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𝐿2 hypocoercivity, deviation bounds, hitting times and Lyapunov
functions

Pierre Monmarché

Abstract

We establish that, for a Markov semi-group, 𝐿2 hypocoercivity, i.e. contractivity for a modified 𝐿2

norm, implies quantitative deviation bounds for additive functionals of the associated Markov process
and exponential integrability of the hitting time of sets with positive measure. Moreover, in the case
of diffusion processes and under a strong hypoellipticity assumption, we prove that 𝐿2 hypocoercivity
implies the existence of a Lyapunov function for the generator. A french version is available [14].

Hypocoercivité 𝐿2, inégalité de concentration, temps d’atteinte et fonctions
de Lyapunov

Résumé

On montre que, pour un semi-groupe de Markov, l’hypocoercivité 𝐿2 (c’est-à-dire la contractivité
d’une norme 𝐿2 modifiée) implique des inégalités de concentration quantitatives et l’intégrabilité
exponentielle des temps d’atteinte des ensembles de mesure positive. D’autre part, pour les diffusions et
sous une hypothèse forte d’hypoellipticité, on établit que l’hypocoercivité 𝐿2 implique l’existence d’une
fonction de Lyapunov pour le générateur associé. Une version en français est disponible [14].

1. Introduction

This note is primarily motivated by the comparison between two methods for obtaining
quantitative rates of convergence for ergodic Markov processes: functional inequalities
and entropy dissipation on the one hand, and the classical Meyn–Tweedie approach on
the other hand, based on a Foster–Lyapunov criterion together with a local Doeblin or
coupling condition. The link between these two kind of arguments is studied by Cattiaux,
Guillin and their co-authors in a series of works [2, 9, 10, 11], but mainly in the case of
reversible Markov processes, with an invariant measure that typically satisfies a Poincaré
(or similar) inequality (with respect to the Dirichlet form associated with the process).
Nevertheless, over the last decade, hypocoercivity methods of modified entropies have
proven to be able to handle non-reversible, non-elliptic and non-diffusive processes with
functional inequality arguments. Here we will focus on the Dolbeault–Mouhot–Schmeiser

This work has been partially supported by the Project EFI ANR-17-CE40-0030 of the French National Research
Agency.
Keywords: Hypocoercivité, fonctions de Lyapunov.
2020 Mathematics Subject Classification: 60J25, 35F15, 35H10.
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(DMS) method [12] for 𝐿2 hypocoercivity. A very appealing feature of the latter is that it
provides a general construction for a modified 𝐿2-norm, independently from the process.
This is quite different in a Meyn–Tweedie approach where a Lyapunov function has to be
constructed based on the dynamics of the process, which can be tricky for degenerate
processes. An example is provided by the comparison of the two works [1] and [13]
that both study the so-called Bouncy Particle process, which is a kinetic piecewise
deterministic Markov process, respectively with the DMS and the Meyn–Tweedie method.
With the Meyn–Tweedie approach, the construction of the Lyapunov function is quite
intricate and this leads to not-so-nice assumptions on the log-density of the equilibrium,
while with the DMS method the construction is standard and the conditions on the
log-density are more general and quite simpler. A natural question is thus: provided
that (hypocoercive) exponential decay holds in 𝐿2, does it exists a Lyapunov function
in the sense of Meyn–Tweedie? A positive answer is provided in [11] in the case of
elliptic reversible diffusions for which the exponential decay holds with the usual 𝐿2 norm.
The result is based on the exponential integrability of the hitting times of the process,
itself obtained from the deviation bounds on additive functionals of the process derived
in [8, 16]. These two results are interesting by themselves; in fact, in some cases, getting
estimates on the hitting times is the main question and the Lyapunov function is just an
intermediate tool to get them. Our main result is that, if the DMS method applies, then
these two results also hold. From the exponential integrability of hitting times, in the case
of strongly hypoelliptic diffusions, we construct a Lyapunov function for the generator,
which answers our initial question. In fact, as we became aware after the redaction of this
note, the deviation bounds have been established in the recent preprint [5]. To the best of
our knowledge, the other results are new.

