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An introduction to constructive algebraic analysis and its applications

CHAPTER 1

Algebraic analysis approach to mathematical systems theory

“La science ne s’apprend pas : elle se comprend. Elle n’est pas lettre morte et les
livres n’assurent pas sa pérennité : elle est une pensée vivante. Pour s’intéresser
a elle, puis la maitriser, notre esprit doit, habilement guidé, la redécouvrir, de
méme que notre corps a dii revivre, dans le sein maternel, I’évolution qui créa
notre espéce ; non point tous ses détails, mais son schéma. Aussi n’y a-t-il qu'une
facon efficace de faire acquérir par nos enfants les principes scientifiques qui sont
stables, et les procédés techniques qui évoluent rapidement : c’est donner a nos
enfants I'esprit de recherche.”

Jean Leray, dans M. Schmidt, Hommes de Sciences : 28 portraits, Hermann, 1990.

The purpose of this chapter is to give a short introduction to basic ideas, concepts and re-
sults of constructive algebraic analysis. Algebraic analysis, pioneered by Malgrange and the
Japanese school of Sato, is a mathematical theory which studies linear systems of partial dif-
ferential equations (PDEs) based on module theory, homological algebra and sheaf theory (see
[10, 11, 13, 44, 45, 66, 67] and the references therein). Basic algebraic analysis has recently been
studied within a constructive viewpoint (see, e.g., [5, 16, 19, 66, 77, 78, 85, 89, 97, 98, 103, 104, 116]).
The module-theoretic approach to linear ordinary differential (OD) or partial differential (PD) sys-
tems developed within the algebraic analysis approach gives a powerful mathematical framework for
the study of the structural properties of general linear differential systems (determined, overdeter-
mined, underdetermined). In particular, the module characterizations of the structural properties
developed in this approach are intrinsic in the sense that they do not depend on particular rep-
resentations of the linear PD system. Using powerful tools of homological algebra, we can obtain
general characterizations for the module properties (e.g., existence of torsion elements, torsion-free,
reflexive, projective, stably free, free). Using constructive algebra (e.g., noncommutative Grob-
ner or Janet bases), those homological characterizations can be made constructive and can be
implemented in dedicated symbolic computation packages (e.g., OREMODULES, OREMORPHISMS,
QUILLENSUSLIN, STAFFORD, SERRE, PURITYFILTRATION). Finally, the module properties have
important interpretations in mathematical systems theory and mathematical physics (e.g., exis-
tence of autonomous elements or (minimal/injective/chain of) parametrizations).

1. LINEAR SYSTEMS AND FINITELY PRESENTED LEFT D-MODULES

We recall that the definition of a left D-module (resp., right D-module) M is the same as the one
of a k-vector space but where the field k is replaced by a ring D and the elements of D act on the
left (resp., right) of M, namely, for all my, my € M and all dy, ds € D, we have dy m1+dymg € M
(resp., m1dy + mads). In particular, a k-vector space is a k-module and an abelian group is a
Z-module. For more details, see, e.g., [15, 65, 110].

Within algebraic analysis (see, e.g., [10, 11, 13, 16, 44, 45, 66, 85] and the references therein), a
linear functional system (e.g., linear systems of ODEs or PDEs, OD time-delay equations, difference
equations) can be studied by means of module theory and homological algebra ([15, 65, 110]).
More precisely, if D is a noncommutative polynomial ring of functional operators (e.g., OD or PD
operators, time-delay operators, shift operators, difference operators), R € D?*P a ¢ X p matrix
with entries in D and F a left D-module, then the linear functional system

kerr(R.) £ {n € F? | Rn=0}

i.e., the abelian group formed by the F-solutions of Rn = 0, can be studied by means of the left
D-module M & D' P/(D'*4 R) finitely presented by the matrix R. Indeed, Malgrange’s remark
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([67]) asserts the existence of the following abelian group isomorphism (i.e., Z-isomorphism)
kerz(R.) = homp (M, F),

where homp (M, F) is the abelian group of left D-homomorphisms from F to M (i.e., maps f :
M — F satisfying f(d1 m1+do mz) =d; f(m1)+d2 f(TILQ) for all dq, do € D and all mi, Mo € M)
and = denotes an isomorphism, i.e., a bijective homomorphism.

Let us describe this isomorphism. To do that, we first give an explicit description of M in
terms of generators and relations. Let m : DY — M = DY¥P/(D1*?¢ R) be the canonical
projection onto M, namely, the left D-homomorphism which sends a row vector of D'*P of length
p to its residue class w(\) in M, {f;}j=1,..p the standard basis of D'*P  namely, f; is the row
vector of length p defined by 1 at the j™ entry and 0 elsewhere, and y; = m(f;) the residue
class of f; in M for j = 1,...,p. Since every element m € M is the residue class of an element
A= (A1 ... Ap) € DY¥P_then, using the left D-linearity of the left D-homomorphism 7, we get

P p P
m:ﬂ'(A):ﬂ' Z)\jfj :ZAjﬂ(fj):Z)‘jij
j=1 Jj=1 J=1

which shows that {y,},;=1,.., is a family of generators of the left D-module M. Moreover, if we
denote by R;e the i*! row of the matrix R, then R;s € D'*9 R, which yields 7(R;,) = 0 and thus

p p p
(1) m(Ris) =7 | Y _Rijfi | =Y Riym(f;)) =Y Rijy; =0, i=1,....4q
j=1 j=1 j=1

which shows that the set of generators {y;};=1,... , of M satisfies the left D-linear relations (1) and
all their left D-linear combinations. If y = (y1 ... yp) € MP, then (1) becomes Ry = 0.

Now, let x : kerg(R.) — homp (M, F) be the Z-homomorphism defined by x(n) = ¢, for all
n € kerg(R.), where ¢,(m(\)) = An € F for all A € D'*P. The Z-homomorphism ¢, is well-
defined since 7(\) = m(X') yields 7(A — X)) =0, i.e., A\ — A = p R for a certain g € D'*9, and thus
On(m(N) = An = Nn+pRn = XNn = ¢,(m(X\)). Moreover, x is injective since ¢, = 0 yields
An =0 forall A\ € DY P and thusn; = fyp=0forall j =1,...,p, i.e,, n=0. It is also surjective
since for all ¢ € homp (M, F), n = (¢p(y1) ... d(yp))T € FP satisfies x(n) = ¢ and:

p p p
D Rijni =Y Rijéy)=6¢|> Rijy; | =(0)=0.
Jj=1 j=1 j=1

Thus, the Z-homomorphism Y is an isomorphism and x~! : homp (M, F) — kerz(R.) is defined
by x H(¢) = (¢(y1) ... ¢(yp))T for all ¢ € homp(M,F). Let us sum up Malgrange’s remark.

Theorem 1.1 ([67]). Let D be a ring, R € DY*P a matriz, M = D'*P /(D> R) the left D-module
finitely presented by R, w: D'*P — M the canonical projection onto M, {f;};=1,.., the standard
basis of D**?, y; = w(f;) for j = 1,...,p, and F a left D-module. Then, we have the following
abelian group isomorphism:
homp(M,F) — kerg(R.)={neFP|Rn=0}

¢ — n=(dy) ... dyp))"

Hence, there is a one-to-one correspondence between the elements of homp (M, F) and kerz(R.).

(2)

Remark 1.1. Theorem 1.1 shows that the linear functional system kerz(R.) can be studied by
means of the finitely presented left D-module M = D'*?/(D1*4 R) and the left D-module F: M
intrinsically describes the linear system of equations defined by the matrix R € D?*P and F is the
functional space where we seek the solutions of the linear functional system.

A differential ring (A, {d1,...,0,}) is a commutative ring A equipped with commuting deriva-
tions 6; : A — A for i = 1,...,n, namely, maps satisfying

Val, a9 GA, (52'05]' :(SjO(Si, 52'(041 +(12) :52'(&1)-’-(51'(&2), (51‘((11 ag) :(51'((11)(12-}—0,1 5i(a2),
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for all 4,5 = 1,...,n. If we take a3 = ag = 1, then the above equality yields §;(1) = 24;(1), i.e.,
5;(1) = 0. Hence, if A is a field, then d;(a) a4+ ad;(a™!) = §;(aa™t) = 6;(1) = 0, which shows
that the derivation 6; satisfies 6;(a™!) = —a=2§;(a). A is then called a differential field.

We shall mainly focus on the differential rings A = k[z1,...,2,], k[z1,...,2,] (i-e., the ring of
formal power series at 0 with coefficients in k), where k is a field of characteristic 0 (e.g., Q, R, C),
and k{xi,...,2,} where k = R or C (i.e., the ring of locally convergent power series at 0 or
the ring of germs of real analytic or holomorphic functions at 0) and the differential fields k or

k(xy1,...,2,), where k is a field, equipped with the derivations { o .. 0 }

Oz’ Y Oy

The ring D of PD operators in 01, ..., 0, with coefficients in the commutative differential ring
(A, {61,...,0,}), simply denoted by D = A(d1,...,0,), is the noncommutative polynomial ring
in the 9;’s with coefficients in the commutative ring A satisfying:

Yace A, Vi, j=1,...,n, 81'8]':6]'81', aia:a8i+5i(a).

An element d € D can be written as d = Zo<\u|<r a, 0¥, where a, € A, v = (vy,...,v,)T € N,
lv|=wv1+4+...+v, and 9¥ = 07" ... 04"

n

The first (resp., second) Weyl algebra is defined by A, (k) = klz1,...,2,](01,...,0,) (resp.,
B, (k) = k(x1,...,2,)(01,...,0n)). If n = 1, then we shall simply use the notations § = %
instead of d1, J instead of 9y and klt], k(t), k[t] and k{t} instead of k[z], k(z), k[z] and k{x}.

More generally, we can consider the noncommutative polynomial rings of functional operators
D = A(01,...,0,), where A =k[z1,...,2y], k is a field,

(3) Vi,j=1,....,m, VYi=1,...,n, 6¢8j:8j8i, 8¢xl:(aﬂxk+bil)8i+cil,

and a;; € k\ {0}, by € k, ¢;y € A and deg(c;;) < 1, such as Ore algebras ([18]). For instance, the
ring of OD time-delay operators or the ring of OD and difference operators are Ore algebras.

Example 1.1. The linearization of the Navier-Stokes equations around the parabolic Poiseuille
profile is defined by the following linear PD system with polynomial coefficients:

Opdur +4y (1 —y) Oy dur — 4 (2y — 1) dug — v (92 4 02) duy + 9, 6p = 0,
(4) 8t§uQ+4y(1fy)az(squu(ag+5‘§)6uQ+8y5p:0,

Oz duq + 8y dug = 0.

If we denote by D = A3(Q(v)) the first Weyl algebra of PD operators in 0;, 0, and J, with
coefficients in Q(v)[t, z,y|, then (4) is defined by the following matrix of PD operators

5t+4y(1—y)8x—u(8§+3§) —4(2y—-1) Oy
R= 0 Oh+4y(l—y) 0, —v(02+02) 9, | € D,
Oy Oy 0

and the generators {du; = w(f1),dus = m(f2),dp = 7(f3)} of the finitely presented left D-module
M = D'3/(D'*3 R) satisfy the left D-linear relations generated by (4), where {f;};=123 is
the standard basis of D**3 and 7 : D'*3 — M the canonical projection onto M. Finally, if
F is a left D-module (e.g., C®°(R; x R?)), then the F-solutions of the linear system (4), i.e.,
kerg(R.) = {n= (du; dus dp)T € F*| Rn =0}, is Z-isomorphic to homp (M, F).

If M and F are two left D-modules, then homp (M, F) usually has an abelian group structure.
Indeed, if homp (M, F) has a left D-module structure defined by (d f)(m) = f(dm), for all d € D
and all m € M, then, according to the definition of a left D-module, for all d, d’ € D and for all
f € homp (M, F), we have (dd') f = d(d’ f), and thus:

(dd' f)(m) = f(dd m),
(d(d' f))(m) = (d' f)(dm) = f(d' dm),

But, f(dd' m) and f(d'dm) are not necessarily equal for all d, d € D and all m € M.

= f(dd'm)= f(d dm).
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Example 1.2. Let us consider the first Weyl algebra D = A;(Q(m,0)), R = (0 + (t —m)/c?),
the finitely presented left D-module M = D/(D R) and the left D-module F = C*°(R). Then,

(t=m)

the Gaussian distribution n = e~ 272 belongs to kerz(R.) since we can easily check that:

t_
877—|—( 2m)77:0.
ag

But, neither 97 nor ¢ 7 belong to kerz(R.):

aan+@§£Qan=—@§§ﬁan—§5n+
8&m+@;fw@m—t<&H(t;mn@>+n—n¢0

Therefore, kerz(R.) = {n € F | Rn = 0} has no left D-module structure which, by Theorem 1.1,
implies that homp (M, F) is only an abelian group and a Q(m, o)-vector space.

t—m 1
(ﬁ)6n=—;n#a

If D is a commutative ring, then homp (M, F) inherits a D-module structure defined by:
Vde D, YmeM, (df)(m)=f(dm).

We recall that a ring D is called a domain if it does not contain non-trivial zero divisors, i.e.,
dy do = 0 implies d; = 0 or do = 0. Moreover, D is a left noetherian ring if every left ideal of D
(i.e., every left D-submodule of D) is finitely generated, i.e., can be generated by a finite family of
generators as a left D-module. Similarly, we can define the concept of a right noetherian ring. A
ring is simply called noetherian if it is both a left and a right noetherian ring ([54, 110]). A result
due to Goldie ([71]) proves that a left (resp., right) noetherian domain is a left (resp., right) Ore
domain, namely, a domain satisfying the left (resp., right) Ore property, i.e., for all d;, da € D\ {0},
there exist ey, e3 € D\ {0} such that e; d; = ez da (resp., di e; = dae2).

Example 1.3. The rings A(01,...,0,) of PD operators with coefficient in the differential ring

o A =Fk, where k is a field,

o A=Fklxy,...,xn], k(z1,...,2,) or k[z1,...,2,], where k is a field,

o A=Fk{xy,...,x,}, where k=R or C,
are noetherian domains, and thus Ore domains ([71]). Moreover, if k is a computable field (e.g.,
Q or F, for a prime p), A = k, klz1,...,2,] or k(z1,...,2,), and R € D7*P, then, for any
admissible term order, Buchberger’s algorithm terminates and it computes a Grébner basis of the
left D-submodule D'*9 R of D'*P for the corresponding term order. For more details, see, e.g.,
[18, 34, 58] and the references therein. A similar result holds for the Ore algebras satisfying (3).
For an introduction to Grébner basis techniques, see [8, 18, 58] and the references therein. Finally,
Janet basis techniques can also be used to constructively study module theory over the same classes
of noncommutative polynomial rings (e.g., rings of PD operators) ([12, 40, 84, 109]).

We recall a few definitions of module theory we shall use in what follows (see, e.g., [54, 110]).
Definition 1.1. Let D be a left noetherian domain and M a finitely generated left D-module,
namely, M can be generated by a finite family of elements of M as a left D-module.

(1) M is free if there exists r € N = {0,1,...} such that M = D'*". Then, r is called the
rank of the free left D-module M and is denoted by rankp(M).
(2) M is stably free if there exist 7, s € N such that M @ D'** = D*", Then, r — s is called
the rank of the stably free left D-module M.
(3) M is projective if there exist r € N and a left D-module N such that M & N = D7,
where & denotes the direct sum of left D-modules.
(4) M is reflexive if the following canonical left D-homomorphism
e: M — homp(homp(M,D),D),
m o e(m),
where e(m)(f) = f(m) for all f € homp(M, D) and all m € M is a left D-isomorphism.
(5) M is torsion-free if the torsion left D-submodule of M

t(M)={meM|3deD\{0}: dm=0}
is reduced to 0, i.e., if (M) = 0. The elements of (M) are the torsion elements of M.
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(6) M is torsion if t(M) = M, i.e., if every element of M is a torsion element of M.
(7) M is cyclic if M is generated by m € M, i.e., M = Dm 2 {dm | d € D}.

Remark 1.2. The fact that ¢(M) is a left D-submodule of M is a consequence of the left Ore
property of D (which comes from the left noetherian domain property). Indeed, for all mq, mq €
t(M) and all dy, do € D, we need to prove that dy my + damo € t(M). Since my, my € t(M),
there exist p1, p2 € D\ {0} such that p; m; = 0 and ps ma = 0. Using the left Ore property of D,
there exist non-trivial r1, ro, s1, Sa, t1, to € D satisfying:

ripr =s1di, 7r2p2=sads, 1181 =t23s.
Therefore, we get
(t1s1) (dim1 +dama) =t (s1.d1) m1 +t2 (s2d2) ma = t1 71 (p1ma) + t27r2 (p2m2) =0,
which shows that dy my + do ma € t(M) since 0 # t; s1 € D.

In the forthcoming Theorem 3.1, we shall explain how the module properties introduced in
Definition 1.1 can be constructively checked when Grobner basis techniques are available for a
noncommutative polynomial ring D. We shall then give explicit examples.

A free left D-module M = D'*" is clearly stably free since we can take s = 0 in 2 of Definition 1.1
and a stably free left D-module is projective since we can take N = D'*¢ in 3 of Definition 1.1.
Moreover, if M is a projective left D-module, then M is a reflexive left D-module since M is a
direct summand of a finite free left D-module F' = D'*" and F is a reflexive left D-module. If M
is a reflexive left D-module and m € ¢(M), then there exists d € D \ {0} such that dm = 0, and
thus d f(m) = f(dm) = f(0) =0 for all f € homp(M, D), i.e., f(m) =0 since d # 0, f(m) € D
and D is a domain, which shows that e(m)(f) = f(m) = 0 for all f € homp(M, D) and proves
that e(m) =0, i.e., m € kere = 0, and thus ¢(M) = 0.

Proposition 1.1 ([110]). A free left D-module is stably free, a stably free left D-module is projec-
tive, a projective left D-module is reflexive and a reflexive left D-module is torsion-free.

The converse of the results of Proposition 1.1 are generally not true. However, it holds in
particular interesting situations.

Theorem 1.2 ([54, 107, 111, 115]). (1) If D is a principal left ideal domain, namely, every

left ideal of the domain D is cyclic (e.g., the ring A{D) of OD operators with coefficients in
A=k, k(t) and k[t][t™1], where k is a field of characteristic 0, or k{t}[t'], where k = R
or C), then every finitely generated torsion-free left D-module is free.

(2) If D = klz1,...,2,] is a commutative polynomial ring with coefficients in a field k, then
every finitely generated projective D-module is free (Quillen-Suslin theorem).

(3) If D is the Weyl algebra A, (k) or B, (k), where k is a field of characteristic 0, then every
finitely generated projective left D-module is stably free and every finitely generated stably
free left D-module of rank at least 2 is free (Stafford’s theorem,).

In 1955, Serre wrote “On ignore s’il existe des A-modules projectifs de type fini qui ne soient
pas libres”, where A = k[x1,...,x,] and k a field (page 243 of [112]). In 1976, this remark, called
“Serre’s conjecture” ([55]), was independently solved by Quillen ([107]) and Suslin ([115]).

The purpose of the next sections is to explain how to check whether or not a finitely presented
module M over a noetherian domain D is respectively torsion-free, projective, stably free or free,
and give applications of these concepts to mathematical systems theory.

2. FINITE FREE RESOLUTIONS AND EXTENSION FUNCTOR

“S’il est vrai que la mathématique est la reine des sciences, qui est la reine de la
mathématique 7 La suite exacte !”, Henri Cartan, Oberwolfach, 1952.
“...IfI could only understand the beautiful consequence following from the concise
proposition d?> = 0”7, Henri Cartan, Laudatio on receiving the Doctor Honoris
Causa degree at Oxford University, 1980.
To simplify the notations, the set FP*! of column vectors of length p with coefficients in F will
be denoted by FP. Let us recall basic concepts of homological algebra (see, e.g., [15, 65, 110]).
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Definition 2.1. (1) A complez of left (resp., right) D-modules, denoted by
(5) My o8 g D g Ay, S

is a sequence of left (resp., right) D-homomorphisms d; : M; — M;_; between left (resp.,
right) D-modules which satisfy imd;+; C kerd;, i.e., d; od;11 =0 for all ¢ € Z.
(2) The defect of exactness of (5) at M; is the left (resp., right) D-module defined by:

Hi(M.) £ ker dz/ll’n di+l-

(3) The complex (5) is said to be exact at M; it H;(M,) =0, i.e., ker d; = imd; 1, and ezact
if ker d; = imd;41 for all i € Z. An exact complex is also called an ezact sequence.

(4) The exact sequence of the form 0 — M’ S Lo — 0, i.e., f is injective,
ker g = im f and g is surjective, is called a short exact sequence.
(5) A finite free resolution of the left D-module M is an exact sequence of the form

(6) LB plxrs B pixes B, pros B plae Ty,
where R; € D™ *"i-1 and .R; : D'X" — D!X7i-1 is the left D-homomorphism defined by
(.R;)(\) = AR, for all A\ € D'*"i,
(6) A finite free resolution of a right D-module N is an exact sequence of the form

(7) 0 N & poo S psr B2 pea Ss pes Sae

where S; € D%-1%% and S;.: D% — D®-1 ig defined by (S;.)(n) = S;n for all n € D%i.

(7) A short exact sequence 0 — M’ oM L M” — 0 of left D-modules is said to split
if one of the following equivalent assertions holds:
e There exists a left D-homomorphism A : M"” — M such that g o h = idps».
e There exists a left D-homomorphism % : M — M’ such that ko f = idp.
e There exists a left D-isomorphism from M’ @& M" to M, i.e., M = M' & M".
We denote the previous split short exact sequence by the following diagram:

0— M L M L oo
(8) k h
— —

Example 2.1. If D is a noetherian domain and M is a finitely generated left D-module, then we

have the short exact sequence 0 — t(M) —— M £ M/t(M) — 0 of left D-modules, where i
(resp., p) denotes the canonical injection (resp., projection).

Example 2.2. If M is aleft D-module, m € M and annp(m) = {d € D | dm = 0} the annihilator
of m, then annp(m) is a left ideal of D and the following short exact sequence holds

OHannD(m)HDLDm—»O

where the left D-homomorphism f is defined by f(d) = dm for all d € M. Hence, we get
Dm = im f = coim f & D/annp(m). If annp(m) = 0, then Dm = D, which proves that Dm
is a free left D-module of rank 1. If annp(m) # 0, then Dm is a torsion left D-module since
D/annp(m) is a torsion left D-module generated by the residue class of 1 in D/annp(m).

If D is a left noetherian ring and M is a finitely generated left D-module, then M admits a finite
free resolution. Indeed, if {y;};=1,...r, is a finite family of generators of M, then we can define the
left D-homomorphism 7 : D™ — M by n(f;) = y; for all j = 1,...,rg, where {f;}j=1,. r, is
the standard basis of the free left D-module DX of rank rq. Then, we have the following short

exact sequence:

0 — kerm —— Dm0 T, NMf .

Now, ker7 is a left D-submodule of the noetherian left D-module D'*™, a fact implying that
ker 7 is a finitely generated left D-module (see, e.g., [54, 110]). Hence, there exists a finite family
of generators of ker w. Stacking these row vectors of length ry into a matrix, we obtain a matrix
Ry € D"*"0 such that ker 7 = D™ Ry, which yields the following long exact sequence:

0 — kerp(.Ry) — DY L, plxro T, ar g,
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kerp(.Ry) is called the (first) syzygy left D-module of D™ R;. We obtain that a finitely generated
left module over a left noetherian ring is finitely presented. Repeating the same process, we obtain
a finite free resolution (6) of the left D-module M (syzygy module computation).

Within mathematical systems theory, we note that the matrix Ry € D™2*"t defined by kerp(.R1) =
D' R, is a generating set of the compatibility conditions of the inhomogeneous linear system
Rin = ( since, for every A € kerp(.Ry), we have A( = A(R1n) = (ARy)n = 0. Hence, the
compatibility conditions of Ry n = ( are generated by Ry ( = 0. If Grobner bases exist for finitely
generated left D-submodules of D'*™ and for elimination term orders, then a finite free resolution
(6) of M can be inductively computed by eliminating n from the inhomogeneous linear system
R;n = to get R;y+1 ¢ = 0. For more details, see, e.g., [16, 17].

We give the sketch of an algorithm which computes syzygy modules ([16]).

Algorithm 2.1. e Input: A noncommutative polynomial ring D for which Buchberger’s al-
gorithm terminates for any admissible term order and a finitely generated left D-submodule

L of D'XP defined by a matrix R € D?¥P ie., L = D'*9R.

e Output: A matrix S € D" such that kerp(.R) = D'*" S.

(1) Introduce the indeterminates #1,...,7,, C1,...,¢; over D and define the following set:

p
P: ZRZJnJ7CZ‘Z:1,aq
j=1
(2) Compute the Grobner basis G of P in the free left D-module generated by the 7;’s and
the ¢;’s, for j = 1,...,p, i = 1,...,q, namely, @7_, Dn; © @;_, D ;, with respect to a
term order which eliminates the 7);’s.
(3) Compute the intersection G N (P, D) = {D7, SkiCi | k=1,...,7} by selecting the
elements of G containing only the ¢;’s and form the matrix S = (S;;) € D"*1.

Example 2.3. In mathematical physics ([51, 52]), it is well-known that the compatibility con-
ditions of the gradient operator in R® are defined by the curl operator, and the compatibil-
ity conditions of the curl operator are defined by the divergence operator. It means that the
D = QI01,02,03]-module M = D/(D 0, + D 92 + D 93) admits the following finite free resolution

(9) 0— D2, px3 fo, pos B o L,

with the notations Ry = (&, 8y 93)", Ry = RT and:

0 —03 O
(10) Ry = 83 0 -0 € D3*3,
-0y 01 0

The long exact sequence (9) is the well-known differential sequence “gradient-curl-divergence”
which corresponds to the Poincaré sequence for the exterior derivative ([82, 84]). In what follows,

we shall also use the following classical notations ﬁf =R, &, VA n = Ren and V. (= RsC(.

Example 2.4. Let us consider the following linear PD system (Janet’s system) ([84]):

{ 03y — 2902y =0,

11
(11) (‘3%3/:0.

If D = A3(Q) is the first Weyl algebra, then the presentation matrix R of (11) is defined by:

832, — X2 8%
Ry = .
( %

Using Algorithm 2.1, the left D-module M = D/(D'*? R;) admits the free resolution

0— pf, pix2 Fo, po2 B moae g
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with the following notations:
Ry =
a2 302 4 22028, — 3, 02
( —22201 0303 —212020¢ + 230105 + 0505 +207 0203 +20f 250 + 3220705 — 05 — 32301 03 > ’

Ry = (2301 — 2220705 + 05 —2).

We refer the reader to [82, 83, 84, 85] for an introduction to Spencer’s formal theory of PDEs
which studies the existence of canonical resolutions of linear systems based on intrinsic properties
of linear PD systems (e.g., Spencer’s cohomology, formal integrability), i.e., properties which do
not depend on the choice of the coordinate system for the independent variables 1, ..., z,.

Let us now introduce the concepts of extension modules and extension functor which will play
important roles in what follows (see, e.g., [15, 65, 110]) and in the next chapters.

If F is a left D-module and Ry € D™ *™ then a necessary condition for the solvability of
the inhomogeneous linear system Ry n = ( for a fixed ( € F™ is Ry ( = 0, where the matrix
Ry € D™X" is such that kerp(.Ry) = D'X™ Ry. Let us study when this necessary condition is
also sufficient. We need to investigate the defect of exactness of the following complex at F*

(12) Fre Boopre Fa pro

where R;. : F'i-t — F"i is defined by (R;.)(n) = R;n for all n € F"i-* and i = 1, 2. Indeed,
for a fixed ¢ € F™, there exists n € F" satisfying Ryn = ( iff ( € imz(R;.) = R1 F™ and the
necessary condition Ro ¢ = 0 (since R R; = 0) means that ¢ € kerz(Rs.). Therefore, there exists
n € F" satisfying Ry n = ( iff the residue class of ¢ in kerx(Rs.)/imz(R;.) is reduced to 0. This
fact explains why the defect of exactness of the complex (12) at F™* plays an important role in
mathematical systems theory. If the complex (12) is exact at F™, i.e., kerz(Rs.) = imz(Ry.), then
the necessary condition Ry ¢ = 0 is also sufficient. The defect of exactness kerz(Rz.)/imz(R;.) of
(12) at F* is simply denoted by ext} (M, F) since a key result of homological algebra proves that
it only depends on M and F and not on the choice of the beginning of the finite free resolution
(6) of the left D-module M (see, e.g., [15, 65, 110]).

Using (6), we can define the higher extension abelian groups ext’, (M, F)’s for i > 2 as follows.
Up to abelian group isomorphism, they are defined by the defects of exactness of the following
complex of abelian groups

(13) ol g B g Fre B g Buopre

where R;. : FTimt — F7i is defined by (R;.)(n) = R;n for all n € F"i~* and all ¢ > 1, namely:
ext? (M, F) 2 homp (M, F) = kerz(R;.),
extly (M, F) = kerg(Riy1.)/imp(R;.), i > 1.

Ri_1. R3.

In what follows, we shall either use the notation homp (M, F) or exth (M, F).

As for exth(M,F), a classical theorem of homological algebra proves that the ext®,(M,F)’s
depend only on the left D-modules M and F (up to abelian group isomorphism), i.e., they do not
depend on the particular finite free resolution (6) of M. For more details, see [15, 65, 110].

Similarly, if D is a right noetherian ring, N a finitely generated right D-module and G a right
D-module, then, using the finite free resolution (7) of N, we can define the abelian groups:

extd (N, G) = homp (N, G) = kerg(.5)),
ext’y (N, G) = kerg(.S;+1)/img(.S;), > 1.

Example 2.5. Let D =Q[z], R= (z(x —1) z(z+1))T and M = D/(D*2 R) the D-module
finitely presented by R. Let us compute the ext®, (M, D)’s for i > 0. We first note that M =
D/(x(x—1),z(x+1))), where (z (x — 1),2 (z + 1)) is the ideal of D generated by = (x — 1) and
x(x 4+ 1). We first need to compute a finite free resolution of M. Let us characterize kerp(.R):
A=(A1 M) €kerp(R)iff Mz (z—1)+Nz(z+1)=0ie,iff ( M(z—1)4+X(x+1)z=0,
ie, iff Ay (z — 1)+ A2 (z+ 1) = 0 since D is a domain and = # 0. As D is a greatest common
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divisor domain and ged(z — 1,2+ 1) =1, we get Ay =d(z+1) and Ao = —d (z —1) for all d € D,
ie, A\=d(x+1 —x+1). Hence,if Ry = Rand Ry = (zx+1 —ax+1), then kerp(.R;) = D Ra.
Moreover, kerp(.Rz) =0sinced(z+1 —x+1)=(0 0) yields d =0 since D is a domain and
x4+ 1# 0. The D-module M then admits the following finite free resolution:

0—>D£>D1X2ﬂ>DL>M—>O.

Then, the defects of exactness of the complex 0 «— D «— = D2 & D 0 are defined by:

ext%, (M, D) = homp(M, D) = kerp(R;.),

exth,(M, D) = kerp(Rz.)/imp(Ry.),

ext% (M, D) = D/(Ry D?),

ext’,(M,D) =0, i > 3.
We first note that kerp(R;.) = {d € D | Rid =0} = 0 since R; # 0 and D is a domain, which
shows that ext, (M, D) = 0. Let us now compute kerp(Re.): p = (1 p2)T € kerp(Rp.) iff
(x+1Dp = (@—1)pe, ie, iff gy = (x —1)v and p2 = (z + 1)v for all v € D since D is a
greatest common divisor domaln and ged(z + 1,2 — 1) = 1. Hence, if R} = (x —1 x+ 1), then
kerp(R2.) = Ry D, and thus:

extp (M, D) = (Ry D)/(Ry D).
We clearly have R1 R} x, which shows that ext}, (M, D) # 0 and the residue class p(R}) of R} in
the D-module L £ (R} D)/(R; D) generates L, where p : D R} — L is the canonical projection
onto L, and satisfies x p(R}) = p(z R1) = p(R1) = 0. Hence, p(R’l) is a torsion element and thus
exth (M, D) is a torsion D-module. Finally, since 1 € (z + 1,2 — 1), i.e., (z + 1,2 — 1) = D, then
exth(M,D) = D/(z+ 1,z — 1) = 0.
Example 2.6. If D = Q[0, 0] is the commutative polynomial ring in d and ¢ with coefficients in

Q, R =0 1-6T e D?and M = D/(D'*2 Ry) the D-module finitely presented by R. Then,
M admits the following finite free resolution

0 — D -2, prx2 i,

where Ry = (1 -6 —9) € D2 because A = (A\;  A2) € kerp(.Ry) iff A1 O+ X2 (1-0) =0, i.e.,
iff My =p(1—0)and Ay = —p 0 for all p € D, since D is a greatest common divisor domain and
ged(0,1 — §) = 1, which proves that A = p Ra, and thus kerp(.R1) = D Ro.

Let F = C*°(R) be endowed with the D-module structure defined by dn(t) = n(t) and dn(t) =
n(t — 1) for all n € F. The two functional operators 0 and § then commute since:

vneF, 0(0n(t)=0nt—-1)=(@n)(- 1)3(% D= @n)(t—=1)=d(3n(t))

2 B

D—>M—>O

Then, the defects of exactness of the complex 0 «— Fler F «— 0 are defined by:
exth (M, F) = homp (M, F) = kerr(R;.),
exth (M, F) 2 kerg(Ry.)/imz(Ry.),
exth (M, F) = F/(Ry F?),
H(M,F)=0,i>3.

ext?

n € kerz(Ry.) is equivalent to /) = 0 and n(t) = n(t—1), i.e., to n is an arbitrary real constant, and
thus kerz(R;.) = R. Now, if ¢; and c¢s are two different real constant, then (1—4§)c; —9c2 =0, i.e.,
(c1 c2)T € kerg(Ry.). However, (¢; c2)? ¢ imz(R;.) since the first equation of the following
inhomogeneous linear OD time-delay system

77(15) = (1,
n(t) —n(t—1) =cs,
gives n(t) = ¢t + c3, where ¢35 € R, and then the second one yields the contradiction ¢; = cs.

Thus, the D-module exth (M, F) is not reduced to 0. Finally, Ry. : F2 — F is a surjective since
forallp € F, ¢ = (1 —6) (1 — I ¢ where (3 =0 and (o = — fioo #(s) ds, i.e., ext? (M, F) = 0.
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Theorem 1.1 shows that a connection exists between kerrz(R.) and homp(M,F). We may
wonder if it still holds for the higher extension abelian groups ext’,(M,F)’s for i > 1. If we
consider (6), then we can introduce the following sequence of abelian group homomorphisms
(14)

LB pomp(D 2, F) LD homp(DvnF) D homp (D0, F)
Rip1)* ) \R;)* ) Ri_1)* )
(Rit1) homp (DX, F) (Ri) homp (D=1, F) ( 1)) homp (D**"i-2, F)  «—

where (.R;)*(¢) = ¢ o (.R;) for all ¢ € homp(D**"i-1 F) and all i > 1. R;y1 R; = 0 yields
((Rit1)" o (Ri)")(¢) = (Rit1)"((R:)*(¢)) = (Rip1)" (¢ 0 (Ri)) = (¢ o (Ri)) o (Ris1)
=¢o((.R) o (Rit1)) = ¢o ((Ris1 Ri)) =0,

for all ¢ € homp(D*"i-1, F), which proves that (14) is a complex of abelian groups. Now, applying
Theorem 1.1 to homp (D", F), i.e., with R = (0 ... 0) € D" we obtain homp (D> F) =
F'i. Moreover, using Theorem 1.1, the abelian group homomorphism ; : F™ — homp(D*"i, F)
defined by x;(n) = ¢, where ¢, is defined by ¢,(\) = An for all A € D'*" is an ismorphism
and its inverse x; ' : homp (D" F) — Fi is defined by x; *(¢) = (¢(e1) ... d(er,))T, where
{ex}r=1.. . r, is the standard basis of D'*"i. Hence, we get

e1 Rin
(i to (R oxi—1) () = (x; "o (Ri)*)(¢g) = xi "o dyo (Ri) = x; ' (9y0 (i) = : ;
€r; Rzn
for all n € F"i-*, which shows that (x; " o (.R;)* o x;—1) = (R;.) and (14) is equivalent to (13) up

to isomorphism. The complex (14) is said to be obtained by applying the contravariant left exact
functor homp(-,F) to the truncated resolution of M, namely,

(15) M. Ry Dl><7"3 -R3 Dl><'r‘2 R D1><Tl Ry D1><7"0 0’

i.e., the complex M, obtained from (6) by deleting the left D-homomorphism 7 and the left D-
module M. The truncated resolution (15) is exact at each position ¢ > 1 and Ho(M,) = M.
Hence, the complex (13) can be understood as the dual of (15) with values in the left D-module
F. Exactness is generally lost while dualizing and the defects of exactness, called cohomologies,
are characterized by the ext’, (M, F)’s for i > 0.

We recall that M is a D — E-bimodule ([110]) if M is a left D-module, a right E-module and:
VdeD, VmeM, VeeE, (dm)e=d(me).

Lemma 2.1 ([110]). If M is a left (resp., right) D-module and F is a D — D-module, then
ext’y (M, F) is a right (resp., left) D-module for all i € N. In particular, if D is a commutative
ring, then the ext’,(M,F)’s are D-modules.

If M is a left (resp., right) D-module and D is the D — D-bimodule, then Lemma 2.1 shows
that the ext’, (M, D)’s are right (resp., left) D-modules. The next proposition gives a finer char-
acterization when D is a noetherian domain and M a finitely generated left D-module.

Proposition 2.1 ([92]). Let M be a finitely generated left (resp., right) D-module over a noetherian
domain D. Then, for i > 1, the ext', (M, D)’s are either zero or finitely generated torsion right
(resp., left) D-modules.

This result explains why the D-module exth (M, D) obtained in Example 2.5 was torsion.
Let us now state a few classical results on the extension functors.

Theorem 2.1 ([110]). Let0 — M’ LM L M7 — 0 be a short ezact sequence of left (resp.,
right) D-modules and N a left (resp., right) D-module. Then, the following long exact sequence of
abelian groups holds

0 — ext)(M" N) g, ext), (M, N) EAR extd (M', N)
(16) L exth(M”,N) — exth(M,N) — exth(M’' N)

s exth(M”,N) — exth(M,N) — ...,
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where f* is defined by f*(¢) = ¢ o f for all ¢ € homp(M,N) and similarly for g*.

Roughly speaking, Theorem 2.1 explains why homp(-, N) is called a contravariant left exzact
functor: the sense of the long exact sequence (16) is reversed while applying homp(-, N) to the

short exact sequence 0 — M’ LM L M — 0 and g* is injective, namely:
g W) =tpog=0 = =0

Proposition 2.2 ([110]). If M is a projective left D-module, then ext's(M,N) =0 for all i > 1
and all left D-modules N. Similarly for right D-modules.

From Theorem 2.1 and Proposition 2.2, we obtain the following proposition.

Proposition 2.3 ([110]). Let 0 — Q — P — M — 0 be a short exact sequence of left (resp.,
right) D-modules and P a projective left (resp., right) D-module. Then, for every left (resp., right)
D-module N, we have:

Vi>1, extd'(M,N)=exth(Q,N).

Let us state two useful results in module theory and homological algebra.

Proposition 2.4 ([110]). If M is a projective left (resp., right) D-module, then homp (M, D) is
a projective right (resp., left) D-modules.

Proposition 2.5 ([15, 65, 110]). If0 — M’ L M % M" — 0 is a short ezact sequence and
M" is a left (resp., right) D-module, then the short exact splits, i.e., M = M’ & M".

Let us introduce the concepts of projective dimension and global dimension.

Definition 2.2 ([110]). (1) A projective resolution of a left (resp., right) D-module M is an
exact sequence of the form

1) o 4 ) 1
P8P, 2 p 2 M0,

where the P;’s are projective left (resp., right) D-modules. If there exists n € N such that
P, =0 for all m > n + 1, then n is called the length of the projective resolution of M.

(2) The left projective dimension of a left D-module M, denoted by lpd (M), is the minimum
length of the projective resolutions of M. If no such integer exists, then lpd, (M) = oo.
Similarly, we can define the right projective dimension rpdp(N) of a right D-module N.

(3) The left global dimension (resp., right global dimension) of a ring D, denoted by lgd(D)
(resp., rgd(D)), is the supremum of lpd (M) (resp., rpdp(N)) for all left D-modules M
(resp., all right D-modules N).

(4) If the left and the right global dimension of D coincide, then the common value is denoted
by gld(D) and called the global dimension of D.

The left projective dimension measures how far a left D-module M is from being projective.

Example 2.7. M is a projective left D-module iff Ipd, (M) = 0. M is a quotient of two projective
left D-modules, i.e., M = Py/im d;, where Py and imd; = P, are two projective left D-modules,
iff Ipdp (M) < 1. In particular, Ipdp(M) = 1 if M is not a projective left D-module but M is
isomorphic to the quotient of two projective left D-modules.

Let us show how to compute Ipd, (M) when M is a left D-module defined by a finite free
resolution of finite length. We first need to introduce a result which is used to shorten the length
of a finite free resolution of finite length if it is possible.

Proposition 2.6 ([103]). Let M be a left D-module defined by the finite free resolution:

-RWL—I
e

Ry, R R
(17) 0 — DPXPm my plXpm—s . =2 phxer 2 pbxeo T A 0.

(1) If m > 3 and there exists a matriz S,, € DPm=1*Pm satisfying Ry, Sm = Ip,,, then M
admits the following shorter finite free resolution

(18)
Riy—3

T T Ry — R
0 pYXpm-1 Zm=t pIX(Pm-24Pm) Z™m=2, H1Xpm-3 L, pixpo T, M > 0,
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with the notations:
Tt = (Rm_1  Sp) € DPm—1X(Pm—2tpm)

Tm72 = < R’I‘S—Q > c D(Pm—z-‘rpm)xpmfy

(2) If m =2 and there exists a matriz Sy € DP1*P2 such that Ry So = I,,,, then M admits the
following shorter finite free resolution

(19) 0 — pixp T, pixrotea) T, 0 g
with the notations Ty = (R1  S3) € DpPr*(potp2) gp:

r=r®0: DWXPotr2) __ N
A=A A) — 7(A) =7(\).
The existence of a right-inverse of a matrix can be checked by means of Grobner basis techniques

(e.g., when D = k[x1,..., 2], A,(k) and B, (k), where k is a computable field (e.g., Q or F, for
a prime p). We first shortly explain how to compute a left-inverse of a matrix.

Algorithm 2.2. e Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and a matrix R € D7*P,
e Output: A matrix S € DP*? such that S R = I, if S exists and () otherwise.

ntroduce indeterminates A;, j =1,...,pand pu;, i =1,...,q, over D and define the set:
1) Introduce indeterminates \;, j =1 dp,i=1 D and define th

p
j=1

(2) Compute the Grobner basis G of P in @?:1 D X\;®@{_, D p; with respect to a term order
which eliminates the A;’s.

(3) Remove from G the elements which do not contain any A; and call H this new set.

(4) Write H in the form Q1 (A1 ... A\p)T —Q2 (11 ... pg)T, where Q; and Q5 are two matrices
with entries in D.

(5) If Q; is invertible over D, then return S = Q7' Qy € DP*9, else return (.

Computer algebra systems contain packages based on left Grobner basis techniques, i.e., tech-
niques based on computations of Grobner bases of finitely generated left D-modules. But, they
generally do not allow us to compute Grobner bases for right D-modules (e.g., Maple).

As explained in [16], one way to handle this problem is to use the concept of involution of the
ring D (i.e., anti-automorphism) ([110]), namely, a map 6 : D — D satisfying:
le, d2 GD, 9(d1 +d2) :9(d1)+9(d2), G(dl d2) :0(d2)00(d1), HOGZidD.

If D is a commutative ring, then 6 = idp is an involution. If D = A(d,,...,0,) is a ring of PD
operators with coefficients in the differential ring A, then we can define an involution 8 of D by:

(20) Vae A, 6a)=a, Vi=1,...,n, 60(9;)=-0.
By extension, the involution @(R) of a matrix R € D9*? is defined by 6(R) = (0(R;;))* € DP*q.
If D= A(04,...,0,) and @ is defined by (20), then §(R) corresponds to the formal adjoint R of

R, i.e., the adjoint of R in the sense of the theory of distributions (see, e.g., [16, 85, 89, 66]). In
what follows, if D = A(01,...,0p), then we shall use the standard notation R for 8(R).

Example 2.8. We consider matrix R = (01 02 101 + x202) with entries in the first Weyl
algebra D = A5(Q). Let us compute its formal adjoint R. 1If ¢ denotes a row vector of test
functions, namely, a compactly supported smooth functions ¢ € D(R?), then the formal adjoint R
of R can be obtained as follows:

Jrz @ (D11 + B2 + (21 01 + 22 Do) ) dary day
= [o2 (=01 ) 1 + (=02 @) 2 + (=61 (21 @) — B2 (22 @) 13) dary daa,
= [p2((=010) m + (=02 ¢9) 2 + (=21 01 — w2 02 — 2) @) 13) day da.
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Hence, we get R= —(01 02 w101 + 2209 +2)T € D?, which can directly be found as follows:
O(R) = (8(01) 0(02) O(z101 +2202)T = (=01 —0a 60(01)0(x1) + 60(0) O(x2))T
=(=01 —0y —01x1— 04 :cg)T =—(01 Oy O +ax202+ 2)T.
Let I, be the g x ¢q identity matrix. If D admits an involution @, then the search for a right-

inverse T' € DP*4 of R € D9*P can be reduced to the search for a left-inverse S € D?*P of §(R)
since SO(R) = I, yields (S 0(R)) = 0*(R) 0(S) = RO(S) = 0(1,) = I, i.e., T = 0(9).

Algorithm 2.3. e Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution 6 and
a matrix R € DI*P,
e Output: A matrix 7' € DP*? such that RT = I, if S exists and () otherwise.

(1) Compute 8(R) € DP*1.

(2) Using Algorithm 2.2, compute a left-inverse S € DI*P of §(R) if S exists.
(3) Compute T = 6(S) € DP*4.

Let us now illustrate Proposition 2.6 with explicit examples.

Example 2.9. We consider the following time-varying linear OD system

t2y(t) =0,

tyt) +2y(t) =0,
whose solution in the space of distributions D/(R) is y = 8, namely, the derivative of the Dirac
distribution ¢ at 0. Let D = A;(Q) be the first Weyl algebra, Ry = (#* t6—|—2)T and M =

D/(D**?Ry) = D/ (Dt*+ D (t0 + 2)) the left D-module finitely presented by R;. Using Algo-
rithm 2.1, a finite free resolution of M is defined by

0— D px2flp ™o,

where Ry = (0 —t) € D'*2. Using Algorithm 2.3, we can check that S, = (¢ 9)" € D% is a
right-inverse of Ry. Using Corollary 2.6, we obtain the following finite free resolution of M

(21) OHD1X2£5D1X2$M*>O,
with the notations:
T1:< v t)eDM, 70 = 60 & 0.
to+2 0
Example 2.10. Let us consider the first Weyl algebra D = A3(Q) and the matrix
) 2o 01 2(x002+1) 21903+ 0y
(22) Ri=3 —29 02 — 3 0 Do € D**3,
—201 — 22 05 —20 —05
which defines the PD linear system R; & = 0 of the infinitesimal transformations of the Lie

pseudogroup defined by the contact transformations. Using Algorithm 2.1, the left D-module
M = D'*3/(D'*3 Ry) admits the following finite free resolution

0— D B2, pxs S pixs ™ o ),

where Ry = (0 — (01 + 2203) 2902 +2) € D3, The matrix Sy = (-2 0 1)T is a
right-inverse of Ry, and thus, using Corollary 2.6, we obtain the following finite free resolution

(23) 0— D3 L, plxd T,
where the matrix 73 is defined by:
. T9 01 2(xe 0y +1) 2x903+01 —2uxo
(24) =35 —2905 — 3 0 Do 0 € D34,
—201 — 2205 —2 09 —03 2

We can now give an algorithm which computes the left projective dimension lpd, (M) of M.
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Algorithm 2.4. e Input: A left D-module M defined by a finite free resolution of the form
(17).
e Output: The left projective dimension lpd (M) of M.
(1) Set j =m and Tj; = Ry,.
(2) Check whether or not 7; admits a right-inverse S; over D.
(a) If no right-inverse of T; exists, then lpd, (M) = j and stop the algorithm.
(b) If there exists a right-inverse S; of T; and
(i) if j = 1, then we have lpdp(M) = 0 and stop the algorithm.
(ii) if j = 2, then compute (19).
(iii) if 7 > 3, then compute (18).
(3) Return to step (2) with j «— j — 1.

Example 2.11. We consider again Example 2.9. We can easily check that the matrix T} defined in
(21) does not admit a right-inverse over D. Hence, using Algorithm 2.4, we obtain that Ipd (M) =
1. In particular, the left D-module M is not projective. But, the existence of the short exact
sequence (21) shows that M can be expressed as the quotient of two finitely generated free left
D-modules.

If M is a projective left D-module defined by a finite free resolution (17), then lpd, (M) =0
and using Algorithm 2.4, we obtain a short exact sequence of the form

’
™

’ 4 ’
0 — DYP B, pbe’ T, o,

where the matrix R’ admits a right-inverse S’ € DP'xd" je., RS = I,. If we introduce the
following two left D-homomorphisms

f: D1><q’ N D1><p’ k- Dlxp’ N D1><q’
A — AR, po— pS,
then (ko f)(A\) = k(AR') = AR'S’ = M for all A € D' ie., ko f = id e, which shows that
the above short exact sequence splits (see 7 of Definition 2.1), i.e., DY*?" =~ D*d' @ M, which

proves that M is a stably free left D-module of rank p’ —¢’. We obtain the next proposition which
can be traced back to Serre’s work on projective modules (Serre’s conjecture).

Proposition 2.7. If a left D-module M admits a finite free resolution of finite length, then M is
a projective left D-module iff M is a stably free left D-module.

Example 2.12. We consider again Example 2.10. We can check that the matrix 77 defined in
(24) admits the following right-inverse over D = A3(Q):

0 -1 0
1 0 T
S, = °
0 —XT2 0

O *81*1'263 Lo Oy + 2

Using Algorithm 2.4, we obtain lpd,(M) = 0, i.e., M is a projective left D-module, and thus a
stably free left D-module of rank 1 by Proposition 2.7. Finally, since rankp(M) = 1, Stafford’s
theorem (see 3 of Theorem 1.2) cannot be used to conclude that M is a free left D-module.

Let us state a classical but non-trivial result due to Auslander.
Theorem 2.2 ([110]). If D is a noetherian ring, then rgd(D) = lgd(D).
Let us give global dimensions of some noetherian domains of PD operators.

Example 2.13. gld(A(d1,...,0,)) = n, where A = k is a field, k[zy,...,2,], k(z1,...,2p),
k[z1,...,2z,], where k is a field of characteristic 0, and k{x1,...,z,}, where k = R or C. A ring
D satistying gld(D) =1 is called a hereditary ring (e.g., D = A{(D), where A = k[t], k[t] or k{t}).
If the characteristic of k is a prime p (e.g., k =F,), then gld(A,(k)) = 2n ([10, 13, 44, 66)).

Proposition 2.8 ([110]). lgld(D) < n iff ext’s™ (M, N) = 0 for all left D-modules M and N.
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3. CONSTRUCTIVE STUDY OF MODULE PROPERTIES

“Prenons par exemple la tadche de démontrer un théoreme qui reste hypothétique
(& quoi, pour certains, semblerait se réduire le travail mathématique). Je vois
deux approches extrémes pour s’y prendre. [...] On peut s’y mettre avec des
pioches ou des barres a mine ou méme des marteaux-piqueurs : c’est la premiere
approche, celle du “burin” (avec ou sans marteau). L’autre est celle de la mer.
La mer s’avance insensiblement et sans bruit, rien ne semble se casser rien ne
bouge ’eau est si loin on l'entend & peine... Pourtant elle finit par entourer la
substance rétive, celle-ci peu a peu devient une presqu’ile, puis une ile, puis un
ilot, qui finit par étre submergé & son tour, comme s’il s’était finalement dissous
a dans l'océan s’étendant a perte de vue...”

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

We are now in a position to characterize the module properties introduced in Definition 1.1.

Theorem 3.1 ([2, 16]). Let D be a noetherian domain with a finite global dimension gld(D),
R € D?? q matriz, M = DY¥P/(D*9R) the left D-module finitely presented by R and the
so-called Auslander transpose of M, namely, the right D-module N = D?/(R DP).

(1) The following left D-isomorphism holds:
(25) t(M) = exth (N, D).

(2) M is a torsion-free left D-module iff exth(N, D) = 0.
(3) We have the following long exact sequence of left D-modules,

(26) 0 — exth (N, D) — M — homp(homp(M, D), D) — ext%,(N,D) — 0,

where the left D-homomorphism ¢ is defined in 4 of Definition 1.1.
(4) M is reflexive iff exth (N, D) =0 fori=1, 2.
(5) M is projective iff ext’r, (N, D) =0 fori=1,...,¢gld(D).

Theorem 3.1 was proved in [44] for rings of PD operators and in [96] for finitely presented
modules over coherent commutative domains. See also [85, 89]. But, Theorem 3.1 is first due to
Auslander and Bridger ([2]) and was independently found again in [16].

