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Index of seaweed subalgebras of classical Lie algebras

Meher Bouhani

Abstract

We generalize the results in [3] giving a reduction algorithm allowing to compute the index of seaweed
subalgebras of classical simple Lie algebras. We thus are able to obtain the index of some interesting
families of seaweed subalgebras and to give new examples of large classes of Frobenius Lie algebras
among them.

Indice des sous-algèbres biparaboliques d’une algèbre de Lie classique
Résumé

Nous généralisons les résultats de [3] en donnant un algorithme de réduction permettant de calculer
l’indice des sous-algèbres biparaboliques d’une algèbre de Lie simple classique. Nous obtenons ainsi
l’indice d’une famille intéressante des sous-algèbres biparaboliques et nous donnons de nouveaux
exemples de grandes classes de sous-algèbres de Frobenius.

1. Introduction

Let 𝔤 be a Lie algebra of an algebraic complex Lie group G and 𝔤∗ the dual space. For
𝑓 ∈ 𝔤∗, we denote by 𝔤 𝑓 the stabilizer of 𝑓 for the coadjoint action. Recall that the index
of 𝔤 is the minimal dimension of stabilizers for the coadjoint action,

ind(𝔤) = min{dim 𝔤 𝑓 | 𝑓 ∈ 𝔤∗}
Lie algebras with index zero are called Frobenius Lie algebra and are of special interest
stemming from their connection to the classical Yang–Baxter equation (CYBE). In [1],
Belavin and Drinfel’d showed that this family provides solutions to the CYBE.

Throughout the paper, all considered Lie groups and Lie algebras are algebraic defined
over the complex field. For any pair of integers (𝑟, 𝑠), we denote by 𝑟 [𝑠] the remainder of
Euclidean division of 𝑟 by 𝑠 and by 𝑟 ∧ 𝑠 the greatest common divisor of 𝑟 and 𝑠. For
𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ N𝑘 , we set |𝑎 | := 𝑎1 + · · · + 𝑎𝑘 .

In [7], Dergachev and Kirillov introduced the notion of seaweed subalgebras in the
case of 𝔤𝔩(𝑛), where they exhibited a method for computing the index of such algebras.
This notion was generalized for arbitrary reductive Lie algebras in [10]. In the case of
classical Lie algebras, a seaweed subalgebra may be parametrized by two compositions of
positives integers (see Section 2 for a precise description).

Keywords: Index of a Lie algebra, Frobenius Lie algebra, Seaweed Subalgebra, Meander graph.
2020 Mathematics Subject Classification: 17B08, 17B10, 17B20, 17B22.
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Let 𝑛 ∈ N× , 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifying
|𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛. We associate to the pair (𝑎, 𝑏) a unique seaweed subalgebra of 𝔰𝔭(2𝑛)
(resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)) which we denote by 𝔮𝐶𝑛 (𝑎 | 𝑏) (resp. 𝔮𝐵𝑛 (𝑎 | 𝑏), 𝔮𝐷𝑛 (𝑎 | 𝑏)),
and all seaweed subalgebras of 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)) are thus obtained up to
conjugation by the connected adjoint group of 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)). When
|𝑎 | = |𝑏 | = 𝑛, a unique seaweed subalgebra of 𝔤𝔩(𝑛) may also be associated to the pair
(𝑎, 𝑏) (up to conjugation by the connected adjoint group of 𝔤𝔩(𝑛)) which we denote by
𝔮𝐴(𝑎 | 𝑏) (see [2], [11] and [12]).

For 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ N𝑘 and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) ∈ N𝑡 such that |𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛,
we denote by 𝑎̃ (resp. 𝑏̃) the sequence obtained from 𝑎 (resp. 𝑏) by removing null terms and
we put 𝔮𝐴(𝑎 | 𝑏) = 𝔮𝐴(𝑎̃ | 𝑏̃) if |𝑎 | = |𝑏 | = 𝑛 and 𝔮𝐼𝑛 (𝑎 | 𝑏) = 𝔮𝐼𝑛 (𝑎̃ | 𝑏̃), 𝐼 = 𝐵, 𝐶 𝑜𝑟 𝐷.

For 𝑛 > 1, let Ξ𝑛 be the set of pairs of compositions (𝑎 = (𝑎1, . . . , 𝑎𝑘), 𝑏 =

(𝑏1, . . . , 𝑏𝑡 )) which verify: |𝑎 | = 𝑛, |𝑏 | = 𝑛 − 1 and 𝑎𝑘 > 1 or |𝑏 | = 𝑛, |𝑎 | = 𝑛 − 1 and
𝑏𝑡 > 1.

In [7], Dergachev and Kirillov associated to each seaweed subalgebra 𝔮𝐴(𝑎 | 𝑏) of
𝔤𝔩(𝑛) a graph, called the meander of 𝔮𝐴(𝑎 | 𝑏) and denoted by Γ𝐴(𝑎 | 𝑏), it is constructed
in the following way: we place 𝑛 consecutive points on a horizontal line, called vertices of
Γ𝐴(𝑎 | 𝑏) and numbered from 1 up to 𝑛. Next, we connect by an arc, below (resp. above)
this line, each pair of distinct vertices of the form (𝑎1+· · ·+𝑎𝑖−1+ 𝑗 , 𝑎1+· · ·+𝑎𝑖− 𝑗+1), 1 ≤
𝑗 ≤ 𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑘 (resp. (𝑏1 + · · · +𝑏𝑖−1 + 𝑗 , 𝑏1 + · · · +𝑏𝑖 − 𝑗 +1), 1 ≤ 𝑗 ≤ 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑡).
The authors gave a formula for the index of 𝔮𝐴(𝑎 | 𝑏) in terms of the connected
components of this graph. This result was generalised to the case of 𝔰𝔭(2𝑛) in two
different ways in [6] and [11], and to the case of 𝔰𝔬(𝑛) in [11] and [12], where the authors
associated to each subalgebra 𝔮𝐼𝑛 (𝑎 | 𝑏) a meander denoted by Γ𝐼

𝑛 (𝑎 | 𝑏), 𝐼 = 𝐵, 𝐶

or 𝐷. When 𝐼 = 𝐵, 𝐶 or 𝐼 = 𝐷 and (𝑎 | 𝑏) ∉ Ξ𝑛, the meander Γ𝐼
𝑛 (𝑎 | 𝑏) verifies

Γ𝐼
𝑛 (𝑎 | 𝑏) = Γ𝐴(𝑎1, . . . , 𝑎𝑘 , 2(𝑛 − |𝑎 |), 𝑎𝑘 , . . . , 𝑎1 | 𝑏1, . . . , 𝑏𝑡 , 2(𝑛 − |𝑏 |), 𝑏𝑡 , . . . , 𝑏1).

When 𝐼 = 𝐷 and (𝑎 | 𝑏) ∈ Ξ𝑛, the meander Γ𝐷
𝑛 (𝑎 | 𝑏), the construction of which we

recall in Section 4, has two arcs crossing each other ([11] and [12]).
In certain particular cases, algebraic formulas for the index of seaweed subalgebras

have been obtained. The first one was given by Elashvili in [9], where he showed that
ind 𝔮𝐴(𝑎, 𝑏 | 𝑎 + 𝑏) = 𝑎 ∧ 𝑏, for any (𝑎, 𝑏) ∈ (N×)2. In [5], the authors showed that
ind 𝔮𝐴(𝑎, 𝑏, 𝑐 | 𝑎 + 𝑏 + 𝑐) = (𝑎 + 𝑏) ∧ (𝑏 + 𝑐) for any (𝑎, 𝑏, 𝑐) ∈ (N×)3. In [3], we
proved the two previous formulas in a different manner and we generalised Elashvili’s
result by giving an algebraic formula for the index of seaweed subalgebras of the form
𝔮𝐴(𝑎, . . . , 𝑎︸   ︷︷   ︸

𝑚

, 𝑏 | 𝑚𝑎 + 𝑏) for any (𝑎, 𝑏, 𝑚) ∈ (N×)3 (see Section 4). For the general case,

the index problem seems to be hard. In particular, the classification of Frobenius seaweed
subalgebras remains an open question.
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In [6], the authors gave a formula for the index of seaweed subalgebras 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐)
when |𝑎 + 𝑏− 𝑐 | = 1 or 2, allowing them to determine the family of Frobenius subalgebras
which are of the form 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐), (𝑎, 𝑏, 𝑐) ∈ (N×)3. In this paper, we give a formula
for the index of seaweed subalgebras 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) (resp. 𝔮𝐵𝑛 (𝑎, 𝑏 | 𝑐), 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐)),
(𝑎, 𝑏, 𝑐) ∈ (N×)3 (resp. (𝑎, 𝑏, 𝑐) ∈ (N×)3, (𝑎, 𝑏, 𝑐) ∈ (N×)3 and 𝑏 > 1 if 𝑎 + 𝑏 = 𝑛) (see
Theorems 3.22 and 4.12). More precisely, we show the following theorem:

Theorem 1.1. Let 𝑎, 𝑏, 𝑐, 𝑛 ∈ N× be such that 𝑠 := max(𝑎 + 𝑏, 𝑐) ≤ 𝑛. Set 𝑝 =

(𝑎 + 𝑏) ∧ (𝑏 + 𝑐) and 𝑟 = |𝑎 + 𝑏 − 𝑐 |, then

(1) (a) If 𝑝 > 𝑟, we have ind 𝔮𝐵𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) = 𝑝 − [ 𝑟+1
2 ] + 𝑛 − 𝑠

(b) If 𝑝 ≤ 𝑟 , we have

ind 𝔮𝐵𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐)

=

{
[ 𝑟2 ] + 𝑛 − 𝑠 if 𝑝 and 𝑟 have the same parity
[ 𝑟2 ] − 1 + 𝑛 − 𝑠 otherwise

(2) Let Γ𝐷
𝑛 (𝑎, 𝑏 | 𝑐) be the meander of 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐). Then

(a) If ((𝑎, 𝑏), 𝑐) ∉ Ξ𝑛, we have ind 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) + 𝜖 , where 𝜖
is given by:

𝜖 =


0 if r is even
1 if r is odd, 𝑠 = 𝑛 and the vertices 𝑛 𝑎𝑛𝑑 𝑛 + 1 belong to the same

segment of Γ𝐷
𝑛 (𝑎, 𝑏 | 𝑐)

−1 otherwise

(b) If ((𝑎, 𝑏), 𝑐) ∈ Ξ𝑛, we have ind 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐) = | (𝑎 ∧ 𝑛) − 2|

Consequently, we classify the Frobenius subalgebras of this family (see Corollaries 3.23
and 4.13).

For a seaweed subalgebra 𝔮𝐴(𝑎 | 𝑏) of 𝔤𝔩(𝑛), we denote

Ψ[𝔮𝐴(𝑎 | 𝑏)] =
{

ind 𝔮𝐴(𝑎 | 𝑏) if the vertex 𝑛 belongs to a segment of Γ𝐴(𝑎 | 𝑏)
ind 𝔮𝐴(𝑎 | 𝑏) − 2 otherwise

Note that the index of seaweed subalgebras can be computed by the inductive formula
obtained by Panyushev in [10]. In [3] we gave another formula allowing to compute
the index of seaweed subalgebras 𝔮𝐴(𝑎, 𝑏) in the case of 𝔤𝔩(𝑛). In the present work, we
generalise this result to the cases of seaweed subalgebras 𝔮𝐶𝑛 (𝑎, 𝑏), 𝔮𝐵𝑛 (𝑎, 𝑏) and 𝔮𝐷𝑛 (𝑎, 𝑏)
(see Theorems 3.12, 4.6 and 4.9). More precisely, we first show that we may reduce to
case 𝑎 = (𝑡) and |𝑏 | ≤ 𝑡 ≤ 𝑛, 𝑡 ∈ N× . Next, we give the following two theorems:
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Theorem 1.2. Let 𝑡 ∈ N× and 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifying |𝑎 | ≤ 𝑡 ≤ 𝑛.
Let 𝑎𝑘+1 = 𝑡 − |𝑎 |, 𝑑𝑖 = (𝑎1 + . . . 𝑎𝑖−1) − (𝑎𝑖+1 + · · · + 𝑎𝑘+1), 1 ≤ 𝑖 ≤ 𝑘 and 𝔮𝑛 (𝑡 | 𝑎) :=
𝔮𝐵𝑛 (𝑡 | 𝑎), 𝔮𝐶𝑛 (𝑡 | 𝑎) or 𝔮𝑛 (𝑡 | 𝑎) := 𝔮𝐷𝑛 (𝑡 | 𝑎) if (𝑡 | 𝑎) ∉ Ξ𝑛.