2. Results and proofs

Consider (𝑋𝑡 )𝑡⩾0 a continuous-time conservative Markov process on a Polish space
𝐸 , with some invariant probability measure 𝜇. Denote (𝑃𝑡 )𝑡⩾0 the associated Markov
semi-group on 𝐿2 (𝜇) and 𝐿. We suppose that 𝐿 is closed and that its domain 𝐷 (𝐿) is
dense in 𝐿2 (𝜇). Denote ∥ · ∥2 and ⟨ · ⟩ the usual norm and scalar product on 𝐿2 (𝜇). Our
main assumption is the following:

Assumption 2.1. There exists 𝜌 > 0 and a symmetric bounded linear operator 𝑆 on
𝐿2 (𝜇) such that for all 𝑓 ∈ 𝐷 (𝐿),

∥𝑆 𝑓 ∥2 ⩽
1
2
∥ 𝑓 − 𝜇 𝑓 ∥2

⟨ 𝑓 , 𝐿 𝑓 + 𝑆𝐿 𝑓 ⟩ ⩽ −𝜌∥ 𝑓 − 𝜇 𝑓 ∥2
2 .
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The existence of such an 𝑆, which will be used in the present note as a black box
assumption, is in fact the main tool of the DMS method. More precisely, considering
𝜀 ∈ (0, 1) and the operator 𝐴 that are used to define the modified entropy 𝐻 in [12], we set
𝑆 = 𝜀(Id− 𝜇) (𝐴+ 𝐴∗) (Id− 𝜇)/2. It is straightforward to check that, under the assumption
(H1)–(H4) of [12], this operator 𝑆 satisfies the conditions of Assumption 2.1. Once such
an operator 𝑆 is obtained, the DMS method to obtain hypocoercive decay in 𝐿2 (𝜇) is the
following: denote 𝐵 = Id + 𝑆 and consider the scalar product and Hilbertian norm

⟨ 𝑓 , 𝑔⟩𝐵 = ⟨ 𝑓 , 𝐵𝑔⟩ , ∥ 𝑓 ∥𝐵 =
√︁
⟨ 𝑓 , 𝑓 ⟩𝐵 .

The latter is equivalent to the usual norm on 𝐿2 (𝜇), more precisely 1/2∥ 𝑓 ∥2
2 ⩽ ∥ 𝑓 ∥2

𝐵
⩽

3/2∥ 𝑓 ∥2
2. Assumption 2.1 implies that for all 𝑓 ∈ 𝐷 (𝐿) with 𝜇 𝑓 = 0,

⟨ 𝑓 , 𝐿 𝑓 ⟩𝐵 ⩽ −𝜌∥ 𝑓 ∥2
2 ⩽ −2𝜌

3
∥ 𝑓 ∥2

𝐵 .

In other words, (𝑒2𝜌𝑡/3𝑃𝑡 )𝑡⩾0 is dissipative on { 𝑓 ∈ 𝐿2 (𝜇), 𝜇 𝑓 = 0} endowed with the
scalar product ⟨ · ⟩𝐵, so that by the Lumer–Philips Theorem [17, Chapter IX, p. 250], for
all 𝑓 with 𝜇 𝑓 = 0,

∥𝑃𝑡 𝑓 ∥𝐵 ⩽ 𝑒−2𝜌𝑡/3∥ 𝑓 ∥𝐵 .

This gives an hypocoercive decay in the usual norm of 𝐿2 (𝜇):

∥𝑃𝑡 𝑓 − 𝜇 𝑓 ∥2 ⩽
√

2∥𝑃𝑡 𝑓 − 𝜇 𝑓 ∥𝐵 ⩽
√

2𝑒−2𝜌𝑡/3∥ 𝑓 − 𝜇 𝑓 ∥𝐵 ⩽
√

3𝑒−2𝜌𝑡/3∥ 𝑓 − 𝜇 𝑓 ∥2 .

In fact, given a bounded measurable function 𝑉 on 𝐸 , the same argument works for
the Feynman–Kac semigroup (𝑃𝑉

𝑡 )𝑡⩾0 on 𝐿2 (𝜇) given by

𝑃𝑉
𝑡 𝑓 (𝑥) = E𝑥

(
𝑓 (𝑋𝑡 )𝑒

∫ 𝑡

0 𝑉 (𝑋𝑠 )d𝑠
)
,

where the subscript 𝑥 denotes the starting point of the process. Indeed, denoting

Λ(𝑉) = sup {⟨ 𝑓 , (𝐿 +𝑉) 𝑓 ⟩𝐵 : 𝑓 ∈ 𝐷 (𝐿), ∥ 𝑓 ∥𝐵 = 1} ,

we get that (𝑒−𝑡Λ(𝑉 )𝑃𝑉
𝑡 )𝑡⩾0 is dissipative on (𝐿2 (𝜇), ⟨ · ⟩𝐵) and thus, for all 𝑓 ∈ 𝐿2 (𝜇),

∥𝑃𝑉
𝑡 𝑓 ∥𝐵 ⩽ 𝑒𝑡Λ(𝑉 ) ∥ 𝑓 ∥𝐵 . (2.1)

From this, following [8] and [16], we can establish the following deviation bounds:

Theorem 2.2. Under Assumption 2.1, let 𝜈 ≪ 𝜇 be a probability measure on 𝐸 and 𝑉 be
a bounded measurable function on 𝐸 . Then, for all 𝑡 ⩾ 0 and all 𝑟 ⩾ 0,

P𝜈

(
1
𝑡

∫ 𝑡

0
𝑉 (𝑋𝑠)d𝑠 − 𝜇𝑉 ⩾ 𝑟

)
⩽
√

2




 d𝜈
d𝜇






2
𝑒−𝑡ℎ (𝑟 ) ,

where

ℎ(𝑟) = 𝜌𝑟2

25∥𝑉 ∥2
2 + 6∥𝑉 ∥∞𝑟

.
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Of course, by changing 𝑉 to −𝑉 , this provides a non-asymptotic confidence interval
for the empirical mean of bounded functions.

Since the DMS method does not yield sharp estimates, we have prefered a simple
expression for ℎ(𝑟) rather than the largest estimate we could obtain.

Although a similar result is already established in [5], since the proof is nice and short,
we leave it for completeness.

Proof. Without loss of generality we suppose that 𝜇𝑉 = 0. By the Chebyshev and
Cauchy–Schwarz inequalities and using (2.1), for all 𝜈 ≪ 𝜇 and 𝜆 ⩾ 0,

P𝜈

(
1
𝑡

∫ 𝑡

0
𝑉 (𝑋𝑠)d𝑠 ⩾ 𝑟

)
⩽ 𝑒−𝜆𝑡𝑟E𝜈

(
𝑒𝜆

∫ 𝑡

0 𝑉 (𝑋𝑠 )d𝑠
)

= 𝑒−𝜆𝑡𝑟
∫
𝐸

𝑃𝜆𝑉
𝑡 1d𝜈

⩽
√

2𝑒−𝜆𝑡𝑟




 d𝜈
d𝜇






2



𝑃𝜆𝑉
𝑡 1




𝐵

⩽
√

2




 d𝜈
d𝜇






2
𝑒−𝜆𝑡𝑟+𝑡Λ(𝜆𝑉 ) . (2.2)

We now bound Λ(𝜆𝑉) in the spirit of [8]. First, from Assumption 2.1,

Λ(𝑉) ⩽ 2 sup
{
−𝜌∥ 𝑓 − 𝜇 𝑓 ∥2 + ⟨ 𝑓 , 𝑉 𝑓 ⟩𝐵 : 𝑓 ∈ 𝐷 (𝐿), ∥ 𝑓 ∥2 = 1

}
Fix 𝑓 ∈ 𝐷 (𝐿) with ∥ 𝑓 ∥2 = 1 and let 𝛾 ⩾ 0 be given by 1 + 𝛾2 = 1/(𝜇 𝑓 )2, so that

𝑔 :=
1
𝛾

(√︃
1 + 𝛾2 𝑓 − 1

)
=

√︁
1 + 𝛾2

𝛾
( 𝑓 − 𝜇 𝑓 )

satisfies 𝜇𝑔 = 0 and

𝜇(𝑔2) = 1 + 𝛾2

𝛾2

(
𝜇( 𝑓 2) − (𝜇 𝑓 )2

)
= 1 .

Moreover,

⟨ 𝑓 , 𝑉 𝑓 ⟩𝐵 =

∫
𝑉 𝑓 2d𝜇 + ⟨𝐴( 𝑓 − 𝜇 𝑓 ), (𝑉 𝑓 − 𝜇(𝑉 𝑓 ))⟩

=

∫
𝑉 𝑓 2d𝜇 + ⟨𝐴( 𝑓 − 𝜇 𝑓 ), 𝑉 ( 𝑓 − 𝜇 𝑓 )⟩ + ⟨𝐴( 𝑓 − 𝜇 𝑓 ), (𝑉 − 𝜇𝑉)⟩ 𝜇 𝑓

=
1

1 + 𝛾2

∫
𝑉

(
𝛾2𝑔2 + 2𝛾𝑔 + 1

)
d𝜇 + 𝛾2

1 + 𝛾2 ⟨𝐴𝑔,𝑉𝑔⟩ + 𝛾

1 + 𝛾2 ⟨𝐴𝑔,𝑉⟩

⩽
3𝛾2

2(1 + 𝛾2)
∥𝑉 ∥∞ + 5𝛾

2(1 + 𝛾2)
∥𝑉 ∥2 ,
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where we used the Cauchy–Schwarz inequality and the fact that ∥𝐴𝑔∥ ⩽ 1/2. As a
consequence,