Remark 3.1. We point out that the Auslander transpose N = D9/(R DP) depends only on the
left D-module M up to projective equivalence ([110]), namely, if M = D'*?' /(D'*4" R') is another
presentation of M and N’ = D9 /(R' D?), then we have:

N @ Dwtd) = N’ g platr),

See Theorem 4.2 and [2, 22, 91]. If R and R’ have full row rank, namely, kerp(.R) = 0 and
kerp(.R’) = 0, then the previous isomorphism reduces to N = N’. For a constructive version of
the above isomorphism, see [22]. Since a free right D-module is projective (see Proposition 1.1),
Proposition 2.2 yields ext,(D®+7), D) = 0 and extl (D@+?) D) = 0 for all i > 1. Using the
additivity of the extension functor (see, e.g., [15, 65, 110]), we obtain

Vi>1, exth(N,D)=exth(N,D)® exth(DPT4) D)= exth (N @ D@Ptd) D)

~

exty (N’ ® D7), D) = extiy (N, D) & extip (D), D) 2 ext, (N, D),

ext’, (N, D) = ext’s (N, D) for all i > 1, which shows that the ext%, (N, D)’s for i > 1 depend only
on M and not on the presentation matrix R € D?*P of the left D-module M ([2, 22, 91]).

Theorem 3.1 shows that the vanishing of the ext’, (N, D)’s for i > 1 characterizes the module
properties of the finitely left D-module M. For a commutative polynomial ring D = k[z1,...,z,]
over a computable field k (e.g., Q or F, for a prime p) or certain classes of noncommutative
polynomial rings of functional operators (e.g., certain classes Ore algebras ([18]) or GR-algebras
([58])) for which Grébuner bases exist for admissible term orders, the results of Theorem 3.1 were
implemented in the package OREMODULES ([16, 17]).
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If D admits an involution @, then the right D-module structure of the Auslander transpose
N = D9/(R DP) of the left D-module M = D'*?P/(D1*4 R) can be turned into a left D-module
structure by defining the so-called adjoint left D-module module N = D'*%/(D*P §(R)) of M.

Let us show how to compute ext}, (NN, D) using only left Grébner basis computations.

Algorithm 3.1. e Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution 6 and
a matrix R € DI*P,
e Output: Two matrices R’ € D?*P and Q € DP*™ such that

exth(N, D) 2 t(M) = (D' R)/(D'™™R), kerp(.Q)=D"" R,
where N = D9/(R DP) is the Auslander transpose of M = D'*?/(D1*4 R).
(1) Compute 8(R) € DP*1.
(2) Using Algorithm 2.1, compute a matrix P € D™*P such that kerp(.0(R)) = D™ P.
(3) Compute Q = 0(P) € DP*™,
(4) Using Algorithm 2.1, compute a matrix R’ € D? *? such that kerp(.Q) = D'*? @',

If D = k[xy,...,2,] is a commutative polynomial ring with coefficients in a computable field &,
then we can use § = idp in Algorithm 3.1. If D = A(d4,...,0,) is a noncommutative polynomial
ring of PD operators, then we can use the involution 6 defined by (20).

Similarly, the higher extension left D-modules ext’, (N, D)’s can be computed as follows:

(1) Using Algorithm 2.1, we compute the beginning of a finite free resolution of the left D-
module N = D1*9/(D'¥? 1), where S; = 0(R):

=~ . . S ) .S; S
(27) 0e— N & plxwo 2L plxar (820 0 200 plxgio S plxg 200

(2) We apply the involution € to (27) to get the following complex of left D-modules:

0 pixa 965D pixg 082 08D pixgy 96D, pixg, Si)

(3) Using Algorithm 2.1, we compute a matrix Q; € D%-1*% such that kerp (.0(Si11)).
(4) We obtain ext’, (N, D) & (D ¥%-1 Q) /(DY %-1 (S;)).

According to Proposition 2.1, the ext’, (N, D)’s are either 0 or torsion left D-modules for all
¢ > 1. If we denote by z; the residue classes of the §™ row of the matrix @ in the left D-module
(DY%i-1 Q1) /(D41 §(S;)), then z; is either 0 or a torsion element (i.e., there exists d € D\ {0}
such that dz; = 0). Let us now explain how to compute annp(z;) = {d € D | dz; = 0}.

To simplify the notations, we consider the output of Algorithm 3.1, i.e.:
exth(N, D) = (D' R')/(D'9 R).
Since (D'*¢" R')/(D*4 R) is a torsion left D-module, there exists d; € D\{0} such that d; w(R},) =

0, i.e., m(d; R.,) = 0, which yields the existence of y; € D% satisfying:

d; Ry =i R d;  — R\ _
i Rig =i R & (d; i) » =0.

Hence, we have to compute the compatibility conditions of the inhomogeneous linear systems:

Viel,...q, { Fen=G dij G =0, j=1
1=1,...,q, RT]:O7 = ijCi— , J=1L1...,7r;.
Algorithm 3.2. e Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order, R € D?*P and R’ € D4’ *p satisfying
D4 R C D4 R’ and such that L = (D'*¢ R')/(D'*4 R) is a torsion left D-module.
e Output: A set C of generating equations satisfied by the residue class z; of the i*" row
Ri, = (R}, ... R},)) of the matrix R in the left module L = (D' R')/(D' 4 R).

(1) Introduce the indeterminates 71,...,n, and (i,...,(, over D.

298



An introduction to constructive algebraic analysis and its applications

(2) Fori=1,...,q, compute the Grobner basis G; of the following set
P P
L= ZR;jnj_Ci U ZRkjﬁj | k=1,....q
j=1 j=1
in @?:1 Dn; @ D ¢; with respect to a term order which eliminates the 7;’s.
(3) Return C =, (GiN D)
Let us illustrate Algorithms 3.1 and 3.2 with two explicit examples.

Example 3.1. Let us consider the 2-dimensional Stokes equations ([52]) defined by:

—v (07 4 02) 0 Oz u
(28) 0 —v (0% + 85) Oy v | =0.
Oy Oy 0 P

Let D = Q(v)[0,0y] be the commutative polynomial ring of PD operators with coefficients in
Q(v), R € D3*3 the matrix appearing in the left-hand side of (28) and M = D'*3/(D'*3 R)
the D-module finitely presented by R. Since D is a commutative ring, we can take the trivial
involution 6 = idp, define §(R) = RT = R and the adjoint D-module N = D'*3/(D1*3 R) = M.
Using Algorithm 2.1, we can easily check that kerp(.R) = 0, i.e., R has full row rank, and thus
the adjoint D-module N admits the following finite free resolution:

O<—JV<LD1X3<iD1X3<—O.
Hence, the defects of exactness of the following complex of D-modules

0 —>D1><3 iDlXS —0

are ext), (N, D) = kerp(.R) = 0 and exth, (N, D) = D**3/(D'*3 R) = M. Using 1 of Theorem 3.1,

we get t(M) = exth(N, D) = M, which shows that M is a torsion D-module. Finally, using
Algorithm 3.2, we can decouple the system variables of (28) as follows

(82 +02)%u =0,
(29) (024 02)%v =0,
(07 +05)p=0,
i.e., annp(u) = annp(v) = D A? and annp(p) = D A, where A = 92 + 85.
Example 3.2. Let us consider the following linear PD system with polynomial coefficients

23018 — 210381 + 230280 — 22038 — & =0,
(30) &1+ 21028 — 22016 + 210383 — 230183 =0,
100181 — 210281 — &+ 720583 — 130283 =0,

which appears in the study of the Lie algebra of the special unitary group SU(2) ([9]). We consider
the first Weyl algebra D = A3(Q) and the presentation matrix R of (30) defined by:

.%‘381 — I 63 93362 — X9 63 -1
(31) R= -1 10y — 2901 2103 —x30, | € D33,
1‘281 — X 82 -1 mgag—xgag
Using the involution @ of D defined by (20), the formal adjoint R = §(R) of R is defined by:

X1 (93—56331 -1 X1 (92 —x281
(32) EZ $263—£L'332 x281 — I 82 -1 S DSXB.
-1 IIJ381 — X 83 1‘3(92 —x283

Let N = D'3/(D1*3 R) be the left D-module finitely presented by the matrix R. Using Algo-
rithm 2.1, we obtain the following finite free resolution of N

O(—NLD1X3<£D1X3<£D<—O7
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where P = (1903 — 1302 w301 — 2103 102 — x201). If N = D3/(RD?) is the Auslander
transpose of the left D-module M = D1*3/(D'*3 R), then, using Algorithm 3.1, the left D-
modules ext’, (N, D)’s, for i = 0, 1, 2, are the defects of exactness of the following complex

0— D2 p3 % p_ g
where Q = P= —P7T | namely:

exth, (N, D) = kerp(.R),
exth (N, D) & kerp(.Q)/imp(.R),
ext? (N, D) & okerD( Q) = D/(D**?Q),

exti,(N,D) =0, VYi>3.

Using Algorithm 2.1, we obtain kerp(.R) = D (2102 — 2201 2035 — x302 x30; — x103) and
kerp(.Q) = D'*2 R', where the matrix R’ € D?*3 is defined by

r1 X9 T3
33 R =
(33) ( O O O3 )’

which yields:
exth(N,D) X D (2102 — 2201 2203 — 2302 1301 — 21 03),
extL (N, D) = t(M) = (D2 R")/(D*® R),
ext?(N,D) = D/(D (x1 0y — x201) + D (2205 — £302) + D (1301 — 21 03)).

Let z; be the residue class of the ith row of R’ in M for i = 1, 2. If {y;}i=12 is the family of
generators of M defined by the residue classes of the standard basis of D'*3 in M, then we have:

(34)

21 =T1Y1 +T2Y2 + T3Y3,
2o = 01Y1 + O2y2 + O3 3.

Using Algorithm 3.2, we obtain that the generators z; and 2z of t(M) = ext}, (N, D) are torsion
elements which satisfy the following PDEs:

(1‘2 83 — X3 82) zZ; = 0,
(35) Vi=1,2, (103 —x301) 2 = 0,
(102 — w2 01) 2; = 0,
Thus, the left D-module M is not torsion-free. Finally, using a Grobner basis computation, we

can check that 1 ¢ D (2102 — 2201) + D (2205 — 23 02) + D (2301 — 21 J3), and thus the torsion
left D-module ext%, (N, D) is not reduced to 0.

To check the vanishing of the left D-module exth (N, D), we have to check the vanishing of
the left D-module L = (D' R')/(D'*%R). If Grébner basis techniques can be used over the
noncommutative polynomial ring D, then we can check whether or not the normal forms of the
rows of the matrix R’ vanish in the left D-module L, i.e., whether or not L is reduced to 0.

Let us introduce a useful lemma which gives a finite presentation of a quotient module.

Proposition 3.1 ([19]). Let D be a left noetherian ring, R € D?? and R' € DY *XP two matrices
satisfying D9 R C D4 R’  i.c., such that R = R" R’ for a certain R" € D99 . Moreover, let
R,y € D" be a matriz such that kerp(.R') = DY R} and let us respectively denote by m and
7' the following canonical projections:

m: DY R — (D™ R')/(D'R), ' :DY" — D' /(D4 R" + D' R}).
Then, the left D-homomorphism x defined by
x: D™ /(D4R + D" R})) — (D9 R')/(D'*R)
' (A) — w(AR),
is an isomorphism and its inverse x ' is defined by:

-1. (D1><q' R/)/(D1><q R) _ D1><q’/(D1><q R//_,_Dl)(’r‘/ Rlz)
T(AR) — 7'(N).

(36)
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In other words, we have the following left D-isomorphism:
(D1><q’ R/)/(Dlxq R) o Dqul/(Dlxq R// 4 D1><T/ RIQ)
In particular, (D9 R')/(D'*4 R) is reduced to 0 iff (R"T RY)T admits a left-inverse over D.

Example 3.3. We consider again Example 3.2. Using Proposition 3.1, let us compute a finite
presentation of the left D-module L = (D'*2 R")/(D'*® R) = ext}, (N, D). Since kerp(.R') = 0,
the left D-module L admits the finite presentation L & D'*2/(D*3 R") where

—83 T3
(37) R’ = —61 T S D3><2
=0y 1

satisfies R = R” R'. Then, the generators z; and 29 of the left D-module L satisfy:
—03z1 + 1329 =0,
(38) —0121 + 2122 =0,
—0o 21 + 19229 = 0.
Let us sum up some of the previous results. Let D be a noetherian domain and
0 N padtpp 2 pm

the beginning of a finite free resolution of the Auslander transpose N = D%/(R DP) of the left
D-module M = D'*P /(D% R) associated with the linear system kerz(R.), where F is a left D-
module. Applying the contravariant left exact functor homp( -, D) to the previous exact sequence
of right D-modules, we obtain the following complex of left D-modules:

(39) Dixa £>D1Xp iDlxm.

Then, 1 of Theorem 3.1 asserts that ext},(N, D) = ¢(M) = kerp(.Q)/imp(.R). Hence, if R’ €
D7 %P is a matrix satisfying kerp(.R) = D'*¢ R’, then we obtain:

(40) t(M) = (D' R")/(D'™ R).

See Algorithm 3.1. Then, the residue classes {m(R},)}i=1,.. 4 of the rows R/, of the matrix R’ in
the left D-module M define a set of generators of the torsion left D-submodule ¢(M) of M, i.e.,

t(M) = g,:l Dn(R],). See Algorithm 3.2. Applying Proposition 3.1 to (40), we get
(41) t(M) = D7 /(DY R’ + D' R}),
where the matrices R’ € D% and R € D" >4 are respectively defined by R = R” R’ and
kerp(.R') = D" R},. Using the classical third isomorphism theorem (see, e.g., [110]), we obtain:
(42) M/tH(M) = [D'*? /(D4 R)] /(D' R')/(D'* R)] = D'*7 /(D" R,
Therefore, the matrix R’ returns by Algorithm 3.1 is a presentation matrix of the torsion-free left
D-module M/t(M), i.e., M/t(M) admits the following finite presentation:

Dy L plxe T vy — 0.
Then, we get the following commutative exact diagram of left D-modules:

0

t(M)
i
(43) pixa  “Bopbe T gy —0
L .R" [ Lo
pve’ M pia R opoo T arory o
l
0
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Since kerp(.Q) = D% R’ the exact sequence D1*7 R pixe @, pixm holds, which yields:
M/t(M) = D™? /(D9 R') = D'/ kerp(.Q) = coimp(.Q) = imp(.Q) = D'*P Q.

Let ¢ : M/t(M) — DYP @Q be the left D-isomorphism defined by ¢(7/(\)) = A Q for all A € D¥P.
It is well-defined left D-homomorphism since 7/(A) = 7'()\) yields A = X + p/ R’ for a certain
p € DY and thus ¢('(\) = AQ = NQ + i/ R'Q = N Q = ¢(/())). Then, we have the
following commutative exact diagram of left D-modules

0
T
Dlxq’ i D1><p i DlXpQ =0
| | To
pixd B pia o T vy M) o0,
T
0

and ¢(M/t(M)) = DY*PQ, i.e., every element m’ = 7/(\) of M/t(M) is in a one-to-one corre-
spondence with the element ¢(m’) = A Q. Equivalently, every m’ = w(\) € M/t(M) is such
that m’ = ¢~ (N Q). The matrix Q is called a parametrization of the torsion-free left D-module
M /t(M) since, up to the isomorphism ¢, the elements of M /¢(M) are parametrized by Q.

Example 3.4. We consider again Example 3.2. We obtain:
M/t(M) = Dlxg/(D1X2 R/) >~ plx3 Q=D (33‘1 Oy — T 61) +D (1‘2 03 — x3 82) + D (1‘3 o — 11 63)

Since M/t(M) = D**3Q C D and D is a torsion-free left D-module, we find again that M /t(M)
is a torsion-free left D-module and, up to isomorphism, M /t(M) is parametrized by Q.

Example 3.5. Let D = Q[0,02,05], R= (01 02 03) € D**3 be the divergence operator in R3
and M = D'*3/(D R) the left D-module finitely presented by R and associated with the linear PD
system kerz(R.) = {n € F3 | Ry =V .n = 0}, where F is a D-module (e.g., F = C*(R3)). Let us
study the module properties of M. Let us first introduce the Auslander transpose N = D/(R D?)
of M. Since D is a commutative ring, N = D/(D'3 RT) = N, where § = idp. Let now us
compute the D-modules ext’, (N, D) for 0 < i < 3. We first note that RT = Ry, where R; is
the matrix introduced in Example 2.3. Using Example 2.3, the D-module N admits the following
finite free resolution

(44) 0— DB, px3 L2, pxs i p "N,

where R, is defined by (10) and R3 = R. The D-modules ext’; (N, D)’s are then the defects of
exactness of the following complex of D-modules:

R

0<_D g D1><3 R

.R

T T
= DL D 0.

Since RI = RT = Ry, RI = —R, and RT = R, using the long exact sequence (44), we obtain:
ext),(N,D) =0 extp(N,D) =0, exth(N,D)=0, ext}(N,D)=D/(D"*R])=M.
Using Theorem 3.1, we obtain that M is a reflexive but not projective D-module.

Example 3.6. Let us consider the first set of Mazwell equations ([51, 84]), namely,

OB - L -
9B GAE=0

(45) o TV !
V.B =0,

where B (resp., E) denotes the magnetic (resp., electric) field. For the notations, see Example 2.3.
Let us consider the commutative polynomial ring D = Q[d;, 01, 02, 93] of PD operators with rational
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constant coefficients, the presentation matrix Ry of (45), namely,

o 0 0 0 —0s5 O
0o o 0 0 0 -0
R1 _ t 3 1 c D4><67
0 0 0 -0 O 0
01 0 03 O 0 0
and the finitely presented D-module M = D'*6/(D'*4 Ry). Using Algorithm 2.1, we obtain that
the D-module M admits the following finite free resolution

(46) 0— D L2, pxa U, pix6 T, 4r g

where the matrix Ry = (01 02 03 — 0;) € D'** defines the compatibility conditions

S 02
47 V.yr———=0
(47) T -5
of the inhomogeneous linear PD system:
0B - -
— +VAE =7,
at + ga!
ﬁ . é = 2.

Let us study the module properties of M. The formal adjoint va of R; can be obtained by
contracting (45) by a vector and by integrating the result by parts:

. q é.<(§+€AE>+G(€.§)
=2 B+ (Vn0) B (V6) Bt (C.B)+9. (-CnE)+9. (¢B)
The last three terms can be written as (0; 01 02 03). (C_"E (Gg—éAE)T>T, i.e., under

a divergence form in space-time, a fact showing that the adjoint D-module N = D*4/(D*6 R)
is defined by the following linear PD system:

aC o -
—-———-VGE=0
(49) ot ’
VAC=0
The compatibility conditions of the inhomogeneous linear PD system
aC -
—-———-VG=F
(50) o Y e=h
VAC=D,

are obtained by eliminating C and G from (50) and we get

oD o o

— +VAF=0,
(51) ot "

V.D =0,
which has exactly the same form as (45). We can easily check that the compatibility conditions of
the following inhomogeneous PD linear system

aD =3 — -
— ANF =
5 +V J,
V.D=1,

are defined by
- - 9l
V.Jfa—t:(),
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which has the same form as (47). Hence, we obtain the following finite free resolution of N

~ R R R_
0 N D1><4 1 D1><6 0 D1><4 1 D 0

where the matrices }A%I, j%v() and ]?:1 are defined by:
-0 0 0 -0
0 -0 0 =0

Ry Roy=Ri, R_,=R,.

-0y O1 0 0
Up to isomorphism, the ext’b(ﬁ ,D)’s are defined by the defects of exactness of the complex:

. . R_
0 D1><4 Ry D1><6 Ro D1><4 1 D 0.

Moreover, we can easily check that

VeE=A4A, VAA=D0, VAA=B,
(52) o¢ = LY 94 - ~ = (45),
==, 2 =0 2 —

where “a = b” means “b generates the compatibility conditions of a”, which proves that we
have extlb(]v ,D) =0 for i = 1, 2, and the first set Maxwell equations (45) generates a reflexive
D-module M by 4 of Theorem 3.1. Finally, we have ext? (N, D) = D/(dy,8,,9s,9;) # 0 since
1 ¢ (01,0, 05,0¢), which proves that M is not a projective D-module by 5 of Theorem 3.1.

If M is a torsion left module over a domain D, then for every m € M, there exists d € D\ {0}
such that dm = 0. If f € homp(M, D), then d f(m) = f(dm) = f(0) = 0 and, since f(m) € D
and D is a domain, then f(m) =0, i.e.,, f =0 and homp (M, D) =0. If M is a finitely generated
left module over a noetherian domain D, then the converse of this result is true. Indeed, if
homp(M, D) = 0, then homp(homp(M, D), D) = 0 and using 1 and 2 of Theorem 3.1, M =
ker e & exth (N, D) = t(M), which shows that M is a torsion left D-module.

Corollary 3.1 ([16]). Let M be a finitely generated left module over a noetherian domain D.
Then, M is a torsion left D-module iff homp(M, D) = 0. Similarly for right D-modules.

Example 3.7. Let us consider again Example 3.1, i.e., the D = Q(v)[0y,dy]-module M =
D3 /(DY*3 R), where the matrix R is defined by (28). Since kerp(.R) = 0, M admits the

™

finite free resolution 0 — D*3 &4 pix3 T,y g, Applying Theorem 1.1 to M, we
get homp(M, D) = kerp(R.). Since D is a commutative ring, RT = R and kerp(.R) = 0,
kerp(R.) = kerp(.RT) = kerp(.R) = 0, i.e., homp(M, D) = 0 and we find again that M is a
torsion D-module by Corollary 3.1 (see Example 3.1).

A straightforward consequence of Theorem 3.1 is the following corollary.

Corollary 3.2 ([16, 89]). Let D be a noetherian domain with a finite global dimension gld(D) = n.
Moreover, let M = DY*P/(D**49 R) be the left D-module finitely presented by the matriz R € DI*P.
If we set Q1 = R, p1 = p and pg = q, then we have the following results:

(1) M is a torsion-free left D-module iff there exists a matriz Qo € DP**P2 guch that the
following exact sequence of left D-modules holds:

D1xpo Q1 Dixp1 Q2 Dxp2

(2) M is a reflexive left D-module iff there exist two matrices Qo € DP**P2 and Q3 € DP2*Ps
such that the following exact sequence of left D-modules holds:

Dixpo Q1 pixpr Q2 pixps Q3 pixps
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(3) M is a projective left D-module iff there exist n matrices Q; € DPi-1*Pi =2 ... n+1,
such that the following long exact sequence of left D-modules holds:

(53) D1><:D0 &) D1><;D1 &) D1><p2 &) D1><p3 'Q_4> -Q_n>D1><pn Qn+t1 D1><Pn+1.

Corollary 3.2 gives necessary and sufficient conditions for a left D-module M to be embedded
into an exact sequence of finite free left D-modules (inverse syzygy module computation).

Let us give a classical characterization of projectivity which is sometimes simpler to test than
5 of Theorem 3.1 (for more constructive results on projective modules, see [64]).

Proposition 3.2 ([87]). Let M = D'*P/(D'*9 R) be a left D-module finitely presented by a matriz
R € D9%P. Then, the following equivalent conditions hold:

(1) M is a projective left D-module.

(2) R admits a generalized inverse over D, namely, there exists a matriz S € DP*? such that:

RSR=R.
(3) There exists an idempotent matriz I1 € DP*P namely, 112 = 11, presenting M, namely:
M = D'?/(DY*P1I).
Let us explain how to use Algorithm 2.3 to compute generalized inverses ([87]).

Algorithm 3.3. e Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution 6 and
a left D-module M defined by the following finite free resolution of finite length

Ry 1
_—

1Xpm Bm 1XPm— .R3 1xpy -Ra 1xp; B 1xpy T
0— D 7Pm 1, D7 Pm—1 — DP2 =, DL, DYPo — M — (),

with the notations Ry = R, pp = p and p; = q.
e Output: A matrix S € DPX9 such that RS R = R if S exists and () otherwise.
(1) Compute a right-inverse S,,, € DPm-1*Pm of R, if it exists and set S = S,,, and i = m — 1.
If no such matrix exists, stop the algorithm with S = 0.
(2) While ¢ > 0, do:

(a) Compute F; = I,, — 0(R;1+1) 0(S;41) € DPi>Pi,

(b) Compute a matrix L; € DPi*Pi-1 guch that F; = L; 6(R;) if it exists by checking that
the normal forms of the rows of F; are reduced to 0 with respect to a Grobner basis
of DYPi-1 §(R;). If such a matrix does not exist, stop the algorithm with S = (.

(¢) Compute S; = 0(L;) € DPi=1*Pi_get S = S; and return to 2 with ¢ «— ¢ — 1.

(3) Return S.

Example 3.8. Let D = A;(Q) be the first Weyl algebra and M = D'*2/(D*2R) the left
D-module finitely presented by the following matrix:

—t2 to—1
R= € D?*2,
( —(to+2) 9? )
Using Algorithms 2.2 and 2.3, we can check that R does not admit a left- and a right-inverse over

D. Using Algorithm 3.3, let us check whether or not R admits a generalized inverse over D. Using
Algorithm 2.1, we first compute a finite free resolution of M:

0— D22 px2 B px2 T a0 Ry=(0 -1

Applying Algorithm 2.3 to Rs with the involution 6 of D defined by (20), we obtain that Ro admits
the right-inverse Sy = (¢ 9)7 and:

2+t0  —0?
F1I29(Rz)9(52)< 2 _to41 )

Using a Grobner basis computation, we can check that Fy = Ly 0(R), where:
I — 0o -1
E U (R
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The matrix S = 6(L1) = Ly then satisfies S; Ro + RS = I and, by post-multiplying the last
identity by R and using Rs R = 0, we obtain RS R = R, which proves that S is a generalized
inverse of R over D and M is a projective left D-module by Proposition 3.2. Since M admits
a finite free resolution, Proposition 2.7 proves that M is a stably free left D-module of rank 1.
Finally, if Il = S R, then 11> = S (RS R) = S R = II and we clearly have D21l = D'*2 R, and
thus M = D'*2/(D1*211).

If M is a stably free left D-module of rank [, then there exist two non-negative integers r» and
ssuch that M @ DY>*s =2 D" and I =r —s. If ¢ : M ® D'** — D' " ig a left D-isomorphism
and iy : D'*% — M @ D'*5 the canonical injection, then the split short exact sequence holds
0 — Dxs 222, pixr YL A1 0 If we write the left D-homomorphism ¢oiy : D1X$ — DIX7"
in the standard bases of D'** and D' ", then there exists a matrix T € D**! which admits a
right-inverse over D (see the comment after Example 2.11) such that the above split exact sequence
becomes the following one:

(54) 0 — DY L ptxr 2, 0.

Conversely, M is defined by the split exact sequence (54), then D'*" = D1X$ @ M, which proves
that M is a stably free left D-module of rank r — s. The matrix T can be computed by means
of Algorithm 2.4 if the left D-module M admits a finite free resolution of finite length since
Ipd, (M) = 0.

Corollary 3.3 ([29, 103]). If R € D9*P has full row rank, i.e., kerp(.R) = 0, then the following
equivalent assertions hold:

(1) M = D**P/(D**9 R) is a stably free left D-module.

(2) R admits a right-inverse over D, i.e., there exists S € DP*9 such that RS = I,.

(3) The Auslander transpose right D-module N = D?/(R DP) = ext}, (M, D) of M wvanishes.

Algorithm 2.3 can be used to check whether or not a left D-module M finitely presented by a
full row rank matrix R is stably free.

Example 3.9. In Example 2.10, we proved M = D'*3/(D*3 R) = D'x4/(D*3Ty), where
D = A3(Q) and the matrices R and T} are respectively defined by (22) and (24). Moreover, it was
shown that the matrix 77 admitted the left-inverse S; defined in Example 2.12, which proves that
M is a stably free left D-module of rank 1 (see also Example 2.12).

4. PARAMETRIZATIONS OF LINEAR SYSTEMS

“Pure mathematics and physics are becoming ever more closely connected, though
their methods remain different. One may describe the situation by saying that
the mathematician plays a game in which he himself invents the rules while the
physicist plays a game in which the rules are provided by Nature, but as time
goes on it becomes increasingly evident that the rules which the mathematician
finds interesting are the same as those which Nature has chosen. It is difficult to
predict what the result of all this will be. Possibly, the two subjects will ultimately
unify, every branch of pure mathematics then having its physical application, its
importance in physics being proportional to its interest in mathematics.”

Paul Dirac, The Relation between Mathematics and Physics, Proceedings of the
Royal Society of Edinburgh, LIX, 1939, p. 22.

Let us show how the parametrizations of a torsion-free left D-module M = D**?/(D1*4 R) can
be used to parametrize the solution space kerz(R.). If L = D'*™/(D*? Q) is the left D-module
finitely presented by the parametrization @ of the torsion-free left D-module M and F a left D-
module, then applying the contravariant functor homp( -, F) to the truncated finite free resolution

(39) of L, i.e., D1*4 SR prxe @, pixm 0, we obtain the following complex:
Fi L &

Therefore, exth (L, F) = kerz(R.)/im#(Q.) defines the obstruction for an element 71 of the linear
system kerz(R.), i.e., for n € FP satisfying Rn = 0, to belong to im#(@Q.), i.e., to be of the form
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n = Q¢ for a certain ¢ € F™. Hence, exth (L, F) defines the obstruction for the the linear system
kerz(R.) to be parametrized by the matrix @, i.e., to have the form kerx(R.) = Q F™.

Let us study the dual statement of Proposition 2.2, i.e., when ext’, (-, F) = 0 for all i > 1.

Definition 4.1 ([110]). A left D-module F is called injective if extl,(M,F) = 0 for all left D-
modules M and all 7 > 1.

Example 4.1. Example 2.6 shows that the Q[9, §]-module C*°(R) is not injective.
The next theorem gives a characterization of injective modules over a noetherian ring.

Theorem 4.1 ([110]). (Baer’s criterion) Let D be a left noetherian ring. Then, a left D-module
F is injective iff for every ¢ > 1 and every R € DY, the linear system Rn = ( admits a solution
n € F, for all ( € F1 satisfying the compatibility conditions of Rn = (, namely, Ra ¢ = 0 whenever
kerD(.R) = Dlxr RQ.

Let us give a few interesting examples of injective modules.

Example 4.2. If Q is an open convex subset of R™, then the space C*°(Q) (resp., D'(Q2), (),
A(Q), B(£2)) of smooth functions (resp., distributions, temperate distributions, real analytic func-
tions, hyperfunctions) on € is an injective D = k[dy, . .., Op]-module, where k =R or C ([67, 78]).
If G denotes the set of all functions that are smooth on R except for a finite number of points, then
G is an injective left By (k)-module, where k = R or C ([122]). Finally, if I is an open interval of
R and A = C(¢t) N A(I) the ring of rational functions which are analytic on I, and D = A{d) the
ring of OD operators with coefficients in A, then the left D-module B(I) of Sato’s hyperfunctions
on I ([45]) is injective cogenerator ([33]).

Let us explain the main interest of the concept of injective left D-module in mathematical
systems. If M is a left D-module admitting a finite free resolution of the form

. Ry D1Xp3 .R3 Dlxp2 Ry Dlxpl Ry Dlxpo L) M —s O7
then applying the functor homp( -, F) to the previous exact sequence and using ext%, (-, F) = 0

for all # > 1 and Theorem 1.1, we obtain the following exact sequence of abelian groups:

L prs Lo pee Joe por S pro  homp (M, F) — 0,

Hence, kerz(R;11.) = R; FPi-* for all i > 1. We say that the contravariant functor homp( -, F) is
exact, i.e., transforms exact sequences of left D-modules into exact sequences of abelian groups.

If F is an injective left D-module, then the results of Corollary 3.2 can be dualized to get the
following system-theoretic interpretations of the module properties in terms of the existence of a
chain of parametrizations.

Corollary 4.1 ([16]). Let D be a noetherian domain with a finite global dimension gld(D) = n,
R € D?*P M = DY*?/(D'¥4 R) the left D-module finitely presented by R and F an injective left
D-module. If we set Q1 = R, p1 = p and pg = q, then we have the following results:

(1) If M is a torsion-free left D-module, then there exists a matrix Qo € DP**P2 such that the
following exact sequence of abelian groups holds
JFPo €Q1~ o Q2. _7:1027
ie., kerz(Q1.) = Q2 FP2, and Qs is called a parametrization of the linear system ker z(Q1.).
(2) If M is a reflexive left D-module, then there exist Qo € DPY*P2 gnd Q3 € DP2*P3 gych
that the following exact sequence of abelian groups holds
FPo éQl' Fp1 €Q2' FP2 €Q3' FP3

ie., kerr(Q1.) = Q2 FP? and ker#(Qs.) = Q3 FPs.
(3) If M is a projective left D-module, then there exist n matrices Q; € DPi=1*Pi for all

)

1=2,...,n+ 1 such that the following exact sequence of abelian groups holds
(55) FPo Q1. P Q2. P2 Q3. P Qu. o Qn. FPn Qn1- Fputt,

ie., kerr(Q;.) = Qi1 FPitt fori=1,... n.
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Remark 4.1. If the left D-module M admits a finite free resolution of finite length, then (55) does
not need the assumption that the left D-module F is injective, i.e., it holds for all left D-modules
F. This result comes from the fact that Algorithm 3.3 proves that the long exact sequence (53)
splits, namely, there exist n + 1 matrices S; € DPi*Pi=1 guch that:

Vi=1,...,n, S;Qi+ Qit1Si+1=Ip,.
Then, the complex (55), i.e., Q;11 FPi+t C kerg(Q;.) for all i > 1, is exact for all left D-modules F

since 1) € ker£(Q;.) yields n = S; Qi n+Qit1 Sit1m = Qit1 (Siv17m) € Qip1 FPH1, de., kerz(Qi.) =
Qi+1 FPitt for all ¢ > 1.

Remark 4.2. The converse of the results of Corollary 4.1 holds if we assume that F is a so-called
injective cogenerator left D-module, namely, if F is an injective left D-module and a cogenerator
left D-module, namely, for every left D-module M and every nonzero m € M, there exists f €
homp (M, F) such that f(m) # 0. If F is a cogenerator left D-module and M # 0, then kerz(R.) &
homp (M, F) # 0. We can prove that an injective cogenerator left (resp., right) D-module always
exists (see, e.g., [110]). For instance, if Q is an open convex subset of R™ and k¥ = R or C, then
C>*(Q2) and D'(Q) are two injective D = k[0, ..., dy]-modules ([78]). Similarly, the left By(k)-
module G defined in Example 4.2 is injective cogenerator ([122]). Roughly speaking, the injective
cogenerator condition on F plays the same role as the condition of algebraically closed base field
in classical algebraic geometry.

Example 4.3. If Q is an open convex subset of R3, & = R or C, and F = C>®(Q), D'(Q),
S'(), A(2) or B(€), then Example 4.2 shows that F is an injective D = k[0, 02, 03]-module.
Example 3.5 and Corollary 4.1 then prove the exactness of the following complex:

0e— F Ll 3l 3 B 7 homp(M,F) — 0.

We find again the well-known result in mathematical physics that the divergence operator in R? is
parametrized by the curl operator, i.e., ker#(R3.) = Ry F2, and the curl operator is parametrized
by the gradient operator, i.e., kerz(R3.) = Ry F, whenever F = C*°(Q2) and € is an open convex
subset of R™.

Example 4.4. If Q is an open convex subset of R* and F is an injective D = R[d;, 91, 02, O5)-
module (e.g., C*(Q), D'(Q) or §’'(2) by Example 4.2), then using Corollary 4.1 and Example 3.6,
the first set of Maxwell equation (45) is parametrized by

B=VAA,
(56) ~ i
Fo_94 v,
ot

where (A,V) € F* is called the quadri-potential of (45), i.e., kerz(Ry.) = Ry F*. The quadri-
potential (/T, V') is not uniquely defined since the left-hand side of (56) is parametrized by

/Y = 76 53
o€
V= 5
i.e., kerr(Ry.) = R_1 F (see (52)). Hence, for any £ € F, the following gauge transformation
A’l—uﬁf—ﬁa V'—>V+%,

gives the same fields (E, E) This degree of freedom in the choice of the quadri-potential is used
in gauge theory (e.g., gauge fixing condition, Lorenz gauge, Coulomb gauge) ([51, 83, 84]).

Let us generalize the concept of the rank of a finitely generated module M over a noetherian
domain D given in 1 and 2 of Definition 1.1.

Definition 4.2. If D is a noetherian domain and M is a finitely generated left D-module, then
the rank of M, denoted by rankp (M), is the maximal rank of free left D-modules F' contained in
M, i.e., the maximal rank of free left D-modules F' such that the following short exact sequence

0—F - M=7T_-—0

holds, where T'= M/F is a torsion left D-module.
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Remark 4.3. The rank of a finitely generated left module M over a noetherian domain D can
also be defined as rankp (M) = dimg (K ®p M), where K is the division ring of fractions of D
(Ore localization) and ® the tensor product. For more details, see, e.g., [44, 54, 71].

Let us state an extension of the so-called Fuler-Poincaré characteristic.

Proposition 4.1 ([71, 110]). If D is a noetherian domain and M', M and M" are three finitely

generated left D-modules, then the short exact sequence 0 — M’ oM M0 yields:
rankp (M) = rankp (M’) + rank p (M").
A similar result holds for short exact sequence of Tight D-module.

Using Proposition 4.1 and splicing a long exact sequence into a sequence of short exact sequences,
we can show that the alternative sum of the rank of the modules composing this long exact sequence
is 0. Hence, if M admits the following finite free resolution of finite length

R —1
—_—

0 D1><pm LBom D1><;Dm71 . R D1><;02 R D1><;01 R D1><;Do i M 0

7

then, using Proposition 4.1 and 1 of Definition 1.1, we obtain:

(57) rankp (M) = Z(—l)i rankp(DP1) = Z(—l)ipi.
i=0 1=0

Example 4.5. If M is a stably free left D-module of rank [, then there exist two non-negative
integers r and s such that M @ D'*¢ = D'X" and [ = r — 5. Therefore, the split exact sequence
(54) holds. Using Proposition 4.1 or (57), we find again that rankp (M) =r — s.

Example 4.6. Using Example 2.3 and the finite free resolution (9) of the D = Q[01, 02, 03]-
module M = D/(D'*® Ry), where Ry = (0; 02 83)7 is the gradient operator in R?, we obtain
rankp(M) = 1 -3+ 3 —1 = 0. In particular, using Definition 4.2, the trivial exact sequence
D0 =0 — M — T =M — 0 holds, and thus M is a torsion D-module.

Similarly, if My = D'*3/(D**3 Ry), where Ry is the matrix of PD operators defining the curl
operator (see (10)), then the exact sequence (9) yields the following one:

0 — D 2, pix3 M, pxd T2, g, g,
Then, using (57), we obtain rankp(Mz) =3 -3+ 1=1.
Finally, if M3 = D'*3/(D RT) is the D-module defining the divergence operator in R3, then

3

the exact sequence (9) yields the finite presentation 0 —s D 225 D1X3 ™, Nro 0, and (57)
yields rankp(M3) =3 —1=2.

In Example 4.3, the divergence operator in R? was proved to be parametrized by means of 3
arbitrary functions also called potentials. However, Example 4.6 shows that the rank of the D-
module M3 associated with the divergence operator is 2. Hence, we can ask whether or not there
exists a parametrization of the divergence operator containing only two potentials. This remark
leads to the concept of minimal parametrization of a torsion-free left D-module.

Definition 4.3 ([16, 88]). Let M = D'*?/(D'*4 R) be a torsion-free left D-module. A matrix
Q € DP*™ is called a minimal parametrization of M if Q) is a parametrization of M, i.e., kerp(.Q) =
D'*4 R, such that the left D-module L = D™ /(D'*P Q) is either zero or torsion.

Equivalently, the matrix ) is a minimal parametrization of the torsion-free left D-module
M = D'*?/(D'*4 R) if we have the following exact sequence of left D-modules

(58) D1><q _R) D1><p _Q) Dle L}L %0’

where L is either 0 or a torsion left D-module. Let us prove rankp (M) = m. We first note that
M = D**? /(D' R) = D"*? /kerp(.Q) = coimp(.Q) = imp(.Q) = D*? Q,
and thus rankp (M) = rankp(D'*? Q). Then, (58) yields the short exact sequence

0—>D1XPQ—Z>D1><mL>L—>O
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and Proposition 4.1 yields rankp (L) = m — rankp(D'*P Q) = m — rankp (M), and thus, m =
rank p (M) since rankp (L) = 0 because L is a torsion left D-module.

Let us state a result which proves the existence of minimal parametrizations.

Theorem 4.2 ([16, 88]). Let D a noetherian domain, R € D?? and M = D'*? /(D9 R) q
torsion-free left D-module. Then, there exists a minimal parametrization of M.

Minimal parametrizations of a finitely presented torsion-free left D-module M can be obtained
as explained in the following algorithm.

Algorithm 4.1. e Input: A noetherian domain D and a matrix R € D?*P defining a
torsion-free left D-module M = D*P/(D1*4 R).
o Output: A matrix Q) € DP*™ defining a minimal parametrization of M.
(1) Compute a matrix P € DP*! such that kerp(R.) = P D!
(2) Select m = rankp (M) right D-linearly independent column vectors of P and form a matrix
Q@ with them.

If the ring D admits an involution @, then, using Algorithm 2.1, we can compute a matrix
U € DYP such that kerp(.0(R)) = DU, select m left D-linearly independent rows of U and
form a matrix V' € D"™*P with them to get the minimal parametrization Q = (V') € DP*™ of the
torsion-free left D-module M = D'*P/(D'*4 R) of rank m. The condition that the rows of V are
left D-linearly independent, i.e., kerp(.V)) = 0, can be checked by Algorithm 2.1.

Example 4.7. We consider again Example 4.6. Since the D = Q[d;, 02, 03]-module M3 defined
by the divergence operator in R? is reflexive of rank 2 (see Examples 3.5 and 4.6), we can obtain
a minimal parametrization of M3 by transposing the matrix formed by selecting two D-linearly
independent rows of the matrix RY, i.e., by considering two D-linearly independent columns of
the parametrization Ry of M3. Hence, the matrix @1 (resp., Q2 and Q3) defined by removing
the first (resp., second, third) column of the non-minimal parametrization Ry of M is a minimal
parametrization of M. If ) is an open convex subset of R? and F = C*(Q), D'(Q2) or §'(Q2), then
applying the contravariant exact functor homp( - F) to the exact sequence

p A, plxs Qi pix2 o o g0 =123,
we obtain the following exact sequence of D-modules
F L f3&f2<—homD(Li,]:)<—O, i=1,2,3,

which proves that the linear PD system kerz(Rs.) = {n € F3 | R3n = V. = 0} admits the
following minimal parametrizations:

n =—03§ + 0283 m = 02 &3, m = —03 &,
Ny =—01 &3 Ny = 03§ — 01 &3, Ny = 03 &1, V&, &2, &3€F.
n3 = 01 &2, N3 = —02&1, N3 = —02& + 01 &2.

Equivalently, a minimal parametrization of kerz(R3.) can be obtained by setting one of the arbi-
trary potentials &’s to 0 in the non-minimal parametrization Ry ([88]).

Example 4.8. We consider again the first set of Maxwell equations (45) (see Example 3.6).
Applying (57) to the finite free resolution of finite length (46) of the D = Q[d, 01, D2, 93]-module
M = D'¥5 /(D4 Ry), we get rankp (M) = 6 — 4 + 1 = 3. Therefore, the torsion-free D-module
M admits minimal parametrizations defined by matrices Q; € D%*3 formed by selecting three D-
linearly independent columns of R defined in Example 3.6. For instance, we obtain the following
four minimal parametrizations of (45):

-0y Ay — 0V = Ey, -0y A1 — 01V = Ejy, -0,V = Eq,

—0; Ay — OV = B>, -0V = Es, —0; Ay — O V = E, .
_0,V = Es, O, Ay — 03V =By, | —0,As— 05V = B, 24 _ i
05 Ay = By, 0y As = By, ~0s Ay + 0y Ay = By, vft/I:B
03 A1 = By, 03 Ay — 01 A3 = Bo, —01 Az = Bo,

—0y Ay + 01 Ay = B, —02 A1 = Bs, 01 Az = Bs,
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Example 4.9. We quote pages 15-17 of [117]: “The necessary and sufficient conditions, that the
six strain components can be derived from three single-valued functions as given in

L _ow
(59) o T op T oy’ %= B2’
0w | Ov ou Ow ov  Ou

W=ty T e e ™ e ey
are called the conditions of compatibility. It is shown in Refs. 1 through 5, for example, that the
conditions of compatibility are given in a matrix form as,

R. U. U,
R=|U R, U |=0
U, U, R.
0%, 0%, 0%y 0% 10 o0y oy 0y
R, = z+ y yz’ = x L O [ OY: zx Ty
02 T 02 oyo: VT Taya: 20m ( or oy | 0- )
ey | 0. 0 e, 10 [0y Mew O
60 R, = —+ — , — Y - Y yz zZx Ty
(60) VT 02 T 02 9z00 UvT Thiar T2y ( or oy | 02 )
R ey,  O%ep Py . 109

0 (a’sz + a’sz . a’Y;cy)

027 9y? Oxoy’ V.= S Oxdy 20z \ Oz dy 0z

[--] We know from Eqs. (1.4) that when the body forces are absent, the equations of equilibrium
can be written as:

oz Oy 0z 0
OTyy  Ooy  OTy,

(61) Ox Oy 0z 0,
OT2a . 01y, 0o .

Jr dy 0z

These equations are satisfied identically when stress components are expressed in terms of either
Maxwell’s stress functions x1, x2 and x3 defined by

oo Pxs X0 P
ooy 022" Y Oy 0z’
?x1 |, 9*xs 9%x2
(62) 9T 5.2 + 9z2° T T 8z0x’
o — P?x2  xa s

Ox2 + oy?’ T”__axay’

or Morera’s stress functions 1, ¥3 and 13 defined by

o Ph 1o on 0w ov
Toyoz Y 20z Ox Oy 0z )’
e 10 (0w 0w o
(63) Y 0z02" T 20y \ ox oy 0z )’
0%y 10 [(0Yr | OYp O3
0, = y Tay = —35 AL -+t .
Oz dy 2 0z \ Ox dy 0z

It is interesting to note that, when these two kinds of stress functions are combined such that

0:32X3+32X2ia2¢1 - _ P 10 7%+%+%
(64) e 022 oyoz T YF Oydz 2 0x Ox Oy 0z )77

the expressions (60) and (64) have similar forms.”

311



ALBAN QUADRAT

Using the concept of minimal parametrizations, let us explain the last sentence and par-
ticularly the relation between (60), (64), Maxwell’s stress functions and Morera’s stress func-
tions. Let D = Q[0y, 0y, 0] be the ring of PD operators with rational constant coefficients and
N = D'*3/(D'*6 P) the D-module finitely presented by the matrix P defined by:

d, 0 0
0 9, O
p=| 0 0 % |cpoa
0 0. 0y
d. 0 0,
Oy 0, 0
Using Algorithm 2.1, we can check that the D-module N admits the finite free resolution:
(65) 0 — pix3 2B, pix6 @ pixe P pix3 © n —0,
0 0? 85 —0y 0, 0 0
0? 0 02 0 —0, 0, 0
02 0? 0 0 0 -0, 0
Q= Y e Y| ¢ poxs
~9,0, 0 0 192 la,a, Lo, ’
0 —0; 0, 0 %81; Oy —%85 %83, 0.
0 0 —05 Oy %895 0, %8?,8,3 —%83
O 0 0 0 0, 0y
R= 0 9 0 9, 0 9, | €D*.
0 0 0, 9y 0, O

Let Q be an open convex subset of R? and F = C>(Q) (resp., D’(2), S'(R?)). Applying the exact
functor homp(-,F) to the exact sequence (65), we obtain the following exact sequence:

0— 73 B 76 & 76 L BB Yerg(P) — 0.
The PD operator P. : F® — F3 is defined by (59) and corresponds to the Killing operator
E— 2 Le(w) = (e %), where { = w8, +v 9, + w0, is a displacement of R? and w the euclidean
metric of R3, namely, w;; = 1 for i = j and 0 otherwise (4,7 = 1, 2, 3) ([53, 83, 84]). The PD

operator Q. : F% — F* defines the compatibility conditions (60) of P. : F¢ — F3. These
compatibility conditions are called the Saint-Venant compatibility conditions.

Let us now consider the Auslander transpose D-module M = D'*6/(D'*3 PT) of the D-
module N = D1*3/(D*6 Q) associated with (61). Let us study the properties of M. According
to Theorem 3.1, we need to compute the D-modules extiD(N,D)’s for i = 1, 2, 3, namely, the
defects of exactness of the following complex of D-modules:

(66) 0 pix3 B pixe Q" pixe PT pixs g
We can check that exth, (N, D) = 0, ext?,(N,D) = 0 and ext3,(N,D) = D*3/(D'*6 RT) +£ 0,
which proves that M is a reflexive but not a projective D-module. Moreover, we obtain that Q7
(resp., RT) defines a parametrization of M (resp., D'*6/(D'*%QT)). Moreover, applying the
exact functor homp(-,F) to (66), we obtain the following exact sequence:

T
0 — kerg(RT.) — F° R g6 Qg6 Pom

Thus, the PDI operator Q7. : (x )+~ (¢ 7) is a parametrization of the stress tensor (61) by
means of 6 arbitrary functions y € F3 and ¢ € F?, i.e., kerr(P.T) = QT F5. We point out that
this parametrization is exactly the PD operator defined by (64).

Finally, since PT has full row rank, rankp (M) = 6—3 = 3. Hence, (64) does not define a minimal
parametrization of (61). However, according to Theorem 4.2, the torsion-free D-module M can be
embedded into a free D-module of rank 3, which, by exact duality, yields minimal parametrizations
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of kerz(P.T) depending on three arbitrary potentials of F. Minimal parametrizations can be
obtained by setting 3 of the 6 arbitrary functions x € F3 and ¢ € F3 to 0. Taking v = 0 (resp.,
x = 0), we obtain the Maxwell’s (resp., Morera’s) parametrization (62) (resp., (63)) of the stress
tensor (61). These results explain Washizu’s last sentence.

5. QUILLEN-SUSLIN THEOREM AND STAFFORD’S THEOREMS
Let us now characterize when a finitely presented left D-module M is free.

If M = DY*?/(D**4 R) is a free left D-module of rank m, then there exists a left D-isomorphism
¥ : M — D™ which yields the following exact sequence:

D1><q -R D1><p pom D1><m 0.

Writing the left D-homomorphism v o 7 : DY*P — D™ in the standard bases of D'*P and
D™ there exists a matrix @) € DPX™ such that the following short exact sequence holds:

(67) 0 — D4R — p¥» &, plxm g,

Since D'*™ is a projective left D-module, this short exact sequence splits by Proposition 2.5,
i.e., there exists T € D™*P such that the left D-homomorphism .T : D'*™ — D1XP gatisfies
(Q)o (T)=.(TQ) = Iy, ie, TQ=I,. Hence, the minimal parametrization ¢) of M admits a
left-inverse over D. The converse of this result is clearly true since D'*P Q = D'*™ and

M = Dlxp/(Dlxq R) — DlXp/keI'D(.Q) o~ Dlpr —_ l)1><m7
which proves that M is a free left D-module of rank m. We obtain the following result.

Proposition 5.1 ([29, 103]). The finitely presented left D-module M = D'*? /(D**4 R) is free of
rank m iff there exist two matrices Q € DP*™ and T € D™*P satisfying:

kerp(.Q) = DY R, TQ = I,.

Then, {m(Tie)}k=1,...m S a basis of the free left D-module M of rank m, where T},e denotes the
k™ row of the matriz T.

The matrix @ defined in Proposition 5.1 is called an injective parametrization of the free left
D-module M of rank m since, with the notation 2z = m(Tg,) for all k = 1,...,m, we have

m p

Vi=1....p, 4= Qiz Yhk=1...m z=)Y Ty,
k=1 j=1

where y; = w(f;) for j =1,...,p and {f;};=1,..p is the standard basis of D'*? (see Section 1).

Example 5.1. We consider again Example 2.10. Using Algorithm 4.1, we can prove that the
matrix R; admits the following minimal parametrization

—0
Q=] Oh+mz03 |,
—x2 82 -2
ie, M = D> Q and L = D/(D'3 Q) is a torsion left D-module. Using Algorithm 2.2, we
can check that the matrix )1 admits the left-inverse 77 = %(wz 0 —1)over D, and thus

M = D3 @, = D, which proves that M is a free left D-module of rank 1. The matrix @Q; is
an injective parametrization of the free left D-module M of rank 1. Finally, if {f;},;=1,23 is the
standard basis of the free left D-module D'*3, 7 : D'X3 — M the canonical projection onto M
and {y;};=1,2,3 the family of generators of M defined by y; = 7(f;), then the residue class of T}
in M, namely, z = % (x2y1 — y3), is a basis of M and:

Y1 = *82 2,
Y2 = (2205 + 1) 2,
Y3z = —(.1‘2 Oy + 2) 2.
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Corollary 5.1 ([29, 103]). If M = D'*?/(D*9 R) is a free left D-module of rank m and Q is an
injective parametrization of M, i.e., kerp(.Q) = DY*9 R and Q admits a left-inverse T € D™*P
over D, i.e., T Q = I, then Q defines an injective parametrization of the linear system kerx(R.)

for all left D-modules F, i.e., kerr(R.) = QF™ and Q& = n implies £ = T'n.
If R has full row rank, i.e., kerp(.R) = 0, then the split exact sequence (67) becomes

.R .Q

0 D1><q D1><p D1><m 0’
.S T
— —

(see 7 of Definition 2.1), i.e., p = ¢ + m and the following two identities hold:

(63) (ﬁ)(S Q)—(Ig . )—Im (s @)(ﬁ)—fp.

Definition 5.1. Let GL,(D) £ {U € DP*? | 3V € DP*P : UV = VU = I,} be the general
linear group of D of index p. An element U € GL, (D) is called a unimodular matriz.