(1) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0 and any 𝛼 ∈ Z such that 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0, we
have

ind 𝔮𝑛 (𝑡 | 𝑎) = ind 𝔮𝑛+𝛼 |𝑑𝑖 | (𝑡 + 𝛼 |𝑑𝑖 | | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 + 𝛼 |𝑑𝑖 |, 𝑎𝑖+1, . . . , 𝑎𝑘)

In particular, we have

ind 𝔮𝑛 (𝑡 | 𝑎) = ind 𝔮𝑛−𝑎𝑖+𝑎𝑖 [ |𝑑𝑖 | ] (𝑡 − 𝑎𝑖 + 𝑎𝑖 [|𝑑𝑖 |] | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 [|𝑑𝑖 |], 𝑎𝑖+1, . . . , 𝑎𝑘)

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔮𝑛 (𝑡 | 𝑎) = 𝑎𝑖 + ind 𝔮𝑛−𝑎𝑖 (𝑡 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)

Theorem 1.3. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifying 1 ≤ |𝑎 | = 𝑛 − 1
(𝑖.𝑒. (𝑛 | 𝑎) ∈ Ξ𝑛). Let 𝑎′ = (𝑎′1, . . . , 𝑎

′
𝑘
) = (𝑎1, . . . , 𝑎𝑘−1, 𝑎𝑘+1), 𝑑𝑘 = −(𝑎′1+· · ·+𝑎

′
𝑘−1)

and 𝑑𝑖 = (𝑎′1 + · · · + 𝑎′
𝑖−1) − (𝑎′

𝑖+1 + · · · + 𝑎′
𝑘
), 1 ≤ 𝑖 ≤ 𝑘 − 1.

(1) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0 and any 𝛼 ∈ Z such that 𝑎′
𝑖
+ 𝛼 |𝑑𝑖 | ≥ 0, we

have

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = Ψ[𝔮𝐴(𝑛 + 𝛼 |𝑑𝑖 | | 𝑎′1, . . . , 𝑎
′
𝑖−1, 𝑎

′
𝑖 + 𝛼 |𝑑𝑖 |, 𝑎′𝑖+1, . . . , 𝑎

′
𝑘)]

In particular, if 𝑡𝑖 = 𝑎′
𝑖
− 𝑎′

𝑖
[|𝑑𝑖 |], we have

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = Ψ[𝔮𝐴(𝑛 − 𝑡𝑖 | 𝑎′1, . . . , 𝑎
′
𝑖−1, 𝑎

′
𝑖 [|𝑑𝑖 |], 𝑎′𝑖+1 . . . , 𝑎

′
𝑘)]

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = 𝑎𝑖 + Ψ[𝔮𝐴(𝑛 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)]

As a consequence of these two theorems, we give new families of Frobenius seaweed
subalgebras of 𝔰𝔭(2𝑛) and 𝔰𝔬(𝑛) (see Lemma 3.16 and Theorem 4.15). Finally, we
describe a relationship between Frobenius seaweed subalgebras of 𝔰𝔩(𝑛) and Frobenius
seaweed subalgebras of 𝔰𝔬(2𝑛) of the form 𝔮𝐷𝑛 (𝑎 | 𝑏) where (𝑎 | 𝑏) ∈ Ξ𝑛. Consequently,
we deduce that for any 𝑛 ≥ 1 and for any pair (𝑎 | 𝑏) ∈ Ξ2𝑛+1, 𝔮𝐷2𝑛+1 (𝑎 | 𝑏) cannot be a
Frobenius subalgebra. Also, we prove that the number of Frobenius seaweed subalgebras
𝔮𝐷2𝑛 (𝑎 | 𝑏), where (𝑎 | 𝑏) ∈ Ξ2𝑛, is exactly double the number of Frobenius seaweed
subalgebras of 𝔰𝔩(𝑛) (see Theorem 4.14).
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2. Generalities on seaweed subalgebras

Let G be an algebraic Lie group, 𝔤 its Lie algebra and 𝔤∗ the dual space. Via the coadjoint
representation, 𝔤 and G act on 𝔤∗ in the following way:

(𝑥. 𝑓 ) (𝑦) = 𝑓 ( [𝑦, 𝑥]), 𝑥, 𝑦 ∈ 𝔤 and 𝑓 ∈ 𝔤∗

(𝑥. 𝑓 ) (𝑦) = 𝑓 (Ad 𝑥−1𝑦), 𝑥 ∈ G, 𝑦 ∈ 𝔤 and 𝑓 ∈ 𝔤∗

For 𝑓 ∈ 𝔤∗, let G 𝑓 be the stabilizer of 𝑓 under this action and 𝔤 𝑓 its Lie algebra:

G 𝑓 = {𝑥 ∈ G ; 𝑓 (Ad 𝑥−1𝑦) = 𝑓 (𝑦), 𝑦 ∈ 𝔤}
𝔤 𝑓 = {𝑥 ∈ 𝔤 ; 𝑓 ( [𝑥, 𝑦]) = 0, 𝑦 ∈ 𝔤}

We call the index of 𝔤, denoted by ind 𝔤, the integer defined by:

ind 𝔤 = min{dim 𝔤 𝑓 , 𝑓 ∈ 𝔤∗}

When ind 𝔤 = 0, 𝔤 is called Frobenius Lie algebra.
Suppose that 𝔤 is a semisimple Lie algebra. Let 𝔥 be a Cartan subalgebra of 𝔤,Δ ⊂ 𝔥∗ the

root system of 𝔤 relative to 𝔥, 𝜋 := {𝛼1, . . . , 𝛼𝑛} a set of simple roots numbered, when 𝔤 is
simple, in accordance with Bourbaki [4]. Then Δ = Δ+∪Δ− where Δ+ is the set of positive
roots relative to 𝜋 and Δ− = −Δ+. For 𝛼 ∈ Δ, let 𝔤𝛼 := {𝑥 ∈ 𝔤; [ℎ, 𝑥] = 𝛼(ℎ)𝑥, ℎ ∈ 𝔥},
it is a 1-dimensional vector space.

For any subset 𝜋′ ⊂ 𝜋, let Δ+
𝜋′ = Δ+ ∩ N𝜋′ where N𝜋′ denote the set of linear

combinations with coefficients in N of the elements of 𝜋′, Δ−
𝜋′ = −Δ+

𝜋′ and 𝔫±
𝜋′ =⊕

𝛼∈Δ±
𝜋′
𝔤𝛼.

Definitions 2.1. Let (𝜋′, 𝜋′′) a pair of subsets of 𝜋, the subalgebra 𝔮𝜋′ , 𝜋′′ := 𝔫+
𝜋′ ⊕𝔥⊕𝔫−

𝜋′′

is called a standard seaweed subalgebra of 𝔤.
We call seaweed subalgebra of 𝔤 any subalgebra G-conjugate to a standard seaweed

subalgebra of 𝔤.
If 𝜋′ = 𝜋 or 𝜋′′ = 𝜋, any subalgebra G-conjugate to 𝔮𝜋′ , 𝜋′′ is called a parabolic

subalgebra of 𝔤.

Until now, we suppose 𝔤 simple. Let 𝜋′ ⊂ 𝜋. We set S𝜋′ := (𝑖1, 𝑖2 − 𝑖1, . . . , 𝑖𝑘 −
𝑖𝑘−1, 𝑛+1− 𝑖𝑘), T𝜋′ := (𝑖1, 𝑖2 − 𝑖1, . . . , 𝑖𝑘 − 𝑖𝑘−1), if 𝜋′ = {𝛼𝑖1 , . . . , 𝛼𝑖𝑘 } and S∅ := (𝑛+1),
T∅ := ∅. So, S𝜋′ is a composition of 𝑛 + 1 and T𝜋′ is a composition of an integer 𝑡 ≤ 𝑛.
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Suppose 𝔤 = 𝔰𝔩(𝑛 + 1), we associate to each pair (𝑎, 𝑏) of compositions of 𝑛 + 1
the seaweed subalgebra 𝔮𝐴

𝑠 (𝑎 | 𝑏) := 𝔮𝜋′ , 𝜋′′ such that 𝑎 = S𝜋\𝜋′ and 𝑏 = S𝜋\𝜋′′ . The
subalgebra 𝔮𝐴(𝑎 | 𝑏) := 𝔮𝐴

𝑠 (𝑎 | 𝑏) ⊕ C𝐼𝑛+1, where 𝐼𝑛+1 is the identity matrix of order
𝑛 + 1, is a seaweed subalgebra of 𝔤𝔩(𝑛 + 1) verifiying ind 𝔮𝐴(𝑎 | 𝑏) = ind 𝔮𝐴

𝑠 (𝑎 | 𝑏) + 1.
All seaweed subalgebras of 𝔤𝔩(𝑛+1) are thus obtained (up to conjugation by the connected
adjoint group of 𝔤𝔩(𝑛+1)). The subalgebra 𝔮𝐴(𝑎 | 𝑏) is a parabolic subalgebra if and only
if 𝑎 = (𝑛 + 1) or 𝑏 = (𝑛 + 1). Let (𝑒1, . . . , 𝑒𝑛) be the canonical basis of C𝑛, 𝒱 = {𝑉0 =

{0} ⊊ 𝑉1 ⊊ · · · ⊊ 𝑉𝑚 = C𝑛} and 𝒲 = {C𝑛 = 𝑊0 ⊋ 𝑊1 ⊋ · · · ⊋ 𝑊𝑡 = {0}} the two
flags in C𝑛 such that 𝑉𝑖 = ⟨𝑒1, . . . , 𝑒𝑎1+···+𝑎𝑖 ⟩, 1 ≤ 𝑖 ≤ 𝑚, and 𝑊𝑖 = ⟨𝑒𝑏1+···+𝑏𝑖+1, . . . , 𝑒𝑛⟩,
1 ≤ 𝑖 ≤ 𝑡 − 1. Then 𝔮𝐴(𝑎 |𝑏) is the stabilizer of the pair of flags (𝒱,𝒲) in 𝔤𝔩(𝑛).