⟨ 𝑓 , (𝐿 +𝑉) 𝑓 ⟩𝐵 ⩽
𝛾

1 + 𝛾2

(
−𝛾𝜌 + 3𝛾

2
∥𝑉 ∥∞ + 5

2
∥𝑉 ∥2

)
,

and for all 𝜆 ⩾ 0,

Λ(𝑉) ⩽ 2 sup
𝛾⩾0

{
𝛾

1 + 𝛾2

(
−𝛾𝜌 + 3𝛾

2
∥𝑉 ∥∞ + 5

2
∥𝑉 ∥2

)}
⩽ 2 sup

𝛾⩾0

{
𝛾

(
−𝛾𝜌 + 3𝛾

2
∥𝑉 ∥∞ + 5

2
∥𝑉 ∥2

)}
=


25∥𝑉 ∥2

2
4𝜌 − 6∥𝑉 ∥∞

if 3∥𝑉 ∥∞ < 2𝜌 ,

+∞ otherwise.

In particular, denoting

𝜆0 := 2𝜌/(3∥𝑉 ∥∞) , 𝛽 =
25∥𝑉 ∥2

2
6∥𝑉 ∥∞

,

we get

sup
𝜆>0

{𝜆𝑟 − Λ(𝜆𝑉)} ⩾ sup
𝜆∈[0,𝜆0 )

{
𝜆𝑟 − 𝛽𝜆2

𝜆0 − 𝜆

}
=

𝜆0𝑟
2

𝛽

(
1 +

√︁
1 + 𝑟/𝛽

)2 ⩾
𝜆0𝑟

2

4(𝛽 + 𝑟) = ℎ(𝑟) .

Taking the supremum over 𝜆 ∈ [0, 𝜆0) in (2.2) concludes. □

Let 𝑈 be a measurable subset of 𝐸 and 𝑇𝑈 = inf{𝑡 ⩾ 0, 𝑋𝑡 ∈ 𝑈} be the first hitting
time of 𝑈 of the process (𝑋𝑡 )𝑡⩾0.

Theorem 2.3. Under Assumption 2.1, if 𝜇(𝑈) > 0, then for all 𝜃 < ℎ(𝜇(𝑈)) and all
probability measure 𝜈 ≪ 𝜇,

E𝜈

(
𝑒𝜃𝑇𝑈

)
⩽ 1 +

√
2




 d𝜈
d𝜇






2

𝜃

ℎ (𝜇(𝑈)) − 𝜃
.

Proof. Following [11] we remark that for all 𝑡 ⩾ 0,

{𝑇𝑈 ⩾ 𝑡} ⊂
{

1
𝑡

∫ 𝑡

0
1𝑈 (𝑋𝑠)d𝑠 = 0

}
.
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Theorem 2.2 applied with 𝑉 = −1𝑈 and 𝑟 = 𝜇(𝑈) yields

P𝜈

(
−1
𝑡

∫ 𝑡

0
1𝑈 (𝑋𝑠)d𝑠 + 𝜇(𝑈) ⩾ 𝜇(𝑈)

)
⩽
√

2




 d𝜈
d𝜇






2
𝑒−𝑡ℎ (𝜇 (𝑈) ) .

Then, conclusion follows from

E𝜈

(
𝑒𝜃𝑇𝑈

)
= 1 +

∫ ∞

0
𝜃𝑒𝜃𝑡P𝜈 (𝑇𝑈 ⩾ 𝑡) d𝑡 ⩽ 1 +

√
2




 d𝜈
d𝜇






2

∫ ∞

0
𝜃𝑒𝑡 (𝜃−ℎ (𝜇 (𝑈) ) )d𝑡 . □

In particular, Theorem 2.3 implies that, for all 𝑈 with 𝜇(𝑈) > 0, 𝑊 (𝑥) := E𝑥
(
𝑒𝜃𝑇𝑈

)
is finite for 𝜇-almost every 𝑥 ∈ 𝐸 , and 𝑊 ∈ 𝐿1 (𝜇). Moreover, for 𝜃 < ℎ(𝜇(𝑈))/2,
𝑊 ∈ 𝐿2 (𝜇), and one can try to make sense of 𝐿𝑊 in 𝐿2 (𝜇) based on the theory of
Dirichlet form, see e.g. [3, Section 1.7] and references within. We won’t detail this: instead,
we will see that, in fact, we can have better under some regularity assumption.

Assumption 2.4. The transition kernel 𝑝𝑡 (𝑥, d𝑦) of the process admits for all 𝑡 > 0 and
𝑥 ∈ 𝐸 a density 𝑟𝑡 with respect to 𝜇, i.e. 𝑝𝑡 (𝑥, d𝑦) = 𝑟𝑡 (𝑥, 𝑦)𝜇(d𝑦), such that 𝑦 ↦→ 𝑟𝑡 (𝑥, 𝑦)
is in 𝐿2 (𝜇) for all 𝑥 ∈ 𝐸 with 𝑥 ↦→ ∥𝑟𝑡 (𝑥, · )∥2 locally bounded.