If kerp(.R) = 0, then the previous result proves that M = D'*?P/(D'*4 R) is free of rank p — q
iff R can be completed to a unimodular matrix

V= ( g > € GL,(D),

or equivalently, if there exists U = V~! € GL,(D) such that RU = (I, 0). The following
commutative exact diagram of left D-modules holds:

S T
— —
0— pixa B pixp -9 pixe-o) __
I | Tw
0— Dpixe LB poe Ty g,

Corollary 5.2. M is a free left D-module of rank p — q iff there exists U € GL,(D) such that:
(69) RU = (I, 0).
If we write U = (S Q), where S € DP*9 and Q € DP*P~9) | then

: M — DYx@-a)
T(A) — AQ,

is a left D-isomorphism and its inverse ¢p~1 : DY*P=9) — M s defined by ¢~ (u) = w(uT) for
all € DYP=9 where the matriz T € DP~D*P s defined by:

U=t = ( i ) € DP*P,
T

Then, M = D'*? Q = D=9 gnd the matriz Q is an injective parametrization of M. Finally,
{m(Tke) th=1,... p—q s a basis of the free left D-module M of rank p — q.

Contrary to the linear algebra, the computation of bases of a finitely generated free left D-
module is generally a difficult issue in module theory. We shortly study particular situations.

If D is a principal left ideal domain (e.g., D = Z, k[x], where k is a field, K[J], where K is
a differential field such that k or k(t)) and R € D9*P a matrix admitting a right-inverse over D,
then computing the so-called Jacobson normal form of R (generalization of Smith normal form)
(see, e.g., [25, 42, 49]), we obtain two matrices F' € GL,(D) and G € GL,(D) satisfying:

R=F(I, 0)G.
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Ifr=p-gq G=(GI GI)T, where G; € DI*P, Gy € D" and G~! = (H; Ha), where
H, € DPX4_ H, € DP*" then we obtain R = F Gy, i.e., G = F~' R, and

PR Gl=1 = 0 By

Gs P 0o I Gy P
S B Y (Y o (B e w1
G o 1, ) 7 Gy ! R

which shows that we can take U = (Hy F~! Hs) € GL,(D) and T = G5 in Corollary 5.2. The
computation of Jacobson normal forms was implemented in the package JACOBSON ([25]).

The results obtained in Section 3 can be used to check whether or not a finitely presented
D = k[zy,...,z,]-module, where k is a field, is projective, i.e., free by the Quillen-Suslin theorem
(see 2 of Theorem 1.2). However, the explicit computation of a basis generally requires dedicated
methods. Known constructive proofs of the Quillen-Suslin theorem are based on the next theorem
which allows one to compute a matrix U € GL,(D) satisfying (69) by an induction on the number
of the variables z;’s.

Theorem 5.1 ([107, 115]). Let k be a field and R € D?*P q matriz which admits a right-inverse
over D = k[z1,...,x,]). Then, for every a, € k, there exists a matriz U € GL,(D) satisfying:
(70) R(z1,...,xn) U(x1,...,2n) = R(x1,. .., Tn_1,an).
Hence, for all as,...,a, €k, there exists V € GL,(D) such that:

R(z1,...,xzn) V(x1,...,2s) = R(a1,...,an).

The constructive proofs of Theorem 5.1 are rather involved but are generally based on three main
steps: Noether’s normalization processes, computation of local bases (e.g., Horrock’s theorem) and
the patching of the local solutions to get a global basis. See, e.g., [30, 55, 61, 62, 64]. See the
package QUILLENSUSLIN ([29]) for an implementation of Theorem 5.1 and for the computation of
bases and injective parametrizations of free D = k[, ..., z,]-module.

Let us state an interesting system-theoretic interpretation of Theorem 5.1.

Corollary 5.3 ([29]). Let k be a field, D = k[z1,...,z,], R € D¥*P q full row rank matriz, i.e.,
kerp(.R) =0, and F a D-module. If the D-module M = D'*P /(DX R) is free, then we have the
following D-isomorphisms
X : kerg(R(e,a,).) — kerg(R(e,xz,).) X !ikerg(R(e,x,).) — kerg(R(e,a,).)
¢ — n=Ug¢ n o (=U""y,
where a,, € k andU € GL,(D) satisfies (70), i.e., the elements of ker 7 (R(e, x,,).) and ker z(R(e, ay).)
are in a one-to-one correspondence. More generally, the linear system kerz(R.) is D-isomorphic

to the linear system obtained by setting all but one variables x;’s to a; € k (e.g., a; = 0) (resp.,
all the variables x;’s to a; € k) in the presentation matriz R.

Example 5.2. Let us consider the following linear OD time-delay system ([73]):
1) = ya(t = h) +2u1(t) + 292(t) — 2u(t — h) =0,
91(t) + g2(t) — a(t — h) —u(t) = 0.

Let D = Q[0,0] be the commutative polynomial ring of OD time-delay operators with rational
constant coefficients (i.e., y(t) = y(¢), dy(t) = y(t — h)) and the presentation matrix of (71):

d—6+2 2 26
(72) R= ( * ) € D?*3,

(71)

0 0 —-06—-1
Using Algorithm 2.2, we can check that R admits a right-inverse S defined by:

1 0 0
S=5 064+2 —26 | e D>*2
d -9
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Then, using Corollary 3.3, the D-module M = D'3/(D'*2 R) is projective, i.e., free by the
Quillen-Suslin theorem (see 2 of Theorem 1.2). Applying Theorem 5.1 to the matrix R and
as = 0, the linear system (71) is equivalent to the linear OD system obtained by setting ¢ to 0 in
the presentation matrix R, i.e., (71) is equivalent to:

(73) { 516+ 221(8) + 2 29(1) = 0,

21(8) + 2o (t) — v(t) = 0.

Applying a constructive version of the Quillen-Suslin theorem to R, we obtain that a transformation
which bijectively maps the trajectories of (71) to the ones of (73) is defined by:

n(t) = o (1),

Yo(t) = 5 (21(t = 2h) + 21(t — h)) + 22(t) + v(t — h),

u(t) =3 Zl(t —h)+u(t),

21 (t) = (t)a

& 2o(t) = —Lyi(t — h) + ya(t) — u(t — h),

o(t) = =% g1 (t — h) + u(t).
Applying again Theorem 5.1 to (73), we obtain that the linear OD system (73) is equivalent to
the purely algebraic system obtained by setting to 6 and 0 to 0 in R, namely:

{ 221 (t) + 2x2(t) = 0,

(75) —w(t) = 0.

Applying a constructive version of the Quillen-Suslin theorem to R(9,0), we get that a transfor-
mation which bijectively maps the trajectories of (73) to the ones of (75) is defined by:

f
) =
) =

z1(t) = z1 (1), z1(t) = z1(1),
(76) 29(t) = wa(t) — 3 @1 (1), & 2o (t) = 20(t) + 3 21(1),
o(t) =w(t) — 2 &1(t) + 1) + 22(t), w(t) = v(t) + 21(¢) + 22(2).

Composing the invertible transformations (74) and (76), we obtain a one-to-one correspondence
between the solutions of (71) and (75). The solutions of (71) (resp., (73)) are parametrized by
means of (74) (resp., (76)), where z1, z2 and v (resp., x1, x2 and w) satisfy (73) (resp., (75)).
Solving the algebraic system (75), we obtain zo = —z; and w = 0 and substituting these values
into the first system of (76) and then the result into the first transformation of (74), we find that
the injective parametrization of (71) is defined by:

y1(t) = 21(2),
Vi eF, Y2(t) = =3 (&1(t — k) — @1(t — 2h) + @1 (t) — 21 (t — h) + 221(2)),
u(t) = 5 (@1t — h) — @1 (t)).

An OD time-delay system kerr(R.) which defines a free D-module M = D'*9/(D'*4 R) is called
flat and a basis of M corresponds to a flat output of ker #(R.) ([73]). The motion planning problem in
control theory can easily be achieved for flat systems (see, e.g., [32, 73, 74, 75, 76, 79]). Corollary 5.3
shows that every linear OD time-delay system is equivalent to the flat (i.e., controllable) linear OD
system obtained by setting all the time-delay operators to 1, i.e., to the corresponding controllable
linear OD system without time-delays ([29]).

The following generalization of Quillen-Suslin theorem was proposed by Lin and Bose in [60].

Lin-Bose’s problems: Let R € D7*P be a full row rank matrix such that the ideal of D generated
by the ¢ x g-minors {m;};=1, ., of R satisfies (m1,...,m,) = (d), where d is the greatest common
divisor of the ¢ x ¢ minors of the matrix R.
(1) Find two matrices R’ € D9*P and R” € D7*? such that R = R” R’ and det(R") = d and
R’ € D?*P admits a right-inverse over D.
(2) Find a matrix T € D®P~9*P such that det((RT T7)T) = d.
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1 and 2 were shown to be equivalent in [60].

In [29], we proved that the output of the next algorithm returns the matrix R’ defined in 1 and
R can then be found by means of a factorization using Grobner basis techniques.

Algorithm 5.1. e Input: A commutative polynomial ring D = k[z1,...,z,] over a com-
putable field &, a full row rank matrix R € D9%P and the finitely presented D-module
M = D'¥?/(D'*4 R) such that M /t(M) is a free D-module.

e Output: A full row rank matrix R’ € DI*P satisfying M /t(M) = D*? /(D4 R').
1) Using Algorithm 3.1, compute a matrix Q € D9 *? satisfying M/t(M) = DY*?/(D'*7" Q).
) Using Algorithm 2.1, compute a matrix Q2 € D%*4" gatisfying kerp(.Q) = D% Q.

) If kerp(.Q) =0, i.e., if @ has full row rank, then stop the algorithm with R’ = Q.

) Compute a basis of the free D-module L = D'*4 /(D'%% Q,) = D'*4 Q. We obtain a
full row rank matrix B € D9%% such that {m2(Bie) }i=1,...,q is & basis of free D-module L,
where 7 : D'*4 — [ is the canonical projection onto L and Bje the i row of B.

(5) Return the full row rank matrix R’ = B@Q € D*P.

(
(2
(3
(4

Algorithm 5.1 was implemented in the QUILLENSUSLIN package ([29]).
The next algorithm solves the second problem as explained in [29].

Algorithm 5.2. e Input: A commutative polynomial ring D = k[z1,...,z,] over a com-
putable field &, a full row rank matrix R € D?7*P such that the ideal of D generated by
the ¢ x ¢-minors {m;};=1, ., of R satisfies (my,...,m,) = (d), where d is the greatest
common divisor of the ¢ x g-minors of R.

e Output: A matrix T € DP~D*P satisfying det((RT T7)T) =d.
(1) Using Algorithm 3.1, compute a matrix Q € D? *P satisfying M /t(M) = D' /(D> Q).
(2) Using a constructive version of the Quillen-Suslin, compute a basis of the free D-module
M/t(M) = DY /(D'*4" Q). We obtain a full row rank matrix T € D®=9*P such that
{7’ (Tie)}iz1,... p—q is a basis of the free D-module M/t(M), where n’ : DY*P — M /t(M)
is the canonical projection onto M/t(M) and T, is the it row of 7.
(3) Return the matrix U = (RT TT)T.

Algorithm 5.2 is also implemented in the QUILLENSUSLIN package ([29]).

Example 5.3. Let us consider the OD time-delay model of a flexible rod with a force applied on
one end studied in [74]:

291(t = 1) = ga(t) — g2(t —2) = 0.
Let D = Q]9, 9] be the commutative polynomial ring of OD time-delay operators (i.e., dy(t) = y(t),
Sy(t) = y(t — h)) and the D-module M = D'*3/(D'*2 R) finitely presented by:

0 —046 -1
7 R= € D**3,
(") (28(5 —-9(1+46%) 0 )
Using Algorithm 3.1, we obtain that the matrix @ is defined by

{ G1(t) = ot — 1) — u(t) =0,

-26 82+1 0
Q=| -0 95 1 |eD?3
s -9 6

satisfies M/t(M) = DY3/(D'3Q) and t(M) = (D'*3Q)/(D'*? R). Reducing the rows of Q
with respect to D'*2 R, we obtain that the only non-trivial torsion element of M is defined by
m=—28y; + (6> +1)ya, 9dm =0,

where y1, y2 and y3 are the residue classes of the standard basis {f;};=1,2,3 of D3 in M, i.e.,
t(M) = Dm. As explained at the end of Section 4, the torsion element m of M corresponds
to the autonomous element § = —2§m; + (0% + 1) 7 of kerz(R ) = {n € 73 | Rn = 0}, where
F is a D-module (e.g., F = C™(R)), which satisfies § = 0, i.e., § = ¢ is a constant (first
integral). Hence, the linear system kerz(R.) is not controllable since we cannot steer y; and ys
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as we wish due to the constraint —2 81, + (0% + 1) 2 = ¢. Now, using Algorithm 2.1, the matrix
Q2 = (0 —9d 1) satisfies kerp(.Q) = D Q2. Then, we have to compute a basis of the free
D-module L = D'*3/(D Q3). Using a constructive version of the Quillen-Suslin theorem (e.g., the
QUILLENSUSLIN package), we obtain the split exact sequence

0— D 2 pv2 P p

.S .B

— —

with the following notations:
0 -1 0
-1 0 0
Ss=| 0|, B=| o 1| B=( " ]

1 o 9

In particular, we have D'*3 Q = D'*2 R’, where the full row rank matrix R’ is defined by:

25 —62-1 0)

/:B —
R ° (—8 06 1

Then, we get the factorization R = R” R’, where the matrix R” € D?*? is defined by:

0 —1
R' = .

We can check that det R” = 0, where 0 is the greatest common divisor of the 2 X 2 minors of R
(i.e., annp(m)), which solves the first problem. Let us now study the second one. We have to
compute a basis of the free D-module M /t(M) defined by the following finite free resolution:

0 — D -2, p1x3 -2 pix3 T v (M) — o0,
Using Algorithm 2.4, M/t(M) admits the following minimal free resolution
0 — D3 @, pixa MO0 vy o,

where Q' = (QT SI)T. Now, applying a constructive version of the Quillen-Suslin theorem to
the matrix @’ using, e.g., the QUILLENSUSLIN package, we find that a basis of the free D-module
M/t(M) is defined by (7' @ 0)(T"), where T/ = (1 /2 0 0). Hence, if T is the matrix defined
by the first three entries of 77, then U = (RT  TT)7T satisfies det U = 0.

For more applications of the Quillen-Suslin theorem in mathematical systems theory (e.g., com-
putation of (weakly) doubly coprime factorizations of rational transfer matrices ([96])), see [29]
and the QUILLENSUSLIN package. See also Chapters 3 and 4.

Let us now explain the main ideas of the constructive proof of Stafford’s theorem (see 3 of
Theorem 1.2) obtained in [103] and implemented in the package STAFFORD ([103]).

We first need to introduce a well-known result due to Stafford ([111]) on the efficient generation
of ideals of the Weyl algebras A,, (k) and B, (k), whenever k is a field of characteristic 0.

Theorem 5.2 ([111]). Let k be a field of characteristic 0 and D = A, (k) or B, (k). If vy, va, v3 €
D, then there exist a1, as of D such that the left ideal I = D vi+ D vs+ Dws of D can be generated
as follows:

I = D(’Ul +a1’03)+D(’02+a2’03).
Hence, every left ideal of D can be generated by two elements of D. Sitmilarly for right ideals.

Example 5.4. Let us consider D = A3(Q) and the left ideal I = D (01 +x3) + D02+ D 05 of D.
We can check the identity (92 4+ 03) (01 + x3) — (01 + 23) (02 + J3) = 1, which yields

0y = (02 (02 + 03)) (1 + x3) — (02 (1 + x3)) (02 + 03),
03 = (03 (02 + 03)) (01 + x3) — (03 (01 + 23)) (D2 + O3),

and shows that I can be generated by 01 + x3 and 0y + 05, i.e., [ = D (01 + x3) + D (02 + 93).
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If we now consider the left ideal J = D 0y + D d2 + D 03 of D defined by the gradient operator
in R3, then J satisfies J = D 9y + D (02 + x1 93) since we have:
Oy = 11 (82 +x1 83) oL + (—:L‘l o1 + 1) (32 +x1 83),
83 = —(82 + 21 63) 01 + 01 (82 + 21 83)
Two constructive algorithms of Theorem 5.2 were developed by Hillebrand and Schmale on

the one hand ([39]) and by Leykin on the other hand ([57]). Both strategies have recently been
implemented in the package STAFFORD ([103]).

Let us introduce a few more definitions.

Definition 5.2. (1) The elementary group EL,, (D) is the subgroup of GL,, (D) generated by
all matrices of the form I,,, + r E;;, where r € D, i # j and E;; is the matrix defined by 1
at the position (4,7) and 0 else.

(2) A column vector v = (vy ... v,)T € D™ is called unimodular if it admits a left-inverse
over D, i.e., if there exists w = (w; ... w,,) € D™ such that wv = S wiv; = 1
The set of unimodular vectors of D™ is denoted by U,, (D).

Example 5.5. Upper and lower triangular matrices with 1 on the diagonal belong to the elemen-
tary group ([71]).

Proposition 5.2 ([103]). If k is a field of characteristic 0, D = A, (k) or B,(k), m > 3 and
v € Uy, (D), then there exists a matriz E € E,,,(D) satisfying:

Ev=(10...0)7.
More precisely, let a1, az € D be such that Dvy + Dvs + D vy = D (v1 + a1 V) + D (v2 + ag v),

m

and dy, ...,dyn—1 € D satisfying the Bézout identity 22:711 d; vl =1, with the following notations:
vi =v1 + a1 Uy, ’Ul2 =vy+ AoV, Vi>3, vg = ;.

If vl = (V) =1 —wvp)d;, foralli=1,...,m—1, and

0 0 ... 0 a
0o 0 ... 0 0
01 0 ... 0 a
0O 1 O 0 0
001 ... 0 O
Ex= . . . . . . |€ExD), E2=| : 1 = | €En(D),
0 1 0 o 0 0 ... 1 0
0 0 0 0 L VO VAN |
1 0 0 -1 1 0
0 0 0 O —v) 1
Ey=1 ¢t 00 €En(D), Es= : o €En(D),
0 0 1 0 v, 0 0 ... 10
0 0 O 0 1 —vf+1 0 0 ... 0 1

then we have (E4 E3 Ea Ey)v= (10 ... 0)T.

__ Proposition 5.2 can be used to handle Gaussian elimination on the columns of the formal adjoint
R of R. For more details, see [103]. We have the following algorithm ([103]).

Algorithm 5.3. e Input: D = A, (k) or B, (k), where k is a computable field of charac-
teristic 0, a matrix R € D?*P which admits a right-inverse S € DP*? and p — ¢ > 2.
e Output: Two matrices Q € DP*P=9) and T € DP~D*P satisfying TQ = I,_, and
{m(Tie)}i=1,. p—q forms a basis of the free left D-module M = D'*?/(D**4 R) of rank
p — ¢, where T}, is the i*? row of T and 7 : D'*P — M the canonical projection onto M.
(1) Compute R =6(R) € DP*? and set i =1, V = R and U = 1.
(2) Denote by V; € DP~! the column vector formed by taking the last p — i + 1 elements of
the i*" column of V.
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(3) Applying Proposition 5.2 to V;, compute F; € E,,_;11(D) such that F; V; = (10 ... 0).
Iy O
4) Define the matrix G; = 0 ! P € E,(D) where Gy = F.
) If i < g, then return to 2 with V «— G, V, U «+— G; U and i «+— i + 1.
) Define G = G, U and the matrix P formed by selecting the last p — ¢ rows of G.

) Define Q = 0(P) € DP*(P=9) and compute a left-inverse T € DP~D*P of Q.

(
(5
(6
(7
Algorithm 5.3 is inspired by a result of [63, 64] obtained for commutative rings.
Example 5.6. Let us consider the first Weyl algebra D = A;(Q), the following matrices

T
78) a0 0 0 -1 cpti g 00 0 -1 c pixe,
o 0 —t 0 t 00 0

and the left D-module M = D'**/(D'*2 R). We can easily check that S is a right-inverse of R.
Therefore, M is stably free with rankp (M) = 2, i.e., M is free left D-module of rank 2 by 3 of
Theorem 1.2. Using Algorithm 5.3, let us compute a basis of M.

Let us first compute the formal adjoint R of R:

T
B 0 -0 0 -1 c pix2.
-0 0 -t 0

Let us now consider the first columnv; =(0 —9 0 — 1)T of R. The vector vp=(1 =9 O)T

is unimodular, which shows that we can take a; = —1, a3 =0, d; = 1, do = 0 in Proposition 5.2
since w’ = (1 0 0) is a left-inverse of vj. Applying Proposition 5.2 to vy, we get:
1 0 0 -1 1 0 0 O
01 0 O 01 0 O
El = 3 E2 = y
0 01 0 00 10
0 0 0 1 1 0 0 1
1 0 0 -1 1 0 00
01 0 O 0 1 00
Es = , Ey=
0 01 O 0 0 1 0
0 0 0 1 0 0 0 1

In particular, we have:

00 0 -1 1 0
G =B EE-| L0 €E4(D), GiR= 00
v=Rabg By Bu=1 0 4(D), k=1, _,
1 0 0 O 0 -0
Let us now consider the subcolumn vy = (0 —¢ — )" of the second column of matrix Gy R.

We can easily check that v) = (—0 — )" has a left-inverse defined by w) = (¢ — 8). Hence,
taking a; =1, ag =0, d; = —t and ds = —9 in Proposition 5.2, we get:

101 1 00 10 -1 1 00
Ei=lo010|,E5=| 0 10]|,E5=|01 0 |,E-= t 10
00 1 —t 0 1 00 1 o+1 0 1

Then, we have:

1+t -0 t
Fy = EiEéEéEi = t(t+ 1) —to+1 2 S E4(D), Frvy = 0
to+0+2 —9? to+2 0
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Let us define the following matrices:

0 0 0 -1
1 0 t t+1 ) —(t+1)0
G = 5 G = G G =

2 (0 F2> 2 2 tt+1) —td+1 —t(t+1)0

to+2 (t+1)0+2 02 —(t+1)0+2)0
Then, we have G R = (I 0)T. Finally, if we consider the following two matrices
t? —td+1

2+t —(t+1)0+1 0 0 t+1 -1
(79) Q = 2 ) T = ?

t0+2 -0 t+1 -t 0 0

tt+1)o+2t+1 —(t+1)0?

where @ is formed by taking the last two columns of the formal adjoint G of G and T is a left-
inverse of @, then a basis of M is defined by {#((0 0 ¢t+1 —1)), m#((t4+1 —t 0 0))},
where 7 : D4 — M is the canonical projection onto M.

Let us consider a left D-module F (e.g., F = C*°(R,)) and the linear system kerz(R.). Using
the matrix @ defined by (79), we obtain the following parametrization of kerz(R.):

z1(t) = 2 61(t) — t&a(t) + &(1),
&2(t) — ua(t) =0, za(t) =t (t+ 1) & (t) — (t+ 1) E(t) + (D),
(80) { B -tu® =0, T ) wl) =t +260) - (),

us(t) =t (t+1) &) + (2t + 1) &a(1) — (1+1) x(8).
Finally, since T'@Q = I, (80) is an injective parametrization of kerz(R.), i.e.:
(El(t)
&)\ _ () &(t) = (t+ 1) u(t) —ua(?),
(52(15) ) =Tl e | © { Ea(t) = (t + 1) 21(t) — o (f).
uz(t)

In control theory, the OD system kerz(R.) is called a differentially flat system and the basis (81)
of the free left D-module M corresponds to a non-singular flat output of kerz(R.) ([32]).

(81)

For PD examples, see [103] and the library of examples of the STAFFORD package.
Let us now study the case of stably free left D-module of rank 1.

Proposition 5.3 ([103]). Let D = A,(Q) or B,(Q) be a Weyl algebra and M a stably free left
D-module of rank 1. If Q € DP is a minimal parametrization of M, then M is a free left D-module
of rank 1 iff the left ideal DY*P Q of D admits a reduced Grébner defined by only one element P
of D. If so, then the column vector Q P! € DP defines an injective parametrization of the free
left D-module M and the residue class in M of a left-inverse T € D**P of Q P~! defines a basis
of the free left D-module M of rank 1.

Example 5.7. Let us consider the time-varying linear OD system #(¢) = t* u(t), k € N, and let
D = A1(Q), R, = (0 —t*) and M}, = D'*2/(D Ry). Since Ry has full row rank, according
to Corollary 3.3, My, is stably free iff the left D-module N = D*4/(DXP R,), where R), =
(—8 — tk)T is the formal adjoint of Ry, is reduced to zero:

A =0, : _
{ Faeo = ARt N=0= t"TA=0= ... = A=0 = N=0.
Hence, for all £ € N, the left D-module My, is stably free. Using Algorithm 4.1, the torsion-free
left D-module M}, admits the following minimal parametrization:

k+1
Ry, 1x2 -Qk 1x2 t
0—D~—"D -~ D — D/(D — 0, = .
/( Q) Qk <t8+k+1>
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Therefore, we get M), = D'*2/(D Ry) = D'*2Q, = Dt**! + D (0 + k + 1), showing that M;,
is isomorphic to the left ideal I, of D generated by t**1 and t0 + k + 1. Since D is a domain,
we obtain that My is a free left D-module iff I is a principal left ideal of D. However, we can
prove that t*+1 and t9 + k + 1 form a reduced Grébner basis of I, iff & > 1, and thus M, is
a stably free but not free left D-module whenever k& > 1 (see also [103]). For k = 0, we have
In=Dt+D (t0+1) = Dt because 0t =t 9+ 1. Hence, Iy is a principal left ideal of D and thus
My is free. Using (0 + 1)t~! = 0, we obtain that an injective parametrization of My is defined
by Qot~' = (1 9)T. To conclude, the controllable time-varying linear OD system (t) = t* u(t)
is flat in a neighbourhood of t = 0 iff £k = 0 and, for k£ > 1, the singularity at ¢ = 0 of its injective
parametrization u(t) = t =% i(t) over B;(Q) cannot be removed.

If M is a stably free left D = A;(k)-module M which is not free, then B;(k) ® p M is a torsion-
free left By (k)-module, and thus a free one (see 1 of Theorem 1.2). Hence, the obstructions for M
to be free come from irremovable singularities (see, e.g., Example 5.7).

The next proposition generalizes a remark of Malgrange ([69]) on the results of [70].

Proposition 5.4 ([103]). Let R € D?*? be a matriz which admits a right-inverse S € DP9 the
stably free left D-module M = DY*?/(D'*9 R) and m : DY*P — M the canonical projection. If
R = (R 0) € D?®+9)  then we have the following split exact sequence

% 0—» Dixa B pixete -9, pixp —0,
( ) .87 T’
Phiad —

with the notations:
I,-SR

S/ = < S > e plptaxa  pr_ ([p S) e prx(p+a9) Q = (
b ) R

e Dp+axp,
)

Hence, we have M @ D'X9 2 DXP j.e. M @ D'*9 is q free left D-module with a basis defined by
{k(T/) }i=1... p, where T}y denotes the i™ row of T' and x : D**W+9) — DI*P+a) /(DX R js
the left D-homomorphism defined by k(A1 ... Aptq)) = (T(A1 -0 Ap) Apg1 o0 Appq)-

We have the following system-theoretic interpretation of Proposition 5.4.

Corollary 5.4 ([103]). With the notations of Proposition 5.4, if F is a left D-module, then:
kers (R.) = {(n” ()T € Foto) | Ry =0} = Q' 7.
For all ¢ € F1 and all n € kerx(R.), there exists a unique & =n+ S € FP such that:

n=(,—- SR,
¢=RE.

Finally, the linear system kerxz(R'.) = kerg(R.) @ F? projects onto the linear system kerxz(R.)
under the canonical projection p : FP+9) — FP defined by p((n™ ¢T)T) =nT.

If D = A(k), then Corollary 5.4 can be interpreted as the blowing-up of the singularities:
embedding the linear system kerz(R.) into a larger space F(P+% the new system ker+(R’.) has no
more singularities, i.e., it is free. The situation is similar to the blowing-up in algebraic geometry

([27)).

Example 5.8. Let us consider Example 5.7 and particularly the stably free but not free left
D = A;(Q)-module M = D**2/(D R) of rank 1, the matrix R = (9 — t), which is associated
with the time-varying linear system @(t) — tu(t) = 0. If F is an left D-module, then using
Algorithm 3.1, we obtain the following parametrization of kerz(R.):

z(t) = —t €1 (t) + &1(t) + 12 &(t),
u(t) = =&y (t) + t a(t) + 262 (1)

But, we cannot express the potentials £&; and & in terms of x, u and their derivatives, i.e., this
parametrization is not injective since it would imply that rankp (M) is 2 whereas it is 1.

Vflvé_ZEfv {
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The left B;(Q)-module B1(Q) ®p M = B1(Q)'*2?/(B1(Q) R) is free and the corresponding
system kerg(R.), where G is any left B;(Q)-module, admits the injective parametrization:

a(t) = b(t),
u(t) = 1 4 (0).

The fact that M is not a free left D-module means that we cannot remove the singularity
at t = 0. However, if " = (R 0) € D3, Corollary 5.4 shows that the linear OD system
kerg(R.) ={(z u v)T € F?|i(t)—tu(t) =0} admits an injective parametrization defined by
the matrix Q' = ((Is — SR)T RT)T € D3*2| i.e., we have

a(t) = —to1(t) + oa(t) + 2 oa(t),
& u(t) = —¢1(t) +tpa(t) + 2 p2(t),

v(t) = ¢1(t) — tpa(2),
where @1 (t) = x(t) +tv(t) and @2(t) = u(t)+0(t). Hence, Corollary 5.4 allows us to “blow up” the
singularity at t = 0 and the non-flat linear system kerz(R.) is the projection of the flat behaviour
kerz(R'.) = kerr(R.) ® F = F? under the following canonical projection:

p:F3 — F?

)T

Vi eg,

z(t) —tu(t) =0,
veF,

(x u v — (z u)T.

Let us now show how the previous results on Stafford’s theorem can be extended to the case of
D = A(9), where A = k[t] and k is a field of characteristic 0, or k{t} and k = R or C.

Theorem 5.3 ([106]). If A = k[t] and k is a field of characteristic 0, or k{t} and k =R or C,
D = A(0) and vy, va, v3 € D, then there exist two elements ay, as € D such that the left ideal
I =Dwvi+ Dvy+ Dus can also be generated as follows:

I:D(Ul+a103)+D(U2+a27)3).

In particular, every left ideal of the ring D = A(9)], where A is defined in Theorem 5.3, can be
generated by two elements ([34, 66]).

Proposition 5.2 can also be extended to the ring of OD operators D = A(9) for the differential
rings A introduced in Theorem 5.3. Let us give an explicit example.

Example 5.9. If D = R{t}[0] and v = (0 sin(¢) )7, then v admits a left-inverse over D since
bringing the OD linear system vy = 0, i.e.,

(I)l = Oa
®y = sin(t) y,
P53 = ay?

to formal integrability yields 0 @5 — sin(t) @3 = cos(t) y and then:
sin(t) @ + cos(t) (0 P — sin(t) P3) = y.

Hence, the column vector v admits the left-inverse w = (0 cos(¢) 9 + sin(t) — cos(t) sin(t))
and DO+ D sin(t) + DO = D. Taking a; = 1 and az = 0, we get I = D (0 + 9) + D sin(t)
and thus v] = 9, v = sin(t), di = — cos(¢) sin(¢), da = cos(t) 9 + sin(t), v{ = cos(t) sin(t),
vy = —cos(t) @ — sin(t). Then, we can define the following four matrices:
1 01 1 0 0
Eyr=101 0], Ey= 0 1 01,
0 0 1 cos(t) sin(t) —cos(t)d —sin(t) 1
1 0 -1 1 0 0
Es=|01 0 |, Es=| —sin(¢) 1 0
0 0 -0+1 0 1
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Hence, the matrix E = Ey E3 Es F1 € E3(D) defined by

1 — cos(t) sin(t) cos(t)  + sin(t) — cos(t) sin(t)
E= sin(¢) (cos(t) sin(t) — 1) —cos(t) (sin(t) @ — cos(t)) sin’(t) cos(t) ,
(cos(t) sin(t) — 1) & + 2 cos?(t) —cos(t) (8% +1) cos(t) (sin(t) O + 2 cos(t))
satisfies Ev = (1 0 0)”. Finally, we check that E~! € D3*3 since:
0 —cos(t) 0 — sin(t) cos(t) sin(t)
E~t = sin(t) 1 0

0 cos(t) 0 +sin(t) 1 — cos(t) sin(t)
Theorem 5.4 ([106]). If A = k[t] and k is a field of characteristic 0, or k{t} and k =R or C,
then every finitely generated projective left D = A(Q)-module M of rank at least 2 is free.
We can use Algorithm 5.3 to compute bases of free left A(J)-module M of rank at least 2.

Example 5.10. Let us consider the following time-varying linear OD system:

g (t) — ua(t) =0,
(83) { #1(t) — sin(t) ug (¢) = 0.

We can easily check that (83) admits the following injective parametrization:
&1(t)
t) =
ul®) = Gy
ug(t) = &2 ().
This injective parametrization is singular at ¢t = 0 since sin(¢)~! = ¢t~ +¢/6 + O(¢?) and thus
{x1,22} is a basis of the free E = R{t}[t!][0]-module L = E'*4/(E'*2 R) of rank 2, where R
denotes the system matrix of (83) defined by:

R0 0 0 -1
~\ o 0 —sin(t) 0 )

This result can be checked again by computing a Jacobson normal form of the matrix R over the
principal left ideal domain E = R{t}[t71][9] (see, e.g., [25]), namely,

(84)

00 0 1
(85) <—1 0 >R 00 1 0 (1000)
0 —sin(t)"! 0 1 0 sin(t)~'o 010 0)°

1 0 8 0

and considering the last two columns of third matrix of (85).

Let us now study whether or not (83) admits a non-singular injective parametrization at ¢t = 0.
To do that, we consider the left D = R{t}[0]-module M = D'**/(D'*2 R) finitely presented by
R. Since R has full row rank, rankp (M) = 2. Moreover, R admits the right-inverse:

0 cos(t) sin(t)
S = 0 0 e D2,
0 cos(t) 0 — 2 sin(t)
-1 0
Therefore, the left D-module M is stably free of rank 2 and thus free by 3 of Theorem 5.4. Let us
compute a basis of M. Applying Algorithm 5.3 to the first column Re; = (0 —9 0 —1)T of
the formal adjoint R of R, i.e.,

0 -0

E _ -0 c D*x2
0 —sin(t) ’
-1 0
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we can take a3 = 1 and ag = 0 since DO+ D (—=9)+ D (-1) =D (0 — 1)+ D (-9), i.e., v = —1,
vh =—0and v§ =0, and thus dy = —1,dy =0, d3 =0, v/ =1, v§ = 0 and v§ = 0, and we define
the following matrices:

1 00 1 1 000 100 —1 1 00
0100 0100 010 0 910
E = , By = , By = By =
0010 0010 001 0 0 0 1
000 1 1001 000 1 2 0 0
Then, we have:
000 -1 1 0
F\=F,E3 By By = 010 -9 €E4(D), FR= 0 0
001 0 0 —sin(t)
100 0 0 -9

We now apply again Algorithm 5.3 to the vector (0 —sin(t) —9)T. Up to a sign, this was already
done in Example 5.9. Therefore, we obtain that the matrix F» = —FE satisfies F5 (0 —sin(t) —
0)T" = (1 0 0)7, where E is defined in Example 5.9. Then, the matrix Gy = diag(1, Fy) F} €

E4(D) is such that Go R = (IZ  07)T and thus RV = (I, 0), where the matrix V = G € E4(D)
is defined by:

0 cos(t) sin(t)
_ 0 —1 + cos(t) sin(t)
V= 0 cos(t) 0 — 2 sin(t)
—1  (cos(t) sin(t) —1)d + 2 cos?(t) — 1
— cos(t) sin®(t) cos(t) sin(t) 0 — 1
—sin(t) (cos(t) sin(t) — 1) (cos(t) sin(t) —1)0 —1
— cos(t) sin(t) & — 3 cos?(t) + 1 (cos(t) 0 — 2 sin(t)) 0

(sin(t) — cos(t) + cos®(t)) & — 3 cos?(t) sin(t) 4 sin(t) 4+ cos(t) (cos(t) sin(t) — 1) d? — 2 sin*(t) d

The matrix @ formed by the last two columns of V' defines an injective parametrization of (83),
ie., kerr(R.) = QF? for all left D-modules F, and T Q = I, where the matrix T € D?** is
defined by V! = (RT TT)T where:

0 0 0 -1

— 0 0 —sin(t) 0 c pixt
cos(t) 9 — 2 sin(t) —cos(t)d + 2 sin(t) -1 0
—1 + cos(t) sin(t) —cos(t) sin(t) 0 0

Finally, the residue classes of the two rows T1, and Tse of T in the D-module M, namely

(86) { 21 = (cos(t) O — 2 sin(t)) 1 + (—cos(t) 0 + 2 sin(t)) zo — uq,

zo = (=1 + cos(t) sin(t)) 1 — cos(t) sin(t) za,
defines a basis {z1, z2} of the free left D-module M of rank 2 and:

(1 w2 w1 w)' =Q(z1 2)".

Within the language of control theory ([32]), the linear system (83) is differentially flat and it
admits the non-singular flat outputs (86) and the injective parametrization kerz(R.) = Q F>.

The computation of bases of free modules will play an important role in Chapters 3 and 4.

6. APPLICATIONS TO MULTIDIMENSIONAL CONTROL THEORY

We shortly explain recent applications of the constructive algebraic analysis to control theory.
For more results and extensions, see [16, 17, 25, 29, 31, 73, 78, 80, 88, 92, 104, 103, 118, 121, 122].
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Definition 6.1. Let D be a noetherian domain, R € DY*P  F an injective cogenerator left D-
module and kerz(R.) = {n € F?| Rn = 0} the linear system defined by R and F. Then, we have
the following definitions:

(1) An observable of kerg(R.) is a left D-linear combination of the system variables n;’s.
An observable ©(n) is autonomous if it satisfies a non-trivial equation over D, namely,
d(n) =0 for some 0 # d € D. An observable is said to be free if it is not autonomous.

2) The linear system kerz(R.) is autonomous if every observable of kerz(R.) is autonomous.

3) The linear system kerz(R.) is autonomous-free if every observable of kerz(R.) is free.

4) The linear system kerz(R.) is parametrizable if there exists a matrix @ € DP*™ such that
kerz(R.) = Q F™, i.e., for every n € kerz(R.), there exists £ € F™ satisfying that n = Q&.
The matrix @ is then called a (potential-like) parametrization of ker z(R.) and £ a potential.

(5) Let R=(Ry R3) be a partition of the matrix R and

kerg(R) ={n=(n{ n3)" € F| Rim + Raymz =0}

the corresponding linear system. Then, 7; is said to be observable from no if 77 is uniquely
determined by 7, in the sense that ¢ = (¢(f nd)T € kerg(R.) implies that ¢; = n; or,
equivalently, Ry ({1 —n1) = 0 implies that ¢; = ;.

(6) The linear system kerz(R.) is flat if it admits an injective parametrization, namely, there
exists a parametrization @@ € DP*™ of kerx(R.) which has a left-inverse T' € D™*P | i.e.,
T Q = I,,,. In other words, kerz(R.) is flat if it is parametrizable and every component &;
of the corresponding potential £ is an observable of the system. The potential £ is then
called a flat output of kerz(R.).

The concepts of observables and autonomous or free observables were first introduced in [84]. For
the introduction of the concept of parametrizable systems in the literature of mathematical systems
theory, see [84]. Moreover, flat systems were first introduced in [32]. The concept of observables of
a linear system defined in 1 of Definition 6.1 and borrowed from quantum mechanics, must not be
confused with the concept of an observable variable defined in 6 of Definition 6.1. Finally, within
the behavioural approach (see, e.g., [81, 78, 80, 92, 118, 121]), a parametrization of a linear system
is called an image representation and a flat system is a behaviour admitting an observable image
representation. In the light of the algebraic analysis framework, it appears that the terminology
developed by different communities should be unified.

We give module-theoretic characterizations of the system properties defined in Definition 6.1.

Theorem 6.1 ([16]). Let D be a noetherian domain, R € DY*P, F an injective cogenerator
left D-module, kerz(R.) = {n € FP|Rn = 0} the linear system defined by R and F and M =
DY*P/(D'*4 R) the left D-module finitely presented by R. Then, we have:

(1) The observables of kerz(R.) are in a one-to-one correspondence with the elements of M.

(2) The autonomous elements of kerx(R.) are in a one-to-one correspondence with the torsion
elements of M.

(3) The linear system kerz(R.) is autonomous iff the left D-module M is torsion.

(4) The linear system kerxz(R.) is autonomous-free iff the left D-module M is torsion-free.

(5) The linear system ker z(R.) is parametrizable iff the left D-module M is torsion-free. Then,
any parametrization Q € DP*™ of M, i.e., M = D'¥P (), defines a parametrization of the
system kerz(R.).

(6) The linear system kerz(R.) is flat iff M is a free left D-module. Then, the bases of M are
in a one-to-one correspondence with the flat outputs of kerz(R.).

(7) If R = (R1 Rs2) denotes a partition of R, where Ry € D?P* and Ry € DY*P2, and
kerg(R.) = {n =l nI)T € FP | Rim + Ranz = 0} the corresponding system, then,
n1 is observable from ng iff we have My = DY*P1/(D*9 Ry) = 0, i.e., iff Ri admits an
inverse S1 € DP1X9 e, S1 Ry =1,.

We recall the concept of controllability for state-space linear OD systems due to Kalman.

Definition 6.2 ([43]). Let D = R[J] be the commutative polynomial ring of OD operators,
AeRY™ BeR"™" R=(0I,—A — B)ec D" and F a D-module. Then, the linear
system kerz(R.) is said to be controllable if the state x of the system can be transferred from any
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initial state x(0) = x¢ to any given terminate state 7 € R™ at any time T > 0, i.e., there exists
an input u : [0,7] — R™ such that z(T) = zr.

In mathematical systems theory, the following results are nowadays very classical.

Proposition 6.1 ([42, 43, 81]). Let D = R[9)] be the commutative ring of OD operators, A € R"*",
BeR"™" R=(0I,—A —B)ec D™ and F=C®(Ry). Then, we have:

(1) kerg(R.) is controllable iff ranky(B AB A*B ... A" 1 B)=n.

(2) kerz(R.) is controllable iff R admits a right-inverse S € DP*1, j.e., RS = I,.

Example 6.1. Let D = R[J] be the principal ideal domain of OD operators, the matrices A €
R™"™ and B € R"*™, the presentation matrix R = (01, — A — B) € D"*("*™) and the finitely
presented D-module M = D' (+m) /(D" RY If x; (resp., u;) is the residue class of the 4t?
vector of the standard basis of D**(+m) in M fori=1,...,n (resp., i =n+1,...,m), then the

family of generators {x1,...,2Zn,u1,..., Uy} of M satisfies the following D-linear relations
n m
Bxi:ZAijxj—i—ZBmuk, t=1,...,n,
j=1 k=1
ie, 2 = Az + Bu, where z = (z1 ... 2,)7 and u = (uy ... up)?. If F is a D-module (e.g.,

F = C*(R;)), then we have:
homp (M, F) = kerz(R.) = {(zT uT)T € F"+*™) | & = Az + Bu}.

Since D is a principal ideal domain, the D-module M is torsion-free iff M is free (see 1 of
Theorem 1.2). Since R has full row rank, using Corollary 3.3, the D-module M is torsion-free iff
N = D"/(RD"+™) = 0, i.e., iff the adjoint D-module N = D'*"/(D'*("+m) R) = 0, where

R=(-01I,— AT — BT)T € D(n+m)xn_If we denote by A; the residue class of the " vector of
the standard basis of D'*™ in N, then the family of generators {\;}j=1,...n satisfies

{ 2N+ AT A =0,

87
( ) /J,QéBT)\ZO.

In the literature of control theory, (87) is called the dual system. (87) is generally not formally
integrable since (87) contains a first order and a zero order ODE, i.e., (87) is generally not a Grébner
basis of D1X(nt+m) . Hence, applying O to the zero order equation, we get that BT 9\ = 0 and
taking into account 9 A = —A” X\, we obtain the new zero order equation BT AT \ = 0. Repeating
again the same process and using the Cayley-Hamilton theorem saying that A™ = Z?’:_Ol a; AY, for
some «;’s belonging to R, we obtain the formally integrable system

M1 :6/\+AT>\:O,
X BT
87) < X1 BT AT
= X )\ = 0,
Xn—l BT (AT)n—l

where the elements X;’s are defined by:

Xo = p2,
{ Xi =Yy BT (AT (oY Ly + (1) 0 pp, i=1,...,n— L
Then, (87) is reduced to 0, i.e., M is a torsion-free D-module, iff:
(88) rankg(B AB A*’B ... A""'B)=n.

Hence, kerz(R.) is controllable iff the D-module M is torsion-free, i.e., using Theorem 6.1, iff
ker z(R.) is autonomous-free ([31, 84]). The previous result can be interpreted as the observability
test for the dual system (87) Now, according to 2 of Corollary 3.3, M is a stably free D-module
iff the matrix R admits a right-inverse S € D("t™)x" je RS = I, or equivalently, iff 9 I, — A
and B are left-coprime over D. If the rank condition (88) is satisfied, then there exists a matrix
C = (Cy...Chq) € Rm™) guch that C(B AB A?B ... A" 'B)T = I,. Then, we
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have A\ = Co Xo+ ... +Cph1 Xpg and if A= (1 -0 9% ... (=90)" )T, then we get A\ =
C BT H(AT) A piy + C A pip, where the matrix H is defined by:

0 0 0 0 0 O
I, 0 0 0 0 O
L I, 0 0 0 O
L3 L? L I, 0 0
L2 3 vt 0 I, 0

Moreover, if U = C BT H(AT)A V = CA, then A\ = U p; + V ug, which yields the Bézout
identity U (01, + AT) + V BT = I,,. Applying the involution @ of D to this Bézout identity, we
get (01, — A) X — BY = I, where:

n—2 n—1 n—1
Xz—ﬂ@z—}Z(X:N%*BQﬁéﬁ Y =-0(V)==) Cro
k=0

k=0 \l=k+1
Now, a non-minimal parametrization of kerz(R.) can be obtained by applying the involution
0 to the compatibility conditions of R\ = p (see Algorithm 4.1). These compatibility conditions
are obtained by substituting A = U p1 + V po into R = p to get:

@I, +ANU -1, (0I,+AT)V I
BTU BTV -1, Lo

Hence, we obtain the following non-injective parametrization of kerz(R.):

x X0, —-A) -1, —-XB
v ¢ e Firtm), = .
U Y (I, —A) -YB-1,
Minimal parametrizations of kerxz(R.) can be obtained by setting to zero n components of the
potential £. For instance, considering ¢ = (0 — xT)7T, where xy € F™, we obtain:

VxeFm “) = x5
X "\ w ) " \yvB+1, | ©

If the linear system @ = Ax + Bu is not controllable, then, in control theory ([42, 43, 81]), it is
well-known that there exists an invertible matrix P € R™*™ such that the transformation T = Pz
defines an equivalent system 7 = (P A P~1)Z + (P B) u of the form

T1=An 7 + AT+ By,
(90) 7.1 71171 12 T2 1

Ty = A T,
with the notations A = PAP~! and B = P B ([43]). (90) is called the Kalman’s decomposition

of # = Ax + Bu. The dimension of the vector Ty is [ = n —ranky(B AB A?B ... A" B).
Clearly, the invertible transformation T = P x is only a change of generators of the D-module M

from {x1, ..., Tn,u1, ...y Um} t0 {T1, ..., Tn,u1,. .., Uy }. Hence, (90) is only another presentation
of the D-module M. In (90), we can easily see that all the components To;’s of To satisfy det(9 I; —
A9o)To; = 0,4 =1,...,1, i.e., define torsion elements of M, and thus, autonomous elements of

kerz(R.). Finally, we can easily compute first integrals of motion of kerz(R.) using:
: d
M(i—Ax—Bu)=—2T A+ AT X)) —uT (BT ) + %(A%).
Indeed, if n = (27 uT)T € kerz(R.) and X denotes the general solution of the adjoint system

A+ AT A =0,
BT X =0,

which, by assumption, is non-trivial, then ® = Az = Z?:l i x; is a first integral, i.e., ® = 0.
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/

T, +oo = TIf [T +00]
M —00,0] = Mlp]—c0,0]
Tf

Figure 1: Controllability a la Willems

Definition 6.2 was generalized by Willems for general time-invariant OD systems.

Definition 6.3 ([81]). Let D = R[J] be the commutative polynomial ring of OD operators,
R € D?%*P a full row rank matrix and F a D-module. Then, the linear system kerz(R.) is
controllable if for all ' > 0 and all 0, and 7y € kerx(R.), there exists n € kerz(R.) such that:

(91) M]—0,0] = "lp|]—00,0]>
M (T, +oo] = Nf | [T, 400"

According to Definition 6.3, a time-invariant linear system kerz(R.) is controllable if it can
switch from any arbitrary pasted trajectory 0, of kerxz(R.) to any arbitrary future trajectory ny
in a given time T by means of a third trajectory n € kerz(R.). See Figure 1.

Example 6.2. Let D = R[J] be the commutative polynomial ring of OD operators, R € D*P
a full row rank matrix (e.g., R = (P — Q), where P € D99 det P # 0, Q € D?*P) and
M = DY?/(D'*4R) the D-module finitely presented by R. Using 1 of Theorem 1.2, M is
a torsion-free D-module iff M is free. According to Corollary 5.2, the D-module M is free iff
the matrix R can be embedded in V' € GL,(D), i.e., iff there exist three matrices S € DP*9,
Q € DP*(P=9) and T € DP~D*P such that the following two Bézout identities hold

R I, 0 R\
()i o-(4 2 ) & o 5)-n

which are equivalent to the following split exact sequence:

0— pxa B pixp -2 pixe-o __

If F is a left D-module (e.g., F = C*°(R;.)), then applying the functor homp( -, F) to the previous
split exact sequence, we obtain the following split exact sequence

0—» Fa B o 2 -0
S, .,

which shows that @ is an injective parametrization of the flat linear OD system kerz(R.), i.e.,
kers(R)=QF®= 9 and TQ = I(p—g)- The injective parametrization n = Q& of Rn = 0 is called
the controller form and £ = T'n the generalized state of the linear system kerrz(R.) (see [42]). We
note that the generalized state £ is observable from 7 (see 6 of Definition 6.1).

The generalized state £ of kerx(R.) can be used to find again Willems’ approach to control-
lability. Indeed, we can define &, = T"n, and & = T"ny. Now, if F = C*°(R), then, using
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the partition of unity on the compact subset [0, 7] of R, we can find & € FP~9 satisfying that
&1=00,0] = &pl1=00,0) AN &[T 1o0] = &f|[T,+0o[- Then, n = Q' satisfies (91), which shows that a
free D-module M defines a controllable linear OD system kerz(R.).

Finally, since D is a principal ideal domain, the full row rank matrix R € D?*P admits a
Smith normal form, namely, there exist two matrices V' € GLy(D) and W € GL,(D) such that
V RW = diag(ds,...,d,), where d; € D\ {0} for i = 1,...,q. Let M’ = D'¥'/(D'*4" R') be
the D-module finitely presented by R’ = diag(a,...,q,) and 7/ : D'*P — M’ the canonical
projection onto M’. We can easily check that the D-homomorphism f : M — M’ defined by
f(m(A)) = #'(AW) is an isomorphism (see Chapter 3), and thus M’ = M. If {e;}i=1, 4 is the
standard basis of D'*7, then we have:

q q q
M = D1><p/ <@Dd7 €i> o @D/(D(L) o DIX(P*Q) = ker}-(R_) = @ker}—(di.) @f’(P*Q)_
i=1 i=1 i=1

Hence, if M = M’ is not a free D-module, then one the d;’s is a non-invertible element of D
and defines a torsion element corresponding to the non-trivial cyclic D-module D /(D d;). Then,
kerx(d;.) is clearly non-controllable and so is kerz(R.), which finally proves that a linear OD
system kerz(R.) is controllable iff M is a free D-module, i.e., iff M is a torsion-free D-module.

Proposition 6.2 ([31, 84, 88]). Let D = R[9)] be the commutative polynomial ring of OD operators,
M = DY*? /(D4 R) the D-module finitely presented by a full row rank matriz R and F = C*°(R).
Then, the linear system ker z(R.) is controllable iff the D-module M is torsion-free.

Pillai and Shankar have extended Willems’ definition of controllability and Proposition 6.2 to
the case of underdetermined linear PD systems with constant coefficients ([80]).

Theorem 6.2 ([80]). Let D = R[dy,...,0y] be the commutative polynomial ring of PD operators,
R € DI*P, F = C°(), where Q is an open convexr subset of R, M = D*P/(D'*9 R) the
D-module finitely presented by R. Then, the following two assertions are equivalent:

(1) kerz(R.) is controllable in the sense that, for all my and ne € kerz(R.) and all open subsets
Ui and Us of Q such that their closures Uy and Us do not intersect, i.e., Uy N Uy = 0,
there exists 1) € ker z(R.) which coincides with 1 on Uy and with 2 in Us.

(2) The D-module M is torsion-free.

The next theorem, due to Malgrange and Komatsu, shows how closely the algebraic and analytic
properties of linear PD systems with constant coefficients are interlinked.

Theorem 6.3 ([48, 68]). Let D = R[0y,...,0,], R € D?P and M = D'¥P/(D'*4R) be the
D-module finitely by R. Then, the following assertions are equivalent:

(1) exth(M, D) = 0.

