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Convergence of nonlinear integrodifferential reaction-diffusion
equations via MoscoxI'-convergence

OMAR ANza HAFsA
JEAN PHILIPPE MANDALLENA
GERARD MICHAILLE

Abstract

We study the convergence of sequences of nonlinear integrodifferential reaction-diffusion equations
when the Fickian terms belong to a class of convex functionals defined on a Hilbert space, equipped
with the Mosco-convergence, and the non Fickian terms belong to a class of convex functionals, whose
restrictions to a compactly embedded subspace are equipped with the I'-convergence. As a consequence
we prove a homogenization theorem for this class under a stochastic homogenization framework.

1. Introduction

In the spirit of [2, 4], we investigate the compactness or the stability in terms of convergence,
of integrodifferential reaction-diffusion problems defined in L>(0, T, X) by

du

(P) 4 dt

u(0) =u’, u’ € dom(9®),

(1) + 00 (u(t)) + ‘/Ot K(t —5)0¥(u(s))ds > F(t,u(z)) forae.t € (0,7)

under suitable variational convergences on the classes of functionals @ and W (see
Theorem 5.1). As usually the integral in the first member is taken in the sense of Bochner.
The domain of the lower semicontinuous convex functionals ®,¥ : X — R U {+co} is
a subspace V compactly embedded in the Hilbert space X. More precisely, the class of
functionals @ is equipped with the Mosco-convergence; the class of the restrictions to V
of functionals P, is equipped with the sequential I'-convergence associated with the weak
topology of V (for definitions see Appendix D, and for more details on I"-convergence
we refer to [5, 13]). When dealing with concrete functionals @ and ¥ of the calculus of
variations, problems of type (#) arise from the conservation of mass when the flux is
splitted into two terms: the Fickian flux whose divergence is d®(u(¢,-)) and the non
Fickian flux which takes time memory effects into account, and whose divergence is
fot K(t - 5)0¥(u(s)) ds; we refer to Section 6 for various examples in the framework of

Keywords: Integrodifferential diffusion equations, non Fickian flux, Mosco-convergence, I'-convergence,
Convergence of reaction-diffusion equations, stochastic homogenization.
2010 Mathematics Subject Classification: 35K57, 35B27, 35R60, 45K05, 49K45.
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stochastic homogenization. For integrodifferential equations and non-local effects induced
by homogenization see [3] and references therein.

We say that u is a solution of (P) if u € L*>([0,T], X) is absolutely continuous in
time and satisfies (). Well posedness in the sense of existence of solutions has been
extensively studied using maximal monotone operator techniques under an extrinsic
condition involving the scalar product of 0@ with the Yosida approximation of 0¥, not
easy to handle, even for elementary examples; see [12, Example 2]. We refer to the
pioneers [7, 8, 12, 18, 24] and references therein when F is a source without reaction
term. In the paper we treat the problem under a coercivity condition on 4® o (6¥)~!,
which is more flexible and stable for the product of the Mosco-convergence with the I'-
convergence. For existence of solutions of nonlinear Volterra integrodifferental equations
under a weak formulation but with nonsmooth kernels, refer to [15]. For existence results
related to integrodifferential equations of non convolution type or to integrodifferential
equations whose source includes a delay term see [10, 11, 24]. For recent developments
in non-Fickian diffusion and its applications to viscoelastic materials, we refer to [14, 16]
and references therein.

Plan of the paper

In Section 2, we make precise the structure of the first member of (#) and discuss on
the coercivity condition on d® o (9¥)~! and its stability with respect to the variational
convergences of functionals ® and . Section 3 and 4 are devoted to local and global
existence respectively. Precisely in Theorems 4.1, 4.4 we establish existence of a strong
solution of (#) with a right derivative at each ¢ € [0, T[. The main result of the paper is
stated in Section 5, Theorem 5.1, where we establish the convergence of sequences in the
class of problems (%) when the classes of functionals @ and ¥ are equipped with the two
variational convergences mentioned above. This theorem can be seen as a compactness
result for the class of problems (), and, under some additional conditions, as a stability
result (see Remark 5.2). In the concrete case when X = L2(Q), in Theorem 5.3, we extend
the convergence to reaction diffusion problems. In Section 6 we apply Theorem 5.3 to
the stochastic homogenization analysis of problems of the type () when ® and ¥ are
concrete random functionals of the calculus of variations. More precisely, in Section 6.1
we address the stochastic homogenization of a random problems modeled from a Fick’s
law with delay: the non Fickian flux is superimposed on the first flow at each time ¢.
According to the models, it may account for maturation period, resource regeneration
time, mating processes, or incubation period. In Section 6.2, we treat the stochastic
homogenization of general nonlinear integrodifferential reaction-diffusion equations in
one dimension space in the setting of a Poisson point process. The general problem
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considered is a randomization of [12, Example 2] with a reaction source. For recent
developments in periodic homogenization of parabolic problems in L?(0, T, L?>(R%))
with a convolution type operator, refer to [22, 23]. By contrast, our results fall within the
scope of stochastic homogenization of parabolic problems with non-local operators in the
context of boundary value problems.

2. Preliminaries

In the following X denotes a Hilbert space endowed with a scalar product denoted by
(-,-) and its associated norm || -||x. In Section 5.2 and Section 6, X = L?(Q) where
Q is a C'-regular domain in R . We denote by V a reflexive Banach space compactly
embedded in X, by || - ||y its norm, and by V" its dual. Therefore, for T > 0 fixed all along
the paper, the following continuous and compact embeddings hold:

Ves X sV’
L*(0,T,V) < L*(0,T, X) <> L*(0,T,V’)
where X and L?(0, T, X) are identified with their duals. For a proof and general results

concerning compact embeddings for vector valued spaces, refer to [1] and references
therein. We assume that (u, v)y. y = (u,v) wheneveru € X andv € V.

2.1. Structure of the first member of ()

We are given two lower-semicontinuous (Isc in short) convex proper functionals @, ¥ :
X — ]—o0,+00] with domain V, satisfying infy ® > —oo, infy ¥ > —co, and such that
dom(0®) c dom(J0¥). We denote by W |y the restriction of ¥ to V. Clearly, since
dom(¥) =V, the subdifferentials of ¥|y and ¥ are connected through the relation

oW = d(¥|y) N X.

When there is no ambiguity, to simplify the notation, for u € dom(9d®) we write IP(u)
and 0¥ (u) to denote any element of the sets 0®(u) and dW¥(u) respectively. However,
generally speaking, the element considered in each set remains fixed in the equation at
hand. We assume that 0 € dom(d¥) with 0¥ (0) = {0}. The functional ¥y is assumed
to be strongly convex in the following sense:

(O )W) = 0P y)(v),u=v)y, = awllu =i,
for all (u,v) € dom(8(¥v))>. (2.1)
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Note that when (u, v) € dom(dW)?, then (2.1) yields
() - P, 1~ v) > awllu il
hence, since ¥ (0) = {0}, for all u € dom(d¥), we infer that
(0¥ (u), u) > ayllully,.

We assume that the subdifferentials d® and 0¥ are connected via the following
coercivity condition on 0® o OP~!: there exist two constants ae,y > 0and fo,9 > 0
such that for all u* € Ryep (0P),

(00((09) ' (u)), u") > aowlu*% — Bow. (2.2)

For the definition of (9¥)~! and the relative range of A with respect to B, refer to
Appendix C. Here Ryp(0¥) = d¥(dom(d®)), since dom(d®) < dom(dW). This
condition must be understood in the sense of a set relation, i.e. for any u* in dom(9® o
(0¥)~1), for any corresponding u such that u* € 0¥ (u) (i.e. u € (0%)~!(«*)) and also
u € dom(0®), and for any £* € d®(u) we have

(€ u") > aowlu*lly - Bo.v.

In short, 2.2 is equivalent to
(00(u), 0¥ (w) = ol 0P W% —~ Po,v
for all u € dom(9®), with the following notation convention: let A and B be two sets of
Hilbert space (X, ||-||x), then
e (A,B) :={{(a,b):a € A, Be B}
e (A,B) > ||B||§( stands for {(a, b) > ||b||§( for all {a, b) € (A, B).

Condition (2.2) replaces condition
(0@ (u), 0¥ () = —Bl0®(u)||5 + llullx + 1) for all u € dom(dD) (2.3)

in [8, 12, 24], or [7, (d) p. 253], which links 0® and 0¥,, the subdifferential of the
Moreau—Yosida envelope at A > 0 of W. We say that (2.1) and (2.2) hold uniformly if the
constants ay, e,y and B¢y do not depend on the functionals @ and .

Example 2.1. Consider ¥ : X — ]—o0,+00] Isc convex proper, and let G : X —
]—co, +co[ be a Isc convex functional, continuous at a point of V. Assume that there exists
Pw.c = 0 such that

i ¥ i 2.4
uedom(ﬁ‘ll’r)lﬁdom(ﬁG) <a (u),OG(u)) = ﬁ‘P,G 2.4)
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in the sense that inf, edom(a¥)ndom(aG) Inf £ 6w (u),c €0G (u) (€5 {) > —00. Assume further-
more that W is single valued, then the functional ¥ and its perturbation ® = ¥ + G by
G, satisfy (2.2).

Indeed, dom(9®) = dom(d¥) Ndom(dG) c dom(9¥), and from [6, Theorem 9.5.4],
0® = 0¥ + dG. Hence for all u € dom(9D)

(@D(u), ¥ (u)) = 10¥ ()% +(9¥(u), 0G (u))

> |0 (u)||% inf y
> |0 (u)||x+uedom(6‘ll’r)lmdom(é)G) (0¥ (u), 0G(u))

> 0¥ )k - Br.G-

As a particular case, take ¥ satisfying (2.1), and G = b||- ||§( where b > 0. For all
u € dom(d¥) we have from (2.1)

(0¥ (u), G (u)) = 2b (AP (), u) > 2b|ulf5,.
Consequently ¥ and G satisfy (2.4) since

inf 0¥ (u),0G > 0.
uedom(é)‘}’r)lﬂdom(c')G) ( (u) (u)>

Therefore the functionals ¥ and ® = ¥ + b|| - ||§( satisfy (2.2). Existence in the case when
b =0,i.e. ® = ¥ has been established in [19]. Other examples are provided in Section 6.2.

Remark 2.2. Without being able to prove it, it seems that (2.2) and (2.3) are not comparable.
Nevertheless if we assume that W is univalent and we let 1 — 0 in (2.3), we obtain
(see [6, Proposition 17.2.2])

(0D (1), 0¥ (u)) = —B(I0Pu)||% + llull +1)

which is less restrictive than (2.2). This is why we can only say that at the limit, i.e.
when A4 — 0, (2.3) is less restrictive than (2.2). However from Remark 2.4 below, in the
absence of equi-coercivity of the class of functionals |y, we can suspect that they are
not equivalent.

Define the class # of pairs of functionals (@, ¥) by

D, ¥: X — |—o0,+00] are Isc convex proper,
dom(®) = dom(¥) =V,

dom(9®) c dom(3VP),

0 € dom(0%¥) and 0¥ (0) = {0},

(P,¥) e F =
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and let (®,, ¥,),en be a sequence of . Then we write

D, — @,

I
Y, v R ¥ v,

to denote the Mosco-convergence of the sequence (@), cn to some Isc convex proper
functional @ : X — ]-oo,+o0] and the I',,.y -convergence of the sequence (W,,|v )nen
to the restriction to V of some Isc convex proper functional ¥ : X — ]—o0, +00] with
dom (W) = V. Let us equip X X X with the strong topology product, V X V' with the
product of the weak topology of V with the strong topology of V', and denote by G, s and
G, s the associated graph convergence (see Appendix C). Then the following implications
hold (see Theorem C.5):

M G.v,s
o, — &= 9P, — 0D,
2.5)

Ty Gw,s
Yov — Yy = 0(¥Pnv) — (¥ v).

Note that converse implications hold true, up to normalization.

Acccording to above considerations, we endow F with the product M X I',_y -
convergence. The class # is not closed for this convergence, however the proposition
below shows that conditions (2.1) and (2.2), which are essential in establishing existence
in Sections 3 and 4, are in some sense stable in 7, then well suited to the convergence
analysis of Section 5 (see Remark 5.2), and Section 6.