Under Assumptions 2.1 and 2.4, denoting 𝑇 ′
𝑈
= inf{𝑡 ⩾ 1, 𝑋𝑡 ∈ 𝑈}, then 𝑇 ′

𝑈
⩾ 𝑇𝑈 and

E𝑥

(
𝑒𝜃𝑇𝑈

)
⩽ E𝑥

(
𝑒𝜃𝑇

′
𝑈

)
= E𝑝1 (𝑥, · )

(
𝑒𝜃𝑇𝑈

)
. (2.3)

From Theorem 2.3 and the assumption on 𝑥 ↦→ ∥𝑟𝑡 (𝑥, · )∥2, 𝑊 (𝑥) is then finite for all
𝑥 ∈ 𝐸 and 𝑊 is locally bounded.

Assumption 2.5. 𝐸 is a 𝑑-dimensional C∞ manifold and 𝐿 = 𝑌0 +
∑𝑚

𝑖=1𝑌
2
𝑖

for some
𝑚 ⩾ 1 where 𝑌0, . . . , 𝑌𝑚 are bounded C∞ vector fields with all their derivative bounded,
and such that for some 𝛼 > 0 and 𝑁 ∈ N,

∀ 𝑥 ∈ 𝐸 , 𝑦 ∈ R𝑑 ,
𝑚∑︁
𝑗=1

〈
𝑌 𝑗 (𝑥), 𝑦

〉2 +
∑︁

𝑍∈𝐿𝑁

⟨𝑍 (𝑥), 𝑦⟩2 ⩾ 𝛼 |𝑦 |2 , (2.4)

where 𝐿𝑁 denotes the set of Lie brackets of 𝑌0, . . . , 𝑌𝑚 with length in ⟦1, 𝑁⟧.

Corollary 2.6. Under Assumptions 2.1, 2.4 and 2.5, let 𝑈 be a compact measurable
subset of 𝐸 with 𝜇(𝑈) > 0 and 𝜃 ∈ (0, ℎ(𝜇(𝑈))). Set 𝑊 (𝑥) = E𝑥 (𝑒𝜃𝑇𝑈 ). Then 𝑊 is in
∈ C∞ (R𝑑) ∩ 𝐿1 (𝜇) and solves the Dirichlet boundary problem

𝐿𝑊 + 𝜃𝑊 = 0 on 𝑈𝑐 , 𝑊 = 1 on 𝑈 .

In particular, in that case, 𝑊 is a Lyapunov function for 𝐿 in the sense that

𝐿𝑊 ⩽ −𝜃𝑊 + 𝐶 , 𝐶 := sup{𝐿𝑊 (𝑥) + 𝜃𝑊 (𝑥) : 𝑥 ∈ 𝑈} .
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Proof. The proof is based on [7, Theorem 5.14] and similar to the proof of (H2) ⇒ (H1)
in [11]. □

The strong hypo-ellipticity required by Assumption 2.5, which is already enforced in
the reversible case in [11], is a quite restrictive condition, especially if 𝐸 is not compact
(which is the case where Corollary 2.6 is interesting). It should be possible to prove that
𝑊 is a Lyapunov function for 𝐿 under weaker conditions, but this question exceeds the
scope of the present elementary note.

3. A few examples

The classical benchmark for hypocoercivity is the Langevin (or kinetic Fokker–Planck)
diffusion on R𝑑 × R𝑑 whose generator is

𝐿 𝑓 = 𝑣 · ∇𝑥 𝑓 − (∇𝑈 (𝑥) + 𝑣) · ∇𝑣 𝑓 + Δ𝑣 𝑓

for some 𝑈 ∈ C2 (R𝑑). Assume that
∫
R𝑑

𝑒−𝑈 (𝑥 )d𝑥 < +∞ and let 𝜇 be the probability
measure with Lebesgue density proportional to 𝑒−𝑈 (𝑥 )− |𝑣 |2/2. Assume that

lim inf
|𝑥 |→+∞

(
|∇𝑈 (𝑥) |2 − 2Δ𝑈 (𝑥)

)
> 0

and that there exists 𝑐1 > 0, 𝑐2 ∈ [0, 1) and 𝑐3 > 0 such that, on R𝑑 ,

Δ𝑈 ⩽ 𝑐1 +
𝑐2
2
|∇𝑈 |2 , |∇2𝑈 | ⩽ 𝑐3 (1 + |∇𝑈 |) .