(2) For all bounded open convex subset 2 of R™, the restriction D-homomorphism is surjective:

I'q : homp(M,C*°(R™)) — homp(M,C>(R™ \ Q)).
(3) For all bounded open convex subset Q of R™, the restriction D-homomorphism is surjective:
I'q : homp (M, D'(R™)) — homp (M, D' (R"™ \ Q)).
According to Theorem 1.1, the D-homomorphism I'g is equivalent to the D-homomorphism:
Yo kergeomny(R.) —  kergeomn\q)(R.)
n o 7NRr\Q:

Example 6.3. Let M = D'*3/(DR) be the D = R[;,0s,03]-module finitely presented by

the divergence operator R = (0; 92 03) in R3. The Auslander transposed D-module N =
D/(RD?) = D/(DY*3 RT) of M is to the D-module defined by the gradient operator:

(92)

01 A=0,
02 A =0,
O3 A =0.

Let Q be a bounded convex open subset of R3. Then, homp(N,C(R3 \ Q)) is the D-module
formed by constant functions defined over the small open neighbourhood of R3 \ Q. Then, the
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restriction map 7o defined by (92) is clearly surjective. Then, we find again that the D-module
M defining the divergence operator is torsion-free (see Example 3.5).

Definition 6.4. Using the previous notations, the linear system hom p (M, C*°(R™)) (resp., homp (M, D'(R™)))
is said to be extendable if it satisfies 2 (resp., 3) of Theorem 6.3.

We obtain the following corollary of Theorems 6.3 and 3.1.

Corollary 6.1 ([99]). With the previous notations, the following conditions are equivalent:

(1) The linear PD system kercoogny(R.) is controllable.

(2)
(3 ; The linear PD system kerD,(Rn)(R.) is extendable.

(4 = DYP/(D'*9 R) is a torsion-free D-module.

Example 6.4. Example 6.3 shows that the system formed by the smooth solutions of the diver-
gence operator in R? is controllable in the sense of 1 of Theorem 6.2.

The linear PD system kercoo(Rn)(E.) is extendable.

If R has full row rank, then ext},(M,D) & N = D?/(RDP) is the Auslander transpose of
M = D'?/(D'*4 R). Corollary 3.3 shows that M is a stably free, and thus, a free D-module by
the Quillen-Suslin theorem (see 2 of Theorem 1.2) iff exth (M, D) = N = 0.

Corollary 6.2 ([99]). Let D = R[01,...,0,] and M = D'*?/(D'*9 R) be the D-module finitely
presented by a full row rank matric R € D?*P. Then, the conditions are equivalent:

(1) The D-module M is a free D-module.
) The linear PD system kercegny(R.) is extendable.
3) The linear PD system kerp:gny(R.) is extendable.
) The linear PD system kerce gny(R.) is flat.

)

5) The linear PD system kerp/gn)(R.) is flat.

A~~~ o~
W~ )

Corollary 6.2 extends the above results obtained for time-invariant linear OD systems.

Let D = A(d4,...,0,) be a ring of PD operators, R € D?*? a matrix of PD operators of order
r, F is an injective left D-module and ker#(R.) the linear PD system defined by R and F. Let us
introduce the quadratic Lagrangian function

1
(93) L(n) = 5 n: L,
where n = (1 ... np)T, 0%n, = Ot ... 0% nk, where a = (g ... ap) € N” is a multi-index
of length |a| = a1 + ...+ ayn, 7, = (0% 0k, Ja| = 0,...,7)F_ 1....p and L a symmetric matrix with
entries in A, i.e., Lkl = Lgk forall k,1=1,...,p and for all a, € N™ such that |o| =0,.
and |8 =0,...,7. Let us study the problem of extremizing the Lagrangian functional

1
I :/ énZLnT dx, n€kerg(R.),
Q

i.e., under the differential constraint formed by the linear PD system kerz(R.). The first variation
of the Lagrangian density is

o dL(n i
L= Y @ m), mha) = e Sk gy,
_ _ 9(0 k) _ -

|a|=0,...,r, k=1,...,p |8]=0,...,r,i=1,...,p
where §(0%ny) denotes the variation of 9*n. Let us introduce the following PD operator:
B:Fr — FP

(94) n o — (Zmzo,...,r(*l)‘alaaﬂf‘)

k=1,..., p'

Using the symmetry of L, namely, ]“B = Lﬁ .,» we can prove that B = B ([93]), where B is the
formal adjoint of B. If A € F9 is a Lagrange multiplier, using the following identity

(95) AT Ry =0T R+ div(®(), 1)),
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where ® is a vector of bilinear forms in A, n and their derivatives and div = (9; ... 9,) is the
divergent operator in R™ (see, e.g., [66, 85]), then we get

éé@myﬂﬂRMdm:L@mTwn—RAMx+AfN@MJmML

which proves that a necessary condition for the existence of an extremum of the previous variational
problem is Bn — RA = 0, where n € kerz(R.). We obtain the following result.

Proposition 6.3 ([93]). If F an injective left D-module, then a necessary condition for the exis-
tence of n € kerx(R.) which extremizes the Lagrangian functional (93) is

Rn=0,
(96) -
Bn—RA=0,

where A\ is a Lagrangian multiplier, R the formal adjoint of R and B is defined by (94).

Moreover, va@ € DPX™ is a matriz defining the compatibility conditions of the inhomogeneous
linear system R\ = p, i.e., kerp(.R) = D™ Q, then (96) is equivalent to:

Rn =0,
(97) ~
(QoB)n=0.
Finally, we have the following diagram of exact sequences:

2 L =

| B.

Fno & o AR

Example 6.5. Let us extremize the following Lagrangian functional

= (80 (2w s

where Ly (resp., Lo, S) is a positive definite (resp., semi-definite) symmetric real matrix and x
and v satisfy the linear system @ = Az + Bu and z(tyg) = o (see Example 6.1). We then get:

B:Frtm . FrnAm

x I 0 X Lix
— = .
u 0 Lo u Lou
Using Proposition 6.3, the optimal system (96) is defined by:
t—Ax—Bu=0, z(ty) = zo,
(98) >-\+AT)\+L11‘=O, /\(tl) :Sl‘(tl),
L2 u + BT )\ = O
For instance, let T = fOT 3 (z(t)? + u(t)?) dt, where z and u satisfy the linear OD system:
(99) z(t) +z(t) —u(t) =0, x(0) = xo.

Using the integration by parts A (Z4+z—u) = (=A+\) z—Au+ % (Az), we get R=(—0+1 —1)T.
Moreover, computing the first variation of I, namely,

- T - T X . a(t)
ol = /0 (z(t) 6z(t) + u(t) du(t)) dt = /0 (6x(t) ou(t)) ( ult) > dt,
we obtain B = I. Therefore, the optimal system (96) is defined by:
z(t) + z(t) —u(t) =0, xz(0) = xo,
Mt) = At) +z(t) =0, MNT)=0,
A+u=0.
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Since R clearly defines an injective operator, the linear OD system @(t) + z(t) — u(t) = 0 is
controllable. For more details, see Example 6.1. Hence, substituting A = —u in the previous
optimal system, we obtain that (97) is defined by:

&(t) + x(t) —u(t) =0, x(0) = =z,
W(t) —u(t) —z(t) =0, u(T)=0.

Example 6.6. Let us consider the electromagnetism Lagrangian functional

1 — 1 —
IE (60 | B2 —— || B ||2> dt day diy ds,
Ho

where € is the dielectric constant and pg is the magnetic constant, under the differential constraint
formed by the first set of Maxwell equations (see Example 3.6):

OB o o -
— +VAE=0,
(100) ot
V.B=0.
Varying the Lagrangian functional, we obtain that B is defined by:
j:'6 L ]:6
_ 1 5
N — Ho
E €0 E
Using (49), we obtain that the optimal system (96) is defined by:
OB - o -
— ANE=0
5 +V ,
V.B=0,
1 - 3.
gl 0 g,
Ho ot
€0 E = ﬁ A C;

If @ denotes the compatibility conditions (51) of the formal adjoint of the first set of Maxwell
equations (100) (see Example 3.6), then the PD operator Q o B : F¢ — F* is defined by

1o = OF
- - 7V/\B—607=j;
(B,E) — Lo ot
Eoﬁ.E_::[L

where 7 (resp., p) is the density of current (resp., charge) and corresponds to the second set of
Maxwell equations for the electromagnetism induction D = ¢g F and H = B/uo. Hence, using
(50), we obtain that the optimal system (97) is defined by

OB - o .
—_— ANE=0
ot +V ,
V.B=0,

(101) 1 OF
—VAB—¢— =0,
Ho o
606.510,

i.e., (97) corresponds to the complete set of Maxwell equations in vacuum. Using Algorithms 3.1
and 3.2, we can prove that the finitely presented D = Q(eq, po)[0¢, 01, 02, 03]-module associated
with (101) is torsion and the components of the fields B and E satisfy the following PDEs

1 1
Vi=1,2,3, (283A> E; =0, (283A> B; =0,
CO CO
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where A = 82 + 92 + 82 is the Laplacian operator and ¢2 = 1/(eg o), i.e., the fields B and E are
space-time waves. A modern formulation of the previous results uses the rewriting of the Maxwell
equations in terms of differential forms (2-forms) on space-time and the Hodge duality.

According to Corollary 3.3, if the matrix R has full row rank, then the left D-module M =
D'? /(D% R) is stably free iff there exists a matrix S € DP*7 satisfying RS = I;. Then, we

have S R = Iq, where S is the formal adjoint of S. In this case, pre-multiplying the last equation
of (96) by S, we obtain A = (S o B) 7.

Proposition 6.4 ([93]). Let us suppose that the matrix R € DY*P has full row rank and M =
DY¥P /(D4 R) is a stably free left D-module. Then, from (96), we obtain A\ = (S o B)n, where
S e DI*P s q left-inverse of R. Hence, the Lagrange multiplier A can be observed from the system
variables n in the sense of 6 of Definition 6.1.

Using (95) and (96), n” By = nT RA = AT Ry — div(®(), 1)) = —div(®(), 7)), we get:
1 1 1
I:/ fnTBnda;:—f/div((b()\,n))da::—f/ d(\,n) dy.
02 2 Jo 2 Joa

Using Example 6.1, every controllable time-invariant linear OD system satisfies the hypotheses
of Proposition 6.4. Hence, if n = 1, then we obtain:

1
I:/ —n''Bndt =
0 2
1

=5 (2((S B)(0),7(0)) — (S Bn)(T),n(T))).

Now, let us suppose that the linear system kerz(R.) is parametrizable, i.e., the left D-module
M = DYP/(D'™4R) is torsion-free. Then, there exists a matrix @ € DP*™ satisfying that
kerz(R.) = Q F™, then, by substituting n = Q ¢ into the Lagrangian I, the previous variational
problem becomes a variational problem without differential constraint which can be solved by
computing the corresponding Euler-Lagrange equations. Let us illustrate this idea.

(@(A(0),7(0)) = @(A(T),n(T)))

DN =

(102)

Example 6.7. We consider again Example 6.5. Using Algorithm 3.1, we can easily check that
the linear OD system (99) is parametrizable and an injective parametrization of (99) is:

§(t) = =(b),
E(t) +€(t) = ult).

Substituting the previous parametrization into I, the previous optimization problem is equivalent
to extremizing the following Lagrangian

T
I / 5 (€2 + (E(0) + €)% d

under the only algebraic constraint £(0) = xo. We can easily check that we have

T
1= [ (~€(0)+ 26 (0 e + [(6) + €0) S0
0

and thus, the optimal system is equivalent to the following OD linear system:

E(t) —26(t) =0, &(0)=mo, &T)+&(T)=0
(103) £(t) = z(b),

§(t) +&(t) = u(d).
Integrating (103) and eliminating x between x and u, the optimal controller is defined by:
ew + e—w
ew — e—w’

u(t) = (\/5 cothw — 1)71 z(t), w=+v2({t-T), cothw=

Finally, ubing Example 6.5, the bilinear form ® is defined by ®(\,n) = Az, which, using (102),
yields I = 1 (A(0)zo — A(T) z(T)) = 3 A(0) zy because A(T) = 0. Finally, using A = —u (see
Example 6.5), the extremum value of the Lagrangian functional is then:

1 -1
1:5 (\@cothw0+1> x%, wo = V2T.
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Corollary 6.3 ([93]). Let us suppose that the linear PD system kerz(R.) is parametrized by a
matriz Q € DP*™ je., kerr(R.) = QF™. Then, necessary conditions for the existence of an
extremum of the Lagrangian functional

1
1= /in,an,. dxydxsy ... dx,,

where n € kerz(R.) and L is a symmetric matriz with entries in A, are given by

A& =0,
04
(104 {n=Q§-

where A : F™ — F™ is the self-adjoint PD operator defined by A = @ oBoQQ, ie., A=A
Finally, we have the following twisted exact diagram:

Fmo @ o B pg

(105) L | B

Foo & o Ao

Example 6.8. Let D = R[9], R € D?*P and F = C*°(R,). Using Proposition 6.2, the linear OD
system ker z(R.) is controllable iff the D-module M = D1*P/(D1*4 R) is a torsion-free. If so, then
there exists a matrix @ € DP*™ satisfying kerz(R.) = Q F™. IfL is a symmetric real matrix,
then Theorem 6.3 shows the optimal system which extremizes f;oo 307 (t) Ln(t) dt is:

77=Q€,~
AE=(QoLoQ)¢=0.

If 6 = det(A), then 6(9) = det(A(9)T) = det(A(—0)) = 6(—0), and thus the eigenvalues of the
dynamics of A& = 0 are symmetric with respect to the real axis, which leads to the importance
concept of spectral factorization A = D oD in optimal control problems ([49]).

We now show how Theorem 6.3 can be applied to the case of the Maxwell equations.

Example 6.9. We consider again Example 6.6. In Example 4.4, we proved that the first set of
Maxwell equations (45) were parametrized by means of the quadri-potential (A4, V):

vha=h 9 % nE=0,
81[1’ . . & ot
—5 " VV=E V.B=o.

The PD operator A : F* — F* is defined by substituting the previous parametrization in the
last two equations of (101) and using the relation VAVAA =V (V. A) — A A. Using the notation
c2 = 1/(eg po) for the speed of light in vacuum, we obtain:

1 (1 0%4 2 e (e o 1OV B

AV
Y (LY 0 (e g LOVYY
o\ 2 a2 at\ " 2 -

Then, using to Theorem 6.3, the optimal system can be rewritten as (104), i.e.:

1 024 2 oo (e o 10V

1 0%V 0 (= - 10V

- == AV — — A+ = — ) =
(106) 0(2) ot? v ot (V +c(2) 825) 0,

VAA=B,

A -

faa—thV:E
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In electromagnetism, the previous equations are generally simplified as follows

2
19 A Ad=o,
2 o2
1 9%V
- =5 —AV =0
(107) 2 o2 ’
VAA=B,
0A
" VV=
by fixing the so-called Lorenz gauge defined by V. A+ = aa—‘t/ = 0. This result shows that each

component of the quadri-potential (A, V') satisfies a wave equatlon in space-time. This result can
be explained by the fact that the quadri-potential (A, V') is not uniquely defined since:

o _ < 0A o . -
a_‘/a —E— V =0.

See Example 4.4. Hence, if we consider the new potential (/Y*, Vo) = (/Y—l— ﬁg, V — 0 f) instead

of (/T, V'), where £ is an arbitrary function of F = C'*°(Q2), where  is an open convex subset of
R4, then we can easily check that (106) is unchanged but (A, V) is replaced by (A,, V). Moreover,
since F is an injective D = Q(eo, 10)[0%, 01, 02, O3]-module, there always exists £ € F satisfying
the following inhomogeneous PDE
1 9% .10V

SIS AE=V. A+
c§ ot @ ot

so that the quadri-potential (/Y*, V. ) satisfies the Lorenz gauge.

Finally, we have the following easy corollary of Proposition 6.3.

Corollary 6.4 ([93]). If the PD operator B defined by (94) is invertible, then the optimal system
(97) can be rewritten only in terms of the new variable p = Bn as follows:

RoB YHYu=0,
(108) (z I
Qu=0.
Moreover, the optimal system (96) is equivalent to the following linear PD system
(109) €r=0
n=(B"toR)\,
where the PD operator C : F9 — F9 is defined by C = Ro B~}
P LN =
T57! Te
R

oo L& Fa

Example 6.10. We consider again Example 6.5 where the matrix Lo is a now supposed to be
positive definite. Hence, the operator B is invertible and B~! is defined by:

(110) T\ M) Lyt o p\ o Litm
U N Jip) B 0 L;l M2 B L;l i) -
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According to Corollary 6.4, the optimal system (98) is equivalent to (109), i.e.:

LN (AL — LT AT A+ (AL AT + BL; P BT) A =0,
x=—L7 (A + AT )),

u=—Ly' BT\,

S Lyt (At) + AT A1) + A(t1) =0,

A(to) + AT A(to) + Ly 2o = 0.

For instance, if we consider again the second half of Example 6.5, where Ly = Lo =1, A = —1,
B=1,5=0,t =0and ¢t; =T, then (109) is defined by:

At) =2X#) =0, MNT)=0, A0)—A0)+z0=0,
A6 + A(t),

A(t).

The previous results also apply to linear elasticity. Let us consider again Example 4.9.

Example 6.11. For an isotropic material, the stress-strain relations are defined by

2(1-v) 2v 2v
1—-2v 1—-2v 1—-2v 000
Oz Ex 2v 2(1—v) 2v 0 o
Oy €y 1—2v 1-2v 1-2v
% [ _p €z . B=G 2v 2v 2(1-v) 0 o |,
Tyz Yyz 1—-2v 1—-2v 1-2v
Tex Yea 0 0 0 1 0 0
Tay Ty 0 0 0 01 0
0 0 0 0 0 1

where v is the Poisson’s ratio and G the modulus of rigidity. The linear operator B is invertible
and its inverse B! is defined by

1 v v
- - Z _Z 0 0 0
E E E
Ea T E E E
& a. 1
# — B! # , B7l= ) ,
Ty Tyz o 0 0 = 0 0
,YZ‘T TZI G
Yy Txy 0 0 0 0 é 0
1
0 0 0 0 0 =
G

where E is Young’s modulus defined by E' = 2 G (14v). Using the constitutive law B, the notations

and the results of Example 4.9 and P = —pPT, @ = Q" and R = —R”, we obtain the following
twisted exact diagram

0— kerg(P) — F3 =, F°6 Q- F6 B F3 . 0
LA | B. Te. T o
0 — F? Lo & 7o A F3 — ker}-(é.) — 0,
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where A = ﬁOBOP7 C= QOB_IOC} and D = RoCo R = 0. More precisely, if A = 8%—1—854—85,
then the PD operator A is defined by:

. (1-20)A + 2 8, , 8, . u
— 4l
Oz 0, 0y 0 (1-2v)A + 02 w

In other words, we have A = —G (A Is + ﬁ grad div), where div = (9, 9, 9.) = grad’,
or A=—(uAI5+ (A+ p)grad div), whenever A and p are the two Lamé constants defined by:

FEv E
AT asy M ©

If ¢ =(u v w)? is the displacement and f = (fi fo f3) the density of forces acting on the
continuous medium, then the PD operator A€ = f is usually called the Lamé-Navier operator. Let
us explain how the Lamé-Navier equations appear in linear elasticity. The equation of equilibrium
is defined by Po = f, where 0 = (0, 0y 0, Ty» Tux Tay)L. If there is no density of forces,
according to Proposition 6.3 and Theorem 6.3, the extremization of the energy of deformation
defined by the following Lagrangian

1
/ieTBedxdydz, e=(ex €y € Yyz Vs 'yg;y)T,

under the PD constraint @) e = 0 gives the following equivalent linear PD systems:

(111) { Qe=0, & { @e=0, N { AL=0,
Be—QM=0, 0, .

Using Algorithms 3.1 and 3.2, we can prove that the D = Q(G, v)[0;, 0y, 0;]-module associated
with the PD operator A is torsion and the components u, v and w of the displacement £ satisfy
A?u=0,A%v=0and A>w =0, i.e., u, v and w are biharmonic functions.

Since the constitution law B is invertible, the second system in the above chain of equivalences
shows that the optimal system (111) can be expressed only in terms of the stress tensor o =
(00 0y 02 Ty Tex Tay) = Be as follows:

(112)
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In Example 4.2, we shall prove that (112) is equivalent to the following linear PD system:

Aaz—l—(liy)aa;(az—&-oy—koz) =0,
Aay+(l+1y)aa;2(crz+ay+oz) =0,
Aaz+m11/)8(9;(ax+ay+az) =0,
ATszr(liy)aj;(oﬁaﬁaz) =0,
(113) ATy + ﬁ %;C (602 +0y+0,)=0,
A7$y+(1+11/)8528y(0m+0y+oz) =0,
A T
R TR

The first six equations of (113) are called the Beltrami-Michell equations and the last three ones
are the equilibrium equations. Using Algorithms 3.1 and 3.2, we can prove that the D-module
associated with (112) is torsion and each component o; of o satisfies A2¢; = 0 for i = 1,...,6.
Hence, we have A2 = 0 and, since 0 = Be and B is invertible, we also get A%2¢e = 0, i.e., both
the strain and stress tensors are biharmonic tensors.

Substituting the parametrization o = @cb of the equilibrium system ker}-(]g.) in (112), we
obtain an optimal system depending only on the Lagrangian multiplier ® defined by:

{ CP=0,
(114) _
e= (B toR)®.

See corollary 6.4. Using again Algorithms 3.1 and 3.2, we can prove that the D-module associated
with the PD operator C is torsion and the components ®;’s of ® satisfy A2®; =0 fori=1,...,6,
i.e., the components of ® are also biharmonic functions.

Finally, (114) can be simplified by considering a minimal parametrization of the equilibrium
system kerz(P.) such as Maxwell’s or Morera’s parametrization (see Example 4.9):

(1) If we consider Maxwell’s parametrization (62) of (61) obtained by selecting the first three
columns of the formal adjoint @ of @) defined in Example 4.9, namely,

o & &
o2 0 o2
- 2 P 0
@ =l g0 o 0 ’
0 -0, 0, 0
0 0 —0, Oy
ie,o= 62/1 x and y is Maxwell’s stress function, then we obtain the twisted exact diagram
0— kerp(P) — 73 Fb B N F6 0
1A T8~ N Ter. 1 D).
0 — F 2 A S F3 — ker}-(@;.) — 0,
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where C; = QoB 1o @; and Dy = 0. Moreover, (112) is then equivalent to:

ClXZOa
e:(Bflo@;)x.

(2) If we now consider Morera’s parametrization (63) of (61) obtained by selecting the last
three columns of the formal adjoint @ of @) defined in Example 4.9, namely,

~9,0. 0 0
0 —0,0. 0
N 0 0 -0,0,

QQZ ;
Lot to.0, oo

200, —39; 30,0.
19,0, Lto,0, —1o2

ie.,o= @; 1 and v is Morera’s stress function, then we obtain the twisted exact diagram

0— kerg(P) — F3 AR F6 Q- F6 N F6 _0
1A T8t T cs. T Ds.
0 . FO & kerp(Qa) —— 0,

where Co = Qo B 1o 672 and Dy = 0. Moreover, (112) is then equivalent to:

CQ ¢ = 07
e= (B oQa).
Finally, for more results, details and examples on constructive algebraic analysis and its appli-
cations to mathematical systems theory and mathematical physics, see [100].
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CHAPTER 2

Monge parametrizations and purity filtration

“La structure d’une chose n’est nullement une chose que nous puissions “inven-
ter”. Nous pouvons seulement la mettre & jour patiemment, humblement en faire
connaissance, la “découvrir”. S’il y a inventivité dans ce travail, et s’il nous ar-
rive de faire ceuvre de forgeron ou d’infatigable batisseur, ce n’est nullement pour
“faconner”; ou pour “batir”, des “structures”. Celles-ci ne nous ont nullement
attendus pour étre, et pour étre exactement ce qu’elles sont ! Mais c’est pour
exprimer, le plus fidelement que nous le pouvons, ces choses que nous sommes
en train de découvrir et de sonder, et cette structure réticente a se livrer, que
nous essayons a tatons, et par un langage encore balbutiant peut-étre, a cerner.
Ainsi sommes-nous amenés & constamment “inventer” le langage apte & ex-
primer de plus en plus finement la structure intime de la chose mathématique, et
a “construire” a l'aide de ce langage, au fur et a mesure et de toutes pieces, les
“théories” qui sont censées rendre compte de ce qui a été appréhendé et vu. Il y
a la un mouvement de va-et-vient continuel, ininterrompu, entre I’appréhension
des choses, et I’expression de ce qui est appréhendé, par un langage qui s’affine
et se re-crée au fil du travail, sous la constante pression du besoin immédiat”.

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

1. BAER’S EXTENSIONS AND BAER’S ISOMORPHISM

In Chapter 1, we showed how to compute exth (M, D), whenever M was a finitely presented left
or right D-module. In this section, we study the abelian group ext}h (M, N), when M and N are
two finitely presented left D-modules. Moreover, we explain Baer’s interpretation of the elements
of exth (M, N) in terms of equivalence classes of short exact sequences of the form

0—»NLELM—>O

for a certain equivalence relation. In particular, we explicitly parametrize all the possible left
D-modules E. The results developed in this section will be abundantly used in the next sections
and are important techniques for the study of mathematical systems theory.

We first introduce the concept of Baer extensions. For more details, see, e.g., [15, 27, 65, 110].

Definition 1.1. (1) Let M and N be two left D-modules. An extension of N by M is a short
exact sequence e of left D-modules of the form:

(115) e:0—N-L B2 M.

(2) Two extensions of N by M, e;: 0 — N LN E; 25 M — 0 for i =1, 2, are said to be

equivalent and denoted by e; ~ eg if there exists a left D-homomorphism ¢ : £y — F»
such that the following commutative exact diagram holds

0— N % B 2 oM —o

I Lo I

0o— N 2 B = oM o,

i.e., such that fo = ¢o f; and g1 = go 0 ¢.
(3) We denote by [e] the equivalence class of the extension e for the equivalence relation defined
by ~. The set of all equivalence classes of extensions of N by M is denoted by ep (M, N).
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Remark 1.1. Applying the snake lemma to the commutative exact diagram defined in 2 of
Definition 1.1 (see e.g., [15, 27, 65, 110]), we obtain that the left D-homomorphism ¢ defined in 2
of Definition 1.1 is necessarily an isomorphism. Hence, we can easily check that ~ is an equivalence
relation (see 3 of Definition 1.1).

We point out that two extensions of N by M, e; : 0 — N LR Ei 25 M —0fori=1,2,
where Fy = FEy are not necessarily equivalent because if ¢ : By — FEy is a left D-isomorphism,
then the conditions fo = ¢ o f; and g1 = g2 o ¢ are not necessarily satisfied.

Let us illustrate Definition 1.1 with a simple but important example.

Example 1.1. Let us consider an extension e of N by M defining the split short exact sequence
(8) where M’ = N, M = E and M"” = M (see 7 of Definition 2.1). Then, we have the following
commutative exact diagram

f

00— N — F 4 M —0
[ L (ke9) |
0— N % NeoM 2 M —o,

with the following notations:
¢:0— N % NeM 2 M —o.
n +— (n,0)
(n,m) +—— m
We obtain that the extensions e and e’ of N by M are equivalent, i.e., [e] = [¢/] € ep(M, N).

Let us introduce the concept of Baer sum of two extensions.

Definition 1.2 ([15]). Let ¢;: 0 — N /% B; % M — 0 for i = 1, 2 be two extensions of N

by M and let us define the following two left D-homomorphisms:
~fidfa: N — E ®E (91,—92) : Ex® By — M
n o (=fi(n), f2(n)) (a1, az) +— gi(a1) — g2(az).
Then, the Baer sum of the extensions e; and es, denoted by e1 +es, is defined by the left D-module
E5 = ker(g1, —g2)/im (—f1 @ fa), i.e., by the equivalence class of the following extension

0— N I3 Es LR M —0,
n s w(fi(n), 0) =w=((0, f2(n)))
@((a1, az)) — gi(a1) = g2(az)

where @ : ker(g1, —g2) — FE33 is the canonical projection onto Ej.

We note that F3 is exactly the defect of exactness of the following complex at Ey & Fs:

O—)NM)El@EQMM—)O.
The Baer sum can also be defined using the concepts of pullback and pushout ([27, 110]).
The following classical result on extensions can be traced back to Baer’s work [3].

Theorem 1.1 ([15, 65, 110]). The set ep(M, N) equipped with the Baer sum forms an abelian
group: the equivalence class of the split short exact sequence (8) defines the zero element of
ep(M, N) and the inverse of the equivalence class [e] of (115) is defined by the equivalence class
of the following equivalent extensions:

0—NZLEe 2 m—o0 o0—NLEZLM_—0.
The next theorem is an important result of homological algebra.

Theorem 1.2 ([65, 110]). Let M and N be two left D-modules. Then, the abelian groups
exth (M, N) and ep(M, N) are isomorphic, i.e.:

ep(M,N) = exth (M, N).
Similarly for right D-modules.
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We note that Theorem 1.2 explains the etymology of the name of the bifunctor exth(-, ).
Similar interpretations of the ext’, (M, N)’s for i > 2 can be found in [119] (see also [27]).
In what follows, we shall assume that D is a noetherian domain.

Let us explicitly characterize the abelian group ext} (M, N) for two finitely presented left D-
modules M = D'*?/(D*4R) and N = D'*¢/(D'**S). We first consider the beginning of a
finite free resolution of the left D-module M:

(116) pixr 2, pixa B plxp T g

Applying the contravariant left exact functor homp( -, N) to the exact sequence (116), we get the
following complex of abelian groups (see Section 2)

(117) N© £ No B NP homp (M, N) — 0,
where (R;.)(n) = R;n for ¢ = 1,2. In particular, we have:
exth (M, N) = kery(Ry.)/imy(R.).

We recall that the abelian group extl, (M, N) characterizes the obstructions for the existence
of £ € NP satisfying the inhomogeneous linear system R& = (, where ( is a fixed element of N
verifying the compatibility conditions Ry ¢ = 0. Hence, the vanishing of ext} (M, N) implies that
Ry ¢ =0 is a necessary and sufficient condition for the existence of £ € NP satisfying:

RE¢=C.

Let us explicitly characterize exth (M, N). If we consider a finite presentation of N
(118) Dt 5, pixs 2N,

then, taking the direct sum of m copies of (118), we obtain the following exact sequence

(119) pmxt _S> pXs M} N™ O,

where (id,;, ® 6)(A) = (§(A1e) ... 6(Aye))T for all A € D™*S. We say that (119) is obtained by
applying the covariant exact functor D™ @p - ([15, 65, 110]) to (118). This functor is exact since
D™ is a free right D-module (and thus, a flat right D-module) ([54, 110]). Then, combining (117)
and (119), we get the following commutative diagram of abelian groups with exact columns:

0 0 0
7 7 7
N7 il N4 £ NP
(120) Tide ®6 Tid, 36 Tidy ® 6
Drxs L2 Daxs i Dpxs
1.5 T.s T.s
Dr><t (EL Dq><t (R_ DpXt.

Indeed, for every A € D7%% we have

5(Ara) S0 (Ra)ay 6(Aje) 6 (S0 (Ra)rj Ao )
Ro(id, @A) =R | 1 | = : _ :
) )\ St )\ (52 )
= (id, ® §)(Ry A),

i.e., we have (Ry.)o(idg®6) = (id, ®6) o (R2.). Similarly, we have (R.)o (id, ®0) = (idg ®J) o (R.).
Now, for every I' € D%t (Ry.0.S)(I') = Ry (I'S) = ReT'S = (RaT) S = (.S o Ry.)(T), which
shows that Ry. 0.5 = .S o Ry.. Similarly, we have R.o .S = .S o R., which proves that (120) is a
commutative diagram whose columns are exact.

We can now use the commutative diagram (120) to characterize the following abelian groups:
kery(R2.) = {(id, ® §)(A) € N9 | A€ D?°: Ry ((id, ® §)(A)) = 0},
imy(R.) ={(id, ® §)(4) e N |3 X € DP**: (id, ® 0)(A) = R ((idp ® 6)(X))}.
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Since the columns of (120) are exact sequences of left D-modules, we get:
Ry((id, ® 6)(A)) = (id, ® §)(R2 A) =0 & IB€ D™ : RyA=BS.
(idg ®0)(A) =R ((idp, ® 0)(X)) = (1d; ® 0)(RX) & (idy®)(A—RX)=0
& Y eD?™: A=RB+YS.
Lemma 1.1. With the previous notations, we have:
kery (Rs.) = {(id, ® 0)(A) e N? | A€ D?** : 3B e D™ Ry A= BS},
imy(R.) ={(id, ®0)(A) e N* |3 X € DP**, 3Y € D" : A=RX +Y S}
= (RDP*® + D9t §) /(D" S).
If we introduce the following abelian group
(121) Q={AeD? |3BeD™: Ry A= BS},
then we have the following isomorphism of abelian groups

5 Q/(RDP*® + DI¥t 5),

(122) eXﬁE(M’N)NkerN(RQ')/imN(R.; — ()

p((idg ® 6)(A)
where A € Q, p: kery(Ra.) — kery(Rz.)/imy(R.) and € : @ — Q/(R DP*® + D%t S) are the

respective canonical projections.

The proof of Lemma 1.1 is just a straightforward application of the classical third isomorphism
theorem in module theory (see, e.g., [110]), namely

exth (M, N) = kery(Ry.)/imy(R.) = [/ (D" S)]/[(R DP** + D%t 8)/(D?*! S)]
~ Q/(RDP** + D" S),
for all finitely presented left D-modules M = D'*?P/(D'*4 R) and N = D'*¢/(D1*t S).
Remark 1.2. If kerp(.R) =0, i.e., R2 = 0, then Lemma 1.1 yields Q = D7*%.

In [104, 105], we explicitly characterized the isomorphism ep(M, N) = Q/(R DP*® + D%t S)
and obtained the next theorem which exhibits a representative of each equivalence class of Baer’s
extensions of N by M in terms of ¢(A) € Q/(R DP** + DI%t S).

Theorem 1.3 ([104, 105)). Let M = D*P/(D'*9R) and N = D'*$/(D'*tS) be two finitely
presented left D-modules and Ry € D™ satisfying kerp(.R) = DY*" Ry. Then, every equivalence
class of extensions of N by M is defined by the following extension of N by M

(123) e:0—N-%E-2 0,
where the left D-module E is defined by

R -A

(124) DXt Z9, pix+s) 2, p o Q= (
’ o S

) € Dlatt)x(pts)

A is a certain element of the abelian group Q = {A € D1 | 3B € D"™*': Ry A= BS} and

a:N — F 8:E — M
o) — ou(0 L)),  e(N) — w(A(I 0)F),

where 7 : DYXP — M (resp., 6 : DY*$ — N ) is the canonical projection onto E (resp., N ).

The equivalence class [e] depends only on the residue class e(A) of A € Q in the abelian group
Q/(RDP*$ + D%t §) = v(exth (M, N)), where v is the Z-isomorphism defined by (122).

Theorem 1.3 will be illustrated in what follows. Let us characterize the matrix A € € defining
the left D-module E defined in Theorem 1.3.
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Corollary 1.1 ([104]). With the notations of Theorem 1.3, if we consider an extension of N =
Dlxs/(Dlxt S) by M = Dlxp/(Dlxq R) deﬁned by

(125) 0—N-S%F-%M-—0,

and if {fj}j=1...p is the standard basis of D'*?, y; = w(f;) for all j =1,...,p, z; € F any pre-
image of y; under v, then Z§:1 Rijz; € imu for alli=1,...,q, and, since u is injective, there
exists a unique n; € N satisfying u(n;) = 25:1 R;j z;. If we consider any pre-image a; € D'** of
n; under §, i.e., n; = 6(a;) for alli =1,...,q, then the extension (125) of N by M belongs to the
same equivalence class of (123), where the left D-module E is defined by (124) with:

ai
A= : € DI*%,

Qq

Equivalently, we have the following commutative exact diagram

D1><q i D1><p SIEN M —0
Lo Lo I
0o— N - F 5 M —O0,

where the left D-homomorphisms 1 and ¢ are respectively defined by

w:D>P — F ¢:D™ — N
f] | — Zjujzla"'7p7 € = nizﬁ(ai),i:L...,q,
and {€;}i=1,.. 4 is the standard basis of D'*1.

Remark 1.3. With the notations of Corollary 1.1, if A € kerp(.R), then using the commutative
exact diagram of Corollary 1.1, we get u(¢()\)) = Y(AR) = ¢(0) = 0, and thus ¢(\) = 0 since
u is injective. Therefore, ¢ € homp(D1*% N) yields a unique ¢ € homp(D'*? R, N) defined by

¢(e; R) =n; foralli =1,...,q. Applying the contravariant exact functor homp( -, N) to the short

exact sequence 0 — D4 R~ D1¥P "5 \f — 0 and using exth(DYP N) = 0 since D*? is
a projective left D-module (see Propositions 1.1 and 2.2), Theorem 2.1 yields the following exact
sequence of abelian groups:

1
0 — homp (M, N) — homp(D**P, N) — homp(D**? R, N) *= ext}, (M, N) — 0.
Hence, ¢ € homp(D'*9 R, N) defines a unique x'(¢) € exth (M, N) = ep(M, N) and (125).

Let now compute exth (M, N) for a commutative ring D. In this particular case, ext}, (M, N)
inherits a D-module structure since kery (Rs.) and imy (R.) are then both D-modules. Moreover, if
D is a noetherian ring, then the D-module exth (M, N) can be characterized by means of generators
and relations. To do that, we first recall the definition of the Kronecker product.

Definition 1.3. The Kronecker product of U € D™ ™ and V € D?*P is defined by:

UnV UV ... UV
. U V. UxpV ... UV

UV = (U;V)= . . . . e pnaxmp.
UnV UV ... UmV

The next lemma on Kronecker products is classical for a commutative ring D (see, e.g., [110]).
Lemma 1.2. Let D be a commutative ring and U € D**?, V € D¢ W € D% Then
row(UV W) =row(V) (U @ W),

with the notation row(V) = (Vie ... Vie) and where Vo denotes the it row of the matriz V.
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If D is a commutative ring, using Lemma 1.2, then we have:
row(Ry A) = row(Ry AT) = row(A) (R} @ I),
row(B S) =row(I, BS) =row(B) (I, ® 5),

T
= (row(4) —row(B)) ( By © 1, )

I, ®S8

Moreover, an element A € R DPX® + D%t S can be written as A = RX + Y S where X € DPX$
and Y € D?%% and, using the Kronecker product, we then get:

row(R X) =row(R X I,) = row(X) (RT ® I,),
row(Y S) =row(I, Y S) =row(Y) (I; ® S),

RT ® I,
= A) = X Y )
row(A) = (row(X) row(Y)) ( oS )
Hence, let us denote by:
T T
(126) L: R ®Is ED(;Ds+qt)><qs P: R2 ®IS ED(‘I S+7"t)><'r‘s.
Iy® S ’ L ®S

If D is a noetherian ring, then kerp(.P) is a finitely generated D-module, and thus there exists
a matrix (T —U) € D**@5+78) where T € D**° and U € D**"*, such that:

kerp(.P) = DY (T —U).
Hence, the D-module /(R DP*$ + D%t S) can be rewritten as the following D-module:
(127) J = (DY) /(DY Pstat) 1y,

Let us now find a finite presentation of the D-module J defined by (127). The inclusion
DYx(wstat) [, € DT yields the existence of a matrix F € DPsta)xu gatisfying L = FT.
Denoting by V € DV*“ a matrix satisfying kerp(.T) = D'*? V| then Proposition 3.1 yields:

(128) J = J, = DYy <D1X<<Ps+qt>+“> ( ‘F/ )) .

If D = E[z1,...,z,] is a polynomial ring over a computable field k (e.g., k = Q or F, for a
prime p), then using Grobner basis techniques, we can explicitly describe the D-module J and
thus the D-module exth (M, N) in terms of generators and relations. In particular, using (128),
J1 =0, ie., JXexth(M,N) = 0, iff the matrix (FT  V7T)T admits a left-inverse over D, which
can be tested by means of Algorithm 2.2.

Let us sum up the previous results in the following algorithm.

Algorithm 1.1. e Input: Two matrices R € D9*P and S € D'*® with entries in a com-

mutative polynomial ring D = k[zy,...,x,] over computable field k& and which define two
finitely presented D-modules M = D'*?/(D'*4 R) and N = D'*¢/(D'*t S).
e Output: A matrix X € D(Pstat)+v)xu pregenting the following D-module:

Jy = DV /(D (Pstahto) X) o J > /(R DPX 4+ DI¥'S).

(1) Compute a matrix Ry € D"*? satisfying kerp(.R) = D'*" R,.
(2) If R has full row rank, i.e., Ro = 0, then return the matrix

T
X — R &1, e DPstat)xgs
I,®8 ’

otherwise compute the matrices L and P defined by:

T T
L: R ®IS 6D<p5+qt)><qs P: R2 ®Is ED(q 5+rt)><7"s'
I,®8 ’ I.® S
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(3) Compute a matrix (I — U) such that kerp(.P) = D> (T —U), where T € D"*4¢
and U € D"*"*,

(4) Compute a matrix F € D®s+ta)x¢ gych that L = FT.

(5) Compute a matrix V € D> satisfying kerp(.T) = D>V V.

(6) Return the matrix X = (FT V)T,

For an implementation of Algorithm 1.1, see homalg ([4]) and OREMORPHISMS ([20]).

Example 1.2. Let us consider the commutative polynomial ring D = Q[z1, 2], the matrices

I 0
R = To I S D3X2, S = (.’L‘1 — .%'2) eD,
0 T2

and the finitely presented D-module M = D'*2/(D*3 R) and N = D/(x1 — z2) = Q[x1]. Fol-
lowing Algorithm 1.1, let us compute the D-module exth (M, N). We first obtain that the matrix
Ry = (¥3 —x129 %) is such that kerp(.R) = D3 Ry. Hence, we get p =2, ¢ = 3, r = 1,
s =1,t=1 and the matrices L and P are defined by:

T xT9 0 2
D)
0 T T2
—T1 T2
L=| z1—22 0 0 €eD¥3, P= ) € D*.
x
0 X1 — T2 0 !
Tr1 — T2
0 0 r1 — T2

Computing the syzygy D-module of D'*# P, we obtain kerp(.P) = DY** (T —U), where:

1 1 0 T2
0 ) 0
T—| " e D¥3, U=- e D*.
0 -1 -1 T
0 I T2 0

Using Lemma 1.1, if Q = {A € D3 |3 B € D: Ry A = BS}, then we have ext}, (M, N) =
Q/(RD? + D?S) and, using (127), J = (DY*4T)/(D**> L). Moreover, we have L = FT and
kerp(.T") = DV, where:

0 1 0 0
0 0 0 1

F=| -2, 1 0 0 |[eD> V=@ -1 —xzp —1)eD™
0 0 9 1
0 0 —x1 -1

Using (128), if X = (FT VT)T € D4 then J; = D1*4/(D**6 X)) = J. Let {e;}i=1.. 4 be the

standard basis of D'*4 and ¢ : D'** — J; the canonical projection. Using 1 of Theorem 3.1 and
Algorithms 3.1 and 3.2, we can check J; is a non-trivial torsion D-module and:

Using the D-isomorphism (36) defined in Proposition 3.1, we finally obtain that the residue classes
of the first and third rows of T in J generate the torsion D-module J, i.e., the residue classes
(1 1 0))ande((0 —1 —1)T) generate the D-module Q/(R D?+ D3 S) or, in other words,
using (122), p((6(1) &(1) (0))T) and p((6(0) —d(1) —4&(1))T) generate the torsion D-module
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exth (M, N). In particular, we have:

o(1) 5(1)
Ry | 6(1) | = (23 — 21 22)8(1) = (g (w2 — 1)) = 0, 5(1) | ¢ imy(R.),
5(0) 5(0)
5(0) 5(0)
Ry | =6(1) | = (122 —2%)6(1) = 6(z1 (21 — 22)) =0, —0(1) | ¢ imy(R.).
—4(1) —4(1)

Contrary to the case of a commutative ring D, exth (M, N) has generally no left or right D-
module structure whenever D is a noncommutative ring. It is generally only an abelian group
and a k-vector space when D is a k-algebra and k a field (see, e.g., [110]). If M and N are two
holonomic left modules (see the forthcoming Definition 3.6) over the ring D = A(d4, ..., 0,) of PD
operators with coefficients in A = k[x1,...,z,], k[z1,...,2,], where k is a field of characteristic
0, R{zy,...,z,} or C{zy,...,7,}, then exth (M, N) is a finite-dimensional k-vector space (see
[10, 11]). Hence, a basis of the finite k-vector space exth (M, N) can be computed using, for
instance, the algorithms developed in [77, 116]. Unfortunately, contrary to what happens in
the study of special functions and in combinatorics ([18]), most of the classical linear systems of
partial differential equations studied in mathematical physics and engineering sciences do not define
holonomic differential modules. In this case, we can only obtain a filtration of £ by computing
the matrices A € Q formed by PD operators of fixed order and degree/valuation. But, we cannot
generally check whether or not €(Q2) € Q/(R DP*® + D%t §) = exth (M, N) is reduced to 0.

Example 1.3. Let us consider a noncommutative ring D (e.g., A, (k) or B, (k)), two elements R
and S of D and the finitely presented left D-modules M = D/(DR) and N = D/(D S). Using
Lemma 1.1, we get exth(D/(DR),D/(DS)) = D/(RD + D S). Hence, exth, (M, N) = 0 iff there
exists X and Y € D satisfying the identity RX +Y S = 1.

2. MONGE PARAMETRIZATIONS

“Jespére [que ces résultats] pourront contribuer & appeler lattention de quelques
jeunes mathématiciens sur un sujet difficile et bien peu étudié¢”, E. Goursat,
[35], p. 250.

In Chapter 1, we studied when a linear system kerxz(R.) could be parametrized by means of
potentials, namely, by arbitrary functions of all the independent variables. In other words, we
studied the existence of a matrix Q € DP*™ such that kergz(R.) = QF™. When F is a rich
enough functional space (i.e., an injective (cogenerator) left D-module), the obstructions for the
existence of a parametrization of the linear system kerxz(R.) are given by the torsion elements
of the left D-module M = D'*?/(D'*4 R) finitely presented by the system matrix R € DI*P.
If M admits non-trivial torsion elements, namely, elements m € M \ {0} satisfying dm = 0 for
a certain d € D \ {0}, then we can wonder if the concept of a potential-like parametrization
can be generalized. In this section, we study the so-called Monge parametrization obtained by
glueing the parametrization of the parametrizable linear subsystem kerz(R’.) of kerz(R.), where
M/t(M) = D?/(D'*4¢" R’), with the integration of the torsion elements, i.e., with the elements
of homp (¢(M), F). This new kind of parametrizations, called Monge parametrizations, allows us
to parametrize kerz(R.) by means of a certain number of potentials but also by a certain number
of arbitrary functions in fewer independent variables (e.g., arbitrary constants). This problem was
first studied by Monge in [72] for nonlinear OD systems (the so-called Monge problem).

“Le probleme de Monge a une variable indépendante dans le sens le plus large,
consiste a intégrer explicitement un systéme de k (k < n—1) équations de Monge

Fi(l‘l,l‘g,...,£n+1;dl‘1,d$2,...,dl‘n+1) = 0, (’L = 1,2,...,]{,‘)

les F' étant des fonctions homogenes par rapport a dxy,dzo, ..., dx,11.
Par intégration explicite nous entendons celle ou l'on exprime les variables x
par des fonctions déterminées d’un parametre, de n — k fonctions arbitraires de ce
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parametre et de leurs dérivées jusqu’a celle d’un certain ordre, pouvant contenir
aussi un nombre fini de constantes arbitraires”, P. Zervos, [120], p. 1.
We first give an application of Theorem 1.3 to the parametrization of all the equivalence classes
of extensions of t(M) by M/t(M), whenever M is a finitely presented left D-module.

Let R € D?*P be a matrix with entries in a noetherian domain D and let us consider the finitely
presented left D-module M = D'*P/(D1*9 R). Computing the left D-module ext}h (N, D), where
N = D?/(R DP) is the Auslander transpose of M, we get a matrix R’ € DY *P gatisfying:

t(M) = (D9 R)/(D'*"R),

M/t(M) = D'? /(D% R').

See Theorem 3.1. We denote by m : D*P — M (resp., ©’ : DY*P — M/t(M)) the canonical
projection onto M (resp., M/t(M)). Using the following canonical short exact sequence

(129)

(130) 0 — t(M) = M 25 M/t(M) — 0,

we have 7’ = p o7, where p is the canonical projection M — M/t(M). See the commutative
exact diagram (43). Using Proposition 3.1 and (41), let us find an explicit finite presentation for
the torsion left D-submodule ¢(M) of M. If R” € D% and R} € D" ¥4 are respectively defined
by R = R"R' and kerp(.R') = DX’ %, then applying Proposition 3.1 to the left D-module
t(M), we obtain the following left D-isomorphism

x:T 2 DY /(D4R + DY RL) — (M)

(131) Sv) — 7R,

where § : D™ — T is the canonical projection onto T, i.e., t(M) = T. For more details, see
(36) and (40). The left D-module ¢(M) then admits the following finite presentation

R//
| w
pixtatr) N2/ pixd X2y g,
where the left D-homomorphism x o d is defined by:
xod:D™'  — (M)
v — w(vR).
Hence, we have the following straightforward corollary of Theorem 1.3.

Corollary 2.1 ([104, 105]). With the previous notations, an extension of t(M) by M/t(M)

(132) e: 0 — t(M) - B2 M/t(M) — 0
is defined by the left D-module E = D' ®+d) /(D1 +a+r") Py where
R -A
(133) Pi=| 0 R’ | e pWHatr)x@td)
0 R,
and A is an element of the following abelian group Q2 defined by:
’ ’ ’ ’ R,/
(134) O={AeD’* |3Be D" *+") . RLA=B .
Ry

Moreover, the equivalence classes of the extensions of t(M) by M /t(M) depend only on the residue
classes €(A) of A € Q in the following abelian group

R/I

(135) Q/ (R’ prxd 4 paxatr) < e

)) _ w(exth(M/H(M), H(M))),

where v is the isomorphism defined by (122).
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Example 2.1. Let M = D'*2/(D**2 R) be the left D = A5(Q)-module finitely presented by:

R x1h+1 20 c D2x2,
1 O To Oy + 1

Using Algorithm 3.1, we obtain that R’ = (1 @2) and Q = (—z2 21)7 satisfy:
t(M) = (DR')/(D"?R), M/t(M)=D"?/(DR')= D"?Q = Dz, + Dux,.
Moreover, using Proposition 3.1, we get t(M) 2 L = D/(D0; + Dd;). If I = Dxy + Do,

then the short exact sequence (130) yields the short exact sequence 0 — L JoM 1.

Since the left ideal I of D admits the finite free resolution 0 — D &5 p1x2 ~<, 7 0, then
kerp(.R') =0, i.e.,, R, =0, and Remark 1.2 shows that Q = D and (122) yields:

7}

exth(M/t(M),t(M)) = D/ (DM ( 5 ) + (21 xg)D2> =D/(D& + D08 +x1 D+ a2 D).
p)

Then, exth,(M/t(M),t(M)) is reduced to 0 iff 1 € DOy + D0y + 71 D + z2 D, i.e., iff there exist
dl, dg,dg, dy €D satisfying dy 01 +do 99 + 11 ds +xody = 1,ie., 11—z d3 —x9dy € Doy + Dag,
which shows that we can always assume that d3, dy € k[z1, 22] and yields 1—x1 ds—x5 dy = 0. This
equation is impossible since (0, 0) is a common zero of z; and x3, which proves that the abelian
group exth(M/t(M),t(M)) is not reduced to 0. Finally, since R” = (9; 02)T, Corollary 2.1
shows that every extension of t(M) by M /t(M) can be defined by the short exact sequence (132),
where the left D-module E = D**3/(D*3 P,) is finitely presented by

xry T2 —A

Pi=| 0 0 o |,
0 0 0

and A € Q = D is any representative of the residue class ¢(A) € D/(D 8y + D 93 + 21 D + 22 D).
In particular, we can always choose A € k[z1, z3].

Example 2.2. If we redo Example 2.1 with the following new matrix

02 9,0, ,
R= D**?
( 010, o2 ) cE

then we obtain R’ = (01 &), Q = (=02 )T, t(M) = (DR')/(D**?R) = D/(D 0, + D)
and M/t(M) = D'™2/(DR') 2 DY*2Q = D& + D 02, where M = D'*2?/(D'*2 R) is the left
D = A5(Q)-module finitely presented by R. Then, Remark 1.2 and (122) yield Q = D and:

o1

extp(M/t(M),¢(M)) = D/ (Dm ( 5 >+(61 62)D2> —D/(DO 4+ Ddy+ 8, D+8,D).

In this case, we have exth (M /t(M),t(M)) = 0 since the following identity holds:
1=0121 —2101 €D +D0dy+01 D+ 0yD.

Then, Theorem 1.2 shows that the only equivalence class of extensions of ¢(M) by M/t(M) is
trivial one, namely, E = t(M) @ M/t(M), i.e., the one defined by (132), where the left D-module
E = D'*3/(D'*3 P) is finitely presented by the following block-diagonal matrix:

01 02 O
P = 0 0 O
0 0 0

Corollary 2.1 gives a parametrization of all the equivalence classes of extensions of ¢(M) by
M/t(M). In particular, the left D-module M defines the extension (130) of t(M) by M/t(M).
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Hence, there exists a matrix A € Q such that E = D'*+d) /(D1 +a+r) p,) = M. Using (43)
and (131), we can easily check that the following commutative exact diagram holds

pxd  Eo pue T apr) 0
Le L= |
oyl
0— T nx L5 M/t(M) — 0,

where ¢ : D4 — T is defined by ¢(hy) = 6(hg) = w(hy R') for k =1,...,¢" and {hg}tr=1,. ¢
is the standard basis of D'*?. Hence, using Corollary 1.1, we can take A = I in (133).

