Ψ𝜆 (𝑣)‖𝐶 ( [0,𝑇 ],𝑋 ) ≤ 𝐶𝜆,𝑇 ‖𝑢 − 𝑣‖𝐶 ( [0,𝑇 ],𝑋 ) (3.2)

where 𝐶𝜆,𝑇 := 1
𝜆

(∫ 𝑇

0 𝐾 (𝑠) d𝑠
)
. For each 𝑢 ∈ 𝐶 ( [0, 𝑇], 𝑋), denote by Λ𝑢 the unique

solution in 𝐶 ( [0, 𝑇], 𝑋) with dΛ𝑢d𝑡 ∈ 𝐿2 (0, 𝑇, 𝑋) of the Cauchy problem

(P𝑢)

dΛ𝑢
d𝑡

(𝑡) + 𝜕Φ(Λ𝑢(𝑡)) = 𝐺𝜆 (𝑡, 𝑢) for a.e. 𝑡 ∈ (0, 𝑇)

Λ𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ).

For existence and uniqueness of Λ𝑢, we only have to check that 𝐺𝜆 ∈ 𝐿2 (0, 𝑇, 𝑋)
(refer to [6, Theorem 17.2.5], or [9, Theorem 3.7]). The claim follows straightforwardly
from (C1), (C2) and (3.2).
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The method is to show that the iterated map Λ𝑛 is a strict contraction for 𝑛 large
enough. Indeed, from existence of a unique fixed point 𝑢𝜆 for Λ𝑛 we will deduce that Λ𝑢𝜆
is a fixed point too. Thus, from uniqueness Λ𝑢𝜆 = 𝑢𝜆, so that 𝑢𝜆 is a fixed point for Λ
which clearly solves (P𝜆) and satisfies d𝑢𝜆d𝑡 ∈ 𝐿2 (0, 𝑇, 𝑋) and 𝜕Φ(𝑢𝜆) ∈ 𝐿2 (0, 𝑇, 𝑋).
Let (𝑢, 𝑣) ∈ 𝐶 ( [0, 𝑇], 𝑋) × 𝐶 ( [0, 𝑇], 𝑋) satisfying for a.e. 𝑡 ∈ (0, 𝑇)

dΛ𝑢
d𝑡

(𝑡) + 𝜕Φ(Λ𝑢(𝑡)) = 𝐺𝜆 (𝑡, 𝑢),

dΛ𝑣
d𝑡

(𝑡) + 𝜕Φ(Λ𝑣(𝑡)) = 𝐺𝜆 (𝑡, 𝑣).

From the monotonicity of 𝜕Φ, we infer that for a.e. 𝜎 ∈ (0, 𝑇)〈
dΛ𝑣
d𝑡

(𝜎) − dΛ𝑢
d𝑡

(𝜎),Λ𝑣(𝜎) − Λ𝑢(𝜎)
〉
≤ 〈𝐺𝜆 (𝜎, 𝑢) − 𝐺𝜆 (𝜎, 𝑣),Λ𝑣(𝜎) − Λ𝑢(𝜎)〉 ,

hence
1
2
d
d𝑡

‖Λ𝑣(𝜎) − Λ𝑢(𝜎)‖2𝑋 ≤ 〈𝐺𝜆 (𝜎, 𝑢) − 𝐺𝜆 (𝜎, 𝑣),Λ𝑣(𝜎) − Λ𝑢(𝜎)〉 .

By integration, we have for all 𝑡 ∈ [0, 𝑇]
1
2
‖Λ𝑣(𝑡) − Λ𝑢(𝑡)‖2𝑋 ≤

∫ 𝑡

0
〈𝐺𝜆 (𝜎, 𝑢) − 𝐺𝜆 (𝜎, 𝑣),Λ𝑣(𝜎) − Λ𝑢(𝜎)〉 d𝜎

≤
∫ 𝑡

0
‖𝐺𝜆 (𝜎, 𝑢) − 𝐺𝜆 (𝜎, 𝑣)‖𝑋 ‖Λ𝑣(𝜎) − Λ𝑢(𝜎)‖𝑋d𝜎.

Thus, according to Lemma B.1 with 𝑝 = 2, it follows that for all 𝑡 ∈ [0, 𝑇]

‖Λ𝑣(𝑡) − Λ𝑢(𝑡)‖𝑋 ≤
∫ 𝑡

0
‖𝐺𝜆 (𝜎, 𝑢) − 𝐺𝜆 (𝜎, 𝑣)‖𝑋d𝜎.

From (3.2) and (C1) we infer that for all 𝑡 ∈ [0, 𝑇]

‖Λ𝑣 − Λ𝑢‖𝐶 ( [0,𝑡 ],𝑋 ) ≤
∫ 𝑡

0
𝐿𝜆,𝑇 (𝜎)‖𝑢 − 𝑣‖𝐶 ( [0,𝜎 ],𝑋 )d𝜎 (3.3)

where 𝐿𝜆,𝑇 (𝜎) := 𝐶𝜆,𝑇 + 𝐿 (𝜎). By iterating (3.3), and according to the formula∫ 𝑡

0
𝐿𝜆,𝑇 (𝜎1)

∫ 𝜎1

0
𝐿𝜆,𝑇 (𝜎2) . . .

∫ 𝜎𝑛−1

0
𝐿𝜆,𝑇 (𝜎𝑛)d𝜎𝑛 . . . d𝜎1 =

(∫ 𝑡

0 𝐿𝜆,𝑇 (𝜎)d𝜎
)𝑛

𝑛!
obtained by a standard calculus for multiple integrals, we obtain

‖Λ𝑛𝑣 − Λ𝑛𝑢‖𝐶 ( [0,𝑇 ],𝑋 ) ≤
(∫ 𝑇

0 𝐿𝜆,𝑇 (𝜎)d𝜎
)𝑛

𝑛!
‖𝑢 − 𝑣‖𝐶 ( [0,𝑇 ],𝑋 ) .

The claim follows for 𝑛 sufficiently large.

11



Omar Anza Hafsa & Jean Philippe Mandallena & Gérard Michaille

To prove that 𝑢𝜆 satisfies S𝜆, we have to establish that 𝐺𝜆 ∈ 𝑊1,1 (0, 𝑇, 𝑋) (see [6,
Theorem 17.2.6], or [9, Theorem 3.7]). We first claim that 𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) belongs to
𝑊1,2 (0, 𝑇, 𝑋). This follows from





 dd𝑡 𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)





𝐿2 (0,𝑇 ,𝑋 )

≤ (𝐾 (0) + 𝑇 12 ‖𝐾 ′‖𝐿2 (0,𝑇 ) )‖𝜕Ψ𝜆 (𝑢𝜆)‖𝐿2 (0,𝑇 ,𝑋 )

which is obtained from the formula

d
d𝑡
𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) (𝑡) = 𝐾 (0)𝜕Ψ𝜆 (𝑢𝜆) (𝑡) + 𝐾 ′ ★ 𝜕Ψ𝜆 (𝑢𝜆) (𝑡) for a.e. 𝑡 ∈ (0, 𝑇). (3.4)

It remains to establish that 𝐹 ( · , 𝑢𝜆) ∈ 𝑊1,1 (0, 𝑇, 𝑋). This follows from (C3), and the
following calculation: for all (𝑠, 𝑡) ∈ [0, 𝑇]2 with 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , we have

‖𝐹 (𝑡, 𝑢𝜆 (𝑡)) − 𝐹 (𝑠, 𝑢𝜆 (𝑠))‖𝑋
≤ ‖𝐹 (𝑡, 𝑢𝜆 (𝑡)) − 𝐹 (𝑠, 𝑢𝜆 (𝑡))‖𝑋 + |𝐿 (𝑠) |‖𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑠)‖𝑋

≤
∫ 𝑡

𝑠

Θ(𝜎)d𝜎 +
(
𝐿 (0) +

∫ 𝑇

0

���� d𝐿d𝜎 (𝜎)
����d𝜎) ∫ 𝑡

𝑠





d𝑢𝜆d𝜎 (𝜎)





𝑋

d𝜎, (3.5)

which proves that 𝐹 ( · , 𝑢𝜆) is absolutely continuous. The proof is complete. �

3.2. Convergence of (P𝜆) to (P): existence of a local solution of (P)

The following lemma furnishes local estimates for the solution of (P𝜆), needful for
establishing the convergence of (P𝜆) to (P). Its proof is postponed to Appendix A
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Lemma 3.2. Assume that (2.1), (2.2) and (C1), (C2), (C3) hold. Then for every 0 < 𝑇 ≤ 𝑇
satisfying 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) < 𝛼Φ,Ψ, the following estimates hold:

sup
𝜆>0

‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) < +∞, (3.6)

sup
𝜆>0

‖𝑢𝜆‖𝐿2 (0,𝑇̃ ,𝑉 ) < +∞, (3.7)

sup
𝜆>0





d𝑢𝜆d𝑡 




𝐿2 (0,𝑇̃ ,𝑋 )

< +∞, (3.8)

sup
𝜆>0

‖𝜕Φ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) < +∞, (3.9)

sup
𝜆>0

‖𝑢𝜆‖𝐶 (0,𝑇̃ ,𝑋 ) < +∞, (3.10)

sup
𝜆>0





d+𝑢𝜆d𝑡 (𝑡)





𝑋

< +∞ for each 𝑡 ∈ ]0, 𝑇], (3.11)

sup
𝜆>0

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 < +∞ for each 𝑡 ∈ [0, 𝑇], (3.12)

sup
𝜆>0

‖𝜕Φ(𝑢𝜆 (𝑡))‖𝑋 < +∞ for each 𝑡 ∈ [0, 𝑇] . (3.13)

Theorem 3.3 (Local solution). Assume that (2.1), (2.2), (C1), (C2), (C3) hold, and let
𝑇 > 0 be a positive number satisfying 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) < 𝛼Φ,Ψ. Then
(P) admits a solution 𝑢𝑇̃ in 𝐶 ( [0, 𝑇], 𝑋) which satisfies 𝑢𝑇̃ (𝑡) ∈ dom(𝜕Φ) for each
𝑡 ∈ [0, 𝑇].

Proof. To shorten the notation we write 𝑢 for 𝑢𝑇̃ . The proof falls into four steps.

Step 1: Compactness in 𝐶 ( [0, 𝑇], 𝑋). We establish existence of 𝑢 ∈ 𝐶 ( [0, 𝑇], 𝑋) and a
subsequence of (𝑢𝜆)𝜆>0 (not relabeled), such that

𝑢𝜆 −→ 𝑢 in 𝐶 ( [0, 𝑇], 𝑋), (3.14)

𝐽𝜆𝑢𝜆 (𝑡) −→ 𝑢(𝑡) in 𝑋, for all 𝑡 ∈ [0, 𝑇], (3.15)

where 𝐽𝜆 := (𝐼 + 𝜆𝜕Ψ)−1 : 𝑋 → 𝑋 is the resolvent of index 𝜆 of 𝜕Ψ (for the properties
of 𝐽𝜆 see [6, Proposition 17.2.1]).
To prove (3.14), themethod consists in applyingAscoli’s theorem. From (3.8) and (3.10)

we have

sup
𝜆>0

‖𝑢𝜆‖𝐶 ( [0,𝑇̃ ],𝑋 ) < +∞ (equiboundedness),

‖𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑠)‖𝑋 ≤ (𝑡 − 𝑠) 12 sup
𝜆>0





d𝑢𝜆d𝑡 




𝐿2 (0,𝑇̃ ,𝑋 )

for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 (equicontinuity).
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It remains to show that for each 𝑡 ∈ ]0, 𝑇], the set 𝐸𝑡 := {𝑢𝜆 (𝑡) : 𝜆 > 0} is relatively
compact in 𝑋 (for 𝑡 = 0, 𝐸𝑡 is reduced to {𝑢0}). Let 𝑡 ∈ ]0, 𝑇]. From the compact
embedding 𝑉 ↩−↩→ 𝑋 , it suffices to establish that sup𝜆>0 ‖𝑢𝜆 (𝑡)‖𝑉 < +∞. The claim
follows from (2.1) and (3.12) which yields

‖𝑢𝜆 (𝑡)‖2𝑉 ≤ 1
𝛼Ψ

〈𝜕Ψ(𝑢𝜆 (𝑡)), 𝑢𝜆 (𝑡)〉 ≤
1
𝛼Ψ

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 ‖𝑢𝜆 (𝑡)‖𝑋

≤ 1
𝛼Ψ

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 ‖𝑢𝜆 (𝑡)‖𝑉 ,

hence
‖𝑢𝜆 (𝑡)‖𝑉 ≤ 1

𝛼Ψ
sup
𝜆>0

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 .

Estimate (3.15) is established as follows: from the definition of 𝐽𝜆, we have 𝐽𝜆𝑢𝜆 (𝑡) −
𝑢𝜆 (𝑡) = 𝜆𝜕Ψ𝜆 (𝑢𝜆 (𝑡)) so that, from

‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝑋 ≤ ‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 (3.16)

(see [6, Proposition 17.2.2]), we infer that

‖𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)‖𝑋 ≤ 𝜆‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝑋 ≤ 𝜆‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 .

Hence, from (3.12), 𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡) → 0 in 𝑋 for 𝑡 ∈ ]0, 𝑇] as 𝜆 → 0.

Step 2. We prove that 𝑢(𝑡) ∈ dom(𝜕Φ) for all 𝑡 ∈ [0, 𝑇], and that (3.14), (3.15) hold in
𝑉 equipped with its norm ‖ · ‖𝑉 . More precisely

𝑢𝜆 −→ 𝑢 in 𝐶 ( [0, 𝑇], 𝑉), (3.17)
𝐽𝜆𝑢𝜆 (𝑡) −→ 𝑢(𝑡) in 𝑉 for all 𝑡 ∈ [0, 𝑇] . (3.18)

Fix 𝑡 ∈ [0, 𝑇]. From (3.13), there exist 𝐵(𝑡) ∈ 𝑋 and a subsequence such that

𝜕Φ(𝑢𝜆 (𝑡)) −⇀ 𝐵(𝑡)weakly in 𝑋.

From (3.14) 𝑢𝜆 (𝑡) → 𝑢(𝑡) strongly in 𝑋 , and since the maximal monotone operator
𝜕Φ is demi-closed (see [6, Proposition 17.2.4]), we deduce that 𝑢(𝑡) ∈ dom(𝜕Φ) and
𝐵(𝑡) = 𝜕Φ(𝑢(𝑡)).
Observe that 𝑢𝜆 (𝑡) and 𝑢(𝑡) belong to dom(𝜕Φ) ⊂ dom(𝜕Ψ) for all 𝑡 ∈ [0, 𝑇]. Hence

from (2.1), we deduce
1
𝛼Ψ

‖𝑢𝜆 (𝑡) − 𝑢(𝑡)‖2𝑉 ≤ 〈𝜕Ψ(𝑢𝜆 (𝑡)) − 𝜕Ψ(𝑢(𝑡)), 𝑢𝜆 (𝑡) − 𝑢(𝑡)〉

≤
(
sup
𝜆>0

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 + ‖𝜕Ψ(𝑢(𝑡))‖𝑋
)
‖𝑢𝜆 (𝑡) − 𝑢(𝑡)‖𝑋 .
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Hence (3.17) follows from (3.12) and (3.14). The proof of (3.18) is similar. More precisely,
for all 𝑡 ∈ [0, 𝑇]

‖𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)‖2𝑉 ≤ 〈𝜕Ψ(𝐽𝜆𝑢𝜆 (𝑡)) − 𝜕Ψ(𝑢𝜆 (𝑡)), 𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)〉
≤ sup

𝜆>0
(‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝑋 + ‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 )‖𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)‖𝑋 .

(recall that 𝜕Ψ𝜆 (𝑢𝜆 (𝑡)) = 𝜕Ψ(𝐽𝜆𝑢𝜆 (𝑡)), see [6, Proposition 17.2.1]). From (3.16)
and (3.12)

sup
𝜆>0

‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝑋 ≤ sup
𝜆>0

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 < +∞,

hence
‖𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)‖2𝑉 ≤ 2 sup

𝜆>0
‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 ‖𝐽𝜆𝑢𝜆 (𝑡) − 𝑢𝜆 (𝑡)‖𝑋

so that (3.18) follows from (3.12) and (3.15).

Step 3. We establish that𝐺𝜆 ( · , 𝑢𝜆) ⇀ 𝐺 ( · , 𝑢) in 𝐿2 (0, 𝑇, 𝑋) where the function𝐺 ( · , 𝑢)
is defined by 𝐺 (𝑡, 𝑢) := 𝐹 (𝑡, 𝑢(𝑡)) − 𝐾 ★ 𝜕Ψ(𝑢) (𝑡).
From (C1), (C2) and (3.14), 𝐹 ( · , 𝑢𝜆) strongly converges to 𝐹 ( · , 𝑢) in 𝐿2 (0, 𝑇, 𝑋).

We claim that 𝜕Ψ𝜆 (𝑢𝜆) ⇀ 𝜕Ψ(𝑢) in 𝐿2 (0, 𝑇, 𝑋), from which we easily deduce that
𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) ⇀ 𝐾 ★ 𝜕Ψ(𝑢) in 𝐿2 (0, 𝑇, 𝑋). From (3.6) we have

sup
𝜆>0

‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝐿2 (0,𝑇̃ ,𝑋 ) ≤ sup
𝜆>0

‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝐿2 (0,𝑇̃ ,𝑋 ) < +∞.