Suppose 𝔤 = 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛+1), 𝔰𝔬(2𝑛)), we associate to any pair of compositions
(𝑎, 𝑏) verifiying |𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛, the seaweed subalgebra 𝔮𝐼𝑛 (𝑎 | 𝑏) := 𝔮𝜋′ , 𝜋′′ , 𝐼 = 𝐶

(resp. 𝐵, 𝐷) of 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)) such that 𝑎 = T𝜋\𝜋′ and 𝑏 = T𝜋\𝜋′′ .
Up to conjugation by the connected adjoint group of 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)),
all seaweed subalgebras of 𝔰𝔭(2𝑛) (resp. 𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)) are thus obtained. The
subalgebra 𝔮𝐼𝑛 (𝑎 | 𝑏), 𝐼 = 𝐶 (resp. 𝐵, 𝐷) is a parabolic subalgebra of 𝔰𝔭(2𝑛) (resp.
𝔰𝔬(2𝑛 + 1), 𝔰𝔬(2𝑛)) if and only if 𝑎 = ∅ or 𝑏 = ∅. Let again (𝑒1, . . . , 𝑒𝑛) be the
canonical basis of C𝑛. In the case where 𝔤 = 𝔰𝔭(𝑛) and 𝑛 is even (resp. 𝔤 = 𝔰𝔬(𝑛)
and 𝑛 is odd), we endow C𝑛 with the antisymmetric (resp. symmetric) bilineair form
⟨ · , · ⟩ defined by ⟨𝑒𝑖 , 𝑒𝑛+1− 𝑗⟩ = 𝛿𝑖, 𝑗 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 + 𝑗 ≤ 𝑛 + 1. Let (𝑎, 𝑏) be a pair of
compositions verifiying |𝑎 | ≤ [ 𝑛2 ] and |𝑏 | ≤ [ 𝑛2 ], 𝒱 = {𝑉0 = {0} ⊊ 𝑉1 ⊊ · · · ⊊ 𝑉𝑚}
and 𝒲 = {𝑊0 ⊋ 𝑊1 ⊋ · · · ⊋ 𝑊𝑡 = {0}} the two flags of isotropic subspaces such that
𝑉𝑖 = ⟨𝑒1, . . . , 𝑒𝑎1+···+𝑎𝑖 ⟩, 1 ≤ 𝑖 ≤ 𝑚, and 𝑊𝑖 = ⟨𝑒𝑛−(𝑏1+···+𝑏𝑡−𝑖 )+1, . . . , 𝑒𝑛⟩, 0 ≤ 𝑖 ≤ 𝑡 − 1.
Then 𝔮𝐶[ 𝑛2 ]

(𝑎 |𝑏) (resp. 𝔮𝐵[ 𝑛2 ] (𝑎 |𝑏)) is the stabilizer of the pair (𝒱,𝒲) in 𝔰𝔭(𝑛) (resp.
𝔰𝔬(𝑛)). The case 𝔤 = 𝔰𝔬(𝑛) and 𝑛 is even is more complicated: if |𝑎 | = 𝑛

2 , 𝑎𝑚 > 1 and
|𝑏 | = 𝑛

2 −1 (resp. |𝑏 | = 𝑛
2 , 𝑏𝑡 > 1 and |𝑎 | = 𝑛

2 −1), then 𝔮𝐷𝑛
2
(𝑎 |𝑏) is the stabilizer of the pair

(𝒱,𝒲′) (resp. (𝒱′,𝒲)) in 𝔰𝔬(𝑛) where 𝒲′ (resp. 𝒱′) is obtained from 𝒲 (resp. 𝒱) by
replacing 𝑊0 (resp. 𝑉𝑚) by 𝑊 ′

0 = {𝑒 𝑛
2
, 𝑒 𝑛

2 +2, . . . , 𝑒𝑛} (resp. 𝑉 ′
𝑚 = {𝑒1, . . . , 𝑒 𝑛

2 −1, 𝑒 𝑛
2 +1}).

Otherwise, 𝔮𝐷𝑛
2
(𝑎 |𝑏)) is always the stabilizer of the pair (𝒱,𝒲) (see [8]).

Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) a composition of an integer 𝑛 ∈ N× , we set 𝐼𝑖 = [𝑎1 + · · · + 𝑎𝑖−1 +
1, . . . , 𝑎1 + · · · + 𝑎𝑖−1 + 𝑎𝑖] ∩ N, 1 ≤ 𝑖 ≤ 𝑘 and we associate to 𝑎 the involution 𝜃𝑎 of
{1, . . . , 𝑛}, defined by 𝜃𝑎 (𝑥) = 2(𝑎1 + · · · + 𝑎𝑖−1) + 𝑎𝑖 − 𝑥 + 1, 𝑥 ∈ 𝐼𝑖 , 1 ≤ 𝑖 ≤ 𝑘 .

Let (𝑎, 𝑏) a pair of compositions of an integer 𝑛 ∈ N× , we associate to the seaweed
subalgebra 𝔮𝐴(𝑎 | 𝑏) of 𝔤𝔩(𝑛) a graph denoted by Γ𝐴(𝑎 | 𝑏) and called meander
of 𝔮𝐴(𝑎 | 𝑏), whose vertices are 𝑛 consecutive points on a horizontal line, numberd
1, 2, . . . , 𝑛. It is constructed by the following way: we connect by un arc, below (resp.
above) the horizontal line, each pair of distinct vertices of Γ(𝑎 | 𝑏) of the form (𝑥, 𝜃𝑎 (𝑥))
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(resp.(𝑥, 𝜃𝑏 (𝑥))), 𝑥 ∈ {1, . . . , 𝑛}. A connected composant of Γ𝐴(𝑎 | 𝑏) is either a cycle
or a segment (see [2]).

Example 2.2.

Γ𝐴(2, 4, 3 | 5, 2, 2) = r r r r r r r r r� �� � � � � �� � � �� � 
 	
Theorem 2.3 ([7]). Let 𝔮𝐴(𝑎 | 𝑏) be a seaweed subalgebra of 𝔤𝔩(𝑛) and Γ𝐴(𝑎 | 𝑏) the
associated meander, we have

ind 𝔮𝐴(𝑎 | 𝑏) = 2 × (number of cycles) + number of segments

Lemma 2.4 ([3]). Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions such
that |𝑏 | = |𝑎 | = 𝑛 and set 𝑎−1 = (𝑎𝑘 , . . . , 𝑎1), we have

ind 𝔮𝐴(𝑎 | 𝑏) = ind 𝔮𝐴(2𝑛 | 𝑎−1, 𝑏)

Theorem 2.5 ([3]). Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ N× such that 𝑎 + 𝑏 = 𝑐 + 𝑑 = 𝑛, we have

(1) ind 𝔮𝐴(𝑎, 𝑏 | 𝑛) = 𝑎 ∧ 𝑏

(2) ind 𝔮𝐴(𝑎, 𝑏 | 𝑐, 𝑑) = ind 𝔮𝐴(𝑎, 𝑏, 𝑐 | 𝑛 + 𝑐) = (𝑎 + 𝑏) ∧ (𝑏 + 𝑐)

Theorem 2.6 ([3]). Let 𝔭𝐴(𝑎1, . . . , 𝑎𝑘) := 𝔮𝐴(𝑎1, . . . , 𝑎𝑘 | 𝑛) be a parabolic subalgebra
of 𝔤𝔩(𝑛). We set 𝑑𝑘 = −(𝑎1 + · · · + 𝑎𝑘−1) and 𝑑𝑖 = (𝑎1 + · · · + 𝑎𝑖−1) − (𝑎𝑖+1 + · · · + 𝑎𝑘),
1 ≤ 𝑖 ≤ 𝑘 − 1.

(1) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0 and any 𝛼 ∈ Z such that 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0, we
have

ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑘) = ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑖 + 𝛼 |𝑑𝑖 |, . . . , 𝑎𝑘)

In particular, we have

ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑘) = ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 [|𝑑𝑖 |], 𝑎𝑖+1 . . . , 𝑎𝑘)

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑘) = 𝑎𝑖 + ind 𝔭𝐴(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)

215



M. Bouhani

3. Seaweed subalgebras of 𝑠𝑝(2𝑛)

Let 𝑛 ∈ N× and (𝑎, 𝑏) a pair of compositions verifiying |𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛. We associate to
the seaweed subalgebra 𝔮𝐶𝑛 (𝑎 | 𝑏) of 𝔰𝔭(2𝑛) the meander Γ𝐶

𝑛 (𝑎 | 𝑏) := Γ𝐴(𝑎′ | 𝑏′), where
𝑎′ = (𝑎1, . . . , 𝑎𝑘 , 2(𝑛− |𝑎 |), 𝑎𝑘 , . . . , 𝑎1) and 𝑏′ = (𝑏1, . . . , 𝑏𝑡 , 2(𝑛− |𝑏 |), 𝑏𝑡 , . . . , 𝑏1). 𝑎′
and 𝑏′ are two compositions of 2𝑛, so Γ𝐶

𝑛 (𝑎 | 𝑏) has 2𝑛 vertices numbered from 1 up to
2𝑛. Let 𝜎 the symmetry with respect to the vertical line between the 𝑛-th and (𝑛 + 1)-th
vertices. By construction, the meander Γ𝐶

𝑛 (𝑎 | 𝑏) is 𝜎-stable.

Example 3.1.

Γ𝐶
8 (2, 5 | 1, 4) = q q q q q q q q q q q q q q q q� �� � � �� �� � � �� �� � � �� � � � � �� � � �

Theorem 3.2 ([11]). Let 𝔮𝐶𝑛 (𝑎 | 𝑏) be a seaweed subalgebra of 𝔰𝔭(2𝑛) and Γ𝐶
𝑛 (𝑎 | 𝑏)

the associated meander, we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = number of cycles + 1
2
× (number of segments that are not 𝜎-stable)

Corollary 3.3. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions such that
|𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛.

(1) ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶𝑛 (𝑏 | 𝑎)

(2) ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶max( |𝑎 | , |𝑏 | ) (𝑎 | 𝑏) + 𝑛 − max( |𝑎 |, |𝑏 |)

(3) ind 𝔮𝐶𝑛 (𝑎 | ∅) = ∑
1≤𝑖≤𝑘 [ 𝑎𝑖2 ] + (𝑛 − |𝑎 |)

(4) If there exist 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑡 such that 𝑎1 + · · · + 𝑎𝑖 = 𝑏1 + · · · + 𝑏 𝑗 , then

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐴(𝑎1, . . . , 𝑎𝑖 | 𝑏1, . . . , 𝑏 𝑗 )

+ ind 𝔮𝐶
𝑛−(𝑎1+···+𝑎𝑖 ) (𝑎𝑖+1, . . . , 𝑎𝑘 | 𝑏 𝑗+1, . . . , 𝑏𝑡 )

where 𝔮𝐴(𝑎1, . . . , 𝑎𝑖 | 𝑏1, . . . , 𝑏 𝑗 ) is the seaweed subalgebra of 𝔤𝔩(𝑎1 + · · · + 𝑎𝑖)
associated to pair ((𝑎1, . . . , 𝑎𝑖), (𝑏1, . . . , 𝑏 𝑗 )). In particular, if |𝑎 | = |𝑏 |, then

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐴(𝑎 | 𝑏) + ind 𝔮𝐶
𝑛−|𝑎 | (∅ | ∅) = ind 𝔮𝐴(𝑎 | 𝑏) + 𝑛 − |𝑎 |

Lemma 3.4. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions such that
|𝑏 | ≤ |𝑎 | ≤ 𝑛 and 𝑎−1 := (𝑎𝑘 , . . . , 𝑎1), we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶
𝑛+|𝑎 | (2|𝑎 | | 𝑎

−1, 𝑏)
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Proof. By Corollary 3.3, we may suppose |𝑎 | = 𝑛. Set 𝐼 = [1, 𝑛], 𝐼 ′ = [1, |𝑏 |] and
𝑐 = (𝑎𝑘 , . . . , 𝑎1, 𝑏1, . . . , 𝑏𝑡 ). We verify easily that 𝜃𝑎 (resp. 𝜃𝑏) is the restriction of
𝜃𝑛𝜃𝑐𝜃𝑛 (resp. 𝜃𝑛+|𝑏 |𝜃𝑐𝜃𝑛+|𝑏 |) to 𝐼 (resp. 𝐼 ′). Since meanders Γ𝐶

2𝑛 (2𝑛 | 𝑎−1, 𝑏) and
Γ𝐶
𝑛 (𝑎 | 𝑏) are 𝜎-stable, so there exists a bĳection between sets of connected components

of these two meanders which preserves the number of cycles and the number of segments
that are not 𝜎-stable (see Example 3.5). So the result follows from Theorem 3.2. □

Example 3.5. Let us consider the pair ((2, 3), (3, 1)), the blue arcs in the meander
Γ𝐶

5 (2, 3 | 3, 1) are replaced with the blue arcs in the meander Γ𝐶
10 (10 | 3, 2, 3, 1).

Γ𝐶
5 (2, 3 | 3, 1) = q q q q q q q q q q� � � �� �� � � �� 
� 


Γ𝐶
10 (10 | 3, 2, 3, 1) = q q q q q q q q q q q q q q q q q q q q� � � �� �� �� � � �� �

& %& %� �� �� �
& %& %� �� �� �

Remark 3.6. In view of Corollary 3.3 and Lemma 3.4, we may reduce the study of the
index of seaweed subalgebras of 𝔰𝔭(2𝑛) to case of seaweed subalgebras of the form
𝔮𝐶𝑛 (𝑛 | 𝑎), where 𝑎 is a composition of an integer less than or equal to 𝑛.