Theorem 2.1 ([104, 105]). Let R € D9?, R € DY*?, R" € D9 and Ry, € D" "9 be
four matrices satisfying M = DY¥P /(D@4 R), M/t(M) = DY*?/(D'*¢ R'), R = R'R' and
kerp(.R') = DY Rl Moreover, let E = D'*w+d) /(D1 (" +a+") PY be the left D-module finitely
presented by the matrix

R -1y
(136) P= 0o R" c D(ql+q+?”')><(p+q')7
0 R,

and p: DY +d) _ B (resp., m: DYP — M) the canonical projection onto E (resp., M ).
1) fu=(, 0)e DP*w+d)  then we have the following left D-isomorphism
f:M — E=DWYwtd)/(pixd+atr) p)
m(A) — o(AU),
ie., M= FE.
(2) The following two extensions of t(M) by M/t(M) defined by
0 — t(M) = M 25 M/t(M) — 0, 0 — t(M) - E -2 M/t(M) — 0,

belong to the same equivalence class in the abelian group ep(M/t(M),t(M)).
(3) For every left D-module F, kerz(R.) = homp(M,F) = homp(E, F) = kerz(P.), i.e.

R'¢—0=0,
(137) Rn=0 < R"6=0,
RLO =0,
and the following invertible transformations:
v :kerg(P.) — kerg(R.) v likerg(R.) — kerg(P.)

()= o) = (0)-()

We point out that the presentation matrix P of the left D-module E = M is block-triangular.

Theorem 2.1 can be used to parametrize the linear system kerxz(R.). Indeed, (137) shows that
the linear system kerz(R.) can be integrated in cascade: we first integrate the linear system

(138) B"6 =0,
R,0 =0,

and then solve the inhomogeneous linear system R'n = 6. Hence, n is the sum of a particular
solution 7, € FP of R'n = # and the general solution of the homogenous linear system R'7n =
0. Since the torsion-free left D-module M/t(M) = D7 /(D'*4" R’), Corollary 3.2 shows that
M/t(M) admits a parametrization, i.e., there exists Q € DP*™ such that M/t(M) = D¥P Q.
If F is an injective left D-module, then Corollary 4.1 proves that kerz(R’.) = Q F™, i.e., every
element 7 € kerz(R’.) has the form n = Q¢ for a certain & € F™. Therefore, the elements of
kerz(R.) can be parametrized as follows:

(139) VEEF™, n=n+QE.

The parametrization (139) is called a Monge parametrization of the linear system kerz(R.).
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If we consider an injective left D-module F and apply the exact functor homp(-,F) to the
commutative exact diagram (43) to get the following one

0
T
homp (t(M), F)
T
Fa — FP kerz(R.) —0
1 R I T
Froo2 Fa & FPo— ker(R'.) — 0,
T
0

where homp (t(M), F) = homp (T, F) = kerz((R"" RYF)T.) and kerz(R'.) = Q F™. Hence, the
above remark can be found again by an easy chase in the previous commutative exact diagram.

Algorithm 2.1. e Input: A matrix R € D9*P over a noetherian domain D for which
Buchberger’s algorithm terminates for admissible term orders and F a left D-module.
e Output: A set of elements of kerz(R.).
(1) Applying Algorithm 3.1 to the left D-module M = D'*?/(D*4 R), compute two matrices
R’ € D7*P and Q € DP*™ guch that:

M/t(M) = Dlxp/(Dlxq’ R), kerp(.Q)= Dixd R’

(2) Factorize R by R’ to get a matrix R” € D9%4 satisfying R = R" R'.
ompute a matrix € D™ %9 satis ving kerp (. = " R,

3) C R, € D™ >4 f ki R') = D" R}

(4) Find the F-solutions of the linear system (138), i.e.:

R"6=0,

RLO=0.
If F is a cogenerator left D-module, then a solution of the previous system always exists.
(5) Find a particular solution n* € FP of the linear inhomogeneous system R'n = 6, where
is a general solution of (138). If F is an injective left D-module, then such a particular

solution n* always exists.
(6) For all £ € F™, the element n = n* + Q£ belongs to kerx(R.).

Example 2.3. We consider the linear PD system v (6 ) = 0 appearing in mathematical physics,

-

where V= (01 92 03)T (see Example 2.3), namely:

01 (01v1 + Q2 va + O3 v3) =0,
(140) Oa (81 v1 + O3 v + O3 U3) =0,
83 (81 U1 +82 V2 +83 'Ug) =0.

For instance, in acoustic, the speed @ satisfies the PD linear system 0, 7/c? — v (6 ) = 0, where
¢ denotes the speed of sound ([52]). Hence, if we want to compute the stationary solutions, then
we have to solve the linear PD system V (V. %) = 0.

Let us parametrize all the F = C°°(R3)-solutions of (140). Let D = Q[0;,02,0;] be the
ring of PD operators with rational constant coefficients and M = D*3/(D'*3 R) the D-module
finitely presented by the presentation matrix R € D3*3 of (140). Using Algorithm 3.1 and (40),
we obtain that the matrices R’ = (01 9y 93) € DV3 and R” = (01 0y 05)7 € D3 satisfy
M/t(M) = DY3/(DR'), kerp(.R') = 0 and (M) = (DR')/(D"*®*R) = D/(D'*3R"). Then,
Theorem 2.1 shows that kerz(R.) = kerz(P.), where P is defined by (136), i.e.:

Ohvy + 0909 +03v3 —0 =0,

0160 =0,
0260 =0,
030 = 0.
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Hence, 6 is a constant ¢ € R and we then need to parametrize the F-solutions of the inhomo-
geneous linear system V.v = ¢. We can easily check that a particular solution of the previous

inhomogeneous system is given by #* = (cz; 0 0)7. A more symmetric particular solution

is v* = %(cwl cxy cax3)?. Since the smooth solutions of the divergence operator in R? are

parametrized by the curl operator (see Example 4.3), all F-solutions of (140) are of the form:
%cxl +8252 *8353
VceR, V{E}"g, 17:17*4-6/\5: %cx2+83£175'1§3
scas — 2 &1+ 016
Example 2.4. Let us consider a model of the motion of a fluid in a one-dimensional tank studied
in [79] and defined by the following system of OD time-delay equations
t1(t) = 92(t —2Rh) + afs(t —h) =0,
yl(t — Qh) — yg(t) + Ot:ljg,(t — h) =0,

where h is a positive real number. Let D = Q(«)[9, §] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., dy(t) = y(t), 0 y(t) = y(t — h)),

R a9  —06% «ad?s e
N\ 882 -0 ad?s ’

(141)

the presentation matrix of (141) and the D-module M = D*3/(D'*2 R) finitely presented by R.
Using Algorithm 3.1 and (40), we obtain that the following matrices

—add
w11 0 0 a35 o o 0
= s = (0% B = )
0 —1-6* adé ) 6% 0
1496
satisfy M/t(M) = DY*3/(D'*2 R"), kerp(.Q) = D'*3R', R=R"R', kerp(R'.) = 0 and t(M) =
(DY*2 R")/(D'*2 R) = D'*2/(D'*2 R"). Let us find a Monge parametrization of ker z(R.), where
F is an injective D-module. In order to do that, we first need to compute ker z(R".), i.e.,

{ 01(t) + a(t) = 0, 01(t) = (1) + (012;;2) :

. R =
01(t — 2h) 4 62(t) = 0, (c1 — c2)

02(t) = —1p(t — t
2(t) = —¥(t) ta 5 b
where ¢; and co are two arbitrary real constants and v is an arbitrary 2 h-periodic of F.

Then, we have to solve the inhomogeneous system R’ 7 = 6, namely:

— (C —cC )
(142) v () +ya(t) = (1) +

—y2(t) —y2(t —2h) +ays(t —h) = —(t) +c1 —

t,

(c1 —¢2)

2h £

We can easily check that a particular solution of (142) is defined by:

n) = (v + 52 ey o)),

2 2h 2
_1 (c1—c2), (1t
() =5 (vl + 152 o)),
ys(t) = 0.
Finally, using kerz(R’.) = Q F, (139) shows that every element of kerz(R.) has the form
1 .
yi(t) = B (P(t) + Crt + C2) — al(t — h),
1 .
y2(t) = 5 (¥(t) + Crt = Co) + af(t — h),

ys(t) = (1) + (= 2h),
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where C; and C5 are two arbitrary real constants, 1) an arbitrary 2 h-periodic function of F and
& an arbitrary function of F (see also [79]).

Let us explain how the search for a particular solution 7, of the inhomogeneous linear system
R'n = 0 can be simplified in certain cases by means of a “method of variation of constants”.

Theorem 2.1 and Corollary 2.1 show that E = D'*@+d) /(D1x(@'+at+r) p,y = M| where the
matrix P4 is defined by (133) for all matrices A € Q belonging to the same equivalence class as

€(I,,/) in the abelian group 2/ (R’ Dpxd' 4 pa'xa R’ 4 pa'xr R’Q), i.e., for all matrices
A=1,—-R X-YR'-ZLi,

where X € DPX? | Y € D7*4 and Z € D7*" are arbitrarily matrices. Taking A = 0, the left

D-module F finitely presented by the matrix Py defines the trivial extension of t(M) by M /t(M)

since the block-diagonal form of Py yields F = t(M) ® M/t(M). Hence, the canonical short exact

sequence (130) splits iff €(I,,/) = €(0), i.e., iff there exist three matrices X € DP*4 | Y e D9 %4

and Z € D% satistying R X + Y R + Z Ry = I,,.

Proposition 2.1 ([101, 104, 105)). Let R € D¥?, R’ € DY*? and Ry € D" % be three matrices
such M = DYP /(D4 R), M/t(M) = D'*?/(D'*¢ R') and kerp(.R') = D**" Rl. Then, the
canonical short exact sequence

(143) 0 — t(M) - M 25 M/t(M) — 0
splits, i.e., M =2 t(M)® M/t(M), iff there exist X € Dr*d' | Y € D% qnd Z € DX satisfying
(144) LIX+YL'+ZL,=1,.

or equivalently, if there exist two matrices X € DP*d qnd Y € DY >4 satisfying:
(145) R-RXR =YR.
Then, the following left D-homomorphism
oc:M/t(M) — M
(A — 7(A{, - XR)),
where m : DY*P — M and ' : DY*P — M /t(M) are respectively the projections onto M and
M/t(M)), is a right-inverse of the canonical projection p : M — M /t(M) onto M/t(M), i.e.:
poo =idnyi(ar)-

Let us explain why (144) is equivalent to (145). Post-multiplying (144) by R’ and using the
relations R = R” R’ and Ry R’ = 0, we get (145). Conversely, using R = R" R’, (145) yields
(I, ~R'X-Y R')R' =0, ie, D*7 (I, ~R' X =Y R") C kerp(.R') = D' R}, and thus there
exists Z € D?*"" such that I, — R’ X — Y R"” = Z R}, which implies (144).

Remark 2.1. If D is a commutative polynomial ring, using Kronecker products, then we get:
R/T ® Iq’
(144) & row(ly) = (row(X) row(Y) row(Z)) | Iy ® R
Iy @ Ry
Hence, the existence of the matrices X, Y and Z satisfying (144) is reduced to checking whether

or not row(I,) belongs to the Grobner basis of the D-module generated by the rows of the last
matrix. If so, then the computation of the normal form of row(I, ) gives matrices X, Y and Z.

If M =t(M)® M/t(M), then we can use (144) to obtain a particular solution 7, € F? of the
inhomogeneous linear system R’'7n = 6. Indeed, post-multiplying (144) by 6, we get
=R (X0)+Y (R'0)+ Z(R,0) =R (X0),

since # € F7 satisfies (138). Therefore, 1, = X 6 is a particular solution of R'n = # and thus
every 1 € kerz(R.) has the form

for all £ € F™ and 6 satisfying (138). Hence, the elements of the linear system kerz(R.) are
parametrized by those of the linear system (138) and arbitrary elements £ of F™.
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Corollary 2.2 ([101]). Let M = D'*?/(D'*49 R) be a finitely presented left D-module and let us
suppose that the canonical short exact sequence (143) splits, where M/t(M) = D'*?/(D'*4 R').
Moreover, let F be an injective left D-module. Then, every element n of kerx(R.) has the form

n=X0+Q¢,
where 0 € F4 is a solution of (1588), & an arbitrary element of F™ and the matriz X € ppxd
(resp., Q € DP*™) satisfies (144) (resp., kerp(.Q) = D*P R/ ).

Example 2.5. Let us consider the another model of the motion of a fluid in a one-dimensional
tank studied in [26] and defined by the following system of OD time-delay equations
(146) y1(t —2h) +ya2(t) — 29s3(t — h) =0,

y1(t) +y2(t —2h) — 293(t — h) =0,
where h is a positive real number. Let D = Q[d, ] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., dy(t) = y(t), dy(t) = y(t — h)),

2 1 -206

147 R= e D¥*3

(147) ( 1 6 -206 )

and the D-module P = D'*3/(D'*2? R). Using Algorithm 3.1, we obtain that the matrices
200

w1 1o o—| 260 N
S\ 0 1+6% —200 )7 7 ’ AR

1467

satisfy M/t(M) = D**3/(DY*2 R'), kerp(.Q) = DY3R', R=R"R’, kerp(R'.) = 0 and t(M) =
(DY*2 R")/(D'*2 R) = D'*2 /(D'*2 R"). Let us find a Monge parametrization of ker z(R.), where
F is an injective D-module. In order to do that, we first need to compute kerz(R".), i.e.,

520, +6, =0, Oy = —01,
01 +065 =0, 5291—9120,

which shows that 6, is a 2 h-periodic function of F. Then, we have to find a particular solution
n* € F3 satisfying R'n = 6. Using Remark 2.1, we can check that the following matrices

Y 1/0 0
X==| -1 == .
2 R 2(1 1)
0 0

satisfy (145). Then, Corollary 2.2 shows that (146) is parametrized by
yi(t) = 3 01() + 24(t — h),
ya(t) = —5 01(t) +2£(t — h),
ys(t) = &(t) + &(t — 2h),
where & (resp., 61) is an arbitrary function (resp., 2 h-periodic function) of F (see also [26]).

If M/t(M) is a projective left D-module, then Proposition 2.5 proves that the canonical short
exact sequence (143) splits. We note that combining Proposition 2.2 and Theorem 1.2, we get
ep(M/t(M),t(M)) = exth(M/t(M),t(M)) = 0, which proves again that (143) is a split short
exact sequence. Moreover, Proposition 3.2 proves that the presentation matrix R’ of the left D-
module M/t(M) = D'?/(D'*4" R’} admits a generalized inverse over D, namely, there exists a
matrix X € DP*9 satisfying R’ X R’ = R'. Hence, if M/t(M) is a projective left D-module, then
(145) holds with Y = 0 and the hypothesis of Corollary 2.2 is fulfilled.

Corollary 2.3. Let M = DY*?P /(D9 R) be a left D-module such that the torsion-free left D-
module M/t(M) = DY¥?/(D'*4 R') is projective and X € DP*Y q generalized inverse of the
matriz R'. If F is an injective left D-module, then every element n of kerx(R.) has the form

(148) n=X0+QE¢,
where 6 € F4 is a solution of (138) and & an arbitrary element of F™.
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Example 2.6. Let us consider the commutative polynomial algebra D = Q[9, §] of OD time-delay
operators (i.e., dy(t) = y(t), dy(t) = y(t — h), where h € R} ) and the following matrix

0 -0 -1 5
R= € D?*3,
205 —-0(1+46%) O
which describes the torsion of a flexible rod with a force applied on one end studied in [74]:

1 (8) — ot — h) — ys(t) = 0,
(149) y1.( ) = 92( . ) y3.( )
Using Algorithm 3.1, we can prove that the D-module M = D'*3/(D'*2 R) admits non-trivial
torsion elements and t(M) = (D3 R")/(D'*2 R) and M/t(M) = D'*3/(D'*3 R’), where:

—25 14462 0
R = -9 06 1 | e D3*3.
96 -9 6

Moreover, we have R = R” R’ and kerp(.R’) = D R}, where

0 -1 0
RH:(O s 1)7 Ré:(a -4 1),

and the matrix Q = (1462 26 (1-—6%) 8)T is such that kerp(.Q) = D'*3 R’. Moreover, using
Algorithm 3.3, we can check that R’ admits a generalized inverse X over D defined by

. 5§ 00
X:5 2 0 0 | e D33,
95 2 0

which shows that the D-module M/t(M) is projective by Proposition 3.2. Now, (138) is the
following linear OD time-delay system:

—02:0, 00, =0, 0, =c€eR,
—60y 4+ 05 =0, =4 0> =0, =4 0> =0,
06, — 60, + 05 =0, 0 =0, 05 = 0.

Then, Corollary 2.3 shows that (149) admits the following Monge parametrization

ui(t) = e+ £(0) +€(t —2h),
pa(t) = ¢+ 26(t = ),

ys(t) = &£(t) —&(t = 2h),

where ¢ is an arbitrary constant and £ an arbitrary function of F.

If D = A(9), where A = k[t] or k[t] and k is a field of characteristic 0 or A = k{¢} and k = R
or C, then Example 2.13 shows that gld(D) = 1, i.e., D is a hereditary ring. Thus, Theorem 3.1
proves that the torsion-free left D-module M/t(M) = D'*?/(D'*¢ R') is projective, and thus
Corollary 2.3 holds for all finitely presented left D-modules M.

Now, if the matrix R’ € D> in Corollary 2.3 has full row rank and the left D-module
M/t(M) = D**?/(D'*4" R') is free, then Corollary 5.2 shows that there exists U € GL,(D) such
that R U = (I, 0). If we write U = (X @), where X € DP*¢ and Q € DP*®=9) then
(148) becomes n = U (07 £T)T (see also (68)). Using 1 of Theorem 1.2, this result holds when
D = K9] and K is a differential field such as k a field, k(t), k[t][t™*] or k{t}[t"!] and k = R or
C, since the torsion-free left D-module M /t(M) is then free.

In this section, we proved that a Monge parametrization of the linear system kerz(R.) could
be obtained by glueing the parametrization of its parametrizable linear subsystem kerz(R’.) with
the elements of homp (¢(M), F) (which are the obstructions for kerz(R.) to admit a potential-like
parametrization). This result, based on the system equivalence (137), generalizes 1 of Corollary 4.1.
In Section 4, we shall show that Theorem 2.1 and (137) are just the first steps to more precise
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characterizations of M and kerz(R.) based on the concept of purity filtration of the left D-module
M ([10, 11]). In particular, we shall give an equivalent block-triangular form of the linear system
(138) which is more suitable for its closed-form integration (if it exits) (see 4 of Algorithm 2.1)
and for the study of the structural properties of (138).

Finally, for applications of the Monge parametrization to the study of variational problems (e.g.,
elasticity, electromagnetism) and optimal control, see [93, 102].

3. CHARACTERISTIC VARIETY AND DIMENSIONS

“Le savant n’étudie pas la nature parce que cela est utile ; il ’étudie parce qu’il
y prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas
belle, elle ne vaudrait pas la peine d’étre connue, la vie ne vaudrait pas la peine
d’étre vécue.”

Henri Poincaré, Science et Méthodes.

In this section, we introduce a few classical results of algebraic analysis on the dimension of
the characteristic variety of a left D-module M and on the dimension of the left D-modules
ext’ (ext’, (M, D), D)’s ([10, 11, 13, 44, 66]). These results will be used in the next section to
develop the purity filtration of the left D-module M which will allow us to generalize the results
obtained in the previous section on the Monge parametrization of the linear system kerz(R.).

In what follows, we shall assume that A is either a field k, k[z1,...,z,], k(z1,...,2,) or
k[x1,...,2z,], where k is a field of characteristic 0, or k{z1,...,2,}, where k = R or C.

An element P € D = A{(d4,...,0,) is uniquely defined by P = Z|o¢\=0,..4,7“ aq 0%, where a, € A,
a=(ag,...,an)T €N Ja| =a1+ ...+, and 9% = 97 ...9%". Then, we can introduce the
order filtration of D, namely, D, = {Zogm\gr a6 0% | aq € A} for all r € N| with the convention
that D_; = 0. Then, we can check that the following filtration conditions hold:

(1) Vr,seN,r<s = D, CD,.

(2) D=U,>qDr
(3) VT’, s € N7 Dr Ds C Dr+s~

The ring D is then called a filtered ring and an element of D,. is said to have a degree less or equal
to r. We can easily check that Dy = A and D, is a finitely generated A-module.

If dq, do € D, we can define the bracket of d; and dy by [d1,ds] = d1 da —dady. Now, if d; € D,
and dy € Dy, then d; dy and dyd; belong to D, since D, Dy C D,4 s and Dy D, C D, .
Moreover, we can check that [d1,ds] € Dyys—1, i.e., [Dyp, D] C Dyys—1.

Let us now introduce the following A-module:
gr(D) =P D»/D,1.
reN

If . : D, — D,./D,_1 is the canonical projection for all € N, then the A-module gr(D) inherits
a ring structure defined by:

7.(dy) 4+ 7s(do) & mi(dy + do) € Dy/Dy_1, t = max(r, s),

mr(d1) ms(d2) £ Trts(d1d2) € Drys/Drys—1.

gr(D) is called the graded ring associated with the order filtration of D. If we now introduce
Vi=1,...,n, x;=m1(0;) € D1/Dy,

then 7([0;,0;]) = 0 and 71([0;,a]) = 0 for all a € A and all 4,5 = 1,...,n since [0;,0;] = 0
and [0;,a] € Dy, which shows that gr(D) = A[x1,...,Xn] is the commutative polynomial ring in
X1;-- -, Xn With coefficients in the commutative noetherian ring A.

Ydi € D,, Ydse€D,, {

We can now generalize the concepts of filtered and graded rings for modules.

Definition 3.1 ([10, 13, 66]). Let M be a finitely generated left D = A(d, ..., d,)-module.

(1) A filtration of M is a sequence {Mj}qen of A-submodules of M (with the convention that
M_; = 0) such that:
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(a) For all ¢, r € N, ¢ < r implies that M, C M,..

(b) M =U,en Mq-

(c) For all ¢, r € N, we have D, M, C Myy,.

he left D-module M is then called a filtered module

he associated graded left gr(D) module gr(M) is defined by:

) gr(M) = @,en Mo/ M,y
b) For every d € D, and any m € M,, we set 7,(d) o4(m) £ 044 (dm) € Mysr/Myir—1,
where o, : M, — M,/M,_1 is the canonical projection for all ¢ € N.
(3) A filtration {Mq}qu is called a good filtration if it satisfies one of the equivalent conditions:
(a) M, is a finitely generated A-module for all ¢ € N and there exists p € N such that
D, M, = Mpy, for all r € N.
(b) gr(M) = D, en Mg/My—1 is a finitely generated left gr(D)-module.

T
2) T
(a
(

Example 3.1. Let M be a finitely generated left D-module defined by a family of generators
{y1,...,yp}. Then, the filtration M, = Y7 | D,y; is a good filtration of M since we then have
gr(M) =" | gr(D)y;, which proves that gr(M) is a finitely generated left gr(D)-module.

If M is a finitely generated left D = A(0y,...,0,)-module, then gr(M) is a finitely generated
module over the commutative polynomial ring gr(D) = Alxi,...,Xxn]. Hence, we are back to
the realm of commutative algebra. Based on techniques of algebraic geometry and commutative
algebra, we can then characterize invariants of gr(M) (e.g., dimension, multiplicity) which are
important invariants of the differential module M.

Let us recall the concept of prime ideals of a commutative polynomial ring.

Definition 3.2. A proper prime ideal of a commutative ring A is an ideal p C A which satisfies
that ab € p implies a € p or b € p. The set of all the proper prime ideals of A is denoted by
spec(A) and is a topological space endowed with the Zariski topology defined by the Zariski-closed
sets V(I) = {p € spec(A) | I C p}, where [ is an ideal of A.

Example 3.2. If (ay,...,a,) € C", then the finitely generated ideal m = (z —ay,...,x, — a,) of
the ring D = Clz1, ..., 2z,] is a mazimal ideal of D, namely, m is not contained in any proper ideal
of D different from m. A maximal ideal m is a prime ideal for if we have ¢ m and zy € m, then,
since m is maximal, we get Ax +m = A, i.e., there exist a € A and b € m such that az + b = 1.
Then, we obtain that y = a(xy) 4+ (yb) € m, which proves that m is prime. For instance, the
twisted cubic is defined by the prime ideal p = (z2 — 2%, 23 — 23) of Clx1, 22, 23).

We now introduce the important concept of a characteristic variety of a differential module.
Proposition 3.1 ([10, 13, 66]). Let M be a finitely generated left D = A(9, ..., d,)-module and

G = gr(M) the associated graded gr(D) = A[x1,- .., x»]-module for a good filtration of M. Then,
the ideal of the commutative polynomial ring gr(D) defined by

= ann(G) £ {a €gr(D)|IneN: a" G =0}

does not depend on the good filtration of M. The characteristic variety of M is then the subset
of spec(gr(D)) defined by:

charp(M) = V(I(M)) = {p € spec(gr(D)) | /ann(G) C p}.
According to 1 of Example 3.1, every finitely generated left D = A{(0;, ..., d,)-module M admits
a good filtration and thus a characteristic variety. The dimension of the left D-module M can
then be defined as the geometric dimension of the characteristic variety charp (M) of M.

Definition 3.3 ([10, 13, 66]). Let M be a finitely generated left D = A(9y, ..., 0, )-module. Then,
the dimension of M is the supremum of the lengths of the chains pg C p; C p2 C ... C pgy of distinct
proper prime ideals in the commutative ring gr(D)/I(M) = A[x1,. .., xn|/I(M). It M = 0, then
we set dimp (M) = —1.

For simplicity reasons, we shall write dim(D) instead of dimp (D).

Example 3.3 ([10, 13]). We have dim(k[z1,...,2,]) = n and dim(B,(k)) = n. Moreover, if
A = k[xy,...,x,], k[z1,...,2,], where k is a field of characteristic 0, or k{x1,...,x,}, where
k =R or C, then we have dim(A(d1,...,0n)) = 2n.
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Example 3.4. Let us consider the following linear PD system:
D) = (04 —x302—1)y =0,
Oy = (03 —2401)y = 0.
We can check that (150) is not formally integrable ([82, 84]) since
(04 —2302 — 1) Do+ (2401 — 05) Py = (02— 01)y =0

is a new non-trivial first order PDE which does not appear in (150). Adding this new equation to
(150), then we can check that the new linear PD system defined by

(01 — 230, — 1)y =0,
(151) (03 —x401)y =0,

(02 —01)y =0,
is formally integrable and involutive ([82, 84]). Therefore, using to the Cartan-K&hler-Janet’s

theorem (see [82, 84]), we can obtain a formal power series (analytic) solution of (151) in a neigh-
bourhood of a = (a1, az, a3, as) € R* which satisfies an appropriate set of initial conditions.

Using (151), the characteristic variety of the left D = A4(C)-module M = D/(D'*?2 R) finitely
presented by the matrix R = (9 — 2302 +1 02 — x4 01)7 is defined by the ideal

(150)

I(M) = (X4—333X2, X3 — T4 X1, X2—X1)

of the commutative polynomial ring gr(D) = Clz1, 22, T3, 24, X1, X2, X3, X4]- The characteristic
variety charp(M) of M is then the affine algebraic variety of C® defined by the ideal I(M) of
gr(D). We can easily check that we have:

ChaI'D(M) = {($1,$2,$3,$47X17X17.’I}4 X1,Z3 Xl) ‘ X1, T; € (Ca 1= 1) oo 74}

Therefore, the Krull dimension of char(M) is 5, i.e., dimp(M) = 5. If instead of D = A4(C), we
use the second Weyl algebra B4(C), then the characteristic variety of M becomes

charp (M) = {(x1, x1,za x1, 23 Xx1) | x1 € C},

which proves that charp (M) is a 1-dimensional family of algebraic varieties parametrized by the
point (z1,z2,x3,x4), i.e., dimp (M) = 1. Finally, we point out that we must transform (150) into
the involutive system (151) (i.e., a Grobner basis) to study the characteristic variety of M.

Let us introduce the important concept of the grade of a finitely generated left D-module.
Definition 3.4 ([10, 11]). The grade of a non-zero finitely generated left D-module M is:
jp(M) =min {i > 0 | ext’,(M, D) # 0}.
If M # 0, then using Proposition 2.8, extigl(M, D) =0 for all i > gld(D), which yields:

(152) 0 <jp(M) < gld(D),
Theorem 3.1 ([10, 13]). Let M be a finitely generated left D = A(0y,...,0n)-module. Then:
(153) jp(M) = dim(D) — dimp (M).

A similar result holds for finitely generated right D-modules.

Remark 3.1. A ring D satisfying jp(M) = dim(D) — dimp (M) for all finitely generated left
D-modules M and a dimension function dimp(-) is called a Cohen-Macaulay ring. Hence, the
previous rings of partial differential operators are Cohen-Macaulay. Moreover, they are also Aus-
lander regular rings, namely, noetherian rings with a finite global dimension which satisfy the

Auslander condition, namely, for every ¢ € N, every finitely generated left (resp., right) D-module
M and every left (resp., right) D-module N C ext’, (M, D), then jp(N) > ([10, 11, 13]).

If M = DY*P/(D'*4 R) is a left D-module finitely presented by a full row rank matrix R, then
Theorem 3.1 can be used to check the module properties of M. If N = D?/(R DP) = exth (M, D)
is the Auslander transpose right D-module of M, then a right module analogue of Theorem 1.1
implies homp (N, D) & kerp(.R) = 0. Hence, we have jp(N) > 1, i.e., dimp(M) < dim(D) — 1.
The computation of dimp (M) then gives jp (M), i.e., the smallest i > 1 such that ext’, (N, D) # 0.
Using Theorem 3.1, we obtain the following important result.
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Corollary 3.1 ([89]). Let M = D'*?/(D'*4 R) is a left D-module finitely presented by a full row
rank matriz R, i.e., kerp(.R) = 0. Then, we have:

(1) ¢(M) #0 iff jp(N) =1, i.e., iff dimp(N) = dim(D) — 1.

(2) M is torsion-free iff jp(N) > 2, i.e., iff dimp(N) < dim(D) — 2.

(3) M is reflexive iff jp(N) > 3 i.e., iff dimp(N) < dim(D) — 3.

(4) M is projective (stably free) iff N =0, i.e., iff dimp(N) = —1.

4 of Corollary 3.1 was already proved in Corollary 3.3. Corollary 3.1 shows that we only need
to compute dimp(N) to check whether or not a left D-module M finitely presented by a full row
rank matrix R admits non-trivial torsion elements, is torsion-free, reflexive or projective. Hence, if
M is finitely presented by a full row rank matrix R, then we only need to determine the dimension
of the left D-module N = D*4/(D'*P R) by means of a Grobner basis computation to check the
module properties of the left D-module M = D'*?/(D1*4 R).

Example 3.5. If we consider again the D = Q[d;, 02, 03]-module M = D'*3/(D R) finitely
presented by the divergence operator R = (9; 0o 03) in R?, then the Auslander transpose N =
D/(RD3?) = D/(D'*3 RT) of M is finitely presented by the gradient operator. Since charp (M) =
{(0,0,0)}, then dimp(N) = 0 and jp(N) = 3 — 0 = 3. Therefore, we get ext’, (N, D) = 0 for
i=0,1,2 and ext?,(N, D) # 0. Using Theorem 3.1, we find again that M is a reflexive but not a
projective D-module.

In the theory of linear PD systems, the following definitions are generally used.

Definition 3.5. Let M be a finitely generated left D = A{dy, ..., d,)-module.
(1) M is said to be determined if ext},(M, D) = 0 and exth (M, D) # 0.
(2) M is said to be overdetermined if ext's (M, D) =0 for i =0, 1.
(3) M is said to be underdetermined if ext%, (M, D) # 0.

These definitions can be easily explained by means of Theorem 3.1: if M is determined, then
Jjp(M) =1, and thus dimp (M) = dim(D)—1. Moreover, if M is overdetermined, then jp (M) > 2,
which yields dimp (M) < dim(D) — 2. Finally, if M is underdetermined, then jp(M) = 0, and
thus dimp (M) = dim(D).

If M # 0, then (152) and (153) yield dimp (M) > dim(D) — gld(D).

Example 3.6. Using Examples 2.13 and 3.3, if M is a non-zero left D = A(0,...,0,), then
dimp(M) > n whenever A = k[x1,...,2,], k[z1,...,2,], where k is a field of characteristic 0,
or k{x1,...,xn}, where k = R or C. Moreover, dimp(M) > 0 whenever A = k or k(z1,...,%,),
where k is a field of characteristic 0.

Definition 3.6 ([10, 13, 66]). Let A = k[z1,..., 2], k[z1,..., 2], where k is a field of char-
acteristic 0, or k{z1,...,2z,}, where &k = R or C, and M a non-zero finitely generated left
D = A(01,...,0n)-module. If dimp (M) =n then M is called a holonomic left D-module.

Example 3.7. The time-varying ODE defined by ¢ty — y = 0 defines the holonomic left D =
A1(C)-module M = D/D (t0 — 1). Indeed, the characteristic variety char(M) of M is defined by
the ideal I(M) = (tx) of the commutative polynomial ring gr(D) = C[t, x], which implies that
charp(M) = {(t, 0) |t € C} U {(0, x) | x € C} is a 1-dimensional affine algebraic variety of C2,
ie., dimp(M) = 1.

Example 3.8. If D = A(0), where A = k[t], k[t], where k is a field of characteristic 0, or k{¢},
where k = R or C, then one can prove that a left (resp., right) D-module M is holonomic iff M is
a torsion left (resp., right) D-module. For more details, see [10, 11, 13, 44, 66].

Proposition 3.2 ([10]). Any holonomic left D = A{(d1, ..., 0n)-module M is cyclic, i.e., M can be
generated by one element as a left D-module. More precisely, if {y;}j=1,..p is a set of generators
of the holonomic left D-module M, then there exist da,...,d, € D such that M is generated by
2=y +days + ... +dpyp. Similar results hold for holonomic right D-module.

Let us state two difficult but important results of algebraic analysis.

Proposition 3.3 ([10, 11, 13]). If M is a finitely generated left D = A{01, ..., 0y)-module, then:
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(1) dimp(exts, (M, D)) < dim(D) — 1.
(2) dimp (ext’?™) (M, D)) = dim(D) — jp(M).
Theorem 3.2 ([10, 11, 13]). Let M a finitely generated left D = A(0, ..., On)-module.
(1) ext],(ext (M, D), D) =0 for j < i. , ‘
(2) If ext’y(ext’, (M, D), D) is non-zero, then dimp (ext’,(ext’, (M, D), D)) = dim(D) — i.
(3) jp(ext}?™ (M, D)) = jp(M).

In particular, 3 of Theorem 3.2 asserts that the first non-zero ext’, (M, D)’s of a left D-module
M, i.e., ext)y (M)(M , D), satisfies the following conditions:

ext? (ext?? M (M, D), D) =0, j=0,...,jp(M)—1,
ext?? M) (extI? ™M) (M1, D), D) # 0.
Let us introduce the concept of a pure module which will play an important role in Section 4.

Definition 3.7. A finitely generated left D-module M is said to be pure or jp(M)-pureif jp(N) =
Jjp(M) for all non-zero left D-submodules N of M.

Remark 3.2. If M is a pure left D-module, then the cyclic left D-module Dm = D /annp (M)
generated by 0 # m € M satisfies jp(Dm) = jp(M). Moreover, if N is a left D-submodule of
a jp(M)-pure left D-module M, then N is also a jp(M)-pure left D-module since every left D-
submodule of N is a left D-submodule of M and jp(N) = jp(M). Finally, if M is a jp(M)-pure
left D-module, then using (153), every left D-submodule of M has dimension dim(D) — jp(M).

Theorem 3.3 ([10, 11]). If M is a non-zero finitely generated left D-module, then we have:
(1) The left D-module extiD(ext})(M,D),D) is pure with jp(exts (ext’,(M, D), D)) = i.
(2) M is pure iff ext’y(ext’r, (M, D), D) =0 for i # jp(M).
(3) M is pure iff M is a left D-submodule of extjDD(M) (extjDD(M)(M,D),D).

Example 3.9. According to 3 of Theorem 3.3, M is O0-pure iff M is a left D-submodule of the left
D-module homp (homp (M, D), D). Using 3 of Theorem 3.1, we obtain that M is 0-pure iff M is
a torsion-free left D-module. In particular, the left D-module M /¢(M) is either zero or a 0-pure
left D-module.

Example 3.10. If the left D-module M = D*?P/(D'*P R) is finitely presented by a full row
rank square matrix R € DP*? and R ¢ GL,(D), ie.,, M # 0, then M is a torsion left D-
module, i.e., M = t(M). Since N = D?/(RDP) = exth(M, D), then using 1 of Theorem 3.1,
M = t(M) = exth(extl,(M,D),D) # 0. According to Theorems 3.1 and 3.2, dimp(M) =
dimp (ext} (exth (M, D), D)) = dim(D) — 1 and M is a l-pure left D-module. This result was
conjectured by Janet in 1921 (“Etant donné un systéme linéaire comprenant autant d’équations
que de fonctions inconnues ; si ces équations sont supposées indépendantes, peut-on affirmer que
la solution, ou bien est entiérement déterminée, ou bien dépend de fonctions arbitraires de n — 1
variables ?”) and proved by Johnson in 1978 ([41]). For more details, see [89, 95].

4. PURITY FILTRATION OF DIFFERENTIAL MODULES

“Les mathématiciens “appliqués” considerent parfois leurs collegues “purs” comme
des artistes élaborant des constructions théoriques sans doute jolies pour ceux
qui les comprennent, mais totalement inutiles. Et méme chez les mathémati-
ciens dits “purs” cette dichotomie se perpétue. Les analystes sont persuadés
que lintégrale de Lebesgue, c’est du concret, et laissent le maniement des di-
agrammes aux fanatiques de l’algebre homologique. D’ailleurs Siegel disait en
parlant de Grothendieck que ce n’est pas en répétant “Om Om” que 'on démon-
trera des théorémes sérieux (jeu de mots entre le “Om” tantrique et le “Hom” des
algébristes).”

P. Schapira, Défense du conceptuel, Le Monde, 26/04/96.
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Based on the concept of purity filtration of the left D-module M = D'*? /(D4 R) ([10, 11]),
the purpose of this section is to generalize Theorem 2.1. We show that every linear PD system in
n independent variables is equivalent to a linear PD system defined by an upper block-triangular
matrix P of PD operators: each diagonal block of P is respectively formed by the elements of
the left D-module M of dim(D) — j, for j = 0,...,n. The linear PD system R7n = 0 can then
be integrated in cascade by successively solving (inhomogeneous) linear i-dimensional PD linear
systems to get a Monge parametrization of its solution space kerz(R.).

The existence of the purity filtration of the left D-module M is proved by means of spectral
sequences, i.e., by means of powerful but rather involved homological algebra techniques (see, e.g.,
[10, 11, 85]). The spectral sequences computing the purity filtration of differential modules have
recently been implemented in the GAP4 package homalg by Barakat ([5]), which is an important
“tour de force” for symbolic computation. However, in this section, we shall show how the pu-
rity filtration of the left D-module M can be explicitly characterized and computed by simply
generalizing the idea developed in Section 3 (particularly the characterization of ¢(M) in terms
exth (N, D) (see 1 of Theorem 3.1)) ([97, 98]). The corresponding results are implemented in the
package PURITYFILTRATION ([97]). Finally, the techniques developed here can be used to compute
the closed-form solutions (if they exist) of linear PD systems which cannot be solved by means of
the classical computer algebra systems such as Maple ([97]).

In this section, we shall detail the main results concerning the purity filtration since they
illustrate the different techniques and results developed in the previous sections and in Chapter 1.

Let D be a noetherian domain and M a left D-module defined by the following beginning of a
finite free resolution:

0 «— M‘LD1XPO (-R;Dlxpl (ﬁDlxpz (-RlDIng'
Then, the defects of exactness of the following complex of right D-modules
(154) 0 — pro By, ppi B2, pee T, pyps
are defined by:
ext% (M, D) = kerp(R3.)/(Rg DPY),
(155) extl, (M, D) = kerp(Ry.)/(Ry DP0.),
ext%(M, D) = kerD(Rl.).
To characterize the exti) (M,D)’s for all 0 < i < 2, we need to study kerp(R;.). For 1 <k < 3,

considering the beginning of a finite free resolution of kerp(Rg.), we obtain the following long
exact sequence of right D-modules

Rog- Rig. Rog. Rk—1)k-

(156) DP(-1)k DPok Pk DPk—1)k B DPkk Fkk Nig — 0,

with, for a fixed k from 1 to 3, the notations Ryx = Rg, pkk = Pks P(k—1)k = Pk—1 and:
Nk = COkeI‘D(Rkk.) = Dpkk/(Rkk Dp(k_l)k).

The choice of these notations is natural if we consider the 3 long exact sequences (156) for all
k =1,2,3 on the same page, where (156) is written at the level k, i.e.:

Dp-13 Loz DPos Bas Dpis s P23 Rs3 Dpss 33, N33 — 0,
DP-12 Loz, DPoz2 Rz DP12 RiC2IN Dp22 22 Noy — 0,
B Ro1. Ri K11
ppP-11 Po1 P11
— D D — N — 0.

Then, the free right D-module DPi* is at position (j, k) and Rjj, arrives at DPs* with j < k, which
is a good mnemonic device.

Since (154) is a complex, we get Ry R(y—1)(—1) = Bx Rp—1 = 0 for all £ = 2,3, and thus:
Rj—1y(k—1) DP*=20=0 Ckerp(Ryk.) = R—1)p DP*-2*k.
Therefore, for k = 1,2, 3, there exists a matrix Fij_g), € DP*-2#*Pt=2¢-1 such that:

(157) Rx—1yk-1) = B—1)x Flr—2)k-
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Then, using (157), we get Rx—1)k Flr—2)k Re—2)(k—1) = Rk—1)(h—1) Be—2)(k—1) = 0, i.e.,
V=23, Fup_ok Ru—2)—1) D> Ckerp(Rp—1)k-) = Rp—2)p DV =",
and thus, there exists a matrix Fy_g), € DP*-9r*Pt=3¢-1 guch that:
(158) Flo—2)k B—2)(k—1) = Bk—2)k Flre—3)k-
Similarly, for k = 3, there exists F_13 € DP-13%P-12 gych that:
Fos Ro2 = Ros F_13.

Therefore, we obtain the following commutative diagram of right D-modules

(159)
DP-13 E(E_> DPo3 Elﬁ_) DP13 E?ﬁ_> DP23 EC’E_, Dpss F83, N33 — 0
T F_13. T Fos. T Fis. H
DP-12 Roz. DPo2 fiz. DP12 fiz2. DP22 22 N- 0
I I Eam— —_— 22 —
T F_ia. 1 Fos. I
Dp-11 Ro1. Dpo1 Ri1. Dpu F11 N 0
—_— —_— E— 11 b
Koo
0 e DPoo — NOO — O,
whose horizontal sequences are exact and where:
~ Plx
(160) Roo =0, Nog=DP*°/0=DP°  pog=po1, piz =011, P23 = P2a-

If we denote by Njj, the right D-module defined by
Njk = cokerD(Rjk.) = Dij/(Rjk Dp(j_l)k),

then, using (159), we obtain the following commutative diagram

Dp-13 RICEIN Dpos RISEIN Dpis fas, Nz — 0
T F_1a. T Fos. T Fua.
(161) Dp-12 Bo2- Dpos B2 ppe 2. N, —s 0
TF_12. TFO2- ||
Ro1- Ryq. K11
pDpP-11 b LN DPo1 hi LN P11 BALLIN Nll RN 0,

whose horizontal sequences are exact. Moreover, we have the following short exact sequences:

0 — Nig — DP? — Nyz — 0,

0 — Naz — DP3? — N33 — 0,

(162)
0 — Nig — DP?2 — Ny — 0,

0—>N01 — DP11 —>N11 — 0.
Now, using (155), we obtain the following characterization of right D-modules ext’, (M, D)’s:

ext%(M,D) = kel"D(Rgg.)/imD(RQQ,) = (R23 DP13)/(R22 l)plg)7
(163) eXtID(M,D) = keI‘D(RQQ.)/imD(RH,) = (R12 DPOZ)/(Rll ‘me)7
eXt%(MaD) = kerD(Rll-)/imD(Roo.) = Roy DP-11.

Then, using (160), (163) yields the following three short exact sequences of right D-modules:

0 — exth (M, D) — Noy = DP?* [(Ryy DP*?) — Nag = DP* /(Rg3 DP'3) — 0,
(164) 0— ext}:,(M,D) — Ny = Dp12/(R11 me) —— Njg = DP12/(R12 Dpoz) —0,
0 — ext® (M, D) — Nog = Do — No; = DPo1 /(Rgy DPo) — 0.
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Applying the contravariant exact functor homp(-, D) to the three short exact sequences of
(164) and using Theorem 2.1, we obtain the following long exact sequences of left D-modules:

0 — ext)(Nog, D) — exth(Nap, D) — ext)(exth (M, D), D)
o ! —  exth(Nag, D) — exth(exth (M, D), D)
—  exth(Nag, D) —  ext?(exth (M, D), D)

!
s
UL—P

(
(
(

— exth(Ny, D) —  exth(exth(M, D), D)
(N11,D) — exth(extl, (M, D), D)
(
(

0 — ext)(No1,D) — exth(Noo,D) — ext(exth (M, D), D)
L> extD(N()l,D) e eXtE(Noo,D).
);

If D is an Auslander regular ring (see Remark 3.1), then we have ext’, (ext? (M, D), D) for all

0 <4 < j. In particular, we have:
ext} (ext (M, D), D) =0, ext)(ext?,(M,D),D) =0, ext}(exty(M,D),D).

See also Proposition 2.1 and Corollary 3.1. Moreover, exth(Ngg, D) is reduced to 0 since Nog =
DPoo ig a free, and thus a projective right D-module (see Proposition 2.2). Therefore, the above
three long exact sequences yield the following exact sequences of left D-modules:

(165)

0 — exth(Na3, D) — exth(Nag, D) — ext%(ext?, (M, D), D),

(
0 — exth(Ni2,D) — exth(Ni,D) — exth(e tD(M D), D),

0 — exth(Noi,D) — exth(Noo, D) — exth(exth(M,D),D) — exth(Noi, D) — 0.

Applying Proposition 2.3 to the short exact sequences of (162), we obtain:
ext, (N33, D) = exth(Naz, D) & ext], (N3, D),
ext)(Naz, D) & extp,(Nia, D),
ext? (N1, D) = exth(Noi, D).

Since N1; = DP1/(Ryy DPo1) is the Auslander transpose of M = D*Por/(D1*Pu1 Ri1) 1 of
Theorem 3.1 implies t(M) = exth(N11, D). Moreover, a right D-module analogue of Theorem 1.1
gives ext) (No1, D) = kerp(.Ro1) and (42) implies M/t(M) = D**Poo /kerpp(.Ro1).

Therefore, (165) yields the following two exact sequences of left D-modules:

9

7

0 — exth(Nsz, D) 22 extdy(Nog, D) 22 ext?(ext}(M,D),D) — coker a2 —0
0 — ext? (N, D) 2L t(M) 2L exth(exth(M,D),D) — coker 11 —0
0— ext)(Noy,, D) 1% D1 xPpoo 29, ext® (ext) (M, D), D) — ext?(Ny,D) — 0.

Combining the above long exact sequences with (26), i.e
0 — t(M) — M = ext) (exth (M, D), D) — exth(Nyy, D) — 0,
(see 3 of Theorem 3.1), we obtain the following important exact diagram of left D-modules

0
1
0 — ext}(Nss, D) 22 ext? (N, D) — cokerysy — 0
l'Y21
(166) 0 — t(M) M B MM) —0
1

coker va1

!
0

)
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where:

coker 32 = im yg C ext}, (ext} (M, D), D),
(167) coker v2; = im vy C exth(extl, (M, D), D),

cokeri = M /t(M) = coker v19 = im g9 C ext} (ext?, (M, D), D).
Thus, using Remark 3.2, coker 735 is a 2-pure left D-module, cokerys; is a 1-pure left D-module
and M/t(M) is a O-pure left D-module (see Example 3.9). Moreover, using 1 of Proposition 3.3
and 2 of Theorem 3.2, we obtain:

dimp (ext?, (N33, D)) < dim(D) — 3,

(168) dimp (coker y32) = dim(D) — 2,
dim p (coker v91) = dim(D) — 1,
dimp(M/t(M)) = dim(D).
If the matrix R3 has full row rank, i.e., kerp(.R3) = 0, then N33 = ext (M, D), and thus
ext?) (N33, D) = ext}, (ext}, (M, D), D) is a 3-pure left D-module and:

(169) dimp (ext? (N33, D)) = dim(D) — 3.
Then, we obtain the following filtration {M,};=_1,.. 3 of M defined by:
(170)

M_1 =0C My = (v21 0v32) (ext?,(Ns3, D)) C My = v21(ext?,(Naz, D)) € My = t(M) C M3 = M.

We note that My/M_; = ext?, (extd, (M, D), D) is a 3-pure left D-module, M; /My = coker 735 is
a 2-pure left D-module, My/M; = cokerys; is a 1-pure left D-module and M3/Ms = M /t(M) is

a O-pure left D-module, i.e., the successive quotients of the elements of {M;};,=_1 .3 are all pure
left D-modules. This ﬁltration is called purity filtration of M.

The purpose of the rest of the section is to apply Theorem 1.3 on Baer’s extensions to the
short exact sequences of (166) to find a presentation matrix of the left D-module M defined by
a block-diagonal matrix P, where the block-diagonal matrices of P finitely present the (pure) left
D-modules M/t(M), coker ya1, coker v32 and ext?,(Ns3z, D).

Let us now precisely describe the left D-homomorphisms 32 and 791 and the left D-modules
coker 32 and coker y21. Applying the contravariant left exact functor homp( -, D) to the commu-
tative exact diagram (161), we obtain the following commutative diagram:

Ry3

DixXp-13 (Rﬁ D1Xxpos oHs D1xpis
i F_13 | Fos | Fus
(]_71) D1xXp-12 & D1xPoz & D1xpiz
| .Foie b Foo ”
D1xp-11 oo D1xpo1 JRzicty D1xpi

The defect of exactness of the first (resp., second, third) horizontal complex is ext}, (N3, D)
(resp., exth (Nia, D), extl,(Ny1, D)). Let us introduce the following canonical projections:

ps :kerp(.Roz) — kerp(.Roz)/(D' 7' Ry3) = extpp (N1, D) = ext (N3, D),
pa 1kerp(.Roa) — kerp(.Roz)/(DY*P*2 Ryy) = ext},(Ny2, D) = ext? (Nag, D),
p1 :kerp(.Ro1) — kerp(.Ro1)/(D"P** Ry1) & extp(N11, D) 2 t(M).

The commutative diagram (171) induces the following two left D-homomorphisms:

392 ! kerD(.Rog)/(D1Xp13 ng) — 1{61‘[)(.}202)/(D1Xm2 ng)

(172) pg()\) — P2(>\ FO3);

21 - keI‘D(.]%02)/(D1><pl2 R12) — kerD(.Rm)/(DlXp“ Rll)

(173) p2(p) ——  p1(pFoz).

Chases in the commutative diagram (171) show that ps and ps are well-defined (see, e.g., [110]).
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Let us now find a finite presentation of the left D-modules ext (N33, D), ext (Nag, D) and
exth (N1, D). Let R}, € DPo**Pix be a matrix such that kerp(.Rox) = DVPix R, for k =1,2,3.
Moreover, since D'*P1+ Ry, € D'Pix R!, | there exists a matrix R}, € DP***Pix such that:

(174) Rix = R}, Ry

If R, € DP1*P2r is such that kerp (. ) = D1%Pax R}, then using Proposition 3.1, we obtain
(175)
Yo L & DU /(DV0ss Rl 4 DY Y,) — (V<0 Ry, (DY Ryy) 2 exth (N, D),

PN — p(ARY,),
where pj, : D*Pic — [, is the canonical projection onto Ly.