Proposition 2.3. Assume that (2.1) and (2.2) are satisfied uniformly with respect to
all elements of F. For every sequence (®,, V,)nen of F and every Isc convex proper
functionals ®,¥ : X — ]|—o0, +0], if dom(¥) =V, &, 2 @ and Yov vy Y\v, then
(@, W) satisfies (2.1), (2.2) and dom(d®P) c dom(IVP).

Proof. We denote by ay and ae,w the two uniform constants appearing in (2.1) and (2.2).

Gy.s
Stability of (2.1). According to (2.5), 0(¥,v) — J(¥|v). Hence, from Proposi-
tion C.4, for (u,v) € dom(A(¥|y))? there exists (un,v,) € dom(8(¥,[v))? such

that
u, — uweaklyinV,

(¥ v)(un) — O(¥|v)(u) strongly in V',
vp — v weaklyin V,
(W, v)(vn) — (¥ v)(v) strongly in V'

where, by notation convention, d(W, v )(u,) — (¥ v)(u) and (¥, v)(va) —
O0(¥|v)(v) stand for u;, — u* and v;, — v* withu}, € (W, v )(Un), vy, € O(¥puv)(Va),

6
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and u* € (¥ v)(un), v: € 0(¥|v)(v,). From now on, we use a similar notation
convention for all convergences below. The claim then follows from the convergences
above by passing to the limit on

(@ (Pniv) (n) = 0(Wnv) (Vi) ttn = vi)yrv = awlliy = vall3, .

Gs.s
Stability of (2.2) associated with (2.1). Let u € dom(0®). From 0®, — 9§ and
Proposition C.4, there exists u, € dom(9®,,) such that
u, — u strongly in X,
. (2.6)
00, (u,) — 0D(u) strongly in X.
For all n € N we have

<6(Dn(un)’ 6‘1’,,(14,1)} > a’d),‘l’“alpn(un) ||§( - ﬁd),‘l’- 2.7)
From (2.6) and (2.7) we deduce that

sup [|0%Wn (un)llx < +oo,
neN
which combined with (2.1) gives
sup [lup|lv < +eo.

neN

Hence, there exist a (non relabeled) subsequence (u,),en and & € X such that

u, — u weakly inV  (and strongly in X),
(2.8)

0¥, (u,) — & weakly in X thus 0%, (u,) — & strongly in V.

GM’ S
Since 0(¥,,|v) — 0(¥|v), we conclude from above that £ € 9(¥|v)(u) NX = 0¥ (u).
From (2.6) and (2.8), and by passing to the limit # — +o0 on (2.7), we obtain

(0P (u), ¥ () > aoy iminf [|9%¥, (un) I ~ Poyw > cow|d¥ W% - Loy
where ¢ is denoted by 0W(u). This completes the proof. O

Remark 2.4. Tt is not clear that (2.3) is stable in the following sense: let ((®@,, ¥} )nen,
(@, ¥)) be a sequence of Isc convex proper functionals from X into ]|—co, +co] with
dom(¥,) = dom(¥) = V such that (®,, ¥,) satisfies (2.3) and converges to (®, ) for the
product M X I'y,_y -convergence, then (@, V) satisfies (2.3). However under an additional
equi-coerciveness condition, one can establish this stability. Indeed, let (®,, ¥;,)nen
be a sequence of Isc convex proper functionals @,,¥, : X — ]—co,+co] such that
dom(¥,) =V, which satisfy (2.3), and let ®,¥ : X — |—oc0, +c0] be Isc convex proper
functionals such that dom(¥) = V and (®,,¥,) — (®,¥) for the product M x I,y
convergence. Assume furthermore that (¥,), <y fulfills the following equi-coerciveness
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condition: for all r € R, there exists a weakly compact subset K, of V such that for all
neN

[anLV <r]CKk,.

GY S
We claim that (®, W) satisfies (2.3). Indeed take u € dom(9®). From d®,, — 9 and
Proposition C.4 we infer that there exists u,, € dom(9®,,) satisfying (2.6). From (2.3) we
have

(0D, (1), 0¥ 2 (un)) = =BUI0D (un) 15 + Nunll% +1). (2.9)

Since 0¥, is Lipschitz continuous with Lipschitz constant % (see [6, Proposition 17.2.1]),
we have

1
10%n,a(un) = 0¥na(w)llx < Ellun —ullx. (2.10)

By combining (2.9) and (2.10), we infer that
(0D (1), 0¥, 2(u))

1
> —B(10D (un) 15 + lunl® +1) = T N0@n (un)llx llun = ullx. (2.11)

On the other hand, by using the equi-coerciveness hypothesis and the compact embedding
V «— X, it is easy to show that

Yoy Sy, = w, 5y,
for a proof see Proposition D.2. Consequently (refer to [5, Proposition 3.29])
O¥na(u) — 0¥, (u)
strongly in X for all 4 > 0. Therefore, by passing to the limit n — +oco in (2.10), we obtain
(0D (1), 0¥ a(w)) 2 =B10P% + llull* + 1),
which completes the claim.

Regarding the kernel of the Bochner integral, we assume that K : [0,7] — R, belongs
to C'([0,T]). For every v € L?(0, T, X) we adopt the notation

K *xv(t) :=/tK(t—s)v(s)ds.
0

In case 0V is linear, to obtain the uniqueness of the solution we assume that K satisfies
the additional conditions

K €C?*(]0,T]), K(0)>0, and (-1)*K® (1) >0fort€]0,T[ and k =0, 1,2, (2.12)
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which imply that for every v € L2(0, T, X) such that v(7) € dom(9P) for a.e. t > 0,

/ W(s),K *x 0¥(v(s)))ds > —= K <6‘I‘ (/tv(s) ds) ,/tv(s) ds>
0 0

>0 forallz > 0. (2.13)
For a proof see [8, 17].

2.2. Structure of the reaction functional

The reaction functional F : [0,T] x X — X is a Borel measurable map satisfying:

(Cy) there exists L € L?(0,T) such that ||[F(t,u) — F(t,v)||x < L(t)|ju — v||x for all
(u,v) € X*and all t € [0,T];

(C) the map ¢ — ||F(t,0)|x belongs to L2(0,T);

(C3) L belongs to L*(0,T) N W'1(0, T) and there exists a nonnegative ® € L'(0,T)
such that ||F(t,u) — F(s,u)||x < fst O(o)do foralls < tandallu € X.

When Q is a bounded domain of R and X = L?(Q), we specify F as follows: let / € N*,
then for all u € L?(Q) and for a.e. x € Q, F(t,u)(x) = r(t,x) - g(u(x)) + (¢, x) where

e r € L*((0,T) xRN, RH nwh-1(0,T, L (RN,RY),

loc

o g L2(0,T,L% (RN)) nW"(0,T,L2 (RN)),

loc ( loc

e g:R — R'isbounded and L,-lipschitz continuous.

It is easy to check that F fulfills the conditions (C;), (C;) and (C3) with L =
d
”r”L‘X’((O,T)XRN,Rl)Lg and G(T) = Mg‘|%(7v')“LZ(Q,RZ)"'||§(T9')”LZ(Q) for all 7 €
(0,T) where M, = sup, . |g(r)|. See Section 5.2 for sequences of functionals of this
type, and Section 6 for more details when F is randomized.

3. Existence of a local solution

From now on, to simplify the notation, we assume that ® and ¥ are Gateaux-differentiable,
i.e. 0® and V¥ are univalent. We follow the standard strategy of [7, 8, 12, 24] consisting
in regularizing the non Fickian term fot K(t — 5)0¥(u(s))ds by means of the Yosida
approximation of 0W. The novelty is the presence of a reaction term and the fact that we
assume condition (2.2) in place of (2.3).
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3.1. The regularized problem (#,)
Consider the Cauchy problem

du
®) E(t) +00(u(r)) + K % 0¥(u)(t) = F(t,u(r)) forae. t € (0,7)

u(0) = u®, u° € dom(d®d),

and denote by ¥, the Moreau—Yosida approximation of index 4 > 0 of ¥. We begin by
establishing the global existence and uniqueness of a strong solution for the approximate
problem expressed in L2(0, T, X)

- ddL;l(t) + 00 (ua(1)) + K * 3% (u2) (1) = F (1, ua(t)) for ae. t € (0,T)

u(0) = u°, u° € dom(9®).
Set G (t,uy) := F(t,up(t)) —Kx 0¥, (uy)(t) forallA > Oand all ¢ € [0, T]. We rewrite
the approximate equation in (#,) as
du
= (0 +9(ua(0) = Gat. ). G.D)

Lemma 3.1. Assume that (Cy), (Cp), and (C3) hold. Then, there exists a unique solution

u € C([0,T], X) of (Pa). Furthermore %4 e L2(0,T, X), d®(u,) € L*(0,T, X), and

(Sp) ua(t) € dom(9®) for allt € [0,T], and admits a right derivative d;?" (t) which
satisfies for every t € [0,T[

d*u

(0 +9@ua(0) = Gat.u).

Proof. Since 0¥, is Lipschitz continuous with Lipschitz constant %, it is easy to show
that for all (,v) € C([0,T], X) x C([0,T], X),
1K % 8¥a(u) — K % 0¥,(v)llc(jo.r1.x) < Carllu—vic(or).x) (3.2)
where Cy7 = %(fOT K(s)ds). For each u € C([0,T], X), denote by Au the unique
solution in C([0,T], X) with 4 € L2(0, T, X) of the Cauchy problem
dAu

®.) T(t) + 0@ (Au(t)) = Ga(t,u) forae.t € (0,T)

Au(0) = ug, uy € dom(9®).

For existence and uniqueness of Au, we only have to check that G, € L?(0,T, X)
(refer to [6, Theorem 17.2.5], or [9, Theorem 3.7]). The claim follows straightforwardly
from (Cy), (C;) and (3.2).

10
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The method is to show that the iterated map A" is a strict contraction for n large
enough. Indeed, from existence of a unique fixed point u, for A" we will deduce that Au,
is a fixed point too. Thus, from uniqueness Au, = u,, so that u, is a fixed point for A
which clearly solves (£,) and satisfies % € L*(0,T,X) and 0®(u,) € L*(0,T, X).

Let (u,v) € C([0,T], X) x C([0,T], X) satisfying for a.e. t € (0,T)

dd%(t) + 0D (Au(t)) = G(t,u),

%(;) +dD(Av(1)) = G(t,v).

From the monotonicity of d®, we infer that for a.e. o € (0,T)

dA dA
<d—[”<a) - = (@), Av(o) - Au(o>> < (Ga(0, ) = Ga(or, ), Av(@) = Au(@),
hence
1d
2dt
By integration, we have for all t € [0, T]

|Av(o) — Au(0')||§( <{G(o,u) =G (o,v),Av(0) — Au(0)) .

1 t
§||Av(t) - Au(t)||§( < / (Gr(o,u) = Ga(o,v), Av(0) — Au(o))do
0
t
< /O IGa(o,u) = Galo,v)lIxl[Av(o) = Au(o)|xdo.
Thus, according to Lemma B.1 with p = 2, it follows that for all ¢t € [0, T
t
IAv() = Al < [ 1Ga(er) = Galor,)lxder

From (3.2) and (C;) we infer that for all ¢t € [0, T]

t
IAV = Aullc(jor.x) < / Laz (o)llu—=vlco,o1.x)do (3.3)
0

where L, 7 (o) := Car + L(0). By iterating (3.3), and according to the formula

t n
t o Opn-1 ( L/LT (O’)dO’)
/ L/l,T(O'l)/ L/I’T(O'z).../ L,l’T(O'n)dO'n...dO'lz /O
0 0 0

n!

obtained by a standard calculus for multiple integrals, we obtain

T n
(/ L/LT(O')dO')
A" = A"ulleoryx) < <F—— llu = vlleqor).x)-

The claim follows for n sufficiently large.