Then, following the proof of [12, Theorem 10] (more precisely the construction of the
bounded operator 𝐴), Assumption 2.1 is satisfied, so that Theorem 2.2 and 2.3 hold. As a
comparison, the Meyn–Tweedie approach, that also yields the exponential integrability of
the hitting times, has been applied to the Langevin diffusion under various conditions on
𝑈. For instance, due to the difficulty of constructing a suitable Lyapunov function, seven
technical conditions are required in [15, Hypothesis 1.1] on 𝑈, that involve a function 𝑅

whose existence is then checked on various examples. The conditions of [12] are arguably
more general and easier to check.

As mentioned in the introduction, the comparison between [1] and [13] for the Bouncy
Particle process is similarly at the advantage of the DMS method. Other examples where
the DMS method is successfully applied (and thus where Assumption 2.1 holds) can be
found in [5] and references within.

Next, consider the strongly self-interacting diffusion studied in [4], which is the process
(𝑋𝑡 )𝑡⩾0 on the torus T𝑑 (with T = R/(2𝜋Z)) that solves

d𝑋𝑡 = d𝐵𝑡 −
∫ 𝑡

0
∇𝑥1𝑉 (𝑋𝑡 , 𝑋𝑠)d𝑠
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where (𝑥1, 𝑥2) ∈ T𝑑 × T𝑑 ↦→ 𝑉 (𝑥1, 𝑥2) ∈ R is a C∞ potential and (𝐵𝑡 )𝑡⩾0 is a stan-
dard 𝑑-dimensional Brownian motion. Under the additional assumption that 𝑉 can be
decomposed as

𝑉 (𝑥1, 𝑥2) =
𝑛∑︁
𝑗=1

𝑎 𝑗𝑒 𝑗 (𝑥1)𝑒 𝑗 (𝑥2)

where 𝑛 ∈ N∗ and, for all 𝑗 ∈ ⟦1, 𝑛⟧, 𝑒 𝑗 is an eigenfunction of the Laplacian (with〈
𝑒 𝑗 , 𝑒𝑘

〉
= 0 if 𝑗 ≠ 𝑘) and 𝑎 𝑗 ∈ R, then the process can be extended to a finite-dimensional

Markov process by setting 𝑈 𝑗 ,𝑡 =
∫ 𝑡

0 𝑒 𝑗 (𝑋𝑠)d𝑠. Indeed, (𝑋,𝑈1, . . . ,𝑈 𝑗 ) ∈ T𝑑 × R𝑛 then
solves the system of stochastic equations

d𝑋𝑡 = d𝐵𝑡 −
𝑛∑︁
𝑗=1

𝑎 𝑗∇𝑒 𝑗 (𝑋𝑡 )𝑈 𝑗 ,𝑡d𝑡

∀ 𝑗 ∈ ⟦1, 𝑛⟧ , d𝑈 𝑗 ,𝑡 = 𝑒 𝑗 (𝑋𝑡 )d𝑡 .

The basic example is 𝑉 (𝑥1, 𝑥2) = cos(𝑥1 − 𝑥2) = cos(𝑥1) cos(𝑥2) + sin(𝑥1) sin(𝑥2) when
𝑑 = 1, in which case the system reads

d𝑋𝑡 = d𝐵𝑡 + sin(𝑋𝑡 )𝑈1,𝑡d𝑡 − cos(𝑋𝑡 )𝑈2,𝑡d𝑡
d𝑈1,𝑡 = cos(𝑋𝑡 )d𝑡
d𝑈2,𝑡 = sin(𝑋𝑡 )d𝑡 .

In the general case, provided 𝑎 𝑗 > 0 for all 𝑗 ∈ ⟦1, 𝑛⟧, the process admits a unique
invariant probability measure

𝜇(d𝑥, d𝑢1, . . . , d𝑢𝑛) ∝ exp ©­«−1
2

𝑛∑︁
𝑗=1

𝑎 𝑗 |𝜆 𝑗 |2𝑢2
𝑗

ª®¬ d𝑥d𝑢1 . . . d𝑢𝑛

where 𝜆 𝑗 is the eigenvalue of the Laplacian associated to 𝑒 𝑗 . It is proven in [4, Section 5]
that the DMS method, hence Assumption 2.1, holds. As a comparison, we are aware of
unpublished attempts to construct a Lyapunov function for the system (𝑋,𝑈1, . . . ,𝑈𝑛),
that were succesful but intricate in the particular case 𝑉 (𝑥1, 𝑥2) = cos(𝑥1 − 𝑥2) and
couldn’t be extended to the general case (which highlight again the fact that constructing
a Lyapunov function is a very ad hoc task that should be repeated for every new system).