Lemma 3.7. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) a composition verifiying |𝑎 | ≤ 𝑛 and 𝑠 = 𝑛 − |𝑎 |. Then
for any 𝑡 ∈ N, we have

ind 𝔮𝐶𝑛+4𝑡𝑠 (𝑛 + 4𝑡𝑠 | 2𝑠, . . . , 2𝑠︸      ︷︷      ︸
𝑡

, 𝑎, 2𝑠, . . . , 2𝑠︸      ︷︷      ︸
𝑡

) = ind 𝔮𝐶𝑛 (𝑛 | 𝑎)

In particular, if 𝔮𝐶𝑛 (𝑛 | 𝑎) a Frobenius subalgebra of 𝔰𝔭(2𝑛), then for any 𝑡 ∈ N,
𝔮𝐶
𝑛+4𝑡𝑠 (𝑛 + 4𝑡𝑠 | 2𝑠, . . . , 2𝑠︸      ︷︷      ︸

𝑡

, 𝑎, 2𝑠, . . . , 2𝑠︸      ︷︷      ︸
𝑡

) is a Frobenius subalgebra of 𝔰𝔭(2(𝑛 + 4𝑡𝑠)).

Proof. By the following figure, the result is cleary true for 𝑡 = 1.

Γ𝐶
𝑛+4𝑠 (𝑛 + 4𝑠 | 2𝑠, 𝑎, 2𝑠) = q q q q q q q q q q q q q q� �� � � �� �� �� �

. . . . . .

& %& %& %& %& %
��

𝑠𝑎1 𝑎𝑘
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So the result follows by induction on 𝑡. □

Lemma 3.8. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifiying |𝑎 | ≤ 𝑛. Suppose that
there exists 1 ≤ 𝑖 ≤ 𝑘 such that |𝑎 |𝑖 := 𝑎1 + · · · + 𝑎𝑖 ≤ 𝑛 − |𝑎 |. Then we have,

ind 𝔮𝐶𝑛 (𝑛 | 𝑎)] =
∑︁

1≤ 𝑗≤𝑖

[ 𝑎 𝑗

2

]
+ ind 𝔮𝐶

𝑛−2 |𝑎 |𝑖 (𝑛 − 2|𝑎 |𝑖 | 𝑎𝑖+1, . . . , 𝑎𝑘)

In particular, if |𝑎 | ≤ [ 𝑛2 ], we have

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) =
∑︁

1≤ 𝑗≤𝑘

[ 𝑎 𝑗

2

]
+
[
𝑛 − 2|𝑎 |

2

]
Proof. Observe that the meander Γ𝐶

𝑛 (𝑛 | 𝑎) is a disjoint union of the meanders
Γ𝐶

2 |𝑎 |𝑖 (2|𝑎 |𝑖 | 𝑎1, . . . , 𝑎𝑖) and Γ𝐶
𝑛−2 |𝑎 |𝑖 (𝑛 − 2|𝑎 |𝑖 | 𝑎𝑖+1, . . . , 𝑎𝑘). On the other hand,

we verify that the meander Γ𝐶
2 |𝑎 |𝑖 (2|𝑎 |𝑖 | 𝑎1, . . . , 𝑎𝑖) has

∑
1≤ 𝑗≤𝑖 [

𝑎 𝑗

2 ] cycles and∑
1≤ 𝑗≤𝑖 [

𝑎 𝑗+1
2 ] −∑

1≤ 𝑗≤𝑖 [
𝑎 𝑗

2 ] segments that are all 𝜎-stable. So the result follows from
Theorem 3.2. □

Lemma 3.9. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifiying |𝑎 | ≤ 𝑛 and set 𝑎𝑘+1 =

𝑛 − |𝑎 |.

(1) Let 𝑎𝑖, 𝑗 = (𝑎1 + · · · + 𝑎𝑖) − (𝑎 𝑗 + · · · + 𝑎𝑘+1) and 𝑎𝑖, 𝑗 = (𝑎𝑖+1 + · · · + 𝑎 𝑗−1) + |𝑎𝑖, 𝑗 |,
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1. We have,

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) =
{

ind 𝔮𝐶
𝑛+𝑎𝑖, 𝑗 (𝑛 + 𝑎𝑖, 𝑗 | 𝑎1, . . . , 𝑎𝑖 , 𝑎

𝑖, 𝑗 , 𝑎𝑖+1, . . . , 𝑎𝑘) if 𝑎𝑖, 𝑗 < 0
ind 𝔮𝐶

𝑛+𝑎𝑖, 𝑗 (𝑛 + 𝑎𝑖, 𝑗 | 𝑎1, . . . , 𝑎 𝑗−1, 𝑎
𝑖, 𝑗 , 𝑎 𝑗 , . . . , 𝑎𝑘) if 𝑎𝑖, 𝑗 ≥ 0

(2) Let 𝑑𝑖 = (𝑎1 + · · · + 𝑎𝑖−1) − (𝑎𝑖+1 + · · · + 𝑎𝑘+1), 1 ≤ 𝑖 ≤ 𝑘 . Suppose there exists
1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖 ≥ |𝑑𝑖 |. We have

(a) ind 𝔮𝐶𝑛 (𝑛 | 𝑎)

=

{
ind 𝔮𝐶

𝑛+𝑎𝑖+𝑑𝑖 (𝑛 + 𝑎𝑖 + 𝑑𝑖 | 𝑎1, . . . , 𝑎𝑖 , 𝑎𝑖 + 𝑑𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑘) if 𝑑𝑖 < 0
ind 𝔮𝐶

𝑛+𝑎𝑖−𝑑𝑖 (𝑛 + 𝑎𝑖 − 𝑑𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 − 𝑑𝑖 , 𝑎𝑖 , . . . , 𝑎𝑘) if 𝑑𝑖 ≥ 0
(b) ind 𝔮𝐶𝑛 (𝑛 | 𝑎) = ind 𝔮𝐶

𝑛−|𝑑𝑖 | (𝑛 − |𝑑𝑖 | | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 − |𝑑𝑖 |, 𝑎𝑖+1, . . . , 𝑎𝑘).

Proof. (1). Suppose 𝑎𝑖, 𝑗 ≤ 0. It follows from the proof of Lemma 3.4 that there exists
a bĳection between the sets of connected components of the meanders Γ𝐶

𝑎𝑖, 𝑗 (𝑎𝑖, 𝑗 |
𝑎𝑖+1, . . . , 𝑎 𝑗−1) and Γ𝐶

2𝑎𝑖, 𝑗 (2𝑎𝑖, 𝑗 | 𝑎𝑖, 𝑗 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1) which preserves the number of
cycles and the number of segments that are not 𝜎-stable. This bĳection extends naturally to
a bĳection between the set of connected components of the meander Γ𝐶

𝑛 (𝑛 | 𝑎) and the set
of connected components of the meander Γ𝐶

𝑛+𝑎𝑖, 𝑗 (𝑛 + 𝑎𝑖, 𝑗 | 𝑎1, . . . , 𝑎𝑖 , 𝑎
𝑖, 𝑗 , 𝑎𝑖+1, . . . , 𝑎𝑘)
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which also preserves the number of cycles and the number of segments that are not
𝜎-stable. The result follows from Theorem 3.4. The case 𝑎𝑖, 𝑗 ≥ 0 is proved in the same
way (see Example 3.10).

(2). (a). It suffices to remark that{
𝑎𝑖,𝑖+1 = 𝑎𝑖,𝑖+1 = 𝑎𝑖 + 𝑑𝑖 if 𝑑𝑖 < 0
𝑎𝑖−1,𝑖 = −𝑎𝑖−1,𝑖 = 𝑎𝑖 − 𝑑𝑖 if 𝑑𝑖 ≥ 0

(see Example 3.11).

(b). Let 𝑏 = (𝑏1, . . . , 𝑏𝑘) such that 𝑏 𝑗 = 𝑎 𝑗 if 𝑗 ≠ 𝑖 and 𝑏𝑖 = 𝑎𝑖 − |𝑑𝑖 |. We verify that
𝑏𝑖−1,𝑖+1 = 𝑑𝑖 and 𝑏𝑖−1,𝑖+1 = 𝑎𝑖 . It follows from (1) that we have

ind 𝔮𝐶𝑛 (𝑏 | 𝑛) =
{

ind 𝔮𝐶
𝑛+𝑎𝑖+𝑑𝑖 (𝑛 + 𝑎𝑖 + 𝑑𝑖 | 𝑎1, . . . , 𝑎𝑖 , 𝑎𝑖 + 𝑑𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑘) if 𝑑𝑖 < 0

ind 𝔮𝐶
𝑛+𝑎𝑖−𝑑𝑖 (𝑛 + 𝑎𝑖 − 𝑑𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 − 𝑑𝑖 , 𝑎𝑖 , . . . , 𝑎𝑘) if 𝑑𝑖 ≥ 0

The result follows from (a). □

Example 3.10. Let us consider the composition 𝑎 = (𝑎1, 𝑎2) = (3, 2) and 𝑛 = 7, then
|𝑎 | = 5, 𝑎3 = 𝑛 − |𝑎 | = 2, 𝑎1,3 = 𝑎1 − 𝑎3 = 1 > 0 and 𝑎1,3 = 𝑎2 + 𝑎1,3 = 3. We have
ind 𝔮𝐶7 (7 | 3, 2) = ind 𝔮𝐶10 (10 | 3, 2, 3).

Γ𝐶
7 (7 | 3, 2) = q q q q q q q q q q q q q q� � � �� �� �� � � �

& %� �� 
 & %� �� 


Γ𝐶
10 (10 | 3, 2, 3) = q q q q q q q q q q q q q q q q q q q q� � � �� �� �� � � �� � � �

& %& %� �� �� �
& %& %� �� �� �

Example 3.11. Let us consider the composition 𝑎 = (𝑎1, 𝑎2) = (3, 3) and 𝑛 = 8,
then |𝑎 | = 6, 𝑎3 = 𝑛 − |𝑎 | = 2, 𝑑2 = 𝑎1 − 𝑎3 = 1 > 0 and 𝑎2 − 𝑑2 = 2. we have
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ind 𝔮8 (8 | 3, 3) = ind 𝔮10 (10 | 3, 2, 3). The blue arcs in the meander Γ𝐶
8 (8 | 3, 3) are

replaced with the blue arcs in the meander Γ𝐶
10 (10 | 3, 2, 3).

Γ𝐶
8 (8 | 3, 3) = q q q q q q q q q q q q q q q q� � � �� �� �� � � �

& %� �� �� � & %� �� �� �

Γ𝐶
10 (10 | 3, 2, 3) = q q q q q q q q q q q q q q q q q q q q� � � �� �� �� �� � � �� �

& %& %� �� �� �
& %& %� �� �� �

The following theorem is an immediate consequence of Corollary 3.3 and Lemma 3.9.

Theorem 3.12. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) a composition verifiying |𝑎 | ≤ 𝑛. We set 𝑎𝑘+1 = 𝑛−|𝑎 |
and 𝑑𝑖 = (𝑎1 + · · · + 𝑎𝑖−1) − (𝑎𝑖+1 + · · · + 𝑎𝑘+1), 1 ≤ 𝑖 ≤ 𝑘 .

(1) For any 1 ≤ 𝑖 ≤ 𝑘 and any 𝛼 ∈ Z such that 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0, we have

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) = ind 𝔮𝐶
𝑛+𝛼 |𝑑𝑖 | (𝑛 + 𝛼 |𝑑𝑖 | | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 + 𝛼 |𝑑𝑖 |, 𝑎𝑖+1, . . . , 𝑎𝑘)

In particular, for any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0, we have

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) = ind 𝔮𝐶
𝑛−𝑎𝑖+𝑎𝑖 [ |𝑑𝑖 | ] (𝑛 − 𝑎𝑖 + 𝑎𝑖 [|𝑑𝑖 |] | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 [|𝑑𝑖 |], 𝑎𝑖+1, . . . , 𝑎𝑘)

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) = 𝑎𝑖 + ind 𝔮𝐶𝑛−𝑎𝑖 (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)

Remark 3.13. The lemma 2.4 of [3] show that if the composition 𝑎 = (𝑎1, . . . , 𝑎𝑘) and
the integer 𝑛 verify |𝑎 | ≤ 𝑛, then there exists 1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖 ≥ |𝑑𝑖 | or |𝑎 | ≤ [ 𝑛2 ].