11
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To prove that u, satisfies S,, we have to establish that G, € wbL1(0,T, X) (see [6,
Theorem 17.2.6], or [9, Theorem 3.7]). We first claim that K x 0¥ ,(u,) belongs to
Wb2(0,T, X). This follows from

d o,
HEK* 0¥ 1 (ua) < (K(0) + T2 [|K | 20, 1IO¥a ()| L2 0,7, x)

L2(0,T,X)

which is obtained from the formula

%K* 6‘P,l(u,1)(t) = K(O)é‘P,,(u/l)(t) +K’ *611’,1(1/!/1)(2‘) fora.e. € (0, T). 3.4

It remains to establish that F(-,u;) € WH1(0, T, X). This follows from (C3), and the
following calculation: for all (s,7) € [0,T]*> with0 < s <t < T, we have

1F (2, ua(2)) = F(s,ua(s))llx
< IF (2, ux(2)) = F(s,ua(0)llx + [L(s)[llua(r) — ua(s)llx

t T t
dL d
< / O(o)do + | L(0) +/ = (0)|de / Hrol do, 3.5)
s o |do s || do X
which proves that F(-,u,) is absolutely continuous. The proof is complete. O

3.2. Convergence of (P,) to (P): existence of a local solution of (P)

The following lemma furnishes local estimates for the solution of (#,), needful for
establishing the convergence of (£,) to (). Its proof is postponed to Appendix A

12
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Lemma 3.2. Assume that (2.1), (2.2) and (Cy), (Cy), (C3) hold. Then for every 0 < T<T
satisfying TS IKll20,7) + @9lILll 20,7 < @0,, the following estimates hold:

sup |0% (u)ll 20,7 ,x) < +00, (3.6)
>0
sup [[uallz2(0.7.vy < +o0, (3.7)
A>0

d
sup || =2 < 400, (3.8)
aso | dr L2(0,T,X)
sup |0@(u)ll 20,7 x) <+, (3.9)
>0
sup [[uallco,7,x) < +0, (3.10)
A>0

d+u,1 ~
sup [[—=(1)|| < +o0 foreacht €]0,T], (3.11)
a-0]l dr X
sup || 0% (ua (1)) |lx < +o0 for eacht € [0,T], (3.12)
>0
sup [|0D(u (1)) ||lx < +o0 foreacht € [0,T]. (3.13)
>0

Theorem 3.3 (Local solution). Assume that (2.1), (2.2), (Cy), (Cy), (C3) hold, and let
T > 0 be a positive number satisfying TS IKllz20,7) + @9llLll207) < @o,9. Then

(P) admits a solution uy in C([0,T], X) which satisfies uy (t) € dom(0®) for each
t€[0,T].

Proof. To shorten the notation we write u for u;. The proof falls into four steps.

Step 1: Compactness in C([0,T], X). We establish existence of u € C([0,T], X) and a
subsequence of (u,),>0 (not relabeled), such that

uy — uin C([0,7T], X), (3.14)

Jau(t) — u(t) in X, forallz € [0,T], (3.15)

where J; := (I + 10¥)™' : X — X is the resolvent of index A of 9¥ (for the properties
of J see [6, Proposition 17.2.1]).

To prove (3.14), the method consists in applying Ascoli’s theorem. From (3.8) and (3.10)
we have

sup [luallc(jo,77,x) < +oo (equiboundedness),
>0

du,l

m foral0<s<r<T (equicontinuity).

L2(0,T,X)

1
llua(t) —ua(s)llx < (t—s)2sup
>0

13
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It remains to show that for each ¢ € ]0,T], the set E; := {u,(¢) : 1 > 0} is relatively
compact in X (for ¢t = 0, E; is reduced to {up}). Let r € ]0, T]. From the compact
embedding V <— X, it suffices to establish that sup,.q [[ui(?)|ly < +oco. The claim
follows from (2.1) and (3.12) which yields

lua()II5 < ai (0¥ (ua (1)), ua(1)) < LII5‘P(IM(I))|IX||lu(t)||x
b4 ay

IA

L 0% (ua(NIx Nua(@)llv »
ay

hence
1
lua()lly < — sup ||0¥ (ua(?))llx-
ay >0

Estimate (3.15) is established as follows: from the definition of J,, we have Ju(t) —
u (1) = 0¥ (u (1)) so that, from

0¥ a(ua())llx < [10¥(wa())llx (3.16)

(see [6, Proposition 17.2.2]), we infer that

I Jaua(t) —ua()llx < AOPa(ua(®)llx < AUOY(ua(2))llx.

Hence, from (3.12), Jyu(t) —u (t) —» 0in X fort € ]0,T] as 2 — 0.

Step 2. We prove that u(t) € dom(0®) for all r € [0, T], and that (3.14), (3.15) hold in
V equipped with its norm || - ||y . More precisely

uy — uin C([0,T],V), (3.17)
Jau(t) — u(t) inV forallt € [0,T]. (3.18)
Fix t € [0,T]. From (3.13), there exist B(f) € X and a subsequence such that
0D(uy(t)) — B(t)weakly in X.

From (3.14) u (¢) — u(¢) strongly in X, and since the maximal monotone operator
0@ is demi-closed (see [6, Proposition 17.2.4]), we deduce that u(¢) € dom(d®) and
B(t) = 00 (u(t)).

Observe that u,(7) and u(¢) belong to dom(d®) ¢ dom(%¥) for all ¢ € [0,7]. Hence
from (2.1), we deduce

illua(t) —u(D)y < (@¥(ua (1) = ¥ (u(1), ua(t) - u(t))

< iuIO>||5‘P(M/1(l‘))||X+||5‘P(M(f))||x llua(r) = u(@)llx.

14
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Hence (3.17) follows from (3.12) and (3.14). The proof of (3.18) is similar. More precisely,
forallr € [0,T]
aua(t) = ua()ll}y < (O¥(Jaua(t)) — 8P (ua(t)), Jaua(t) — ua(t))
< 31118(||5‘1’/1(M/1(f))||x + ([0 (a () |Ix) [ Jawa(t) —ua(®)|lx-
>
(recall that 0¥, (u (1)) = 0¥ (Jaua(r)), see [6, Proposition 17.2.1]). From (3.16)

and (3.12)

sup [|0¥a(ua()llx < sup [|0¥(ua(?))|lx < +oo,
>0 A>0

hence
[ Jaua(t) = ua (03, < 2511{(; 10 () |x 1 Tazea(t) — ua(6)|lx
A>

so that (3.18) follows from (3.12) and (3.15).

Step 3. We establish that G (-, uy) — G(-,u) in L2(0,T, X) where the function G (-, u)
is defined by G(t,u) := F(t,u(t)) — K x 0¥ (u)(1).

From (C;), (C;) and (3.14), F(-,u,) strongly converges to F(-,u) in LZ(O, 7~", X).
We claim that ¥, (u;) — 8¥(u) in L2(0,7, X), from which we easily deduce that
K % 0%, (1) — K % 0%(u) in L2(0, T, X). From (3.6) we have

sup [[0Wa(ua()llz20,7,x) < sup 0¥ (ua ()l 2 0,7,x) < +0°-
>0 >0

Thus, using the compact embedding LZ(O, 7~", X) <« LZ(O, 7~", V), we infer that there
exist a subsequence (not relabeled) and C € L2(0, T, X) such that successively,

A1 (uy) — C weakly in L2(0,7, X),
¥, (uy) — C strongly in L>(0,T, V"),
¥ (up(1)) — C(r)in V' forae. t € (0,7).

Since 0¥ (u,y) = 0¥ (J u,), we deduce from above that W (Ju (1)) — C(¢t) in V’ for
a.e.t € (0,T). As from (3.18), Jqu () — u(t) in V, from the maximality of ¥ we infer
that C(t) = dW¥(u(t)) for a.e. t € (0,T). This proves the claim.

Step 4: u solves (P). To shorten the notation, we write G () for G (¢, u,). Denote by
@* the Legendre—Fenchel conjugate of ®. According to the Fenchel extremality condition
(see [6, Proposition 9.5.1]), equation (3.1) is equivalent to

Oy (1)) + O (Gw) - %(r)) + <ddij<r> G0, ud(r)> -0

15
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for a.e. t € (0,T), which, from the Legendre—Fenchel inequality, is in turn equivalent to

/ ' [eb(uﬂ(r)) ror (Gm - dg‘—”m) + <dﬂ<r> G, um)}] dr =0,
0 t dr

Therefore, (3.1) is equivalent to

/

hence to

(1) +@ (G2 = G0 + TN = (G002 ar 0.

dr 2

1 _
dr-+ 5 (a1 = lluol”)

T
[ |t +o(6ao - Gt
0 t

T
- [ Gty ar=o,
Equivalently

du,l

T
totun) + o (G2 G2 )+ 5 0a I = k) = [ (Gaoyar=0 G.19)

where the integral functionals I and g+ are respectively defined in L2(0, T,X ) by
T

T
Iq>(v)=/0 ®(v(r))dr and I@(V):./o D (v(r)) dr.

Combining u, (T) = up + /OT ddL;'(t)dt with % — ‘31—’; in L?(0, T, X) which is obtained
from (3.8), we infer that
- =112 =12
tim inf {fu (7| > [lu(T)J" (3.20)
By passing to the lower limit in (3.19), from (3.20), (3.14), Step 3, and noticing that
Ip and I+ are lower semicontinuous for the weak topology of L?(0, T, X), we obtain

I

or equivalently,

df+l(|| (D)|I* -l O||2)—/T (G(1),u())dr <0
¥ " A u <

D(u(r)) + 0" (G(t) - (;—I;(t))

T
/ [(I)(u(t)) + @ (G(t) - d—u(t)) + <d—u(t) - G(t),u(t)>] dr <0. (3.21)
0 dr dr

From the Legendre—Fenchel inequality, we have

O (u(t)) + ©* (G(t) - i—?(t)) + <(c11—’:(t) - G(t),u(t)> >0,

16
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so that (3.21) yields that for a.e. t € (0,7),
D(u(n) + @' (G(z) - d—“(r)) + <d—“(t> - G(r),u(t>> -0
dr dr
which is equivalent to
du
E(t) +0®(u(t)) =G(t) forae.te (0,7).

The proof is complete. O

4. Existence of solutions in C([0, 7], X)

4.1. Existence of a global solution in C([0,T], X): translation-induction
method

Any local solution obtained in Theorem 3.3 can be continued on [0, 7] as follows:
cover [0,7T] by the translated segments of [0, T], and stick together the T-translated
local solutions in C([0,T], X) of each suitably modified problem (). This process is a
generalization of a standard method; see for instance [7, p. 243].

Theorem 4.1. Given T > 0 satisfying T IKl20,7) + @wllLll 20,7y < @09, any local

solution uy of (P) in C([0,T], X) obtained in Theorem 3.3 can be extended to a solution
of (P) in C([0,T], X).

Proof. Fori=1,...,¢ where £ := max{k € N : kT < T}, setT; = i7~", Trs1 =T, and
denote by u the solution u7 of () on (0,7) whose existence has been established in
Theorem 3.3. Fori = 1,.. ., ¢ consider the Cauchy problem defined by induction:

®) %(t) + 00 (u; (1)) + K x 0¥ (u;)(t) = F(t + T, u;i(t)) — R;(¢t) fora.e. t € (0, T)
u: (0) = u;—1 (T)

where
i 7"]{

Ri(1) := Z/ K(t+T; — )0 (ug—1 (s — Te_1)) ds.

k=1 ¢ Tk-1
Existence of u; can be obtained as in the proof of Theorem 3.3: substitute F; (¢, u; (1)) :=
F(t + T;,u; (1)) — Ri(r) for F(t,u(r)), and observe that R; € W1(0,T, X) so that F;
satisfies (C1), (Ca), (C3). Note that u;_1 (T) € dom(P) (repeat the first part of Step 2 in
the proof of Theorem 3.3 and reason by induction).