Thus, using the compact embedding 𝐿2 (0, 𝑇, 𝑋) ↩−↩→ 𝐿2 (0, 𝑇,𝑉 ′), we infer that there
exist a subsequence (not relabeled) and 𝐶 ∈ 𝐿2 (0, 𝑇, 𝑋) such that successively,

𝜕Ψ𝜆 (𝑢𝜆) −⇀ 𝐶 weakly in 𝐿2 (0, 𝑇, 𝑋),

𝜕Ψ𝜆 (𝑢𝜆) −→ 𝐶 strongly in 𝐿2 (0, 𝑇,𝑉 ′),

𝜕Ψ𝜆 (𝑢𝜆 (𝑡)) −→ 𝐶 (𝑡) in 𝑉 ′ for a.e. 𝑡 ∈ (0, 𝑇).

Since 𝜕Ψ𝜆 (𝑢𝜆) = 𝜕Ψ(𝐽𝜆𝑢𝜆), we deduce from above that 𝜕Ψ(𝐽𝜆𝑢𝜆 (𝑡)) → 𝐶 (𝑡) in 𝑉 ′ for
a.e. 𝑡 ∈ (0, 𝑇). As from (3.18), 𝐽𝜆𝑢𝜆 (𝑡) → 𝑢(𝑡) in 𝑉 , from the maximality of 𝜕Ψ we infer
that 𝐶 (𝑡) = 𝜕Ψ(𝑢(𝑡)) for a.e. 𝑡 ∈ (0, 𝑇). This proves the claim.

Step 4: 𝑢 solves (P). To shorten the notation, we write 𝐺𝜆 (𝑡) for 𝐺𝜆 (𝑡, 𝑢𝜆). Denote by
Φ∗ the Legendre–Fenchel conjugate of Φ. According to the Fenchel extremality condition
(see [6, Proposition 9.5.1]), equation (3.1) is equivalent to

Φ(𝑢𝜆 (𝑡)) +Φ∗
(
𝐺𝜆 (𝑡) −

d𝑢𝜆
d𝑡

(𝑡)
)
+
〈
d𝑢𝜆
d𝑡

(𝑡) − 𝐺𝜆 (𝑡), 𝑢𝜆 (𝑡)
〉
= 0
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for a.e. 𝑡 ∈ (0, 𝑇), which, from the Legendre–Fenchel inequality, is in turn equivalent to∫ 𝑇̃

0

[
Φ(𝑢𝜆 (𝑡)) +Φ∗

(
𝐺𝜆 (𝑡) −

d𝑢𝜆
d𝑡

(𝑡)
)
+
〈
d𝑢𝜆
d𝑡

(𝑡) − 𝐺𝜆 (𝑡), 𝑢𝜆 (𝑡)
〉]
d𝑡 = 0.

Therefore, (3.1) is equivalent to∫ 𝑇̃

0

[
Φ(𝑢𝜆 (𝑡)) +Φ∗

(
𝐺𝜆 (𝑡) −

d𝑢𝜆
d𝑡

(𝑡)
)
+ d
d𝑡
1
2
‖𝑢𝜆 (𝑡)‖2 − 〈𝐺𝜆 (𝑡), 𝑢𝜆 (𝑡)〉

]
d𝑡 = 0,

hence to∫ 𝑇̃

0

[
Φ(𝑢𝜆 (𝑡)) +Φ∗

(
𝐺𝜆 (𝑡) −

d𝑢𝜆
d𝑡

(𝑡)
)]
d𝑡 + 1

2
(‖𝑢𝜆 (𝑇)‖2 − ‖𝑢0‖2)

−
∫ 𝑇̃

0
〈𝐺𝜆 (𝑡), 𝑢𝜆 (𝑡)〉 d𝑡 = 0.

Equivalently

𝐼Φ (𝑢𝜆) + 𝐼Φ∗

(
𝐺𝜆 −

d𝑢𝜆
d𝑡

)
+ 1
2
(‖𝑢𝜆 (𝑇)‖2 − ‖𝑢0‖2) −

∫ 𝑇̃

0
〈𝐺𝜆 (𝑡), 𝑢𝜆 (𝑡)〉 d𝑡 = 0 (3.19)

where the integral functionals 𝐼Φ and 𝐼Φ∗ are respectively defined in 𝐿2 (0, 𝑇, 𝑋) by

𝐼Φ (𝑣) =
∫ 𝑇̃

0
Φ(𝑣(𝑡)) d𝑡 and 𝐼Φ∗ (𝑣) =

∫ 𝑇̃

0
Φ∗ (𝑣(𝑡)) d𝑡.

Combining 𝑢𝜆 (𝑇) = 𝑢0 +
∫ 𝑇̃

0
d𝑢𝜆
d𝑡 (𝑡)d𝑡 with d𝑢𝜆d𝑡 ⇀ d𝑢

d𝑡 in 𝐿
2 (0, 𝑇, 𝑋) which is obtained

from (3.8), we infer that
lim inf
𝜆→+∞



𝑢𝜆 (𝑇)

2 ≥ 

𝑢(𝑇)

2. (3.20)

By passing to the lower limit in (3.19), from (3.20), (3.14), Step 3, and noticing that
𝐼Φ and 𝐼Φ∗ are lower semicontinuous for the weak topology of 𝐿2 (0, 𝑇, 𝑋), we obtain∫ 𝑇

0

[
Φ(𝑢(𝑡)) +Φ∗

(
𝐺 (𝑡) − d𝑢

d𝑡
(𝑡)

)]
d𝑡+ 1
2
(
‖𝑢(𝑇)‖2−‖𝑢0‖2

)
−
∫ 𝑇

0
〈𝐺 (𝑡), 𝑢(𝑡)〉 d𝑡 ≤ 0

or equivalently,∫ 𝑇

0

[
Φ(𝑢(𝑡)) +Φ∗

(
𝐺 (𝑡) − d𝑢

d𝑡
(𝑡)

)
+
〈
d𝑢
d𝑡

(𝑡) − 𝐺 (𝑡), 𝑢(𝑡)
〉]
d𝑡 ≤ 0. (3.21)

From the Legendre–Fenchel inequality, we have

Φ(𝑢(𝑡)) +Φ∗
(
𝐺 (𝑡) − d𝑢

d𝑡
(𝑡)

)
+
〈
d𝑢
d𝑡

(𝑡) − 𝐺 (𝑡), 𝑢(𝑡)
〉
≥ 0,
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so that (3.21) yields that for a.e. 𝑡 ∈ (0, 𝑇),

Φ(𝑢(𝑡)) +Φ∗
(
𝐺 (𝑡) − d𝑢

d𝑡
(𝑡)

)
+
〈
d𝑢
d𝑡

(𝑡) − 𝐺 (𝑡), 𝑢(𝑡)
〉
= 0

which is equivalent to

d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) = 𝐺 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇).

The proof is complete. �

4. Existence of solutions in 𝐶 ( [0, 𝑇], 𝑋)

4.1. Existence of a global solution in 𝐶 ( [0, 𝑇], 𝑋): translation-induction
method

Any local solution obtained in Theorem 3.3 can be continued on [0, 𝑇] as follows:
cover [0, 𝑇] by the translated segments of [0, 𝑇], and stick together the 𝑇-translated
local solutions in 𝐶 ( [0, 𝑇], 𝑋) of each suitably modified problem (P). This process is a
generalization of a standard method; see for instance [7, p. 243].

Theorem 4.1. Given 𝑇 > 0 satisfying 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) < 𝛼Φ,Ψ, any local
solution 𝑢𝑇̃ of (P) in 𝐶 ( [0, 𝑇], 𝑋) obtained in Theorem 3.3 can be extended to a solution
of (P) in 𝐶 ( [0, 𝑇], 𝑋).

Proof. For 𝑖 = 1, . . . , ℓ where ℓ := max{𝑘 ∈ N : 𝑘𝑇 ≤ 𝑇}, set 𝑇𝑖 := 𝑖𝑇 , 𝑇ℓ+1 = 𝑇 , and
denote by 𝑢0 the solution 𝑢𝑇̃ of (P) on (0, 𝑇) whose existence has been established in
Theorem 3.3. For 𝑖 = 1, . . . , ℓ consider the Cauchy problem defined by induction:

(P𝑖)

d𝑢𝑖
d𝑡

(𝑡) + 𝜕Φ(𝑢𝑖 (𝑡)) + 𝐾 ★ 𝜕Ψ(𝑢𝑖) (𝑡) = 𝐹 (𝑡 + 𝑇𝑖 , 𝑢𝑖 (𝑡)) − 𝑅𝑖 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝑖 (0) = 𝑢𝑖−1 (𝑇)

where

𝑅𝑖 (𝑡) :=
𝑖∑︁

𝑘=1

∫ 𝑇𝑘

𝑇𝑘−1

𝐾 (𝑡 + 𝑇𝑖 − 𝑠)𝜕Ψ(𝑢𝑘−1 (𝑠 − 𝑇𝑘−1)) d𝑠.

Existence of 𝑢𝑖 can be obtained as in the proof of Theorem 3.3: substitute 𝐹𝑖 (𝑡, 𝑢𝑖 (𝑡)) :=
𝐹 (𝑡 + 𝑇𝑖 , 𝑢𝑖 (𝑡)) − 𝑅𝑖 (𝑡) for 𝐹 (𝑡, 𝑢(𝑡)), and observe that 𝑅𝑖 ∈ 𝑊1,1 (0, 𝑇, 𝑋) so that 𝐹𝑖
satisfies (C1), (C2), (C3). Note that 𝑢𝑖−1 (𝑇) ∈ dom(𝜕Φ) (repeat the first part of Step 2 in
the proof of Theorem 3.3 and reason by induction).
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Finally we show that the function 𝑢 defined by 𝑢(𝑡) := 𝑢𝑖 (𝑡−𝑇𝑖) whenever 𝑡 ∈ [𝑇𝑖 , 𝑇𝑖+1],
solves (P). Indeed, for 𝑡 ∈ [𝑇𝑖 , 𝑇𝑖+1] the following calculation holds:

d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢(𝑠)) d𝑠 − 𝐹 (𝑡, 𝑢(𝑡))

=
d𝑢𝑖
d𝑡

(𝑡 − 𝑇𝑖) + 𝜕Φ(𝑢𝑖 (𝑡 − 𝑇𝑖)) +
𝑖∑︁

𝑘=1

∫ 𝑇𝑘

𝑇𝑘−1

𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢𝑘−1 (𝑠 − 𝑇𝑘−1)) d𝑠

+
∫ 𝑡

𝑇𝑖

𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢𝑖 (𝑠 − 𝑇𝑖)) d𝑠 − 𝐹 (𝑡, 𝑢𝑖 (𝑡 − 𝑇𝑖)).

Since 𝜎 := 𝑡 − 𝑇𝑖 ∈ [0, 𝑇𝑖+1 − 𝑇𝑖] = [0, 𝑇], the second member is equal to

d𝑢𝑖
d𝑡

(𝜎) + 𝜕Φ(𝑢𝑖 (𝜎)) +
𝑖∑︁

𝑘=1

∫ 𝑇𝑘

𝑇𝑘−1

𝐾 (𝜎 + 𝑇𝑖 − 𝑠)𝜕Ψ(𝑢𝑘−1 (𝑠 − 𝑇𝑘−1)) d𝑠

+
∫ 𝜎+𝑇𝑖

𝑇𝑖

𝐾 (𝜎 + 𝑇𝑖 − 𝑠)𝜕Ψ(𝑢𝑖 (𝑠 − 𝑇𝑖)) d𝑠 − 𝐹 (𝜎 + 𝑇𝑖 , 𝑢𝑖 (𝜎))

=
d𝑢𝑖
d𝑡

(𝜎) + 𝜕Φ(𝑢𝑖 (𝜎)) + 𝑅𝑖 (𝜎) +
∫ 𝜎

0
𝐾 (𝜎 − 𝑠)𝜕Ψ(𝑢𝑖 (𝑠)) d𝑠 − 𝐹 (𝜎 + 𝑇𝑖 , 𝑢𝑖 (𝜎))

=
d𝑢𝑖
d𝑡

(𝜎) + 𝜕Φ(𝑢𝑖 (𝜎)) + 𝐾 ★ 𝜕Ψ(𝑢𝑖) (𝜎) + 𝑅𝑖 (𝜎) − 𝐹 (𝜎 + 𝑇𝑖 , 𝑢𝑖 (𝜎))

which, from (P𝑖), is equal to 0. Moreover 𝑢(𝑇−
𝑖
) = 𝑢𝑖−1 (𝑇) and 𝑢(𝑇+

𝑖
) = 𝑢𝑖 (0) = 𝑢𝑖−1 (𝑇)

so that 𝑢 ∈ 𝐶 ( [0, 𝑇], 𝑋). �

4.2. Existence and uniqueness when Ψ is a quadratic functional

Proposition 4.2. Under the conditions of Theorem 3.3, assume further that Ψ is a
quadratic form in 𝑉 . Then (P) admits a unique solution.

Proof. Let 𝑢1 and 𝑢2 be two solutions of (P). This yields for a.e. 𝑠 ∈ (0, 𝑇),

d(𝑢1 − 𝑢2)
d𝑡

(𝑠) + (𝜕Φ(𝑢1 (𝑠)) − 𝜕Φ(𝑢2 (𝑠))) + 𝐾 ★ 𝜕Ψ(𝑢1 − 𝑢2) (𝑠)

= 𝐹 (𝑠, 𝑢1 (𝑠)) − 𝐹 (𝑠, 𝑢2 (𝑠)). (4.1)

Form the scalar product of (4.1) with 𝑢1 (𝑠) − 𝑢2 (𝑠) and integrate over (0, 𝑡), taking into
account the monotonicity of 𝜕Φ and (2.13), we obtain

1
2
‖𝑢1 (𝑡) − 𝑢2 (𝑡)‖2 ≤

∫ 𝑡

0
𝐿 (𝑠) ‖𝑢1 (𝑠) − 𝑢2 (𝑠)‖2 d𝑠.

We conclude by applying the standard Grönwall’s lemma. �
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From Proposition 4.2 and Theorem 4.1, we have

Corollary 4.3. When Ψ is a quadratic functional, then (P) admits a unique solution in
𝐶 ( [0, 𝑇], 𝑋).

4.3. Existence of a right derivative of the solutions at each 𝑡 ∈ [0, 𝑇 [.

Theorem 4.4 below is crucial to establish the convergence in Section 5. For its proof,
condition (2.2) does not play any role.

Theorem 4.4. Every solution 𝑢 of (P) admits a right derivative at every 𝑡 ∈ [0, 𝑇 [ which
satisfies the equation:

d+𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) + 𝐾 ★ 𝜕Ψ(𝑢) (𝑡) = 𝐹 (𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 [. (4.2)

Proof.

Step 1. Fix 𝑡0 in [0, 𝑇 [ and write ℎ to denote a sequence (ℎ𝑛)𝑛∈N of positive numbers
decreasing to 0. This step is devoted to the following estimate:

lim sup
ℎ→0





1ℎ (𝑢(𝑡0 + ℎ) − 𝑢(𝑡0))



𝑋
≤ ‖−𝜕Φ(𝑢(𝑡0)) − 𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0))‖𝑋 . (4.3)

Observe that the constant function 𝑣 := 𝑢(𝑡0) satisfies
d𝑣
d𝑡

(𝑡) + 𝜕Φ(𝑣(𝑡)) = 𝜕Φ(𝑢(𝑡0)) (4.4)

for each 𝑡 ∈ (0, 𝑇). Subtract (4.4) from
d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) = −𝐾 ★ 𝜕Ψ(𝑢) (𝑡) + 𝐹 (𝑡, 𝑢(𝑡)),

form the scalar product with 𝑢(𝑡) − 𝑣(𝑡) and integrate over (𝑡0, 𝑡0 + ℎ). This yields

1
2
‖𝑢(𝑡0 + ℎ) − 𝑢(𝑡0)‖2𝑋

≤
∫ 𝑡0+ℎ

𝑡0

〈−𝜕Φ(𝑢(𝑡0)) − 𝐾 ★ 𝜕Ψ(𝑢) (𝑠) + 𝐹 (𝑠, 𝑢(𝑠)), 𝑢(𝑠) − 𝑢(𝑡0)〉 d𝑠.

According to the Grönwall type lemma, Lemma B.1 with 𝑝 = 2, it follows that



1ℎ (𝑢(𝑡0 + ℎ) − 𝑢(𝑡0))



𝑋 ≤ 1
ℎ

∫ 𝑡0+ℎ

𝑡0

‖−𝜕Φ(𝑢(𝑡0)) − 𝐾 ★ 𝜕Ψ(𝑢) (𝑠) + 𝐹 (𝑠, 𝑢(𝑠))‖𝑋d𝑠.