Remark 3.14. In view of Corollary 3.3, Lemma 3.4, Lemma 3.8 and Remark 3.13, the
previous theorem give a reduction algorithm allowing to compute the index of seaweed
subalgebras of 𝔰𝔭(2𝑛).
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Example 3.15. Consider the seaweed subalgebra 𝔮𝐶200 (15, 185 | 17, 61, 117) of 𝔰𝔭(400).
By Lemma 3.4, we have

ind 𝔮𝐶200 (15, 185 | 17, 61, 117) = 𝜒[𝔮𝐶400 (400 | 185, 15, 17, 61, 117)]

Then, by applying successively Theorem 3.12, we have

ind 𝔮𝐶400 (400 | 185, 15, 17, 61, 117) = ind 𝔮𝐶385 (385 | 185, 17, 61, 117)

= ind 𝔮𝐶369 (369 | 185, 1, 61, 117)

= ind 𝔮𝐶185 (185 | 1, 1, 61, 117)

= ind 𝔮𝐶69 (69 | 1, 1, 61, 1)

= ind 𝔮𝐶9 (9 | 1, 1, 1, 1)

It follows from Lemma 3.8 that we have

ind 𝔮𝐶400 (400 | 185, 15, 17, 61, 117) = ind 𝔮𝐶9 (9 | 1, 1, 1, 1)
= 0

Lemma 3.16. For any 𝑘 ∈ N× and (𝛼1, . . . , 𝛼𝑘) ∈ N𝑘 , we set 𝑎𝑘+1 = 𝑘 , 𝑎 = (𝑎1, . . . , 𝑎𝑘)
the composition defined by 𝑎𝑖 = 1+𝛼𝑖 (𝑎𝑖+1 + · · · +𝑎𝑘+1 − 𝑖+1), 1 ≤ 𝑖 ≤ 𝑘 and 𝑟 = |𝑎 | + 𝑘 .
Then 𝔮𝐶𝑟 (𝑟 | 𝑎) is a Frobenius subalgebra of 𝔰𝔭(2𝑟).

Proof. Let 𝑠𝑖 = 𝑎𝑖+1 + · · · + 𝑎𝑘+1 − 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑘 , so 𝑎𝑖 [𝑠𝑖] = 1. Using the reduction
given by Theorem 3.12, we obtain

ind 𝔮𝐶𝑟 (𝑟 | 𝑎) = ind 𝔮𝐶2𝑘−1 (2𝑘 − 1 | 1, . . . , 1︸   ︷︷   ︸
𝑘−1

)

It follows from Lemma 3.8 that we have

ind 𝔮𝐶𝑟 (𝑟 | 𝑎) = 0 □

Lemma 3.17. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifiying
|𝑏 | ≤ |𝑎 | ≤ 𝑛. Suppose 𝑎1 > 𝑏1, we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶𝑛−𝑏1
(𝑎1 − 𝑏1 − 𝑎1 [𝑎1 − 𝑏1], 𝑎1 [𝑎1 − 𝑏1], 𝑎2, . . . , 𝑎𝑘 | 𝑏2 . . . , 𝑏𝑡 )
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Proof. It follows from Corollary 3.3 that we may suppose |𝑎 | = 𝑛. Using Lemma 3.4 and
Theorem 3.12, we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏)

= ind 𝔮𝐶2𝑛 (2𝑛 | 𝑎𝑘 , . . . , 𝑎1, 𝑏)

= ind 𝔮𝐶2𝑛−𝑏1
(2𝑛 − 𝑏1 | 𝑎𝑘 , . . . , 𝑎1, 𝑏2, . . . , 𝑏𝑡 )

= ind 𝔮𝐶2𝑛−𝑏1−𝑎1+𝑎1 [𝑎1−𝑏1 ] (2𝑛 − 𝑏1 − 𝑎1 + 𝑎1 [𝑎1 − 𝑏1] | 𝑎𝑘 , . . . , 𝑎2,

𝑎1 [𝑎1 − 𝑏1], 𝑏2, . . . , 𝑏𝑡 )

= ind 𝔮𝐶2𝑛−2𝑏1
(2𝑛− 2𝑏1 | 𝑎𝑘 , . . . , 𝑎2, 𝑎1 [𝑎1 − 𝑏1], 𝑎1 − 𝑏1 − 𝑎1 [𝑎1− 𝑏1], 𝑏2, . . . , 𝑏𝑡 )

= ind 𝔮𝐶𝑛−𝑏1
(𝑎1 − 𝑏1 − 𝑎1 [𝑎1 − 𝑏1], 𝑎1 [𝑎1 − 𝑏1], 𝑎2, . . . , 𝑎𝑘 | 𝑏2 . . . , 𝑏𝑡 ) □

Lemma 3.18. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifiying
|𝑏 | = |𝑎 | = 𝑛. Suppose 𝑎1 > 𝑏1, we have

ind 𝔮𝐴(𝑎 | 𝑏) = ind 𝔮𝐴(𝑎1 − 𝑏1 − 𝑎1 [𝑎1 − 𝑏1], 𝑎1 [𝑎1 − 𝑏1], 𝑎2, . . . , 𝑎𝑘 | 𝑏2 . . . , 𝑏𝑡 )

Proof. This is a direct consequence of the previous lemma and Corollary 3.3(4). □

Theorem 3.19. Let (𝑎, 𝑏, 𝑛) ∈ (N×)3 such that 𝑏 ≤ 𝑎 ≤ 𝑛. Then the index of 𝔮𝐶𝑛 (𝑎 | 𝑏)
is given by

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) =
{
𝑛 if 𝑎 = 𝑏[
𝑎[𝑎−𝑏]

2
]
+
[
𝑎−𝑏−𝑎[𝑎−𝑏]

2
]
+ 𝑛 − 𝑎 if 𝑎 ≠ 𝑏

Proof. Suppose 𝑎 = 𝑏, the result follows from Corollary 3.3(4). Suppose 𝑎 > 𝑏, it follows
from Corollary 3.3 that we may suppose that 𝑎 = 𝑛. Using Lemma 3.17, we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶𝑎−𝑏 (𝑎 − 𝑏 − 𝑎[𝑎 − 𝑏], 𝑎[𝑎 − 𝑏] | ∅)

Hence we have the result. □

Lemma 3.20. Let 𝔮𝐶𝑛 (𝑛 | 𝑎) be a seaweed subalgebra of 𝔰𝔭(2𝑛) where 𝑎 = (𝑎1, . . . , 𝑎𝑘)
is a composition which verify |𝑎 | ≤ 𝑛. Set 𝑠 = 𝑛 − |𝑎 | and 𝑎′ = (𝑎1, . . . , 𝑎𝑘 , 𝑠). Let
us consider the seaweed subalgebra 𝔮𝐴(𝑛 | 𝑎′) of 𝔤𝔩(𝑛) associated to the pair (𝑛, 𝑎′).
Then there exist 𝛼 ∈ N and a composition 𝑐 = (𝑐1, . . . , 𝑐 𝑗 ) verifiying 𝑗 ≤ 𝑘 and |𝑐 | ≤ 𝑠

such that

ind 𝔮𝐶𝑛 (𝑛 | 𝑎) = 𝛼 + ind 𝔮𝐶
𝑠+|𝑐 | (𝑠 + |𝑐 | | 𝑐)

ind 𝔮𝐴(𝑛 | 𝑎′) = 𝛼 + ind 𝔮𝐴(𝑠 + |𝑐 | | 𝑐, 𝑠)

Proof. When 2|𝑎 | ≤ 𝑛, it suffices to consider 𝛼 = 0 and 𝑐 = 𝑎. Suppose that 2|𝑎 | > 𝑛,
it follows from [3, Lemma 2.4] that there exists 1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖 ≥ |𝑑𝑖 | (see the
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definition of 𝑑𝑖 ′𝑠 in Theorems 2.6 and 3.12). Using Theorems 2.6 and 3.12, the result
follows by induction on |𝑎 |. □

Theorem 3.21. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifiying
|𝑏 | ≤ |𝑎 | = 𝑛 and 𝑠 = |𝑎 | − |𝑏 |. Suppose that 𝑘 + 𝑡 < 𝑠, then 𝔮𝐶𝑛 (𝑎 | 𝑏) is not a Frobenius
subalgebra.

Proof. Using Lemma 3.4 and Theorem 3.12, we have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶2𝑛−𝑎1
(2𝑛 − 𝑎1 | 𝑎𝑘 , . . . , 𝑎2, 𝑏)

Suppose that 𝔮𝐶𝑛 (𝑎 | 𝑏) is a Frobenius subalgebra of 𝔰𝔭(2𝑛). It follows from Lemma 3.20
that there exists a composition 𝑐 = (𝑐1, . . . , 𝑐 𝑗 ) such that 𝑗 ≤ 𝑘 + 𝑡 − 1 < 𝑠 − 1, |𝑐 | ≤ 𝑠

and ind 𝔮𝐶
𝑠+|𝑐 | (𝑠 + |𝑐 | | 𝑐) = 0. Since |𝑐 | ≤ [ 𝑠+|𝑐 |2 ], it follows from Lemma 3.8 that

𝑐𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑗 and there exists 𝜖 ∈ {0, 1} such that 𝑗 = |𝑐 | = 𝑠 − 𝜖 . So we deduce that
𝑗 ≥ 𝑠 − 1. We have therefore a contradiction. □

Theorem 3.22. Let (𝑎, 𝑏, 𝑐) ∈ N× and set 𝑛 = max(𝑎 + 𝑏, 𝑐), 𝑝 = (𝑎 + 𝑏) ∧ (𝑏 + 𝑐) and
𝑟 = |𝑎 + 𝑏 − 𝑐 |, then

(1) If 𝑝 > 𝑟, we have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) = 𝑝 −
[
𝑟 + 1

2

]
(2) If 𝑝 ≤ 𝑟 , we have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) =
{
[ 𝑟2 ] if 𝑝 and 𝑟 have the same parity
[ 𝑟2 ] − 1 otherwise

Proof. Let us consider the case where 𝑐 ≤ 𝑎 + 𝑏 = 𝑛, it follows from Lemma 3.4 and
Theorem 3.12 that

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶2𝑛 (2𝑛 | 𝑏, 𝑎, 𝑐) = ind 𝔮𝐶𝑏+𝑐+𝑟 (𝑏 + 𝑐 + 𝑟 | 𝑏, 𝑐)

Suppose that 𝑟 = 0, we deduce from Corollary 3.3(4) and Theorem 2.5 that

ind 𝔮𝐶𝑏+𝑐+𝑟 (𝑏 + 𝑐 + 𝑟 | 𝑏, 𝑐) = ind 𝔮𝐴(𝑏 + 𝑐 | 𝑏, 𝑐) = 𝑏 ∧ 𝑐 = 𝑝

Now, we suppose that 𝑟 ≠ 0 and prove the following properties that will be useful to us,
P : Any triple (𝑥, 𝑦, 𝑧) ∈ N3 verifies one of the following conditions,

(i) 𝑥 + 𝑦 ≤ 𝑧

(ii) 𝑥 ≥ 𝑦 + 𝑧
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(iii) 𝑦 > |𝑥 − 𝑧 |

P′ : Let 𝑧 ∈ N× . For any pair (𝑥, 𝑦) ∈ N2, there exists (𝑥′, 𝑦′) ∈ N2 vérifiying
(𝑥′ + 𝑦′) ∧ (𝑦′ + 𝑧) = (𝑥 + 𝑦) ∧ (𝑦 + 𝑧) =: 𝑞
𝑥′ = 𝑧 and 𝑦′ = 𝑞 − 𝑧 if 𝑞 > 𝑧

𝑥′ + 𝑦′ ≤ 𝑧 if 𝑞 ≤ 𝑧

such that we have

ind 𝔮𝐶𝑥+𝑦+𝑧 (𝑥 + 𝑦 + 𝑧 | 𝑥, 𝑦) = ind 𝔮𝐶𝑥′+𝑦′+𝑧 (𝑥′ + 𝑦′ + 𝑧 | 𝑥′, 𝑦′)