17
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Finally we show that the function u defined by u(¢) := u; (¢t —T;) whenevert € [T;, Ti+1],
solves (P). Indeed, for ¢ € [T}, T;4] the following calculation holds:

i—l:(t) +00(u(1)) + /Ot K(t —5)0¥(u(s))ds — F(t,u(t))

du,-
—_— z‘_
dr (

i Tx
T) +0®ui(t=T)) + ) [ K(t = )3 (u-i (s = Te-r)) ds
k=1 YTk

. / Kt = $)0% (s — T) ds — F(t,ui(t = T))).
T;

Since o :=t —T; € [0,T;+1 — T;] = [0, T], the second member is equal to

%(o-) + 00 (u; (o)) + 2 /Tk K(o+T; — 5)0¥ (ug-1(s — Tr—1))ds
dt ' = ' B -

Ti-1

o+T;
+/ K(o+T; —5)0¥(u;(s —T;))ds — F(o + T;, u; (o))
T.

= %(0') + 0D (u;i(0)) + Ri (o) + ‘/[r K(o—5)0¥(u;(s))ds — F(o + T;, u; (o))
dr 0

= %(0') +0P(ui(0)) + K x 0¥ (u;) (o) + Ri(0) = F(o + T, ui(0))

which, from (#;), is equal to 0. Moreover u(7;") = u; (T) and u(T;) = u;(0) = u;— (T)
sothatu € C([0,T], X). O
4.2. Existence and uniqueness when YV is a quadratic functional

Proposition 4.2. Under the conditions of Theorem 3.3, assume further that ¥ is a
quadratic form in V. Then (P) admits a unique solution.

Proof. Let u; and u; be two solutions of (#). This yields for a.e. s € (0,7),

d(u —uz)

o ®)*(0ui(s)) — 0P(ux(s))) + K x 0% (ur - u2)(s)

= F(s,ui(s)) — F(s,uz2(s)). (4.1)

Form the scalar product of (4.1) with u;(s) — us(s) and integrate over (0, ¢), taking into
account the monotonicity of d® and (2.13), we obtain

30 =P < [ L6 i) = a0 ds.

We conclude by applying the standard Gronwall’s lemma. O

18
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From Proposition 4.2 and Theorem 4.1, we have
Corollary 4.3. When V¥ is a quadratic functional, then (P) admits a unique solution in
C([0,T], X).
4.3. Existence of a right derivative of the solutions at each ¢ € [0, T[.

Theorem 4.4 below is crucial to establish the convergence in Section 5. For its proof,
condition (2.2) does not play any role.

Theorem 4.4. Every solution u of (P) admits a right derivative at every t € [0, T[ which
satisfies the equation:

d(;f_:t([) +0D(u(t)) + K x 0¥ (u)(t) = F(t,u(2)), t € [0,T]. 4.2)
Proof.

Step 1. Fix ty in [0, T[ and write & to denote a sequence (/;,),en Of positive numbers
decreasing to 0. This step is devoted to the following estimate:

lim sup
h—0

1
=(ulto + h) = u(to))
b'e
< |=0D(u(to)) — K % 0¥ (u)(t0) + F (2o, u(t0))llx. (4.3)
Observe that the constant function v := u(¢() satisfies
dv
E(t) +dD(v(t)) = 0D(u(ty)) 4.4
for each t € (0,T). Subtract (4.4) from
d
d—l:(t) +00(u(t)) = —K % 0¥ (u)(t) + F(t,u(1)),
form the scalar product with u(¢) — v(¢) and integrate over (g, o + k). This yields

1
5 luCto + ) = u(to) %

to+h
< [(=0DP(u(ty)) — K * d¥(u)(s) + F(s,u(s)),u(s) —u(tp)) ds.

4]

According to the Gronwall type lemma, Lemma B.1 with p = 2, it follows that

1 to+h
< - / [|[—0®(u(tg)) — K x 0P (u)(s) + F(s,u(s))||xds.
x h

)

|5 o+ 1)t

The conclusion follows by passing to the upper limit when 7 — 0*.
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Step 2. We prove that
1
Z (u(to+h)—u(ty)) — —0D(u(tg)) —K*x ¥ (u)(ty)+F (g, u(to)) weakly in X. (4.5)

From Step 1 a subsequence not relabeled of %(u(to + h) — u(ty)) weakly converges to
some w in X. For identifying w, take (£, £%) € 09, i.e. £ = AP (£). Then the constant
function v = € satisfies

%(t) +0®(v(t)) =& (4.6)
for all # € (0, 7). Subtract (4.6) from
%(t) +0®(u(t)) = —K x 0¥ (u)(r) + F(t,u(t)),

and form the scalar product with u(z) — ¢ and integrate over (zo, to + /). This yields
1 2 | 2
5 Nt + ) = €1} = 5 llutoo) = 1%

to+h
< / (=K x 0¥ (u)(s) + F(s,u(s)) — &, u(s) — &) ds.

1y

From the elementary inequality 2 (@ — b, b) < ||a||§( - ||b||§( we infer that

<%(u(to 1) — ulto)). ulio) - §>

1

tot+h
< ﬁ/ (=K »x 0¥ (u)(s) + F(s,u(s)) — &, u(s) — &) ds.

Passing to the limit 4 — 0 we find
(w,u(to) — &) < (=K x 0¥ (u)(t9) + F(t0,u(t0)) — ", u(to) — £),
(=K % 0¥ (u) (1) + F(to, u(to)) —w — &, u(to) =&) > 0
for all (£,£&%) € 0O, i.e.
(u(t0), =K % 0¥ (u)(t0) + F (to, u(to)) — w)

is monotonically related to d® (see Definition C.1). Since d® is maximal monotone,
from Proposition C.2 we deduce that —K x W (u)(tg) + F (1o, u(tg)) — w = 0@ (u(ty)).

Step 3: end of the proof. Combining (4.5), the lower semicontinuity of the norm,
and (4.3), we deduce that

%IE% H%(u(to +h) —u(to))|| =1l -0P(u(ty)) — K * 0¥ (u)(to) + F(to, u(to))llx.
X
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Hence % (u(to+h)—u(tg)) > —0®(u(tg)) —K*x 0¥ (u)(to)+F (g, u(ty)) strongly in X, i.e.

d;_tu(m) + 0D (u(ty)) + K x ¥ (u)(t0) = F(to, u(to))

which completes the proof. O

5. Convergence under MoscoxI -convergence

5.1. The abstract case

This section is placed within the framework defined in Section 2. Let (#,),cn be a
sequence of integrodifferential diffusion problems in L?(0, T, X) defined by

du,

(Pn)§ At

un (0) = u2, u® € dom(d®,),

(t) + 0D, (1, (1)) + ‘/Ot K(t—5)09¥,(u,(s))ds = F,(t) forae.t € (0,T)

where F,, € L*(0,T,X) n WH1(0,T, X) satisfies (C;), (Cy), and (C3) with F,,(t,u) =
F,,(1). In next Sections 5.2 and 6, X = L?(Q) and the source F,, is structured as a reaction
functional F;, (¢, u,(t)) as defined in Section 2.2. Recall that ®,,, ¥,, : X — |—o0, +0]
are Isc convex proper functionals with domain V. Without loss of generality we assume
that infxy ®,, > 0 and infy ¥,, > 0. The subdifferentials 0®,, and d'¥,, are assumed to
be univalent. Observe that this hypothesis is not closed under the Mosco and the I, .y
convergence of (®,),en and (¥,,|v )nen respectively. We assume that dom(d®,) C
dom(0¥,) and that conditions (2.1) and (2.2) hold uniformly in the sense that @, and
ao, v, do not depend on n. We denote it by ey and ae,w respectively.

LetT > 0 satisfy T? 1Kl 2001y < @ow. By a particular solution of (%), we
mean any solution in C([0, T], X) obtained by translation-induction of a local solution
u, 7 € C(]0, T] , X), whose existence is established in Theorem 4.1. Note that when ¥,
is quadratic, according to Proposition 4.2, a particular solution is nothing but the unique
solution of (#,,).

Theorem 5.1. Under the general conditions above, assume furthermore that

(STABy) F, — F in L*(0,T,X), sup,ayq ||Fa(t)|lx < +co for all t € [0,T], and

dF,
SUpP, en ‘d_zn

s

<+
L(0,T ,X)

(STAB2) sup,,cy @ (1) < +oo;
(STAB3) “91 — u® strongly in X;
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(STABy) there exists © : X — |—oo, +o0] such that ®,, kit o,

Ty
(STABs) there exists ¥ : V — ]—oco,+00] Isc convex proper, such that ¥, |y Yoy,

Then any particular sequence of solutions u, of (Pn) admits a subsequence which
converges to a solution u € C([0,T], X) of the differential inclusion

®) E(t) +0®(u(t)) + ./Ot K(t-ys) [6‘I‘(Lt(s)) N X] ds > F(¢t) fora.e. t € (0,T)

u(0) = u®, u® € dom(d®).

Proof. We use the notation of the proof of Theorem 4.1, and do not relabel the various
subsequences. Take T>0 satisfying Tz ||K||L2(0,T) < agy.SetT; := iT for 0 = 1,...,¢
where ¢ := max{k € N : kT < T}, and Tyyy := T. According to Theorem 4.1, for
i=0,...,¢, the restriction of u,, to [T;, T;+1] is given by u, (t) = u; »(t — T;) where u; ,
is a solution in C([0, 7], X) of
du; ,,
(Pin)y d
Ui n(0) = ti—1,,(T) € dom(9®,,),

(1) + 0Dy (ui (1)) + K x 0¥y, (uin)(t) = Fi ,(t) forae. t € (0, T)

with
1 Tie+1
Fin(t) =F,(t+T;) - Z/ K(t+T; — 5)0Y, (ug n(s — Tr)) ds,
k=0

and by convention, u_j , (T) = u® and Zk ~o = 0. In particular Fy ,(f) = F,(¢). We set
Gin(t) == Fin(t) — Kx 0¥, (uin) (1),

then (#; ,) may be written as

duin ~.
— (1) + 0D, (u; ,(t)) = G; ,(¢t) forae.t € (0,T
(| G O+ 00 (D) = G 0.7)

”i,n(o) = ui*l,n(f) € dom(aq)n)-

Our strategy is the following: for each i =0, ..., ¢, we show that u; , converges to some
u; in C([0,T], X); next we claim that u defined by u(t) = u;(t = T;) for t € [T;, Ti+1]
solves (P) and that u,, — u in C([0,T], X). We proceed in this way to check the uniform
estimates similar to those of Lemma 3.2 which require T small enough, i.e. satisfying

=1
T2|[Kllz20,1) < @09

Step 1. Reasoning by induction fori =0, ..., {, we prove the following three assertions:
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@) sup 105 (uin)ll 20,7, x) <+, (5.1

neN
dui n

sup : < +00, 5.2)
nevt || A7 22007 x)
sup ””i,n”c(()j',x) < 409, (5.3)
neN
sup [|0%,, (u;.n (1)) || x < +oo for each t € 10,71, (5.4)
neN
sup [|0®@,, (u; (1)) ||x < +oo for each t € 10,T]. (5.5)
neN

(b) There exists a subsequence of (u; ,)nen Which uniformly converges to some u;
in C([0,T], X).

(c) Fork =0,...,i, there exists & € L2(0,T, X) with & (1) € 0% (ux(¢)) N X such
that

0¥, (ug n) — &x weakly in L(0, T, X).
Stepi = 0.

Proof of (a). According to the uniform bounds (2.1), (2.2), (STAB), (STAB,), infx ®,, >
0, infx ¥, > 0, and finally to the existence of a right derivative of u; , at each ¢ € ]0, f]
(cf. Theorem 4.4), assertion a) is obtained by reproducing the proof of (3.6)—(3.13) with
F,, substitute for F, ®,, for ®, and ¥,, for ¥, (unlike (3.12) and (3.13), we cannot claim
that (5.4) and (5.5) hold for # = 0 because of the dependance on n of u, ¢(0) = ug). We
only establish (5.1), (5.2), (5.4) to highlight the importance of condition (2.2) and to
emphasize the need for hypothesis (STAB).