Since Rllk FOk RO(k—l) = Rllk ROk F—lk = O7 then
DYk (RYy, For) C kerp(Ro—1)) = D1 Ry,

and thus there exists a matrix Fj, € DPisXPik-1) such that:

(176) Vk=2,3, Ry For=Fiy Ry 1)
Similarly, we can prove that:
(177) Vk =23, Ry, Fi, = Fy Ryg_y).
Therefore, we obtain the following commutative exact diagram of left D-modules:
D1Xp-13 JRLICER D1%Ppos <R_/13 D1xpis <R_/23 D1xphs
| Foas | Fos LAy L Fi
(178) Dlxp-12 Roz  pixpe, 2 pipl, M2 pixel,
J, F_q2 l -Fo2 l -F1/2 l -F2;2
Dlxp-11 Bo pixpo ity D1xpiy ity D1xpo;

Remark 4.1. If Ro,, =0, i.e., kerp(R1x.) = 0, then applying the functor homp( -, D) to the short

exact sequence 0 — DPok Hk, poa By Ny, — 0, we obtain the following complex:

0 D1xpok Q'le D1xpik
— Nl 3 /o VA /o
Hence, we get kerp(.Rox) = D' *Po%, ie., R}, = Ip,., Pir = por and R}, = 0.

Let us now deduce two identities which will be useful in what follows. Combining (157) for
k =2 with (174) for k = 1 and k = 2 and with (176) for k = 2, we obtain

11 Ry = Ri1 = Ria Foa = R, Ry, Foo = R, iy Ry,
and thus (R}, — R, F{3) R}, =0, ie., DlXp“/(R’l'1 — Ry, Fl,) Ckerp(.R};) = DP21 Rl which
proves the existence of a matrix X5 € DP11*P21 guch that:
(179) 1 = Ry Fly + X12 Ry,
Combining (158) for k = 3 with (174) for k = 2 and k = 3 and with (176) for k = 3, we obtain
Fi3 (Rfy Ryy) = Fiz Rz = Rug Foz = (R Ry3) Fos = B3 Fi3 Ry,
and thus (Fy3 Ry, — R3 F{3) R}y = 0, i.e., D1*P13 (F1/3 R/, — Ry Fl,) C kerp(.R}y) = DY*P22 R},
which proves the existence of a matrix Xop € DP13XP22 guch that:
(180) Fis /1/2 - /1/3 ng = X2 Rlzz~
Let us recall that:

Ly = DV% /(DY Ry + DYPor Ry, ) 2 ext, (N11, D) = H(M),
(181) Ly = D712 /(D2 Ry, + DY*P22 R} = ext?)(Nao, D),

Ls = DY¥Phs /(DY¥p1s RN 4 D1%P2s RL,) 2 ext? (Ngs, D).
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Then, we can define the left D-homomorphism @z, = Xgl o a0 X3 : Ly — Lo, where the x;’s
are defined by (175) and «ss is defined by (172). Using (176) for k = 3, we have

as(ps(V) = (xa ' 0 as2)(ps(ARiz)) = X3 ' (p2(A Rz Fus)) = X3 (p2(A Fi3 Rip)) = p3 (A Fi),

for all A € D'*P1s. Moreover, using (180) and (177) for k = 3, we get

13 [ Fi3 Ry — X3 RY, _ Fiz —Xo» s
53 e Fis Ry, 0 Fy by )

which yields the following commutative exact diagram:

D1><(P13+P/23) '(R/l/g Rlzig 5 D1><P/13 P L
. 5, s —0
Fi3  —Xo2
. F/ Qs
l ( 0 F2'3 ) l 13 l 32
. R//T R/T T /
DX (p12+phs) (Ry3 22 D1xPia P2 Lo 0.

Up to isomorphism, the short exact sequence
0— ext?]j(N33, D) MEEN ext%(Ngg,D) — coker y35 — 0
becomes the following one:
(182) 0 — L3 222 L, %2, cokerasy — 0.
Using 3 of Proposition 4.1, the left D-module coker @3 is defined by:
coker gy = D'*Piz /(D18 Fl, 4 DYPiz R 4 DX R Y.
Then, we can easily check that the following commutative exact diagram

0
’
D1xp1z Ry + D1XPas R,
DX (p13+p12+phs) D1xPi2 72, cokerazs — 0
L e L b H

« (% _
0— Ly =22, Lo 2, cokeragy; — 0,

!
0

(FE R RAT

holds, where 1)y : D1*(Pis+tP12+P22) _, L4 is the left D-homomorphism defined by:
Plg(ez) i:]-a"'aplliia
(D) (62) = . / / /
0, t=piz+1,...,p13+ P12+ Pao-
Applying Theorem 1.3 to the short exact sequence (182) with the matrix

L
plS ’ ’ ) ’
+p12+phy) X
A 0 € DPiatP124p22)xPig

0

(see Corollary 1.1), we obtain the following characterization of the left D-module Lo in terms of
the presentations of the left D-modules L3 = ext?,(N33, D) and coker @zs.

Proposition 4.1 ([97, 98]). Let D be an Auslander regular ring (e.g., D = A{(01,...,0n), where A
is either a field k, k[x1,...,x,], k(x1,...,2,) or k[z1,...,x,], where k is a field of characteristic
0, or k{z1,...,z,}, where k =R or C). With the previous notations, let us consider the following
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two matrices

Fiy _Ip’la
/7 Rll/Q 0
Qs = < /12 ) € DWP2tp)xpis - p, = - 0 € D(PratP12H+Pao D15 +p25) X (P12 +P13)
22 0 /1/3
0 2

and the following two finitely presented left D-modules:

Ly = DV /(DV<Piz R + D0 Riy),
E, = DlX(p'12+p’13)/(DlX(p’13+p12+p’22+p13+p’23) Py).

If 05 : DY Patpis) — By s the canonical projection, then we have Ey = Lo, with the following
left D-isomorphisms:
¢2: Ly — E ¢3! By — Ly
) — elu(ly, 0), o) — AL FEHT).
Now, applying the functor homp(-,F) to the isomorphism Es = Lo and using Theorem 1.1,

we obtain kerz(Q2.) = kerz(P,.). More precisely, using (183), the following corollary of Proposi-
tion 4.1 holds.

(183)

Corollary 4.1 ([97, 98]). If F is a left D-module, then we have ker 7(Q2.) = kerz(Pz.), i.e.,

/
F13T2 — T3 = O,

”U:() R/1’27'2=0,
{R’m _o, @ | Bem=0
22V =Y R/1/3T3:0,
R/23T3:0,

and the following invertible transformations:

o: ker}-(Pg.) — ker}-(Qg.) 51 ker}-(Qg.) — ker}-(Pg.)

(184) T2 T2 Ip/12
— U =Ty, v = , V.
T3 T3 F13

Now, we can introduce the left D-homomorphism @a; = 7' 0 aa1 0 X2 : Ly — Ly, where the
xi’s are defined by (175) and a9 is defined by (173). Then, using (176) for k = 2, we get

21 (py(1) = (x1 ' © azn)(pa(p Riz)) = X1 (p1( Rl Fo2)) = X1 (p1 (1 FYy RYy)) = ph (1 F),
for all y € D'*Pi2, Moreover, using (179) and (177) for k = 2, we have

/1/2 r /1/1 — X2 Rl21 _ Ipn —Xi2 Illl
/ F12 - / / - / / ’
22 F22 R21 0 F22 21

which yields the following commutative exact diagram:

X R//T R/T T ’
D1x(p12+phy) M DL1xDis EEN Lo —0
Iy,  —Xa2 _
L. ( o Pl N | @
. R//T R/T T ’
DX (@11+0%1) AR M) puah, AL 0 .

Up to isomorphism, the short exact sequence
0 — ext (Nag, D) 225 t(M) — cokerya; — 0,

becomes the following one

(185) 0— Ly 225 L, 24 coker@a, — 0,
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where, using 2 of Proposition 4.1, the left D-module coker ap; is defined by:
cokeraiy; = D'Pi1 /(D1 Fl, 4 DYP1 RY 4 DVPa R ).

Using the left D-isomorphism ¢5 ' : Ey — Lo defined by (183), the short exact sequence (185)
yields the following short exact sequence

— 1
Q2109 0 _
0 — Fy ——2— L =5 cokeran; — 0,

where the left D-homomorphism @) o ¢ L. By — L, is defined by:

’ ’ I / Fl
Vv e DXWPitris) (g -1 - ! Pla _ 12 .
v (@21 00, )(02(v)) =021 | P | v F P\ E R

Now, we can check that the following commutative exact diagram
0

1x ’
1x 11 Py /
D>*P Ry + D 7P Ry,

. F/T R//T RIT T
D1x(P12+p11+ps;) (Fi2 1 21 D1xPi L cokeray — 0
L Lot ”
— -1
Q2109 0 —
0 — Fy 2, Ly —L  cokeranp; — 0,
0

where ¢, : DY*®P12+putpa) . B, is the left D-homomorphism defined by

F), j=1,....p,
wl(fj):{ o(fi F), j Pho

Oa j:p/12+17"'ap/12+p11 +pl213
where {f;}j=1,.. p\,+pi+p,, 1S the standard basis of DX (Pratpuitpa)
Ip/12 0 ’ ’ ’ ’
F — 0 O c D(P12+p11+:021)><(P12+P13)7
0 0

and o7 : D'XP11 — coker @ap is the canonical projection onto coker ;.

If we apply Theorem 1.3 to the short exact sequence (185) with the matrix A = F' (see Corol-
lary 1.1), then we obtain the following proposition.

Proposition 4.2 ([97, 98]). With the hypotheses of Proposition 4.1 and the previous notations,
let us consider the following two matrices

R?l’l ’ ’
Q1= , c D(P11+P21)><P11,

21
/
F12 _Ip’12 O
/!
/
0 F/ _I / ’ / / / / / / /
P = 13 Pis | ¢ p@iatpii+pa+Pi3+P124+Phy +P13+P23) X (P11 +P12+P13)
)
0 T 0
0 ho 0
0 0 13
0 0 b3

and the following two finitely presented left D-modules:

’ /
Ly = DlXpu/(Dlx(i"ll‘H”zl) Q1),
Ey = DY atpiotplis) /( DX (Pla P tpa1+pis tp12+P20 P15 +023) Py,
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If 01 : DY+ pis) s By s the canonical projection, then we have Ey = Ly, with the
following left D-isomorphisms:

¢ B — Ly

(186) ¢1 . L1 — E1 Ip/u
nwv) — aly, 0 0), a(A) — P A Fiy
Fiz Fiy

Finally, we have L1 = t(M), with the following left D-isomorphisms:

9: Ly — (M) 9L it(M) — Ly
pw) — w(vRi), m(vRy) — pi(v).

Applying the functor homp(-,F) to the isomorphism E; = L; and using Theorem 1.1, we
obtain kerz(Q1.) = kerz(P;.). More precisely, using (186), we get the following corollary.

Corollary 4.2 ([97, 98]). If F is a left D-module, then we have kerz(Q1.) = kerx(Py.), i.e.,

Flom — 12 =0,
/1/1 1 =0,
Ry 1 =0,
{ 10=0, - Flym — 13 =0,
/21 0=0, Rl1/2 T2 =0,
Ry =0,
RII/S T3 = 0,
RIQ?) T3 = 07
and the following invertible transformations:
(187)
w: kerr(P.) — kerz(Qq.) wtikers(Qr.) — kerg(Pp.)
T1 T1 Ip/12
To — 0=, 0 — T | = F, 6.
T3 T3 Pq3fq2

Using Proposition 4.2, let ¥ o ¢7 ' : By — t(M) be the left D-isomorphism defined by:

/
11
Woprer(\)=m | A | FyRy
Fiy iy Ry

Then, the short exact sequence 0 — t(M) MM /t(M) — 0 yields the following one:

iovo¢ !
LoV NP M (M) — 0.

(188) 0— E4

Now, we can easily check that the following commutative exact diagram holds

Dixp1 i, Dlxpor ™, M/t(M) —0
L L= |

ioYod !
0— B TN M A MM) —o,

where the left D-homomorphism ¢ : DY — Ey is defined by ¢(gx) = 01(gx (Iy, 0 0)),and

"""""

sequence (188) with A = (I, 0 0) € DP1x(P1tPi2+p1s) (see Corollary 1.1) and we obtain the
following main theorem.
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Theorem 4.1 ([97, 98]). With the hypotheses of Proposition 4.1 and the previous notations, let
us consider the following matriz

R} —Ip, 0 0
0 Fly =1y, 0
0 ‘ 0 0
0 ' 0 0

P= 0 0 Fl, _Ip/13 c D(:D'u-i-p/lg-l-pu+p/21+p§3+p12+p’22+p13+p§3)><(po1+p’11+p’12+p’13)’

0 0 o 0
0 0 ho 0
0 0 0 s
0 0 0 ha

and the following two finitely presented left D-modules:

M = D1><P01/(D1><Z711 Ry1),
E = Dl><(po1+p'11+p'12+p'13)/(D1X(p’11+p’12+p11+p'21+p'13+p12+p'22+p13+p/23) P).

If o : DYortPu+ptpis) — F s the canonical projection, then we have E = M, with the
following left D-isomorphisms:
¢o:E — M
I

Po1
¢o:M — FE /
189
U9 20— o 0 0 ) o — w |||
12 +411
Fly Fly By

Applying the functor homp( -, F) to the isomorphism E = M and using Theorem 1.1, we obtain
kerz(R11.) & kerz(P.). More precisely, using (189), we get the following corollary.

Corollary 4.3 ([97, 98]). If F is a left D-module, then we have kerz(R1;1.) = kerz(P.), i.e.,

n¢—mn=0,
Fly,mn — 1 =0,
Rl =0,
R,y T =0,
(190) Run=0 < Fi3m—13=0,
/1/2 T2 =0,
Ry =0,
/1/3 T3 =0,
Ris 13 =0,
and the following invertible transformations:
(191)
v:kerg(P) — kerg(Ri1.) v 1ikerg(Ry1.) — kerg(P.)
¢ ¢ Iy,
71 Gl 11
T2 — =6 T 2 B Fi, Ry "
73 73 Fis Fiy Ry
Remark 4.2. If we set
F1,2 F1/3 1/
So = /117 S1= 11 ; S2= 12 ) S3< ,13>,
/ / 23
21 22

then using (168), we get:
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(1) kerz(S3.) = homp(L3, F) = homp(ext?,(Na3, D), F) is either 0 or has dimension less or
equal to dim(D) — 3,

(2) kerz(Sz.) & homp(coker @ize, F) = homp(coker 32, F) has dimension dim(D) — 2 when-
ever it is non-trivial,

(3) kerx(S1.) = homp(coker @1, F) = homp/(coker y21, F) has dimension dim(D) — 1 when-
ever it is non-trivial,

(4) kerz(Sp.) 2 homp(M/t(M),F) has dimension dim(D) whenever it is non-trivial.

If R3 has full row rank, i.e., kerp(.R3) = 0, then N33 = ext?,(N33, D) and thus ext?, (N33, D) &
ext?) (ext? (M, D), D), and kerz(Ss.) is either 0 or has dim(D) — 3 (see (169)).

The linear system kerz(Rj1.) can be obtained by first integrating the linear system kerz(P.),
i.e., by integrating in cascade the linear system kerz(.Ss.) of dimension less or equal to dim(D) — 3,
then the inhomogeneous linear systems of dimension respectively dim(D) — 2, dim(D) — 1 and
dim(D). If F is an injective left D-module, then kerz(R};.) = Ro1 FP-''.

Using the regular patterns of the matrix P and (189), we can easily generalize Theorem 4.1,
Corollary 4.3 and Remark 4.3 when kerp(.R3) # 0, i.e., for a finitely presented left D-module
M = D¥po1 /(DY*P11 Ry1) defined by a longer finite free resolution of the form:

R4 R

00— M <& Dlxpo JRich Dxp1 iz Dxp2 iz DLxps st plXpm

If kerp (\R,,) = 0, then the corresponding generalization defines a purity filtration of M. For more
results, details and examples on Baer’s extensions and purity filtrations, see [100].

Finally, even if the size of the matrix P is larger than the one of Ry, P is more suitable for a
fine study of the module properties of the left D-module M = E than Rj;, for the study of the
structural properties of the linear system kerx(R11.) = kerz(P.) as well as for computing closed-
form solutions of kerz(Ry1.) (if they exist). We refer the reader to [97] for examples of linear PD
systems kerz(R11.) which cannot be integrated by means of computer algebra systems such as
Maple contrary to their equivalent forms kerz(P.). Let us give an example ([86]).

Example 4.1. Let us consider the D = Q[0;, 0, d3]-module M = D'**/(D1*¢ R) finitely pre-
sented by the following matrix:

0 201 03—20,—-01 -1
0 (93—2(91 282—381 1

a_| % 6o 28,500 1
0 -0 -0 0
9 0 —0y -0 0
o -0 —20, 0

Using Algorithm 2.1, we obtain that the D-module M admits the following finite free resolution

R R R
O&M(LD1X4<—D1X6;D1X4&SD<—O7

where:
20, 0o —02 —03 03 0
R — 20 O —201+0y —03 801 — 03 —805 +203
T 0o a-—0 01-0 05 —891+05 88,—05 |’
0 0 0 o -0 0o

R3 = (81 82 — 82 63)
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Using the notations R1; = R, Re2 = R and R33 = Rj3, the commutative diagram (159) becomes
the following commutative diagram

Ris. Ros. Rss.
0 D 13 D4 23 D4 33 D K33 NSS 0
T Fos. 1 Fis. ||
Ri2. Ras.
0 — D? —=z, D¢ =2, DY Ny — 0
1 Foa. ||
Ro1 - 4 Ry1. 6 K11
00— D — D — D — Ny — 0
0 — D4 ﬂ NOO — 0,

whose horizontal sequences are exact and with the following notations:

1 0 0
1 -1 40,—-05 0 —03 0 0 0
Roy = -1 Ry — 1 40,—03 05 Rys = 0 0 1 0
1 ’ 0 01 — O 0 ’ 0 0y -1 03 ’
O — 202+ 03 0 01—0 O 0 0 0 0
0 0 01
O
_a, 0 —20; —01—20,+03 -1
Ra=| | Fe=|0 -1 1 0 |,
o, 1 —1 -2
0 0 0 1 -1 0
2 1 -1 0 0 0
Fis = 201 0 201+, —03 801—05 —80,+205 |’ Fos=(0 0 1),
0 0 0 0 0 1

Ro3 = 0 and Rpz = 0. Using Remark 4.1 with pps = 1 and pp2 = 3, we obtain Rj; =1, Rj, = I3,
R}s =0 and R}; = 0. The commutative diagram (178) becomes the following one

0 «— D <R—/M D «— 0
| Fos | i,
0 pixs M opis
b Foz L F,
p B pixa Ty D3,
with the following notations:
1 0 -1 0 0 —20, 1
=101 1 0 |, Flo=Fs, Fo=|0 -1 o0
0 0 Oh—202+05 -1 1 -1 0
Moreover, using (174), we have R{; = Ry3, RY5 = R12 and:
0 —20, 1
0 —201+0;5 -1
9 03 —60, 1
BTl 0 —ai40, 0
Da -0 0
O —01 0

Since kerp(.R3) = 0, N3z = ext?, (M, D) and thus ext?,(Nas3, D) = ext?,(ext?, (M, D), D), which
shows that the filtration {M;};=_1.._ 3 of the left D-module M defined by (170) is a purity filtration
of M.
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Using (181), if N11 = DG/(Rll D4)7 N22 = D4/(R22 Dﬁ) and N33 = D/(R?,g D4), then we
obtain the finitely left D-modules:
Ly = DV3 /(D16 RI) = extl (Nyy, D) = (M),
L2 = Dlxg/(D1X6 ng) & QXtQD(]\/vQQ,l))7
L3 = D/(D1X4R13) = eXt%(Ngg,D).

Theorem 4.1 yields M & E = D> /(D*23 P) where the matrix P is defined by:

1 0 -1 0 -1 0 0 0 0 0 0
0 1 1 0 0 -1 0 0 0 0 0
0 0 01—20,+03 -1 0 0 -1 0 0 0 0
0 0 0 0 0 —20; 1 -1 0 0 0
0 0 0 0 0 -1 0 0 -1 0 0
0 0 0 0 1 -1 0 0 0 -1 0
0 0 0 0 0 —20; 1 0 0 0 0
0 0 0 0 0 -200+03 -1 0 0 0 0
0 0 0 0 05 —601 1 0 0 0 0
0 0 0 0 0 —-01+0, 0 0 0 0 0
0 0 0 0 09 -0 0 0 0 0 0
P=]020 0 0 & —04 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 -1 40,—-05 0 0
0 0 0 0 0 0 0 1 40,—-05 03 0
0 0 0 0 0 0 0 0 01—02 O 0
0 0 0 0 0 0 0 0 0—02 O 0
0 0 0 0 0 0 0 0 0 01 0
0 0 0 0 0 0 0 0 0 0 —09
0 0 0 0 0 0 0 0 0 0 —05
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0O

If F = C*(R3), then let us explicitly compute kerz(P.). We first integrate the last diagonal
block of P, i.e., the 0-dimensional linear system kerz(Ri3.):

—(927’3 = 07
—637'3:0, & 1m3=c €R
a1 73 = 07

We then integrate the inhomogeneous linear system in 72 = (721, T22, T23) and 75 formed by the
third triangular block of P, namely:

To3 — T3 = 0,
To3 = T3 = C1,

T21 = 0,

—T21+(481—83)T22:0, =

To1 + (401 — 03) Tog + 03 a3 = 0,

(31 - 52) Tog = 0,

721 = 0,
(481 — 83) Too = O,
(31 *32)7'22 =0,

We obtain 791 = 0, 700 = f1(x3 + i (z1 + x2)), where f; is an arbitrary smooth function, and
Tog = €1, where ¢; is an arbitrary constant. Then, we have to integrate the inhomogeneous linear
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system in 7 = (711, 712, T13) and 72 formed by the second triangular block of P, namely:
—201 T2+ T13 — 721 = 0,
—T12 — Ta2 = 0,

T11 — T12 — T23 = 0,

—201 T2+ 113 =0, T2 = —Tao = —fi(zs + 1 (21 + 22)),
(=201 +03) T2 — 113 =0, < 7112712+723:—f1($3+i($1 +x3)) + c1,
037111 — 601 T12 + 113 = 0, T3 =201 T2 + 71 = — 3 fi(ws + § (v1 + 32)).

(*61 + 82) T12 — 0,
O i1 — 01712 =0,

01711 — 01 T2 = 0,

The entries of 71 are 1-dimensional and not 2-dimensional. This result comes from the fact
that the matrix S; defined in Remark 4.2 admits a left-inverse over D, and thus kerz(S;.) =
homp (coker @a1, F) = homp(cokeryo1, F) = 0. Finally, we integrate the inhomogeneous linear
system in ¢ = (¢1,...,¢4) and 71 formed by the first triangular block of P, namely:

(192)

G —CG—m1=0, G —C=—filws+ 5 (@1 +22)) +c1,
G+ —12=0, & { G+ =—files+ ] (@1 +22)),
(01 =202+ 03) (3 — (s — 713 =0, (01— 200+ 03) 3 — Ca = =3 fiws + 1 (21 + 22)).

The D-module M/t(M) = DY**/(D'*3 R},) is parametrized by Ro1, i.e., M/t(M) = D4 Ry,.
Since F is an injective D-module (see Example 4.2), the linear system kerz(R};.) is parametrized
by Ro1, i.e., kerz(R};.) = Ro1 F. Since the matrix R}; admits the following right-inverse

1 0 O
01 0

X = ,
0 0 O
0 0 -1

Corollary 3.3 shows that M /t(M) is a stably free D-module, and thus M/t(M) is a free D-module
of rank 1 by the Quillen-Suslin theorem (see 2 of Theorem 1.2). Hence, Corollary 2.2 proves that
the general F-solution of (192) is defined by { = Ro1 £ + X 7, i.e.:

G=¢&— filzs+ 1 (21 +22)) + 1,

G=—¢— filzs+ 1 (21 4 22)),

G =¢,

(o= (01 =205+ 05) &+ § fi(ws + § (21 + 22)).
Finally, using the D-isomorphism ~ defined by (191), we obtain

VEEC™®R?), VfLeC®R), Ve €R,

—201m2+03m3 —202m3 — iz —ma =0,

O3m2 —201 M2 +202m3 — 301 M3 + M4 = 0, m =£&— filzs + 1 (x1 + 22)) + e,

O3m —601m2 —202m3 — 50113 —ny =0, o ne ==& — fi(zs + § (z1 + x2)),

O2mo — O11m2 + Oamz — 01 m3 =0, ns = ¢,

O2m — 01 ma — Oamz — Oz =0, M= (01 =20+ 93) €+ 5 fi(ms + § (21 + 32)),
Orm —01me—2011m3 =0,

where & (resp., f1, ¢1) is an arbitrary function of C*°(R3) (resp., C°°(R), constant).
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CHAPTER 3

Factorization, reduction and decomposition problems

Nowadays, mathematics focuses on the concept of categories (see [15, 65, 110]) which simulta-
neously study objects and homomorphisms between objects. In Chapter 1, we studied the objects
of the category pMod/ formed by finitely generated left D-modules and left D-homomorphisms
between finitely generated left D-modules, where D is a noetherian domain or a noncommutative
polynomial ring for which Buchberger’s algorithm terminates for any admissible term order. In
this chapter, we study the left D-homomorphisms between two finitely generated left D-modules,
i.e., between two finitely presented left D-modules since D is a left noetherian domain.

We shall explain that the computation of homomorphisms has many interesting applications in
mathematical systems theory. In particular, the elements of the endomorphism ring endp (M) =
homp (M, M) of a finitely presented left D-module M = D*P/(D'*4 R) naturally define the in-
ternal symmetries of the linear system kerz(R.), where F is a left D-module, namely, D-linear
transformations which send elements of kerz(R.) to elements of ker#(R.). The subgroup autp (M)
of endp (M) formed by the automorphisms of M (namely, the bijective left D-homomorphisms of
M) defines Galois-like transformations of kerz(R.). A first application of the computation of ho-
momorphisms is the computation of quadratic conservation laws of linear PD systems coming from
mathematical physics. They can be obtained in a purely algorithmic way without any knowledge
of physics. Other applications of the computation of endp (M) are the so-called factorization, re-
duction and decomposition problems largely studied in the symbolic computation literature. These
problems aim at factoring a matrix of functional operators (e.g., PD operators, OD time-delay
operators, difference operators) or at finding an equivalence matrix having a block-triangular or
block-diagonal structure. We study those problems by generalizing the eigenring approach devel-
oped for linear OD systems by Singer and others ([7, 94, 114]) to more general linear functional
(determined /underdetermined /overdetermined) systems.

1. HOMOMORPHISMS BETWEEN TWO FINITELY PRESENTED MODULES

As explained in Chapter 1, if M = D'*?/(D'*4 R) (resp., M’ = DlXp//(Dlqu R")) is a left D-
module finitely presented by R € D% (resp., R' € DY *P") and if {e;}j=1.._, (resp., {€} }r=1.. )
is the standard basis of D'*P (resp., D'™?), then {r(e;)}j=1.. p (vesp., {7’ (e})}pm1.. ) is a
family of generators of M (resp., M’). Now, f € homp(M,M’) sends the generators of M to

certain elements of M’, i.e., we have f(n(e;)) = 2;1 Pj'(e},) for j =1,...,p, where the Pj;’s
are elements of D which must satisfy the relations coming from f(0) = 0, i.e., f must send the
left D-linear relations Z?:l R;;jm(e;) =0fori=1,...,q between the generators m(e;)’s of M to

0. Hence, for i =1,...,q, by left D-linearity, we have:

’

p p p p p’ p
FAD_Rimley) | =D Rijf(mle;)) =Y Rij | Y Pu'(e) | =" [ D D_Rij P | ek | =
j=1 j=1 j=1 k=1 k=1 \j=1

and thus, ( ?:1 R;; Pj1, .. ~7Z§:1 R;j Pjy) € DY*4" R’ i.e., there exists Q;o € D'*7 such that
(Z?:l Rij le, ceey Z?:l Rij Pjp’) = Qio R.If Q = ( ?. cee Zl)T € quq/, then we obtain:

RP=QR.
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We can check that the Pj’s are not uniquely defined by f € homp (M, M’). Indeed, if we have
f(m(e;)) = Zk | Pji ™' (€),), where the Pjj’s are elements of D, then we have

/ ’

p P
ijlv"'7pa Z(ij P]k’)ﬂ-,(egc)zozﬂl Z(P]kfpjk)egc )
k=1 k=1

and thus, the row vector Pjo — Pje = (Pj1 — Pj1,...,Pjy — Pjy) belongs to D4 R je.,
there exists Z; € D'*4" gatisfying Pjo — Pje = Z; R'. Hence, we obtain P — P = Z R/, where
Z = (Z¥...Z')T € DP*9. Finally, if Ry € D" *9 is a matrix satisfying kerp(.R') = D" R}
and Z' € D" is any arbitrary matrix, then we have

RP=RP+RZR =QR +RZR =(Q+RZ)R =(Q+RZ+Z Ry) R,
which proves that we have RP = Q R’ where Q = Q + RZ + Z' R, € D1*7,
Proposition 1.1 ([19]). Let R € D9? and R' € DY *?" be two matrices, M = D'*?/(D'*4 R)

and M' = DY?" /(D4 R') two finitely presented left D-modules and the canonical projections
7 : DY — M and 7' : DYP" — M. Then, f € homp (M, M') is defined by

(193) Vm=mx(\), A€ D*?: f(m)=nx'(AP),
where P € DP*P' s such that D9 (RP) C D4 R, i.e., such that the following identity holds
(194) RP=QR,

for a certain matriz Q € Daxd", Then, we have the following commutative exact diagram:

D1xa _R> Dixp T M -0

(195) e l.p L
pixd Hoprat T,
Conversely, a pair of matrices (P, Q) satisfying (194) defines f € homp (M, M) by (193), i.e.:
(196) homp (M, M') = {P e D"*? |3Q € DY : RP=QR'}/(D"*Y R')
The matrices P and Q are defined up to a homotopy equivalence: the matrices defined by
{ P=P+ZR,

(197) -
Q=Q+RZ+2

where Z € DP*4 and Z' € D" are arbitrary matrices and the matriz R, € D4 s such that
kerp(.R') = DY R}, satisfy the relation RP = Q R’ and define the left D-homomorphism f.
Remark 1.1. Applying the contravariant functor homp( -, M’) to the finite presentation D1*4 -,

DY>? T, M — 0 of M, we obtain the following exact sequence of abelian groups:
M'TE NP kerpp(R.) —— 0.

Theorem 1.1 then shows that homp (M, M’) = kerp;(R.) = {n € M? | Rn = 0} and if n =
(7' (1) -7 ()T € kerpp/ (R.), then x(n) = ¢, € homp (M, M’) is defined by

b (r( An—zm 1) ij =7'(AP),

j=1

where P = (uT up) € DP*?" and the Wy € DY?" for j=1,...,psatisfy Rn =0, i.e.,

Vi= ZR”W (15) ZR”;LJ =0,

which implies the existence of v; € D14 for i =1,...,q such that Z§:1 R;j p; = v; R, i.e., such
that (194) holds where Q = (v{ ... v])T € D7%4" which also leads to Proposition 1.1.
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Let us now explain one of the main interests of characterizing homp (M, M’).

Applying the contravariant left exact functor homp(-,F) to the commutative exact diagram
(195) and using Theorem 1.1, i.e., the Z-isomorphism kerz(R.) = homp (M, F) (resp., kerz(R’.) =
homp(M’, F)), we get the following commutative exact diagram of abelian groups

Fo oo Lo kerg(R.) +«—0

T Q. TP T £

Fi B m L kes(R) 0,

where f* : kerg(R'.) — kerz(R.) is defined by f*(¢) = P( for all ¢ € kerz(R'.). Indeed,
RP=QR and R'{( =0yields R(P{)=Q' (R'¢) =0, i.e., n=P( € kerx(R.).

Corollary 1.1 ([19]). Let F be a left D-module, R € DI*P, R’ € D>’ and the linear systems
kers(R.) = {n € F? | Ry = 0} and kerz(R'.) = {nf € F*' | R'Y = 0}. Then, an element
f € homp (M, M) defined by matrices P € DP*?" and Q € DY satisfying (194) induces the
following abelian group homomorphism:

f*kerg(R.) — kerg(R.)

/

n — n=Prn.

Corollary 1.1 shows that an element of homp (M, M’) defines a transformation which sends
the elements of kerz(R'.) = homp(M’, F) to those of kerg(R.) = homp(M,F). If M’ = M,
then the elements of the D-endomorphism ring endp (M) = homp(M, M) of M define internal
transformations of kerz(R.). We note that the ring endp(M) contains the subgroup autp (M)
formed by the left D-automorphisms of M, namely, the bijective endomorphisms of M. The
elements of autp (M) define Galois-like transformations of the linear system ker z(R.).

Proposition 1.1 and Corollary 1.1 allow us to find again the theory of eigenrings ([7, 114]).

Example 1.1. Let D = A(9) be the ring of OD operators with coefficients in a differential ring
A E,F € AP R =90I,— E € DP*?, R\ = 91, — F € DP*?, M = DY?/(D'*P R) and
M' = DY*?/(D**P R'). Let 7 (resp., ') be the canonical projection of D'*? onto M (resp., M')
and {e;};—1, ., the standard basis of the free left D-module D'*P. As explained in Section 1,
{y; = m(ej)}j=1,...p (resp., {z; = 7'(e;)}j=1,...p) defines a family of generators of M (resp., M')
and the y;’s (resp., z;’s) satisfy the following left D-linear relations:

P P
(198) Vi=1,...,p, ayi:ZEijyj, resp.,@zi:ZFijzj
j=1 j=1

Let us now consider a non-trivial f € homp(M,M’). Then, f sends the generators y;’s of M
to left D-linear combinations of the generators z;’s of M’, i.e., there exists a matrix P € DP*P
such that f(y;) = Z?Zl Pz for i = 1,...,p. Using (198), every left D-linear combination of
the z;’s can be rewritten in the form of an A-linear combination of the z;’s, i.e., we can suppose
without loss of generality that all the entries P;; of P belong to A, i.e., P € AP*P. According to
Proposition 1.1, there exists a matrix @ € DP*? such that (194), and thus:

(199) (194) & (0, -E)P=Q0I,~F) & P9+P-EP=Q0-QF.

Since the degrees of P90 and Q0 are respectively 1 and r + 1, where r is the maximum of the
degrees of the entries of ), then we must have r = 0, i.e., Q € AP*P_ a fact yielding

Q=P
P=EP-PF.
Any f € homp(M,M’) can then be defined by f(w())) = 7'(AP), where P € AP*P satisfies
P=FEP—-PF.If Fisaleft D-module, ¢ € kerx(R’.), i.e.,0( — F( =0, and n = P, then:
Ry=08(P¢) —E(PC)=Pd(+P(—(EP)C=P@QC—F() =0 = 1€ kerp(R.).
If P € GL,(A), then the second equation of (200) yields ' = P~ EP—P~! P. In particular, if

P is a constant matrix, i.e., P = 0, then we find again the transformation F' = P~! E P classically
used in the integration of first order linear OD systems with constant coefficients.

(200) u%)@(P—Qﬂme—EP+QFj=0¢>{
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It F = E, then the second equation of (200) defines the eigenring of the linear OD system
dn = En, namely, £ = {P € AP*? | P = E P — P E}, introduced by Singer in [114]. Using the
properties tr(Py + Py) = tr(P2 + P1) and tr(P; Pe) = tr(Ps Py) of the trace, for all P € £, we get

dtr(P*) d P* d(P...P)
VkeN, —=tr(—|=tr(——=
€ dt \Ta ' dt
=tr(PP*1+PPP 24 P2PPF3 4 4+ P P)=ktr(PPFY
=ktr(EP - PE)P*Y)=ktr(EP* - PEP* 1)
=ktr(EP* - EP*) =0,
i.e., the tr(P¥)’s are first integrals. Since the coefficients a;’s of the characteristic polynomial of
P are symmetric functions of the eigenvalues of P and can be expressed in terms of the tr(P*)’s
(Newton’s formulas), they are also first integrals. Therefore, the eigenvalues of P are first integrals
because they are algebraic functions of the a;’s, i.e., P € & is isospectral. Following the ideas
of [7, 94, 114], we can then compute a Jordan normal form of P € £ and use the corresponding

change of bases to transform the linear OD system 01 = En into 0 = E ¢, where E € APXP is
either a block-triangular or a block-diagonal matrix.

Let us illustrate the results with the following explicit example over A = Q[t]:

t2t+1) —263 2241 ) e

201 = F E =
(201) T ( 21 —t(2t+1)

Using algorithms which compute polynomial solutions of linear OD systems ([1, 7]), we get:

g_{P_<a1—a2(t+1) agt(t+1)> |a1,a2€Q},

—asg ast + ay

If P e &, then det(P — A1) = (A —a1) (A — a1 + as) and the Jordan normal form of P is:

0 ot _
J=upu=|" . U= S I T (A
0 a; — a2 -1 1 1 —t

f¢=U"1tn=(pm—(@t+1)ne n —tn)?, then the linear OD system 7) = E 1 is equivalent to:

Cl = C]. e_t2/27
G2 =Cae/2.

-t 0

S e
(=U"(EU U)<—<0 ;

)C & V(0,0 eR, {

Finally, using the invertible transformation n = U {, we obtain the general solution of (201):

=—Cite 24+ Oy (t+1)et/2,
WOy, CoeRr, { TN 2+ 1)e
772=—C1e_t /2+Cget/2.

Example 1.1 can be generalized to the so-called integrable algebraic connections ([94]).

Let D = B, (k) be the second Weyl algebra, where k is a field, and E; € k(z1,...,z,)P*P for

1=1,...,n. Then, an algebraic connection is a linear PD system of the form:
o1y —Ery =0,

(202) :
Ony—E,y=0.

Let V, = 0,1, — E; € DP*P for i = 1,...,n. Then, the algebraic connection (202) is said to be
integrable if the following integrability conditions are satisfied:

OE; 0K
aSL’j 8$i

The next proposition characterizes the ring of endomorphisms of an integrable connection.

(203) Vi, V;12V,V; =V, V, =
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Proposition 1.2 ([19]). Let D = B, (k) be the second Weyl algebra over a field k, n matrices
B, By € k(21,...,2,)P*P satisfying (203), R = (01 I, — E1)T -+ (0n I, — E,)T)T € Dnpxp,
and the left D-module M = DY*?/(D'*"P R). Then, f € endp(M) is defined by the matrices

Pek(xzy,...,zy)P*P and Q € k(z1,...,x,)"P*™P satisfying the following relations
oP
PE,—FE;P=0, i=1,...,n,
(204) 0z ! "
Q = diag(P,..., P),
where diag(P, ..., P) denotes the diagonal matriz formed by n matrices P on the diagonal.

Example 1.2. The strain tensor € = (€;;); j—1,2 of R? is defined by the Killing operator, i.e., the
Lie derivative of the euclidean metric defined by w;; =1 for ¢ = j and 0 otherwise, namely

€11 = 01 &1,
(205) €12 = €21 = 5 (026 + 01 &),
€22 = 02 &2,

where, using the euclidean metric of R?, & = £% i =1, 2, and £ = (¢!, €2) is a displacement.

Let us consider (205) with € = 0, i.e., the system corresponding to the Lie algebra of the Lie
group of rigid motions in R? ([83, 84]). (205) can be written as the integrable connection:

000 0 0 -1 &
Vi:1,2, Vi:aifngi, E1: 0 0 1 ; E2: 0 0 0 , Yy = §2
0 0 0 00 O 01 &2

Let D = Q[01,05], R = (VI VI)T and M = D'*3/(D'*S R). According to Proposition 1.2,
f € endp(M) can be defined by P € R3*3 satisfying:

(206)

PE, —FE,P=0,
PE,—FE;P=0,

a 0 v
& P=1 0 a B |, Va, 8, veR.
0 0 «

We can easily check that the general solution of V; n(z1,22) = 0 for ¢ = 1, 2 is defined by:
Va,b,ceR, m(z1,22) =—axa+b, mna(r1,z2) =az1+c, n3(z1,z2)=a.
Finally, if P is defined by (206), then according to Corollary 1.1,
—(aa)zs + (ab+ya)
(=Pn= (aa)xy + (ac+ Pa)
aa

is another solution of the integrable algebraic connection V; n(x1,z2) =0 for i = 1, 2.

2. COMPUTATION OF LEFT D-HOMOMORPHISMS

We now turn to the problem of solving the general equation RP = Q R’. The situation is
different if we consider a commutative or a noncommutative ring D. Indeed, if D is a commutative
ring, then homp (M, M’) is a D-module whereas homp (M, M’) is usually an abelian group if D
is a noncommutative ring (see Section 1). If D is a noetherian commutative ring, then M’* is a
noetherian D-module for all k € N, and thus so is the D-module ker;/(R.) = homp (M, M') (see,
e.g., [54, 110]). Thus, homp (M, M’) is a finitely generated D-module, and thus a finitely presented
D-module since D is a noetherian ring (see Section 1). Hence, homp (M, M) can be defined by a
finite family of generators and D-linear relations, i.e., by a finite presentation.

If D is a noetherian commutative ring, then let us explain how to find a finite presentation of
the D-module homp (M, M’). Let R € D?*P, R € D9*?' P e DP*P" and Q € D?*¢ be four
matrices satisfying (194). Since D is a commutative ring, then using Lemma 1.2, we obtain

row(R P) = row(R P I,;) = row(P) (RT ® I,),
row(Q B') = row(l, Q R') = row(Q) (I, ® '),
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RT® 1,

(194) & (row(P) —row(Q)) L =0, LZ( I,®R

> c Dwr'+ad)xap"

Now, there exists a matrix Ly € Ds*x(pp'+a4") gych that kerp(.L) = D'** L. Stacking the rows
of Ly, we find a set of matrices {P,;};=1,... s and {Q;}i=1,... s, where P; € DP*P’ and Q; € Daxd’
satisfying the relation RP; = Q; R’ for ¢ = 1,...,s. Moreover, we can easily check that every
solution P € DP*?" and Q € D?*¢" of (194) has the form

P = Z?:l (07 ‘Ri?
Q= Z::l a; Qs
where o; € D for i =1,...,s, i.e., {P;}i=1,. s is a set of generators of the following D-module:
E={PeD" |3QeD™: RP=QR'}.

Therefore, the set {Fi}izlyws of the residue classes of the matrices P;’s in the D-module E/(Dqu’ R
homp (M, M') (see (196)) generates E/(DP*4 R'), i.e., homp (M, M') up to isomorphism. In par-
ticular, if P; = P; + Z; R’ for certain matrices Z; € Dp*d" and i = 1,...,s, then we can introduce

the matrices Q, = Q; + RZ; fori = 1,...,s, and P; and Q; satisfy the relation R P; = Q; R’ for
i=1,...,s, i.e., they induce f; € homp(M, M") defined by:

YAXe DY fi(r(\) =7 (A\P;), i=1,...,s.

Then, {f;}i=1,.. s is a family of generators of homp (M, M"). A D-linear relation 22:1 dj f; =0
between the f;’s is equivalent to the existence of Z € Drxd satisfying Z;Zl djP;=ZR, ie.:

row(P1)
Z djrow(P;) —row(Z) ([, @ R) =0 <& (dy ... ds —row(Z)) T =0.
= row(Py)

I, ® R

If we introduce the matrices U = (row(P1)7 ... row(?s)T)T € D*PP V=, ® R € Drdxr?’
and W = (UT VT)T ¢ Dst2a)xpr’ then there exist X € D' and Y € D*P4 gatisfying
kerp(.W) = D™ (X —Y). IfY;; denotes the i x j entry of the matrix ¥ and

Yii .. Yig
Yisn o Yiag .
Z; = . . EDqu, i=1,...,1,
Yio-ng+1 -+ Yipg

then ijl Xi; Pj = Z; R, and thus the f;’s satisfy the following D-linear relations:
(207) > Xiifi=0, i=1,...,L
j=1

Hence, homp (M, M’) = DY /(D! X)) i.e., homp (M, M') is finitely presented by X € D',
Let us now study the particular case M’ = M, i.e., using (196):
endp(M)={PeDP?|3QeD"": RP=QR}/(D"*"R).

We note that A £ {P € DP*P |3Q € D79 : RP = Q R} is a ring. Indeed, 0 € A, I, € A and if
P, P,eA ie, RPL=Q1 Rand RP, = Qs R for certain matrices Q1, Q2 € D?*? then:

R(P+ P) = (Q1+Q2) R, N P+ P, e A,
R(PAPR)R=(Q1R)P,=Q1(RP) =(Q1Q2)R, P, P, € A.
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The other properties of a ring can easily be checked. Ring A is generally a noncommutative ring
since P, P, is generally different from P, P;. Moreover, I £ DPX9 R is a two-sided ideal of A.
Indeed, if P;, Po € Aand Z1 R, Z> R € I, where Z; € DP*4? for i = 1, 2, then:

P (Z1R)+ P (ZaR)= (P1 Z1 + P, Z5) R,

(ZiR)Pi+ (Z2R) P = Z1 Q1 R+ 22 Q2 R = (Z1 Q1 + Z2Q2) R.

Therefore, B = A/I is a ring. If x : A — B is the canonical projection onto B, then the product
of B is defined by k(Py) k(P2) £ k(P P,) for all P, P, € A.

The ring structure of endp (M) can be characterized by the expressing of the compositions f;o f;
in the family of generators {fx}r=1,. s fori,j=1,... s, ie.:

.....

(208) VZ7]:1778, floszzvl]kfkh ’VUICED
k=1

The ;;1’s look like the structure constants appearing in the theory of finite-dimensional algebras.
Hence, if F = (f1 ... fs)T, then the matrix ' formed by the 7, satisfies F®@ F =T F. T is called
a multiplication table in group theory. Finally, if D(f1,...fs) is the free associative D-algebra
generated by the f;’s and

I= <ZX’Ljfja Z:177l7 flof]_zyljkfk7 la]:1a75>
j=1 k=1

is the two-sided ideal of D generated by the polynomials corresponding to the identities (207) and
(208), then the noncommutative ring endp (M) is defined by

(209) endp(M) = D(f1,... fo)/,

which shows that endp(M) can be defined as the quotient of a free associative algebra by a
two-sided ideal generated by linear and quadratic relations ([20]).

We sum up the previous result in the following algorithm.

Algorithm 2.1. e Input: Two matrices R € D?? and R’ € D?*?" defined over a com-
mutative polynomial ring D over a computational field k.
e Output: A finite family of generators {f1,..., fs} of the D-module homp (M, M'), where
M = DY?/(D'¥4 R) (resp., M’ = D'?' /(D'*4" R’)) and a set of D-linear relations of
the f;’s generating the D-module structure of homp (M, M').
RT X Ip/
(2) Using Algorithm 2.1, compute a matrix Ly € D3*®?'+44) satisfying kerp(.L) = D'*5 Lo.
(3) Fori=1,...,s, construct the matrices P; € DP*?" and Q; € D77 defined by

P'L(j,k):L(i7(j_1)p/+k)7 j:17""p7 kzl?""p/’
Qi(lvm):_L(vap/+(l_1)ql+m)a l:]-v"'aqv mzla"'vq/a

(1) Compute the matrix L = ( ) e Dwp'+ad)xap’

where L(7, j) denotes the ¢ x j entry of the matrix L. We then have:
RPZ‘:Q,‘R/, i:l,...,s.

(4) Compute a Grobner basis G of the rows of R’ for a total degree order.

(5) Fori=1,...,s, reduce the rows of P; with respect to G by computing their normal forms
with respect to G. We obtain the matrices P; which satisfy P; = P; + Z; R, for certain
matrices Z; € DP*? which can be obtained by means of factorizations.

(6) For i = 1,...,s, define the following matrices Q; = Q; + R Z;. The pair (P;,Q;) then
satisfies the relation R P; = Q; R’ and the D-module homp (M, M') is finitely generated by
{fi}i=1...s, where f; € homp (M, M’) is defined by fi(x(\)) = «'(A P;), for all A € D*P,
and 7w : DYP — M (resp., ' : DY*?" — M) denotes the projection onto M (resp.,
M').
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(7) Form the three matrices U = (row(P1)7 ... row(P,)")T € D¥>??' V = [, @ R €
praxer and W = (UT VT) e Dlstrd)xpr’,

(8) Using Algorithm 2.1, compute a matrix (X —Y), where X € D' and Y € D!*?P?
such that kerp(.W) = D! (X —Y). Then, the family of generators {fiti=1,...
D-module homp (M, M) satisfies the D-linear relations X F' = 0, where F = (f; ... fs)7,
i.e., homp (M, M') = D'*s /(D' X).

(9) If R = R, then, for i,j = 1,..., s, compute the normal form of row(P; P;) with respect to
a Grobner basis of the D-module D**(+P9) W With these formal forms, form the matrix
(Ty T9) € D*x(s*+p 9 where 'y € D**s and I's e Ds*xpa, Then, the matrix I'; defines
the multiplication table of family of generators {f;}i=1,... s of the D-module endp(M).

Example 2.1. Let us consider a commutative ring D, R € D? a column vector with entries in
D, I = D4 R the ideal of D generated by the entries of R and M = D/I the D-module finitely
presented by the matrix R. Then, a D-endomorphism f of M is defined by f(n(\)) = m(AP),
where m : D — M is the canonical projection onto M, A € D and P € D is such that there
exists Q € D7%7 satisfying the relation RP = @Q R. Since D is a commutative ring, we can
choose any P € D and Q = P I, a fact showing that we can take P =1 and f = idy generates
the endomorphism ring endp(M). The relations satisfied by idj; are obtained by computing
kerp(.W), where W = (1 RT)T: if A = (A1 \2) € kerp(.W), where \; € D and \y € D'*9,
ie, Ay + AR =0, then A\ = —A\a R, i.e., A= —X (R —1), a fact showing that we can take
X =Rand Y = 1. Hence, we get Ridps = 0 and endp (M) =2 M = D/I as a D-module. Finally,
idps o idps = idps defines a trivial ring structure on endp (M) and:

endD(M) =D <idy >/<Rlid]w,...,qudM,id]uOid]y[—idM > = D/I:M

We note that we could have directly obtained endp(M) = M = D/I by applying the left con-
travariant functor homp (-, D/I) to the finite presentation D1*4 £ p -z D/I — 0 of the

D-module D/I to get the following exact sequence of D-modules:
(D/1)* £~ D/T «— endp(D/I) — 0,
i.e., kerp,r(R.) = endp(D/I). Using the fact that all the R;’s belong to I, we then get
Rl 7T(R1 d) 7T(d Rl)
Vde D, Rn(d)= n(d) = = =0,
R, m(Rqd) m(d Ry)
which finally shows that endp(D/I) = kerp,(R.) = D/I.

Example 2.2. Let us consider again the model of the motion of a fluid in a one-dimensional tank
studied in Example 2.5. Let D = Q(«)[9, §] be the commutative polynomial ring of OD time-delay
operators with rational constant coefficients (i.e., dy(t) = y(t), dy(t) = y(t — h)),

62 1 —206 [
(210) R= € D?*3,
1 6% —20¢

the presentation matrix of (146) and the D-module M = D*3/(D'*2 R) finitely presented by R.
Applying Algorithm 2.1 to R, we obtain that endp (M) is generated by the D-endomorphisms f,, ,
fess fes and fo, defined by fo(m(\)) = w(A P,), for all A € D*3 where

o1 Qo 2a300 9o 200
o — 2« @ Q
P, = as+2040 a1 —2040 2a300 7Qa:< ! 4 2 4 ),
o o
7N —4 0 a1+ as +ag (624 1) ’ 1
a = (a1,00,a3,c4) € D4 and {e;}i=1, 4 is the standard basis of D*4. To simplify the

notations, we denote by f; = f.,. We can check that the generators {f;};=1,.. 4 of the D-module
endp (M) satisfy the following D-linear relations:

(211) (021 fa=0, Pfit+fo—fsa=0, fi+0*fo—fz=0.
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A complete description of the noncommutative ring endp (M) is given by the knowledge of the

expressions of the compositions f; o f; in the family of generators { fx}g=1,.4 fori,j=1,...,4:
f Ofi:fiof :fia izla"'a4a
flof—f ' fso fz=(8"+1) fs,
2 2—J1,
faofa=20f1 —20fa+2 f4,
(212) J2o fs=fs0fa=fs, f30f4—0 ' ? !
4 3— Y
Jaofs=20f1—20 f2+ fa,
fao fa=-20fs.
Jao fo=—1u,

Denoting by f. o f,. the composition of an element f. in the first column by an element f,. in the
first row, we can write (212) in the form of the following multiplication table:

’ fcofr H fl ‘ f2 ‘ f& ‘ f4 ‘
fi Ji| fe /3 fa

fo fo| /3 20f1—20 fa+ fa
/3 fa| f3 [(P+1)fs][20fi—20f+2f4
fa Ja| —fa 0 —20 f4

We finally obtain endp (M) = D(f1, fo, f3, fa)/I, where

I={(0*=1V)fs, % fi+tfo—fa, fr+62fo—fa, fiofi — fioeery fao fa+20 fa)

is the two-sided ideal of the free D-algebra D{f1, f2, f3, f4) generated by the polynomials defined
by the identities (211) and (212).

If D is a noncommutative polynomial k-algebra, where k is a field, then homp (M, M’) has
generally no D-module structure but is a k-vector space. Thus, we cannot repeat what we have
done for commutative rings. Let us explain what we can be done if D = A, (k) or B, (k) and k is
a field. For r; s, t € N, let us introduce the finite-dimensional k-vector spaces:

klx1,...,zm]s = {a € k[z1,..., 2] | dega < s},

kE(x1, ... xm)st = {a/b € k(x1,...,2m) |0 £ b,a € k[z1,...,2,], dega < s, degb < t},

By ={pP= Z|M|:O,...,r ay 0" | ay € klzy, ... ’xm];gxp/},

E;,t = {P = Z\/L\:O,...,r au or | ay € k(xlv B 7xm)€,>t<p .
We note that E7, = Ef and Ej = {P =2, ,a.0" | ay € k}. Even if homp (M, M’) is
generally an infinite-dimensional k-vector space, we can compute the finite-dimensional k-vector
space {P € E{,| RP € D™P R’} by solving the algebraic systems of equations in the coefficients
of an ansatz P € E{, obtained by reducing to zero the normal forms of the rows of the matrix
R P with respect to a Grobner basis of the left D-module DY*d R’ More precisely, we have the
following algorithm which computes the elements of homp (M, M’) defined by means of a matrix P

with a fixed total order in the operators 9; and fixed degree (resp., degrees) in x; for the polynomial
(resp., for the numerators and denominators of the rational) coefficients.

Algorithm 2.2. e Input: Two matrices R € D?*P and R’ € D7 *?" defined over a non-
commutative polynomial ring D admitting Grobner bases for admissible term orders and
three non-negative integers «, 5 and ~.

e Output: A finite family {f;};cs of elements of homp (M, M’), where M = D*? /(D'*4 R)

and M’ = DY?' /(D'*4" R'), defined by matrices P; € Ef_, ie., satisfying R P, € DTP R

and f;(7()\)) = /(A P;), where 7 : DY*? — M (resp., «’ : D'*?" — M) is the canonical

projection onto M (resp., M’) and X an arbitrary element of D*P,

) Take an ansatz L =3, , a,0" € Ef.

) Compute the product R L and denote the result by F'.

