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On the magic square C*-algebra of size 4

TakesH1 KATSURA
MasaHITo OGAWA
AIRI TAKEUCHI

Abstract

In this paper, we investigate the structure of the magic square C*-algebra A(4) of size 4. We show that
a certain twisted crossed product of A(4) is isomorphic to the homogeneous C*-algebra My (C (RP3)).
Using this result, we show that A(4) is isomorphic to the fixed point algebra of My (C (RP3)) by a certain
action. From this concrete realization of A(4), we compute the K-groups of A(4) and their generators.

Introduction

Letn = 1,2,.... The magic square C*-algebra A(n) of size n is the underlying C*-algebra
of the quantum group A (n) defined by Wang in [9] as a free analogue of the symmetric
group S,. In [2, Proposition 1.1], it is claimed that for n = 1,2, 3, A(n) is isomorphic
to C™', and hence commutative and finite dimensional. We give the proof of this fact in
Proposition 2.1. In [3, Proposition 1.2] it is proved that for n > 4, A(n) is non-commutative
and infinite dimensional. We see that for n > 5, A(n) is not exact (Proposition 2.5).
Something interesting happens for A(4) (see [1, 2, 3]). In [3], Banica and Moroianu
constructed a *-homomorphism from A(4) to M4(C(SU(2))) by using the Pauli matrices,
and showed that it is faithful in some weak sense. In [2], Banica and Collins showed that
the =-homomorphism above is in fact faithful by using integration techniques. We reprove
this fact in Corollary 7.9. Our method uses a twisted crossed product. The following is
the first main result.

Theorem A (Theorem 3.6). The wisted crossed product A(4) <% (K X K) is isomorphic
to M4(C(RP?)).

The notation in this theorem is explained in Section 3. From this theorem, we see
that the magic square C*-algebra A(4) of size 4 is isomorphic to a C*-subalgebra of the
homogeneous C*-algebra M, (C(RP3)). The next theorem, which is the second main
result, expresses this C*-subalgebra as a fixed point algebra of M, (C (RP?)).

The first named author is supported by JSPS KAKENHI Grant Number JP18K03345. The third named author is
supported by Masason Foundation.
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Theorem B (Theorem 8.2). The fixed point algebra M4(C(RP3))P of the action B is
isomorphic to A(4).

See Section 8 for the definition of the action 3. We remark that Theorem B can be also
obtained by combining [1, Theorem 3.1, Theorem 5.1] and [4, Proposition 3.3]. Our proof
of Theorem B uses a twisted crossed product instead of quantum groups used in [1, 4],
and gives an explicit and straightforward isomorphism.

Since S8 is concrete, we can analyze M4(C (RP?))P very explicitly. In particular, we can
compute the K-groups of My (C(RP?))# explicitly. As a corollary we get the following
which is the third main result.

Theorem C (Theorem 15.16). We have Ko(A(4)) = Z'° and K\(A(4)) = Z. More
specifically, Ky(A(4)) is generated by {[p,-,j]o}?j:], and K\ (A(4)) is generated by [u];.
The positive cone Ko(A(4))+ of Ko(A(4)) is generated by {[p,-’j]o}?,].:l as a monoid.

Note that {p; ; }?’jzl is the generating set of A(4) consisting of projections, and u
is the defining unitary (see Definition 15.15). We should remark that the computation
Ko(A(4)) = Z'° and K{(A(4)) = Z and that Ky(A(4)) is generated by {[Pi,j]O}?,j:l
were already obtained by Voigt in [8] by using Baum—Connes conjecture for quantum
groups. In fact, Voigt got the corresponding results for A(n) with n > 4. Theorem C
gives totally different proofs for the results by Voigt in [8] by analyzing the structure
of A(4) directly which seems not to be applied to A(n) for n > 4. That K| (A(4)) is
generated by [u]; was not obtained in [8], and is a new result. Combining this result
with the computation that K| (A(n)) = Z for n > 4 in [8] and the easy fact that the
surjection A(n) — A(4) in Corollary 2.4 for n > 4 sends the defining unitary to the direct
sum of the defining unitary and the units, we obtain that K| (A(n)) = Z is generated by
the K class of the defining unitary for n > 4. We would like to thank Christian Voigt for
the discussion about this observation.

This paper is organized as follows. In Section 1, we define magic square C*-algebras
A(n) and their abelianizations A% (n). In Section 2, we investigate A(n) for n # 4.
From Section 3, we study A(4). In Section 3, we introduce the twisted crossed product
A(4) <% (K x K), and state Theorem A. We give the proof of Theorem A from Section 4
to Section 7. In Section 8, we state and prove Theorem B. From Section 9 to Section 15,
we prove Theorem C.

Acknowledgments
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and to Christian Voigt for the discussion on the results in [8]. The authors are also grateful
to the anonymous referees for the evaluation of our paper and for the constructive critics.

1. Definitions of and basic facts on magic square C*-algebras

Definition 1.1. Letn = 1,2, . ... The magic square C*-algebra of size n is the universal
unital C*-algebra A(n) generated by n X n projections {p;, j}?j=1 satisfying

n n
Zpihj:l (G=12,...,n), Zpi,jzl (i=1,2,...,n).
i=1 j=1

Remark 1.2. The magic square C*-algebra A(n) is the underlying C*-algebra of the
quantum group Ag(n) defined by Wang in [9] as a free analogue of the symmetric
group G,,.

We fix a positive integer n. Let S,, be the symmetric group of degree n whose element

is considered to be a bijection on the set {1,2,...,n}.

Definition 1.3. By the universality of A(n), there exists an action a: S, X S,, ~ A(n)
defined by
o) (Pij) = Pori).n()
for (o,u) € S, xS, andi,j=1,2,...,n.
Definition 1.4. Let A®°(n) be the universal unital C*-algebra generated by nxn projections
{ p,v,]-}:‘j=1 satisfying the relations in Definition 1.1 and
Pi,jPk,l = Pk,iDi,j G, 7,k 1=1,2,...,n).

The following lemma follows immediately from the definitions.
Lemma 1.5. The C*-algebra A*®(n) is the abelianization of A(n). More specifically,
there exists a natural surjection A(n) - A*(n) sending each projection pi,j to pij,

and every x-homomorphism from A(n) to an abelian C*-algebra factors through this
surjection.

Proposition 1.6. The abelian C*-algebra A® (n) is isomorphic to the C*-algebra C(S,,)
of continuous functions on the discrete set S,,.

Proof. For each o € S, we define a character y . of A% (n) by

L (=0())

Xo(pij) = {0 (i # o ())).
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Note that such a character y,- uniquely exists by the universality of A%®(n). It is easy to
see that any character of A% (n) is in the form of y, for some o € &,,. This shows that
A®(n) is isomorphic to C(S,,) by the Gelfand theorem. O

We can compute minimal projections of A% (1) as follows.
Proposition 1.7. For o € S, we set

Po = DPo()aPo@.2---Pom.n € A% ().
Then {p s} oes, is the set of minimal projections of A (n).

Proof. Since A®(n) is commutative, p,, is a projection for every o € S,,. For o € &,
let y » be the character defined in the proof of Proposition 1.6. Then we have

1 (¢’ =0)

X(T'(prr)z{o (0_,:#0_)

foro, o’ € &,,. This shows that {p -} s-cg,, is the set of minimal projections of A%®(n). O

For each o € &,;, we can define a character y, of A(n) by the same formula as in
the proof of Proposition 1.6 (or to be the composition of the character y in the proof
of Proposition 1.6 and the natural surjection A(n) - A*®(n)). With these characters we
have the following as a corollary of Proposition 1.6 (It is easy to show it directly).

Corollary 1.8. The set of all characters of the magic square C*-algebra A(n) is
{xo |0 € S, } whose cardinality is n!.

2. General results on magic square C*-algebras

In this section, we investigate A(n) for n # 4. The results in this section are known to
specialists.

Proposition 2.1. Forn = 1,2,3, A(n) is commutative. Hence the surjection A(n) —»
A®(n) is an isomorphism forn = 1,2, 3.

Proof. Forn=1andn =2, itis easy to see A(1) = Cand A(2) = C2. To show that A(3)
is commutative, it suffices to show p,; commutes with ps ». In factif p; ; commutes with
P22, We can see that pj | commutes with p> 3, p3 2 and p3 3 using the action @ defined
in Definition 1.3. Then p; ; commutes with every generators because py, is orthogonal
to and hence commutes with pj 2, p1,3, p2,1 and p3,;. Using the action a again, we see
that every generators commutes with every generators.
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Now we are going to show that p ; commutes with p; . We have
prap22 = =pi2—-p13)p22=Pp22-P13P22
=p22— (1= p23—p33)p22 = p33p22.
By symmetry, we have p>2p33 = p1,1p3,3 and p3 3p1,1 = p2,2p1,1- Hence we get
P1,1P22 = P3,3p22 = (P2,2P3,3)" = (P1,1P3,3)" = P33P1,1 = P2,2P1,1-
This completes the proof. O

Proposition 2.2. Let ny,ny, ..., ng be positive integers, and set n = Zf‘:l nj. There exists
. . . k
a surjection from A(n) to the unital free product *7 A(nj).

Proof. The desired surjection is obtained by sending the generators {p; j}l’.”‘j: , of A(n)

to the generators of A(n;) C *le A(nj), the generators {pi,j}:’,';;'ifﬁl of A(n) to the
generators of A(ny) C >X<’]‘.=1 A(nj) and so on, and by sending the other generators of

A(n) to 0. O

Corollary 2.3. Let n be a positive integer. There exists a surjection from A(n + 1) to
A(n).

Proof. This follows from Proposition 2.2 because A(n) * A(1) = A(n) *C = A(n). O

Corollary 2.4. Let n, m be positive integers with n > m. There exists a surjection from

A(n) to A(m).
Proof. This follows from Corollary 2.3. O
Proposition 2.5. Forn > 5, A(n) is not exact.

Proof. Note that an image of an exact C*-algebra is exact (see [5, Corollary 9.4.3]).
By Corollary 2.4, it suffices to show that A(5) is not exact. By Proposition 2.2, there
exists a surjection from A(5) to A(2) * A(3) = C? x C° which is not exact (see [5,
Proposition 3.7.11]). This completes the proof. O

The C*-algebra A(4) is not commutative, but is exact, in fact is subhomogeneous
(Corollary 7.9). From the next section, we investigate the structure of A(4).

3. Twisted crossed product

We denote elements o € Sy by (0-(1)o(2)0(3)0(4)). We define the Klein (four) group
K by
K ={t,t2,13,t4} C &4
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where ) is the identity (1234) of Sy, t, = (2143), t3 = (3412) and t4 = (4321). The
group K is isomorphic to (Z/2Z) X (Z/27Z).

We choose the indices so that we have #;7; = t;,(; fori, j = 1,2, 3,4. Note that we
have #;(j) = t; (i) for i, j = 1,2,3,4.

Definition 3.1. Define unitaries cy, c3, ¢3, ¢4 in M»(C) by

A VS A i AR e |

The unitaries ¢y, ¢a, c3, ¢4 are called the Pauli matrices.
Definition 3.2. Put w = (1342) € S,. Define amap &: {1,2,3,4}> — {1,-1} by
o 1 ifi=lorj=1lorw()=j
e(i,j) = .
—1 otherwise,

foreachi,j=1,2,3,4.

TaBLE 3.1. Values of &(i, j)

N ENEREREN
T]1]1
SRR
SEERE
L[ =1 -1

EENIIOSE N (S e
— [ | = | =

We have the following calculation which can be proved straightforwardly.
Lemma 3.3. Fori,j =1,2,3,4, we have cic; = &(i, j)cy,(j)-

From this lemma and the computation #;¢; = #,( ), we have the following lemma which
means that K2 3 (¢;, tj) — &(i, j) € {1, -1} becomes a cocycle of K.

Lemma 3.4. Fori,j, k=1,2,3,4, we have (i, j)e(t;(j), k) = e(i, t;(k))e(j, k).
Proof. Compute c;cjcy in the two ways, namely (c;c;)ck and ¢;(cjck). O

Hence the following definition makes sense. Let us denote by the same symbol « the
restriction of the action @: G4 X S5 ~ A(4)to K X K C G4 X S4.