The property P is obvious. Let us prove the property P′ by induction on the sum 𝑥 + 𝑦.
Suppose that 𝑥 + 𝑦 ≤ 𝑧, in particular 𝑞 ≤ 𝑧. The result is true with 𝑥 = 𝑥′ and 𝑦 = 𝑦′.
Suppose that 𝑥 + 𝑦 > 𝑧, it follows from the property P that 𝑥 ≥ 𝑦 + 𝑧 or 𝑦 > |𝑥 − 𝑧 |. If
𝑥 = 𝑧, in particular 𝑞 = 𝑥 + 𝑦 = 𝑦 + 𝑧 > 𝑧, the result is again true with 𝑥 = 𝑥′ and 𝑦 = 𝑦′.
If 𝑥 ≠ 𝑧, we deduce from Theorem 3.12 that we have

ind 𝔮𝐶𝑥+𝑦+𝑧 (𝑥 + 𝑦 + 𝑧 | 𝑥, 𝑦)

=

{
ind 𝔮𝐶

𝑥 [𝑦+𝑧 ]+𝑦+𝑧 (𝑥 [𝑦 + 𝑧] + 𝑦 + 𝑧 | 𝑥 [𝑦 + 𝑧], 𝑦) if 𝑥 ≥ 𝑦 + 𝑧

ind 𝔮𝐶
𝑥+𝑦 [ |𝑥−𝑧 | ]+𝑧 (𝑥 + 𝑦[|𝑥 − 𝑧 |] + 𝑧 | 𝑥, 𝑦[|𝑥 − 𝑧 |]) if 𝑦 > |𝑥 − 𝑧 |

Remark that (𝑥 [𝑦 + 𝑧] + 𝑦) ∧ (𝑦 + 𝑧) = (𝑥 + 𝑦[|𝑥 − 𝑧 |]) ∧ (𝑦[|𝑥 − 𝑧 |] + 𝑧) = 𝑞. So it suffices
to apply the induction hypothesis to the pair

(𝑥1, 𝑦1) =
{
(𝑥 [𝑦 + 𝑧], 𝑦) if 𝑥 ≥ 𝑦 + 𝑧

(𝑥, 𝑦[|𝑥 − 𝑧 |]) if 𝑦 > |𝑥 − 𝑧 |

It follows by the above properties that there exist (𝑏′, 𝑐′) ∈ N2 verifiying
(𝑏′ + 𝑐′) ∧ (𝑐′ + 𝑟) = (𝑏 + 𝑐) ∧ (𝑐 + 𝑟) = 𝑝

𝑏′ = 𝑟 and 𝑐′ = 𝑝 − 𝑟 if 𝑝 > 𝑟

𝑏′ + 𝑐′ ≤ 𝑟 if 𝑝 ≤ 𝑟

such that
ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶𝑏′+𝑐′+𝑟 (𝑏

′ + 𝑐′ + 𝑟 | 𝑏′, 𝑐′)
Suppose that 𝑝 > 𝑟, in particular 𝑏′ = 𝑟 and 𝑐′ = 𝑝 − 𝑟. We deduce from Theorem 3.12
and Lemma 3.8 that we have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) = ind 𝔮𝐶𝑏′+𝑐′+𝑟 (𝑏
′ + 𝑐′ + 𝑟 | 𝑏′, 𝑐′)] = 𝑐′ +

[ 𝑟
2

]
= 𝑝 −

[
𝑟 + 1

2

]
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Suppose that 𝑝 ≤ 𝑟, in particular 𝑏′ + 𝑐′ ≤ 𝑟. It follows from Lemma 3.8 that we have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) =
[
𝑏′

2

]
+
[
𝑐′

2

]
+
[
𝑟 − 𝑏′ − 𝑐′

2

]
Now we distinguish two cases:

• If 𝑝 is even, so the integers 𝑐′, 𝑏′ and 𝑟 are of the same parity. In particular, we
have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) =
{
[ 𝑟2 ] if 𝑟 is even
[ 𝑟2 ] − 1 if 𝑟 is odd

• If 𝑝 is odd, so there exists two integers of the opposite parity among 𝑐′, 𝑏′and
𝑟 − 𝑏′ − 𝑐′. In particular, we have

ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) =
{
[ 𝑟2 ] − 1 if 𝑟 is even
[ 𝑟2 ] if 𝑟 is odd

Suppose that 𝑎 + 𝑏 ≤ 𝑐 = 𝑛. It follows from Corollary 3.3 that ind 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) =
ind 𝔮𝐶𝑛 (𝑐 | 𝑎, 𝑏), so it suffices to remark that 𝑝 = (𝑎 + 𝑏) ∧ (𝑏 + 𝑟). □

Corollary 3.23. Let (𝑎, 𝑏, 𝑐) ∈ N× , then 𝔮𝐶𝑛 (𝑎, 𝑏 | 𝑐) is a Frobenius subalgebra of
𝔰𝔭(2𝑛) if and only if max(𝑎 + 𝑏, 𝑐) = 𝑛 and one of the following conditions holds:

(1) 𝑟 = 1 and 𝑝 = 1

(2) 𝑟 = 2 and 𝑝 = 1

(3) 𝑟 = 3 and 𝑝 = 2

Theorem 3.24. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifiying
|𝑏 | < |𝑎 | = 𝑛 and set 𝑠 = |𝑎 | − |𝑏 |. Consider the seaweed subalgebra 𝔮𝐴(𝑎 | 𝑏, 𝑠) of 𝔤𝔩(𝑛)
associated to the pair (𝑎, (𝑏1, . . . , 𝑏𝑡 , 𝑠)). Then

(1) There exists a composition 𝑑 of 𝑠 which verifies

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) − ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = ind 𝔮𝐶𝑠 (𝑑 | ∅) − ind 𝔮𝐴(𝑑 | 𝑠)

(2) (a) Suppose ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = 1, then ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = [ 𝑠−1
2 ]

(b) Suppose ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = 0, then ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = [ 𝑠+1
2 ]
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Proof. (1). It follows from Lemmas 2.4 and 3.4 that we have

ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = ind 𝔮𝐴(2𝑛 | 𝑎−1, 𝑏, 𝑠)

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶2𝑛 (2𝑛 | 𝑎−1, 𝑏)

where 𝑎−1 = (𝑎𝑘 , . . . , 𝑎1). By Lemma 3.20, there exist 𝛼 ∈ N and a composition
𝑐 = (𝑐1, . . . , 𝑐𝑢) verifiying |𝑐 | ≤ 𝑠 that we have

ind 𝔮𝐴(2𝑛 | 𝑎−1, 𝑏, 𝑠) = 𝛼 + ind 𝔮𝐴(𝑠 + |𝑐 | | 𝑐, 𝑠)

ind 𝔮𝐶2𝑛 (2𝑛 | 𝑎−1, 𝑏) = 𝛼 + ind 𝔮𝐶
𝑠+|𝑐 | (𝑠 + |𝑐 | | 𝑐)

Set

𝑑 =

{
(𝑠 − |𝑐 |, 𝑐𝑢, . . . , 𝑐1) if |𝑐 | < 𝑠

(𝑐𝑢, . . . , 𝑐1) if |𝑐 | = 𝑠

Since |𝑐 | ≤ 𝑠, we have |𝑐 | + 𝑠 − 2(𝑐1 + · · · + 𝑐𝑖−1) ≥ 2𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑢. By applying
Lemmas 3.17 and 3.18 with 𝑎1 = |𝑐 | + 𝑠 − 2(𝑐1 + · · · + 𝑐𝑖−1) and 𝑏1 = 𝑐𝑖 , 𝑖 = 1, . . . , 𝑢,
we obtain

ind 𝔮𝐴(𝑠 + |𝑐 | | 𝑐, 𝑠) = ind 𝔮𝐴(𝑑 | 𝑠)

ind 𝔮𝐶
𝑠+|𝑐 | (𝑠 + |𝑐 | | 𝑐) = ind 𝔮𝐶𝑠 (𝑑 | ∅)

Hence we have the result.

(2). (a). Suppose ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = 1, so 𝛼 = 0 and ind 𝔮𝐴(𝑑 | 𝑠) = 1. Therefore, we
have

ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶𝑠 (𝑑 | ∅) =
[ 𝑐1

2

]
+ · · · +

[ 𝑐𝑢
2

]
+
[
𝑠 − |𝑐 |

2

]
On the other hand, it follows from Theorem 2.3 that the meander Γ𝐴(𝑑 | 𝑠) of the
subalgebra 𝔮𝐴(𝑑 | 𝑠) is a segment, which implies that there are exactly two odd integers
among 𝑐1, . . . , 𝑐𝑢, 𝑠 − |𝑐 | and 𝑠. In particular,

ind 𝔮𝐶𝑛 (𝑎 | 𝑏)] =
[
𝑠 − 1

2

]
(b). Suppose ind 𝔮𝐶𝑛 (𝑎 | 𝑏) = 0. We deduce from Lemma 3.8 that 𝑐𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑢 and
|𝑐 | = 𝑠 − 𝜖, 𝜖 ∈ {0, 1}. In particular, we have

ind 𝔮𝐴(𝑎 | 𝑏, 𝑠) = ind 𝔮𝐴(𝑑 | 𝑠) =
[
𝑠 + 1

2

]
□

Corollary 3.25. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions verifiying
|𝑏 | ≤ |𝑎 | = 𝑛. Suppose that 𝑠 = |𝑎 |−|𝑏 | = 1 or 2, then 𝔮𝐶𝑛 (𝑎 | 𝑏) is a Frobenius subalgebra
of 𝔰𝔭(2𝑛) if and only if 𝔮𝐴(𝑎 | 𝑏, 𝑠) ∩ 𝔰𝔩(𝑛) is a Frobenius subalgebra of 𝔰𝔩(𝑛).
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4. Seaweed subalgebras of 𝔰𝔬(𝑝)

As we have seen in Section 2, any seaweed subalgebra of 𝔰𝔬(2𝑛 + 1) (resp. 𝔰𝔬(2𝑛)) is
conjugate, under the action of the connected adjoint group, to one of 𝔮𝐵𝑛 (𝑎 | 𝑏) (resp.
𝔮𝐷𝑛 (𝑎 | 𝑏)) where 𝑎 and 𝑏 are two compositions such that |𝑎 | ≤ 𝑛 and |𝑏 | ≤ 𝑛. We
associate to 𝔮𝐵𝑛 (𝑎 | 𝑏) the same meander as for 𝔮𝐶𝑛 (𝑎 | 𝑏). Moreover, the subalgebras
𝔮𝐵𝑛 (𝑎 | 𝑏) and 𝔮𝐶𝑛 (𝑎 | 𝑏) have the same index (see [11]). Thus all results obtained in
this article for seaweed subalgebras of 𝔰𝔭(2𝑛) are again valid for seaweed subalgebras of
𝔰𝔬(2𝑛 + 1).

Let Ξ𝑛 be the set of pairs (𝑎 = (𝑎1, . . . , 𝑎𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑡 )) verifiying: |𝑎 | = 𝑛,
|𝑏 | = 𝑛 − 1 and 𝑎𝑘 > 1 or |𝑏 | = 𝑛, |𝑎 | = 𝑛 − 1 and 𝑏𝑡 > 1.

In [12], Panyushev and Yakimova associated to each seaweed subalgebra 𝔮𝐷𝑛 (𝑎 | 𝑏) of
𝔰𝔬(2𝑛) a meander, denoted by Γ𝐷

𝑛 (𝑎 | 𝑏), in the following way:

The case (𝑎, 𝑏) ∉ Ξ𝑛. As explained in the second section, there exist two subsets 𝜋′

and 𝜋′′ of the set of simple roots 𝜋 = {𝛼1, . . . , 𝛼𝑛} such that 𝔮𝐷𝑛 (𝑎 | 𝑏) = 𝔮𝜋′ , 𝜋′′ .
Up to permutation of 𝛼𝑛−1 and 𝛼𝑛, we may assume that |𝑎 | ≠ 𝑛 − 1 and |𝑏 | ≠ 𝑛 − 1
(see [12, Proposition 3.4]). Γ𝐷

𝑛 (𝑎 | 𝑏) is the meander associated to the seaweed subalgebra
𝔮𝐶𝑛 (𝑎 | 𝑏).