3) Compute a Grobner basis G of the left D-module D*?" R’ for a total degree order.

) Compute the normal forms of the rows of F' with respect to G.

) Solve the system for the coefficients a,, so that all the normal forms vanish.

) Substitute the solutions into the matrix L. Denote the set of solutions by {L;}ics.
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(7) For ¢ € I, form the matrix P; obtained by computing the normal forms of the rows of L;
with respect to G.

Remark 2.1. We note that algebraic systems obtained in the case Ef = EF are linear, and
thus, their solutions belong to the field k, whereas the solutions of systems of algebraic equations
corresponding to EY ., v > 1, belong to the algebraic closure k of k.

Example 2.3. We consider the Euler-Tricomi equation ([23]) appearing in transonic flow:

D u(xy,x2) — 1 03 u(wy, 29) = 0,
Let D = A3(Q) be the first Weyl algebra, R = (0? —x1035) € D and M = D/(D R). We can easily
check that endp(M) is an infinite-dimensional Q-vector space. Let us denote by endp(M)% the

Q-vector space formed by the elements of endp (M) defined by PD operators P whose total orders
(resp., degrees) in the 9;’s (resp., x;’s) are less or equal to r (resp., s).

Below, we list of a few examples of endp(M)", where the a;’s belong to Q:

e endp (M)} is defined by P = Q = a.

e endp(M)} is defined by P = a; +az 9o + 3 5a32202 +azwy 0y and Q = P+ 2a3.
e endp(M)3 is defined by P = Q = a1 + a2 82 + a3 03.

e endp(M)? is defined by

P:a1+a282+§a3x282+a3x181 +a48§+%a5x28§+a5x18182,
Q:P+2a3+2a582.

Example 2.4. Let us consider the first Weyl algebra D = A5(Q) and the finitely presented left
D-module M = D**2/(D1*2 R) defined by the following matrix of PD operators:

o 01 —x102 2x2
R_(82 201 )eD :

The left D-module M is associated with the so-called conjugate Beltrami equations. The endomor-
phism ring endp (M) is an infinite-dimensional Q-vector space and, using the notations defined in

T

Example 2.3, we obtain the following examples of endp(M)%:
e endp(M)Y is defined by P = Q = a; I, where a; € Q.
e endp (M)} is defined by:

_ _ a1+a232 0
P_Q_< 0 a1+a282>’ alaGQEQ'

e endp(M)i is defined by:

p— a3(33232+x13171)+a282+a1 0
- —as 82 as xro 82 + aso 62 + a1 ’
(a3 (x202+x101) +a202 + aq as x1 02
Q_ ( 0 a232+a3x232+a1 ) ai,az,as EQ

3. CONSERVATIONS LAWS OF LINEAR PD SYSTEMS

Let D = A{0y,...,0,) be a ring of PD operators with coefficients in a differential ring A and
R € D?%P. One can prove that the formal adjoint R € DP*? of R satisfies the following identity

(213) (A Rn) = (RAn)+ >0 ®i(\,n),

i=1
where (-, ) denotes the standard inner product of R? and the ®;’s are bilinear forms in the
variables 7;’s and A;’s (see, e.g., [66, 85]). If F is a left D-module (e.g., F = A) and 7 € kerz(R.),
then (213) yields (R)\ n)+ >y 9; ®;(\,n) = 0. Now, if we choose \ € ker7(R.), then the vector
B = (D1(\,7),...,Pn(A )T satisfies

b =0 Bi(\n)
=1

i.e., ® is a conservation law of the linear PD system kerz(R.) ([51, 52]).
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If n =1, then ® = ¥y is a first integral of the linear OD system kerxz(R.) (see, e.g., [50, 88]).
Moreover, if R has full row rank and A is either k, k[t], k(t), [t] or k{t}, where &k = R or C, then
Corollary 3.1 shows that M = D'*P/(D'*4 D) is torsion-free, i.e., projective (see Example 2.13), iff
N =D4/(RDP) =0, i.c., iff N = D'*4/(D'*P R) = 0, which yields ker#(R.) = homp (N, F) = 0.
Hence, if F is a cogenerator left D-module (see Remark 4.2) and M admits non-trivial torsion

element, then kerz(R.) admits a first integral.

Example 3.1. Let us consider the following linear OD control system:

T = x2 + u,

j?g =21 —U.
Let D = Q[d] be the ring of OD operators and the D-modules M = D3 /(D2 R) and N =
D2 /(D1*3 R) respectively presented by the matrices R and R = 6(R) defined by:

—9 -1
o -1 -1 N
R= ., R=| -1 -0
-1 9 1
1 1

We can check that z = x1 + 2o satisfies 9z = 0, i.e., is a torsion element of M. Thu~s, the linear
OD system kerz(R.) admits a first integral. Integrating the linear OD system kerx(R.), we get:

A = C@it,

vVCeR,
{ )\nge_t.

Using the identity AT (Rn) = 77 (RA) + 0 (A1 1 + A2 a2), where = (27 x2 u)T € key;—(é.)
and F = C°(R, ), the first integrals of kerz(R.) are defined by ® = C'e™* (z1 + x2), i.e., ® = 0.

Example 3.2. Let us consider again the first set of Maxwell equations defined by (45). In
Example 3.6, we proved that the corresponding differential module was torsion-free, and thus
parametrizable (see Example 4.4). If B and E satisfy (45), and C' and G satisfy (49), using (48),
we obtain that (45) admits the following conservation law:

2 (6.8)+9. (¢B-nE) =0

Now, if we substitute the quadri-potential (/_f, V) by (C_", @) in Example 3.6, we obtain that the
smooth solutions of (49) are parametrized by

¢ o = C=-vV¢
—-———-VG=0 ’ 00
ot Y e o€ £ e F=C%RY),
VAC=0, G=2
a fact proving that (45) admits the following family of conservation laws:

0 - = = (06 5 = -
Veer, —(—v .B) V. (L B4+venE) =0
feF G 7Ve.B)+ (at + Ve )
Since the differential module defined by the first set of Maxwell equations is torsion-free (see
Example 3.6), contrary to the OD case (see above), a PD linear system can admit conversation

laws even if its underlying differential module is torsion-free.

The above computation of conservation laws of the linear PD system kerz(R.) requires the
knowledge of a solution of the adjoint system ker}-(ﬁ.). The computation of a particular solution
of kerz(R.) is generally a difficult issue. If M = D'*P/(DY¥4 R) and N = D'*4/(D'*P R), then
f € homp(N, M) is defined by P € D9%P and Q € DP*4 satisfying R P = Q R and Corollary 1.1

shows that f induces the Z-homomorphism f* : kerz(R.) — kerz(R.) defined by f*(n) = Pn.
We can consider A = P, which yields a quadratic conservation law of kerz(R.).

Theorem 3.1 ([19]). Let D = A(01,...,0n) be a ring of PD operators with coefficients in a
differential ring A, R € D?P F aleft D-module (e.g., F = A) and the linear PD system kerz(R.).
Moreover, let R € DI*P the formal adjoint of R and the left D-modules M = D*? /(D'*4 R) and
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N = DY4/(D'™P R). Then, f € homp(N, M), defined by P € DVP and Q € DP*? satisfying
R P = @R, defines the quadratic conservation law

© = (D1(P1,7) ... Pu(Pym))"
of kerg(R.), i.e., div® =Y | 9; ®; = 0, where the ®;’s are the bilinear forms defined by (213).

We point out that no integration of linear PD system is needed to compute the quadratic
conversation laws of the system. Our approach only uses Grébner basis techniques.

Example 3.3. Let us consider the Mazwell equations in the vacuum ([51, 83, 84])

B - 4

% 605
(214) 1t oi

Lond-a_g

Ho ot ’

where B (resp., E) is the magnetic (resp., electric) field, po (resp., €9) the magnetic (resp., electric)
constant. Let D = Q(uo, €0)[0¢, 01, 02, 03] be the polynomial ring of PD operators,

Oy 0 0 0 —03 0o
0 Oy 0 03 0 —01
R— 0 0 Oy —0o o 0 R
0 —03/po O2/po  —€0 Oy 0 0
83/,11,0 0 *81 //Lo 0 —€0 é)t 0
—02/po 01/ o 0 0 0 —€g O
the presentation matrix of (214) and M = D'*6/(D*¢ R). Then, the formal adjoint R of R is:

*at 0 0 0 *83/#0 62//10

0 -0 0 03/ 1o 0 —01/ o
B 0 0 =0 —02/mo O1/po 0 c Dox6

0 *83 82 €0 8t 0 0
83 0 —81 0 €0 8t 0

—(92 81 0 0 0 €0 8,5

If we denote by n = (By By By Ey Ey E3)T and A\ = (C; Cy C3 Fy Fy F3)T, then we have:
(215)
3 3 03E2—02E3+(F332—F2B3)//L0
(/\an) = (ﬂ,R)\) + 8t (ZCZ Bz — €p ZF1E1> + V. Cl E3 — 03 El + (Fl Bg — FgBl)//.Lo
i=1 =1 CyEy — C1Ey + (Fo By — F1 Ba) /1o

Denoting by N = D6 /(D16 E) the adjoint D-module of M, an element f € homD(N, M) can
be defined by the following two matrices:

1/p 0 0 0 0
1w 0 0 0O

0 1/wo 0 0O

0

0 0 -1
0 0 0 -1
0 0 o 0 -1

o O O o O
o O O o O

We can easily check that f is an isomorphism, i.e., N = M. Hence, if 7 is a solution of the system
Rn =0, then A\ = Py, ie., C; = B;/uo, F; = —E;, i = 1,2,3, is a solution of RA = 0. Using
(215), we then obtain the following conservation law of (214):

1 . = . - (1 - =
O, < | B||? +eo ||E||2)+V. ((E/\B)> =0.
Mo Ho
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w=|| B2 Juo+eo || E ||? is the electromagnetic energy and IL = (E A B) /o the Poynting vector-.
Other conservation laws can be obtained by considering different elements of endp(M).

Example 3.4. The movement of an incompressible fluid rotating with a small velocity around
the axis lying along the z3 axis can be defined by

Ouq dp
— —2po Q2 — =0,
Po ot Po 0u2+8x1
Ju 0
po 2 +2po Qo ur + —2 =0,
ot 8332
(216)
% + ﬁ =0
P70 T ons
Our | Oup | Oug _
8.’£1 8:52 8£t3 o
where u = (u1, u2, uz)? denotes the local rate of velocity, p the pressure, py the constant

fluid density and Qg the constant angle speed ([52]). Let D = Q(po, Q0)[0¢, 01, 02, Ost] be the
commutative polynomial ring of PD operators,

P00  —2poQy 0 O

R 2p0Q0  po 0O 0 O c pixd
0 0 £0 8t 83
o1 1)) 03 0

the presentation matrix of (216) and the D-module M = D'**/(D*4 R) associated with (216).
If we denote by = (u1  uz wuz p)T, then we have the following identity
po (A1 ur + Aaug + Az u3)
)\1 P+ /\4 U1
A2p + Aguz
)\3 P+ )\4 us

(217) MRn) =0, RN+, 01 0o 85)

where R = —R is the formal adjoint of R. Hence, we get N = D4/(D1**R) = M and
homD(Z\Wf,M) = endp(M). Hence, if (@, p) is a solution of (216), then A\; = uy, Ay = u2, A3 = us
and Ay = pis a solution of R\ = 0. Taking A =, i.e., idp; € endp (M), and using (217), we obtain
O (po (u? + u3 +u3)) + 01 (2pur) + 02 (2pua) + 93 (2puz) = 0, i.e., (216) admits the following
quadratic conservation of law:

o (1@ 1) + V. (pid) = 0.
Other conservation laws can be obtained by considering different elements of endp(M).

More examples of quadratic conservation laws of physical systems can be found in [100].

4. SYSTEM EQUIVALENCES
If f € homp (M, M’), then we have the following left D-modules:
ker f ={m e M | f(m) = 0}, coim f = M/ ker f
imf={meM |3ImeM: m=f(m)} coker f = M’ /im f.

Let us explicitly characterize the kernel, image, coimage and cokernel of f € homp (M, M’),
where M and M’ are two finitely presented left D-modules.
Proposition 4.1 ([19]). Let M = D'?/(D'¥4 R) (resp., M’ = D**?" /(D**9" R')) be a left D-
module finitely presented by R € DI*P (resp., R' € DY*?"). Let f € homp (M, M’) be defined by
the matrices P € DP*?" and Q € D79 satisfying the relation RP = Q R'. Then, we have:
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(1) ker f = (D'*" S)/(D**? R), where S € D™*? is a matriz defined by:

P ’7
(218) kmz><.< B )) =D (§ —T), TeD*?,

/7 P ’
(2) coim f = D'*P/(D'*" §) =2 im f = | D'*(P+d) - /(D4 R,

(3) coker f = DV*¥'/ | D1x(p+d) .

The left D-module coker f admits the following beginning of a finite free presentation:

()
: /
RGN pix+d) L

(4) We have the following commutative exact diagram of left D-modules

0
1
pixr 5, plxp &, comf —0
L.r L.p L
(220) pixd E puo T g
la‘
coker f

l
0

where f*: coim f — M’ is defined by f*(k()\)) = ©'(AP), for all A\ € D'*P,
Corollary 4.1 ([19]). With the notations of Proposition 4.1, f € homp (M, M) is:

(1) The zero homomorphism, i.e., f =0, iff one of the following equivalent conditions holds:
(a) There exists a matriz Z € DP*4" such that P = Z R'. Then, there exists Z' € D1%%
such that Q = RZ + Z' RYy, where Ry € D%*9" is such that kerp(.R') = D'*% R},
(b) The matriz S admits a left-inverse over D.
(2) Injective, i.e., ker f =0, iff one of the following equivalent conditions holds:
(a) There exists a matrizc F € D"™9 such that S = F R, i.e., we have the following
commutative exact diagram of left D-modules:

(219) DT DYP" <, coker f — 0.

)

0 0
7 T
D1lxa _R) Dixp N M —0
T.F | Tet
pixr 5, pbxp &, coimf — 0.
7 7
0 0

(b) The matriz (LT ST admits a left-inverse over D.
(3) Surjective, i.e., im f = M', iff (PT R'™)T admits a left-inverse over D.
Then, the long exact sequence (219) splits. In particular, there exist (X Y) € pr'x(pt+a’)
and (UT  VTYT € Dwtd)xr yhere X € DP' P Y € DV’ >4 U € DP*" qnd V € D97,
such that the following identities hold:

XP+YR =1,

PX+US=1I,
(221) PY —-UT =0,
RX+VS5=0,

RY -VT=1I,.
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Moreover, we have the following commutative exact diagram of left D-modules:

0
7
Dixr S, pbr L oim f —0
T.-v T.x Tt
T - T 7 (E—)
T
0

(4) An isomorphism, i.e., M = M’', if the matrices (L* SIT and (PT R™T)T admit left-
inverses over D. The inverse f=1 of f is then defined by

VN eDYP A (V)) = w(N X),

where X € DV *P s defined in 3 and we have the following commutative exact diagram:

D1><q _R> D1><p T M —50
(222) T.-vF 1 .x Tt
Dixd Eopoet T g .

Example 4.1. We consider two PD systems used in the theory of elasticity: the Lie derivative of
the euclidean metric of R? defined in Example 1.2 and its Spencer operator (see [82, 84]):

oG =0,
I b
523;&@:& 06+ G =0,
| 92 =0,
09 (2 = 0.

See Example 1.2. Let D = Q0d;,02] be the commutative polynomial ring of PD operators with
rational constant coefficients and let us define the following two matrices

o0 & & 0 0 0 0\
(223) R=| 18 106, |eD>? R=] 0 -1 6 1 0 & € D%,
0 82 0 0 0 61 82 0

and the associated finitely presented D-modules M = D'*2/(D'*3 R) and M’ = D'*3/(D'*6 R/).
We can check that the following matrices

2000 0 0
(224) P—lOO Q—1010100
Voo 1) T2 ’

0000 20

satisfy the relation RP = Q R', i.e., define f € homp (M, M') by f(&1) = (1 and f(&;) = ¢5. With
the notations of Proposition 4.1, we obtain that f is injective as the matrices

0 2 0
T
5_62618220 F_1oo
“\a, 0 0 8 ) " o 20 -0 |’
0o 0 1

satisfy the relation S = F'R. Moreover, f is surjective as the matrix (P7 R'T)T admits the
left-inverse (X Y) over D defined by:

1 0 00 0O0O0O
(225) X=|0 -0, |eD*>? v=|00010 0 |eD3*.
0 1 000000

391



ALBAN QUADRAT

These results prove that f is a D-isomorphism and M =2 M’ whose inverse f~! is defined by:

Q) =&, fHG)=-0& =026, fHE)=E.

Example 4.2. In Example 6.10, without giving a proof, we stated that (112) defined by
(226)

02 + 0? 92 — 9? —9? 0?
V(y+ Z) Y% £ y VO 20,0, 0 0
1+v 1+v 1+v
vd2 02 v (02+0?) -924vd? 0 20, 0. 0
1+v 1+v 1+v
0% - 9?2 —024+v02 02 + 02
r% Y = TV% T ( ‘T y) 0 0 20, 0y Oy
1+v 1+v 1+v o
0y 0., 0y 0. v v 0,0, 5 Y
1+v 1+v 1+v % 0o Oy 0r 02 9= =0,
v, 0, 0, 0, v, 0, 9 Tyz
14w 1+v 14w 0r Oy 9 Oy 0: Tex
_u@w Oy _V@w Oy 0z Oy 0.0, —d,0. 83 Tzy
1+v 1+v 1+v ‘
Oz 0 0 0 0, Oy
Oy 0 0, 0 Oy
0 0 0, Oy O
was equivalent to (113) defined by
2 2 2
A+ % % % 0O 0 O
1+v 1+v 1+
0? 0? 0?
14+v A+1+V 1+ 0 0 0
2 2 2
o o A+ 0 0O 0 O Oy
1+v 1+v 1+v
Oy
0y 0, 0y 0. 0y 0, A 0 0 .
(227) 14+v 1+v 14+v =0,
Tyz
0y 0, Oy 0 Oy 0. 0 A 0 Yy
1+v 1+v 1+v Tza
0z Oy 0z Oy 0z Oy 00 A Try
1+v 1+v 1+v
O 0 0 0, Oy
0 dy 0 9. 0 0,
0 0 0, y Oz 0

where A = 82 + 92 + 02 is the Laplacian operator in R®. Let D = Q(v)[0,,dy,0.] be the
commutative polynomial ring of PD operators with rational coefficients in v and R € D9*C (resp.,
R’ € D%<%) the presentation matrix of (226) (resp., (227)). Using the package OREMORPHISMS
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([20]), we can prove that R =V R’, where V is the unimodular matrix defined by:

1+v 1 1

57y 245 24w 0 0 0 =0, 0Oy 0,
1 14+v 1

515 Sy 0 00 9 -9y O
1 1 1

_2+V _2—|—u 24v 000 0 9 =0

V= 0 0 0 1 0 0 0 -0, —0y € GLo(D).

0 0 0 01 0 -0, 0 —0y
0 0 0 0 01 -9, —0, 0
0 0 0 0 0 O 1 0 0
0 0 0 0 0 O 0 1 0
0 0 0 0 0 O 0 0 1

We have the following corollary of Corollary 4.1.

Corollary 4.2 ([100]). Let F be a left D-module, R € D?*?, R' € DY*?' | M = D'*r /(D'*4 R),
M' = DY /(D4 R') and f € homp(M,M’) defined by two P € DP*? and Q € DI*Y
satisfying (158). Then, we have:

(1) If coker f =0, then the following Z-homomorphism is injective:
f*ikerg(R.) — kerg(R.)

(2) Ifker f =0 and extl,(coker f, F) = 0, then the Z-homomorphism f* is surjective.
(3) If f is a left D-isomorphism, then so is f* and f*~* is defined by

where the matriz (X Y) is a left-inverse of (PT  R'T)T with X € D?'*? and Y e DP'*7
and we have the following commutative exact diagram of abelian groups:

R

Fe — FP «— kerg(R.) +«—0
L -vF L x U
Fe AR L kerg(R'.) 0.

The next result is a result due to Fitting, but we give here an explicit formulation.

Theorem 4.1 ([22]). Let M = DYP/(D' 9 R) and M' = D' ¥ /(D¢ R') be two left D-
modules finitely presented respectively by R € D9P and R’ € DY*?" and ¢ : M — M’ a left
D-isomorphism. Moreover, let Ry € D™ 9 (resp., R, € D™ *9") be a matriz such that kerp(.R) =
DY*" Ry (resp., kerp(.R') = Dixr’ RL). Then, there exist P € Drx¥' Pl e DP'xe Qe DI*4,
Q e DV, Z e Dra 7' € DP'* | 7, € DI*" and Zh € DY*"" such that:

RP=QR, PP +ZR=1I, QQ +RZ+ ZyRy =1,
R P =Q'R, P'P+Z'R =1y, QQ+RZ +ZyRy=1,.

(1) The following two matrices

I, 0 R Q
v < I, P ) N U I z'
P Iy,-PP )’ -Z P 0 PZ-zQ |’
-Q -R 0 74 R},
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are unimodular, i.e., X € GLy1 (D) andY € GLytp yprq (D), and:

Zo Ro 0 —-R —-Q
x-1_ I,-PP —P v-1_ rPz-zq@ 0o P -7
P/ Ipl ’ 7 —P Ip 0
Q' R 0 I
(2) The following commutative diagram of left D-modules holds
0 0 0
! ! !
D1><(q+p’+p+q') _L> D1><(p+p’) ﬂ} M — .0
(228) Ly I x Lo
Dix(a+p" +p+q") i’, Dix(p+p") 06’ M 0,
! ! !
0 0 0

where T ® 0 and 0 ® 7’ are defined by

D1><(p+p/) ﬂ) M DlX(P/-Fp) 0pn’ M
AN — 7w\, NNy — "W).
and with the following notations
R 0 0 0
L= 0 Iy c platp'+p+d)x(p+p’) 1 — 0 0 e Dlatr'+p+d)x(p+p’)
0 0 ’ I, 0 ’
0 0 0 R

ie., we have LX =Y L', and thus, L' =Y ' L X or equivalently L=Y L' X 1.

Example 4.3. We consider again Example 4.1. With the notations of Proposition 4.1, the matrices
X € GL5(D) and Y € GL14(D) are defined by

1 0 10 0 0 0 -10 0

0 1 00 1 0 0 0 0 -1
U=| -1 0 00 0 |, U'=]1 o0 1 0 o |,

0 o 0 1 O 0 - 0 1 0
0 -1 00 0 0 1 0 0 1

$1 0o 0O O 0O 0O & 0 1 00 0 0 0

o 1 0 o0 0 0 %6, 46, 0o L 0o L o0 0

o 0o 1 0o 0 0 0 9% 0 0 0 0 1 0

o 0o o 1 O 0O -1 0 0 00 0 00

o 0o o o0 1 0 0O & 0 00 1 00

o 0 o 0O ©oO 1 0 -1 0 00 0 00

vy_| © 0 0o 1 0 0 0 0 0 00 0 00

o 0 o o0 o0 1 0 0 0 00 0 00

-1 0 0 - 0 0 0 0 0 0 0 0 0 0

0o -2 0 -% 1 0 0 0 0 00 0 00

—% 20, 0 0 -9 0 0 0 -9 & 1 0 0 0

o 0 0 0 -1 -9 0 0 0 0 0 0 0 0

o 0 -1 0 0 =% 0 0 0 0 0 0 0 0

0 0 & 0 -9 0 0 0 0 0 0 =0 & 1
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and its inverse is defined by:

0 0 0 0 0 0 -0 0 -1 0 0 0 0 0
0 0 o 0 0 0 -14, =200 0 -1+ 0 -3 0 0
0 0 0 0 0 0 0 -% 0 0 0 0 -10
0 0 0 0 0 O 1 0 0 0 0 0 0 0
0 0 0o 0 0 0 0 -9 0 0 0 -1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
vl 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 1 0 0 0 0 0 0
1 0 0 & 0 0 0 0 1 0 0 0 0 O
0 2 0 9 -1 0 0 0 0 1 0 0 0 0
&b —200 0 0 & 0 0 0 0 0 1 0 0 0
0 0 0 0 1 & 0 0 0 0 0 1 0 0
0 0 1 0 0 & 0 0 0 0 0 0 1 0
0 0 -0 0 8 0 0 0o 0 0 0 0 o0 1

Then, the matrices L = (diag(R, I3)T 07)T € D**5 and L' = (0T diag(l, R))T) € D**5 are
equivalent, namely, we have:

00 0 0 0 d 0 000
00 0 0 0 10, 200 0 0 0
00 0 0 0 0 & 000
00 0 0 0 0 0 100
00 0 0 0 0 0 010
00 0 0 0 0 0 00 1
100 0 0 . 0 0 000
=Y U.
01 0 0 0 0 0 000
00 & 0 0 0 0 000
00 9 -1 0 0 0 000
00 0 0 0 0 0 000
00 0 1 o 0 0 000
00 0 0 & 0 0 000
00 0 0 0 0 0 000

Finally, let us show how to use Theorem 4.1 to prove the result stated in Remark 3.1 on the
Auslander tranposes. Let M = D'?/(D'4R) and M’ = D' ?'/(D'¢ R’) be two left D-
modules finitely presented respectively by R € D9*P and R’ € D7*?" and ¢: M — M a
left D-isomorphism. Moreover, let N = D?/(R D?) (resp., N’ = D9 /(R' D*')) be the Auslander

transpose right D-module of M (resp., M') and k : D9 — N (resp., &’ : D¢ — N') the canonical
projection onto N (resp., N'). With the notations of Theorem 4.1, we get:

cokerp(.L) = DWtP+p+d) /([ p@+p)) = pa /(R DP) @ DW'HPHd) /(DV') = N @ D),
cokerp(.L') = Dt?'+p+d) (1) pete)y = plate’+e) /(pry g DT J(R' DY) = D) @ N'.
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Now, applying the contravariant left exact functor homp( -, D) to the commutative exact dia-
gram (228), we obtain the following one:

(229)
0 0 0
_ T T T
0—— Na@Dw+d) SOt pgipaptd) Lo po) homp(M,D) 0
Ty Tx T o*
0«—— DUtP) g N’ ) O Dlatp'+p+d) L po+s) homp(M’, D) «— 0.
7 ! 7
0 0 0

Since Y € GL(g4p/4ptq) (D), (229) induces the following right D-isomorphism
v:D@tr) g N' — N @ DP+d)
(idgep ®K)(N) +— (k@ idpye )Y N),

which proves that N @ D®+4) 2 N’ @ D@+?) We have just explicitly proved a result first due
to Auslander (see, e.g., [2]) which plays an important role in Chapter 1 (see Remark 3.1).

(230)

Theorem 4.2 ([2, 22, 91]). Let us consider two finite presentations of a left D-module M :

prxa B pixe T oap o pixd L pat Ty g,
If we denote by N = DP/(RDY) and N' = D9 /(R' D?) the Auslander transposes, then we have
the right D-isomorphism ~ defined by (230), i.e., N @ DW+4) = N’ g D@H2) which proves that
N and N’ are two projectively equivalent right D-modules.

Example 4.4. Let us consider again Example 4.1. Using Theorem 4.2, the Auslander trans-
poses N = D3/(RD?) = D'*3/(D'2 RT) of the D-module M = D'*2/(D'3R) and N’ =
D/(R' D3) = D'*¢/(D¥*3 R'T) of the D-module M’ = D'*3/(D**6 R') satisfy:

N @& D?~N' @ DS,
In particular, the above D-isomorphism is defined by (230), where the matrix Y € GL14(D) is

defined in Example 4.3. The D-module N corresponds to the following linear PD system

0.11
810’11+820'12:O
231 R | 2062 | =0 < ’
(231) 1 g A o2 4 8y022 =0,

0_22

where (011,012, 0%?) denotes the symmetric stress tensor ([53]). Moreover, the D-module N’
corresponds to the following linear PD system

g
0.12
L Oyl + 0,012 =0,
(232) RT ”21 =0 & O pt+ 0 p? + 0%t — o2 =0,
;2 01021 + 0,022 =0,
12

where (0!, 02,021 022) denotes a possibly non-symmetric stress tensor and (u',u?) a couple-

stress ([53]). In particular, if the couple-stress vanishes, then (232) becomes (231). (231) corre-
sponds to the equilibrium of the stress tensor (i.e., without couple-stress and density of forces) and
(232) corresponds to the equilibrium of the stress and couple-stress tensors (i.e., without density of
forces and wvolume density of couple) ([53]). This last system was discovered by E. and F. Cosserat
in 1909 and it is nowadays used in the study of liquid crystals, rocks and granulear media. See
[83, 84] for a general variational formulation of Cosserat’s equations based on the Spencer operator
and Lie pseudogroups ([83, 84]) and extensions of Cosserat’s ideas in mathematical physics (e.g.,
electromagnetism, general relativity).
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5. FACTORIZATION PROBLEM

The next theorem gives a sufficient condition for the existence of a factorization of R.

Theorem 5.1 ([19]). Let M = D'*?/(D'¥9 R) and M' = D' /(D'*4 R') be two finitely pre-
sented left D-modules and f € homp (M, M'). Every element f € homp(M, M') defines a factor-
ization of the matrix R € DT*P of the form

(233) R=1LS,
where L € D" and S € D" P are such that coim f = D*P/(D*" §).

The following commutative exact diagram of left D-modules holds

0
!
0 ker f
! Li
(234) pixe L poe T, o
L.z l Lo
pixr S, px &, coimf — 0,
! !
0 0

where p : M — coim f is the canonical projection onto coim f = M/ker f and p is defined by
p(m(N)) = k(X\) for all X\ € DY*P. In particular, if f is not injective, i.e., ker f # 0, then the
factorization R = L S is non-trivial.

If F is a left D-module and R = LS is a factorization, then kerz(S.) C kerz(R.), i.e., every
F-solution of the linear system Sn = 0 is a F-solution of the linear system Rn = 0.

Corollary 5.1 ([19]). With the notations of Proposition 4.1, if L € D" (resp., So € D™*") is
a matriz such that R =L S (resp., kerp(.S) = D1*"2 S, ), then we have:

kerf o~ Dlxr/ D1><(q+7-2) L .
So

Moreover, if U = (LT ST € DWtm2)X" and F is a left D-module, then the following short exact
sequence of abelian groups holds

(235) 0 — kerz(S.) —= kerz(R.) — kerz(U.),
where the Z-homomorphisms v and w are respectively defined by:

t:kerg(S.) — kerg(R.) w:kerg(R.) — kergy(U.)
¢ — G no— S

Finally, if F is an injective left D-module, then w is a surjective Z-homomorphism and:
ker]:(R.)/ker}-(S.) = ker}-(U.).

Example 5.1. Let us consider the acoustic equations for a compressible perfect gas

- 1
0¥ t) + & o”'pgc,t) ~0,
(236) o (x, 1) ‘ '
P0 8t7 + Vp(z,t) =0,

where © = (21, T2, ¥3), T= (v1 wvs wv3)T (resp., p) is the perturbations of the speed (resp., pres-
sure), po the average density of gas and ¢ the speed of sound ([52]). Let D = Q(po, ¢)[0}, 01, 02, O3]
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be the commutative polynomial ring of PD operators with coefficients in Q(po, ),

0,
poO1 poO2 po0s ;;

R=| ro Oy 0 0 o1 c DA*4,
0 po O 0 o))
0 0 Po 8,5 (93

and the finitely generated D-module M = D1**/(D'*4 R) associated with (236). Computing the
set of generators of the D-module endp (M) and their D-linear relations by means of Algorithm 2.1,
we obtain that f € endp(M) can be defined by the following matrices:

0 Jd3 —0y 0 0 O 0 0
—0 0 o 0 0 0 J3 —0
p_ 3 1 Q= 3 p)
0 -0 0 0 0 —-05 0 o1
0 0 0 0 0 9 -0 0

Using Algorithm 2.1, we can compute kerp(.(PT  RT)T) and we obtain a presentation matrix S
of coim f and the factorization R = LS defined by:

o 8 93 0 5 0 0 0 %

pd 0 0 0 ¢

S=| 0 pa 0 of, L=|0 100 &
0 0 00 0 0 0 1 0 Oy

o o0 0 1 0 00 1 8

We can check that ker f = (D'*58)/(D'** R) # 0, which shows that R = LS is a non-trivial
factorization of R and coim f = D1*4 /(D% §) is a non-trivial D-submodule of M. If we consider
F = C>(Q), where ) is an open convex subset of R* (e.g., 2 = R, x R3), then all F-solutions of
Sn =0 have the form:

v(x,t) = v(x),

V.3(z) =0,

p(z,t) =0,
Finally, we can check that this solution of S = 0 is a particular solution of (236).

D= o ¥3)T € C®(QNR?).

Let us introduce the concept of a generic solution of the linear system kerz(R.).

Definition 5.1. Let F be a left D-module, M = D*P/(D'X4 R) a finitely presented left D-
module and 7 : D'XP — M the canonical projection. Then, n € kers(R.) is called a generic
solution if the left D-homomorphism ¢, € homp (M, F) defined by ¢,(7(A)) = An is injective.

Equivalently, n € kerz(R.) is generic if the left D-homomorphism ¢, : M — F defined by
o(y;) =n; for all j =1,...p, is injective, where {y; = 7(f;)},=1,... p is the set of generators of M
defined in Section 1 and {f;};=1,. , is the standard basis of D™ P In particular, we have

P p P P
Vd]‘GD, ¢77 Zdjyj :Zd]n]:() = Zdjyj:’lr Zdjfj :0,
j=1 i=1 j=1 j=1
and thus (dy ... d,) € D9 R. This is equivalent to saying that the solution 7 does not satisfy
other equations than those defined by the left D-module D'*9 R.

Example 5.2. Let M = D'*?/(D'*9 R) be a non-trivial finitely presented left D-module and
{yj}j=1...p a family of generators of M, where m : D'*? — M is the canonical projection onto
M and {f;};=1,.., the standard basis of D'*P. As explained at the beginning of Section 1,
y = (y1 ... yp) € MP satisfies Ry = 0 and y corresponds to ¢, = idys € endp(M) by the
isomorphism y : kerps(R.) — endp(M) explained in Theorem 1.1, which shows that y is a
generic solution of the linear system kerps(R.) = endp(M).
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Example 5.3. Let us consider the commutative polynomial ring D = Q[9] of OD operators, the
matrix R = (02 —9) € D**2, the D-module M = D'*2/(D R) and the D-module F = D(R) of
compactly supported smooth functions on R. If n = (n; 172)T € kerz(R.), i.e., 0>y — dnp = 0,
then 0 (0m1 — n2) = 0, i.e., { = On1 — 12 must be a constant of F. Since the only constant of
Fis0and (0 —1)¢ DR, we obtain ¢ = 0, which proves that every n € kerz(R.) satisfies the
new equation dn; — 2 = 0, i.e., kerg(R.) = kerz((0 —1).) = F and shows that no solution of
kerz(R.) is generic.

Let us study the converse of Theorem 5.1.

Corollary 5.2 ([100]). If R € DY*P, then the following assertions are equivalent:

(1) There exist L € D" and S € D" such that D'*9 R C D" S and R=LS.
(2) There exist a finitely presented left D-module F and f € homp (M, F) such that:

ker f # 0.

(3) There exists a finitely presented left D-module F such that the linear system kerrz(R.)
admits a non-generic solution in the sense of Definition 5.1.

Example 5.4. In this example, we show that an operator R € D can admit a non-trivially
factorization R = LS even if endp (M) is reduced to kidys (see [7, 94, 114]). Let us consider the
OD operator R = 8% +t0 € D = B;(Q). Without loss of generality, any element of endp (M) can
be defined by P = a 9+ b, where a, b € Q(t), which satisfies R P = Q R, for a certain @ € D. But,
we first have:

RP=(0?+1t0)(ad+b)=ad®+ (2a+ta+b)d*+ (a+t(a+b)+2b)d+b+th
Hence, @ has the form Q = a0 + ¢, where ¢ € Q(t), which yields
QR=(a0+¢c)(0°+1t0)=ad®+ (ta+c)0*+ (a+tc)o,
and thus R P = @ R is equivalent to the following linear OD system:

2a+b—c=0,
i+t(a+b—c)+2b—a=0,
b+th=0.

If we denote by d = b, then the last equation gives d+td =0, ie.,d=C e_tz/z, and thus
b=0C fot e /2 ds + Cy, where C; and Cs are two arbitrary constants of Q. Since b € Q(t),
b = C5 and the previous system becomes:

i—ta—a=4(a—ta)=0,
b:027
c=2a+ Cs.

The integration of the first equation gives @ — ta = C3 and thus a = (Cy + C3 f(f e=s’/2 ds) et2/2,
where C5 and Cy are two arbitrary constants of Q. Since, a € Q(¢), we must have C5 = Cy = 0,
ie, a =0 and b = ¢ = (5. Hence, we obtain P = @ = Cy, i.e., any element of endp (M) has
the form of f = Cyidys, where Cy is an arbitrary constant of Q, and thus ker f = 0. Efficient
algorithms for computing rational solutions of linear OD systems, which do not need an explicitly
computation of the whole linear OD system, can be found in [1, 6] and the references therein.

Corollary 5.2 asserts that R admits a non-trivial factorization iff there exists a finitely presented
left D-module F and f € homp (M, F) such that ker f # 0. If we consider the finitely presented left
D-module F = Q(t) = D/(D 0), then the OD equation 7+t 7 = 0 admits the non-generic solution
n = C € Q, which shows that f € homp (M, F) defined by f(n())) = k(C A), for all A € D, where
k: D — F is the canonical projection onto F, admits the kernel ker f = (D 9)/(D R) # 0, which
yields the non-trivial factorization R = L S, where:

L=0+t, S=20.

Let us now introduce the concept of a simple module.
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Definition 5.2. A non-zero left D-module M is called simple if M has only 0 and M as left
D-submodules.

Example 5.5. The holonomic left D = A5(Q)-module M = D/(D 01+ D 02) = k[z1, x2] is simple.
Indeed, if L is a left D-submodule of M and z = dy is an element of L, where d € D, y = w(1)
is the generator of M and w : D — M the canonical projection onto M, then we can assume
without loss of generality that d € k[x1, xs] since y satisfies the following equations:

819207
237

Differentiating z with respect to z; and x2 a certain number of times and using (237), we obtain
y =d' z for a certain d’ € D, i.e., y € L, which proves L = M and M is a simple left D-module.

Using Theorem 5.1, we obtain that the existence of a non-trivial factorization of R of the form
R=1LS, ie, DR C DS implies that ker f # 0, which shows that M is not a simple left
D-module. Hence, if M is a simple left D-module, then any non-zero left D-endomorphism of M
is injective. Moreover, since im f is a non-zero left D-submodule of M and M is simple, we get
im f = M, which shows that any non-trivial f € endp (M) is an automorphism, i.e., f € autp(M).
This last result is the classical Schur’s lemma stating that the endomorphism ring endp (M) of a
simple left D-module M is a division ring (see, e.g., [71]).

6. REDUCTION PROBLEM

Let us now state the second main result of this chapter on the reduction problem.

Theorem 6.1 ([19]). Let R € D9*P, M = D'*?/(D'*9 R) and f € endp(M) be defined by two
matrices P € DP*P and Q € D% such that RP = Q R. If the left D-modules

kerp(.P), coimp(.P), kerp(.Q), coimp(.Q),

are free of rank m, p —m, 1, q — 1, then there exist four matrices U, € D™ P, Uy € DP=m)xPp,
Vi € D4 and Vo € DW=D*9 sych that

(238) U= Ul U)"€GLy(D), V= V)" €GLy(D),

and
_ Vi RW 0
R=VRU ‘= 771 € D,
Vo RW, Vo RW,

where U™' = (W, Wa) € DP*P W, € DPX™ qnd W, € DP*(P=m)
In particular, the full row rank matrices Uy, Us, Vi and Va respectively define a basis of the free
left D-module kerp(.P), coimp(.P), kerp(.Q) and coimp(.Q), namely, they are such that
kerp(.P) = D™ Uy,
coimp (.P) = k(D> P=m) 1),
kerp(.Q) = DYV,
cotmp(.Q) = p(DV<D V),
where k : DY*P — coimp(.P) (resp., p : D'*9 — coimp(.Q)) denotes the canonical projection

onto coimp(.P) (resp., coimp(.Q)) and satisfy (238).

Example 6.1. Let us consider the following four complex matrices:

00 0 —i 0 0 0 -1 0 0 —i 0 1 0
S 0 0 —i 0 e 0 0 1 0 o 0 0 0 i 0 1
0 i« 0 O ’ 0 1 0 0 ’ i 0 o0 o0 |’ 0 0 -1
i 0 0 O -1 0 0 0 0 —i 0 00 0 -1

The Dirac equation for a massless particle has the form
4

()
239 i CR8)
(239) ;’y o,
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where 1 = (11 12 3 4)T and z = (21, 32,23, 74) are the space-time coordinates ([23]).

Let D = Q(i)[01, 02, 05, 04] be the commutative polynomial ring of PD operators (04 = —i 0¢),

04 0 Lidy  —(i01+ )
0 Oy —301 + O 103 4
R = ecD x4
103 101 + O —0y 0
101 — 0o —i 03 0 —04

the presentation matrix of (239) and the finitely presented D-module M = D***/(D'*4 R).
Using Algorithm 2.1, we obtain that f € endp(M) is defined by:

1 0 -1 0 1010
1 o 1 0 -1 01 0 1
P=31 90 0 1 o " 97321010
0 -1 0 1 01 0 1

As the entries of P and @ belong to Q, using linear linear techniques, we can easily compute
bases of the free Q-modules kerg(.P), coimg (.P), kerg(.Q) and coimg (.Q), i.e., bases of the free
D-modules kerp(.P), coimp (.P), kerp(.Q) and coimp (.Q):

1 0 0 -1 0 1 0

U1 = 5 Vl = )
0 1 1 0O -1 0 1
0 0 0 0 -1 0

U2 = ) ‘/2 = .
0 1 0 0 0 -1

Forming the unimodular matrices U = (U U$)T € GLy(D) and V = (Vi V)T € GL4(D),
we then obtain that the matrix R is equivalent to the following block-triangular one:

S =

o O
(el

—04+1i03 101+ s 0 0
 _VRU- - 10— 0y —04—i0s 0 0
n N —i0s —i01 — 0y O4+i03 01+ 0

—301 + O 103 101 — 0o 04 — 105
Example 6.2. Let us consider the linear PD system defined by

I TV .
(240) 0 A+—-VAVA-cVV =0,
w

where (fT, V') denotes the electromagnetic quadri-potential, o the electric conductivity and p the
magnetic permeability. This system corresponds to the equations satisfied by (ff, V) when it is
assumed that the term 9, D can be neglected in the Maxwell equations, i.e., the electric displace-
ment D is constant in time. For more details, see [28]. Tt seems that Maxwell was led to introduce
the term 8, D in his famous equations for pure mathematical reasons ([28]).

Let D = Q|[8}, 01,02, 03] be the commutative polynomial ring of PD operators,

au@t—(8§+8§) 8162 8183 —au@l
R=— 01 0 O'Mat—(a%-i-ag) 0o O3 —O'/Laz
K 0, 05 05 05 opd — (2 +02) —ouds

the presentation matrix of (240) and the finitely presented D-module M = D**4/(D'*3 R).
The matrices P and @ defined by

0 0 0 0
0 0 0

5 Q: *(91 82 cru@tfa% *62(93 5
—81 33 —(92 83 eV 8t — 8%

0 opod 0 —0 1Oy
0 0 o 10Oy —o 103
0 0,0, 0,05 —(05+093)
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satisfy the relation R P = @ R, and thus, define a D-endomorphism f of M. Using Theorem 3.1,
we can check that kerp(.P), coimp(.P), kerp(.Q) and coimp(.Q) are free D-modules of rank 2,
2, 1 and 2. Hence, computing bases of these free D-modules by means of a constructive version of
the Quillen-Suslin theorem explained in Chapter 1, we obtain the following matrices:

o L Vi=(1 0 0)
1= 0 32 83 —ou ) 1— )

010
g L (01 o00) 2= 01|
0010

op

Defining U = (UL UI)T € GLy(D) and V = (VI ViI)T € GL3(D), we get R =V RU ! is the
following block-triangular matrix:

oudy — (03 +02) 0O 0 0
R:; (9182 82 au(au@t—(af—i—(?%—i-a%)) 0
81 83 63 0 au(au@t - (8% +8§ +8§))

7. DECOMPOSITION OF FINITELY PRESENTED LEFT D-MODULES
Let us introduce a few definitions which will play important roles in this section.

Definition 7.1. (1) An element a of a ring A satisfying a® = a is called an idempotent.
(2) A non-zero left D-module M is said to be decomposable if it can be written as a direct sum
of two proper left D-submodules of M. A left D-module M which is not decomposable, i.e.,
which is not the direct sum of two proper left D-submodules, is said to be indecomposable.

In linear algebra, projectors, i.e., idempotent endomorphisms, play an important role for de-
composing vector spaces into direct sums. Idempotents of the endomorphism ring endp (M) of a
finitely presented left D-module M will play the same role. Hence, we first need to characterize
idempotents of endp(M).

Lemma 7.1 ([19]). Let R € D*P, M = D'*?/(D'*9R) and f € endp(M) be defined by two
matrices P € DP*P and Q € DI*? satisfying RP = Q R. Then, f is an idempotent of the ring
endp (M), namely f? = f, iff there exists a matriz Z € DP*9 such that:

(241) P?=P+ZR.

Moreover, if we denote by Ry € DX q matriz satisfying kerp(.R) = D'*% Ry, then there exists
a matriz Z' € D% sych that Q> = Q + RZ + Z' Ry. In particular, if R has full row rank, i.e.,
kerp(.R) = 0, then we have Q* = Q + R Z.

Let us explain how to compute idempotents of the ring endp(M).

Algorithm 7.1. e Input: A matrix R € D?*P and the output of Algorithm 2.2 for R = R
and fixed positive integers a, 8 and .

o Output: A finite family {f;},cs of idempotents of the endomorphism ring endp (M) of

M = D'?/(D' 4 R), defined by matrices P; € Ef , i.e., satisfying P? = P+ Z;R

for certain matrices Z; € DP*?, RP; € DY*? R and f;(m()\)) = (A P;), where X is an

arbitrary element of D'*? and 7 : D'*P — M denotes the canonical projection onto M.

(1) Consider a generic element L = ), _; ¢; L; of the output of Algorithm 2.2 for fixed «,
and ~, where ¢; are new independent variables, ¢ € I.

(2) Compute L? — L and denote the result by F.

(3) Compute a Grébner basis G of the left D-module D**4 R.

(4) Compute the normal forms of the rows of F' with respect to G.

(5) Solve the system in the coefficients ¢;’s so that all the previous normal forms vanish.

(6) Substitute the solutions into the matrix L and denote the set of solutions by {L;};e.

(7) For j € J, form the matrix P; obtained by computing the normal forms of the rows of L;
with respect to G.
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Example 7.1. Let us consider D = A;(Q), R= (8* —td—1) and M = D**?/(D R). Search-
ing for idempotents of endp (M) defined by matrices P and @ of total order 1 and total degree 2,
Algorithm 7.1 gives Py = Q1 =0, P, = Q2 = I> and

%<—@+®&H ﬁ+m>’ }ﬁ<@—@8—ﬁ+”>’
0 1 0 0
Qs =—((t+a)d+1), Qa=(t—a)d+2,

where a is an arbitrary constant of Q. We can check that P? = P; + Z; R, for i = 3, 4, where:

(242)

Z3 = ((t + a)2 O)T, Zy = ((t — a)2 O)T.

Lemma 7.2 ([19]). Let R € D9, M = D'*? /(D4 R) and f € endp(M) be an idempotent.
Then, we have the following left D-isomorphism:

M = ker f @ coim f.

More precisely, the following split exact sequence of left D-modules holds

0 — ker f - M coim f — 0,
idy —f f*
— “—

where f* : coim f — M is defined by f*(p(m)) = f(m) for allm € M.

According to Lemma 7.2, we obtain that the existence of a non-trivial idempotent f of endp (M)
implies that we have M = ker f ® coim f, i.e., M is a decomposable left D-module. Conversely,
if there exist two left D-modules M; and M such that M is isomorphic to M; & My and if we
denote this isomorphism by ¢ : M — M; & M, and p; : M7 & My — M; ® 0 the canonical
projection (i.e., p? = p1), then p = ¢~1 o p; 0 ¢ is an idempotent of endp (M ).

We obtain the following well-known corollary of Lemma 7.2.
Corollary 7.1 ([71, 54]). M is decomposable iff endp (M) admits a non-trivial idempotent.

Example 7.2. In Example 2.1, we proved that the endomorphism ring of D/I, where D was a
commutative ring and I an ideal of D, satisfied endp(D/I) = D/I. Hence, the D-module D/I is
decomposable iff the commutative ring D/I admits non-trivial idempotents. For instance, if we
consider the commutative polynomial ring D = Q[dy, 0;] of PD operators with rational constant
coefficients and I = (9;— 0., 0; —0?) the ideal of D formed by the transport and the heat operators,
then we have 92 — 0y = (0 + 0,) (0y — 0,) — (0, — 92) € I showing that the residue class m(9;)
of §; in D/I is a non-trivial idempotent of D/I, i.e., m(8;)* = 7(d;). Hence, the D-module D/I
is decomposable. Now, if I is a prime ideal of D, then D/I is an integral domain, a fact showing
that endp(D/I) = D/I only admits the trivial idempotents 0 and idp,;. Using Corollary 7.1, we
obtain that D/I is indecomposable. For instance, if we consider D = Q[d¢, 9,;] and the principal
ideal of D generated by the heat operator I = (9; — 92), then D/I = Q[d,] is an integral domain,
which proves that the D-module D/I is indecomposable.

The next proposition gives another characterization of an idempotent of the ring endp (M).

Proposition 7.1 ([19]). Let R € D??, M = D*?/(D**9 R) and f € endp(M) be defined by two
matrices P € DP*P aqnd @ € D17 such that RP = Q R. Then, f is an idempotent of endp(M)
iff there exists X € DP*" such that

(243) P=1I,-X5,

where S € D™*P is the matriz defined in Proposition 4.1, namely, coim f = D*P/(D1*" S). Then,
there exist two matrices X € DP*" and Xo € D"*"2 such that the following identity holds

(244) SX+Xo8=1I1.—TL,
where Sy € D™2X" (resp., T € D"*4) is such that kerp(.S) = D'*"2 Sy (resp., (218) holds).
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Remark 7.1. If S has full row rank, i.e., kerp(.S) = 0, then (244) becomes:
(245) SX+TL=1,.

Then, the factorization R = L S satisfies (245), which is nothing else than the generalization for
matrices and noncommutative rings of the classical decomposition of a commutative polynomial
into coprime factors. Indeed, if R € D = k[z1,...,2,], where k is a field, then (245) becomes
XS +TL =1 (Bézout identity), i.e., the ideal of D generated by S and L is equal to D, and
shows that R = L S is a factorization of the polynomial R into the coprime factors L and S.

The knowledge of idempotents of endp (M) allows us to decompose the system Ry = 0 into two
decoupled systems 77 y; = 0 and T y» = 0, where T} and T are two matrices with entries in D.
Consequently, as it is shown in the next theorem, the integration of the system Ry = 0 is then
equivalent to the integrations of the two independent systems 737 y; = 0 and T, y3 = 0.

Theorem 7.1. Let R € D9*P, M = D'*? /(D' 4 R), f € endp(M) be a non-trivial idempotent
and F a left D-module. Moreover, let us denote by S € D"™P, L € D" X € DP*" and
Sy € D™2*" four matrices defined by:

coim f = D*? /(D" §),
R=1LS,
I,-P=XS§,
kerp(.S) = D>z Gy,
Then, every element of the form n = ( + X 7, where ¢ € kerz(S.) and 7 € F" satisfies

(246) Lt=0,
SQ T = O7

belongs to kerx(R.). Conversely, every element n € kerx(R.) has the formn = (+ X 7, for a
certain ¢ € kerz(S.) and a certain T € kerg((LT  ST)T.). In other words, we have:

kerr(R.) = kerz(S.) ® X kerz((LT SDT.).

Example 7.3. We consider the commutative polynomial ring D = Q [@; id, %} [61,; id, %] of PD
operators with rational constant coefficients and I = (9; — 8,.,9; — 02) the ideal of D formed by
the transport and the heat operators. In Example 7.2, we proved that 7(9,,) defined a non-trivial
idempotent of D/I, where w : D — D/I denotes the canonical projection onto D/I. Hence, the
D-endomorphism f € endp(D/I) = D/I defined by f(n(1)) = 0, is an idempotent. Using the
notations of Theorem 7.1, we have R = (0; — 0, 0, — 02)T, P =04, Q = 0; I,

0, — 1
111 -1 —8,+1 0
S = atil ) L= ) 52: ;
0 —-0,—1 1 0 0 0 1

and X = (=1 0 0). Considering the injective D-module F = C*°(R?), we can easily check that
we have kerz(S.) = {¢ = ¢1 €*" | ¢; € R}. Finally, (246) is defined by

87’1:0
-7+ 72+ 713 =0, * ’ T1 = C2,
atleov
—0171—71—#72:0, == = Tg = C2, CQGR,
=T
Oy —T1— 0, o+ T2 =0, 73 =0, ’ T3 =0,
7'320,

which proves that kerr(R.) ={n=c1e" —cy|c1, s eR} ={n=c1e* " 4¢3 | c1, c3 € R}.