The conclusion follows by passing to the upper limit when ℎ → 0+.
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Step 2. We prove that
1
ℎ
(𝑢(𝑡0+ℎ)−𝑢(𝑡0)) −⇀ −𝜕Φ(𝑢(𝑡0))−𝐾★𝜕Ψ(𝑢) (𝑡0) +𝐹 (𝑡0, 𝑢(𝑡0)) weakly in 𝑋. (4.5)

From Step 1 a subsequence not relabeled of 1
ℎ
(𝑢(𝑡0 + ℎ) − 𝑢(𝑡0)) weakly converges to

some 𝑤 in 𝑋 . For identifying 𝑤, take (𝜉, 𝜉∗) ∈ 𝜕Φ, i.e. 𝜉∗ = 𝜕Φ(𝜉). Then the constant
function 𝑣 = 𝜉 satisfies

d𝑣
d𝑡

(𝑡) + 𝜕Φ(𝑣(𝑡)) = 𝜉∗ (4.6)

for all 𝑡 ∈ (0, 𝑇). Subtract (4.6) from
d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) = −𝐾 ★ 𝜕Ψ(𝑢) (𝑡) + 𝐹 (𝑡, 𝑢(𝑡)),

and form the scalar product with 𝑢(𝑡) − 𝜉 and integrate over (𝑡0, 𝑡0 + ℎ). This yields

1
2
‖𝑢(𝑡0 + ℎ) − 𝜉‖2𝑋 − 1

2
‖𝑢(𝑡0) − 𝜉‖2𝑋

≤
∫ 𝑡0+ℎ

𝑡0

〈−𝐾 ★ 𝜕Ψ(𝑢) (𝑠) + 𝐹 (𝑠, 𝑢(𝑠)) − 𝜉∗, 𝑢(𝑠) − 𝜉〉 d𝑠.

From the elementary inequality 2 〈𝑎 − 𝑏, 𝑏〉 ≤ ‖𝑎‖2
𝑋
− ‖𝑏‖2

𝑋
we infer that〈

1
ℎ
(𝑢(𝑡0 + ℎ) − 𝑢(𝑡0)), 𝑢(𝑡0) − 𝜉

〉
≤ 1
ℎ

∫ 𝑡0+ℎ

𝑡0

〈−𝐾 ★ 𝜕Ψ(𝑢) (𝑠) + 𝐹 (𝑠, 𝑢(𝑠)) − 𝜉∗, 𝑢(𝑠) − 𝜉〉 d𝑠.

Passing to the limit ℎ → 0 we find

〈𝑤, 𝑢(𝑡0) − 𝜉〉 ≤ 〈−𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0)) − 𝜉∗, 𝑢(𝑡0) − 𝜉〉 ,
〈−𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0)) − 𝑤 − 𝜉∗, 𝑢(𝑡0) − 𝜉〉 ≥ 0

for all (𝜉, 𝜉∗) ∈ 𝜕Φ, i.e.

(𝑢(𝑡0),−𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0)) − 𝑤)

is monotonically related to 𝜕Φ (see Definition C.1). Since 𝜕Φ is maximal monotone,
from Proposition C.2 we deduce that −𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0)) − 𝑤 = 𝜕Φ(𝑢(𝑡0)).

Step 3: end of the proof. Combining (4.5), the lower semicontinuity of the norm,
and (4.3), we deduce that

lim
ℎ→0





1ℎ (𝑢(𝑡0 + ℎ) − 𝑢(𝑡0))



𝑋 = ‖ − 𝜕Φ(𝑢(𝑡0)) − 𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) + 𝐹 (𝑡0, 𝑢(𝑡0))‖𝑋 .
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Hence 1
ℎ
(𝑢(𝑡0+ℎ)−𝑢(𝑡0))→−𝜕Φ(𝑢(𝑡0))−𝐾★𝜕Ψ(𝑢) (𝑡0)+𝐹 (𝑡0, 𝑢(𝑡0)) strongly in 𝑋 , i.e.

d+𝑢
d𝑡

(𝑡0) + 𝜕Φ(𝑢(𝑡0)) + 𝐾 ★ 𝜕Ψ(𝑢) (𝑡0) = 𝐹 (𝑡0, 𝑢(𝑡0))

which completes the proof. �

5. Convergence under Mosco×Γ-convergence

5.1. The abstract case

This section is placed within the framework defined in Section 2. Let (P𝑛)𝑛∈N be a
sequence of integrodifferential diffusion problems in 𝐿2 (0, 𝑇, 𝑋) defined by

(P𝑛)


d𝑢𝑛
d𝑡

(𝑡) + 𝜕Φ𝑛 (𝑢𝑛 (𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ𝑛 (𝑢𝑛 (𝑠)) d𝑠 = 𝐹𝑛 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝑛 (0) = 𝑢0𝑛, 𝑢0𝑛 ∈ dom(𝜕Φ𝑛),

where 𝐹𝑛 ∈ 𝐿2 (0, 𝑇, 𝑋) ∩𝑊1,1 (0, 𝑇, 𝑋) satisfies (C1), (C2), and (C3) with 𝐹𝑛 (𝑡, 𝑢) =

𝐹𝑛 (𝑡). In next Sections 5.2 and 6, 𝑋 = 𝐿2 (Ω) and the source 𝐹𝑛 is structured as a reaction
functional 𝐹𝑛 (𝑡, 𝑢𝑛 (𝑡)) as defined in Section 2.2. Recall that Φ𝑛,Ψ𝑛 : 𝑋 → ]−∞, +∞]
are lsc convex proper functionals with domain 𝑉 . Without loss of generality we assume
that inf𝑋 Φ𝑛 ≥ 0 and inf𝑋 Ψ𝑛 ≥ 0. The subdifferentials 𝜕Φ𝑛 and 𝜕Ψ𝑛 are assumed to
be univalent. Observe that this hypothesis is not closed under the Mosco and the Γ𝑤-𝑉
convergence of (Φ𝑛)𝑛∈N and (Ψ𝑛 b𝑉 )𝑛∈N respectively. We assume that dom(𝜕Φ𝑛) ⊂
dom(𝜕Ψ𝑛) and that conditions (2.1) and (2.2) hold uniformly in the sense that 𝛼𝜓𝑛

and
𝛼Φ𝑛 ,Ψ𝑛

do not depend on 𝑛. We denote it by 𝛼Ψ and 𝛼Φ,Ψ respectively.
Let 𝑇 > 0 satisfy 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) < 𝛼Φ,Ψ. By a particular solution of (P𝑛), we

mean any solution in 𝐶 ( [0, 𝑇], 𝑋) obtained by translation-induction of a local solution
𝑢𝑛,𝑇̃ ∈ 𝐶 ( [0, 𝑇], 𝑋), whose existence is established in Theorem 4.1. Note that when Ψ𝑛

is quadratic, according to Proposition 4.2, a particular solution is nothing but the unique
solution of (P𝑛).

Theorem 5.1. Under the general conditions above, assume furthermore that

(STAB1) 𝐹𝑛 ⇀ 𝐹 in 𝐿2 (0, 𝑇, 𝑋), sup𝑛∈N ‖𝐹𝑛 (𝑡)‖𝑋 < +∞ for all 𝑡 ∈ [0, 𝑇], and
sup𝑛∈N




 d𝐹𝑛

d𝑡





𝐿1 (0,𝑇 ,𝑋 )

< +∞;

(STAB2) sup𝑛∈NΦ𝑛 (𝑢0𝑛) < +∞;

(STAB3) 𝑢0𝑛 → 𝑢0 strongly in 𝑋;
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(STAB4) there exists Φ : 𝑋 → ]−∞, +∞] such that Φ𝑛

𝑀→ Φ;

(STAB5) there exists Ψ : 𝑉 → ]−∞, +∞] lsc convex proper, such that Ψ𝑛 b𝑉
Γ𝑤-𝑉→ Ψ.

Then any particular sequence of solutions 𝑢𝑛 of (P𝑛) admits a subsequence which
converges to a solution 𝑢 ∈ 𝐶 ( [0, 𝑇], 𝑋) of the differential inclusion

(P)


d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)

[
𝜕Ψ(𝑢(𝑠)) ∩ 𝑋

]
d𝑠 3 𝐹 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ).

Proof. We use the notation of the proof of Theorem 4.1, and do not relabel the various
subsequences. Take 𝑇 > 0 satisfying 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) < 𝛼Φ,Ψ. Set 𝑇𝑖 := 𝑖𝑇 for 0 = 1, . . . , ℓ
where ℓ := max{𝑘 ∈ N : 𝑘𝑇 ≤ 𝑇}, and 𝑇ℓ+1 := 𝑇 . According to Theorem 4.1, for
𝑖 = 0, . . . , ℓ, the restriction of 𝑢𝑛 to [𝑇𝑖 , 𝑇𝑖+1] is given by 𝑢𝑛 (𝑡) = 𝑢𝑖,𝑛 (𝑡 − 𝑇𝑖) where 𝑢𝑖,𝑛
is a solution in 𝐶 ( [0, 𝑇], 𝑋) of

(P𝑖,𝑛)

d𝑢𝑖,𝑛
d𝑡

(𝑡) + 𝜕Φ𝑛 (𝑢𝑖,𝑛 (𝑡)) + 𝐾 ★ 𝜕Ψ𝑛 (𝑢𝑖,𝑛) (𝑡) = 𝐹𝑖,𝑛 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝑖,𝑛 (0) = 𝑢𝑖−1,𝑛 (𝑇) ∈ dom(𝜕Φ𝑛),

with

𝐹𝑖,𝑛 (𝑡) := 𝐹𝑛 (𝑡 + 𝑇𝑖) −
𝑖−1∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝐾 (𝑡 + 𝑇𝑖 − 𝑠)𝜕Ψ𝑛 (𝑢𝑘,𝑛 (𝑠 − 𝑇𝑘 )) d𝑠,

and by convention, 𝑢−1,𝑛 (𝑇) = 𝑢0𝑛 and
∑−1

𝑘=0 = 0. In particular 𝐹0,𝑛 (𝑡) = 𝐹𝑛 (𝑡). We set

𝐺𝑖,𝑛 (𝑡) := 𝐹𝑖,𝑛 (𝑡) − 𝐾 ★ 𝜕Ψ𝑛 (𝑢𝑖,𝑛) (𝑡),

then (P𝑖,𝑛) may be written as

(P𝑖,𝑛)

d𝑢𝑖,𝑛
d𝑡

(𝑡) + 𝜕Φ𝑛 (𝑢𝑖,𝑛 (𝑡)) = 𝐺𝑖,𝑛 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝑖,𝑛 (0) = 𝑢𝑖−1,𝑛 (𝑇) ∈ dom(𝜕Φ𝑛).

Our strategy is the following: for each 𝑖 = 0, . . . , ℓ, we show that 𝑢𝑖,𝑛 converges to some
𝑢𝑖 in 𝐶 ( [0, 𝑇], 𝑋); next we claim that 𝑢 defined by 𝑢(𝑡) = 𝑢𝑖 (𝑡 − 𝑇𝑖) for 𝑡 ∈ [𝑇𝑖 , 𝑇𝑖+1]
solves (P) and that 𝑢𝑛 → 𝑢 in 𝐶 ( [0, 𝑇], 𝑋). We proceed in this way to check the uniform
estimates similar to those of Lemma 3.2 which require 𝑇 small enough, i.e. satisfying
𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) < 𝛼Φ,Ψ.

Step 1. Reasoning by induction for 𝑖 = 0, . . . , ℓ, we prove the following three assertions:
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(a) sup
𝑛∈N

‖𝜕Ψ𝑛 (𝑢𝑖,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) < +∞, (5.1)

sup
𝑛∈N





d𝑢𝑖,𝑛d𝑡 




𝐿2 (0,𝑇̃ ,𝑋 )

< +∞, (5.2)

sup
𝑛∈N

‖𝑢𝑖,𝑛‖𝐶 (0,𝑇̃ ,𝑋 ) < +∞, (5.3)

sup
𝑛∈N

‖𝜕Ψ𝑛 (𝑢𝑖,𝑛 (𝑡))‖𝑋 < +∞ for each 𝑡 ∈ ]0, 𝑇], (5.4)

sup
𝑛∈N

‖𝜕Φ𝑛 (𝑢𝑖,𝑛 (𝑡))‖𝑋 < +∞ for each 𝑡 ∈ ]0, 𝑇] . (5.5)

(b) There exists a subsequence of (𝑢𝑖,𝑛)𝑛∈N which uniformly converges to some 𝑢𝑖
in 𝐶 ( [0, 𝑇], 𝑋).

(c) For 𝑘 = 0, . . . , 𝑖, there exists 𝜉𝑘 ∈ 𝐿2 (0, 𝑇, 𝑋) with 𝜉𝑘 (𝑡) ∈ 𝜕Ψ(𝑢𝑘 (𝑡)) ∩ 𝑋 such
that

𝜕Ψ𝑛 (𝑢𝑘,𝑛) −⇀ 𝜉𝑘 weakly in 𝐿2 (0, 𝑇, 𝑋).

Step 𝑖 = 0.

Proof of (a). According to the uniformbounds (2.1), (2.2), (STAB1), (STAB2), inf𝑋 Φ𝑛 ≥
0, inf𝑋 Ψ𝑛 ≥ 0, and finally to the existence of a right derivative of 𝑢𝑖,𝑛 at each 𝑡 ∈ ]0, 𝑇]
(cf. Theorem 4.4), assertion a) is obtained by reproducing the proof of (3.6)–(3.13) with
𝐹𝑛 substitute for 𝐹, Φ𝑛 for Φ, and Ψ𝑛 for Ψ𝜆 (unlike (3.12) and (3.13), we cannot claim
that (5.4) and (5.5) hold for 𝑡 = 0 because of the dependance on 𝑛 of 𝑢𝑛,0 (0) = 𝑢0𝑛). We
only establish (5.1), (5.2), (5.4) to highlight the importance of condition (2.2) and to
emphasize the need for hypothesis (STAB1).
For a.e. 𝑡 ∈ (0, 𝑇), form the scalar product in 𝑋 of 𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡)) with the equation of

the first formulation of (P𝑖,𝑛) and integrate over (0, 𝑇). This yields∫ 𝑇̃

0

d
d𝑡
Ψ𝑛 (𝑢0,𝑛 (𝑡))d𝑡 +

∫ 𝑇̃

0

〈
𝜕Φ𝑛 (𝑢0,𝑛 (𝑡)), 𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))

〉
d𝑡

+
∫ 𝑇̃

0

〈
𝐾 ★ 𝜕Ψ𝑛 (𝑢0,𝑛) (𝑡), 𝜕Ψ(𝑢0,𝑛 (𝑡))

〉
d𝑡 =

∫ 𝑇̃

0

〈
𝐹𝑛 (𝑡), 𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))

〉
d𝑡. (5.6)

An easy calculation gives

‖𝐾 ★ 𝜕Ψ𝑛 (𝑢0,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) ≤ 𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ𝑛 (𝑢0,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) . (5.7)
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Combining (5.6), (5.7) and (2.2) we conclude that[
𝛼Φ,Ψ − 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 )

]
‖𝜕Ψ𝑛 (𝑢0,𝑛)‖2𝐿2 (0,𝑇̃ ,𝑋 )

≤ 𝑇𝛽Φ,Ψ + sup
𝑛∈N

Ψ𝑛 (𝑢0,𝑛) + sup
𝑛∈N

‖𝐹𝑛‖𝐿2 (0,𝑇̃ ,𝑋 ) ‖𝜕Ψ𝑛 (𝑢0,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) .

We deduce (5.1) from (STAB1), (STAB2), provided that 𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) < 𝛼Φ,Ψ.

We move on to the proof of (5.2). For a.e. 𝑡 ∈ (0, 𝑇), form the scalar product in 𝑋 of
d𝑢0,𝑛
d𝑡 (𝑡) with the equation of (P0,𝑛) and integrate over (0, 𝑇). This yields



d𝑢0,𝑛d𝑡 



2

𝐿2 (0,𝑇̃ ,𝑋 )
≤ Φ(𝑢0𝑛) − inf

𝑋
Φ𝑛

+
(
‖𝐾 ★ 𝜕Ψ𝑛 (𝑢0,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) + ‖𝐹𝑛‖𝐿2 (0,𝑇̃ ,𝑋 )

) 



d𝑢0,𝑛d𝑡 




𝐿2 (0,𝑇̃ ,𝑋 )

and (5.2) follows from (5.7), (5.1), and (STAB1).
For establishing (5.4) first observe that by reproducing the proof of (A.7) in AppendixA,

we have
sup
𝑛∈N

‖𝐾 ★ 𝜕Ψ𝑛 (𝑢0,𝑛)‖𝑊 1,2 (0,𝑇̃ ,𝑋 ) < +∞. (5.8)

Next, from (5.8) and (STAB1) we deduce that

sup
𝑛∈N





d𝐺0,𝑛d𝑡 




𝐿1 (0,𝑇̃ ,𝑋 )

< +∞. (5.9)

Hence, combining the inequalities



d+𝑢0,𝑛d𝑡 (𝑡)





𝑋

≤ 1
𝑡

∫ 𝑡

0





d𝑢0,𝑛d𝑡 (𝑠)





𝑋

d𝑠 +
∫ 𝑡

0





d𝐺0,𝑛d𝑡 (𝑠)





𝑋

d𝑠

for all 𝑡 ∈ ]0, 𝑇] (see [2, Lemma 3.3]), with (5.2) and (5.9), we obtain that for each
𝑡 ∈ ]0, 𝑇],

sup
𝑛∈N





d+𝑢0,𝑛d𝑡 (𝑡)





𝑋

< +∞. (5.10)

Take the scalar product of the equation

d+𝑢0,𝑛
d𝑡

(𝑡) + 𝜕Φ𝑛 (𝑢0,𝑛 (𝑡)) = 𝐺0,𝑛 (𝑡)

with 𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡)) for each 𝑡 ∈ ]0, 𝑇]. This yields〈
d+𝑢0,𝑛
d𝑡

(𝑡), 𝜕Ψ(𝑢0,𝑛 (𝑡))
〉
+ 𝛼Φ,Ψ‖𝜕Ψ(𝑢0,𝑛 (𝑡))‖2𝑋 ≤

〈
𝐺0,𝑛 (𝑡), 𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))

〉
+ 𝛽Φ,Ψ

24



Convergence of nonlinear integrodifferential reaction-diffusion equations via Mosco×Γ-convergence

from which we deduce

𝛼Φ,Ψ‖𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))‖2𝑋 ≤
(



d+𝑢0,𝑛d𝑡 (𝑡)






𝑋

+ ‖𝐺0,𝑛 (𝑡)‖𝑋
)
‖𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))‖𝑋 + 𝛽Φ,Ψ

for all 𝑡 ∈ ]0, 𝑇]. The claim follows from (5.10), and sup𝑛∈N ‖𝐺0,𝑛 (𝑡)‖𝑋 < +∞ which is
obtained according to

‖𝐺0,𝑛 (𝑡)‖𝑋 ≤ ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ𝑛 (𝑢0,𝑛)‖𝐿2 (0,𝑇̃ ,𝑋 ) + ‖𝐹𝑛 (𝑡)‖𝑋

and (5.1) and (STAB1).