The case (𝑎 = (𝑎1, . . . , 𝑎𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑡 )) ∈ Ξ𝑛. Suppose that |𝑎 | = 𝑛 and set 𝑏′ :=
(𝑏1, . . . , 𝑏𝑡−1, 𝑏𝑡 + 1). Then Γ𝐷

𝑛 (𝑎 | 𝑏) is obtained from Γ𝐶
𝑛 (𝑎 | 𝑏′) by replacing the arc

joining vertices 𝑎1 + · · · + 𝑎𝑘−1 + 1 and 𝑛 by an arc joining vertices 𝑎1 + · · · + 𝑎𝑘−1 + 1 and
𝑛 + 1, and the arc joining vertices 𝑛 + 1 and 𝑛 + 𝑎𝑘 by an arc joining vertices 𝑛 and 𝑛 + 𝑎𝑘 .
It is clear that these new arcs cross each other and they are the only arcs of Γ𝐷

𝑛 (𝑎 | 𝑏)
which verify this property, they will be called crossed arcs. Moreover, we may check easily
that the crossed arcs lie in the same cycle or in two different segments. When |𝑏 | = 𝑛,
Γ𝐷
𝑛 (𝑎 | 𝑏) is just the meander symmetric of Γ𝐷

𝑛 (𝑏 | 𝑎) with respect to the horizontal line.

Example 4.1.

Γ𝐶
10 (1, 6, 3 | 3, 2, 5) = q q q q q q q q q q q q q q q q q q q q� �� � � �� �� �� � � �� �

� �� �� � � 
 � �� �� �� 

↓

Γ𝐷
10 (1, 6, 3 | 3, 2, 4) = q q q q q q q q q q q q q q q q q q q q� �� � � �� �� �� � � �� �

� �� �� � � � � �� �� �� �
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Example 4.2.

Γ𝐶
5 (5 | 5) = q q q q q q q q q q� �� � � �� �

� �� 
 � �� 
→ Γ𝐷
5 (4 | 5) = q q q q q q q q q q� �� �� �� �

� �� 
 � �� 

Theorem 4.3 ([12]). Let 𝔮𝐷𝑛 (𝑎 | 𝑏) be a seaweed subalgebra of 𝔰𝔬(2𝑛), we have

ind 𝔮𝐷𝑛 (𝑎 | 𝑏) = number of cycles + 1
2
(number of segments that are not 𝜎-stable) + 𝜖

where 𝜖 is given by:

• If (𝑎, 𝑏) ∉ Ξ𝑛, then

𝜖 =


0 if |𝑎 | − |𝑏 | is even
1 if |𝑎 | − |𝑏 | is odd, max( |𝑎 |, |𝑏 |) = 𝑛 and the vertices 𝑛 and 𝑛 + 1

belong to the same segment of Γ𝐷
𝑛 (𝑎 | 𝑏)

−1 otherwise

• If (𝑎, 𝑏) ∈ Ξ𝑛, then

𝜖 =

{
−1 if the crossed arcs lie in the same cycle
0 otherwise

Remark 4.4. Let us keep the notations of Theorem 4.3. If (𝑎, 𝑏) ∉ Ξ𝑛, we have

ind 𝔮𝐷𝑛 (𝑎 | 𝑏) = ind 𝔮𝐶𝑛 (𝑎 | 𝑏) + 𝜖

As for 𝔰𝔭(2𝑛), we have the following properties analogous to Corollary 3.3 and
Lemma 3.4:

Lemma 4.5. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions such that
|𝑏 | ≤ |𝑎 | ≤ 𝑛. Set 𝑎−1 = (𝑎𝑘 , . . . , 𝑎1), we have

(1) ind 𝔮𝐷𝑛 (𝑎 | 𝑏) = ind 𝔮𝐷𝑛 (𝑏 | 𝑎)

(2) ind 𝔮𝐷𝑛 (𝑎 | 𝑏) = ind 𝔮𝐷
𝑛+|𝑎 | (2|𝑎 | | 𝑎

−1, 𝑏)
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Theorem 4.6. Let 𝑡 ∈ N× and 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifiying |𝑎 | ≤ 𝑡 ≤ 𝑛

and (𝑡 | 𝑎) ∉ Ξ𝑛. Set 𝑎𝑘+1 = 𝑡−|𝑎 | and 𝑑𝑖 = (𝑎1+· · ·+𝑎𝑖−1)−(𝑎𝑖+1+· · ·+𝑎𝑘+1), 1 ≤ 𝑖 ≤ 𝑘 .

(1) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0 and any 𝛼 ∈ Z such that 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0, we
have

ind 𝔮𝐷𝑛 (𝑡 | 𝑎) = ind 𝔮𝐷
𝑛+𝛼 |𝑑𝑖 | (𝑡 + 𝛼 |𝑑𝑖 | | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 + 𝛼 |𝑑𝑖 |, 𝑎𝑖+1, . . . , 𝑎𝑘)

In particular, we have

ind 𝔮𝐷𝑛 (𝑡 | 𝑎) = ind 𝔮𝐷
𝑛−𝑎𝑖+𝑎𝑖 [ |𝑑𝑖 | ] (𝑡 − 𝑎𝑖 + 𝑎𝑖 [|𝑑𝑖 |] | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 [|𝑑𝑖 |], 𝑎𝑖+1, . . . , 𝑎𝑘)

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔮𝐷𝑛 (𝑡 | 𝑎) = 𝑎𝑖 + ind 𝔮𝐷𝑛−𝑎𝑖 (𝑡 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)

Proof. Recall that in this case, we have Γ𝐷
𝑛 (𝑡 | 𝑎) = Γ𝐶

𝑛 (𝑡 | 𝑎). So, it follows from
Theorem 4.3 that

ind 𝔮𝐷𝑛 (𝑡 | 𝑎) = ind 𝔮𝐶𝑛 (𝑡 | 𝑎) + 𝜖

where 𝜖 is given by:

𝜖 =


0 if 𝑡 − |𝑎 | is even
1 if 𝑡 − |𝑎 | is odd, 𝑡 = 𝑛 and the vertices 𝑛 and 𝑛 + 1 lie in the same segment

of Γ𝐷
𝑛 (𝑡 | 𝑎)

−1 in the remaining cases

By Theorem 3.12, it remains to verify the condition on the arc joining vertices 𝑛 and 𝑛 + 1.
Now, we set

(𝑛′ | 𝑡′ | 𝑎′)

:=


(𝑛 + 𝛼 |𝑑𝑖 | | 𝑡 + 𝛼 |𝑑𝑖 | | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 + 𝛼 |𝑑𝑖 |, 𝑎𝑖+1, . . . , 𝑎𝑘)

if 𝑑𝑖 ≠ 0 and 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0
(𝑛 − 𝑎𝑖 | 𝑡 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘) if 𝑑𝑖 = 0

In particular, 𝑡′− |𝑎′ | = 𝑡− |𝑎 | and (𝑡′ | 𝑎′) ∉ Ξ𝑛′ . It follows that Γ𝐷
𝑛′ (𝑡′ | 𝑎′) = Γ𝐶

𝑛′ (𝑡′ | 𝑎′).
Remark that in the case 𝑑𝑖 = 0, the meander Γ𝐶

𝑛 (𝑡 | 𝑎) is the disjoint union of the meanders
Γ𝐶
𝑛′ (𝑡′ | 𝑎′) and Γ𝐶

𝑎𝑖
(𝑎𝑖 | 𝑎𝑖), and in the case 𝑎𝑖 + 𝛼 |𝑑𝑖 | ≥ 0, the meander Γ𝐶

𝑛′ (𝑡′ | 𝑎′) is
obtained from Γ𝐶

𝑛 (𝑡 | 𝑎) as explained in the proof of Lemma 3.9. So, we deduce that the
arc of Γ𝐶

𝑛 (𝑡 | 𝑎) joining the vertices 𝑛 and 𝑛 + 1 lies in a segment if and only if the arc of
Γ𝐶
𝑛′ (𝑡′ | 𝑎′) joining the vertices 𝑛′ and 𝑛′ + 1 lies also in a segment. □
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Remark 4.7. Let 𝑛 ≥ 2 and (𝑎 = (𝑎1, . . . , 𝑎𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑡 )) ∈ Ξ𝑛 such that
|𝑏 | = 𝑛 − 1. Set 𝑏′ := (𝑏1, . . . , 𝑏𝑡−1, 𝑏𝑡 + 1) and consider Γ𝐴(𝑎 | 𝑏′) the meander of the
seaweed subalgebra 𝔮𝐴(𝑎 | 𝑏′) of 𝔤𝔩(𝑛) whose vertices are the 𝑛 first vertices of the
meander Γ𝐷

𝑛 (𝑎 | 𝑏). So, the crossed arcs of the meander Γ𝐷
𝑛 (𝑎 | 𝑏) lie in the same cycle

if and only if the last vertex (𝑛-th vertex) of the meander Γ𝐴(𝑎 | 𝑏′) lies in a cycle of
Γ𝐴(𝑎 | 𝑏′).

Corollary 4.8. With the previous notations, we have

ind 𝔮𝐷𝑛 (𝑎 | 𝑏) =
{

ind 𝔮𝐴(𝑎 | 𝑏′) if the 𝑛-th vertex of Γ𝐴(𝑎 | 𝑏′) lies in a segment
ind 𝔮𝐴(𝑎 | 𝑏′) − 2 otherwise

In particulier, for 𝑛 ≥ 1, we have

ind 𝔮𝐷𝑛 (𝑛 | 𝑛 − 1) = |𝑛 − 2|

For the seaweed subalgebra 𝔮𝐴(𝑎 | 𝑏), we put

Ψ[𝔮𝐴(𝑎 | 𝑏)] =
{

ind 𝔮𝐴(𝑎 | 𝑏) if the 𝑛-th vertex of Γ𝐴(𝑎 | 𝑏) lies in a segment
ind 𝔮𝐴(𝑎 | 𝑏) − 2 otherwise

Theorem 4.9. Let 𝑎 = (𝑎1, . . . , 𝑎𝑘) be a composition verifiying 1 ≤ |𝑎 | = 𝑛 − 1,i.e.
(𝑛 | 𝑎) ∈ Ξ𝑛. We set 𝑎′ = (𝑎′1, . . . , 𝑎

′
𝑘
) = (𝑎1, . . . , 𝑎𝑘−1, 𝑎𝑘 + 1), 𝑑𝑘 = −(𝑎′1 + · · · + 𝑎

′
𝑘−1)

and 𝑑𝑖 = (𝑎′1 + · · · + 𝑎′
𝑖−1) − (𝑎′

𝑖+1 + · · · + 𝑎′
𝑘
), 1 ≤ 𝑖 ≤ 𝑘 − 1.