Definition 3.5. Let A(4) =<' (K x K) be the twisted crossed product of the action @ and
the cocycle

(KXK)Z El ((ti7tj)’ (tk7tl)) 4 ‘9(1.’ k)S(J,l) € {17_1}
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By definition, A(4) <% (K x K) is the universal C*-algebra generated by the unital
subalgebra A(4) and unitaries {u; ; }? -1 such that

ui,jxu;f,j = (1,17) (%) foralli, j and all x € A(4)
and
ui jur; =i, k)e(j, l)utl.(k),,j(l) foralli,j, k,I.
We denote by R, the latter relation. The former relation is equivalent to the relation
Ui jPk,l = P;(k).t; (Ui foralli,j, k,I

which is denoted by Ryp.
Recall that A(4) is the universal unital C*-algebra generated by the set {p;. j}?j=1 of
projections satisfying the following relation denoted by R,

4 4
Dipij=1 (j=1,2734), Spij=1 (i=1.2.3.4).
i=1 j=1

The following is the first main theorem.
Theorem 3.6. The twisted crossed product A(4)><" (KxK) is isomorphic to My(C(RP3)).

We finish the proof of this theorem in the end of Section 7.
To prove this theorem, we start with finite presentation of the C*-algebra C(RP?) in
the next section.

4. Real projective space RP>

Definition 4.1. We set an equivalence relation ~ on the manifold

4
Za? = 1}
i=1

sothata ~ b if and only if @ = b or a = —b. The quotient space S>/~ is the real projective
space RP3 of dimension 3. The equivalence class of (aj,az, a3, as) € S3 is denoted as
[a1,as, a3, as) € RP.

§* = {a = (a1,a2,a3,a4) € R?

Definition 4.2. For i, j = 1,2,3,4, we define a continuous function f; ; on RP3 by
fi.j(la1,a2,a3,a4]) = a;a; for [ay,az,a3,a4] € RP3.

Note that f; ; is a well-defined continuous function.
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Lemma 4.3. The functions {f; ; }?J.:l satisfy the following relation

fij =1 =fii foralli,j,
fijfea = fixfig foralli,j, k.l

4
Dhi=l
i=1

Proof. This follows from easy computation. O
Definition 4.4. We denote by Ry the relation in Lemma 4.3.

Proposition 4.5. The C*-algebra C(RP?) is the universal unital C*-algebra generated
by elements {f; ; }?’jzl satisfying Ry.
Proof. Let A be the universal unital C*-algebra generated by elements { f; ; }?’jzl satisfying
R¢. Fori, j, k,1=1,2,3,4, we have

Jijfen = fixfin = frifij = fei ki

Hence A is commutative. Thus there exists a compact set X such that A = C(X).

By Lemma 4.3, we have a unital *-homomorphism A — C(RP?). This induces a con-
tinuous map ¢: RP3 — X. It suffices to show that this continuous map is homeomorphic.

We first show that ¢ is injective. Take [a1, a2, a3, as] and [by, by, b3, bs] € RP? with
¢(lai, az,as,as]) = ¢([b1, b2, b3, bs]). Then, for i, j = 1,2,3,4, we have a;a; = b;b;.
Since Z?zl a? = 1, there exists ip such that a;, # 0. Set o = b;,/a;, € R. Since
a;a;, = bib;,, we have a; = ob; fori = 1,2,3,4. Since Z?:] a% = Z?:] b% =1, we get
o = 1. Hence [ay, ay, as,aq] = [b1, by, b3, bs]. This shows that ¢ is injective.

Next we show that ¢ is surjective. Take a unital character y: A — C of A. To show
that ¢ is surjective, it suffices to find [a, a2, a3, a4] € RP3 such that x(fi.j) = aia;
forall i, j = 1,2,3,4. Since 3%, x(fi.)) = x(Z%, fi.i)) = 1, there exists iy such that
X (fio,ip) # 0. Since

4 4 4 4
ﬁo,io = ﬁo,io Z ﬁ,i = Z fio,i()fi,i = Z fi(),ifio,i = Z ﬁo,ifiz,p
i=1 i=1 i=1 i=1

X (fig.i)

——L— We have
NN v

we have x(fi.i,) > 0. Puta; =

4 4 2 4 4
2 _ X(ﬁ(%i) _ X(fio,i()))((fi,i) . N
2 L o "2 o)~ KO

i=1 i i

106



On the magic square C*-algebra of size 4

We also have

xio.)x (fio.) _
X(ﬁo,io) e
fori, j = 1,2,3,4. This shows that ¢ is surjective.

Since RP3 is compact and X is Hausdorff, ¢: RP3 — X is a homeomorphism. Thus
we have shown that A is isomorphic to C(RP3). O

x(fij) =

Let {e; };‘,jzl be the matrix unit of M4(C). Then {e; ; }?’jzl satisfies the following
relation denoted by R.;
ejj=e;,; foralli,j,

€i,jek,l = 5]"]{6‘[',1 for all i,j, k, l,

4
eii =1,
-

L

here 6 1 is the Kronecker delta. It is well-known, and easy to see, that M4(C) is the

universal unital C*-algebra generated by {ei,j}?j:l satisfying Re.

The C*-algebra M4 (C(RP?)) = C(RP3?, M4(C)) = C(RP3) ® M4 (C) is the universal
unital C*-algebra generated by {f;;}}_, and {e;;}} | satisfying R, Re and the
following relation denoted by Re;

fijexi=exfi,j foralli,j, kI

5. Unitaries

Definition 5.1. For i, j = 1,2, 3,4, we define a unitary U; ; € M4(C) C M4(C(RP?)) by

4
Ui,j = Z E(i, k)g(k’ j)eti(k),tj(k)
k=1

From a direct calculation, we have

1 000 0 1.0 0
010 0 100 0
Ui=ly 0 1 ol U2z=ly 0 0 -1/
00 0 1 0 01 0
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ceS oo . . o —~oc © —~o o o —
— oS —~oc o —ooo
[ oo _ °eee = Joo o T o
e 1P ~ococooc o—~oco
o — o I @99 coo — o o
O—~0 0 Co0OO0 ~ 0O —~ O _
— — p—
9| ~cocoo co—~0 coo—~ 2o 2o oo o
1l 1l 1] 1l 1 1l 1]
A N . N S N ~.
— o o o on <+ <+
=) =) =) ) ) =) =)
"CPC coT7o Tooco 79 cocooT Too -
_
o~ o
o oo —_
coo—~ o—~o0o0 1292 co—0 4~ o
co _ e -
| — oo — o — —
e e S Q1P oo~ coco
— —
C 1P o000 P99 | co-0 ~—ocooco oo o — o o
I I [ I I I [
“ - « - “ - «
— o~ o o o <t <t
=) =) =) =) ) ) =)

We have the following. We denote the transpose matrix of a matrix M by M.

Proposition 5.2. For (a,as, as,as) € C*,

(b1,ba, b3, ba)" = U; j(a1,a2,a3,a1)",

lakck)cj..

Lbrek =i (X7

satisfies Y.t
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Proof. Fori,j, k=1,2,3,4, we have
cicky = &(itj(k))cr, (1 (k) cukycj = e(ti(k), )t (k) -
Hence cictj(k)cj. =e(i,tj(k))e(t:(k), j) " ey, (k). Since
e(i,tj(k))e(k, j) =e(i, k)e(t;(k), j),
we have
e(i, 17(k)e(ti(k), )" = e(i, k)e(k, )™ = (i, k)e(k, j)
This shows that U; ; = Zizl e(i, k)e(k, j)er, (k)..; (k) satisfies the desired property. O
Proposition 5.3. Fori,j, k,l =1,2,3,4, we have
Ui, jUkg =&(i, k)e(j, DUy k.1, (1) -

Proof. We have

4 4
Ui iUk = Z e(i,m)e(m, j)es; m).1; (m)) ( Z g(k,n)e(n, ey, (n),z,(n))

n=1

m=1

4
= ( 2, elite(m)e(te(m), fe, (m»,z,-uk(m»)

m=1

4
X ( Z e(k,tj(n)e(tj(n), ey (tj(n)),tl(tj(n)))

n=1
4
= > & te(m)e(tx(m), )k, t;(m))&(t;(m), Dex, o, om).cr1; om))
m=1

Since we have
e(i,t(m))e(k,m) = e(i, k)e(ti(k),m), &(k.t;(m))e(m, j) = e(k, m)&(tx (m), j),
g(m, j)e(tj(m), 1) = &(m,1;(1))&(j, 1),

we get
e, ti(m))e(tx(m), j)e(k,1;(m))e(t;(m), 1) = (i, k)&(j, De(ti(k), m)e(m, 1;(1)).

Hence we obtain
4

Ui jUk1 = Z (i, k)e(j, De(ti(k), m)e(m, 1;(1))es, s (m)).; (1 (m))

m=1

=e(l, k)e(J, DU k).1;(1)- O

One can also prove this proposition using Proposition 5.2.
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6. Projections

Definition 6.1. We define Pl,l = Z?,j=1 ﬁ’jel‘v‘]’ € M4(C(RP’;)) For l,] = ], 2, 3, 4, we
define P; ; € Ma(C(RP?)) by

P,’J = Ui,jPl,]Uif
Note that Uy = 1.
Proposition 6.2. Foreachi,j=1,2,3,4, P; ; is a projection.

Proof. It suffices to show that P ; is a projection. We have

4 4
P, = Z fijei; = Z fiieji =P,
ij=1

i,j=1
and
4 4 4
2
Py, = Z fijeij Z Sr1exg = Z fijeijfriex.
i,j=1 k=1 ik l=1
4 4 4
= Z Jijliieir= Z fiifijein= Zfi,lei,z=P1,1-
i l=1 i l=1 iI=1
Hence P is a projection. O

Proposition 6.3. The set {P; ; }f,jzl of projections and the set {U;, j}?’j:l of unitaries
satisfy Rup.

Proof. This follows from the computation
Ui,ij,lUZj =U;, iUk, Py, UZ,,UZJ-
= (&(i, k)S(j,l))zUti(k),zj<z)P1,1U,*,.(k),,j(l) = Pr(k).1;(1)
using Proposition 5.3. o
Proposition 6.4. The set {P; ; }?,j= | of projections satisfies Rp.
Proof. From Proposition 6.3, it suffices to show

Pl,l +P1’2+P1’3 +P1’4 = 1, Pl,l +P2’1 +P3’1 +P4’1 =1.

110



On the magic square C*-algebra of size 4

This follows from the following direct computations

fir f2 fiz fia

Py = hLa f2 3 foa ’
’ B B2 s fia
far faz faz fas
P2 —H1 —fa 3 f2 —H1 fa -3
Piy= ~fiz fir fia —fi3 Py = -fiz fir —fHa4 Nz ’
’ —faz  far fas  —fa3 ’ faz  —Jfa1 fasa  —fa3
f2 1 —fHa s -2 1 —fi4 f33
Bs a1 —f2 B3 —fa 0 fi2
Py = faz  fas  —fa1 —fa2 Py = ~faz  fas  fa1  —fa2 ,
’ -fiz —fisa fir  fi2 ’ -fiz fia  fir —fi2
P33 —fa 1 Sz f3 —fa -1 2
faa  —faz  faz  —fan foa  faz  —fap —fa1
Pl = -4 3 2 Sl  Puy= fHa s 2 —f
ha —f3  f2 —fu ~fa —f3 f2 S
-fia  fiz —fiz Sl -fia —fiz  fiz2 S

O

By Proposition 5.3, Proposition 6.2, Proposition 6.3 and Proposition 6.4, we have a
+-homomorphism @: A(4) =¥ (K x K) — M;(C(RP?)) sending pi,jtoP;jandu; ;to
Ui, ;. In the next section, we construct the inverse map of &.

7. The inverse map
Definition 7.1. Fori, j = 1,2,3,4, we set

1

4
Eij= Z e(i, k)e(k, gy (k)1 (k) € A4) = (K X K)
k=1

Definition 7.2. Fori,j =1,2,3,4, we set

4
Fij= ) ExipriEjx € A(4) < (K xK).
k=1

Lemma 7.3. Fori,j=1,2,3,4, we have u; 1E11u1,j = E; j. Fori=1,2,3,4, we have
Mi,iEl,l = El,lui,i = El,l' We CllSO have E]2 1 = El,l'
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Proof. Wehave E| | = };Ziﬂ ug k. Fori, j=1,2,3,4, we have

4 4
1 1 . .
u,-,lEl,]ul,j = Z Zui,luk,kul,j = Z Zg(l’k)g(k’J)uti(k),tj(k) = E,',j.
k=1 k=1

Fori =1,2,3,4, we have

4 4 4
1 1 . 1
uiEy = 7 Z Ui ik = 7 Z e (i, k) Uy (k) 1y (k) = 7 Z urk = Er 1.
k=1 k=1 k=1
Similarly, we get E ju;; = E1,;. Finally, we have E12 L= % 22:1 urkE11=E11. m]

Proposition 7.4. The set {E; ; }f = satisfies Re.