Proof of (b). From (5.2) and (5.3) we infer that the sequence (𝑢0,𝑛)𝑛∈N is bounded
and uniformly equicontinuous in 𝐶 ( [0, 𝑇], 𝑋). Assertion (b) then follows from the
Ascoli compactness theorem provided that for each fixed 𝑡 ∈ [0, 𝑇], we establish that
the set 𝐸0 (𝑡) := {𝑢0,𝑛 (𝑡) : 𝑛 ∈ N} is relatively compact in 𝑋 . For 𝑡 = 0 we have
𝐸0 (0) = {𝑢0𝑛 : 𝑛 ∈ N} so that the claim follows directly from (STAB3). For 𝑡 ∈ ]0, 𝑇],
(2.1) yields

‖𝑢0,𝑛 (𝑡)‖2𝑉 ≤ 1
𝛼Ψ

〈
𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡)), 𝑢0,𝑛 (𝑡)

〉
≤ 1
𝛼Ψ

‖𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))‖𝑋 ‖𝑢0,𝑛 (𝑡)‖𝑋

≤ 1
𝛼Ψ

‖𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡))‖𝑋 ‖𝑢0,𝑛 (𝑡)‖𝑉

and the claim follows from (5.4) and the compact embedding 𝑉 ↩−↩→ 𝑋 .

Proof of (c). We have to establish the existence of 𝜉0 ∈ 𝐿2 (0, 𝑇, 𝑋) with 𝜉0 ∈ 𝜕Ψ(𝑢0 (𝑡))
such that 𝜕Ψ𝑛 (𝑢0,𝑛) ⇀ 𝜉0 in 𝐿2 (0, 𝑇, 𝑋). From (5.1) and the compact embedding
𝐿2 (0, 𝑇, 𝑋) ↩−↩→ 𝐿2 (0, 𝑇,𝑉 ′), we infer that there exist a subsequence of (𝜕Ψ𝑛 (𝑢0,𝑛))𝑛∈N
and 𝜉0 ∈ 𝐿2 (0, 𝑇, 𝑋) such that successively

𝜕Ψ𝑛 (𝑢0,𝑛) −⇀ 𝜉0 weakly in 𝐿2 (0, 𝑇, 𝑋),

𝜕Ψ𝑛 (𝑢0,𝑛) −→ 𝜉0 strongly in 𝐿2 (0, 𝑇,𝑉 ′),

𝜕Ψ𝑛 (𝑢0,𝑛 (𝑡)) −→ 𝜉0 (𝑡) strongly in 𝑉 ′ for a.e. 𝑡 ∈ (0, 𝑇),

𝑢0,𝑛 (𝑡) −⇀ 𝑢0 (𝑡) weakly in 𝑉 for each 𝑡 ∈ ]0, 𝑇]

(the last convergence follows from (2.1), (5.4), and (b) to identify the weak limit).
According to (STAB5) and the implication

Ψ𝑛 b𝑉
Γ𝑤-𝑉−→ Ψ =⇒ 𝜕Ψ𝑛 b𝑉

𝐺𝑤,𝑠−→ 𝜕Ψ

(cf. Theorem C.5), the two last convergences above yield that for a.e. 𝑡 ∈ (0, 𝑇),
𝑢0 (𝑡) ∈ dom(𝜕Ψ) and 𝜉0 (𝑡) ∈ 𝜕Ψ(𝑢0 (𝑡)) ∩ 𝑋 .
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Step 𝑖 > 1 from steps 0, . . . , 𝑖 − 1. Fix 𝑖 > 1. We assume that assertions (a), (b) and (c)
hold for all 𝑘 = 0, . . . 𝑖 − 1 and we establish that they hold for 𝑖.

Proof of (a). We first claim that 𝐹𝑖,𝑛 satisfies (STAB1) for 𝑡 ∈ [0, 𝑇]. From (c) for
𝑘 = 0, . . . , 𝑖 − 1, we easily deduce that

𝑖−1∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝐾 ( · + 𝑇𝑖 − 𝑠)𝜕Ψ𝑛 (𝑢𝑘,𝑛 (𝑠 − 𝑇𝑘 )) d𝑠

−⇀
𝑖−1∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝐾 ( · + 𝑇𝑖 − 𝑠)𝜉𝑘 (𝑠 − 𝑇𝑘 ) d𝑠. (5.11)

in 𝐿2 (0, 𝑇, 𝑋). Hence from (STAB1) and (5.11), 𝐹𝑖,𝑛 ⇀ 𝐹𝑖 in 𝐿2 (0, 𝑇, 𝑋). On the other
hand, from (STAB1) and (5.4) for 𝑘 = 0, . . . , 𝑖 − 1, we infer that sup𝑛∈N ‖𝐹𝑖,𝑛 (𝑡)‖𝑋 for
all 𝑡 ∈ [0, 𝑇]. Finally from (5.1), (STAB1) and

d𝐹𝑖,𝑛
d𝑡

(𝑡) := d𝐹𝑛
d𝑡

(𝑡 + 𝑇𝑖) −
𝑖−1∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝐾
′ (𝑡 + 𝑇𝑖 − 𝑠)𝜕Ψ𝑛 (𝑢𝑘,𝑛 (𝑠 − 𝑇𝑘 )) d𝑠,

we deduce that

sup
𝑛∈N





d𝐹𝑖,𝑛d𝑡 




𝐿1 (0,𝑇̃ ,𝑋 )

< +∞,

which proves the claim. By repeating the arguments of the proof of (a) at 𝑖 = 0 where 𝐹𝑖,𝑛
is substitute for 𝐹𝑛, we obtain the estimates of (a) provided that sup𝑛∈NΦ𝑛 (𝑢𝑖,𝑛 (0)) < +∞,
that is to say sup𝑛∈NΦ𝑛 (𝑢𝑖−1,𝑛 (𝑇)) < +∞ (this condition replace (STAB2)). For that,
first note that from (b) at index 𝑖 − 1

sup
𝑛∈N




𝑢𝑖−1,𝑛 (𝑇)



𝑋
< +∞. (5.12)

Next, fix 𝑣 ∈ dom(Φ). From (STAB3) there exists a sequence (𝑣𝑛)𝑛∈N such that 𝑣𝑛 → 𝑣

strongly in 𝑋 andΦ𝑛 (𝑣𝑛) → Φ(𝑣). The thesis then follows, from the convexity inequality

Φ𝑛 (𝑢𝑖−1,𝑛 (𝑇)) ≤ Φ𝑛 (𝑣𝑛) +
〈
𝜕Φ𝑛 (𝑢𝑖−1,𝑛 (𝑇)), 𝑢𝑖−1,𝑛 (𝑇) − 𝑣𝑛

〉
and (5.5), (5.12).

Proof of (b). The proof of (b) is exactly the one of (b) at 𝑖 = 0, by establishing that
𝐸𝑖 (𝑡) := {𝑢𝑖,𝑛 (𝑡) : 𝑛 ∈ N} is relatively compact in 𝑋 . Observe that for 𝑡 = 0, 𝐸𝑖 (0) ={
𝑢𝑖−1,𝑛 (𝑇) : 𝑛 ∈ N

}
so that the claim follows directly from (b) at index 𝑖 − 1.

Proof of (c). The proof is exactly the one of Step 𝑖 = 0 by using estimates obtained in (a).
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Step 2. By using a method similar to that of the proof of Theorem 3.3, and from the
convergences obtained in Step 1, we are going to prove that 𝑢𝑖 defined in (b), Step 1,
solves the Cauchy problem

(P𝑖)

d𝑢𝑖
d𝑡

(𝑡) + 𝜕Φ(𝑢𝑖 (𝑡)) + 𝐾 ★ 𝜕Ψ(𝑢𝑖) (𝑡) 3 𝐹𝑖 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝑖 (0) = 𝑢𝑖−1 (𝑇) ∈ dom(𝜕Φ).

We will infer that the function 𝑢 defined by 𝑢(𝑡) = 𝑢𝑖 (𝑡 − 𝑇𝑖) for 𝑡 ∈ [𝑇𝑖 , 𝑇𝑖+1] converges
toward 𝑢 in 𝐶 ( [0, 𝑇], 𝑋) and, according to Theorem 4.1, solves (P).
By using the Fenchel extremality condition, the equation of (P𝑖,𝑛) written with 𝐺𝑖,𝑛

as second member, is equivalent to∫ 𝑇̃

0

[
Φ𝑛 (𝑢𝑖,𝑛 (𝑡)) +Φ∗

𝑛

(
𝐺𝑖,𝑛 (𝑡) −

d𝑢𝑖,𝑛
d𝑡

(𝑡)
)
+
〈
d𝑢𝑖,𝑛
d𝑡

(𝑡) − 𝐺𝑖,𝑛 (𝑡), 𝑢𝑖,𝑛 (𝑡)
〉]
d𝑡 = 0,

where we have denoted by Φ∗
𝑛 the Legendre–Fenchel conjugate of Φ𝑛. Equivalently

𝐼Φ𝑛
(𝑢𝑖,𝑛) + 𝐼Φ∗

𝑛

(
𝐺𝑖,𝑛 −

d𝑢𝑖,𝑛
d𝑡

)
+ 1
2
(
‖𝑢𝑖,𝑛 (𝑇)‖2 − ‖𝑢𝑖,𝑛 (0)‖2

)
−
∫ 𝑇̃

0

〈
𝐺𝑖,𝑛 (𝑡), 𝑢𝑖,𝑛 (𝑡)

〉
d𝑡 = 0 (5.13)

where the integral functionals 𝐼Φ𝑛
and 𝐼Φ∗

𝑛
are defined in 𝐿2 (0, 𝑇, 𝑋) by

𝐼Φ𝑛
(𝑣) =

∫ 𝑇̃

0
Φ𝑛 (𝑣(𝑡))d𝑡 and 𝐼Φ∗

𝑛
(𝑣) =

∫ 𝑇̃

0
Φ∗

𝑛 (𝑣(𝑡))d𝑡.

From (STAB4) and [2, Lemma 4.1] we have

𝐼Φ𝑛

𝑀−→ 𝐼Φ. (5.14)

On the other hand, combining 𝑢𝑖,𝑛 (𝑇) = 𝑢0
𝑖,𝑛

+
∫ 𝑇̃

0
d𝑢𝑖,𝑛
d𝑡 (𝑡)d𝑡 with d𝑢𝑖,𝑛d𝑡 ⇀

d𝑢𝑖
d𝑡 in

𝐿2 (0, 𝑇, 𝑋) which is obtained from (5.2), we infer that

lim inf
𝑛→+∞

‖𝑢𝑖,𝑛 (𝑇)‖2 ≥ ‖𝑢𝑖 (𝑇)‖2. (5.15)

Finally, from (STAB1) and assertion (c) of Step 1

𝐺𝑖,𝑛 −⇀ 𝐺𝑖 := 𝐹𝑖 − 𝐾 ★ 𝜉𝑖 weakly in 𝐿2 (0, 𝑇, 𝑋) (5.16)

where

𝐹𝑖 (𝑡) = 𝐹 (𝑡 + 𝑇𝑖) −
𝑖−1∑︁
𝑘=0

∫ 𝑇𝑘+1

𝑇𝑘

𝐾 ( · + 𝑇𝑖 − 𝑠)𝜉𝑘 (𝑠 − 𝑇𝑘 ) d𝑠.
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Hence, by passing to the liminf in (5.13), from (5.14), (5.15), Step 1(b) and (5.16), we
infer that∫ 𝑇

0

[
Φ(𝑢𝑖 (𝑡)) +Φ∗ (𝐺𝑖 (𝑡) −

d𝑢𝑖
d𝑡

(𝑡))
]
d𝑡 + 1

2
(‖𝑢𝑖 (𝑇)‖2 − ‖𝑢0𝑖 ‖2)

−
∫ 𝑇

0
〈𝐺𝑖 (𝑡), 𝑢𝑖 (𝑡)〉 d𝑡 ≤ 0

or equivalently,∫ 𝑇

0

[
Φ(𝑢𝑖 (𝑡)) +Φ∗ (𝐺𝑖 (𝑡) −

d𝑢𝑖
d𝑡

(𝑡)) +
〈
d𝑢𝑖
d𝑡

(𝑡) − 𝐺𝑖 (𝑡), 𝑢𝑖 (𝑡)
〉]
d𝑡 ≤ 0, (5.17)

from which we conclude that
d𝑢𝑖
d𝑡

(𝑡) + 𝜕Φ(𝑢𝑖 (𝑡)) 3 𝐺𝑖 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇).

The initial condition 𝑢𝑖 (0) = 𝑢𝑖−1 (𝑇) is obtained from

𝑢𝑖 (0) = lim
𝑛→+∞

𝑢𝑖,𝑛 (0) = lim
𝑛→+∞

𝑢𝑖−1,𝑛 (𝑇) = 𝑢𝑖−1 (𝑇).

Finally we claim that 𝑢𝑖−1 (𝑇) ∈ dom(𝜕Φ). It comes from

𝑢𝑖−1,𝑛 (𝑇) ∈ dom(𝜕Φ𝑛), lim
𝑛→+∞

𝑢𝑖−1,𝑛 (𝑇) = 𝑢𝑖−1 (𝑇) strongly in 𝑋,

(STAB4) and Theorem C.5. This completes the proof. �

Remark 5.2. Let us strengthen (STAB5) by:

(STAB′
5) there exists Ψ : 𝑋 → ]−∞, +∞] lsc convex proper, such that dom(Ψ) = 𝑉 and

Ψ𝑛 b𝑉
Γ𝑤-𝑉→ Ψ b𝑉 .

Then, with the notation above, we can assert that 𝜕Ψ b𝑉 (𝑢(𝑠)) ∩ 𝑋 = 𝜕Ψ. The limit
problem then becomes

(P)


d𝑢
d𝑡

(𝑡) + 𝜕Φ(𝑢(𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ(𝑢(𝑠)) d𝑠 3 𝐹 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ).

Moreover, from Proposition 2.3, dom(𝜕Φ) ⊂ dom(𝜕Ψ) and Φ and Ψ fulfill condi-
tions (2.1), (2.2). Therefore, under condition (STAB′

5), Theorem 5.1 may be considered
as a stability result, although 𝜕Φ and 𝜕Ψ are not univalent in general.
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5.2. The case 𝑋 = 𝐿2(Ω)

In this section, Ω is a bounded domain of R𝑁 , 𝑋 = 𝐿2 (Ω), and 𝑉 = 𝐻10 (Ω). We keep
the same conditions on Φ𝑛, Ψ𝑛 and 𝑢0𝑛 but we further specify the structure of the source
𝐹𝑛. Given a positive integer 𝑙, 𝑟𝑛 ∈ 𝐿∞ ((0, 𝑇) × R𝑁 ,R𝑙) ∩𝑊1,1 (0, 𝑇, 𝐿2loc (R

𝑁 ,R𝑙)),
𝑞𝑛 ∈ 𝐿2 (0, 𝑇, 𝐿2loc (R

𝑁 )) ∩𝑊1,1 (0, 𝑇, 𝐿2loc (R
𝑁 )), and 𝑔𝑛 : R→ R𝑙 a uniformly bounded

and Lipschitz continuous function, we consider the reaction functional 𝐹𝑛 defined for all
𝑣 ∈ 𝐿2 (Ω) and all 𝑥 ∈ Ω by

𝐹𝑛 (𝑡, 𝑢) (𝑥) = 𝑟𝑛 (𝑡, 𝑥) · 𝑔𝑛 (𝑢(𝑥)) + 𝑞𝑛 (𝑡, 𝑥).