Finally, remark that Assumption 2.5 is not satisfied in the examples above (in particular,
for the Langevin and the self-interacting diffusions, 𝑌0 is not bounded). We now give an
example that ensures that the scope of Corollary 2.6 is not empty. Consider the diffusion
(𝑋𝑡 ,𝑈𝑡 )𝑡⩾0 on 𝐸 = R × T that solves{

d𝑋𝑡 = cos(𝑈𝑡 )d𝑡
d𝑈𝑡 = −𝑉 ′ (𝑋𝑡 ) sin(𝑈𝑡 )d𝑡 + d𝐵𝑡 ,
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with 𝑉 (𝑥) = 𝑥2/
√

1 + 𝑥2. This is a non-elliptic, hypoelliptic diffusion on a non-compact
space. The associated generator is 𝐿 = 𝑌0 + 𝑌2

1 with

𝑌1 = 𝜕𝑢 , 𝑌0 = cos(𝑢)𝜕𝑥 −𝑉 ′ (𝑥) sin(𝑢)𝜕𝑢 ,

which are bounded C∞ vector fields with all their derivative bounded. Consider 𝑍1 = 𝜕𝑢,

𝑍2 = [𝑌1, 𝑌0] = − sin(𝑢)𝜕𝑥 −𝑉 ′ (𝑥) cos(𝑢)𝜕𝑢
𝑍3 = [𝑌1, 𝑍2] = − cos(𝑢)𝜕𝑥 +𝑉 ′ (𝑥) sin(𝑢)𝜕𝑢 .

Then for all 𝑓 ∈ C∞ (𝐸) and all (𝑥, 𝑢) ∈ 𝐸 ,

(𝑍2 𝑓 (𝑥, 𝑢))2 ⩾
1
2

sin2 (𝑢) (𝜕𝑥 𝑓 (𝑥, 𝑢))2 − ∥𝑉 ′∥2
∞ cos2 (𝑢) (𝜕𝑢 𝑓 (𝑥, 𝑢))2 ,

and similarly for 𝑍3. Setting 𝑎1 = ∥𝑉 ′∥2
∞ + 1/2 and 𝑎2 = 𝑎3 = 1, we get that

3∑︁
𝑗=1

𝑎 𝑗

(
𝑍 𝑗 𝑓 (𝑥, 𝑢)

)2
⩾

1
2
|∇ 𝑓 (𝑥, 𝑢) |2

for all 𝑓 ∈ C∞ (𝐸) and all (𝑥, 𝑢) ∈ 𝐸 , and thus Assumption 2.5 holds.
Second, let us check that the DMS method applies here, i.e. that the conditions

(H1)–(H4) of [12] are satisfied. Let 𝜇 be the probability measure on 𝐸 with Lebesgue
density proportional to exp(−𝑉 (𝑥)). Denote 𝑄 = 𝜕2

𝑢 and 𝑇 = 𝑌0. Then by integration by
part, we see that 𝑄∗ = 𝑄 and 𝑇∗ = −𝑇 , where 𝐺∗ denotes the dual in 𝐿2 (𝜇) of an operator
𝐺. In particular, for all 𝑓 ∈ C∞

𝑐 (𝐸),∫
𝐸

𝐿 𝑓 d𝜇 =

∫
𝐸

𝑓 (𝑄∗ + 𝑇∗)1d𝜇 =

∫
𝐸

𝑓 (𝑄 − 𝑇)1d𝜇 = 0 ,

which proves 𝜇 is invariant for 𝐿. The Poincaré inequality on T states that∫
𝐸

(𝜕𝑢 𝑓 (𝑥, 𝑢))2𝑒−𝑉 (𝑥 )d𝑥d𝑢 ⩾ 4𝜋2
∫
𝐸

(
𝑓 (𝑥, 𝑢) −

∫
T
𝑓 (𝑥, 𝑣)d𝑣

)2
𝑒−𝑉 (𝑥 )d𝑥d𝑢

for all 𝑓 ∈ C∞
𝑐 (𝐸) (and thus, by density, for all 𝑓 ∈ 𝐷 (𝑄)), which is exactly the

microscopic coercivity Assumption (H1) of [12]. Denote Π 𝑓 (𝑥, 𝑢) =
∫
T
𝑓 (𝑥, 𝑣)d𝑣. Then

𝑇Π 𝑓 (𝑥, 𝑢) = cos(𝑢)𝜕𝑥
∫
T
𝑓 (𝑥, 𝑣)d𝑣 ,

and in particular, since
∫
𝑇

cos(𝑢)d𝑢 = 0, 𝑇Π𝑇 = 0, which is (H3) of [12]. Moreover,
integrating by part again,

(𝑇Π)∗ 𝑓 (𝑥, 𝑢) =
∫
T

cos(𝑣) (𝑉 ′ (𝑥) 𝑓 (𝑥, 𝑣) − 𝜕𝑥 𝑓 (𝑥, 𝑣)) d𝑣 ,
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so that

(𝑇Π)∗𝑇Π 𝑓 (𝑥, 𝑢) =
∫
T

cos(𝑣)2
(
𝑉 ′ (𝑥)𝜕𝑥 − 𝜕2

𝑥

) ∫
𝑓 (𝑥, 𝑤)d𝑤d𝑣

=
1
2

(
𝑉 ′ (𝑥)𝜕𝑥 − 𝜕2

𝑥

)
Π 𝑓 (𝑥, 𝑢) .