Proof. We have E| | = }1 21:1 Ui k. We also have

1

Eyy = Z(M1,1 +Upp —U33 — Us4)
1

E33 = Z(ul’l —upp +U33 — Usg)

1
E44 = Z(ul,l —up —U33 +Us4).

Hence Z?zl Eij=u,=1
Itis easy to see E} | = Ey,1. Fori = 1,2,3, 4, we have

* * *
Evu; = Evugiu; = Euniuiug = Eru
and u7 .E1 1 = u;,1E1,1 similarly. Hence by Lemma 7.3, we obtain
1,i=L JE
* * * *
E; ;= uinEvu )" =uy Eviug = uja B = Ej;

fori,j=1,2,3,4.
By Lemma 7.3, we obtain
Ei;jEjx =ui 1 EyjuyjujEyjuy e =ui1Eyuj jEyjuy
= ui,lEilul,k =ui 1 E1juix = Eik
fori, j,k = 1,2,3,4. The proof ends if we show E; ;Ey; = 0fori,j, k,/ =1,2,3,4

with j # k. It suffices to show Ey ju; juy1E;; = 0for j,k = 1,2,3,4 with j # k.
Since uy jux,1 = ur,j = e(k,tx(J))ur kUi, (), it suffices to show Ey ju; ;Ey, = 0 for
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j=2,3,4.For j =2, we get

4

Zuk,kul,ZEl,l

k=1

4Eq 1u12E7 )

uipEy 1 +uipurpEy 1 —uipuszE ) — uypug By )
=0

By similar computations, we get E1 ju;3E11 = Eq1u1,4E1,1 = 0. This completes the
proof. O

Proposition 7.5. The set {F; ; }?’jzl satisfy Ry.
Proof. Fori,j=1,2,3,4, Proposition 7.4 shows

4

£y

* _ % % %

Fi,j— ZEk,ipl,lEj,k _ZEj,kpl,]Ek,i
k=1 k=1

4
= ZEk,jpl,lEi,k =Fj,.
k=1

Next, we show F; ; = F;; for i,j = 1,2,3,4. We are going to prove I>4 = Fy>.
The other 5 cases can be proved similarly. To show that F> 4 = Fy», it suffices to
show E1,2p1’1E4,1 = E174p171E2’1 because it implies Ek,2p171E4,k = Ek’4p1’1E2,k for
k =1,2,3,4 by multiplying E ; from left and E; ; from right. By Lemma 7.3, we have

AE1op11Eqy = (U1 —uz 1 —uz g +ua3)piiua 1 Eq
= (p1ou12 — P22l — P3,4U3 4 + pasus3)ug 1 Ep
= (p1,2Ua + p2,1u3,1 — P3.4l4 — pa3u13)Er
= (p1,2U1,3Ua,4 — P2,1U1 3U33 + P34U1 3U22 — Pa3ui3)Er )

= (p12—p21+Pp34—pa3)ui3Er

AE 1 4p1Ex = (ura —uz3+usp —ua ) priu 1 Ep
= (p1au1,4 — pa3us3 + p3pu3n — paug)u 1 Ep
= (p1auza+p23ui3 — p3oua — paius1)Er
= (=p1,au1,3u22 + P23U1 3 — P32U1 3U44 + Pat 3U33)Ep

= (=p1a+p23—p32+psui k.
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Since

Priitpiatpi3ztprat+tpsir+p3ztpsszt+psa
=2=p11+pa1+p31+pa1+pr3+pr3+p3stpas,
we have
P12 —P211tP34—Pp43=—Pir,4a+p23—p3z2+tpar.

Therefore, we obtain E12p1,1E4,1 = E1,4p1,1E2,1. Thus we have proved F> 4 = Fy 5.

Next we show F; jFy; = F;iF;; for i,j, k,1 = 1,2,3,4, To show this, it suf-
fices to show pi1 1E; kp1,1 = p1,1Ek,jp1,1 for j,k = 1,2,3,4. We are going to prove
P1.1E3ap1.1 = p1.1Easpi,1- The other 5 cases can be proved similarly. This follows from
the following computation

Api1E3api1 = p1,i(Us g +us3 —ui2 —uz1)pi,
=p11(Us g +us3)pr1 — Pr1P12U12 — P1,1P2,1U2,1

=pi1,1(u3 4 +us3)pin,

Ap11Es3pii = pr,i(uas+uss+uz i +ui2)pi,
= p1r1(us g +us3)pr1 + p1,ip2,iuz1 + P1ipP12UL2

=pi1(u3 4 +us3)pin.

Finally we show Z?:l F;i=1.Fori=1,2,3,4, we have

4 4
Fii= Z Erip11Eix = Z up 1 Evunipriui 1 Evun i
k=1 k=1
4 4
= Z ki Evipriuivi i B, = Z up 1 Eviprini i Ev vk
k=1 k=1
4
= Z PRV ARYVARIARIANS
k=1
Hence we obtain
4 4 4
Z = Zzuk,lEl,ll’l,iEl,lul,k
=1 i=1 k=1
4 4 4
2
= Z U Ey jui e = Z u 1 Eyjuy g = Z Eri =1
k=1 k=1 k=1
by Lemma 7.3 and Proposition 7.4. We are done. O
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Proposition 7.6. The sets {E; ;}} ,_, and {F; ;}} ,_ satisfy Ry

Proof. Fori,j, k,1=1,2,3,4, we have E; ;Fy; = Fi ;E; ; because

EiiFri=E;; Z EnmixP1,1Eim = Ei kp1,1ELj,

m=1
4

Fr ki = Z EmxpP1 1 EimEij = Eixp1,1EL;j

m=1

by Proposition 7.4. O

By Proposition 7.4, Proposition 7.5 and Proposition 7.6, we have a *-homomorphism
¥: My(C(RP?) — A(4) =¥ (K x K) sending f; ; to F; ; and e; ; to E; ;.

We are going to see that this map ¥ is the inverse of @. We first show ¥ o @ =
ity (k) -

Proposition 7.7. For x € A(4) <% (K x K), we have ¥ (®(x)) = x.

Proof. Fori,j=1,2,3,4, we have

4

V(D)) =P (Usy) = ) (i, k)a(k, )P (e (0.1, (1)
k=1

M»

e(i, k)e(k, J)E; k).1; (k)

>~
I

1
4
= &(i,

4
i, k)e(k, j) Z &(t;(k), m)e(m, 1 (k) s, (m)).t; (11 (m)

m=1

B

M ~

e(i, k)e(k, j)e(ti(k), tx (1)) et (1), (k) g (1y.1; 1) -

~
I

1

Since we have

4
3 20 Re(k, e (R i (D)e(ix (D), 1K)
k=1

4
= 4 D 6l e (R i (D)D), 1 (ke k. )
k=1

4

e(i, De(k, u(1)e(te (D), k)&(l, ) = 61,1
k=1

4>|~
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we obtain ¥ (D (u;, ;) = u;, ;. By the computation in the proof of Proposition 7.6, we have

4
lP(Pl,l)zl*p(zfi,jei,j) ZFletj_ ZEHPI lEjj_pll
l

i,j=1 =1 i,j=1
Fori,j=1,2,3,4, we have

Y (D(pi,j) =¥ (Pij) =¥ (Ui, )Y (Pr,)¥Ui;)" = uijpiau; ; = pij-
These show that ¥ (D (x)) = x for all x € A(4) =¥ (K x K). m]
Next, we show @ o ¥ = idy, (c(rp3))-
Proposition 7.8. For x € M4 (C(RP?)), we have ®(¥(x)) = x.

Proof. Fori,j=1,2,3,4, we have
4

1
DV (ei,)) = P(Eij) = 7 > ol ke lk, )P(us (0.4, (1))
k=1

4
1 Z . ;
= Z 8([, k)s(k7.])Uti(k)’tf(k)
k=1

1

= ZZS(I k)e(k, j) ZS(tz(k) m)&(m., 1 (K)) e, (. (m)).1; (tx (m))
k=1 m=1

4 4
= %ZZ (i, K)e(k, ))e(ti(k), tx (1) e(tr (D), t; (k))er 1).0;1)
k=1 I=1
= ei,j

as in the proof of Proposition 7.7. For i, j = 1, 2, 3,4, we have

4
D (fi,)) = P(Fij) = Y P(Ex)P(p1,)P(E] 1)
k=1

4
= Zek,iPl,lej,k
22 (Zflmelm)ejk

I,m=1

= Zf,jek,k = fij

k=1
These show that @(¥(x)) = x for all x € M4 (C(RP3)). O

~
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By these two propositions, we get Theorem 3.6. As its corollary, we have the following.

Corollary 7.9 (cf. [2, Theorem 4.1]). There is an injective *-homomorphism A(4) —
M4(C(RP?)).

Proof. This follows from Theorem 3.6 because the x-homomorphism A(4) — A(4) <%

(K x K) is injective. O

One can see that the injective *-homomorphism constructed in this corollary is nothing
but the Pauli representation constructed in [3] and considered in [2]. Note that Banica
and Collins remarked after [2, Definition 2.1] that the target of the Pauli representation
can be replaced by M4(C(S0O3)) instead of M4(C(SU;)). Here SO3 is homeomorphic to
RP3 whereas SU, is homeomorphic to S3.

8. Action

One can see that the dual group of K X K is isomorphic to K X K using the product of the
cocycle € (see below).

TaBLE 8.1. Values of (i, j)e(J,i)

Leta: K X K ~ A(4) ¥ (K X K) be the dual action of @. Namely @ is determined
by the following equation for all i, j, k, [
@i,j(Pk,1) = Pits @i, j(uk,) = e(i, K)e(k,i)e(j, De(l, juk.,

where we write @(;, 1) as @ ;.
Fori, j=1,2,3,4,define o7 ;: RP? — RP*by 0y ;([a1, a2, as, as]) = by, ba, b3, bs]
for [a1,a, as,as] € RP? where (by, by, b3, by) € S° is determined by

T T
(b1,b2,b3,b4)" = U, j(ar,a2,a3,a4)",

in other words Y;_ bxck = ¢i(Zj-, axc)c by Proposition 5.2. Let B: K X K ~
M4(C(RP?)) be the action determined by Bij(F) = AdU;jo Foo;; for F €
M4(C(RP?)) = C(RP?, M4(C)) where we write Bty a8 Bij-

117



Takeshi Katsura & Masahito Ogawa & Airi Takeuchi

Proposition 8.1. The *-homomorphism ®: A(4) =% (K x K) — My(C(RP?)) is
equivariant with respect to @ and B.

Proof. Fori,j=1,2,3,4,wehave P| jo0; ; = AdU; joPy 1.Infactfor [ay, az, a3, a4] €
RP3, on one hand we have

(P11 00y j)([a1,az,a3,a4]) = (b1, by, by, ba)" (b1, b2, b3, by),

where
T T
(b1,b2,b3,b4)" =U; j(ay,a2,a3,a4)",
and on the other hand we have

(AdU; j o P11)([a1,az,a3,a4]) = Ui,j(al,az,a3,a4)T(al,a2,03,a4)U;j

here note U;‘]. = UiT;' because the entries of U; ; are —1,0or 1. Fori, j, k,1 =1,2,3,4,
we have

Bi,j(Pxg) =AdU; jo (AdUg ;0 Pp) ooy
:AdU,"j OAdUk’l OAdU,"j OP1,1
= Ad(U;,jUx 1U; ;) o P13
=AdUgjo P11 = Py
Fori,j, k,1=1,2,3,4, we also have
Bi,jWUk) =AdU; joUy o0
= Ui,jUk’lU;:j
=e(i, k)e(], l)Ut,-,(k),tj(l) UZJ-
= e(i,k)e(j. De(k. i) e(l, j) ' Uk aUi ;U;
=e(i,k)e(j, De(k,i)e(l, j)Uk,
here note that Uy; € My(C(RP?)) = C(RP3, M4(C)) is a constant function. These
complete the proof. O

The following is the second main theorem.

Theorem 8.2. The fixed point algebra M4 (C(RP3))P of the action 8 is isomorphic to
A(4).

Proof. This follows from Theorem 3.6 and Proposition 8.1 because the fixed point algebra
(A(4) =¥ (K x K)) " of @ is A(4). O
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As we remark in Introduction, this theorem can be also obtained by combining [1,
Theorem 3.1, Theorem 5.1] and [4, Proposition 3.3]. Compared with this method, our
proof is explicit and straightforward.

9. Quotient Space RP3/(K x K)

Definition 9.1. We set A := M4(C(RP?))~.