We assume that 
sup
𝑛∈N

∫ 𝑇

0





d𝑟𝑛d𝑡 



𝐿2 (Ω,R𝑙)
d𝑡 < +∞,

sup
𝑛∈N

∫ 𝑇

0





d𝑞𝑛d𝑡 




𝐿2 (Ω)

d𝑡 < +∞.
(5.18)

Denote by 𝐿𝑔 the uniform Lipschitz constant of the functions 𝑔𝑛 and by 𝑀𝑔 =

sup𝑟 ∈R |𝑔𝑛 (𝑟) | their uniform norm. Then, as noticed in Section 2.2, 𝐹𝑛 fulfills (C1),
(C2), (C3) with 𝐿𝑛 = ‖𝑟𝑛‖𝐿∞ ( (0,𝑇 )×R𝑁 ,R𝑙)𝐿𝑔 and Θ𝑛 (𝜏) = 𝑀𝑔‖ d𝑟𝑛d𝑡 (𝜏, · )‖𝐿2 (Ω,R𝑙) +
‖ d𝑞𝑛d𝑡 (𝜏, · )‖𝐿2 (Ω) . Theorem 5.3 below is a concrete version of Theorem 5.1 where, in
addition, 𝐹𝑛 (𝑡, 𝑢𝑛 (𝑡)) is substituted for 𝐹𝑛 (𝑡).

Theorem 5.3. In addition to (STAB2)–(STAB5), assume that

(i) sup𝑛∈N ‖𝑟𝑛‖𝐿∞ ( [0,𝑇 ]×R𝑁 ,R𝑙) < +∞,
and 𝑟𝑛 ⇀ 𝑟 for the 𝜎(𝐿∞ (0, 𝑇, 𝐿2 (Ω,R𝑙)), 𝐿1 (0, 𝑇, 𝐿2 (Ω,R𝑙))) topology;

(ii) 𝑔𝑛 → 𝑔 pointwise in R𝑙;

(iii) for all 𝑡 ∈ [0, 𝑇], sup𝑛∈N ‖𝑞𝑛 (𝑡, · )‖𝐿2 (Ω) < +∞, and 𝑞𝑛 ⇀ 𝑞 weakly in
𝐿2 (0, 𝑇, 𝐿2 (Ω)).

Then any particular sequence of solutions 𝑢𝑛 of (P𝑛) admits a subsequence which
converges to 𝑢 in 𝐶 ( [0, 𝑇], 𝑋), solution of

(P)


d𝑢
d𝑡

(𝑡) + 𝜕Φ𝑢(𝑡) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)

[
𝜕 (Ψ) (𝑢(𝑠)) ∩ 𝐿2 (Ω)

]
d𝑠 3 𝐹 (𝑡, 𝑢(𝑡))

for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(0) = 𝑢0, 𝑢0 ∈ dom(𝜕Φ),

where 𝐹 (𝑡, 𝑣) (𝑥) = 𝑟 (𝑡, 𝑥) · 𝑔(𝑣(𝑥)) + 𝑞(𝑡, 𝑥) for all (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω and all 𝑣 ∈ 𝐿2 (Ω).
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Proof. We use the notation of the proof of Theorem 5.1. Clearly

sup
𝑛∈N

‖𝐹𝑛 (𝑡, 𝑢𝑛 (𝑡))‖𝐿2 (Ω) < +∞

for all 𝑡 ∈ [0, 𝑇]. On the other hand from (C3) and the uniform bounds (5.18) we easily
deduce that

sup
𝑛∈N





d𝐹𝑛d𝑡 




𝐿1 (0,𝑇 ,𝐿2 (Ω))

< +∞.

Therefore Step 1 of the proof of Theorem 5.1 is still valid. The rest of the proof
mimics the one of Step 2. We only have to establish that 𝐹𝑛 ( · , 𝑢𝑖,𝑛 ( · )) ⇀ 𝐹 ( · , 𝑢𝑖 ( · ))
in 𝐿2 (0, 𝑇, 𝐿2 (Ω)). This convergence is a straightforward consequence of the weak
convergences 𝑟𝑛 ⇀ 𝑟 , 𝑞𝑛 ⇀ 𝑞 and the pointwise convergence 𝑔𝑛 → 𝑔 together with the
uniform bound of 𝑔𝑛 (for a complete proof refer to [2]). �

6. Stochastic homogenization of integrodifferential Cauchy problems

In this section Ω is a 𝐶1-domain of R𝑁 , 𝑋 = 𝐿2 (Ω) and 𝑉 = 𝐻10 (Ω). For any Borel
measurable function𝑊 : R𝑁 ×R𝑁 → R such that for a.e. 𝑥 ∈ R𝑁 , 𝜉 ↦→ 𝑊 (𝑥, 𝜉) is convex,
when 𝜉 ↦→ 𝑊 (𝑥, 𝜉) is not Gâteaux differentiable we adopt the following convention: for
any 𝑣 ∈ 𝐻1 (Ω), we write indifferently div𝜕𝜉𝑊 ( · ,∇𝑣) for the set{

div𝜉∗ : 𝜉∗ ∈ 𝜕𝜉𝑊 ( · ,∇𝑣)
}

or any element of this set.

6.1. Stochastic homogenization of a random problem modeled from a Fick’s
law with delay

To model the spatial environment, we consider a general probability space (Σ,A,P)
equipped with a group (𝑇𝑧)𝑧∈Z𝑁 of P-preserving transformations on Σ. We denote by
I the 𝜎-algebra of invariant sets of A by the group (𝑇𝑧)𝑧∈Z𝑁 and, for every h in the
space 𝐿1

P
(Σ) of P-integrable functions, by EIh the conditional expectation of h with

respect to I. If I is made up of sets with probability 0 or 1, the discrete dynamical system
(Σ,A,P, (𝑇𝑧)𝑧∈Z𝑁 ) is said to be ergodic. Under this condition, we have EIh = Eh
where Eh =

∫
Σ

h(𝜔)dP(𝜔) is the mathematical expectation of h.
Let Ω be 𝐶1-regular domain of R𝑁 and denote by 𝑢(𝜔, 𝑡, 𝑥) a scalar state variable of

a physical, biological or ecological model at position 𝑥 and time 𝑡, subjected to an alea
𝜔 ∈ Σ ; according to the cases 𝑢(𝜔, · , · ) is a concentration, or a density. We assume that
for the model considered, the diffusion flux inΩ related to 𝑢(𝜔, 𝑡, 𝑥) has two contributions:
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• the Fickian flux which locally has at each time 𝑡 the direction of the negative
spatial gradient of the state variable, given by 𝐽𝐹 (𝜔, 𝑡, 𝑥) = −𝐷 (𝜔, 𝑥)∇𝑢(𝜔, 𝑡, 𝑥),

• the non Fickian flux which locally has the direction of the negative spatial
gradient of the state variable at some past time 𝜏 > 0, given by 𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥) =
−𝐷 (𝜔, 𝑥)∇𝑢(𝜔, 𝑡 − 𝜏, 𝑥).

For example, in population dynamics, the non Fickian flux may account for maturation
period, resource regeneration time, mating processes, or incubation period, which is
superimposed on the first flow at each time 𝑡. The coefficient 𝐷 accounts for the
rate of movement in the heterogeneous spatial environment modeled according to
(Σ,A,P, (𝑇𝑧)𝑧∈Z𝑁 ) in R𝑁 . From the mass conservation principle, for a given source
𝐹 (𝜔, 𝑡, 𝑥), the variable 𝑢 satisfies the equation

d𝑢
d𝑡

(𝜔, 𝑡) + div(𝐽𝐹 (𝜔, 𝑡, 𝑥)) + div(𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥)) = 𝐹 (𝜔, 𝑡, 𝑥). (6.1)

Assume 𝜏 small. Then we can express div(𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥)) as a divergence of the gradient
field distributed following a suitable time kernel. Indeed, from 𝐽𝑁𝐹 (𝜔, 𝑡 + 𝜏, 𝑥) =

−𝐷 (𝜔, 𝑥)∇𝑢(𝑡), using the first order time approximation, we have

𝐽𝑁𝐹 (𝜔, 𝑡 + 𝜏, 𝑥) ∼ 𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥) + 𝜏
𝜕𝐽𝑁𝐹

𝜕𝑡
(𝜔, 𝑡, 𝑥)

so that 𝐽𝑁𝐹 satisfies the first order differential equation

𝜏
𝜕𝐽𝑁𝐹

𝜕𝑡
(𝜔, 𝑡, 𝑥) + 𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥) = −𝐷 (𝜔, 𝑥)∇𝑢(𝜔, 𝑡, 𝑥).

By an elementary computation using the method of variation of constants, and assuming
that 𝐽𝑁𝐹 (𝜔, 0, 𝑥) = 0, we see that 𝐽𝑁𝐹 is given by

𝐽𝑁𝐹 (𝜔, 𝑡, 𝑥) = −1
𝜏

∫ 𝑡

0
exp

( 𝑠 − 𝑡
𝜏

)
𝐷 (𝜔, 𝑥)∇𝑢(𝜔, 𝑠, 𝑥) d𝑠.

Therefore, (6.1) becomes

d𝑢
d𝑡

(𝜔, 𝑡, · ) − div
(
𝐷 (𝜔, · )∇𝑢(𝜔, 𝑡, · )

)
− div

(
1
𝜏

∫ 𝑡

0
exp

( 𝑠 − 𝑡
𝜏

)
𝐷 (𝜔, · )∇𝑢(𝜔, 𝑠, · ) d𝑠

)
= 𝐹 (𝜔, 𝑡, · )

and can be written as
d𝑢
d𝑡

(𝜔, 𝑡, · ) − div
(
𝐷 (𝜔, · )∇𝑢(𝜔, 𝑡, · )

)
− 1
𝜏

∫ 𝑡

0
exp

(
− 𝑡 − 𝑠

𝜏

)
div

(
𝐷 (𝜔, · )∇𝑢(𝜔, 𝑠, · )

)
d𝑠 = 𝐹 (𝜔, 𝑡, · ),
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which is an integrodifferential diffusion equation as treated in Section 3, with the kernel
𝐾 defined by 𝐾 (𝑡) = 1

𝜏
exp(− 𝑡

𝜏
). To take into account the size of order 𝜀 of the spatial

heterogeneities, the last integrodifferential diffusion equation becomes

d𝑢𝜀
d𝑡

(𝜔, 𝑡, · ) − div
(
𝐷

(
𝜔,

·
𝜀

)
∇𝑢𝜀 (𝜔, 𝑡, · )

)
− div

(
1
𝜏

∫ 𝑡

0
exp

( 𝑠 − 𝑡
𝜏

)
𝐷

(
𝜔,

·
𝜀

)
∇𝑢𝜀 (𝜔, 𝑠, · )d𝑠

)
= 𝐹𝜀 (𝜔, 𝑡, · )

We are therefore led to consider the following more general problem, written in
a mathematically rigorous formulation as follows: for P-a.e. 𝜔 ∈ Σ, the function
𝑢𝜀 (𝜔, · ) ∈ 𝐿2 (0, 𝑇, 𝐿2 (Ω)) solves

(P𝜀 (𝜔))


d𝑢𝜀 (𝜔)
d𝑡

(𝑡) + 𝜕Φ𝜀 (𝜔, 𝑢𝜀 (𝜔, 𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ𝜀 (𝜔, 𝑢𝜀 (𝜔, 𝑠)) d𝑠

= 𝐹𝜀 (𝜔, 𝑡, 𝑢𝜀 (𝜔, 𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝜀 (𝜔, 0) = 𝑢0𝜀 (𝜔), 𝑢0𝜀 (𝜔) ∈ dom(𝜕Φ𝜀 (𝜔)).
The kernel 𝐾 is given as in Section 2. For given 𝑎 > 0 and 𝑏 ≥ 0, the functionals
Φ𝜀 ,Ψ𝜀 : 𝐿2 (Ω) → ]−∞, +∞] are defined by

Φ𝜀 (𝜔, 𝑢) =

𝑎

∫
Ω

𝐷

(
𝜔,
𝑥

𝜀

)
∇𝑢 · ∇𝑢 d𝑥 + 𝑏

2

∫
Ω

𝑢2d𝑥 if 𝑢 ∈ 𝐻10 (Ω),

+∞ otherwise.

Ψ𝜀 (𝜔, 𝑢) =

∫
Ω

𝐷

(
𝜔,
𝑥

𝜀

)
∇𝑢 · ∇𝑢 d𝑥 if 𝑢 ∈ 𝐻10 (Ω),

+∞ otherwise,

where the random matrix valued map

𝐷 = (𝑑𝑖 𝑗 )𝑖, 𝑗=1...𝑁 : Σ × R𝑁 → M𝑁

is (A ⊗ B(R𝑁 ),B(M𝑁 ))-measurable and covariant with respect to the group (𝑇𝑧)𝑧∈Z𝑁 ,
that is

𝐷 (𝑇𝑧𝜔, 𝑥) = 𝐷 (𝜔, 𝑥 + 𝑧)
for all 𝜔 ∈ Σ and all 𝑥 ∈ R𝑁 . We also assume that there exist 𝛼 > 0 and 𝛽 > 0 such that
𝛼 |𝜉 |2 ≤ ∑𝑁

𝑖, 𝑗=1 𝑑𝑖 𝑗 (𝜔, 𝑥)𝜉𝑖𝜉 𝑗 ≤ 𝛽 |𝜉 |2 for all 𝜔 ∈ Σ, all 𝑥 ∈ R𝑁 and all 𝜉 ∈ R𝑁 .
The random reaction functional 𝐹𝜀 is structured as follows: for all 𝑢 ∈ 𝐿2 (Ω), all

𝑡 ∈ [0, 𝑇], and all 𝑥 ∈ Ω,

𝐹𝜀 (𝜔, 𝑡, 𝑢) (𝑥) = 𝑟
(
𝜔, 𝑡,

𝑥

𝜀

)
· 𝑔(𝑢(𝑥)) + 𝑞

(
𝜔, 𝑡,

𝑥

𝜀

)
where
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• 𝑔 : R→ R𝑙 is a bounded 𝐿𝑔-Lipschitz continuous function;

• 𝑟 : Σ × [0, 𝑇] × R𝑁 → R𝑙 is (A ⊗ B([0, 𝑇]) ⊗ B(R𝑁 ),B(R𝑙))-measurable;
𝑟 is covariant with respect to the group (𝑇𝑧)𝑧∈Z𝑁 , i.e. 𝑟 (𝑇𝑧𝜔, · , · ) = 𝑟 (𝜔, · , · + 𝑧)
for P-a.e. 𝜔 ∈ Σ and for all 𝑧 ∈ Z𝑁 ;
for every 𝜔 ∈ Σ, 𝑟 (𝜔, · , · ) ∈ 𝐿∞ ( [0, 𝑇] × R𝑁 ,R𝑙) ∩𝑊1,1 (0, 𝑇, 𝐿2loc (R

𝑁 ,R𝑙));
for all bounded Borel sets 𝐵 of R𝑁 , the real valued functions

𝜔 ↦−→ ‖𝑟 (𝜔, 𝑡, · )‖𝐿2 (𝐵,R𝑙) for all 𝑡 ∈ [0, 𝑇],

𝜔 ↦−→
∫ 𝑇

0





d𝑟d𝑡 (𝜔, 𝜏, · )



𝐿2 (𝐵,R𝑙) d𝜏
belong to 𝐿P (Σ);

• 𝑞 : Σ × [0, 𝑇] × R𝑁 → R is (A ⊗ B([0, 𝑇]) ⊗ B(R𝑁 ),B(R))-measurable;
𝑞 is covariant with respect to the group (𝑇𝑧)𝑧∈Z𝑁 , i.e. 𝑞(𝑇𝑧𝜔, · , · ) = 𝑞(𝜔, · , · + 𝑧)
for P-a.e. 𝜔 ∈ Σ and all 𝑧 ∈ Z𝑁 ;
for all 𝜔 ∈ Σ, 𝑡 ↦→ 𝑞(𝜔, 𝑡, · ) ∈ 𝑊1,2 (0, 𝑇, 𝐿2loc (R

𝑁 ));
for all bounded Borel sets 𝐵 of R𝑁 , the real valued functions

𝜔 ↦−→ ‖𝑞(𝜔, 𝑡, · )‖2
𝐿2 (𝐵) for all 𝑡 ∈ [0, 𝑇], (6.2)

𝜔 ↦−→
∫ 𝑇

0





d𝑞d𝑡 (𝜔, 𝜏, · )



2𝐿2 (𝐵) d𝜏 (6.3)

belong to 𝐿P (Σ).

Taking the expression of each two subdifferentials 𝜕Φ𝜀 (𝜔, · ) and 𝜕Ψ𝜀 (𝜔, · ) into
account, the problem (P𝜀 (𝜔)) can be written as

(P𝜀 (𝜔))



d𝑢𝜀 (𝜔, · )
d𝑡

(𝑡) − 𝑎 div
(
𝐷

(
𝜔,

·
𝜀

)
∇𝑢𝜀 (𝜔, 𝑡)

)
+ 𝑏 𝑢𝜀 (𝜔, 𝑡)

−
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)div

(
𝐷

(
𝜔,

·
𝜀

)
∇𝑢𝜀 (𝜔, 𝑠)

)
d𝑠 = 𝐹𝜀 (𝜔, 𝑡, 𝑢𝜀 (𝜔, 𝑡))

for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝜀 (𝜔, 0) = 𝑢0𝜀 (𝜔), 𝑢0𝜀 (𝜔) ∈ dom(𝜕Φ𝜀 (𝜔)).
where

dom(𝜕Φ𝜀 (𝜔, · )) = dom(𝜕Ψ𝜀 (𝜔, · )) =
{
𝑣 ∈ 𝐻10 (Ω) : div(𝐷 (𝜔, · )∇𝑣) ∈ 𝐿2 (Ω)

}
.