As a consequence,∫
𝐸

(𝑇Π 𝑓 )2 d𝜇 =
1
2

∫
R
(𝜕𝑥Π 𝑓 )2 𝑒−𝑉 ⩾

1
2
𝐶𝑃

∫
(Π 𝑓 − 𝜇 𝑓 )2 d𝜇 ,

where 𝐶𝑃 is the Poincaré constant of the measure 𝑒−𝑉 . This is the macroscopic coercivity
condition (H2) of [12]. In view of the expression of (𝑇Π)∗𝑇Π, the last condition (H4)
of [12] follows from [12, Lemma 4]. As a consequence, Assumption 2.1 holds.

Finally, let us prove that Assumption 2.4 holds. Denoting 𝑈𝑡 = 𝑈𝑡 + 𝜋, remark that{
d𝑋𝑡 = − cos(𝑈𝑡 )d𝑡

d𝑈𝑡 = 𝑉 ′ (𝑋𝑡 ) sin(𝑈𝑡 )d𝑡 + d𝐵𝑡 .

In other words (𝑋𝑡 ,𝑈𝑡 + 𝜋)𝑡⩾0 is a Markov process with generator 𝐿∗ (this is reminiscent
of the change of variable 𝑤 = −𝑣 for the Langevin process). Denoting 𝑝𝑡 and 𝑝∗𝑡 the
transition kernels of 𝐿 and 𝐿∗, we thus have, for all (𝑥, 𝑢), (𝑦, 𝑤) ∈ 𝐸 ,

𝑝𝑡 ((𝑦, 𝑤), (𝑥, 𝑢)) = 𝑝∗𝑡 ((𝑥, 𝑢), (𝑦, 𝑤)) = 𝑝𝑡 ((𝑥, 𝑢 − 𝜋), (𝑦, 𝑤 − 𝜋)) .

Since 𝜇 is invariant by the transformation (𝑥, 𝑢) ↦→ (𝑥, 𝑢 − 𝜋), the densities 𝑟𝑡 = 𝑝𝑡/𝜇
and 𝑟∗𝑡 = 𝑝𝑡/𝜇 satisfy the same relation. From [6, Theorem 1.5], Assumption 2.5 implies
that 𝑝𝑡 ((𝑥, 𝑢), (𝑦, 𝑤)) ⩽ 𝐶 (1 ∧ 𝑡)−𝑀 for some 𝐶, 𝑀 > 0 uniformly in (𝑥, 𝑢), (𝑦, 𝑤) ∈ 𝐸 .
Then we bound

∥𝑟𝑡 ((𝑥, 𝑢), · )∥2
2 =

∫
𝐸

𝑟𝑡 ((𝑥, 𝑢), (𝑦, 𝑤)) 𝑟𝑡 ((𝑦, 𝑤 + 𝜋), (𝑥, 𝑢 + 𝜋)) 𝑒−𝑉 (𝑦)d𝑦d𝑤

⩽
𝐶𝑒𝑉 (𝑥 )

(1 ∧ 𝑡)𝑀

∫
𝐸

𝑟𝑡 ((𝑥, 𝑢), (𝑦, 𝑤)) 𝑒−𝑉 (𝑦)d𝑦d𝑤 =
𝐶𝑒𝑉 (𝑥 )

(1 ∧ 𝑡)𝑀
,

which establishes Assumption 2.4.
As a conclusion, Corollary 2.6 holds for the process (𝑋𝑡 ,𝑈𝑡 )𝑡⩾0. Moreover, Theorem 2.3,

Inequality (2.3) and the quantitative bound on ∥𝑟𝑡 ((𝑥, 𝑢), · )∥2 yield

E(𝑥,𝑢)
(
𝑒𝜃𝑇𝑈

)
⩽ 𝐶𝑒

1
2𝑉 (𝑥 )

for some 𝐶 > 0 for all 𝑥 ∈ 𝐸 all set 𝑈 with 𝜇(𝑈) > 0 and all 𝜃 < ℎ (𝜇(𝑈)).
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