(1) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 ≠ 0 and any 𝛼 ∈ Z such that 𝑎′
𝑖
+ 𝛼 |𝑑𝑖 | ≥ 0, we

have

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = Ψ[𝔮𝐴(𝑛 + 𝛼 |𝑑𝑖 | | 𝑎′1, . . . , 𝑎
′
𝑖−1, 𝑎

′
𝑖 + 𝛼 |𝑑𝑖 |, 𝑎′𝑖+1, . . . , 𝑎

′
𝑘)]

In particular, if we set 𝑡𝑖 = 𝑎′
𝑖
− 𝑎′

𝑖
[|𝑑𝑖 |], then

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = Ψ[𝔮𝐴(𝑛 − 𝑡𝑖 | 𝑎′1, . . . , 𝑎
′
𝑖−1, 𝑎

′
𝑖 [|𝑑𝑖 |], 𝑎′𝑖+1 . . . , 𝑎

′
𝑘)]

(2) For any 1 ≤ 𝑖 ≤ 𝑘 such that 𝑑𝑖 = 0, we have

ind 𝔮𝐷𝑛 (𝑛 | 𝑎1, . . . , 𝑎𝑘) = 𝑎𝑖 + Ψ[𝔮𝐴(𝑛 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘)]

Proof. Let 1 ≤ 𝑖 ≤ 𝑘 and set (𝑛′ | 𝑎′′) the pair given by

(𝑛′ | 𝑎′′)

=

{
(𝑛 + 𝛼 |𝑑𝑖 | | 𝑎′1, . . . , 𝑎

′
𝑖−1, 𝑎

′
𝑖
+ 𝛼 |𝑑𝑖 |, 𝑎′𝑖+1, . . . , 𝑎

′
𝑘
) if 𝑑𝑖 ≠ 0 and 𝑎′

𝑖
+ 𝛼 |𝑑𝑖 | ≥ 0

(𝑛 − 𝑎𝑖 | 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1 . . . , 𝑎𝑘) if 𝑑𝑖 = 0
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Consider Γ𝐴(𝑛 | 𝑎′) the meander of 𝔮𝐴(𝑛 | 𝑎′) and Γ𝐴(𝑛′ | 𝑎′′) the meander of
𝔮𝐴(𝑛′ | 𝑎′′) obtained from Γ𝐴(𝑛 | 𝑎′) in the manner introduced in [3, Lemma 2.3]. We
verify that the last vertex of Γ𝐴(𝑛 | 𝑎′) lies in a segment of Γ𝐴(𝑛 | 𝑎′) if and only if
the last vertex of Γ𝐴(𝑛′ | 𝑎′′) also lies in a segment of Γ𝐴(𝑛′ | 𝑎′′). It follows from
Theorem 2.6 that

Ψ[𝔮𝐴(𝑛 | 𝑎′)] = Ψ[𝔮𝐴(𝑛′ | 𝑎′′)]
The result follows immediatly from the previous corollary. □

Remark 4.10. In view of Lemma 4.5, the theorems 4.6 and 1.3 provide a reduction
algorithm allowing to compute the index of seaweed subalgebras in the case of 𝔰𝔬(2𝑛).
Example 4.11. Consider the seaweed subalgebra 𝔮𝐷335 (218, 15, 102 | 33, 301) of 𝔰𝔬(670).
We verify that (218, 15, 102 | 33, 301) ∈ Ξ335. By Lemma 4.5, we have

ind 𝔮𝐷335 (218, 15, 102 | 33, 301) = ind 𝔮𝐷670 (670 | 102, 15, 218, 33, 301)
By applying Theorem 4.6, we have

ind 𝔮𝐷670 (670 | 102, 15, 218, 33, 301) = Ψ[𝔮𝐴(670 | 102, 15, 218, 33, 302)]

= Ψ[𝔮𝐴(452 | 102, 15, 33, 302)]

= Ψ[𝔮𝐴(152 | 102, 15, 33, 2)]

= Ψ[𝔮𝐴(52 | 2, 15, 33, 2)]

= Ψ[𝔮𝐴(22 | 2, 15, 3, 2)]

= Ψ[𝔮𝐴(7 | 2, 3, 2)]

= 3 + Ψ[𝔮𝐴(4 | 2, 2)]

= 3 + Ψ[𝔮𝐴(2 | 2)]
= 3 + 2 − 2
= 3

Consider the family of seaweed subalgebras of 𝔰𝔬(2𝑛) of the form 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐)
where (𝑎, 𝑏, 𝑐) ∈ (N×)3. In the case (𝑎, 𝑏 | 𝑐) ∉ Ξ𝑛, using Theorems 3.22 and 4.3,
it is not difficult to obtain a formula for the index of 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐). For the case
(𝑎, 𝑏 | 𝑐) ∈ Ξ𝑛, it follows from Lemma 4.5 and Corollary 4.8 that we may suppose
(𝑎, 𝑏 | 𝑐) = (𝑎, 𝑛 − 𝑎 − 1 | 𝑛). By Theorem 2.5, we have ind 𝔮𝐴(𝑎, 𝑛 − 𝑎 | 𝑛) = 𝑎 ∧ 𝑛. It
follows from [3, Lemma 3.3] that the last vertex of meander Γ𝐴(𝑎, 𝑛 − 𝑎 | 𝑛) lies in a
cycle if and only if 𝑎 ∧ 𝑛 ≥ 2. Thus, we have the following theorem,

Theorem 4.12. Let (𝑎, 𝑛) ∈ (N×)2 such that 𝑎 ≤ 𝑛 − 2, we have

ind 𝔮𝐷𝑛 (𝑎, 𝑛 − 𝑎 − 1 | 𝑛) = ind 𝔮𝐷𝑛 (𝑎, 𝑛 − 𝑎 | 𝑛 − 1) = | (𝑎 ∧ 𝑛) − 2|
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Corollary 4.13. Let (𝑎, 𝑏, 𝑐) ∈ (N×)3 and set 𝑝 = (𝑎 + 𝑏) ∧ (𝑏 + 𝑐), 𝑟 = |𝑎 + 𝑏 − 𝑐 | and
𝑞 = 𝑎 ∧ 𝑛. Then 𝔮𝐷𝑛 (𝑎, 𝑏 | 𝑐) is a Frobenius subalgebra of 𝔰𝔬(2𝑛) if and only if one of
the following conditions holds:

(1) 𝑟 = 1, 𝑞 = 2 and max(𝑎 + 𝑏, 𝑐) = 𝑛

(2) 𝑟 = 1, 𝑝 = 1 and max(𝑎 + 𝑏, 𝑐) = 𝑛 − 1

(3) 𝑟 = 2, 𝑝 = 1 and max(𝑎 + 𝑏, 𝑐) = 𝑛

(4) 𝑟 = 3, 𝑝 = 2 and max(𝑎 + 𝑏, 𝑐) = 𝑛 − 1

Theorem 4.14. Set F 𝐴
𝑛 := {𝔮𝐴(𝑎 | 𝑏) ⊂ 𝔤𝔩(𝑛) : ind 𝔮𝐴(𝑎 | 𝑏) = 1} and F 𝐷

𝑛 :=
{𝔮𝐷𝑛 (𝑎 | 𝑏) ⊂ 𝔰𝔬(2𝑛) : (𝑎 | 𝑏) ∈ Ξ𝑛 𝑎𝑛𝑑 ind 𝔮𝐷𝑛 (𝑎 | 𝑏) = 0}. Let 𝑎 = (𝑎1, . . . , 𝑎𝑚)
and 𝑏 = (𝑏1, . . . , 𝑏𝑡 ) be two compositions of 𝑛 such that 𝔮𝐴(𝑎 | 𝑏) ∈ F 𝐴

𝑛 . Then
the subalgebras 𝔮𝐷2𝑛 (2𝑎1, . . . , 2𝑎𝑚 | 2𝑏1, . . . , 2𝑏𝑡−1, 2𝑏𝑡 − 1) and 𝔮𝐷2𝑛 (2𝑎1, . . . , 2𝑎𝑚−1,

2𝑎𝑚 − 1 | 2𝑏1, . . . , 2𝑏𝑡 ) belong to F 𝐷
2𝑛 , and all subalgebras of F 𝐷

2𝑛 are thus obtained.
Moreover, for any 𝑛 ≥ 1, we have

F 𝐷
2𝑛+1 = ∅ and ♯F 𝐷

2𝑛 = 2♯F 𝐴
𝑛

Proof. Let (𝑐 = (𝑐1, . . . , 𝑐𝑚), 𝑑 = (𝑑1, . . . , 𝑑𝑡 )) ∈ Ξ𝑛 such that |𝑐 | = 𝑛. Let 𝑑′ =

(𝑑1, . . . , 𝑑𝑡−1, 𝑑𝑡 + 1), it is a composition of 𝑛. It follows from Corollary 4.8 that
𝔮𝐷𝑛 (𝑐 | 𝑑) is a Frobenius subalgebra of 𝔰𝔬(2𝑛) if and only if Γ𝐴(𝑐 | 𝑑′) is a cycle. On
the other hand, it follows from [3, Lemma 3.4] that Γ𝐴(𝑐 | 𝑑′) is a cycle if and only if
ind 𝔮𝐴(𝑐 | 𝑑′) = 𝑐1 ∧ . . . ∧ 𝑐𝑚 ∧ 𝑑1 ∧ . . . ∧ 𝑑𝑡−1 ∧ (𝑑𝑡 + 1) = 2. From Theorem 2.3, we
see that ind 𝔮𝐴(𝑎 | 𝑏) = 1 if and only if Γ𝐴(𝑎 | 𝑏) is a segment. We deduce moreover,
from [3, Lemma 2.6], that the map 𝔮𝐴(𝑎 | 𝑏) ↦−→ 𝔮𝐴(2𝑎1, . . . , 2𝑎𝑚 | 2𝑏1, . . . , 2𝑏𝑡 )
is a bĳection from F 𝐴

𝑛 to the set of seaweed subalgebras 𝔮𝐴(𝑎 | 𝑏) of 𝔤𝔩(2𝑛) whose
associated meander is a cycle. In particular, 𝔮𝐷2𝑛 (2𝑎1, . . . , 2𝑎𝑚 | 2𝑏1, . . . , 2𝑏𝑡−1, 2𝑏𝑡 − 1)
and 𝔮𝐷2𝑛 (2𝑎1, . . . , 2𝑎𝑚−1, 2𝑎𝑚 − 1 | 2𝑏1, . . . , 2𝑏𝑡 ) belong to F 𝐷

2𝑛 , and all subalgebras of
F 𝐷

2𝑛 are thus obtained. Moreover, the condition 𝑐1∧ . . .∧𝑐𝑚∧𝑑1∧ . . .∧𝑑𝑡−1∧(𝑑𝑡 +1) = 2
show that F 𝐷

𝑛 = ∅ when 𝑛 is an odd integer. □

In [3], we studied the family of seaweed subalgebras of 𝔤𝔩(𝑛) of the form 𝔮𝐴(𝑛 |
𝑎, . . . , 𝑎︸   ︷︷   ︸

𝑚

, 𝑏) where (𝑎, 𝑏, 𝑚) ∈ (N×)3. The index of such a subalgebra is given by the

following formula:

ind 𝔮𝐴(𝑛 | 𝑎, . . . , 𝑎︸   ︷︷   ︸
𝑚

, 𝑏) = (𝑎 ∧ 𝑏)𝜙𝑚

(
𝑎

𝑎 ∧ 𝑏
,

𝑏

𝑎 ∧ 𝑏

)
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where 𝜙𝑚 is the map defined on 𝐼 := {(𝑎, 𝑏) ∈ N×2 | 𝑎 or 𝑏 is odd} by:

𝜙𝑚 (𝑎, 𝑏) =


[𝑚2 ] + 1 if 𝑎 and 𝑏 are odd
[𝑚+1

2 ] if 𝑎 id odd and 𝑏 even
1 if 𝑎 is even and 𝑏 odd

Moreover, we explicitly described the meander Γ𝐴(𝑛 | 𝑎, . . . , 𝑎︸   ︷︷   ︸
𝑚

, 𝑏) (see [3, Lemma 3.3]).

In particular, we know that the last vertex of Γ𝐴(𝑛 | 𝑎, . . . , 𝑎︸   ︷︷   ︸
𝑚

, 𝑏) lies in a segment if and

only if (𝑎 ∧ 𝑏) = 1. Then, we deduce the following theorem:

Theorem 4.15. With the previous notations, let (𝑎, 𝑏, 𝑚) ∈ (N×)3. We set 𝑛 = 𝑚𝑎 + 𝑏 + 1
and 𝑝 = 𝑎 ∧ (𝑏 + 1). Then (𝑛, (𝑎, . . . , 𝑎︸   ︷︷   ︸

𝑚

, 𝑏)) ∈ Ξ𝑛 and we have

(1) ind 𝔮𝐷𝑛 (𝑛 | 𝑎, . . . , 𝑎︸   ︷︷   ︸
𝑚

, 𝑏) =
{
𝜙𝑚 (𝑎, 𝑏 + 1) if 𝑝 = 1
𝑝𝜙𝑚 ( 𝑎𝑝 ,

𝑏+1
𝑝
) − 2 if 𝑝 ≥ 2

(2) 𝔮𝐷𝑛 (𝑛 | 𝑎, . . . , 𝑎︸   ︷︷   ︸
𝑚

, 𝑏) is a Frobenius subalgebra if and only if 𝑝 = 2 and one of the

following conditions holds:

(a) m=1
(b) 𝑎

2 is even and 𝑏+1
2 odd

(c) 𝑎
2 is odd, 𝑏+1

2 is even and 𝑚 = 2
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