Condition (2.1) is clearly uniformly satisfied: take 𝛼Ψ𝜀
= 𝛼. According to Examples 2.1,

condition (2.2) is uniformly satisfied. Moreover, since Ψ𝜀 (𝜔, · ) is quadratic, from
Proposition 4.2 (P𝜀 (𝜔)) admits a unique solution 𝑢𝜀 (𝜔, · ).
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For all 𝜔 ∈ Σ and all (𝑥, 𝜉) ∈ R𝑁 × R𝑁 set

𝑊 (𝜔, 𝑥, 𝜉) := 𝐷 (𝜔, 𝑥)𝜉 · 𝜉

and define𝑊hom for P-a.e. 𝜔 ∈ Σ by

𝑊hom (𝜔, 𝜉) = lim
𝑛→+∞

inf
{
1
𝑛𝑁

∫
𝑛𝑌

𝑊 (𝜔, 𝑦, 𝜉 + ∇𝑢(𝑦)) d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )
}

= inf
𝑛∈N∗

EI inf
{
1
𝑛𝑁

∫
𝑛𝑌

𝑊 (𝜔, 𝑦, 𝜉 + ∇𝑢(𝑦)) d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )
}
.

It is well known that this limit exists for P-a.e. 𝜔 ∈ Σ and is given by the formula
above; for a proof, refer to [6, Proposition 12.4.3] and references therein. Note that if
(Σ,A,P, (𝑇𝑧)𝑧∈Z𝑁 ) is ergodic, then𝑊hom is deterministic and given for P-a.e. 𝜔 ∈ Σ by

𝑊hom (𝜉) = lim
𝑛→+∞

inf
{
1
𝑛𝑁

∫
𝑛𝑌

𝑊 (𝜔, 𝑦, 𝜉 + ∇𝑢(𝑦)) d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )
}

= inf
𝑛∈N∗

E inf
{
1
𝑛𝑁

∫
𝑛𝑌

𝑊 ( · , 𝑦, 𝜉 + ∇𝑢(𝑦)) d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )
}
.

As a consequence of Theorem 5.3 we obtain

Corollary 6.1. Assume that for P-a.e. 𝜔 ∈ Σ

(HOM1) sup𝜀>0Φ𝜀 (𝑢0𝜀 (𝜔)) < +∞;

(HOM2) 𝑢0𝜀 (𝜔) → 𝑢0 (𝜔) strongly in 𝐿2 (Ω).

Then for P-a.e. 𝜔 ∈ Σ, the solution 𝑢𝜀 (𝜔, · ) of (P𝜀 (𝜔)) converges to 𝑢(𝜔, · ) in
𝐶 ( [0, 𝑇], 𝐿2 (Ω)), solution of the homogenized problem

(P(𝜔))



d𝑢(𝜔)
d𝑡

(𝑡) − 𝑎 div(𝐷hom (𝜔)∇𝑢(𝜔, 𝑡)) + 𝑏 𝑢(𝜔, 𝑡)

−
∫ 𝑡

0
𝐾 (𝑡 − 𝑠) div(𝐷hom (𝜔)∇𝑢(𝜔, 𝑠)) d𝑠 = 𝐹 (𝜔, 𝑡, 𝑢(𝜔, 𝑡))

for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(𝜔, 0) = 𝑢0 (𝜔), 𝑢0 (𝜔) ∈ dom(𝜕Φhom (𝜔))

with 𝐷hom (𝜔) = ((𝑑hom)𝑖 𝑗 (𝜔))𝑖, 𝑗=1,...,𝑁 ,
(𝑑hom)𝑖 𝑗 (𝜔) =

1
2
(𝑊hom (𝜔, 𝑒𝑖 + 𝑒 𝑗 ) +𝑊hom (𝜔, 𝑒𝑖 − 𝑒 𝑗 )),

dom(𝜕Φhom (𝜔)) = 𝐻10 (Ω) ∩ 𝐻
2 (Ω),
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where (𝑒𝑖)𝑖=1,...,𝑁 is the canonical basis of R𝑁 . The homogenized reaction functional is
given for every 𝑢 ∈ 𝐿2 (Ω), P-a.e. 𝜔 ∈ Σ, and all (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑁 by

𝐹hom (𝜔, 𝑡, 𝑢) (𝑥) = 𝑟hom (𝜔, 𝑡) · 𝑔(𝑢(𝑥)) + 𝑞hom (𝜔, 𝑡),

𝑟hom (𝜔, 𝑡) = EI
(∫

(0,1)𝑁
𝑟 (𝜔, 𝑡, 𝑦) d𝑦

)
,

𝑞hom (𝜔, 𝑡) = EI
(∫

(0,1)𝑁
𝑞(𝜔, 𝑡, 𝑦) d𝑦

)
.

Proof. Firstly, by using arguments from ergodic theory of additive processes, we obtain
that for P-a.e. 𝜔 ∈ Σ,

𝑟𝜀 (𝜔, · , · ) −⇀ 𝑟hom (𝜔, · )
for the 𝜎(𝐿∞ (0, 𝑇, 𝐿2 (Ω,R𝑙)), 𝐿1 (0, 𝑇, 𝐿2 (Ω,R𝑙))) topology,

𝑞𝜀 (𝜔, · , · ) −⇀ 𝑞hom (𝜔, · )

weakly in 𝐿2 (0, 𝑇, 𝐿2 (Ω)), and

sup
𝜀>0




𝑞 (𝜔, 𝑡, ·
𝜀

)



𝐿2 (Ω)

< +∞

for all 𝑡 ∈ [0, 𝑇]. For a proof refer to [2, Lemma 5.2] and [2, proof of Theorem 5.1].
It remains to establish (STAB4) and (STAB′

5) of Remark 5.2, i.e. that forP-a.e. 𝜔 ∈ Σ:

Φ𝜀 (𝜔)
𝑀→ Φ(𝜔, · ) and Ψ𝜀 (𝜔, · ) b𝐻 10 (Ω)

Γ𝑤−𝐻10−−−−−→ Ψ(𝜔, · ) b𝐻 10 (Ω) where

Φ(𝜔, 𝑢) =

𝑎

∫
Ω

𝐷hom (𝜔)∇𝑢 · ∇𝑢 d𝑥 +
𝑏

2

∫
Ω

𝑢2d𝑥 if 𝑢 ∈ 𝐻10 (Ω),

+∞ otherwise.

Ψ(𝜔, 𝑢) =

∫
Ω

𝐷hom (𝜔)∇𝑢 · ∇𝑢 d𝑥 if 𝑢 ∈ 𝐻10 (Ω),

+∞ otherwise.

Observe that the Γ-convergence of Ψ𝜀 (𝜔, · ) to Ψ(𝜔, · ) when 𝐿2 (Ω) is equipped with
its strong topology yields the Γ-convergence of Ψ𝜀 (𝜔, · ) b𝐻 10 (Ω) to Ψ(𝜔, · ) b𝐻 10 (Ω) when
𝐻10 (Ω) is equipped with its weak topology. This property is a direct consequence of the
uniform coercivity (see Proposition D.2):

Ψ𝜀 (𝜔, 𝑢) ≥ 𝛼𝑎
∫
Ω

|𝑢(𝑥) |2d𝑥, for all 𝑢 ∈ 𝐻10 (Ω).

Noticing that Φ𝜀 (𝜔, · ) is a continuous perturbation of 𝑎Ψ𝜀 (𝜔, · ) by 𝑏
2 ‖ · ‖

2
𝐿2 (Ω) , these

two convergences are straightforward consequences of [6, Theorem 12.1.1(ii)] and [6,
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Theorem 12.4.7]. Finally, it is easily seen that the matrix 𝐷hom (𝜔, · ) satisfies the bounds

𝛼 |𝜉 |2 ≤
𝑁∑︁

𝑖, 𝑗=1
(𝑑hom)𝑖 𝑗 (𝜔)𝜉𝑖𝜉 𝑗 ≤ 𝛽 |𝜉 |2

forP-a.e.𝜔 ∈ Σ, and all 𝜉 ∈ R𝑁 . Hence dom(𝜕Φ(𝜔)) = 𝐻10 (Ω)∩𝐻
2 (Ω). This completes

the proof. �

6.2. Stochastic homogenization of nonlinear integrodifferential reaction-dif-
fusion equations in one dimension space in the setting of a Poisson point
process

Denote byM the set of all countable and locally finite sums of Dirac measures in R,
equipped with the 𝜎-algebra generated by all the evaluation maps E𝐵 : 𝑚 ↦→ 𝑚(𝐵) from
M into N ∪ {+∞} when 𝐵 belongs to B(R). Then, given 𝜃 > 0, there exist a subset Σ of
locally finite sequences (𝜔𝑖)𝑖∈N in R, a probability space (Σ,A,P𝜃 ) and a point process,
called Poisson point process, N : 𝜔 ↦→ N (𝜔, · ) from Σ intoM satisfying

(i) N(𝜔, · ) = ∑
𝑖∈N 𝛿𝜔𝑖

;

(ii) for every finite and pairwise disjoint family (𝐵𝑖)𝑖∈𝐼 ofB(R), the random variables
(N ( · , 𝐵𝑖))𝑖∈𝐼 are independent ;

(iii) for every bounded Borel set 𝐵 and every 𝑘 ∈ N

P𝜃 ( [N ( · , 𝐵) = 𝑘]) = 𝜃𝑘L(𝐵)𝑘 exp(−𝜃L(𝐵))
𝑘!

.

We denote by E𝜃 the expectation operator with respect to the probability P𝜃 . Note
that for every bounded Borel set 𝐵 in R, we have N(𝜔, 𝐵) = #(Σ ∩ 𝐵), and that
E𝜃 (N ( · , 𝐵)) = 𝜃L(𝐵). We define the group (𝑇𝑧)𝑧∈Z𝑁 of P𝜃 -preserving transformation
on (Σ,A,P𝜃 ), by 𝑇𝑧𝜔 = 𝜔− 𝑧. From (ii), we can easily show that (Σ,A,P𝜃 , (𝑇𝑧)𝑧∈Z) is
ergodic, i.e. the 𝜎-algebra of invariant sets ofA is made up of sets with P𝜃 -measure 0 or
1. In the problem below, we use the dynamical system (Σ,A,P𝜃 , (𝑇𝑧)𝑧∈Z𝑁 ) to describe
the heterogeneous spatial environment.
Let Ω be an open bounded interval of R. Let 𝜎± ∈ 𝐶1 (R) be two scalar functions, and

𝑎± two positive real numbers satisfying

𝑎± ≤ (𝜎±) ′ (6.4)

and set for all 𝜉 ∈ R

𝑊± (𝜉) =
∫ 𝜉

0
𝜎± (𝑠) d𝑠.

36



Convergence of nonlinear integrodifferential reaction-diffusion equations via Mosco×Γ-convergence

We assume that there exists (𝛼, 𝛽) ∈ R∗+ such that 𝛼𝜉2 ≤ 𝑊± (𝜉) ≤ 𝛽(1 + 𝜉2). Such a
condition is fulfilled by assuming suitable conditions on 𝜎±, as for example a growth
condition of order 1. Given 𝑅 > 0, we define the random density𝑊 by

𝑊 (𝜔, 𝑥, 𝜉) =
{
𝑊− (𝜉) if 𝑥 ∈ ⋃

𝑖∈N 𝐵𝑅 (𝜔𝑖),
𝑊+ (𝜉) otherwise

and the random integral functional Φ𝜀 : 𝐿2 (Ω) → ]−∞, +∞] by

Φ𝜀 (𝜔, 𝑢) =


∫
Ω

𝑊

(
𝜔,
𝑥

𝜀
,
d𝑢
d𝑥

(𝑥)
)
d𝑥 if 𝑢 ∈ 𝐻10 (Ω)

+∞ otherwise.

It is easy to show that Φ𝜀 (𝜔, · ) is a proper convex lsc functional with domain 𝐻10 (Ω) and
that for all 𝜔 ∈ Σ, its subdifferential (actually its derivative) is given by

dom(𝜕Φ𝜀 (𝜔, · )) =
{
𝑢 ∈ 𝐻10 (Ω) :

(
𝑊 ′

𝜉

(
𝜔,

·
𝜀
,
d𝑢
d𝑥

)) ′
∈ 𝐿2 (Ω)

}
𝜕Φ𝜀 (𝜔, · ) = −

(
𝑊 ′

𝜉

(
𝜔,

·
𝜀
,
d𝑢
d𝑥

)) ′
.

On the other hand, we set

𝑎(𝜔, 𝑥) =
{
𝑎− (𝑥) if 𝑥 ∈ ⋃

𝑖∈N 𝐵𝑅 (𝜔𝑖),
𝑎+ (𝑥) otherwise

and we define the random quadratic integral functional Ψ𝜀 : 𝐿2 (Ω) → ]−∞, +∞] by

Ψ𝜀 (𝜔, 𝑢) =


1
2

∫
Ω

𝑎

(
𝜔,
𝑥

𝜀

) ����d𝑢d𝑥 (𝑥)����2 d𝑥 if 𝑢 ∈ 𝐻10 (Ω)

+∞ otherwise.

The subdifferential of Ψ𝜀 (𝜔, · ) (actually its derivative) is given by
dom(𝜕Ψ𝜀 (𝜔, · )) =

{
𝑢 ∈ 𝐻10 (Ω) :

(
𝑎

(
𝜔,

·
𝜀

) d𝑢
d𝑥

) ′
∈ 𝐿2 (Ω)

}
𝜕Ψ𝜀 (𝜔, · ) = −

(
𝑎

(
𝜔,

·
𝜀

) d𝑢
d𝑥

) ′
.

Condition (2.1) is uniformly satisfied: take 𝛼Ψ𝜀
= 1
2 min(𝑎

−, 𝑎+). In the lemma below we
state that (2.2) is uniformly fulfilled for P𝜃 -a.e. 𝜔 ∈ Σ.
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Lemma 6.2. For P𝜃 -a.e. 𝜔 ∈ Σ, the subdifferentials 𝜕Φ𝜀 (𝜔, · ) and 𝜕Ψ𝜀 (𝜔, · ) are
connected as follows:{

dom(𝜕Φ𝜀 (𝜔, · )) ⊂ dom(𝜕Ψ𝜀 (𝜔, · )),

〈𝜕Φ𝜀 (𝜔, 𝑢), 𝜕Ψ𝜀 (𝜔, 𝑢)〉 ≥ ‖𝜕Ψ𝜀 (𝜔, 𝑢)‖2𝐿2 (Ω) for all 𝑢 ∈ dom(𝜕Φ𝜀 (𝜔, · )).

Proof. ForP𝜃 -a.e.𝜔 ∈ Σ setΩ−
𝜀 (𝜔) := Ω∩[ 𝑥

𝜀
∈ ⋃

𝑖∈N 𝐵𝑅 (𝜔𝑖)] andΩ+
𝜀 (𝜔) := Ω∩[ 𝑥

𝜀
∉⋃

𝑖∈N 𝐵𝑅 (𝜔𝑖)]. Let 𝑢 ∈ dom(𝜕Φ𝜀 (𝜔, · )), we have∫
Ω

(
𝑎

(
𝜔,

·
𝜀

) d𝑢
d𝑥

) ′2
d𝑥 =

∫
Ω−

𝜀 (𝜔)
(𝑎−)2

(
d2𝑢
d𝑥2

)2
d𝑥 +

∫
Ω+

𝜀 (𝜔)
(𝑎+)2

(
d2𝑢
d𝑥2

)2
d𝑥

≤
∫
Ω−

𝜀 (𝜔)

(
𝜎−′

(
d𝑢
d𝑥

)
d2𝑢
d𝑥2

)2
d𝑥 +

∫
Ω+

𝜀 (𝜔)

(
𝜎+′

(
d𝑢
d𝑥

)
d2𝑢
d𝑥2

)2
d𝑥

=

∫
Ω

(
𝑊 ′

𝜉

(
𝜔,

·
𝜀
,
d𝑢
d𝑥

)) ′2
d𝑥 < +∞

so that 𝑢 ∈ dom(Ψ𝜀 (𝜔, · )).
Fix now 𝑢 ∈ dom(𝜕Φ𝜀 (𝜔, · )). From (6.4) we have

〈𝜕Φ𝜀 (𝜔, 𝑢), 𝜕Ψ𝜀 (𝜔, 𝑢)〉 =
∫
Ω

(
𝑊 ′

𝜉

(
𝜔,
𝑥

𝜀
,
d𝑢
d𝑥

)) ′(
𝑎

(
𝜔,
𝑥

𝜀

) d𝑢
d𝑥

) ′
d𝑥

=

∫
Ω−

𝜀 (𝜔)

(
𝜎−

(
d𝑢
d𝑥

)) ′
𝑎−
d2𝑢
d𝑥2
d𝑥 +

∫
Ω+

𝜀 (𝜔)

(
𝜎+

(
d𝑢
d𝑥

)) ′
𝑎+
d2𝑢
d𝑥2
d𝑥

=

∫
Ω−

𝜀 (𝜔)
𝜎−′

𝑎−
(
d2𝑢
d𝑥2

)2
d𝑥 +

∫
Ω+

𝜀 (𝜔)
𝜎+′𝑎+

(
d2𝑢
d𝑥2

)2
d𝑥

≥
∫
Ω−

𝜀 (𝜔)
𝑎−2

(
d2𝑢
d𝑥2

)2
d𝑥 +

∫
Ω+

𝜀 (𝜔)
𝑎+2

(
d2𝑢
d𝑥2

)2
d𝑥

= ‖𝜕Ψ𝜀 (𝜔, 𝑢)‖2𝐿2 (Ω) .