For a.e. t € (0,T), form the scalar product in X of 0¥, (uo,,(t)) with the equation of
the first formulation of (#; ,) and integrate over (0, T). This yields

T d T
/O a0t + /0 (00, (10,0 (1)) ¥, (0 (1)) i

T T
o [ (K 00,0 0% o)t = [ (E 0.0, o)) 656)
0 0
An easy calculation gives
=1
lIK % aan(MO,n)”LZ(O,T,X) <T? ||K||L2(0,T) ”aan(MO,n)||L2(0,T,X)- (5.7
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Combining (5.6), (5.7) and (2.2) we conclude that

~1
o = T2IKIl2(0,7) [19¥n (0.0 172 0 7 x)

< TBo,w +sup P (uo.n) + Sup | Full 120 730 0% (o) 1207 x) -
neN neN
We deduce (5.1) from (STAB)), (STAB;), provided that T3 1Kl 2200,1) < @@,w.
We move on to the proof of (5.2). For a.e. t € (0, 7~"), form the scalar product in X of

d’fﬁ'” (#) with the equation of (%P ) and integrate over (0, T). This yields

duo’n 2
dt

<oud) - inf @,

L2(0,T,X)
dug
dr

+ (|IK * Oy (uo )l 207 x) + ||Fn||L2(0,T,X))
L2(0,T,X)

and (5.2) follows from (5.7), (5.1), and (STAB,).
For establishing (5.4) first observe that by reproducing the proof of (A.7) in Appendix A,
we have

sup 1K % 0Wn (uon)llwi20.7,x) < +00. (5-8)
ne
Next, from (5.8) and (STAB;) we deduce that
dGo.,,
sup 0. < +00. 5.9)
netll A7l 7 x)

Hence, combining the inequalities

l t t
< —/ ds+/
X t Jo X 0
for all ¢ € ]0, 7~"] (see [2, Lemma 3.3]), with (5.2) and (5.9), we obtain that for each
1 €10,T],

d+u0,n
dr

duo,n
dr

dGo,
dr

ds
X

(1) (s) (s)

d*ug

dt

0| < +c. (5.10)

X

sup
neN

Take the scalar product of the equation

+

Uo,n
(1) + 09, (0,1(1)) = Gon (1)
with O, (1o, (7)) for each ¢ € 10, T]. This yields
d+u0,n 2
g (D 0% (won(1) ) +a0wlld¥(uon())lx < (Gon (1), 8%¥n (0,0 (1)) + Bao,w
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from which we deduce

d+u0,,
—(t
o

e wl|0Wn (o0 (1) |k < (

+ ||G0,n(l)||x) 10, (uo,n ()lx + Bo,w
X

for all € ]0, T]. The claim follows from (5.10), and sup, en 1Go.n(t)|lx < +co which is
obtained according to

1Go,n(DlIx < IKlz20,7) 10¥n (o)l 12007 x) + 1Fn()]Ix
and (5.1) and (STAB;).

Proof of (b). From (5.2) and (5.3) we infer that the sequence (ug ,)nen is bounded
and uniformly equicontinuous in C(]O, T],X). Assertion (b) then follows from the
Ascoli compactness theorem provided that for each fixed ¢t € [0, T], we establish that
the set Eo(?) = {uon(¢) : n € N} is relatively compact in X. For + = 0 we have
Eo(0) = {u¥ : n € N} so that the claim follows directly from (STAB3). For ¢ € ]0, T],
(2.1) yields

IA

1 1
lluo,n (DI - (0 (uo,n (1)), 0,0 (1)) < — 10 (0,0 (1) lIx Ileto,n (1)1
¥ ay

IA

1
—[|0%5 (0,0 (1)) llx [[u0,n (D) [lv
ay

and the claim follows from (5.4) and the compact embedding V «— X.

Proof of (c). We have to establish the existence of &y € L?(0, T, X) with &o € 0P (up(1))
such that 0%, (ug,) — & in L*(0, T, X). From (5.1) and the compact embedding
L*(0,T, X) = L*(0,T,V’), we infer that there exist a subsequence of (9%, (140.))nen
and & € L*(0, T, X) such that successively

O, (1o.n) — & weakly in L2(0, T, X),
0¥y (uo,n) — &o strongly in L>(0,7, V"),
Y, (1o n (1)) — (1) strongly in V' for a.e. 1 € (0,7),
up,n(t) — uo(tr) weakly in V for each ¢ € ]0, T]
(the last convergence follows from (2.1), (5.4), and (b) to identify the weak limit).
According to (STABs) and the implication

v Gw,s
\PnLV — Y= a‘{‘nw —5 0¥

(cf. Theorem C.5), the two last convergences above yield that for a.e. t € (0, T),
ug(t) € dom(9¥) and &y(t) € d¥(up(2)) N X.
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Step i > 1 from steps 0, ...,i — 1. Fix i > 1. We assume that assertions (a), (b) and (c)
hold for all k =0, ...i — 1 and we establish that they hold for i.

Proof of (a). We first claim that F;, satisfies (STAB;) for ¢+ € [0,T]. From (c) for
k=0,...,i—1, we easily deduce that

i-1

> / RO T - 9%, (s~ To) ds

k=0 YT

i-l T+

— Z/ K(-+T; - 8)éx(s —Te)ds.  (5.11)
k=0 Tk

in L2(0,T, X). Hence from (STAB) and (5.11), F; , — F; in L*(0, T, X). On the other

hand, from (STAB;) and (5.4) for k =0, ...,i — 1, we infer that sup,, ¢y || Fi.»(¢)||x for

all r € [0, 7~"]. Finally from (5.1), (STAB;) and

dF; dF, Tiwt
(0= T) = ) / K/ (1 +Ti = )% (i (s = Te)) ds,
Tk

we deduce that
dF;
dr

sup
neN

< 400,
LY(0,T,X)

which proves the claim. By repeating the arguments of the proof of (a) ati = 0 where F; ,
is substitute for F,, we obtain the estimates of (a) provided that sup,, ¢y @, (#;,,(0)) < +oo,
that is to say sup,, d),,(ui,l,n(f)) < 400 (this condition replace (STAB,)). For that,
first note that from (b) at index i — 1

sup )u,-_l,,,(f)HX < 400, (5.12)

neN

Next, fix v € dom(®). From (STAB3) there exists a sequence (v, ),en such that v,, — v
strongly in X and @, (v,,) — ®(v). The thesis then follows, from the convexity inequality

(Dn(ui—l,n(f)) < (Dn(vn) + <aq)n(ui—1,n(f))’ ”i—l,n(f) - Vn>
and (5.5), (5.12).

Proof of (b). The proof of (b) is exactly the one of (b) at i = 0, by establishing that
E;(t) := {u; »n(t) : n € N} is relatively compact in X. Observe that for r = 0, E;(0) =
{u,-,l,n (T):ne€ N} so that the claim follows directly from (b) at index i — 1.

Proof of (c). The proof is exactly the one of Step i = 0 by using estimates obtained in (a).
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Step 2. By using a method similar to that of the proof of Theorem 3.3, and from the
convergences obtained in Step 1, we are going to prove that u; defined in (b), Step 1,
solves the Cauchy problem

. %(;) + 30 (ui (1)) + K % 9P (u;) (1) > Fi(t) forae. 1 € (0,T)

u; (0) = u;_1 (T) € dom(dD).

We will infer that the function u defined by u(t) = u;(t — T;) for t € [T;, T;41] converges
toward u in C([0, T], X) and, according to Theorem 4.1, solves (P).

By using the Fenchel extremality condition, the equation of (¥; ,,) written with G; ,,
as second member, is equivalent to

I

where we have denoted by @;, the Legendre—Fenchel conjugate of ®,,. Equivalently

dt

q)n(ui,n(t)) + (D: (Gi,n(t) - dl/:;t’n (t)) + <dui’n (t) - Gi,n(t)’ ui,n(t)>:| dr = O,

dui,n

_) 3 (e (DI = a1 O)IP)

I, (i n) + Lo, (Gi,n 4

T
- / (Gin(t),uin(t))dt =0 (5.13)
0
where the integral functionals /o, and Io; are defined in LZ(O, f, X) by
T T
Ip, (v) = / ®,(v(z))dr and g (v) = / @; (v(1))dr.
0 0

From (STAB4) and [2, Lemma 4.1] we have

Io, -5 Io. (5.14)
On the other hand, combining u; ,(T) = u?’ . /OT d'fiit‘" (¢)dt with d'fiit‘" - % in
LZ(O, T X) which is obtained from (5.2), we infer that
timinf [lug (D) > [z (D). (5.15)
Finally, from (STAB) and assertion (c) of Step 1
Gin — Gi:= F; — K x & weakly in L>(0, T, X) (5.16)

where

i-l Tier1
RO =Fa+t)- ) [ KCAT =98 (- T,
k=0 “Tr

k
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Hence, by passing to the liminf in (5.13), from (5.14), (5.15), Step 1(b) and (5.16), we
infer that

T . du; 1 2 012
| [etuon oG- S| ar+ S - i
0

T
—/ (Git), i (1) dr < 0
0

or equivalently,

Ik

from which we conclude that

S0 +09(ui(1) 3 Gi) Torae.1 € (O.7).

<0, (5.17)

B (1) + & (Gil1) - ) +{ S0 - G, 0)

The initial condition u;(0) = u;_; (T) is obtained from
ui(0) = lim u;,(0) = lim ui—1.n(T) = w1 (T).
Finally we claim that u;_; (T) € dom(d®). It comes from
ui_l,n(f) € dom(0®,,), n1_1)r11300 ui_l,n(f) =u;_q (7~“) strongly in X,
(STAB4) and Theorem C.5. This completes the proof. O

Remark 5.2. Let us strengthen (STAB5) by:

(STABY) there exists ¥ : X — ]—oo0, +00] Isc convex proper, such that dom(¥) = V and

Tyov

anI_V - ‘PLV-

Then, with the notation above, we can assert that 0¥ |y (u(s)) N X = 9¥. The limit
problem then becomes

- fl_’:(;)wcp(u(z)) +/0tK(t—s)6‘I‘(u(s))ds 5 F(1) forace. 1 € (0,T)

u(0) =u®, u® € dom(d®).

Moreover, from Proposition 2.3, dom(d®) c dom(d¥) and @ and ¥ fulfill condi-
tions (2.1), (2.2). Therefore, under condition (STAB;), Theorem 5.1 may be considered
as a stability result, although d® and 0¥ are not univalent in general.
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5.2. The case X = L*(Q)

In this section, Q is a bounded domain of RV, X = L?(Q), and V = H}(Q). We keep
the same conditions on @, ¥, and u(,)l but we further specify the structure of the source
F,,. Given a positive integer [, r, € L*((0,T) x RN, RH) n wb1(0,T, LfOC(RN,Rl)),

gn € L*(0,T, L2 (RMN) nWh1(0,7, L2 (RM)), and g, : R — R! a uniformly bounded

loc loc
and Lipschitz continuous function, we consider the reaction functional F,, defined for all

v € L*(Q) and all x € Q by

Fu(t,u)(x) = rp(t,x) - gn(u(x)) + qn(t,x).

‘We assume that

r dr,
sup T dr < 40,
neN J0 L2(Q,Rl)
T da, (5.18)
sup / dr < +oo.
neN J0 dr L2(Q)

Denote by L, the uniform Lipschitz constant of the functions g, and by M, =
SUp,-cg 18x(r)| their uniform norm. Then, as noticed in Section 2.2, F,, fulfills (Cy),
(C2). (C3) with Ly, = [[rull (o) iy L and O, (1) = M|l %2 (7, )|l p2mr) +
||dl%(‘r, Nl L2(q)- Theorem 5.3 below is a concrete version of Theorem 5.1 where, in
addition, Fy, (¢, u, (1)) is substituted for F,,(¢).

Theorem 5.3. In addition to (STAB;)—(STABs), assume that

(@) suppen I7nll Lo (fo,71xmN R1) < +00,
andry, — r for the o (L*(0,T, L>(Q,R!)), L'(0, T, L*(Q, R"))) topology;

(ii) gn — g pointwise in R!;

(iii) for all 't € [0,T], sup,ayllgn(t, )2 < +o0, and gn — q weakly in
L?*(0,T, L*(Q)).