By Theorem 8.2, the C*-algebra A(4) is isomorphic to A. From this section, we
compute the structure of A and its K-groups.

In this section, we study the quotient Space RP?/(K x K) of RP3 by the action o= of
K x K.1In [6], it is proved that this quotient space RP3 /(K x K) is homeomorphic to S>.

Definition 9.2. We denote by X the quotient space RP*/(K x K) of the action o of
K x K. We denote by 7: RP3 — X the quotient map.

We use the following lemma later.

Lemma 9.3. Fori,j =2,3,4 and [a1,a3,a3,a4] € RP3 with o, j(la1, a2, a3,a4]) =

lai, a2, a3, a4], we have Py ([a1,a2,a3,a4]) = Py )00 (la1, a2, a3, aq) for k,1 =
1,2,3,4.

Proof. This follows from
Pr([ar,az,a3,a4]) = Bi j(Pr ) ([a1, az, a3, as])
= AdU; j(Pri(0i,j([ar,az,a3,a4])))
= AdU; ;(Pr([a1, a2, a3,a4]))
= (AdU; ;(Pxp)) (a1, az, a3, as])

= P k)., 1) ([ar1, a2, asz, as]). m
Definition 9.4. For each i, j =2, 3,4, define
Fij = {lai,a2,a3,a4] € RP? |0y j([ay, a2, a3, a4]) = [a1, a2, a3,a4]} < RP?

to be the set of fixed points of 07 ;, and define F; ; C X to be the image n(I::i,j).

We have F, ij =  \(F;, 7). The following two propositions can be proved by direct
computation using the computation of U; ; after Definition 5.1

Proposition 9.5. For eachi =2,3,4, o1,; and o;,1 have no fixed points.
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Proposition 9.6. Foreachi,j=2,3,4, fl j is homeomorphic to a disjoint union of two
circles. More precisely, we have

Fop = {[a,b,0,0],[0,0,a,b] € RP*|a,b € R, a* + b* =1}
Fo3={la,b,~b,al,[a,b,b,~a] € RP*|a,b € R, 2(a* +b*) = 1}
1*:2,4 = {[a b,a,b],|a,b,—a,—b] GRP3|a,b eR, 2(a2+b2) = 1}
Fsp ={la,b,b,al,[a,b,~b,~a] € RP?|a,b € R, 2(a* + b*) = 1}
Fs3={[a,0,b,0],[0,a,0,b] € RP*|a,b € R, a* +b* =1}
Fs4={la,a,b,~b],[a,~a,b,b] € RP*|a,b € R, 2(a* + b*) = 1}
Fir={la,b,a,~b],[a,b,~a,b] e RP*|a,b € R, 2(a* +b*) = 1}
Fi3={la,a,b,b],[a,~a,b,~b] € RP*|a,b € R, 2(a* + b*) = 1}
F44=1{[a,0,0,0],[0,a,b,0] € RP’|a,b € R, a* +b*> =1}

Definition 9.7. We set F := [ J*
and O = X\ F.

Fijand F = \U? _, F;j. Wealsoset O := RP>\ F

t]2 i,j=2

We have F = 7~!(F) and hence O = 7~'(0). Note that O is the set of points
[a1,as,a3,as] € RP? such that o, j(la1,az,a3,a4]) # [a1,a2,a3,a4] for all i, j =
1,2, 3,4 other than (i, j) = (1, 1). Note also that F and F are closed, and hence O and O
are open.

Definition 9.8. For each iy, i3, is with {i2, 3,14} = {2, 3,4}, define F;,i,;,) € RP3 by
F(i2i3i4) = Ez,Z N 171'3,3 N Fi4,4,
and define F;,;,;,) C X to be the image 71'(].';([2,'3;4)).
Proposition 9.9. For each iy, i3,i4 with {iy,i3,i4} = {2, 3,4}, we have
f(izigm) =F2NFy3=FyaNFya=F,30F,a.
We also have

Fas4) = {[1,0,0,0], [0, 1,0,0], [0,0, 1,0], [ooo 1]}

4l B4l

= o _[JLrr

G2 =11202°2°2
11 1
[22 22“2

_ (111 11
F<423>={>‘§ X } [2 2’2
o[ g0 s oo

1
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e[ ool o o)
o[ on b oo ol s

Proof. This follows from Proposition 9.6. O

Proposition 9.10. For each iz, i3,is with {iz,i3,is} = {2,3,4}, Fi,i,i,) consists of one
point.

Proof. This follows from Proposition 9.9. O

Definition 9.11. For each iy, 3,14 with {i2,i3,is} = {2,3,4}, we set x(;,;,;,) € X by
F(i2i3i4) = {x(izisi4)}'

Proposition 9.12. Foreachi, j = 2,3,4, F; ; is homeomorphic to a closed interval whose
endpoints are x (;;,i,) wWithij =i,

Proof. This follows from Proposition 9.6. See also Figure 13.2 and the remarks around
it. m]

Note that F' C X is the complete bipartite graph between {x(234), X(342), X(423) } and
{X(243) > X (432)5X(324) } See Figure 13.2.

Definition 9.13. For i, j = 2, 3,4, we define

F[O,j = Fi,j \ {x(i2i3i4) | lj = l}7

and define
4
F° = U Ff,j, F* = {Xx(234), X(342), X (423)» X (243)» X (432) » X (324) } -
i,j=2

Definition 9.14. We set Fy j= AN (F)) ford, j =2,3,4, F° := 77'(F°) and F* =
a\(F*).
10. Exact sequences

For a locally compact subset ¥ of RP? which is invariant under the action o, the action
B: KxK ~ M4y(C(RP?)) induces the action K X K ~ M4(Cy(Y)) which is also denoted
by 8. We use the following lemma many times.
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Lemma 10.1. Let Y be a locally compact subset of RP? which is invariant under the
action 0. Let Z be a closed subset of Y which is invariant under the action o. Then we
have a a short exact sequence

0 —— Mu(Co(Y \ 2))P —— Ms(Co(Y))f —— Ma(Co(2))f —0

Proof. It suffices to show that M4(Co(Y))? — M,4(Co(Z))P is surjective. The other
assertions are easy to see.

Take f € M4(Co(Z))B. Since M4(Co(Y)) — M4(Co(Z)) is surjective, there exists
g € M4(Co(Y)) with gz = f. Set go € M4(Co(Y)) by

B
80 = 1¢ Z Bi.j(8)-

i,j=1
Then gy € M4(Co(Y))? and go|z = f. This completes the proof. m]
We also use the following lemma many times.
Lemma 10.2. LetY be a locally compact subset of RP> which is invariant under the action
0. Let Z be a closed subset of Y such thatY = U?,j:l 0;,j(Z) and that o j(ZYNZ =0
fori,j=1,2,3,4with (i, j) # (1,1). Then we have M4(Co(Y))P = M4(Co(Z)).

Proof. The restriction map M4(Co(Y))? — M4(Co(Z)) is an isomorphism because its
inverse is given by

4
Ma(Co(2)) 3 f ¥ D" Bii(f) € Ma(Co(Y))P. 0

i,j=1
Under the situation of the lemma above, 7n: Z — n(Z) = n(Y) is a homeomorphism.
Hence we have My(Co(Y))P = M4(Co(Z)) = Ma(Co(n(2))) = Ma(Co(n(Y))).
The following lemma generalize Lemma 10.2.

Lemma 10.3. Let G be a subgroup of K X K. Let Y be a locally compact subset of
RP3 which is invariant under the action o. Suppose that each point of Y is fixed by
oi,j forall (t;,t;) € G. Let Z be a closed subset of Y such thatY = U?,j:l 0;,j(Z) and
that oy ;(Z)NZ =0 fori, j =1,2,3,4 with (1;,1;) ¢ G. Then we have M4(Co(Y))P =
Co(Z, D) where

D = {T € M4(C) | Ad Ui’j(T) =T forall (Ii,fj) € G}

Proof. We have a restriction map M;(Co(Y))? — Co(Z, D) which is an isomorphism
because its inverse is given by

Co(Z.D) 3 fr— ) Bij(f) € Ma(Co()YP,

(@i.))el
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where an index set / is chosen so that {(#;,¢;) € K X K | (i, j) € I} becomes a complete
representative of the quotient (K X K)/G. O

Under the situation of the lemma above, 7: Z — n(Z) = n(Y) is a homeomorphism.
Hence we have My(Cy(Y))? = Cy(Z,D) = Co(n(Z), D) = Co(n(Y), D).

Definition 10.4. We set I := M4(Co(0))? and B := M4(C(F))~.
By Lemma 10.1 we get a short exact sequence
0—I—>A—B—0.

From this sequence, we get a six-term exact sequence

Ko(1) Ko(A) Ko(B)
51T l(so
Ki(B) Ki(A) K (I).

From next section, we compute K;(B), K;(I) and 6; for i = 0, 1. Consult [7] for basics of
K-theory.

11. The Structure of the Quotient B

Definition 11.1. For i, j = 2,3,4, let D; ; be the fixed algebra of AdU; ; on M4(C).
From the direct computation, we have the following.

Proposition 11.2. For each i, j = 2,3,4, D, ; is isomorphic to M>(C) @ M>(C). More
precisely, we have

a b 0 0 a b c d
c d 0 0 e f g h
D>, = D>z =
22770 0 e £l[ 2N-n g f o e[
0 0 g h d -c -b a
a b ¢ d a b ¢ d
e f g h e f g h
Dy 4= Dy =
24 c d a bl|’ 3.2 h g f ell’
g h e f d ¢ b a
a 0 b O a b c d
0 ¢ 0 d b a —-d -c
D33 = e 0 f ol D3 4= e f g |l
0 g 0 h -f —-e h g
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a b ¢ d a b ¢ d
e f g h b a d c
D4y = 4 a -bll Dy = e F oo h|[’
-§ h -e f f e h g
a 0 0 b
0 ¢c d 0
Das=0lo ¢ ¢ ol[’
g 0 0 h

where a,b,c,d, e, f, g, h run through C.
Definition 11.3. For each iy, i3, iq with {i2, i3,i4} = {2, 3,4}, define D ;,;,;,) € RP? by
D (4,i5ip) = Diy2 N Dy 3N Dy, 4.
Proposition 11.4. For each iy, i3,i4 with {i2, 13,14} = {2, 3, 4}, we have
D (iisiyy =Diy2 N Diy3 =Dy, 2N D4 =Dy 3N Dy, 4,

and D (i,iyi,) is isomorphic to C*. More precisely, we have

a 0 0 O a b c d

0O b 0 O b a -d -c
D 234) = 00 ¢ 0 D (423) = c -d a b

0 0 0 d d -¢c -b a

a b ¢ d a b 0 0

b a d c b a 0 0
Diay = c d a b Dow) = 0 0 ¢ d

d ¢ b a 0 0 d ¢

a 0 b O a 0 0 d

0 ¢ 0 d 0 b ¢ O
Dan =31, o 4 o Dam =3y ¢ » o

0 d 0 ¢ d 0 0 a

where a, b, c,d run through C

Definition 11.5. We set B° = M4(Co(F°))? and B* := M4(C(F*))B. We also set
B, = M4(C0(Ff:j))ﬁ for i, j = 2,3,4 and B(iiyi,) = Ma(Co(F(iyisiy)))P for in, i3, is
with {i2,73,i4} = {2,3,4}.

From the discussion up to here, we have the following proposition.
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Proposition 11.6. We have

4
B° = @B?’j, B* = @ Biyiziy) -
i,j=2 {i2.i3.i4}={2,3.4}

We also have

B?,j = C()(Fio’j,

D; ;) = Co((0,1), M2(C) ® Mz(C)),

fori,j=2,3,4and
Birisia) = C(Fliriia)> D (inisiy)) = C*
Jor iy, i3, i4 with {is,i3,i4} = {2,3,4}.
From this proposition, we get

B° = Co((0,1), My(C) ® My(C))’ = Co((0,1), My(C))'S,  B* = (C"° = C**,

12. K-groups of the quotient B
From the short exact sequence
0— B°— B— B*— 0,

we get a six-term exact sequence

0 = Ko(B°) Ko(B) Ko(B*) = 2%
| |
0=K;(B%) Ki(B) K (B°) = 7'8.

From this sequence, we have Ky(B) = ker ¢ and K| (B) = coker ¢. Next we compute
o: K()(B') — K (BO).

Proposition 12.1. Under the isomorphism ®: A(4) — A, the C*-algebra A®®(4) is
canonically isomorphic to B®.