This completes the proof. �

Let 𝐾 be a kernel as defined in Section 2 and a reaction functional as in the previous
section with 𝑁 = 1, i.e.

𝐹𝜀 (𝜔, 𝑡, 𝑢) (𝑥) = 𝑟
(
𝜔, 𝑡,

𝑥

𝜀

)
· 𝑔(𝑢(𝑥)) + 𝑞

(
𝜔, 𝑡,

𝑥

𝜀

)
,
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fulfilling the same conditions. Consider the random integrodifferential reaction-diffusion
problem defined for P𝜃 -a.e. 𝜔 ∈ Σ by

(P𝜀 (𝜔))


d𝑢𝜀 (𝜔)
d𝑡

(𝑡) + 𝜕Φ𝜀 (𝜔, 𝑢𝜀 (𝜔, 𝑡)) +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜕Ψ𝜀 (𝜔, 𝑢𝜀 (𝜔, 𝑠)) d𝑠

= 𝐹𝜀 (𝜔, 𝑡, 𝑢𝜀 (𝜔, 𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢𝜀 (𝜔, 0) = 𝑢0𝜀 (𝜔), 𝑢0𝜀 (𝜔) ∈ dom(𝜕Φ𝜀 (𝜔)).

From Proposition 4.2, (P𝜀 (𝜔)) admits a unique solution. When𝜔 ∈ Σ and 𝜀 are fixed, the
problem (P𝜀 (𝜔)) is nothing but the problem treated in [12, Example 2] in term of well
posedness. Here we consider sequences of such problems with, additionally, a reaction
source and in a stochastic homogenization framework. A straightforward application of
Theorem 5.3 yields

Corollary 6.3. Assume that for P𝜃 -a.e. 𝜔 ∈ Σ

(HOM1) sup𝜀>0Φ𝜀 (𝑢0𝜀 (𝜔)) < +∞;

(HOM2) 𝑢0𝜀 (𝜔) → 𝑢0 (𝜔) strongly in 𝐿2 (Ω).

Then for P𝜃 -a.e. 𝜔 ∈ Σ, the solution 𝑢𝜀 (𝜔, · ) of (P𝜀 (𝜔)) converges to 𝑢(𝜔, · ) in
𝐶 ( [0, 𝑇], 𝐿2 (Ω)), solution of the homogenized problem

(P(𝜔))



d𝑢
d𝑡

(𝜔, 𝑡) − (𝜕𝑊hom (𝑢(𝜔, 𝑡))) ′

−
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝑎hom

d2𝑢
d𝑥2

(𝜔, 𝑠) d𝑠 3 𝐹 (𝑡, 𝑢(𝜔, 𝑡)) for a.e. 𝑡 ∈ (0, 𝑇)

𝑢(𝜔, 0) = 𝑢0 (𝜔), 𝑢0 (𝜔) ∈ dom(𝜕Φ).

where𝑊hom is deterministic, given by

𝑊hom (𝜉) = lim
𝑛→+∞

inf
{
1
𝑛𝑁

∫
𝑛𝑌

𝑊

(
𝜔, 𝑦, 𝜉 + d𝑢

d𝑦
(𝑦)

)
d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )

}
= inf

𝑛∈N∗
E𝜃 inf

{
1
𝑛𝑁

∫
𝑛𝑌

𝑊

(
· , 𝑦, 𝜉 + d𝑢

d𝑦
(𝑦)

)
d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )

}
,

the coefficient 𝑎hom is given by
𝑎hom =

𝑎−𝑎+

Θ𝑎− + (1 − Θ)𝑎+ ,

Θ = 1 − exp(2𝜃𝑅)
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and, with the preamble convention, 𝜕Φhom, possibly multivalued, is given by
dom(𝜕Φhom) =

{
𝑣 ∈ 𝐻10 (Ω) :

(
𝑊 ′
hom

(
d𝑣
d𝑥

)) ′
∈ 𝐿2 (Ω)

}
𝜕Φhom = −

(
𝑊 ′
hom

(
d𝑣
d𝑥

)) ′
.

The homogenized reaction functional is given for every 𝑢 ∈ 𝐿2 (Ω), and all (𝑡, 𝑥) ∈
[0, 𝑇] × R by

𝐹hom (𝑡, 𝑢) (𝑥) = 𝑟hom (𝑡) · 𝑔(𝑢(𝑥)) + 𝑞hom (𝑡),
where

𝑟hom (𝑡) = E𝜃

(∫
(0,1)𝑁

𝑟 ( · , 𝑡, 𝑦) d𝑦
)
,

𝑞hom (𝑡) = E𝜃

(∫
(0,1)𝑁

𝑞( · , 𝑡, 𝑦) d𝑦
)
.

Assume further that the Fenchel conjugate of𝑊± satisfies the following condition: there
exists 𝛾∗ > 0 such that

〈
𝜉∗1 − 𝜉

∗
2, 𝜉

1 − 𝜉2
〉
≥ 𝛾∗ |𝜉1 − 𝜉2 |2 for all (𝜉1, 𝜉2) ∈ R × R and all

(𝜉∗1, 𝜉
∗
2) ∈ 𝜕𝑊

±∗ × 𝜕𝑊±∗. Then 𝑊hom is univalent and is the P𝜃 -almost sure pointwise
limit of𝑊 ′

𝑛 (𝜔, · ) where𝑊𝑛 (𝜔, 𝜉) = inf
{ 1
𝑛𝑁

∫
𝑛𝑌
𝑊 (𝜔, 𝑦, 𝜉 + d𝑢d𝑦 (𝑦))d𝑦 : 𝑢 ∈ 𝐻10 (𝑛𝑌 )

}
.

Proof. The weak limit of the reaction term is obtained as in the proof of Corollary 6.1. In
order to apply Theorem 5.3, it is enough to establish that for P𝜃 -a.e. 𝜔 ∈ Σ, the following
variational convergences hold: Φ𝜀 (𝜔)

𝑀→ Φ and Ψ𝜀 (𝜔) b𝐻 10 (Ω)
Γ𝑤−𝐻10−−−−−→ Ψ where

Φ(𝑢) =


∫
Ω

𝑊hom

(
d𝑢
d𝑥

)
d𝑥 if 𝑢 ∈ 𝐻10 (Ω)

+∞ otherwise,

and

Ψ(𝑢) = 1
2

∫
Ω

𝑎hom

����d𝑢d𝑥 (𝑥)����2 d𝑥.
The first convergence is well known (see for instance [6, Theorem 12.4.7]. For the second
convergence, note that for quadratic functionals in one dimension

𝐹𝜀 (𝑢) =
∫
Ω

𝑎𝜀 (𝑥)
����d𝑢d𝑥 (𝑥)����2 d𝑥,

with 0 ≤ 𝛼 ≤ 𝑎𝜀 ≤ 𝛽, one has : 𝐹𝜀

Γ𝑤−𝐻10−−−−−→ 𝐹 iff 1
𝑎𝜀
converges to 1

𝑎
for the 𝜎(𝐿∞, 𝐿1)

topology, and 𝐹 has the integral representation

𝐹 (𝑢) =
∫
Ω

𝑎(𝑥)
����d𝑢d𝑥 (𝑥)����2 d𝑥.
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For a proof, see [6, Theorem 12.3.1]. Hence it remains to establish that for P𝜃 -a.e. 𝜔 ∈ Σ

the following convergence holds
1

𝑎(𝜔, ·
𝜀
) −⇀ Θ𝑎− + (1 − Θ)𝑎+

𝑎+𝑎−
𝜎(𝐿∞, 𝐿1).

This result is a direct consequence of the additive ergodic theorem (see [6, Theorem 12.4.2])
which states that for P𝜃 -a.e. 𝜔 ∈ Σ

1
𝑎(𝜔, ·

𝜀
) −⇀ E𝜃

∫
(0,1)

1
𝑎( · , 𝑦) d𝑦.

An easy calculation gives

E𝜃

∫
(0,1)

1
𝑎( · , 𝑦) d𝑦 =

Θ𝑎− + (1 − Θ)𝑎+
𝑎+𝑎−

.

The last claim follows straightforwardly from [6, Proposition 17.4.6]. This completes the
proof. �

Appendix A. Proof of Lemma 3.2

Step 1: Proof of (3.6) and (3.7). Observe that from Lemma 3.1, for all 𝑡 ∈ [0, 𝑇], 𝑢𝜆 (𝑡) ∈
dom(𝜕Φ) ⊂ dom(𝜕Ψ). For a.e. 𝑡 ∈ [0, 𝑇], form the scalar product in 𝑋 of 𝜕Ψ(𝑢𝜆 (𝑡))
with the approximate equation (3.1) and integrate over [0, 𝑇]. This yields∫ 𝑇̃

0

d
d𝑡
Ψ(𝑢𝜆 (𝑡))d𝑡 +

∫ 𝑇̃

0
〈𝜕Φ(𝑢𝜆 (𝑡)), 𝜕Ψ(𝑢𝜆 (𝑡))〉 d𝑡

+
∫ 𝑇̃

0
〈𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) (𝑡), 𝜕Ψ(𝑢𝜆 (𝑡))〉 d𝑡 =

∫ 𝑇̃

0
〈𝐹 (𝑡, 𝑢𝜆 (𝑡)), 𝜕Ψ(𝑢𝜆 (𝑡))〉 d𝑡. (A.1)

We have used the fact that from (2.2), 𝜕Ψ(𝑢𝜆) ∈ 𝐿2 (0, 𝑇, 𝑋), hence〈
d𝑢𝜆
d𝑡

(𝑡), 𝜕Ψ(𝑢𝜆 (𝑡))
〉
=
d
d𝑡
Ψ(𝑢𝜆 (𝑡))

(cf. [6, Proposition 17.2.5]). An easy calculation gives

‖𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) ≤ 𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ𝜆 (𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) . (A.2)

Since for all 𝜆 > 0,
‖𝜕Ψ𝜆 (𝑢𝜆 (𝑡))‖𝑋 ≤ ‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 (A.3)

(see [6, Proposition 17.2.2]), we infer that�����∫ 𝑇̃

0
〈𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆) (𝑡), 𝜕Ψ(𝑢𝜆 (𝑡))〉 d𝑡

����� ≤ 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ(𝑢𝜆)‖2𝐿2 (0,𝑇̃ ,𝑋 ) . (A.4)
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On the other hand from (C1) and (2.1)

‖𝐹 ( · , 𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) ≤ ‖𝐹 ( · , 0)‖𝐿2 (0,𝑇 ,𝑋 ) + ‖𝐿‖𝐿2 (0,𝑇̃ ) ‖𝑢𝜆‖𝐿2 (0,𝑇̃ ,𝑋 )

≤ ‖𝐹 ( · , 0)‖𝐿2 (0,𝑇 ,𝑋 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) ‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) . (A.5)

Hence from (A.5)∫ 𝑇̃

0
〈𝐹 (𝑡, 𝑢𝜆 (𝑡)), 𝜕Ψ(𝑢𝜆 (𝑡))〉 d𝑡 ≤ ‖𝐹 ( · , 0)‖𝐿2 (0,𝑇 ,𝑋 ) ‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 )

+ 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) ‖‖𝜕Ψ(𝑢𝜆)‖2𝐿2 (0,𝑇̃ ,𝑋 ) . (A.6)

Combining (A.1), (2.2), and (A.4), (A.6) yields that[
𝛼Φ,Ψ −

(
𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ )

) ]
‖𝜕Ψ(𝑢𝜆)‖2𝐿2 (0,𝑇̃ ,𝑋 )

≤ 𝑇𝛽Φ,Ψ +Ψ(𝑢0) − inf
𝑋

Ψ + ‖𝐹 ( · , 0)‖𝐿2 (0,𝑇̃ ,𝑋 ) ‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 )

from which we deduce (3.6) provided that 𝑇 12 ‖𝐾 ‖𝐿2 (0,𝑇 ) + 𝛼Ψ‖𝐿‖𝐿2 (0,𝑇̃ ) < 𝛼Φ,Ψ.
Estimate (3.7) follows by combining (3.6) with (2.1).

Step 2: Proof of (3.8), (3.9) and (3.10). For a.e. 𝑡 ∈ (0, 𝑇), form the scalar product in 𝑋
of d𝑢𝜆d𝑡 (𝑡) with the approximate equation and integrate over (0, 𝑇). This yields



d𝑢𝜆d𝑡 



2

𝐿2 (0,𝑇̃ ,𝑋 )
≤ Φ(𝑢0) − inf

𝑋
Φ

+
(
‖𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) + ‖𝐹 ( · , 𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 )

)



d𝑢𝜆d𝑡 




𝐿2 (0,𝑇̃ ,𝑋 )

and (3.8) follows from (3.6), (3.7), (A.2), and (A.5).
Estimate (3.9) follows straightforwardly from the approximate equation, (3.6), (3.7),

(3.8), and (A.2). Estimate (3.10) is obtained from (3.8), according to

‖𝑢𝜆 (𝑡)‖𝑋 ≤ ‖𝑢0‖𝑋 + 𝑇 12




d𝑢𝜆d𝑡 





𝐿2 (0,𝑇̃ ,𝑋 )
.

Step 3. Proof of (3.11), (3.12) and (3.13)] First observe that

sup
𝜆>0

‖𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)‖𝑊 1,2 (0,𝑇̃ ,𝑋 ) < +∞, (A.7)

which follows from (3.6) and the two inequalities:

‖𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) ≤ 𝑇
1
2 ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) ,



 dd𝑡 𝐾 ★ 𝜕Ψ𝜆 (𝑢𝜆)






𝐿2 (0,𝑇̃ ,𝑋 )

≤ (𝐾 (0) + 𝑇 12 ‖𝐾 ′‖𝐿2 (0,𝑇 ) )‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 )
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(the second inequality follows from (3.4)). Next, from (3.5) and (3.8), we have

sup
𝜆





d𝐹 ( · , 𝑢𝜆)d𝑡






𝐿1 (0,𝑇̃ ,𝑋 )

< +∞. (A.8)

From (A.7) and (A.8) we deduce that

sup
𝜆





d𝐺𝜆

d𝑡






𝐿1 (0,𝑇̃ ,𝑋 )

< +∞.

Hence (3.11) is a straightforward consequence of 3.8 and [2, Lemma 3.3] which states
that for each 𝑡 ∈ ]0, 𝑇]



d+𝑢𝜆d𝑡 (𝑡)






𝑋

≤ 1
𝑡

∫ 𝑡

0





d𝑢𝜆d𝑡 (𝑠)





𝑋

d𝑠 +
∫ 𝑡

0





d𝐺𝜆

d𝑡
(𝑠)






𝑋

d𝑠.

To establish (3.12), for each 𝑡 ∈ ]0, 𝑇] form the scalar product of the approximate
equation S𝜆

d+𝑢𝜆
d𝑡

(𝑡) + 𝜕Φ(𝑢𝜆 (𝑡)) = 𝐺𝜆 (𝑡, 𝑢𝜆)

with 𝜕Ψ(𝑢𝜆 (𝑡)). This yields from (2.2)〈
d+𝑢𝜆
d𝑡

(𝑡), 𝜕Ψ(𝑢𝜆 (𝑡))
〉
+ 𝛼Φ,Ψ‖𝜕Ψ(𝑢𝜆 (𝑡))‖2𝑋 ≤ 〈𝐺𝜆 (𝑡, 𝑢𝜆), 𝜕Ψ(𝑢𝜆 (𝑡))〉 − 𝛽Φ,Ψ

from which we deduce

𝛼Φ,Ψ‖𝜕Ψ(𝑢𝜆 (𝑡))‖2𝑋 ≤
(



d+𝑢𝜆d𝑡 (𝑡)






𝑋

+ ‖𝐺𝜆 (𝑡, 𝑢𝜆)‖𝑋
)
‖𝜕Ψ(𝑢𝜆 (𝑡))‖𝑋 − 𝛽Φ,Ψ.

The claim follows from (3.6), (3.10), (3.11), and sup𝜆 ‖𝐺𝜆 (𝑡, 𝑢𝜆 (𝑡))‖𝑋 < +∞ obtained
according to

‖𝐺𝜆 (𝑡, 𝑢𝜆)‖𝑋 ≤ ‖𝐾 ‖𝐿2 (0,𝑇 ) ‖𝜕Ψ(𝑢𝜆)‖𝐿2 (0,𝑇̃ ,𝑋 ) + ‖𝐹 (𝑡, 0)‖𝑋 + 𝐿 (𝑡)‖𝑢𝜆 (𝑡)‖𝑋 .