Then any particular sequence of solutions u, of (Pn) admits a subsequence which
converges to u in C([0,T], X), solution of

i—L:(t) +0Du(t) + / K(t-ys) [H(T)(u(s)) N Lz(Q)] ds 3 F(t,u(t))
0
(P) fora.e.t € (0,7T)
u(0) = u®, u® € dom(9®),

where F(t,v)(x) = r(t,x)-g(v(x)) +q(t,x) forall (t,x) € [0,T] xQand all v € L*(Q).
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Proof. We use the notation of the proof of Theorem 5.1. Clearly

sup [|F (2, un (1))l L2(q) < +o0
neN

for all t € [0, T]. On the other hand from (C3) and the uniform bounds (5.18) we easily

deduce that

dF,
dr

< 400,
L'(0,T,L%(Q))

Therefore Step 1 of the proof of Theorem 5.1 is still valid. The rest of the proof
mimics the one of Step 2. We only have to establish that £, (-, u; ,(-)) = F(-,ui(+))
in L2(0,7, L*()). This convergence is a straightforward consequence of the weak
convergences r, — r, g, — ¢ and the pointwise convergence g, — g together with the
uniform bound of g, (for a complete proof refer to [2]). O

sup
neN

6. Stochastic homogenization of integrodifferential Cauchy problems

In this section Q is a C'-domain of RV, X = L>(Q) and V = Hé(Q). For any Borel
measurable function W : RV xRN — R such that fora.e. x € RV, & — W(x, &) is convex,
when & — W(x, &) is not Géteaux differentiable we adopt the following convention: for
any v € H'(Q), we write indifferently divogW (-, Vv) for the set

{divg* e a,fW(.,vV)}

or any element of this set.

6.1. Stochastic homogenization of a random problem modeled from a Fick’s
law with delay

To model the spatial environment, we consider a general probability space (£, A, P)
equipped with a group (77),z~ of IP-preserving transformations on . We denote by
I the o-algebra of invariant sets of A by the group (T;),z~ and, for every h in the
space L]IP () of P-integrable functions, by IEZ h the conditional expectation of h with
respect to 7. If 7 is made up of sets with probability O or 1, the discrete dynamical system
(Z, A, P, (T;),ezv) is said to be ergodic. Under this condition, we have EZh = Eh
where Eh = fz h(w)dP(w) is the mathematical expectation of h.

Let Qbe C! -regular domain of RY and denote by u(w, t, x) a scalar state variable of
a physical, biological or ecological model at position x and time #, subjected to an alea
w € X ; according to the cases u(w, -, -) is a concentration, or a density. We assume that
for the model considered, the diffusion flux in Q related to u(w, ¢, x) has two contributions:
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o the Fickian flux which locally has at each time ¢ the direction of the negative
spatial gradient of the state variable, given by Jg (w, t,x) = =D (w, x)Vu(w, t, x),

e the non Fickian flux which locally has the direction of the negative spatial
gradient of the state variable at some past time 7 > 0, given by Jyr(w, t,x) =
-D(w,x)Vu(w,t —1,x).

For example, in population dynamics, the non Fickian flux may account for maturation
period, resource regeneration time, mating processes, or incubation period, which is
superimposed on the first flow at each time ¢. The coefficient D accounts for the
rate of movement in the heterogeneous spatial environment modeled according to
(Z,A,P,(T;),ezn) in R™. From the mass conservation principle, for a given source
F(w,t,x), the variable u satisfies the equation

(Cll—b:(w, t)+div(Jp(w,t,x)) +div(Iyp(w, t,x)) = F(w,t,x). 6.1

Assume 7 small. Then we can express div(Jy g (w, t,x)) as a divergence of the gradient
field distributed following a suitable time kernel. Indeed, from Jyp(w,t + 7,x) =
—D(w, x)Vu(t), using the first order time approximation, we have

0Jn

InE(w,t+71,x) ~Inp(w,t,x) +T 0tF (w, t,x)

so that Jy f satisfies the first order differential equation

ot
By an elementary computation using the method of variation of constants, and assuming
that Jy r(w, 0, x) = 0, we see that J F is given by

T (w, t,x) +InF(w,t,x) = =D (w,x)Vu(w,t,x).

1 [t —t
InF(w,t,x) = —;/ exp (ST) D(w,x)Vu(w, s,x)ds.
0

Therefore, (6.1) becomes
d
T (@.1.) ~div(D(w, ) Vu(w.1.))
(1 rt s—1
—div| - exp (—)D(w,-)Vu(w,s,-)ds =F(w,t,-)
T Jo T
and can be written as

i—l:(w, t,-) —div(D(w, - )Vu(w,t,-))

1

- /Otexp (—t_TS) div(D(w, - )Vu(w, s,-))ds = F(w,1,-),
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which is an integrodifferential diffusion equation as treated in Section 3, with the kernel
K defined by K () = % exp(—1). To take into account the size of order ¢ of the spatial
heterogeneities, the last integrodifferential diffusion equation becomes

dug

W(w,t, -) = div (D (a), E) Vue(w,t, '))

— div (l ‘/Ot exp (S—_t) D (w, E) Vug(w,s, ~)ds) =F.(w,t,-)

T T

We are therefore led to consider the following more general problem, written in
a mathematically rigorous formulation as follows: for P-a.e. w € Z, the function
ug(w, ) € L*>(0,T, L*(Q)) solves
dug(w)
dt
(Pe(w)) = Folw, t,us(w, 1)) forae. 1 € (0,T)

ue(w,0) = ul(w), ul(w) € dom(dD . (w)).

(t)) + 0P (w,ug(w, 1)) + /t K(t—5)0Y:(w,ugs(w,s))ds
0

The kernel K is given as in Section 2. For given a > 0 and b > 0, the functionals
D, ¥, : L*(Q) — |—00, +00] are defined by

b
a/D(w,f)vu-VudH—/uzdx if u € H\(Q),
O, (w,u)=1 Ja € 2 Ja

+00 otherwise.
/D(w,f)vu-vudx ifu e H\(Q),

lPE ((1), M) = Q €
+00 otherwise,

where the random matrix valued map
D = (dij)ije1..n : ZXRY — MV

is (A ® B(RY), B(M"))-measurable and covariant with respect to the group (7;),czn
that is
D(T,w,x) = D(w,x +2)
for all w € ¥ and all x € R . We also assume that there exist @ > 0 and 8 > 0 such that
alé? < BNy dij(w, 0)é&é; < BIEP forallw € 2, all x € RN and all £ € RV,
The random reaction functional F, is structured as follows: for all u € L*(Q), all
t €[0,T],and all x € Q,

Fe(w,t,u)(x) =r (a), t, g) -g(u(x)) +q (w, t, );C)

where
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e g:R — R isabounded Lg-Lipschitz continuous function;

e r:IX[0,T] xRN — Rlis (A ® B([0,T]) ® B(RY), B(R!))-measurable;
r is covariant with respect to the group (7;),cz~, ie. r(T;w, -, ) = r(w,-,  +2)
for P-a.e. w € T and forall z € ZV;
forevery w € X, r(w,-,-) € L2([0,T] xRN, RH) nwb1(0,T, LIZOC(RN,RI));
for all bounded Borel sets B of RY, the real valued functions

w > |Ir(w,t,) |2 (g rey forall r € [0,T],

/T dr
w >
0

d_t(w’ T,") dr
belong to Lp(X);

L2(B.R])

e ¢ :Xx[0,T] xRN = Ris (A B(0,7]) ® B(RN), B(R))-measurable;
q is covariant with respect to the group (7%), <z, i€. ¢(T;w, -, ) = g(w, -, +2)
for P-a.e. w € Tand all 7 € ZV;
forallw € 2,1 — g(w,t,-) € W-2(0,T, LIZOC(RN));
for all bounded Borel sets B of RY, the real valued functions

w+— [lg(w,1,)]17,, forallt e [0,T], 6.2)

@ /
0

belong to Lp(X).

(B)

dr (6.3)

d 2
A (w,7,-)
dt L2(B)

Taking the expression of each two subdifferentials 0® . (w,-) and 0¥ (w, -) into
account, the problem (#.(w)) can be written as

%(ﬂ -a diV(D(w, é)Vua(w, t)) +bug(w,1)
(Ps(w)) - /)t K(t— S)diV(D (w, é)Vug(w, s)) ds = Fe(w, t,ug(w,t))

fora.e.t € (0,T)

ue(w,0) = u’(w), u’(w) € dom(dD,(w)).
where
dom(9® . (w,-)) = dom(8¥ s (w,-)) = {v € Hy(Q) : div(D(w,)Vv) € L*(Q)} .

Condition (2.1) is clearly uniformly satisfied: take @y, = @. According to Examples 2.1,
condition (2.2) is uniformly satisfied. Moreover, since ¥.(w,-) is quadratic, from
Proposition 4.2 (P (w)) admits a unique solution u . (w, - ).
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For all w € Y and all (x,¢) € RY xRV set
W(w,x,§&) = D(w,x)¢ - &
and define Wy, for P-a.e. w € X by

. 1
Whom(w, §) = nEIPmmf{n_N /Y W(w,y,&+Vu(y))dy :ue€ Hé(”Y)}
n

1
= inf Ef inf{—N/ W(w,y, &+ Vu(y))dy :u € Hé(nY)}.
n nY

neN*

It is well known that this limit exists for IP-a.e. w € X and is given by the formula
above; for a proof, refer to [6, Proposition 12.4.3] and references therein. Note that if
(2, A, P, (T;),czn) is ergodic, then Wy, is deterministic and given for IP-a.e. w € X by

Whom (¢) = lim inf:niN/ W(w,y,gwu(y))dy;ueHg(nY)}
n—+0o ny

1

= inf Einf{—N/ W(,y,éE+Vu(y))dy :u e Hé(nY)} .
neN* n ny

As a consequence of Theorem 5.3 we obtain

Corollary 6.1. Assume that for P-a.e. w €
(HOM)) sup,.@.(u%(w)) < +oo;
(HOM,) u%(w) — u®(w) strongly in L*(Q).

Then for P-a.e. w € X, the solution ug(w,-) of (Pes(w)) converges to u(w,-) in
C([0,T], L>(Q)), solution of the homogenized problem
du(w)
dr
t
(P (w)) - / K(t — s)div(Dpom(w)Vu(w, s))ds = F(w, t,u(w,t))
0

forae.t € (0,T)

(t) — a div(Dpom(w)Vu(w, 1)) + bu(w,t)

u(w,0) = u’(w), u’(w) € dom(dPpom(w))

with Dyom (@) = ((dhom)ij(w))i j=1,...N>

1
(dhom)ij(w) = E(Whom(w, ei +ej) + Wpom(w, e; — ej)),

dom(®hom(w)) = Hy(Q) N H*(Q),
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where (e;)i=1,... N is the canonical basis of RN The homogenized reaction functional is
given for every u € L>(Q), P-a.e. w € X, and all (t,x) € [0,T] xRN by

Fhom(w, z, u)(x) = rhom((’-)’ t) : g(u(x)) + Qhom(wa l),

Phom(w, 1) = BY ( / r(w,1,y) dy),
0,HN

Qhom(ws t) = EI(/ Q(w,f,y)dY)
(0,nN

Proof. Firstly, by using arguments from ergodic theory of additive processes, we obtain
that for IP-a.e. w € X%,

rb‘(w"a.) — rl’lOm(‘”?')

for the o (L*(0, T, L>(,R!)), L'(0,T, L*>(Q, R!))) topology,

qe((,d, ) ) - Qhom(w’ )

weakly in L2(0, T, L?>(Q)), and
q(w’ t’ _)
&

for all # € [0, T]. For a proof refer to [2, Lemma 5.2] and [2, proof of Theorem 5.1].
It remains to establish (STAB,) and (STABS) of Remark 5.2, i.e. that for P-a.e. w € X:

Cy-pl

M
D, (w) > P(w,-) and ¥, (w, ')LHO‘(Q) —0 Y(w, ')LHO‘(Q) where

sup
>0

< 400
LX(Q)

b
a/s;Dhom(w)Vu-Vudx+§'/Qu2dx if u e Hy(Q),

+00 otherwise.