Proof. Since B* = C?* is commutative, the surjection A(4) = A - B -» B® factors
through the surjection A(4) - A®(4). The induced surjection A% (4) - B® is an
isomorphism because A% (4) = C?*, m|
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Fori, j =1,2,3,4, the image of P; ; € A under a surjection is denoted by the same
symbol P; ;. By Proposition 1.7 and Proposition 12.1, the 24 minimal projections of B*
are

Piiirisi) = Piy,1Piy,2Piz 3Piy 4 € B®
for (ijizizig) € S4.

Definition 12.2. For o € &4, we define g, = [Py ]o € Ko(B*).
Note that {g }o-cg, is a basis of Ko(B®) = Z>*.

Proposition 12.3. For each i, i3, i4 with {i2,i3,i4} = {2, 3,4}, the 4 minimal projections
of C* = B (i,isiy) C B® are Pyyy for k = 1,2,3,4 where o = (lizizisg) € Sa.

Proof. Take iy, i3,i4 with {is,i3,i4} = {2, 3, 4}. Since the 4 points in F(i2i3i4) are fixed
by 0,2, 0i;,3 and 07y, 4, we have Py = Pz,-j (k). (1) 10 Biyigiy) for k1 =1,2,3,4 and
j =2,3,4 by Lemma 9.3. More concretely we have

Pi1=Py,2=Py3="Pj4,

Pi,1=P1p=Py3="Py4,

Piu1=Py2=P13="Pja,

Pi,1=Pyo=P;,3=Pis
in B j,ii,)- These four projections are mutually orthogonal, and their sum equals to 1. Thus

the 4 minimal projections of B ;,iyiy) are P(1iyisiy)> Pirlisiz)> Plisialiy) and P(iyizip1). O

Take i, j = 2,3, 4, and fix them for a while. Let (1mymsm4) € Sy be the unique even
permutation with m; = i, and (1nyn3ns) € G4 be the unique odd permutation with n; = i.
We set o = (1mymsmy) and 7 = (1nyn3ng). Then we have the following commutative
diagram with exact rows;

0 B° B B* 0

b i

0— B?,j — Bij —= B(mymsms) ® B(nynsny) — 0.

By Lemma 9.3, we have Py ; = Pr,«(k),rj(l) inB; jfork,l=1,2,3,4. Letw = (1342) € G;4.
Note that we have #; (w(i)) = w?(i) and #;(w*(i)) = w(i). One can see that B ; is a direct
sum of two C*-subalgebras B! ;and B ; Where B ; is generated by

Pri=Pij Pij=Pi1, Pui)w() = Pu@),w() Poi),e() =P,
and B;J’j is generated by

Pl,w(j) = Pi,wz(j)’ Pl,wz(j) = Pi,w(j)v Pu)(i),l = sz(i),j’ Pw(i),j = sz(i),l'
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Note that Py 1 +P1; = Pui),w()) +Pw( i), w2 () is the unitofB” and Py o,y +P, () =
P(i),1 + Po(s,j is the unit of BUI It turns out that both Bﬁ and BU are isomorphic to
the universal unital C*-algebra generated by two pI‘Q]CCthIlS which i 1s isomorphic to

o=y )ra=(5 9

This fact can be proved directly, but we do not prove it here because we do not need it. The
image ofBQj under the surjection B; j — B (mymyms) ®B (nyn3ny) 18 (Cpo+Cp oy, )®(Cpo+

{f € C([0, 1], M3(C))

Cpﬂj). Therefore, the image of ij under the surjection B; j — B(mymsmy) © Bnonsng)

is (Cpor,,, + Cprfth(j)) ® (Cprr, ;) + Cpﬂwz(j)). We set vgj,vgj € Ki(B7 ) by

vy =06"(qo) and vy, = 6"(qou,;,) Where
6’ : KO(B(m2m3m4) S B(n2n3n4)) - K] (B?,J)
is the exponential map. Then we have the following.

Lemma 12.4. The set {VQ,. ]} is a generator of K, (B° ) = 72, and we have

6/(610') = 5,(51071-) = Vi,j, 6’ (Q(Ttw(j)) =¢ (CImwzm) = V;':lj,
6'(q) = 6,(47131') = _V?,j’ 6,(‘]‘”“,(,')) = 6,(‘]Ttw2(j)) = —ng.

Proof. Choose a closed interval Z ¢ RP3 such that 1: Z — F;, ;j is @ homeomorphism
(see Figure 13.2 and the remarks around it for an example of such a space). Let
20,21 € Z be the point such that 7(20) = V(mymym,) and 7(21) = V(nynzn,)- Then we
have B;.’,j = Cy(Z \ {z0,z21}, Dy j). Let B,{,j be the inverse image of B (,mym,) under
the surjection B; ; — B(u,m3my) © B(nynsng)- Then we have the following commutative
diagram with exact rows;

0— B?,j Bl",j B (1mymsmy) 0
00— B?,j — C()(Z \ {ZO}, Di’j) Di’j 0.

Let us denote by ¢ the homomorphism from Ko (B (mymsm,)) to Ko(D;, ;) induced by the
vertical map from B (,mym,) = D (mymymy) t0 D; j. Then Ko(D; ;) = 77 is spanned by
¢(q0) = ¢(Gor;) and @(Gor, ) = ¢(Gor,, ;) )- Since Ki(Co(Z\{z0}, Di,j)) = Ofor [ =
0,1, Ko(D;,;) = Ki (B?’j) is an isomorphism. This shows that {VQJ-, vgj} is a generator
of Ki(B; ;) = Z?. We also have 6'(qo) = 6'(qor;) and 6" (qou,,,) = 8" (G-
Similarly, we have 6"(q+) = 6"(q+¢;) and 6'(q 1, ;) = 6’(qﬂw2(j>).
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Since the image of the projection Py | € B; ; under the surjection B; ; — B (mymym,) ©
B(nynsny) 18 Po + P7, we have 6'(¢o + q-) = 0. Hence ¢'(q,) = —V?,f Similarly
we have 6(qo1,, ;) + qr1,;)) = O because the image of Py () € Bi,; under the
surjection B; j = B(mymymy) © B(nynsny) 18 Port,y ;) + Pru,, ;- We are done. |

From these computation, we get the following proposition.
Proposition 12.5. The exponential map 6: Ko(B*) — K (B°) is as Table 12.1.

We will see that Ki(B) = coker§ is isomorphic to Z* & Z/2Z in Proposition 15.5.
This implies Ko(B) = ker § is isomorphic to Z!'° because ker § is a free abelian group
with dimension 24 — 18 + 4 = 10. Below, we examine the generator of Ky(B) = ker d.

Fori,j=1,2,3,4, we have

P; =Pi,jZZn:Pk,l = Z P

k#i I=1 i=o ()

in B®. Hence [P; ;]o = Xi=o(j) 9o in Ko(B®).
Proposition 12.6. The group ker 6 is generated by {[P; jlo | i,j =1,2,3,4}.

Proof. 1t is straightforward to check that [P; ;]o is in ker ¢ for i, j = 1,2,3,4.

Take x € ker 6, and we will show that x is in the subgroup generated by {[P; ;]o |
i,j =1,2,3,4}. Write x = ¥ ;cg, noqo With ny € Z. Subtracting n(4213)[P2.2]o +
n132) [P1,2]o from x, we may assume 7n(4213) = n(4132) = 0 without loss of generality.
Subtracting 74312 [P3,2]0+7(4123) [ P2,3]0+71(4231) [ P1,4] 0 from x, we may further assume
Nn(4312) = N4123) = N(4231) = 0 without loss of generality. Subtracting 1(2341) [P2,1]0 +
nai42) [P3,1]o from x, we may further assume n(2341) = n3142) = 0 without loss of
generality. Subtracting 7(2413) [Pa2]o + n(3214) [Pa.4]o + n(1324)[P1,1]0 from x, we may
further assume n(2413) = n(3214) = n(1324) = 0 without loss of generality. Now we will
show x = 0 using x € kerd.

Since n(3241) + 1 (4132) = N(3142) + N (4231), We have n(3z41) = 0.

Since n(2314) + 1 (3241) = N(2341) + 1 (3214), We have n(2314) = 0.

Since n(1423) + n(2314) = N(1324) + 1 (2413), We have n(1423) = 0.

Since n(1423) + 1 (4132) = N(1432) + N (4123), We have n(1432) = 0.

Since n(3124) + n(4213) = N(3214) + N(4123), We have n(3124) = 0.

Since n(2431) + n(4213) = N(2413) + N(4231), We have no431) = 0.

Since n(1342) +n(2431) = N(1432) + N (2341), We have n(1342) = 0.

Since n(2314) + n(4132) = N(2134) + N(4312), We have n(2134) = 0.

Since n(2431) + n(3124) = N(2134) + N (3421), W have n3421) = 0.

Since n(1423) + 1 (3241) = N(1243) + 1 (3421), We have n(1243) = 0.
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TaBLE 12.1. Computation of the exponential map 6

I
(&)
w
3%}
>
~
e
38}
I
~
w
(&)
w
~
>
\S)
I
38}

q v
(1234)
(2143)
(3412)
(4321)

(1342)
(2431)
(3124)
(4213)

(1423)
(2314)
(3241)
(4132)

(1243)
(2134)
(3421)
(4312)

(1432)
(2341)
(3214)
(4123)

(1324)
(2413)
(3142)
(4231)

(=)ol Fol Jal] fol Nl Nl Rl | Rl Rl Il B | D)
(=] ol ol Fol | Il Rl ol B | Kol Nl Nl Nel | B
OI—=| O =IO D
k=l k=l k=l k=l =l E=]| f=] o] Kol o) | N
e E=lE=l | k=l k=l =l R=]| =] o) Kol Fo] | IS

|
—_

|
—
(=) ol o) Jol Fol | Fel B T Fel| ol ol ol K=l | N e

|
—
(e

[=lle] el ol Jol ol | Fo) Fol Fol Rl | Rl Bl Nl Rl | N

|
—_

|
—_

|
—_

|
—_

(=) fol fol Nl | Jo) Jol Rl Rl | fo) o) Fol Rl | Rl ) Rel B | IND)
(=) ol fol Rl | Fol Jol Rl Rl | Rl Nl o o | Rel Rl Rl Rl | D)

|
—
=)
(=) Rl Ne) e

|
—_
llolo

(=] | fol Jol fol Nl | fol fo) fol Fel | Rol Rl Rl Rl | o Rl i Nel | N
(=] fol Rl Fol Nl | Fel B I el | Fol ol Hol Hel | Jol Fo) Nol Rl | N

|
—

|
—_

|
—

|
—_
(=) fol] el o] fol Rol | Fol Nl Nl Rl | N Bl Kol Rel | Fol He) Nl Rl | N

(e}
|
—
(=)
|
—

|
—_
o

|
—_
o

|
—_

(=] o) fo) ol | ol fol ol Rol | Rl Nol T Ll | Fo) Fo) fo) Rl | Fo) Rl Rl Rl | BD)

(=] o) fol ol | o] ol ol ol | Fol Jol ol Jol | Fol Fol Fol Rl | Bl Kol Rl Bl | BD)
(=) o) Fol Jal] fol H o) fol Rl | ol Fol Nl Rl | Rl Bl Kol | Fol Re) Nl Rl | D)

|
—_

|
—

[=]] ol o) ol el | ol ol ol Fol | Fol ol Ho) Nl | Nl Fol Nl Fol | Nl N Bl el | Nl
(=) el ol ol ol | Il ol fol Jol | fo) fol Fol el | Rl Eol Fol | Fol Fol Nol Nl | N

|
—_

|
—_

=) =]l ol fol fol | Fol ol ol Rl | B Ll fel Jol | Fo) ol ol Jol | Jol Nl Rl Rl | N

|
—_
(=)
(=)

|
—_

(=) fol ol Fo) | ol Nol ol Rl | ) )
(=) =) fol fo) | ol Nl ol )
(=) Nl Foll He) | Hen)
=) el Nl en)

=)

|

—
(=) o] foj fe) | o) Jo) Hoj R
(=) Fol fol o) | ol Nol Ho) o) | Re)
(=) Nl Fol R | Nl N
(=) el Nl Nen)

)

|

—
(=) Fol ol o) | Rl Nol Rl o) | Re)
(=) o) foj fe) | o) Jo) Nl )
(=) el Nl N en)
(=) Nl Nl Re) | Ne)

|

—

)
|
—
)
|
—

Since n(1234) + 1(2143) = n(1243) + 12134) = 0, n(1234) + 1 3412) = N(1432) + 13214 = 0
and n2143) + N(3412) = N(2413) T N3142) = 0, we have 2n(1234) = 0. Hence n(1234) = 0.
This implies n(2143) = N(3412) = 0. Finally, since n(1234) T N(4321) = N(1324) T N(4231), We
have n4321) = 0. We have shown that x = 0. This completes the proof. O

From Proposition 12.6 (or its proof), we see that Ko(B) = ker ¢ is isomorphic to
Z" with n < 10. Note that the group generated by {[P; j]o | i, j = 1,2,3,4} is in fact
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generated by 10 elements

[P1,1]o, [P1.2]o, [P1,3]0, [P1,4]0s [P2,1]0, [P2,2]0, [P2,3]0, [P3,1]0, [P3,2]0, [P33]0-

ker ¢ is isomorphic to Z!° in Proposition 15.5.