For 𝑡 = 0, 𝜕Ψ(𝑢𝜆 (𝑡)) = 𝜕Ψ(𝑢0) which does not depend on 𝜆. To obtain (3.13), take
the scalar product of the approximate equation with 𝜕Φ(𝑢𝜆 (𝑡)) and follows the same
calculation. �

Appendix B. A Grönwall type inequality

The following lemma generalizes the result stated in [9, Lemma A.5].

Lemma B.1. Let 𝑇 > 0, m ∈ 𝐿1 (0, 𝑇) such that m ≥ 0 a.e. in (0, 𝑇), and 𝑎 ≥ 0. Let
𝑝 ∈ [1, +∞) and 𝜙 : [0, 𝑇] → [0, +∞) be a continuous function satisfying

1
𝑝
𝜙𝑝 (𝑡) ≤ 1

𝑝
𝑎𝑝 +

∫ 𝑡

0
𝜙𝑝−1 (𝑠)m(𝑠) d𝑠 for all 𝑡 ∈ [0, 𝑇] .
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Then
𝜙(𝑡) ≤ 𝑎 +

∫ 𝑡

0
m(𝑠) d𝑠 for all 𝑡 ∈ [0, 𝑇] .

Proof. We assume that 𝑎 > 0, otherwise substitute 𝑎 + 𝜀 for 𝑎 and make 𝜀 → 0 in the
last inequality of the proof. Set 𝜓(𝑡) = 1

𝑝
𝑎𝑝 +

∫ 𝑡

0 𝜙
𝑝−1 (𝑠)m(𝑠) d𝑠 so that 𝜓 > 0 and

𝜙(𝑠) ≤ 𝑝
1
𝑝 𝜓

1
𝑝 (𝑠) for all 𝑠 ∈ [0, 𝑇] . (B.1)

Hence, since 𝜓 is absolutely continuous
𝑑𝜓

d𝑡
(𝑠) = m(𝑠)𝜙𝑝−1 (𝑠) ≤ m(𝑠)𝑝

1
𝑞 𝜓

1
𝑞 (𝑠) for a.e. 𝑠 ∈ (0, 𝑇) (B.2)

where 𝑞 is the conjugate of 𝑝, i.e. 1
𝑝
+ 1

𝑞
= 1. It follows from (B.2) that for a.e. 𝑠 ∈ (0, 𝑇)

𝑝
− 1

𝑞
d𝜓
d𝑡

(𝑠)𝜓− 1
𝑞 (𝑠) ≤ m(𝑠),

that is
𝑝
1
𝑝
d
d𝑡

(𝜓
1
𝑝 (𝑠)) ≤ m(𝑠).

Integrating over (0, 𝑡), we infer that for all 𝑡 ∈ [0, 𝑇]

𝑝
1
𝑝 𝜓

1
𝑝 (𝑡) ≤ 𝑝

1
𝑝 𝜓

1
𝑝 (0) +

∫ 𝑡

0
m(𝑠) d𝑠,

that is, according to (B.1), 𝜙(𝑡) ≤ 𝑎 +
∫ 𝑡

0 m(𝑠) d𝑠 for all 𝑡 ∈ [0, 𝑇]. �

Appendix C. Graph-convergence

Let us recall the classical notion of the Kuratowski–Painlevé convergence for sequence of
sets: let (𝐴𝑛)𝑛∈N be a sequence of subsets of a metric space (𝑋, 𝑑), or more generally of
a topological space. The lower limit of the sequence (𝐴𝑛)𝑛∈N is the subset of 𝑋 denoted
by lim inf 𝐴𝑛 and defined by

lim inf 𝐴𝑛 = {𝑥 ∈ 𝑋 : ∃ 𝑥𝑛 → 𝑥, 𝑥𝑛 ∈ 𝐴𝑛 for all 𝑛 ∈ N}
The upper limit of the sequence (𝐴𝑛)𝑛∈N is the subset of 𝑋 denoted by lim sup 𝐴𝑛 and
defined by

lim sup 𝐴𝑛 =
{
𝑥 ∈ 𝑋 : ∃ (𝑛𝑘 )𝑘∈N, ∃ (𝑥𝑘 )𝑘∈N, ∀ 𝑘, 𝑥𝑘 ∈ 𝐴𝑛𝑘 , 𝑥𝑘 → 𝑥

}
.

The sets lim inf 𝐴𝑛 and lim sup 𝐴𝑛 are clearly two closed subsets of (𝑋, 𝑑) satisfying
lim inf 𝐴𝑛 ⊂ lim sup 𝐴𝑛.

The sequence (𝐴𝑛)𝑛∈N is said to be convergent if
lim inf 𝐴𝑛 = lim sup 𝐴𝑛.
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The common value 𝐴 is called the limit of (𝐴𝑛)𝑛∈N in the Kuratowski–Painlevé sense
and denoted by K-lim 𝐴𝑛. Therefore, by definition 𝐴 := K-lim 𝐴𝑛 if and only if

lim sup 𝐴𝑛 ⊂ 𝐴 ⊂ lim inf 𝐴𝑛.

We may also write 𝐴𝑛 → 𝐴 or 𝐴 = lim 𝐴𝑛, adding the metric or topology which is used
in 𝑋 .
From now on (𝑉, ‖ · ‖) is a Banach space and 𝑉∗ its topological dual space whose dual

norm is denoted by ‖ · ‖∗ and we recall that for (𝑢, 𝑢∗) ∈ 𝑉 × 𝑉∗, we write 〈𝑢∗, 𝑢〉 for
𝑢∗ (𝑢). Given a multivalued operator 𝐴 : 𝑉 → 2𝑉 ∗ , for any 𝑣 ∈ 𝑉 we write 𝐴𝑣 instead of
𝐴(𝑣). Let us recall some basic definitions

dom(𝐴) = {𝑣 ∈ 𝑋 : 𝐴𝑣 ≠ ∅} denotes the domain of 𝐴;
𝐺 (𝐴) := {(𝑣, 𝑣∗) ∈ 𝑉 ×𝑉∗ : 𝑣∗ ∈ 𝐴𝑣} denotes the graph of 𝐴;
𝑅(𝐴) := {𝑣∗ ∈ 𝑉∗ : ∃ 𝑣 ∈ 𝑉 𝑣∗ ∈ 𝐴𝑣} denotes the range of 𝐴.

We define the inverse operator 𝐴−1 : 𝑉∗ → 𝑉 of 𝐴 by

𝐴−1 (𝑣∗) = {𝑣 ∈ 𝑉 : 𝑣∗ ∈ 𝐴𝑣} .

Note that dom(𝐴−1) = 𝑅(𝐴). Consider another multivalued operator 𝐵 : 𝑉 → 2𝑉 ∗ . The
range of 𝐴 with respect to 𝐵 is the set

𝑅𝐵 (𝐴) := {𝑣∗ ∈ 𝑉∗ : ∃ 𝑣 ∈ dom(𝐵) 𝑣∗ ∈ 𝐴𝑣} .

Note that we have 𝑅𝐵 (𝐴) = 𝐴(dom(𝐴) ∩ dom(𝐵)).

Definition C.1. An operator 𝐴 : 𝑉 → 2𝑉 ∗ is said to be monotone, if 〈𝑢∗ − 𝑣∗, 𝑢 − 𝑣〉 ≥ 0
whenever (𝑢, 𝑢∗) ∈ 𝐺 (𝐴) and (𝑣, 𝑣∗) ∈ 𝐺 (𝐴). It is maximal monotone, if it is monotone
and if its graph is maximal among all the monotone operators mapping 𝑉 to 𝑉∗ when
𝑉 ×𝑉∗ is ordered by inclusion. An element (𝑢, 𝑢∗) of 𝑉 ×𝑉∗ is said to be monotonically
related to a monotone operator 𝐴 provided

〈𝑢∗ − 𝑣∗, 𝑢 − 𝑣〉 ≥ 0 for all (𝑣, 𝑣∗) ∈ 𝐺 (𝐴).

A useful form of the definition of maximality for a monotone operator 𝐴 is the following
condition whose proof follows straightforwardly from Definition C.1.

Proposition C.2. Let 𝐴 : 𝑉 → 2𝑉 ∗ be a monotone operator. Then 𝐴 is maximal monotone
if and only if whenever (𝑢, 𝑢∗) is monotonically related to 𝐴 then 𝑢 ∈ dom 𝐴 and 𝑢∗ ∈ 𝐴𝑢.

The most basic class of maximal monotone operators is the class of subdifferentials
of convex functions (see [6, Theorem 17.4.1]). Given a sequence of operators, one can
consider the lim inf and lim sup of the sequence of their graphs as subsets of 𝑉 ×𝑉∗. This
leads to the following definition.
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Definition C.3. A sequence (𝐴𝑛)𝑛∈N of operators mapping 𝑉 to 𝑉∗ is said to be graph
convergent to 𝐴 : 𝑉 → 2𝑉 ∗ , if the sequence (𝐺 (𝐴𝑛))𝑛∈N converges to the graph 𝐺 (𝐴) of
𝐴 in the sense of Kuratowski–Painlevé when 𝑉 ×𝑉∗ is endowed with the product norm.

From now on we identify the operators with their graphs so that we write 𝐴 instead
of 𝐺 (𝐴) and 𝐴 = G-lim 𝐴𝑛 or 𝐴𝑛

𝐺→ 𝐴 instead of 𝐺 (𝐴) = K-lim𝑛→+∞𝐺 (𝐴𝑛). When
considering sequences ofmaximalmonotone operators, thus subdifferentials, the definition
of the graph convergence is reduced to:

Proposition C.4. Let (𝐴𝑛, 𝐴)𝑛∈N be a sequence of maximal monotone operators mapping
𝑉 to 𝑉∗. Then we have

𝐴 = G-lim𝑛→+∞ 𝐴𝑛 ⇐⇒ 𝐴 ⊂ lim inf
𝑛→+∞

𝐴𝑛. (C.1)

Proof. The only implication we have to establish is

𝐴 ⊂ lim inf
𝑛→+∞

𝐴𝑛 =⇒ 𝐴 = G-lim𝑛→+∞ 𝐴𝑛,

the converse being trivial. Thus, it remains to show that lim sup 𝐴𝑛 ⊂ 𝐴 is automatically
satisfied. Let (𝑢, 𝑢∗) ∈ lim sup 𝐴𝑛, then there exists a subsequence (𝑛𝑘 )𝑘∈N of integers
and (𝑢𝑘 , 𝑢∗𝑘 ) ∈ 𝐴𝑛𝑘 such that (𝑢𝑘 , 𝑢∗𝑘 ) → (𝑢, 𝑢∗) in 𝑉 ×𝑉∗ whenever 𝑘 → +∞.
In the other hand, since 𝐴 ⊂ lim inf 𝐴𝑛, for all (𝑣, 𝑣∗) ∈ 𝐴, there exists (𝑣𝑛, 𝑣∗𝑛) ∈ 𝐴𝑛

such that (𝑣𝑛, 𝑣∗𝑛) → (𝑣, 𝑣∗) in 𝑉 ×𝑉∗. Passing to the limit in〈
𝑢∗𝑘 − 𝑣

∗
𝑛𝑘
, 𝑢𝑘 − 𝑣𝑛𝑘

〉
≥ 0

when 𝑘 → +∞ (recall that 𝐴𝑛𝑘 is monotone), we infer

〈𝑢∗ − 𝑣∗, 𝑢 − 𝑣〉 ≥ 0 for all (𝑣, 𝑣∗) ∈ 𝐴.

Therefore (𝑢, 𝑢∗) is monotonically related to 𝐴 and, according to Proposition C.2,
(𝑢, 𝑢∗) ∈ 𝐴, which completes the proof. �

Denote by 𝐴𝑛

𝐺𝑠,𝑠→ 𝐴 the graph convergence in 𝑉 × 𝑉∗ of 𝐴𝑛 to 𝐴 when 𝑉 × 𝑉∗ is

equipped with the strong product topology, and by 𝐴𝑛

𝐺𝑤,𝑠→ 𝐴 the graph convergence
in 𝑉 × 𝑉∗ of 𝐴𝑛 to 𝐴 when 𝑉 × 𝑉∗ is equipped with the weak-strong product topology.
On the other hand denote by Ψ𝑛

Γ𝑠-𝑉→ Ψ and Ψ𝑛

Γ𝑤-𝑉→ Ψ the sequential Γ-convergence
of the functional Φ𝑛 : 𝑉 → R ∪ {+∞} toward the functional Φ : 𝑉 → R ∪ {+∞} when
𝑉 is equipped with its strong and weak topology respectively. The following theorem
states the link between the variational convergence of convex functionals and the graph
convergence of their subdifferentials. For a proof, refer to [5, Theorems 3.66, 3.67] or [6,
Theorem 17.4.4]
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Theorem C.5. Let Ψ𝑛,Ψ : 𝑉 → R ∪ {+∞} be a sequence of lsc convex proper functions.
Then the following implications hold:

Ψ𝑛

Γ𝑠-𝑉−→ Ψ =⇒ 𝜕Ψ𝑛

𝐺𝑠,𝑠−→ 𝜕Ψ,

Ψ𝑛

Γ𝑤-𝑉−→ Ψ =⇒ 𝜕Ψ𝑛

𝐺𝑤,𝑠−→ 𝜕Ψ.

Note that converse implications hold true, up to normalization.

Appendix D. Γ-convergence versus Mosco-convergence

Definition D.1 (Mosco convergence). Let (𝑉, ‖ · ‖) be a Banach space, and (Φ𝑛)𝑛∈N a
sequence of extended real-valued functions Φ𝑛 : 𝑉 → R∪ {+∞}. The sequence (Φ𝑛)𝑛∈N
Mosco converges to the extended real-valued function Φ : 𝑉 → R ∪ {+∞} and we write
Φ𝑛

𝑀→ Φ if
Φ = Γ𝑤-𝑉 -Φ𝑛 = Γ𝑠-𝑉 -Φ𝑛.

The argument, which naturally led to introduce the Mosco convergence notion, is the
bicontinuity of the Fenchel duality transformation in the context of convex functions
(see [6, 20, 21]). This Appendix is devoted to the following Proposition.

Proposition D.2. Let 𝑋 and 𝑉 be two Banach spaces with 𝑉 ↩−↩→ 𝑋 , and Ψ𝑛,Ψ : 𝑋 →
]−∞, +∞] lsc convex proper functions such that dom(Ψ𝑛) = dom(Ψ) = 𝑉 . Assume that
for all 𝑟 ∈ R, there exists a weakly compact subset 𝐾𝑟 of 𝑉 such that for all 𝑛 ∈ N

[Ψ𝑛 b𝑉 ≤ 𝑟] ⊂ 𝐾𝑟 .

Then
Ψ𝑛 b𝑉

Γ𝑤-𝑉−→ Ψ b𝑉 =⇒ Ψ𝑛

M−→ Ψ.

Proof. Assume that Ψ𝑛 b𝑉
Γ𝑤-𝑉→ Ψ b𝑉 . Let 𝑢𝑛 ∈ 𝑋 and 𝑢 ∈ 𝑋 such that 𝑢𝑛 ⇀ 𝑢 in 𝑋 , and

assume that lim inf𝑛→+∞ Ψ𝑛 (𝑢𝑛) < +∞. Then

lim inf
𝑛→+∞

Ψ𝑛 (𝑢𝑛) = lim inf
𝑛→+∞

Ψ𝑛 b𝑉 (𝑢𝑛).

According to the equi-coerciveness hypothesis and to the compact embedding 𝑉 ↩−↩→ 𝑋

we can extract a subsequence of (𝑢𝑛)𝑛∈N which weakly converges in 𝑉 and strongly in 𝑋
to some 𝑣 ∈ 𝑉 . Thus 𝑣 = 𝑢 and 𝑢𝑛 ⇀ 𝑢 in 𝑉 . Hence from Ψ𝑛 b𝑉

Γ𝑤-𝑉→ Ψ b𝑉 we infer that

Ψ(𝑢) = Ψ b𝑉 (𝑢) ≤ lim inf
𝑛→+∞

Ψ𝑛 b𝑉 (𝑢𝑛) = lim inf
𝑛→+∞

Ψ𝑛 (𝑢𝑛). (D.1)

Let 𝑢 ∈ 𝑋 and assume that Ψ(𝑢) < +∞ so that Ψ(𝑢) = Ψ b𝑉 (𝑢). From Ψ𝑛 b𝑉
Γ𝑤-𝑉→ Ψ b𝑉

and the compact embedding𝑉 ↩−↩→ 𝑋 , we can derive that for a subsequence of (Ψ𝑛 b𝑉 )𝑛∈N
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(not relabeled) there exists a sequence (𝑢𝑛)𝑛∈N of 𝑉 such that 𝑢𝑛 ⇀ 𝑢 in 𝑉 , 𝑢𝑛 → 𝑢

strongly in 𝑋 , which satisfies

lim
𝑛→+∞

Ψ𝑛 (𝑢𝑛) = lim
𝑛→+∞

Ψ𝑛 b𝑉 (𝑢𝑛) = Ψ(𝑢). (D.2)

From (D.1) and (D.2) we deduce that there exists a subsequence of (Ψ𝑛)𝑛∈N such that
Ψ𝑛

M→ Ψ. This conclusion being valid for any subsequence of (Ψ𝑛)𝑛∈N, we conclude that
Ψ𝑛

M→ Ψ, which completes the proof. �
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