O(w,u) =

/Dhom(w)Vu Vudx ifu e H)(Q),
Y(w,u) =3Ja
+00 otherwise.
Observe that the I'-convergence of ¥, (w, -) to ¥(w, -) when L?(Q) is equipped with
its strong topology yields the I'-convergence of ¥ . (w, ')LH()] @ to ¥(w, ‘)LHOI (@) When

H(') (Q) is equipped with its weak topology. This property is a direct consequence of the
uniform coercivity (see Proposition D.2):

Y. (w,u) > (m/ lu(x)|?dx, forallu e H(l)(Q).
Q

2
L2(Q)’
two convergences are straightforward consequences of [6, Theorem 12.1.1(ii)] and [6,

Noticing that ® . (w, -) is a continuous perturbation of a¥ . (w, -) by %H -l these
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Theorem 12.4.7]. Finally, it is easily seen that the matrix Dpom (w, -) satisfies the bounds

N
alél < ) (dhom)ij(@)éit; < BIE
ij=1
for P-a.e.w € X, andall € € RN . Hence dom(d®(w)) = H)(Q)NH?(Q). This completes
the proof. O

6.2. Stochastic homogenization of nonlinear integrodifferential reaction-dif-
fusion equations in one dimension space in the setting of a Poisson point
process

Denote by M the set of all countable and locally finite sums of Dirac measures in R,
equipped with the o--algebra generated by all the evaluation maps Eg : m +— m(B) from
M into N U {+o00} when B belongs to B(R). Then, given 6 > 0, there exist a subset X of
locally finite sequences (w;);en in R, a probability space (£, A, IPy) and a point process,
called Poisson point process, N : w +— N (w,-) from X into M satisfying

() N(O), ) = ZieNéwi;

(ii) for every finite and pairwise disjoint family (B;);<; of B(R), the random variables
(N(-, B;))ier are independent ;

(iii) for every bounded Borel set B and every k € N

Po(INC,B) = K]) =6t £(p)* SPEED,

We denote by [Ey the expectation operator with respect to the probability Py. Note
that for every bounded Borel set B in R, we have N(w,B) = #(X N B), and that
Eq(N(-,B)) = 6.L(B). We define the group (7). .z~ of IPg-preserving transformation
on (X, A,Py), by T,w = w — z. From (ii), we can easily show that (X, A, Py, (T;),ez) is
ergodic, i.e. the o-algebra of invariant sets of A is made up of sets with IP g-measure O or
1. In the problem below, we use the dynamical system (X, A, Py, (T;),cz~ ) to describe
the heterogeneous spatial environment.

Let Q be an open bounded interval of R. Let o* € C'(R) be two scalar functions, and
a* two positive real numbers satisfying

at < (o%) 6.4
and set for all ¢ e R

3
Wi(f)z‘/0 o*(s)ds.
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We assume that there exists (@, 8) € R% such that a¢? < W*(&) < B(1 +£2). Such a
condition is fulfilled by assuming suitable conditions on o*, as for example a growth
condition of order 1. Given R > 0, we define the random density W by

W=(€) ifx € Ujeny Br(wi),

W(w,x,§) = {W+(§) otherwise

and the random integral functional @, : L?(Q) — ]—oc0, +c0] by

/Qw(w,g,%(x))dx ifu e H\(Q)

+00 otherwise.

O, (w,u) =

It is easy to show that @ . (w, -) is a proper convex lsc functional with domain Hé (Q) and
that for all w € Z, its subdifferential (actually its derivative) is given by

dom (0D, (w,)) = {u e HL(Q) : (w;f (w, g jx—”))/ € LZ(Q)}

e du\Y
00, (w,-) = —(Wf(w, o au)) .

On the other hand, we set

( ) a”(x) ifx € U;ey Br(wi),
a(w,x) =
a*(x) otherwise

and we define the random quadratic integral functional ¥, : L?>(Q) — ]—oc0, +0] by

W, (w,u) = ;L4%§)%u>

+00 otherwise.

2
dx ifu € H)(Q)

The subdifferential of ¥ (w, -) (actually its derivative) is given by
ydu)’
D)) = 1 . _\ = 2
dom (0¥ (w,)) {u € Hy(Q) : (a(w, s) ) eL (Q)}

¥e(w, )= —(a(a), g)%)/

Condition (2.1) is uniformly satisfied: take oy, = % min(a~, a"). In the lemma below we
state that (2.2) is uniformly fulfilled for Py-a.e. w € .

37



Omar Anza Hafsa & Jean Philippe Mandallena & Gérard Michaille

Lemma 6.2. For Pg-a.e. w € %, the subdifferentials 0P .(w, ) and ¥ o(w,-) are
connected as follows:

dom (0P, (w,-)) € dom(d¥.(w,)),
{(6@8@), u), 0¥ (w,u)) > ||8‘Pg(w,u)||i2(g) forallu € dom(0P.(w,-)).

Proof. ForPg-a.e. w € TsetQ (w) := QN[L € U;en Br(wi)] and Qf (w) := QN[ ¢
Uien Br(wi)]. Let u € dom(0®,(w, -)), we have

du / d2u du\?
alw,—)—] dx= (a )( )dx+/ (a+)2(—)dx
/Q(( S)dx) 0z (w) 0t (w) dx?
[ du d2u)2 / ( /(du)dzu)z
< o === | dx + ot [— | =— | dx
/sz;<w>( (dX)dxz QL (w) dx / dx?
, . odu)\2
AT KR

so that # € dom(¥ . (w, -)).
Fix now u € dom(d®.(w, -)). From (6.4) we have

(3D (w, 1), 0¥ 5 (w,u)) = A(Wé(w,z,%))’(a(w,z)%)’dx
_(du)\" _du
_/Q;uu)(a (dx))a @d)“r Q*(w)( ( ))
Lo [ el
() de? Q*(w) d?
2
dx

2 2
S A o KR s )
Qz(w) dx Q*(a)) dx

= 10 (w,0) 22

This completes the proof. O

Let K be a kernel as defined in Section 2 and a reaction functional as in the previous
section with N =1, i.e.

Fe(w.t,0)(x) = (0.0, 2) - gu(@) + g(w.1. ).
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fulfilling the same conditions. Consider the random integrodifferential reaction-diffusion
problem defined for Py-a.e. w € X by

V=D (1) 4 900,10 0,1) + /0 K- 0% (.05 (0,9)ds

(Pe(w)) =F.(w,t,us(w,t)) forae.t € (0,7)
ue(w,0) = u’(w), u’(w) € dom(dP . (w)).

From Proposition 4.2, (£ (w)) admits a unique solution. When w € ¥ and ¢ are fixed, the
problem (P (w)) is nothing but the problem treated in [12, Example 2] in term of well
posedness. Here we consider sequences of such problems with, additionally, a reaction
source and in a stochastic homogenization framework. A straightforward application of
Theorem 5.3 yields

Corollary 6.3. Assume that for Pg-a.e. w €
(HOM) sup,., @ (u’(w)) < +oo;
(HOMp) 1% (w) — u®(w) strongly in L*(Q).

Then for Pg-a.e. w € X, the solution uz(w,-) of (Pe(w)) converges to u(w,-) in
C([0,T], L*(Q)), solution of the homogenized problem

(31—1:(0.), l) - (6Whom(u(ws t)))/

dx2
w(w,0) = u’(w), u’(w) € dom(dD).

(P(w) - /t K(t- s)ahomdz—u(w, s)ds o F(t,u(w,t)) fora.e.t € (0,T)
0

where Whom is deterministic, given by

n—+oo

Whom (£) = lim inf{niN /nY W(a), v, &+ g—z(y))dy ‘ue H(')(nY)}

) . 1 du ) 1
nlng*]Eg mf{n_N,/ny W(~,y,§+@(y))dy ‘u€ HO(nY)},

the coefficient anom is given by

a~a*
Oa~ + (1 -0)a*’
®=1-exp(26R)

dhom =
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and, with the preamble convention, d®Onom, possibly multivalued, is given by

dom(d@pom) = {v € H\(Q) : ( hom(j—;))/ c Lz(g)}

. (dv))
e8]

The homogenized reaction functional is given for every u € L*(Q), and all (t,x) €
[0,T] xR by
Fhom(t’ u)(x) = rhom(t) ) g(u(x)) + Qhom(t)’

rhom(t)zlEH(/ r(',t,.)’)d)’)’
(0,HN

Ghom (1) = Ee(/(o - q(-.t,y) dy).

Assume further that the Fenchel conjugate of W= satisfies the following condition: there
exists y* > 0 such that <§T - f;,fl - §2> > y¥|€) = & forall (£1,&;) € R X R and all
(£1,&5) € OW* x OW**. Then Whom is univalent and is the P g-almost sure pointwise
limit of W, (w, -) where Wy (w, &) = inf{nLN fnY W(w,y, &+ g“ (y))dy :u € Hl(nY)}.

where

Proof. The weak limit of the reaction term is obtained as in the proof of Corollary 6.1. In

order to apply Theorem 5.3, it is enough to establish that for IPg-a.e. w € Z, the following

variational convergences hold: @ . (w) M @ and Ye(w) H (@) Doveng, Y where

du - I
o) - /QWhom(dx)dx ifu e H\(Q)

+00 otherwise,

1 du
\P(u): E/ahom
Q

2
—(x
()
The first convergence is well known (see for instance [6, Theorem 12.4.7]. For the second
convergence, note that for quadratic functionals in one dimension

Folu) = / as(0) |

with0 < @ < a, < 8, one has : F, Doy, g iff - converges to L for the o (L™, L")
topology, and F has the integral representation

and

(X)

2
a (x)

F(u)z/ga(x) du
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For a proof, see [6, Theorem 12.3.1]. Hence it remains to establish that for Py-a.e. w € X
the following convergence holds
1 Oa + (1 -0)a*

a(w, = ata~

o(L®, LY.

This result is a direct consequence of the additive ergodic theorem (see [6, Theorem 12.4.2])
which states that for Pg-a.e. w € &

1 1
n [
a(w’ =z 0,1) a("y)

An easy calculation gives
1 Oa” + (1 - 0)a*
Ey / dy = -2 (+ — )’
o, a(-,y) a*a
The last claim follows straightforwardly from [6, Proposition 17.4.6]. This completes the
proof. O

Appendix A. Proof of Lemma 3.2

Step 1: Proof of (3.6) and (3.7). Observe that from Lemma 3.1, forall ¢ € [0,T], u,(¢) €

dom(9®) c dom(dV¥). For a.e. t € [0, T], form the scalar product in X of 0¥ (u,(t))
with the approximate equation (3.1) and integrate over [0, T']. This yields

T 4 T
[ g [ @00, 0o
T

T
+ / (K % 0P, (uy)(t), 0¥ (u (t)))yde = / (F(t,u (1)), 0P (u (1))yde. (A1)
0 0
We have used the fact that from (2.2), 0¥ (u,) € LZ(O, T, X), hence
(%20, 02 ) = S0

(cf. [6, Proposition 17.2.5]). An easy calculation gives

1K * W2l 207 x) < THIK 20 10¥a@)ll 207 5y (A2)
Since for all 1 > 0,
0¥ a(ua(@)llx < 0¥ (ua(1))llx (A3)
(see [6, Proposition 17.2.2]), we infer that

7
/0 (K x 0%a(ua) (1), 0¥ (ua(1))) d

=1
<T2NKN 2o 0¥ @)l g7 5y (A4
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On the other hand from (C;) and (2.1)
IFC w207 ,x) < WFCO20,7.x) + 1L 22 0,7 1eall 20,7 x)
< IFC 0207 x) + @wllLil 20,7 10 @)l 20,7 x)- (AS)
Hence from (A.5)

T
/O (F(t,ua(1)), 0¥ (ua(n))) dr < [[F (-, 0)ll 20,7 .x) 10¥ () ll L2 0.7 x)

+awllLl 20 1O 2, o 7 ) (A)
Combining (A.1), (2.2), and (A.4), (A.6) yields that

=1
|oww = (FIK L 20m) + @wlLl 2 g0.0) 109012 7
< Thow +¥(uo) = inf ¥+ [IF (-, Oll 20,70 10% @)l 20.7.x)

from which we deduce (3.6) provided that 7~"%I|K||L2(07T> +ay||Lll207) < @ow.
Estimate (3.7) follows by combining (3.6) with (2.1).