We will show that Ky(B)

TaBLE 12.2. Computation of [P; ;]o

T | (L@@ |—|Q|Q|—|@|Q|C|—|C|Q|@|@|—[C||—|C|C|C
OO [— Q|| |Q O |Q|C|Q|—|Q||— Q| |Q|o|— Do |o|— |2
ANO O |— QOO |DO||—|Q|Q|Q|C@|—|Q||— | [D|O|— |2 |D
Al =l (el (el L) | (el fal fal) Lol | lel fe ) fe i Lo} | el fa )l feoll Rl el el el i IR =k el L]
IO [ QOO |— || |Q|Q|Q||— (| ||| D [—|[O|— ||
N|— O ||| O |Q|e|@|e|—|e|— ||| |C|e|Io|o|—
AN OO |—|[|—|QC|Q|C|—|Q|Q|C | |—|o|—CD|—|@|C|O
— O[O ||| OO | Q||| Q|| ||| |[— (DO |D|— |
IO | ||| QD || |—|C(C|C|—||— | [D|o|o|— |
OO QIO || |— D |Q|Q|D|C (@ |— Q||| |[—|—|D|D|D
A|— OO || O|—|C|@|— Q||| |@|o|@|— Qe |o|o|—
— Q|| Q|| |Q|Q|C|— Q||| |— Q|| |—|C|o|C|— |2 |
||| |C|Q|C|Q|— Q||| |C|o|— Q| |o|o|—
N|OO|— QOO |— | |—|C Q|| |— || |— DO |— |2 |D
ANO [— O[O |— D |Q ||| |—|C|Q|Do|D D |[—|[D|D|— |
— ||| QOO Q| |Q||— (||| (O|—|C|C|C
Tzl lEalelslmalsElEalgellalEEkselalE

SRR 2 IS ERIREEE IS REREIRERE
Sii=2is N  fed tS AN | Rl IS A N N TRl R A 2 N Rl RS NS | R RS N I
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The positive cone Ko(B®), of Ko(B®) is the set of sums of g ’s. In other words, we

have
Ky(B*), = { Z Ngqo |ne=0,1,2,.. }

oeCy

Proposition 12.7. The intersection Ko(B*), Nker d is the set of sums of [P; j]o’s.

Proof. 1t is clear that [P; ;]o is in Ko(B®), Nkerd for i, j = 1,2,3,4. Thus the set of
sums of [P; ;]o’s is contained in Ko(B*), Nkerd.

Take x € Ko(B*®)+ Nkerd. By Proposition 12.6, there exist n; ; € Z fori, j =1,2,3,4
such thatx = Zj{j:] ni j[Pijlo. Wesetn = Zni,j<0(_”i,j)~ If n = 0, then x is in the set of
sums of [P; j]o’s. If n > 0, then we will show that there exist n:j e€Zfori,j=1,2,3,4

such that x = Z?Fl n ]-[Pi,j]O and that n’ = ¥, o(-n] ,.) satisfies 0 < n’ < n.
> ¥ i,j 2

Repeating this argument at most n times, we will find n;f’j € Zfori,j=1,2,3,4 such that

?,j:l nl”j [Pi j]o and that n”’ = Zn;{j<0(_"£:j) satisfies n”” = 0. This shows that x
is in the set of sums of [P; ;]o’s.

Since n > 0 we have ig, jo € {1,2,3,4} such that n;, ;, < 0. To simplify the notation,
we assume iyp = 3 and jo = 1. The other 15 cases can be shown similarly. Since
x € Ko(B*®)4, the coefficient of v in x is non-negative for all o € S,. In particular, so
is for o € &4 with iy = o (jp). Since the coefficient of v (3 1 7 4) in x is non-negative we
have n31+nyp+ny3+ngg > 0. Since n3 < 0, we have nyp+ny3+ngg > 0. Hence
either ny 2, na 3 or na 4 is positive. Similarly, since the coefficients of

X =

V(3,1,4,2),V(3,2,1,4), V(3,2,4,1)> V(3,4,1,2), V(3.4,2,1)

in x are non-negative, we obtain that either n 2, n4 3 or ny 4 is positive etc. Then by
Lemma 12.8 below we have either

(i) ny, 2 n;, 3 and n;, 4 are positive for some i; € {1,2,4},
(ii) ny,j, na,j, and n4 ;, are positive for some j; € {2,3,4}, or

(iil) ny,j;» My, jy» Ny, j, and ny, j, are positive for some distinct i1, 7> € {1,2,4} and
distinct jq, j» € {2,3,4}.

In the case (i), we set n; j by

nij+1 forie{l1,2,3,4}\{i1}andj=1,
n’-’-= nij—1 fori=ijandj=2,3,4

nij otherwise.

131



Takeshi Katsura & Masahito Ogawa & Airi Takeuchi

Then since "é,l =n3 1 +1,n = Zn;’j<0(—”;~,j) satisfies 0 < n’ < n. We also have
x = Z?’j:l nl', [P;,j]o because Z?:l [Piilo = Z;‘.:l [Pi,,i]o. In the case (ii), we get the
same conclusion for nl’, defined by
nij+1 fori=3andje€{1,2,3,4}\ {j1},
ni;=qmij—1 fori=1,2,4and j=j
nij otherwise.

In the case (iii), we define n; . by

.
nij+1 forie{1,2,3,4}\ {i1,ir}and j € {1,2,3,4}\ {1, j2},
ni;=gmij—1 fori=iyirandj=ji,ja
nij otherwise.
Since nj | = n3;1 + 1, n' = Zn;’jd)(—nlf’j) satisfies 0 < n’ < n. We also have x =

4
2 =117 ;[ Pijlo because

4 4 4 4
Z[Pi,jl]o + Z[Pi,jz]o = Z[Pi3,j]0 + Z[Pu,j]u
i=1 i=1 Jj=1 Jj=1
where {i3,i4} = {1,2,3,4} \ {i1,i2}. This completes the proof. O

Lemma 12.8. Let a,b,c and d, e, f are distinct three numbers, respectively. Suppose
nij € Zfori=a,b,cand j =d,e, f satisfy that either no,(ay,d, Nw(e),e OF Nw(f),f IS
positive for all bijection w: {d, e, f} — {a, b, c}. Then we have either

(i) ni,a ni,e and n;, g are positive for some iy € {a, b, c},
(i) na,j, np,j, and ne j, are positive for some ji € {d, e, [}, or

(iil) ni, j,, iy, o Ny, j, and n, j, are positive for some distinct iy, i> € {a, b, c} and
distinct ji, jo € {d,e, f}.

Proof. To the contrary, assume that the conclusion does not hold. Then for j = d, e, f,
either ng_;, np,j or n. ; is non-positive. Thus we obtain a map w: {d, e, f} — {a, b, c}
such that n,(j, ; is non-positive for j = d, e, f. If the cardinality of the image of w is
three, then w is a bijection and it contradicts the assumption. If the cardinality of the
image of w is two, let i; be the element in {a, b, c} which is not in the image of w. Then
we have either n;, g4 n;, . or n; y is non-positive. Let j; € {d, e, f} be an element such
that n;, ;, is non-positive. If the cardinality of w™ ' (w(j1)) is two, we get a bijection
w':{d,e, f} = {a,b,c} such that n,(4).4, Nw(e),e and 1y, (f), ¢ are non-positive. This
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is a contradiction. If the cardinality of w™!(w(j1)) is one, we have either n;, j,, n;, j,,
Njy, j, OF N, j, 1S NON-positive where i> = w(j1) and {2, j3} = {d, e, f}\{/1}. In this case,
we can find a bijection w’: {d, e, f} — {a, b, c} such that n,,ay,4, Rw(e),e Ad Ry (r), 5
are non-positive. This is a contradiction. Finally, if the cardinality of the image of w is one,
let i be the unique element of the image of w, and i, and i3 be the other two elements in
{a,b,c}. We have j», j3 € {d, e, f} such that n;, ;, and n;, ;, are non-positive. If j, # j3,
then we can find a bijection w’: {d, e, f} — {a,b,c} such that n,(4) a4, Nw(e),. and
Nuw(s),r are non-positive. This is a contradiction. If j, = j3, then we have either n;, j,,
Ny jis Mg ji O Ny j, is non-positive where {j1,J1} = {d, e, f} \ {j2}. In this case, we
can find a bijection w’: {d, e, f} — {a, b, c} such that n, 4y 4, N (e),e and 1y (5), ¢ are
non-positive. This is a contradiction. We are done. O

13. The Structure of the Ideal /
Definition 13.1. Define a subspace V of RP? by
V = {[a1, a2, a3,as] € RP*|ay,az,a3 > lasl}.

The next proposition gives us a motivation to compute the subspace V and its closure
VinRP3.

Proposition 13.2. We have the following facts.
(i) Foreachi,j=1,2,3,4with (i, ) # (1,1), we have o ;(V)NV =0
(ii) The restriction of w to V is a homeomorphism onto n(V) C X.
(i) V ={la1, a2, a3,a4] € RP*|ay,as,a3 > |as|} and n(V) = X.

Proof. (i) and (iii) can be checked directly, and (ii) follows from (i). |

In the next proposition, when we write [a), az, as, as] € V, we mean (ay, as, as, as)
satisfies ay, as, az > |ay].

Proposition 13.3. The map
h: V3 lai,ax, a3, as] — (3at+a3+4aslas, 3a3+a3+4aslas, 3a3+a3+4aslas|) e R?

is a homeomorphism onto the hexahedron whose 6 faces are isosceles right triangles and
whose vertices are (0,0,0), (3,0,0), (0,3,0), (0,0,3) and (2,2,2). This map sends V
onto the interior of the hexahedron.
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Proof. First note that we have |as| < 1/2 for [ay,as, as,as] € V. When |as] = 1/2,
we have a; = ap = a3 = 1/2. We have h([1/2,1/2,1/2,1/2]) = (2,2,2) and
h([1/2,1/2,1/2,-1/2]) = (0,0,0). When |a4| = 0, we have aj,az,az > 0 and
a3 +a3+a3 =1.Thus

{n([a1.a2.a3.0]) | [a1,a2,a3,0] € V} = {(x.y.2) € R*|x,y,22 0, x+y+2 =3}

which is the equilateral triangle whose vertices are (3,0, 0), (0, 3,0) and (0,0, 3). For
each r with —1/2 < ¢ < 0, we have

{h(la1,a2,a3.1]) | [a1, a2, a3,1] € V}

={(r,y,2) €R?|x, 3,220, x+y+z=3(1 -4}

which is the equilateral triangle whose vertices are (3(1 — 4¢2),0,0), (0,3(1 — 4¢2),0)
and (0,0, 3(1 — 4¢2)). Thus

{h(la1, a2, a3,a4]) | [a1, a2, a3,a4] € V, a4 <0}

is the tetrahedron whose vertices are (0,0, 0), (3,0,0), (0,3,0) and (0,0, 3). Note
that for each [ay,a»,as,as] € V with ay > 0, the point h([a1,as, az,as]) is the
reflection point of h([ay,asz, as, —a4]) with respect to the plane x + y + z = 3 because
the vector (8a3,8a3,8a3) is orthogonal to the plane x + y + z = 3 and the point
(3a3 +aj,3a3 + a3, 3a3 + a3) is on the plane x + y + z = 3. Thus
{h([a1, a2, a3,as]) |[a1,a2,a3,a4] € V,a4 > 0}

is the reflection of the tetrahedron above with respect to the plane x + y + z = 3, which in
turn is the tetrahedron whose vertices are (3, 0, 0), (0, 3, 0), (0,0, 3) and (2, 2, 2). From the
discussion above, we see that 4 is injective. Therefore we see that / is a homeomorphism
from V onto the hexahedron whose vertices are (0,0, 0), (3,0, 0), (0, 3,0), (0,0, 3) and
(2,2,2). We can also see that the map & sends V onto the interior of the hexahedron. O

Definition 13.4. Define O = n(V) c O.
By Proposition 13.2(ii) and Proposition 13.3, Q¢ = V is homeomorphic to R3.

Definition 13.5. We set E := FNVand E; ; == F; ; NV fori, j = 2,3,4.

We have E = U?,j:Z E;j.Fori,j=2,3,4withi# j, themapn: E; ; — F;;isa
homeomorphism. Fori = 2, 3,4 the map : E; ; — F;; is a 2-to-1 map except the middle
point.
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0,0,1,0
[ | [1/2,1/2,1/2,1/2]
[0,1,0,0]
[]/2’]/271/2’_1/2] [1’05()’0]
FiGure 13.1. V
10.0.1.01 [1/2,1/2,1/2,1/2]
’ > > X (342)
E4’4 3,2 F3’2
Es5 [0.1,1,0] X(324)
B Eq3 Fy3
Eaq ’ x(4321>’:4,4 Fr4 ,
[2,0,¢,0] — X (234)
E2’3 [07 1507 O] };‘2’3 F3,3F
Esr [7.2,0,0] Fap 22 X(243)
E>»
Esq . Fs4
[1/2,1/2,1/2,-1/2] [1,0,0,0] (423)
Figure 13.2. 7: E — F (t = 1/V2)
‘We have

Eys ={[a,b,0,0] € V|a,b >0, a®+b> =1},
Erz={la,b,b,—al €V|0<a<b, 2(a*+b*) =1},
Erq={la,b,a,b] €V|0<b<a, 2(a®>+b>) =1},
Essr={[a,b,b,a] € V|0 <a<b, 2(a®+b?) =1},
E3s={[a,0,b,0] € V]a,b >0, a®+b> =1},
Eys={la.a,b,~b] € V|0 <b <a, 2(a>+b*) =1},
Esp={la,b,a,-b] €V|0 < b <a, 2(a*+b*) =1},
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3={la,a,b,b] €V|0<b <a, 2(a®+b*) =1},
Ess={[0,a,b,0] €V|a,b >0, a®+b* = 1}.
Definition 13.6. We set R}, R?, RY, R, R}, R; C V by

R

[ 1—3t2tt+t]€V|O<t<l/2}

= H

R

N

[r 11322, +r] eV’O<t< 1/2}

RS : {[ 1 —3t2 t,it] € V|O <t< 1/2}
R U R} URj U R is the space obtained by subtracting £

We see that R} U Ry U
from the “edges” of V.

Definition 13.7. We set R*, R~ Cc O by
R* = n(RY) = n(R}) = n(RY)

Note that 7 induces a homeomorphism from R} (or R}, RY) to R*. Hence both R*
and R~ are homeomorphic to R.

Definition 13.8. We set
Doy = {lt,a,b,~1] €V|0<t<1/2, a,b>1t, a*+b*=1-2},

Ta={la,b,t,~1] eV|0<t<1/2, a,b>1t, a*+b*=1-21"},
Tup={[bt,a,~11 €V|0<t<1/2, a,b>1, a*+b*=1-21},
Tsp={lt,a,b,l1 €V|0<t<1/2, a,b>1, a®>+b*=1-21},
Tus = {la,b,t,1] €V|0 <t <1/2, a,b>1t, a*+b*=1-21},
Dou={lb.t,a,t] €V|0<t<1/2, a,b>t, a*+b*=1-2}.

These 6 spaces are the interiors of the 6 “faces” of V.

Definition 13.9. We set

7’:2”3 = {[t,a,b,—t]€7’:2,3|a>b}, 7\‘21’3 {[tab—t]€T23|a<b}
Ty, ={la.b,t,~1l € T34|la> b},  Ti,:={la.b.t,~t] €Ts4]a <b}
ﬂZ:: {[bta—t]eﬁ2|a>b} T}f,z {[b.t,a,-t eﬁ2|a<b}
T3r2'= [t,a,b,t] €T32|a>b} 7:312 {[tabt]ETg2|a<b}
Ty = {[a,b.t,1] € Ty3|a > b}, ﬂﬁ::{[abtt €Tisla<b}
T2r4= [btat€T24|a>b} 7\”21’4 {[btat]€T24|a<b}
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Fori, j =2,3,4 withi # j, the set YA‘” \ (fir’j U fil’].) is the interior of E; ;.
Definition 13.10. For i, j = 2,3,4 withi # j, we set
Tij = 7T(T,r1) = ﬂ(Til,j)-
Note that 7 induces a homeomorphism from fl’ j (or 7’:1.1’].) to T; ;. Hence T; ; is

homeomorphic to R
The space O is a disjoint union (as a set) of

- +
Oo, Tr3, T34, Tap, R™, T3, Ta3, To4, R™.

We use these spaces to compute the K-groups of I = M4(Co(0))B.

14. K-groups of the ideal /

Definition 14.1. We set I := My (Co(x'(00)))” and I* = My(Co(x~' (0 \ 0)))”.
We have a short exact sequence
0—Iy—I—I"—0.
We have Iy = My(Co(V)) = M4(Co(00)) = My(Co(RY)).

Definition 14.2. Weset7T = T,3UT34UTy,UT3,UTy3UTr4and R := R~ UR*. We
set I° := My(Co(x~(T)))” and I* := My(Co(x~(R)))".

We have I° = My(Co(T)) = @, ; Ma(Co(T; ;) = My(Co(R?))® and
I* = My(Co(R)) = Ma(Co(R7)) ® Ma(Co(R")) = Ma(Co(R))*.
We have a short exact sequence
0—I°—>I"—I"—0.

This induces a six-term exact sequence

Z° = Ko(I°) — Ko(I*) —= Ko(I*) =—=0
77 = K \(I°) =<— K, (I*) =<— K, (I°) ==0.

We set r~ € K; (M4(Co(R™))) and r* € K;(M4(Co(R"))) to be the images of v (1234) €
Ko(B(234)) € Ko(B*®) under the exponential maps coming from the exact sequences

0 — My(Co(R*)) — My(Co(r™" (R* U {x23})))” — B(aza) — 0.
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Then similarly as the proof of Lemma 12.4, we see that r~ and r* are the generators of
K (M4(Co(R7))) = Z and K (M4(Co(R"))) = Z, respectively.

Let w = (1342) € Gy4. Fori =2,3,4, we set w; (i) € Ko(Ma(Co(T, (1)) to be the
image of the generator r~ of K; (M4(C0(R‘))) under the index map coming from the
exact sequences

0 — Ma(Co(Ti.w(iy)) — Ma(Co(n™ (T, (i) U R_)))ﬁ —> M4(Co(R7)) — 0.
Since
My(Co(n™ (Ta3 UR)))® = My(Co(T} 5 URY)) = Ma(Co((0. 1) x (0. 1]))

whose K-groups are 0, w» 3 is a generator of KO(M4(C0(T2’3))) = Z. Similarly, w3 4 and
w42 are generators of Ko(Ma(Co(T5.4))) = Z and Ko(M4(Co(Ts2))) = Z, respectively.

Similarly for i = 2,3, 4, we set the generator w ,;),; of Ko(M4(Co(Te(i),i))) = Z to
be the image of the generator r* of K (M4(Co(R"))) under the index map coming from
the exact sequences

0 — Ma(Co(Tuiyi) — Ma(Co(n™ (T, U R)))® — Ma(Co(R*)) — 0.
Then the index map from
K (I°) = K1 (M4(Co(R))) ® K1 (Ma(Co(RY))) = Z7
to
Ko(1°) = Ko(M4(Co(T2,3))) @ Ko(Ma(Co(T3.4))) ® Ko(M4(Co(T42)))
® Ko(Ma(Co(T3.2))) @ Ko(M4(Co(T43))) @ Ko(Ma(Co(T24))) = Z°
becomes Z2 3 (a, b) — (a,a,a, b, b, b) € Z°. Thus we have the following.
Proposition 14.3. We have Ko(I*) = Z* and K, (I*) = 0.

We denote by S1,952,83,84 € K()(I*) the images of W2 3,W34,W32,W43 € K()(]o).
Then {s1, 52, 53, 54} becomes a basis of Ko(I*) = Z*. Note that the images of W42, W24 €
Ko(I°) are —s; — 57 € Ko(I*) and —s3 — 54 € Ko(I*), respectively.

We have a six-term exact sequence

0 = Ko(lo) — Ko(I) —= Ko(I*) = Z*

T l (14.1)

0=K(I*) K (1) Ki(lp) = Z.

To compute the index map Ko(/*) — K, (Iy), we need the following lemma.
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Lemma 14.4. The index map from Ko(I°) = Z° to K, (Iy) = Z coming from the short
exact sequence
0 — Ip — My (Co(n' (0 UT)))f — I° — 0.
is 0.
Proof. We set T := U[,j(f‘ifj U fl.l’j) where i, j run 2,3,4 with i # j. We have the

following commutative diagram with exact rows;

0 Io My(Co(n (0o U T)))’ r° 0

! | |

0 — My(Co(V)) — My(Co(V UT))) ——= My (Co(T)) — 0.

Note that VU T = 771 (0g U T) N V. From this diagram, we see that the index map
Ko(I°) — K (Io) factors through Ko (M4 (Co(T))).

Take i, j=2,3,4 with i #j. Let a] | € Ko(Mu(Co(T] ;) and al | eKO(M4(c0(fi{j)))
be the images of the generator w; ; of Ko (M4 (Co(T, j))) under the homomorphism induced
by 7. Under the map Ko (I°) — KO(M4(C0(T))), the generator w; ; of KO(M4(C0(T,-J)))
goes to a{,j + aﬁ’j. Under the index map KO(M4(C0(T))) — K1 (M4(Co(V))) the element
a; I aﬁ, ; goes to 0 because the side to V from T:r j and the one from 7’:[1’ ; differ
if YA"I’ ; and Tll ; are identified through the map 7 to T; ;. Thus we see that the map
Ko(I°) — K1 (M4(Co(V))) = K1 (lp) is 0. o

By this lemma, the composition of the map Ko(I°) — Ko(I*) and the index map
Ko(I*) — K;(Ip) is 0. Since the map Z° = Ky(I°) — Ko(I*) = Z* is a surjection, we
see that the index map Ko(I*) — K (Ip) is 0. Thus we have the following.

Proposition 14.5. We have Ko(I) = Ko(I*) = Z* and K, (I) = K,(Iy) = Z.

15. K-groups of A

Recall the six-term exact sequence

Ko(I) Ko(A) Ko(B)
i A
K1 (B) K1(A) Ki(I).

In this section, we calculate the exponential map d¢g: Ko(B) — K (/) and the index
map 61: K;(B) — Ko(I).
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Proposition 15.1. The exponential map 6¢: Ko(B) — K (1) is 0.

Proof. Since Ky(B) is generated by 16 elements {[Pi,j]O}?j:] ,the map Ko(A) — Ko(B)

is surjective. Hence the exponential map 6¢: Ko(B) — K (1) is 0. O

By the definitions of the generators of K-groups we did so far, we have the following.
(See Figure 13.2 for the relation between T and F'.)

Proposition 15.2. The index map 6" : K\ (B°) = Z'"® — Ky(1°) = Z° coming from the
short exact sequence

0 — I° — My(Co(n~ (T U F®)))P — B° — 0.
is as Table 15.1.

TaBLE 15.1. Computation of the index map §”

2,2 33 4.4 2,3 3.4 4,2 32 4,3 2,4
wJiIin uln Uuln u
230 0|0 O0|-1 -1
341(-1 =10 0|0 O
42 110 0|-1-110 O
320 0|0 O|-1 -1
43 ||-1 -1{0 0|0 O
2410 0|-1-1{0 O

(=) Nl Nl Rl Nl | IID)
S|lo|o|o|o| || C
(=) Nl el R )l Re ) | BID)
(=] o) Fol Nl g Kol | N
SO O = ||| D
(=) ol Rl I Kol Kol | N
(=) Nl T el Nl Na) | BID)
(=) Nl g Kol Fel Nl | N
OI=| OO D
(=) N Rl Fol Nl el | Nl
k=l =l =] Rl Rl ] D]
— | o|o|o|o| ol C

Definition 15.3. The composition of the index map 6" : K;(B°) — K((I°) and the map
Ko(I°) — Ko(I*) is denoted by 17: K1 (B°) — Ko(I*)

We set 77: K1(B°) — Ko(I*) ® Z/2Z by 5j(w();) = (n(w{;),0) and 7(w;;) =
(m(wy;), 1) fori, j =2,3,4.

We denote the generator of Z/2Z in Ko(I*) & Z/2Z by ss.