Step 2: Proof of (3.8), (3.9) and (3.10). Fora.e.t € (0, T), form the scalar product in X
of ddl;l (#) with the approximate equation and integrate over (0, 7). This yields

2
du/[

dr

< CD(I/[()) —inf®
12(0,7,X) X
du,l

+ (1K * 0¥ (D)l 20,7 x) +IFCua)ll 207 x)) T

L2(0,T,X)
and (3.8) follows from (3.6), (3.7), (A.2), and (A.5).

Estimate (3.9) follows straightforwardly from the approximate equation, (3.6), (3.7),
(3.8), and (A.2). Estimate (3.10) is obtained from (3.8), according to

du,l

dr ll207.x)
Step 3. Proof of (3.11), (3.12) and (3.13)] First observe that

~1
lua(®)llx < lluollx + 72

sup [|[K x 0¥ (u)llwr2¢07 x) < +o0, (A7)
>0

which follows from (3.6) and the two inequalities:
~1
IK * 0¥a(u)ll 207 x) < T2IK 20, 10 ()l 20,7 %)

d o
Ko < (K(O) + THIK 20 1%l o 7.x)

L2(0,T,X)

42



Convergence of nonlinear integrodifferential reaction-diffusion equations via MoscoxI"-convergence

(the second inequality follows from (3.4)). Next, from (3.5) and (3.8), we have
sup dF(-,uy)
2 dr
From (A.7) and (A.8) we deduce that
dG,

dt

< 400, (A.8)

L'(0,T,X)

< +00.

sup

4 LY(0,T,X)

Hence (3.11) is a straightforward consequence of 3.8 and [2, Lemma 3.3] which states

] t t
S—/ ds+/
X tJo X 0

that for each 7 € 10, T
To establish (3.12), for each ¢ € 10,T] form the scalar product of the approximate

d*u P d
s.
equation S,

X

0 Cags)

dt

S (0) 4 9001 (1)) = Galr, )

with dW¥(u,(t)). This yields from (2.2)

<ddL;/1 (1), (9‘P(MA(¢))> + o w0 (A (0))1% < (Ga(t,un), 0% (ua(1)) - Bow
from which we deduce
@, wl|0¥(ur())% < (‘ddbtu O +1Gat,u)llx |10¥(wa()llx — Bo,w-
p%

The claim follows from (3.6), (3.10), (3.11), and sup, ||Ga(t, ua(?))||x < +oo obtained
according to

Gz, u)llx < WK 20,0 10F @D 20,7, x) + 1F(,0)|Ix + L(2) [luat)l|x-

For t = 0, 0¥ (u (1)) = 0¥ (up) which does not depend on A. To obtain (3.13), take
the scalar product of the approximate equation with d®(u,(¢)) and follows the same
calculation. O

Appendix B. A Gronwall type inequality

The following lemma generalizes the result stated in [9, Lemma A.5].

Lemma B.1. LetT > 0, m € L'(0,T) such thatm > 0 a.e. in (0,T), and a > 0. Let
p € [l,400) and ¢ : [0,T] — [0, +c0) be a continuous function satisfying

l¢P(t) < Lors / t¢p_](s)m(s) ds forallt € [0,T].
p p 0
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Then .
o(t) <a +/ m(s)ds forallt € [0,T].
0
Proof. We assume that a > 0, otherwise substitute a + & for a and make £ — 0 in the
last inequality of the proof. Set ¥ (¢) = Ii)a" + fot #P~1(s)m(s)ds so that > 0 and
¢(s) < pryr(s) foralls e [0,T]. (B.1)

Hence, since ¢ is absolutely continuous
d L1
d—‘f(s) = m(s)¢P ' (s) < m(s)pHyd (s) forae. se (0,7) (B.2)

where ¢ is the conjugate of p, i.e. % + é = 1. It follows from (B.2) that for a.e. s € (0,7)

_1d _1
p L5 () < ms),
that is
1d, 1

PP (W7 (5)) < ms).

Integrating over (0, t), we infer that for all r € [0, T]
t
Pt <prur )+ [ mis)as
0

that is, according to (B.1), ¢(¢) < a + fot m(s)ds forall r € [0,T]. O

Appendix C. Graph-convergence

Let us recall the classical notion of the Kuratowski—Painlevé convergence for sequence of
sets: let (A,)nen be a sequence of subsets of a metric space (X, d), or more generally of
a topological space. The lower limit of the sequence (A;),en is the subset of X denoted
by liminf A,, and defined by

liminfA, ={x € X :3x, > x, x, € A, forall n € N}

The upper limit of the sequence (A;,),en is the subset of X denoted by limsup A,, and
defined by

limsup A, = {x € X 3 (ni)ken, 3 (Xp)ken, ¥V k,xk € Ay, Xp — x}.
The sets liminf A, and lim sup A,, are clearly two closed subsets of (X, d) satisfying
liminf A,, C limsup A4,,.
The sequence (A, ), is said to be convergent if

liminf A,, = limsup A,,.
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The common value A is called the limit of (A,), <y in the Kuratowski—Painlevé sense
and denoted by K-lim A,,. Therefore, by definition A := K-lim A,, if and only if

limsup A, C A C liminf A,,.
We may also write A, — A or A = lim A,,, adding the metric or topology which is used
in X.
From now on (V, || -||) is a Banach space and V* its topological dual space whose dual
norm is denoted by || -||. and we recall that for (u,u*) € V X V*, we write (u*, u) for

u*(u). Given a multivalued operator A : V — 2V, for any v € V we write Av instead of
A(v). Let us recall some basic definitions

dom(A)={veX:Av +0} denotes the domain of A;
G(A) :={(v,v") e VxXV*":v" € Av} denotes the graph of A;
R(A):={v"eV":3veV v' e Av} denotes the range of A.
We define the inverse operator A~™! : V* — V of A by
AT'V) = {veV:v' e Av}.

Note that dom(A~!) = R(A). Consider another multivalued operator B : V. — 2V, The
range of A with respect to B is the set

Rp(A) :={v* € V*:3v edom(B) v' € Av}.
Note that we have Rg(A) = A(dom(A) N dom(B)).

Definition C.1. An operator A : V — 2V is said to be monotone, if (u* —v*,u —v) > 0
whenever (u,u*) € G(A) and (v,v*) € G(A). It is maximal monotone, if it is monotone
and if its graph is maximal among all the monotone operators mapping V to V* when
V x V* is ordered by inclusion. An element (u, u*) of V X V* is said to be monotonically
related to a monotone operator A provided

W =v*,u—v)y >0 forall (v,v*) € G(A).

A useful form of the definition of maximality for a monotone operator A is the following
condition whose proof follows straightforwardly from Definition C.1.

Proposition C.2. Let A : V — 2V be a monotone operator. Then A is maximal monotone
if and only if whenever (u, u*) is monotonically related to A then u € dom A and u* € Au.

The most basic class of maximal monotone operators is the class of subdifferentials
of convex functions (see [6, Theorem 17.4.1]). Given a sequence of operators, one can
consider the lim inf and lim sup of the sequence of their graphs as subsets of V x V*. This
leads to the following definition.
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Definition C.3. A sequence (A,,),en of operators mapping V to V* is said to be graph
convergent to A : V — 2V if the sequence (G(A,))nexn converges to the graph G (A) of
A in the sense of Kuratowski—Painlevé when V x V* is endowed with the product norm.

From now on we identify the operators with their graphs so that we write A instead
. G . .
of G(A) and A = G-lim A, or A,, — A instead of G(A) = K-lim,,—,+c G(A,). When
considering sequences of maximal monotone operators, thus subdifferentials, the definition
of the graph convergence is reduced to:

Proposition C.4. Let (A;, A),en be a sequence of maximal monotone operators mapping
V to V*. Then we have
A =G-lim, ;0 A, & A CliminfA,. (C.1)

n—+oo

Proof. The only implication we have to establish is

A Climinf A,, = A = G-lim;;_100 Ay,

n—+oo

the converse being trivial. Thus, it remains to show that lim sup A,, C A is automatically
satisfied. Let (u, u*) € limsup A,,, then there exists a subsequence (ny)ren of integers
and (ug, u;) € Ap, such that (uy,u;) — (u,u”) in V x V* whenever k — +co.

In the other hand, since A C liminf A,, for all (v,v*) € A, there exists (v,,,v}) € A,
such that (v,,v}) — (v,v*) in V x V*. Passing to the limit in

(up = vy stk = Vi ) >0
when k — +oo (recall that A,, is monotone), we infer
(u* =v*,u—v) > 0forall (v,v") € A.

Therefore (u,u*) is monotonically related to A and, according to Proposition C.2,
(u,u*) € A, which completes the proof. O

G.\‘,S . .
Denote by A,, — A the graph convergence in V X V* of A,, to A when V X V* is

Gw,s
equipped with the strong product topology, and by A,, — A the graph convergence
inV xV*of A, to A when V X V* is equipped with the weak-strong product topology.

On the other hand denote by ¥, foy Y and ¥, Ty Y the sequential I'-convergence
of the functional ®,, : V. — R U {+co} toward the functional ® : V — R U {+00} when
V is equipped with its strong and weak topology respectively. The following theorem
states the link between the variational convergence of convex functionals and the graph
convergence of their subdifferentials. For a proof, refer to [5, Theorems 3.66, 3.67] or [6,
Theorem 17.4.4]
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Theorem C.5. Let ¥,V : V — R U {+o0} be a sequence of Isc convex proper functions.
Then the following implications hold:

I“S_V Gs,s
Y, —- ¥ = 9¥, —5 9Y¥,

Twv Gw,s
Y, — ¥ = 9%, — oV¥.

Note that converse implications hold true, up to normalization.

Appendix D. I'-convergence versus Mosco-convergence

Definition D.1 (Mosco convergence). Let (V,||||) be a Banach space, and (®,),cn a
sequence of extended real-valued functions ®,, : V. — R U {+co}. The sequence (D,,), en
Mosco converges to the extended real-valued function @ : V — R U {+c0} and we write
o, % oif
O=T, y-D, =T y-D,.
The argument, which naturally led to introduce the Mosco convergence notion, is the

bicontinuity of the Fenchel duality transformation in the context of convex functions
(see [6, 20, 21]). This Appendix is devoted to the following Proposition.

Proposition D.2. Let X and V be two Banach spaces withV < X, and ¥,,,¥ : X —
]—00, +00] Isc convex proper functions such that dom(¥,,) = dom(¥) = V. Assume that
for all r € R, there exists a weakly compact subset K, of V such that for alln € N

[Whv <7] CK,.
Then

Ty
Y v i Yy =Y, LN vy,

Lo .
Proof. Assume that ¥,y g W|v.Letu, € X and u € X such that u,, — u in X, and
assume that liminf,, ;oo ¥, (u,,) < +co. Then

liminf ¥, (u,) = liminf ¥, v (u,).

n—+oo n—+oo
According to the equi-coerciveness hypothesis and to the compact embedding V «— X
we can extract a subsequence of (u,),en Which weakly converges in V and strongly in X

. 1—‘VV- .
tosome v € V. Thus v = u and u,, — u in V. Hence from ¥, |y g Y |v we infer that

Y(u) =¥y (u) < liminf ¥,y (u,) = liminf ¥, (u,). (D.1)
n—+o0o n—+oo

|
Let u € X and assume that ¥(u) < +oo so that ¥(u) = ¥y (u). From ¥,,| v g ¥\v
and the compact embedding V <— X, we can derive that for a subsequence of (¥,,| v )nen
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(not relabeled) there exists a sequence (uy)nen of V such that u, — uinV, u, — u
strongly in X, which satisfies

lim W () = Tim Wy () = % (). (D.2)

n—+oo

From (D.1) and (D.2) we deduce that there exists a subsequence of (¥,),en such that
¥, X W. This conclusion being valid for any subsequence of (¥},),,en, we conclude that

v, Rt Y, which completes the proof. O
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