Proposition 15.4. The map 17: K1(B°) — Ko(I*) ® Z/2Z is surjective, and its kernel
coincides with the image of §: Ko(B*) — K| (B°).

Proof. Since
— —n o .
n(wy3) =s1, nwsy) =52, nwsy) =53, N(wyz) = s4,
51,52, 83, 54 are in the image of 77. Since 7(w5 , + w§ 5 +w} ) = 55, 55 is also in the image

of 1. Thus 77 is surjective.
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TasLE 15.2. Computation of

22 | 33 | 44 [ 23 | 34 | 42 | 32 | 43 | 24
sSNVIINn Uuln UIN UIN UN UN UIN UIN U|N U
1 Jo o]1 1[-1—-1]T 1[0 O0[-1-1]0 0[]0 0]0 O
2 -1 =1]1 1[0 0l0 0|1 1]|-1-1]0 0[]0 0[O0 0
300 0[1 1[-1-1/0 0[0 0[O0 O[T 1[0 0[-1-1
4 -1 =1]1 1[0 oo oo o0 o]0 o1 1][-1 -1
s fo1]o 1[0 1o 1o 1]/0 1[0 1[0 1[0 1

It is straightforward to check 77 o § = 0 Hence the image of § is contained in the kernel

of 1. Suppose
4 4
X = Z n Wi+ Z ny Wi ;
i,j=2 i,j=2
is in the kernel of 77 where ”l?,j’ nfj € Zfori,j =2,3,4. We will show that x is in the
image of 4. By adding

13 36(q3142)) + 15 46(qa312)) + 14 ,6(q(2341))
+13,6(q(2413)) + 1y 36(q (3421)) + 115 46(q (4123))

we may assume

v _ v __u __ U __ U _ U _

My = N34 =My = N30 =My 3=15,=0

without loss of generality. By subtracting 15 ;6(q4321)) + 1y 46(q(3412)), we may further
assume ng 5= nﬁf 4 = 0 without loss of generality. Then ng , 18 even since the coeflicient
of ¢5 in i(x) is 0. Hence by adding

U

5
7(5(11(2143)) - 6(q3a12)) — 6(q4321)))

we may further assume ”szz = 0 without loss of generality. Thus we may assume

x = Z?,Fz n; wi ;. By adding nf),6(q(1243)) + 15 36(q(1432)) + 1} ,6(q 1324)), We may
further assume nj, = nf; = n}, = 0 without loss of generality. By subtracting
n2,25(q0423)) + n246(q(1342)), we may further assume ”2,2 = n9’4 = 0 without loss of
generality. Thus we may assume

—_ N n N n n n n n
X =Ny Wy 3 13 yW3 g T 113 ,W3 5+ 1y 3Wy 3.
n _,Nn __N _ N _
Then we have Ny 3 =Ny =MNyy) =Ty = 0 because

~ N _ N n n n
n(x) = Ny 381+ N3 482 + 13 553 + 1y 354
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Thus x = 0. We have shown that x is in the image of §. Hence the image of ¢ coincides
with the kernel of 7. O

As a corollary of this proposition, we have the following as predicted.
Proposition 15.5. We have Ko(B) = Z'° and K, (B) = Z* & Z/27Z.

Proof. By Proposition 15.4, we see that K (B) = coker § is isomorphic to Z* ® Z/27Z.
This implies Ko(B) = ker § is isomorphic to Z!° because ker 6 is a free abelian group
with dimension 24 — 18 + 4 = 10. m|

We also have the following.

Proposition 15.6. The index map 6,: K;(B) — Ko(I) is as K|(B) = Z* @ Z/2Z >
(n,m) — n € Z* = Ky(I).

Proof. From the commutative diagram with exact rows

0 1 A B—0

l | H

0 —= I* — My(Co(x™'((0\ 00) U F)))f — B —=0,

the index map 6;: K;(B) — Ko(I) coincides with the map K;(B) — Ko(I*) if we
identify Ko(I) = Ko(I*) as we did in Proposition 14.5.
From the commutative diagram with exact rows

0—I°—— M4(C0(7r_1(T v FO)))B — B°—0

| l l

0 — I* — My(Co(z~' (0 \ 0p) UF)))’ — B —=0,
we have the commutative diagram

K1 (B°) —— Ko(I°)

l l

K{(B) —— Ky(I*™).

From this diagram, we see that the map K;(B) — Ko(I*) is as K|(B) = Z* @ Z/2Z >
(n,m) — n € Z* = Ko(I*). This completes the proof. O
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Definition 15.7. Define a unitary w € C(S3, M>(C)) by

w(ai,az,as,as) = ajcy +axco +azcs +ascy

_ ap +a V-1 az +asg V-1
- —az+asN-1 a;—aV-1

for (al,az,a3,a4) S S3.

Then [w]; is the generator of K (C(S?, M»(C))) = K| (M4(C(S?))) = Z.

Let o: A — M4(C(S?)) be the composition of the embedding A — M, (C(RP?))
and the map My (C(RP3)) — M4(C(S?)) induced by [-]: §° — RP3 . Let7: S — X
be the composition of [-]: $3 — RP? and n: RP? — X. We set V' of S3 by

V' = {(a1, a2, a3, as) € S| ar, az, a3 > lasl} .

Then V' is homeomorphic to V via [-], and hence to Oy via 7. Note that the map
M4(Co(V")) — M4(C(S?)) induces the isomorphism

Ki(My(Co(V'))) = Ki(Ma(C(SY))).

Since Iy = M4(Cy(Og)) = M4(Co(V’)) canonically, we set a generator y of K (Ip)
which corresponds to the generator [w]; of Ki(M4(C(S%))) via the isomorphism
K1 (M4(Co(V'))) — K1(Ms(C(S?))). We denote by the same symbol y the genera-
tor of K| (I) = K| () corresponding to y € K| (lp).

Proposition 15.8. The image of y € K{(I) under the map K,(I) — K;(A) —
K1 (Ma(C(S%))) is 32[w]).

Proof. Themap Iy — I — A — M4(C(S%)) is induced by 7: 7~'(0¢) — Oy when we
identify Iy with M4(Cy(Og)). We have

4 4
71(00) = ]_[ o ;v U o, (V)

i,j=1 i,j=1

where o* §% — §3 is induced by the unitary +U; j similarly as o5 ; RP3 — RP? for

j
i,j =1,2,3,4. These 32 homeomorphisms preserve the orientation of S3. Therefore, the
image of y € K;(Iy), and hence the one of y € K (), in Ki (M4(C(S?))) is 32[w];. O

Definition 15.9. Define the linear map & : M,(C) — C* by

é':((all 012)) — L(Clll an, azi, d)
azy  ax \/E ’ ’ ’
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Definition 15.10. Define unital *-homomorphisms ¢,¢": M(C) — M4(C) by
aill ain O 0
L((all alz)) _|aa an 0 0
a; an»n 0 0 ayip an |
0 0 axy ax
an 0 ap O
J ((all alz)) _ 0 an 0 an
ay axy ay 0 axp 0]

0 any 0 an

Lemma 15.11. For each M, N € M,(C), we have
E(M)UN) = E(MN), C(MEN)T = E(MN)T.
Proof. It follows from a direct computation. O
Definition 15.12. Define U € M4(A) by
Py P P13 Pu

It can be easily checked that U is a unitary.

Proposition 15.13. The image of [U]; € K| (A) under the map K, (A) — K| (M4(C(S3)))
is 16[w]y.

Proof. Let ps: My(A) — My(M4(C(S?))) be the x-homomorphism induced by ¢. Set
U = p4(U). Fori,j=1,2,3,4,the (i, j)-entry U; ; € C(83, M4(C)) of U is given by

U;,j(a1,az,a3,a4) = Ui,j(al,az,a3,a4)T(al,02,03,114)(];:/

for each (ay, az, az,as) € S°.
Let W € M4(C) be

1 V-1 o0 0
wo Lo 01 VI
V2o 0 -1 —vVEI

1 V=1 o 0

Then W is a unitary.
Take (a1, as,as,as) € S>and i, j = 1,2,3,4. We set

(b1, b2, b3, b4) = (ar,a2,a3,a4)U; ;.
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By Proposition 5.2, we have ZL] brcr = c; ( 21:1 akck)cj.. We also have

4
1
§(Z bkck)W = $(b1 +b2 V—l,b3 +b4 V— ,—b3 + b4‘/—_1,b| - bz‘/—_l)W
k=1
= (b1, b2, b3, by)
Hence we get

4
(ar,az,a3,a0)U; ; = § (Ci(z akck)cj') W

k=1

4
=&(cit (( Z akck)c;) w

P
=&(cuw(ar, az, as, as))(c))W

by Lemma 15.11. Similarly, we get

4 T
Ui,j(a1,a2,a3,a4)T = WTf (ci(Zakck)cj.)

k=1

4
=W (”(Z akck)) f(cj.)T

py
= W' (i) (w(ar, az, a3, as))é(c;)"

by Lemma 15.11. Define V, W, W’ € M4(M4(C)) by
V= (f(C;)Tg(Ci))ij:p

t(cDW 0 0 0
B 0 (c5)W 0 0
W= 0 0 ()W 0 ’
0 0 0 ()W
Wt (¢1) 0 0 0
’ 0 WT"(CZ) 0 0
W= T, s
0 0 Wi/ (c3) 0
0 0 0 WT (c4)

One can check that these are unitaries. If we consider these as constant functions in
M4(C(S°, M4(C))), we have

U =W (w)Viu(w)W,
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where t4(w), (W) € M4(C(S?, M4(C))) are defined as

tw(+)) 0 0 0
_ 0 tw(+)) 0 0
uv) =1 0 «w() o |
0 0 0 tw(+))
U(w()) 0 0 0
PN 0 U(w(-)) 0 0
uwi =1 0 Jw() 0
0 0 0 d(w(-))
Since [t4(w)]1 = [, (w)]1 = 8[w]1, we obtain [U]; = 16[w];. O

Proposition 15.14. We have Ko(A) = Z'0 and K (A) = Z. More specifically, Ko(A) is
generated by {[Pi,j]O}?j:p and K| (A) is generated by [U] . Moreover, the positive cone
Ko(A), of Ko(A) is generated by {[Pi,j]O}?,jﬂ as a monoid.

Proof. We have already seen that Kp(A) — Ko(B) is isomorphic, and we have a short
exact sequence

0— K|(I) > K((A) — 2/2Z — 0.

From this, we see that K| (A) is isomorphic to either Z&Z/27Z or Z.If K1 (A) is isomorphic
to Z@® Z/2Z, one can choose an isomorphism so that y € K, (I) goesto (1,0) € Z&Z/27Z.
Then the image of the map K;(A) — K| (M4(C(S3))) = Z is 32Z by Proposition 15.8.
This is a contradiction because the image of [U]; € K;(A) is 16 by Proposition 15.13.
Hence K (A) is isomorphic to Z so that y € K| (I) goes to 2. By Proposition 15.8 and
Proposition 15.13, [U]; € K (A) corresponds to 1 € Z. Thus [U]; is a generator of
Ki(A) = Z.

It is clear that the monoid generated by {[P; 1]0}?,1':1 is contained in the positive
cone Ky(A);. The positive cone Ky(A), maps into the positive cone Ky(B*®); under
the surjection A — B®. Hence by Proposition 12.7, Ky(A), is contained in the monoid

generated by {[Pi,j]O}?,j:l‘ Thus K((A), is the monoid generated by {[Pi,j]O}?,j:y m]

Definition 15.15. Define u € M4(A(4)) by

P11 P12 p13 P4
P21 P22 P23 P24
P31l P32 P33 Pl
P41 P42 P43 P4a4

u =

It can be easily checked that u is a unitary. This unitary u is called the defining unitary
of the magic square C*-algebra A(4).
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By Proposition 15.14, we get the third main theorem.

Theorem 15.16. We have Ky(A(4)) = Z'° and K\(A(4)) = Z. More specifically,
Ko(A(4)) is generated by {[pi,j]()}?j:p and K| (A(4)) is generated by [u];.
The positive cone Ko(A(4))+ of Ko(A(4)) is generated by {[p,-’j]o}?’j:l as a monoid.

As mentioned in the introduction, the computation Ko(A(4)) = Z'® and K| (A(4)) = Z
and that Ky(A(4)) is generated by {[p;, J]U}?,j=1 were already obtained by Voigt in [8].
We give totally different proofs of these facts. That K| (A(4)) is generated by [u]; and
the computation of the positive cone Ko(A(4))+ of Ko(A(4)) are new.
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