Similarly, if we consider the ideal J = (8?2 — 92,0, — 02) formed by the wave and the heat
operators, then 7(9;) is an idempotent of the ring D/J and, using the notations of Theorem 7.1,
we get R = (8152—85 8t—az)T, P:(?t, Qzatfg,

0 -1 o+1 -1 0 2—-1 -9 +1 0
S = a%_l ) L= ' ) 52: * y )
0 1 -1 0 0 0 1
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and X = (=1 0 0). We can easily check that kerz(S.) = {( = c1 €™ + c2e!™ | ¢1, c2 € R}
and kerz((LT SIYT)={r=(c3z+cs c3z+cs 0)T|c3, cs €R}, which finally proves that
we have kerg(R.) ={n=c1e"" " +coe'™ —cgz—cy | ; €R,i=1,...,4}.

Finally, let us explain another way to obtain Theorem 7.1.

If R = LS, then Corollary 5.1 (see (235)) shows that kerz(S.) C kerg(R.) for all left D-
modules F. If we introduce the new unknown 7 = S, then we have Sy 7 = 0, where the matrix
Sy € D™*" is such that kerp(.S) = D'*"2 Sy (see Corollary 5.1). Moreover, the linear system
Rn=L(Sn) =0, where n € FP, can be integrated in cascade as follows:

Sn—1=0,
Lt=0,
SQTZO.

This remark can easily be understood using the results on Baer’s extensions developed in Sec-
tion 1. As explained in Theorem 5.1, we have the short exact sequence

0 — ker f —— M -2 coim f — 0,

where M = D'*P /(D' 4 R), ker f = (D'*7 8)/(D'¥9 R) = P & D7 /(D4 [, + D'*"2 S5) (see
Corollary 5.1) and coim f = D**P /(D" S). Therefore, the above short exact sequence yields the

following one 0 — P REANY Y/ coim f — 0, i.e., yields an extension of P by coim f.
Proposition 7.2. Using the notations of Corollary 5.1, if F is a left D-module,
A=1L+U L+Uy S+ SV e D™,

where Uy € D™, Uy € D™"2 and V' € DP*" are three arbitrary matrices (e.g., Uy =0, Uy = 0,
V =0 which yields A= 1,) and

S —A
Q= 0o L c D(H—q+r2)x(p+r)7
0 S
then the following equivalence of linear systems holds
S¢(—AT=0,
Rn=0 < LT=0,
SoT =0,
under the following invertible transformations:
¢:kerp(R.) — kerr(Q.) ¢~ i kerg(Q.) — kerg(R.)
N ) s

Moreover, if there exist three matrices Uy € D"*4, Uy € D" and V € DP*" such that
L +UL L+U; So+ SV =0,
then M = ker f @ coim f and the linear system Rn = 0 is equivalent to n = ( + V 7, where:

S¢=0 Lt=0,
o SQT:O.

8. DECOMPOSITION PROBLEM
Let us start with two simple lemmas.

Lemma 8.1 ([19]). Let R € D?*? be a full row rank matriz, i.e., kerp(.R) = 0, and P € DP*P,
Q € D77 two matrices satisfying the relation RP = Q R. If P is an idempotent of DP*P i.e.,
P2?2 =P, then so is Q, i.e., Q* = Q.
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Lemma 8.2 ([19]). Let R € D9*P be a full row rank matriz and M = DY*P/(D'*9R). Let
f € endp(M) be an idempotent defined by two matrices P € DP*P and QQ € D% satisfying the
relations RP = QR, P> = P+ ZR and Q?> = Q + RZ. If there exists a solution A € DPX9 of
the following algebraic Riccati equation

(247) ARA+(P-IL,)A+AQ+Z =0,

then the matrices defined by
P=P+AR,
(248) {

Q=Q+RA,
satisfy the following relations:
RP=QR, P'=P, Q =0Q.
Example 8.1. We consider again Example 7.1 where we proved that the matrices P; and Py
defined by (242) were such that P? = P; + Z; R, for i = 3, 4, for certain matrices Z; and Zs

defined in Example 7.1. Searching for solutions of (247) of order 1 and degree 1, we obtain the
solutions Az = (at ad—1)T, Ay=(at ad+1)T. Then, the matrices (248) defined by

_— atd? —(t+a)0+1 t2(1—ad)

T (ad—1)0? —atd®+(t—2a)0+2 |’
@3:07

.- atd*+(t—a)d —t2(1+4ad)

* (@0+1)0®2  —atd®—(t+2a)0—1 )’
64:17

satisfy the relations R; P; = Q; R, ?? = P, and Qf =Q, fori =3, 4.

Remark 8.1. Using Proposition 3.2, if P = P, then we can easily check that imp(.P) is a

projective left D-module. Moreover, we then have kerp(.P) = imp(.(I, — P)), which shows that
kerp(.P) is also a projective left D-module since the matrix I, - P is an idempotent.

The next theorem shows that the matrix R is equivalent to a block-diagonal matrix if endp (M)
admits an idempotent f which can be defined by two idempotent matrices P and @ such that
their kernels and images are free left D-modules (see Remark 8.1).

Theorem 8.1 ([19]). Let R € D?*?, M = D'*P/(D*9R) and f € endp(M) be an idempotent,
i.e., f2 = f, defined by two idempotents matrices P € DP*P and Q € D%9 satisfying the relations
RP=QR, P2=P and Q%> = Q. If the left D-modules
kerp(.P), imp(.P)=kerp(.(I, = P)), kerp(.Q), imp(.Q)=kerp(.(I, —Q)),

are free of rank m, p — m = tr(P), I, ¢ — | = tr(Q), then there exist matrices Uy € D™*P,
Uy € DW=m)%p Vi € DY and Vy € DW=DX4 satisfying

(1) U= (U] U3)" € GLy(D),

(2) V=" V)" e GLy(D),

(3) R=VRU ! = i B 0 € DI¥P,
0  VaRWs

where U=1 = (W W), Wy € DPX™ and Wy € Dpx(p—m),

In particular, the full row rank matriz Uy (resp., Us, Vi, Vo) defines a basis of the free left
D-module kerp (.P), (resp., imp(.P), kerp(.Q), imp(.Q)) of rank m (resp., p —m, I, ¢ —1), i.e.:
kerp(.P) = DY>*™ Uy,
imp(.P) = D= ],
kerp(.Q) = D>V,
imp(.Q) = D@DV,

(249)

406



An introduction to constructive algebraic analysis and its applications

Finally, we have ker f = D™ /(D! (Vi RW))) and im f = D (P=m) /(D=1 (V, RW,)),
i.e., up to isomorphism, the first (resp., second) diagonal block of R corresponds to ker f (resp.,
im f) and we have M = ker f @ im f.

Let us illustrate Theorem 8.1.

Example 8.2. Let us consider again the Dirac equation for a massless particle studied in Exam-
ple 6.1. We can check that the matrices P and @ defined in Example 6.1 are idempotents of D**#,
ie., P2 = P and Q? = Q. Since the entries of P and @ belong to Q, the D-modules kerp(.P),
imp(.P), kerp(.Q) and imp(.Q) are free. Hence, by Theorem 8.1, the presentation matrix R of
the Dirac equation defined in Example 6.1 is equivalent to a block-diagonal matrix. In order to
compute this equivalent form, we only need to compute a basis of the free D-modules imp(.P) and
imp(.Q) instead of a basis of the free D-modules coimp(.P) and coimp(.Q)) computed in Exam-
ple 6.1 for the reduction problem. Using linear algebra techniques, we obtain imp(.P) = D'*2 U,
and imp(.Q) = DY*2 V], where:

, (1 0 -1 0 , (1 0 1 0
U2<0 10 —1)’ V2<0 10 1>'
Hence, if we define by U’ = (U{' US")T € GL4(D) and V' = (VI V3T)T € GL4(D), where the
matrices U; and V; are defined in Example 6.1, we then obtain:

—04+103 Oy+1i0; 0 0

5 / 1—1 _ —82 +i81 —64 —i83 0 0
R=VRU"" = 0 0 Outidy Oatidy
0 0 —Oy+1i01 04— 105

Finally, let us study whether or not the block-diagonal submatrices of R can also be decomposed.

Let S € D**2 be the first block-diagonal submatrix of R and N = D'*2/(D'*2 ). Using Algo-
rithm 2.1, the D-modules endp(N) is generated by {g¢;}i=1,2,3, where g;(k(n)) = k(u X;), where
k: D2 — N is the canonical projection onto N, u € D'*2 and:

X X ( 0 —8y—idh ) X, ( 0 —8y—ids )
0 —04+1i05 0 Or—10y

Moreover, the generators g;’s satisfy the following D-linear relations:

(04 —103) g1+ g2 =0,

(2 —i01) g1 —g3 =0,

(04 +105) g2+ (02 +i01) g3 = 0,

(02 —i01) g2 + (0 —103) g3 = 0.
The two first equations of the above system yield go = — (94— 03) g1 and g3 = (92— 1) g1, which
shows that endp(N) is a cyclic D-module generated by g; = idy. Hence, using Example 2.2, we
get endp(N) = D gy = D/(annp(g1)), where annp(g1) = A = §? + 03 + 02 + 97. Since A is an

irreducible polynomial, D/(annp(g1)) is an integral domain which shows that it does not admit
idempotents and proves that N cannot be decomposed and S is not equivalent to a block-diagonal

matrix. The same result holds for the second block-diagonal of the matrix R.

Example 8.3. Let us consider again Example 2.4, namely, the model of a tank containing a fluid
and subjected to a one-dimensional horizontal move studied in [79]:

91(t) = 92(t = 2R) + afs(t — h) =0,
91(t—2h) —yg(t) +a:ij3(t— h) =0.

Let D = Q(«)[0, 0] the commutative polynomial ring of OD time-delay operators with rational
constant coefficients (i.e., dy(t) = y(t), dy(t) = y(t — h)),

n_ o —062 ad?s R
N 882 -0 ad?s ’
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the presentation matrix of (141) and the D-module M = D*3/(D'*2 R) finitely presented by R.
Using Algorithm 7.1, we obtain that the matrices defined by

P 1/1 1
P==-| -1 1 0 =
2 ¢ 2(1 1)’
0 0 2

satisfy the relations RP = Q R, P> = P and Q? = Q, i.e., define an idempotent f € endp(M).

Since the entries of P and @ belong to Q, kerp(.P), imp(.P), kerp(.Q), imp(.Q) are free
D-modules. Computing basis of these Q-vector spaces, we get:

1 1 0

1 -1
U=]|1 -1 0 | eGL3(D), V= < 11 ) € GLy(D).
0 0 1
Therefore, we obtain that R is equivalent to the following block-diagonal matrix:
— d(1=06)(1+9) 0 0
R=VRU'= :
( 0 A% +1) 20?6

Hence, we obtain M = My @& M, where:
M, =D/(D(9(6* = 1)), My=D"?/(D(@(*+1) 2ad*J)).
Let us now consider the D-module F = C*°(R) and the linear system kerz(R.) and let us

characterize the elements kerz(R.), and thus, those of kerz(R.). If we denote by Cy and Cs two
arbitrary real constants and 1) a 2 h-periodic of F, then we can check that we have:

21 (t) z1(t) = (L) + Ci t,
R| =) |=0 < z2o(t) = —2a&(t—h)+Cy, VEEF.
z3(t) z3(t) = &(t —2h) +£(b),
Finally, using the invertible transformation defined by the matrix U, we obtain:
Y1 (t) 21 (t) 1 (@(t) + Crt+ Co) —al(t—h)
ya(t) [ =U"" [ 2@ [=] 3@ +Cit—Co)+ad(t—h)
ys(t) z3(t) E(t—2h) +£(t)

We find again the parametrization of ker z(R.) obtained in Example 2.4 and [79].
The choice of another idempotent of endp (M) defined by the two idempotent matrices

0 0 0 ,
, , , [0 6
P=| -2 1 —add |, Q= 7

0 1
0 0 0

gives another decomposition of M. Indeed, the matrices X € GL3(D) and Y € GLy(D) obtained
by stacking bases of free D-modules kerp(.P’') and imp(.P’) (resp., kerp(.Q’) and imp(.Q")),

1 0 0
-1 4
X = 0 0 1 5 Y = )

0 1
52 -1 «add

are such that & = Y R X! is the following block-diagonal matrix:
— 9(%-1)(6%+1) ad?6(>-1) 0
R= .
0 0 0
Hence, we obtain M = Mz @ M,, where:
Mz =D"2/(D(5* —1)(6*+1) ad?6(6* —1))), My=D/(DJ).

Since My and My are torsion D-modules and My /t(Msz) # 0 and Ms/t(M3) # 0, we obtain
that My 2% Ms and My % My. Moreover, we have M; 2 M, since homp(My, M;) is generated by
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the injective but not surjective D-homomorphism ¢(m1()\)) = m4(A (6% — 1)) for all A € D, where
71 : D — My (resp., my : D — My) is the canonical projection onto M; (resp., My). Moreover,
we have t(Ms) = M, and t(M3) = My, a fact implying that My % M3. Hence, the D-module M
admits the two decompositions formed by pairwise non-isomorphic D-modules:

M = My & My = M3 @ My.
The converse of Theorem 8.1 is also true as it is explained in the next corollary.

Corollary 8.1 ([100]). A matrix R € DY*P is equivalent to a block-diagonal matriz R € DI*P,
i.e., there exist two matrices U € GLy(D) and V € GL4(D) such that

Ell 0

(250) R=VRU'= _
0 Ra

) , Ri € D™, Ryy € Dlabxtp=m),

iff there exist two idempotent matrices P € DPXP agnd Q € D9%9, j.e., P2 = P, Q? = Q, such
that RP = QR and kerp(.P), imp(.P), kerp(.Q) and imp(.Q) are free left D-modules of rank
respectively m, p —m, | and q — .

According to Remark 8.1, the kernel and the image of an idempotent matrix are projective
modules. Theorem 8.1 shows that the matrix R is equivalent to a block-diagonal matrix if the
kernels and the images of certain idempotent matrices are free. Hence, using Theorem 1.2, we
obtain the following result.

Theorem 8.2 ([19]). Let R € D??, M = D'*?/(D'¥4 R) and f € endp(M) be an idempotent
defined by two matrices P € DP*P and Q € D9%9 satisfying RP = QR, P?> = P and Q* = Q.

Assume further that one of the following conditions holds:

(1) D = A(9) is a ring of OD operators over a differential field A such as k, k(t) and k[t][t71],
where k is a field of characteristic 0, or k{t}[t~'], where k =R or C),

(2) D =klxy,...,xz,] is a commutative polynomial ring over a field k,
(3) D = A,(k), Bn(k), k[t][0], where k is a field of characteristic 0, or k{t}[0], where k =R
or C, and:
rankp(kerp(.P)) > 2, rankp(kerp(.Q)) > 2,
rankp (imp (.P)) > 2, rankp (imp (.Q)) > 2.

Then, there exist U € GL,(D) and V € GL4(D) such that

R-vryu-t—( O € DI*P,
0  Ra

where Ryy € D™ Ry € D=DX(=m) iy — rankp(kerp(.P)) and | = rankp(kerp(.Q)).

Example 8.4. Let us consider again Example 2.6, namely, the model of a flexible rod with a
torque studied in [74]:

(251) { g1(t) — 9ot — 1) —u(t) =0,

291(t — 1) —g2(t) — g2(t —2) = 0.

Let us consider the commutative polynomial algebra D = Q[d, §] of OD time-delay operators (i.e.,
Ay(t) =y(t), dy(t) = y(t — h), where h € R, ), the corresponding presentation matrix

0 —06 -1 9%3
R= ) € D72,
206 —-0(1+46%) O
and the D-module M = D'*3/(D'*2 R). Using Algorithm 7.1, we obtain that the matrices
1462 —162(1+06) 0 L
o0 ( 1 15 )

P = 29 -6 0
0 0
0 0 1
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are idempotent, i.e., P> = P and Q? = @, and define an idempotent element f of endp(M). Using
the implementation of the Quillen-Suslin theorem in QUILLENSUSLIN, we obtain:

-26 2 +1 0
2 2 0 -1
U=| 2001-¢) 85(?—1> —2 | e GLy(D), V=<2 5>6GL2(D)-
—1 50 0

Then, the matrix R is equivalent to the following block-diagonal matrix:

R-vrui-2 00
010)

Hence, we get the following D-isomorphisms

M = DY3/(D"?R)=D/(Dd)® D**?/(D(1 0))=D/(D3d) & D,
which show that t(M) = D/ (D 9) and M/t(M) = D. We note that M is extended from the ring
E = Q|0], namely, M = D ®g L, where L = E'*3/(E'*2 R) (see [110]). This result shows that

the first scalar diagonal block (resp., second diagonal block) of R corresponds to the autonomous
elements (resp., flat subsystem of ker=(R.)) of kerz(R.), where F is a D-module (e.g., C*(R)).

Finally, all smooth solutions of Rz = 0 are defined by z = (¢ 0 2z3)7, where ¢ € R and z3 is
an arbitrary smooth function. Hence, all smooth solutions of (251) are parametrized by

y1(t) c Le—z(t—2) — z3(t)
p(t) | =U"" 0 = c—2z3(t—1) ,
u(t) 23(t) Z3(t —2) — 23(1)

where ¢ is an arbitrary constant and z3 an arbitrary smooth function.

For more results on the factorization, reduction and decomposition problems, see [19, 20, 100].
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CHAPTER 4

Serre’s reduction

“Comme tout étre vivant, pour ne pas mourir la mathématique doit se recréer sans
cesse. Ainsi la mort de la recherche mathématique serait la mort de la pensée
mathématique, c’est-a-dire du langage méme de la science. Car expérimenter
n’est pas seulement employer nos sens et nos mains, c’est aussi schématiser la
petite partie de la réalité physique que nous observons, c¢’est mettre en relation le
monde physique et le monde abstrait que nous révelent les mathématiques. Notre
civilisation n’est pas mécanique mais scientifique : il est vital qu’elle transmette
I’essentiel de sa science aux jeunes générations ; la science ne peut se stocker
exclusivement dans des bibliotheques ; elle n’est pas lettre morte, elle est une
pensée vivante ; il faut qu’elle vive dans nos esprits ; si elle y meure, ni nos
machines, ni nous-mémes n’y survivrions. Nous avons donc tous besoin que la
jeunesse développe toutes ses capacités intellectuelles en ayant bonne conscience
et foi en son avenir.”

Jean Leray, Remise du prixz Feltrinelli, Roma 1971 et Congrés Pan-Africain,
Rabat 1976.

1. INTRODUCTION

Let R € D7*P be a full row rank matrix, i.e., kerp(.R) = 0, and M = D'*P/(D1*9 R) the left
D-module finitely presented by R. Then, the following short exact sequence holds:

(252) 0— DY¥a B pixe T, ar g,
The purpose of this section is to study the existence of extensions of D'*(@=") by M, where

0 < r < ¢g—1, which define free left D-modules E (see Definition 1.1). If such an extension of
DY*(a=7) by M exists, then applying Proposition 4.1 to the following short exact sequence

0— DX 2 g B,

we get rankp (E) = rankp (D (@) 4 rankp(M) = (¢ —7) + (p—q) =p — 71, i.e., E is a free left
D-module of rank p — r. Therefore, if ¢ : D'*(4=") — E is a left D-isomorphism, then we obtain
the commutative exact diagram

0— D@ o E L M —o,
(253) I L |
-1
0 — Dix(@7) Yoo pix(p-r) Boyp™ | M —0,

which proves that a representative of the equivalence class of the extension of D'*(4=7) by M
defined by the left D-module E is defined by the second horizontal short exact sequence of (253)
(see Definition 1.1). If we write the left D-homomorphism §o¢~! : D'*(@=") — ptx(=7) iy
the standard bases of the free left D-modules D**(4=") and D**(=7)_then there exists a matrix
R € D=7)x(P=7) guch that the second short exact sequence of (253) becomes the following one

0 — Dix(g=7) _R, DYp=r) T, a0,

which yields M = D' (=) /(D' (a=") R) i.e., M admits a finite presentation by a matrix R €
Dla=)x(»=") " In terms of unknowns and equations, it means that the linear system kerz(R.)
defined by g left D-linearly independent equations in p unknowns is equivalent to the linear system

kerz(R.) defined by ¢ — r left D-linearly independent equations in p — r unknowns. Hence, the
existence of an extension of D'*(¢=") by M defined by a free left D-module E is equivalent to the
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possibility of reducing the number of equations and unknowns of the linear system kerz(R.) by
r. Motivated by the study of complete intersections of algebraic varieties, Serre first studied this
problem in [113]. Hence, we shall call it Serre’s reduction problem. The purpose of this section is
to study this problem within a constructive viewpoint.

2. GENERALIZATION OF SERRE’S THEOREM

According to Theorem 1.2, the extensions of D'*(@=7) by M are classified by the right D-module
exth (M, D (4=7)). A classical result of homological algebra asserts that

exth (M, DY~ = exth (M, D) @ p D477,

where - ® p - denotes the tensor product. See, e.g., [15, 65, 110]. Moreover, since R has full row
rank, Remark 1.2 shows that Q = D9%(@=")  Applying Theorem 1.3 to the left D-modules M
and N = D'x(a=7) = p1x=r) /(D §) where S = (0 ... 0) € D'*(=7) then any extension of
DY (a=") by M can be defined by a left D-module F = D**(P+a=7) /(D1x(a+1) Q) where

Q= E—A c DlatD)x(pt+a—r)
0 0 ’

and A € Q = D?*(@77) je. by the the left D-module E = D'*(P+a=7) /(D1X4 P) where:
P=(R —A)e pax(p+a—r)

Since R has full row rank, so has P, and we have the following short exact sequence

(254) 0 — Dixa 2, pixtte—n) 2. p

where o : DY*P+9=7) __, F is the canonical projection onto E, i.e., the left D-homomorphism
which sends ¢ € D' (+4=7) to its residue class o(¢) in E.

Since both R and P have full row rank, we get:
extl (M, D)= D9/ (RD?), exth (E,D)= D/ (P D<P+q—r>) .
Using the following inclusions of right D-modules R D? C P DWw+4=7) = RDP 4 A D4=") C D1,
we get the following short exact sequence of right D-modules
(255) 0— (P D(P+‘1‘7")> J(RDP) . extl, (M, D) % extl, (E, D) — 0,
where j is the canonical injection and & the canonical projection. Hence, (255) shows that
exth (E,D)=0 < extl (M,D)= (RDP + AD(q"")) /(R DP)

q—r

RD”JrZAnD) /(RDP),

i=1

& extp (M, D)

T(A.i) .D,
1

T

& exth (M, D)

where 7 : DP — exth (M, D) = DP /(R D9) is the canonical projection. Hence, exth (E,D) = 0
iff the right D-module exth (M, D) is generated by the family {7(Aei) }i=1,....q—r Of ¢ — 7 elements.

Let us now study the condition exth(E, D) = 0. By definition, ext},(E, D) = 0 is equivalent
to the existence of a matrix S = (S; ... S,) € DWPHa=")X4 gatisfying PS = I,, which, by 2 of
Corollary 3.3, is equivalent to F is a stably free left D-module of rank p — r.

Theorem 2.1 ([14]). Let D be a noetherian domain, R € DI*P q full row rank matriz, namely,
kerp(.R) = 0, A € D@ P = (R — A) € D*WP+a=") qnd M = D'*P/(D'¥9R) (resp.,
E = DY*(p+a=r) /(DX P)) the left D-module finitely presented by R (resp., P) which defines the
following extension of D**(4=7) by M:

0— DX 2 g B o .

Then, the following results are equivalent:
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(1) The left D-module E is stably free of rank p — r.

(2) The matriz P = (R — A) € DY*P+a=") admits a right-inverse over D.

(3) exth(E,D) = D1/ (P DP+ta—m)) = 0.

(4) The right D-module ext},(M, D) = D%/(R DP) is generated by {T(Ae;)}iz1... q—r, where
7: DY — exth (M, D) is the canonical projection onto exth (M, D).

Finally, the previous equivalences depend only on the residue class p(A) of A € DI*=7) in
ext} (M,Dlx@fr)) o pax(a—r) (RDpx@fr)) = extL (M, D)* @),

i.e., they depend only on the row vector (7(Ne1) ... T(Ae(g—r))) € extp (M, D)tx(a=r),

Remark 2.1. Theorem 2.1 was first obtained by J.-P. Serre in [113] for a commutative ring D and
r = q — 1. In this case, exth (M, D) is the (right) D-module generated by 7(A), i.e., exth (M, D)
is the cyclic (right) D-module generated by 7(A).

Example 2.1. Theorem 2.1 is fulfilled if exth (M, D) = 0, i.e., if M is a stably free left D-module
or, equivalently, if R admits a right-inverse over D (see Corollary 3.3) since we can take A = 0.
Another explanation of this result is that ext}, (M, D) is then the trivial cyclic left D-module.
Equivalently, the short exact sequence (255) yields exth(E, D) = 0.

On simple examples over a commutative polynomial ring D = k[x1, ..., x,] with coefficients in a
computable field k (e.g., k = Q or F), for a prime p), we can take a generic matrix A € D2*(a=7) with
a fixed total degree in the x;’s and, using Grobner basis techniques, check whether or not the D-
module exth (E, D) = D'*4/ (Dlx(pﬂ_r) PT) vanishes on certain branches of the corresponding
tree of integrability conditions ([90]) or on certain parts of the underlying constellation of semi-
algebraic sets in the k-parameters of A ([59]). See [59] for a survey explaining the constellation
techniques and their implementations in SINGULAR. In particular, we can test whether or not a
non-zero constant belongs to the annihilator of ext}, (E, D),

annp(exth(E, D)) ={d € D |V n € exth(E, D), dn = 0},

i.e., whether or not annp(exth(E, D)) = D. Indeed, since exth(FE, D) is a torsion right D-module
by Proposition 2.1, exth (E, D) = 0 iff annp (exth(E, D)) = D.

The constellation technique is particularly interesting when the D = k[zy,...,x,]-module
exth(M, D) = D9/(RDP) is 0-dimensional, i.e., dimp(D?/(R DP)) = 0, or equivalently, when
the ring A = D/I is a finite k-vector space, where I = annp(ext}, (M, D)) (see Section 3). In-
deed, a Grobner basis computation of the D-module R DP then gives a finite set of row vectors
{Ak}k=1...s, where A\, € D? and s = dimy(A), such that exth(M, D) = @;_, k7(\g). Then, we
can consider a generic matrix of the form

A= (Z a1 N\ .- Z Q(g—r)k )\k> S qu(q*r),
k=1

k=1

where the a;;’s are arbitrary elements of k for i =1,...,(¢—r) and k =1,..., s, and compute the
constellation of semi-algebraic sets corresponding to the possible vanishing of ext}, (E, D).

Example 2.2. We consider the model of a string with an interior mass defined by

¢1(t) +Y1(t) — d2(t) — ¥a(t) =0,

G1(t) + 1 () +m1 dr(t) — mu1(E) — 12 d2(t) + M2 a(t) = 0,

G1(t—2hy) +1(t) —u(t — hy) =0,

P2(t) + Y2 (t —2ha) —v(t — hg) =0,

introduced and studied in [76], where hy, ha € R, are such that Q hy + Q hs is a 2-dimensional Q-
vector space and 71 and 72 are two constant parameters. Let us denote by D = Q(n1,n2) [0, 01, 03]

the commutative polynomial algebra of differential incommensurable time-delay operators in 9,
o1 and og2, where 0 f(t) = f(t), o1 f(t) = f(t — h1) and o2 f(t) = f(t — ha). Now, let M =

(256)
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D6 /(D1** R) be the D-module finitely presented by the presentation matrix of (2.2):

1 1 -1 -1 0 0
Jd+ 0— — 0 0
n— 2711 m n2 12 € DA%6.
o 1 0 0 —o1 0
0 0 1 O'% 0 —09

Then, exth (M, D) = D*/(RD®) and computing a Grébner basis of the D-module ext}, (M, D),
we obtain that ext},(M, D) is a 1-dimensional Q(n1,n2)-vector space and 7((0 0 0 1)T)is a
basis, where 7 : D* — exthL(M, D) is the canonical projection onto ext}, (M, D). Hence, the
only possible A’s for which the matrix P = (R — A) admits a right-inverse over D belong to
{a(0 0 0 1)T|aecQ(n,n)}. In particular, if we consider A= (0 0 0 1), then we can
easily check that P = (R — A) € D**7 admits the following right-inverse over D:

0 0 1 1 0 1 1 T
2 2 9 72 2
1 1 1 1
0 - 0 0y ——
S = 2m2 21 21 21
qo.mom om o m
12 T2 2 72
0 0 0 0 0 0 1

Hence, the D-module exth (M, D) = D*/(R DS) is cyclic and is generated by 7(A).

Remark 2.2. If D = k[z1,x5] is a commutative polynomial ring over a field k, R € D*P
and M = D'?/(D'*4 R), then, using Theorem 3.1, M can either admit a non-trivial torsion
submodule ¢(M), be torsion-free or projective, i.e., free by the Quillen-Suslin (see 2 of Theorem 1.2).
Hence, if p > ¢ and R has full row rank, then the generic situation is that M is a torsion-free
D-module, which implies that exth (M, D) is generically 0-dimensional by 2 of Corollary 3.1 since
dim(D) = 2. Hence, using the constellation techniques, we can check whether or not there exists
a matrix A € D?(4=") guch that P = (R — A) admits a right-inverse over D, whenever R is
a generic full row rank matrix with p > ¢ and the columns of the matrix A are generic k-linear
combinations of the basis of the finite-dimensional k-vector ext}, (M, D). This situation particularly
holds in the study of control linear differential time-delay systems defined over D = k[d, d], where
k is a computable field (see [16, 17, 19, 20]).

Apart from the previous 0-dimensional case, we do not know yet how to recognize the existence
of A € D?%(@=") gatisfying 2 of Theorem 2.1. However, using an ansatz, we can give the sketch of
an algorithm in the case of the second Weyl algebra B,, (k). This case encapsulates the cases of a
commutative polynomial ring and the first Weyl algebra A, (k) since we have:

Elx1,...,25] C Ap(k) C By(k).

Algorithm 2.1. e Input: Let k be an algebraically closed computational field, D = B, (k),
R € D?*P a full row rank matrix and three non-negative integers «, 4 and .
e Output: A set (possibly empty) of {A;};er such that the matrix (R — A;) admits a
right-inverse over D.

(1) Consider an ansatz A € D?*(9=") whose entries have a fixed total order a in the 9;’s and a
fixed total degree § (resp., 7) for the polynomial numerators (resp., denominators) in the
x;’s of the arbitrary coefficients of the ansatz A.

(2) Compute a Grobner basis of the right D-module R DP.

(3) Compute the normal form Ao; € DY of the it column A,; of A in the right D-module
exth,(M,D) = D1/(RDP) foralli=1,...,q—r.

(4) Compute the obstructions for projectivity of E = D*(+a=r) /(DIX¢(R  — A)) (e.g.,
compute a Grobner basis of the right D-module (R — A) D®+4=7) or the mw-polynomials
of E ([16, 73]), namely, the generators of the ideal Ngis1 | exti (L,D)#0} annp (ext’s (L, D)),
where L = DI/((R  — A) D®P*+4=")) = ext} (F, D) is the Auslander transpose of E).
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(5) Solve the systems in the arbitrary coefficients of the ansatz A obtained by making the
obstructions vanish.
(6) Return the set of solutions for A.

Example 2.3. Let us consider a general transmission line defined by

ov ol
L L 4y RI=
5ot Lo TRI=0.
oV oI
Car +GV 45 =0,

where I denotes the current, V' the voltage, L the self-inductance, R the resistance, C' the capacitor
and G the conductance. Let D = Q(L, R, C, G)[0}, 0,;] be the commutative polynomial ring of PD
operators in 9; and 9, with coefficients in the field Q(L, R, C, ), the presentation matrix J € D?*?
of (257) defined by

O Lo+ R
258 J =
(258) (C@H—G Oy )’

(257)

and the D-module M = D'*2/(D*2 J). In this example, we slightly change the previous notations
since we want to keep here the standard notation R for a resistance. Let us consider A = (o 3)7,
where « and 3 are two new variables, A = D[, ], P = (J — A) € A% and the A-module
E = AY3/(A1*2 P) finitely presented by P. The obstructions for E to be a stably free A-module
are defined by A/(m,m2), where the m-polynomials 7 and 7y are respectively:
7= (Ca?—-L3%0+Ga?— Rj3?,
= (Ca?—-LB*0,+ (LG —RC)ap.
They can be computed by OREMODULES. Hence, if Ca? = L3? and Ga? — Rf3% # 0 (resp.,
(LG —RC)ap #0), then 7 (resp., m2) is a non-zero constant. In particular, if we consider
=C#0, o>=LC+#0, LG—RC#0,
the ring B = (Q(L,R,C,G)[a]/(a® — LC))[8;,8,] and A = (a C)" € B2, then the matrix
P=(J —A)e B?*? admits the following right-inverse over B:
-« L
P — e o
~ (RC-LG)
—(CO+aCd+aG)/C (ad,+LCO+RC)/C
Therefore, the B-module exth (M, B) = B?/(J B?) is cyclic and is generated by 7(A), where
7: B? — exth (M, B) is the canonical projection onto ext (M, B).

Example 2.4. Let us consider the conjugate Beltrami equations with ¢ = 271

u_ o,
Ox oy
(259)
@—l—x@—o
Oy or

Let D = A3(Q(a,b)), R € D?*2 be the presentation matrix of (259) defined by

0, —x0
260 R= * Y
(260) (ay 2o, >

and M = D'*2?/(D'*2 R) the left D-module finitely presented by R. If we consider the column
vector A = (@ b)T, thematrix P = (R —A) € D?*3 and the left D-module E = D**3/(D'*2 P),
then we can check that P admits the following right-inverse over D whenever both a and b are
NON-ZEro:

z(ax0y+bxdy+a)/a —z(ax 0y +bxdy+a)/b
S=| —(azdy, —bxd, —2b)/a (axdy —bxdy —2b)/b c D3%2,
(2 +20; +30,)/a —(2*02+2°05+3x0,+1)/b
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Hence, the right D-module extl, (M, D) = D?/(R D?) is cyclic and is generated by 7(A), where
7: D? — ext}h, (M, D) is the canonical projection onto ext}, (M, D).

We can now use Theorem 2.1 to study Serre’s reduction.

Theorem 2.2 ([14]). Let D be a noetherian domain, R € DT*P be a full row rank matriz, 0 <
r < q—1 and a matriz A € DI*") such that there exists U € GLpyq—r(D) satisfying:

(R —MNU=(I, 0).

If we decompose the unimodular matriz U as follows

S1 G
261 U= ,
(261 ( Sa Q2
where S; € DP*1, S, € Dla="xa @, ¢ DPXw=") Qy € DU—)*0=") " and if we introduce the

left D-module L = DY*P=") /(DY*(a=") Qy) finitely presented by the full row rank matriz Qq, i.e.,
defined by the following short exact sequence

(262) 0 — pixla=r) Q2 pixp—r) K, 1 | 0,
then we have:
(263) M = DYP /(D4 R) = [ = D=7 /(D*(a77) Q,).

Conversely, if M is isomorphic to a left D-module L defined by the short exact sequence (262),
then there exist two matrices A € DI~ and U € GLy14—(D) such that:

(R -MNU=(,; 0).
We now can give an explicit description of the isomorphism obtained in Theorem 2.2.

Corollary 2.1 ([14]). With the notations of Theorem 2.2, the left D-isomorphism (263) obtained
in Theorem 2.2 is explicitly defined by:
©: M = DlXp/(Dqu R) - L= Dlx(pfr)/(Dlx(qfr) Qz)
T(A) — K(AQ1).

Moreover, its inverse = ' : L — M is defined by o~ (x(n)) = w(uT1), where:

R —A
Ut = < T T ) € GLyrq (D), Ti€ pw=mxp T, ¢ pp=r)xla=r),
1 —4L2

These results depend only on the residue class p(A) of A € D*(4=") in the right D-module:
ext}, (M,DM(q—r)) >~ pax(a=r) /(R pP*(a=7)),

A straightforward consequence of Corollary 2.1 is the following result.

Corollary 2.2 ([14]). Let F be a left D-module and:
kerz(R) ={n€F* | Rn=0}, kerr(Q2)={C€F" " |Qa¢ =0}
Then, we have the abelian group isomorphism kerx(R.) = kerz(Q2.) and:
kerz(R.) = Q1 kerz(Q2.), kerg(Q2.) =T kerx(R.).
Using Theorem 1.2, we obtain the following corollary of Theorem 2.2.

Corollary 2.3 ([14]). Let R € DY*? be a full row rank matriz and A € DI*=") o matriz such
that P = (R — A) € D?*®P+a=7) qdmits a right-inverse over D. Then, Theorem 2.2 holds when
D satisfies one of the following properties:
(1) D is a left principal ideal domain (e.g., the ring A{Q) of OD operators with coefficients in
a differential field A such as k or k(t), where k is a field),
(2) D =k[x1,...,2,] is a commutative polynomial ring over a field k,
(3) D is either A, (k) or By (k), where k is a field of characteristic 0 and p —r > 2.
(4) D = A(9) is the ring of OD operators, where A = Ek[t] and k is a field of characteristic 0,
or k{t} and k=R or C, andp —r > 2.
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If D satisfies the conditions of Corollary 2.3, then, by 2 of Corollary 3.3, it is enough to search
for A € D9(@=") such that P = (R — A) € D9*P+4=7) admits a right-inverse over D.

Remark 2.3. Corollary 2.3 can also be understood as follows: if the noetherian domain D is a
so-called Hermite ring, namely, if every finitely generated stably free left D-module is free, and
M = D'*P /(D4 R) is the left D-module finitely presented by the full row rank matrix R, then
M can be generated by p — r elements iff its Auslander transpose right D-module ext}, (M, D) =
D?/(R DP) can be generated by ¢ — r elements (see Theorem 2.2).

Example 2.5. Let us consider again Example 2.2 where the D = Q(n1,72) [0, 01, 02]-module
E = D'7/(D'** P) was proved to be a stably free and thus free by Quillen-Suslin theorem (see
2 of Corollary 2.3). Using constructive versions of the Quillen-Suslin theorem ([29]) and their
implementations in the package QUILLENSUSLIN ([29]) and OREMODULES ([16]), we obtain that

0 0 -1 0 -1 —01 0
0 0 1 0 0 o1 0
0 0 0 1 0 0 09
U= -1 0 -1 -1 0 —09 € GL7(D),
0 0 —oq 0 —01 1-— a% 0
—os 0 0 —09 —09 0 1-— 0%
ne 1 2m 2m O+mtmn2 2mor 2ng0:9

satisfles (R — A)U = (I 0), and thus we get Q2 = (O +m1 + 12 2m 01 2n202). We then
have M = D'¥6/(D1*4 R) = [ = D*3/(D Q,), i.e., using Corollary 2.2, (256) is equivalent to
the following sole OD time-delay equation:

(264) L1(t) + (m +n2) 21(t) + 2m x2(t — ha) +2n2 23t — he) = 0.

This result was also obtained in [20] after the resolutions of algebraic Riccati equations of the form
X RX =X ([19, 20]). But, Serre’s reduction allows us to obtain this result in a more direct and

simpler way. Finally, the study of the algebraic properties of (256) is now highly simplified and
we can easily check that M = L is torsion-free and o; and oa-free (see [74]).

Example 2.6. Let us consider again the general transmission line (257) studied in Example 2.3. If
B = K0}, 9] is the commutative polynomial ring of PD operators in 9; and 9, with coefficients in
the field K = Q(L, R, C,G)[a]/(a®> —LC) and P = (J —A) € B?*3 is the matrix formed by the
matrix J defined by (258) and A = (o C)7, then the stably free B-module E = B1*3/(B**2 P)
is free by the Quillen-Suslin theorem. Computing a basis of E using the constructive versions of
the Quillen-Suslin theorem explained in [29] and implemented in QUILLENSUSLIN ([29]), we obtain
that the matrix U = (ST QT)T € GL3(B), where the matrix S € B3*? is defined in Example 2.3
and Q = (QT Q)7 is defined by

Q1 =(a0,—LCO —RC CO—aCd —aG)T,

Q:2=09?-LCd —(LC+RC)O, — RG,
satisfies (/| —A)U = (I 0). Hence, if C # 0, L # 0 and L G— R C # 0, then (257) is equivalent
to the following sole PDE:

(02 - LCO —(LC+RC)d — RG) Z(t,x) = 0.
Example 2.7. Let us consider again Example 2.4 where the left D = A5(Q(a,b))-module E =
D*3/(D1*2 P) was proved to be stably free and P = (R —A) is formed by the matrix R defined
by (260) and by A = (a b)T. Since the rank of E is 3 — 2 = 1, we cannot use Stafford’s theorem
(see 3 of Theorem 1.2) to conclude that F is a free left D-module of rank 1. We need to investigate

when F is a free left D-module of rank 1 for particular values of a and b. Using Algorithm 4.1,
the stably free left D-module F admits the minimal parametrization:

Q=
fa2b+ba2x817a3x8yfa (a2+b2) xzaz(?yfb (a2+b2) xgaj
ab’>d, —b (2b2+3a2) Oy — b (a2+b2) 10,0y +a(a® +b*)z0;
—a? 0, — (a2+b2) 220,02 +abrd2 -3 (a2—|—b2) 0,0y +abx 0y — (a2+b2) 2> 0
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Hence, E =2 D3 Q = Z§:1 D Q;1, i.e., E is isomorphic to the left ideal of D generated by the
three entries of (). Therefore, the following long exact sequence holds
0— D2 L ps & p oy,

where o : D — L is the canonical projection onto L = D/(D'*3 Q). If there exists a set of
values for the arbitrary constant parameters a and b such that the left D-module L vanishes, then
the above long exact sequence shows that D'*3(Q = D, and thus £ = D'*3Q = D is a free left
D-module of rank 1. Computing a Grébner basis of the left D-module D3 @, we obtain that the
generator z = (1) of the left D-module L satisfies d z = 0, where:

d:f(a2+b2)2 1’23Z+2ab (a2+b2) xayfazbz e D.

Therefore, if we consider a solution of the following polynomial system

2 32\2 _
(ab +2b)b2—0a0 N a2+ b2 =0, - b= —a?, - b=+ia,
ab (a® +b?) =0, a?b? = -1, at=1, a € {£1, +i},
a2b2:_17

such as a = 1 and b = i, then d is reduced to 1. If we consider the new ring A = A5(Q(7)), then
the left A-module E = A>3 /(A2 P), where A = (1 4)T, admits the following parametrization

z(i0y —0y) —1i
(265) Q=| -@+ia) |,
iz (02 +3§) — Oy
andT = (¢ —=z 0)isaleft-inverse of Q over A, which shows that @ is an injective parametrization

of £ and F is a free left A-module of rank 1. Finally, using Theorem 2.2 and Corollary 2.2, we
obtain M = A/(A (iz (02 + 02) — 9,)) and:

24) & (iz(02409)-0,))u=0 <& (z(02+409;)+id,)u=0.

Since holonomic right D-modules are cyclic (see Proposition 3.2), using Stafford’s theorem (see
3 of Theorem 1.2), we obtain the following interesting result.

Corollary 2.4 ([21]). Let D = A(01,...,0n), where A is either k[r1,...,zy], k[z1,...,z5] and
k is a field of characteristic 0, or k{zy,...,x,} and k = R or C, R € D%? be a full row
rank matriz and M = DYP/(D'*9R). If exth(M,D) = D?/(RDP) is a holonomic right D-
module, then Theorem 2.1 holds and we can choose a column vector A € DY which admits a
left-inverse over D and which is such that T(A) generates the right D-module exth, (M, D), where
7 : DY — exth(M, D) is the canonical projection. Finally, if A = k[z1,...,2,) and p—q > 1,
then Theorem 2.2 and Corollaries 2.1 and 2.2 hold.

Example 2.8. Let us consider the commutative polynomial ring D = Q [0, 9] of PD operators
and the D-module M = D'*3/(D'*2 R) finitely presented by R defined by:

9, 8, 0
266 R= v e D?*3,
(266) ( 0 9, ay>

The matrix R defines the equation of the equilibrium of the stress tensor in R? ([85]), namely:

{ Oy ottt + 0,012 =0,

267
(267) 0y 012+ 0,0%2 =0.

We can easily check that the D-module extp,(M,D) = D'*2/ (D3 RT) is a Q-vector space
of dimension 3 and a basis of ext},(M, D) is defined by the vectors 7((1 0)7), 7((0 1)T) and
7((0  9,)T), where 7 : D> — D?/(R D?) is the canonical projection. Hence, without loss of
generality, we can assume that A has the form of A = (a b+ c9,)7, where a, b and ¢ are three
arbitrary constants. Considering the new ring A = Qla,b,c|[0;,9,], P = (R — A) € A>*4
the A-module E = A™4/(A'2 P) and the A-module exty (E,A) = N = A*2/(AY4 PT) and
using Algorithm 3.1 implemented in OREMODULES, we can check that ¢(E) = ext! (N, 4) = 0
and ext? (N, A) = A/(0,,0,) # 0. According to Theorem 3.1, we obtain that the A-module E is
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a torsion-free but not projective whatever the values of the parameters a, b and ¢, which proves
that (267) cannot be defined by a sole PDE with constant coefficients, and the minimal number
of generators (M) of the D-module M is 3.

We can now introduce the left B = A3(Q)-module M’ = B ®p M = B'*3/(B*2 R). Clearly,
the right B-module exth(M’, B) & B2 /(R B?) is holonomic and thus cyclic by Proposition 3.2.
Moreover, the element 7(A) of exth(M’, B), where A = (1 z)T, generates ext:(M’, B) because
the matrix P = (R — A) € B?>** admits the following right-inverse over B:

—T 1
T —z? T
—z3 x?

—x(x0y+0z) —2 Oy +20,

The left B-module E’ = B1*4/(B*2 P) is then stably free of rank 2, i.e., free by Stafford’s theorem
(see 3 of Theorem 1.2). We can compute an injective parametrization of the free left B-module E’
using the package STAFFORD ([103])

9, 0,
x Oy 0, —1
Q: 2 )
220y — 1 0y —x

On+20,)0y (O +20,) 0, — 0,

which yields M’ & BY2/(B (8, + 20,) 0, (9s +x0,) 0y — ).

3. EQUIVALENCE TO SERRE’S REDUCTION

Corollary 3.1 ([14]). With the notations of Theorem 2.2 and Corollary 2.1, if the matriz A €
D1*@=") qdmits a left-inverse I' € D@~7X4 e TA = Iy—r, then the matriz Q1 admits the
left-inverse Ty — ToT' R € DWP=")%XP qnd the left D-module kerp(.Q1) is stably free of rank r.

Moreover, if the left D-module kerp(.Q1) is free of rank r, then there exists Q3 € DP*" such that
W2 (Qs Q)€ GL,(D). If we write W= = (Y{'  Y{)T, where Y3 € D™ P and Y; € DP~)*xP,
then the matriv X = (RQs  A) is unimodular, i.e., X € GLy(D) and:

VaAXxT= ¥s 5 :
Q2Y1 51— 5

The matriz R is then equivalent to the matriz X diag(l,., Q2) W=t or equivalently:

I, 0
VRW = .
0 Q2
Finally, the left D-module kerp(.Q1) is free when D satisfies 1 or 2 of Corollary 2.3 or if D is
A, (k) or By, (k), where k is a field of characteristic 0, and r > 2 (e.g., if ¢ > 3 in Corollary 2.4)

or if D = A(9), where A = k[t] and k a field of characteristic 0, or A = k{t} and k =R or C,
and r > 2.

Let us illustrate Corollary 3.1 with explicit examples.

Example 3.1. We consider again Examples 2.2 and 2.5. Since A clearly admits a left-inverse
over D, we can check that the matrix Q; € D%*? defined by the first 6 rows of @ also admits a
right-inverse over D. Using constructive versions of the Quillen-Suslin theorem and their imple-
mentations in QUILLENSUSLIN ([29]) and OREMODULES ([17]), we can complete the matrix @ to
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the following unimodular matrix:

1 0 0 -1 -o 0 \

0 -1 0 0 o1 0

0 0 1 0 0 o2

W=(@ @)=, _; _; _ 0 oy € GLg(D).
0 O 0 -o1 1-0} 0
0 —oy —02 —o02 0 1—o03
We can now check that the following matrix
1 0 0 0
X = (RQs A)= 3?;;1 5+_77i 72 ?)772 01 < pixd

0 0 1 0

is unimodular over D, i.e., X € GL4(D), and satisfies
RW = X diag(I5,Qz) & diag(ls,Qz) = X ' RW,
which finally proves that R is equivalent to diag(l3, Q2).

Example 3.2. We consider again Examples 2.3 and 2.6. We can easily check that A admits a
left-inverse over B. Using Corollary 3.1, the matrix Q; € B? defined by the first 2 entries of Q
admits a right-inverse over B. Then, using constructive versions of the Quillen-Suslin theorem and
their implementations in QUILLENSUSLIN ([29]) and OREMODULES ([17]), we can complete @1 to
the following unimodular matrix:

«
= (L »
CRC—LG) C(LO+R)+ad
W:(Qg Ql): 1 GGLQ(A)
rc-1q CW@med)-ad
Moreover, we can check that the matrix
ad, +C (Lo + R)
C(RC-LG
X=(JQs A)= ( ) € B**?
COy+ad)+aG c
C(RC—-LG)

is unimodular over B, i.e., X € GLy(B), and satisfies

JW = X diag(1,Q,) < X 'JW = diag(l,Q2),
which proves that the matrix R is equivalent to diag(1, Q2).
Example 3.3. We consider again Examples 2.4 and 2.7. Since A = (1 )7 admits the left-
inverse I' = (1 0) over A, Corollary 3.1 shows that the matrix R defined by (260) is equivalent
to diag(1,iz (07 + 02) — 9y)). If Q1 denotes the column vector formed by the first two entries of
(265), then kers(.Q1) = A(—i0,+0y x(0,+10y)) = A, ie., kera(.Q1) is a free left A-module of

rank 1. Since Q3 = (iz — 1) is a right-inverse of (—i 0, + 8, =z (9, +1i0,)) over A, we obtain
the unimodular matrix:

WZ(ixz@@@)i>’IV1:<imf@ u@+mw>.

-1 —0, — 10y i —x
Moreover, using Corollary 3.1, we can also introduce the unimodular matrices:

x(i0y +0y) +i 1 >

X =(RQ, A):< —w (0, —i8,) i

—i 1
V=Xxl= :
< —2 (0 —10y) —x(i0y +0,) —i >
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Finally, we can easily check that V RW = diag(1,ix (92 + 92) — 9y)).

Example 3.4. Let us consider again Example 2.8. Since I' = (1 0) is a left-inverse of A and
using Corollary 3.1, we obtain the following unimodular matrices:

-1 Oy Oy 20y x0y— 0y, —0y
W = —x x 0y 0, — 1 ., wWl= 0 x -1 ,
—z? 2?20, -1 x(xd,—1) x -1 0

—(0p +x0y) 1 1 x -1
X = L oXx = :
—2(0p+20y)—1 z 220, + 10, +2 —(0,+20,)

Hence, the matrix R defined by (266) is equivalent to
R=X"'RW= ( ! 0 0 )
0 (0p+20y)0y (On+x0y)0:—0, |’
which proves that (267) is equivalent to the following PDE with varying coefficients
(Op +20y) Oy o+ (0z +00y) Oy 73 — Oy 13 =0,

under the following invertible transformations:

oll = Oy To + Oy T3, 7 =x (0, 0! + Oy o'?) — (0, 012 + Oy o) =0,
012:x6y72+x8$73—73, T =x0'? — 522,
022:9:28y72772+x28z737x73, 4 =xzoll — o2,

We note that we have lost the symmetry of (267). It would be interesting to get a more symmetric
equivalent PDE by considering another cyclic vector of ext: (M’ E).

Let us illustrate the interest of Serre’s reduction with a larger example.

Example 3.5. Let us consider a model of a two reflector antenna studied in [47, 75] which is
defined by the linear differential time-delay system kerz(R.), where

9 —-K, 0 0 0 0 0 0 0
K, K, K. K,
0 6+T€ 0 0 0 0 —Te(s —TE(S —Te(s
0 0 a —-Ki 0 0 0 0 0
R = K, K. K, K. ;
0 0 0 a+f 0 0 —ia —Te(S —Tefs
0 0 0 0 o —-K; 0 0 0
K, K, K. K,
0 0 0 0 0 a+f —ia —ié —Tea

Oy(t) = yt), dyt) =yt —1) for all y € F = C®(R), and K1, Ko, K., K., K, and T, are
constant parameters. Let D = Q(Ky, Ko, K., K., T.) [0, 6] be the commutative polynomial ring of
OD time-delay operators and M = D'*?/(D1*¢ R) the D-module finitely presented by R. If

00 0
100
A:OOOGD6X3’
010
00 0
00 1

then the matrix S € D'2%¢ defined in Figure 2 is a right-inverse of P = (R —A) € D%*!2. Hence,
the D-module E = D'*12/(D'*6¢ P) is projective, and thus free by the Quillen-Suslin theorem.
Using the packages QUILLENSUSLIN ([29]) or OREMODULES ([17]), we can compute a basis and
an injective parametrization of E. We get that the matrix Q € D26 given in Figure 2 defines
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an injective parametrization of E, i.e., kerp(.Q) = D> P = D!*6_ Using Theorem 2.2 and
Corollary 2.2, we obtain that M = [ = D'*6/(D'*3Q,), where Q2 is the matrix defined by the
last three rows of @, and thus kerz(R.) = kerz(Q2.), i.e.:

Te él(t) + K2 Cl(t) + (Kp + 2Kc) (Kc - Kp) <2(t - 1) = O’
T. () + K2 G(t) + (K, + 2 K.) (K. — K,p) Ca(t — 1) =0,
T G5(t) + K2 G5(t) + (K, + 2 K.) (K. — K,) ((t — 1) = 0.

We note that the equations of the previous system are uncoupled, i.e.:

(268) M= [DY?/(D(T.0+ Ks) 0 (K,+2K.) (K.— K,) §)]>.

We note that A admits a left-inverse I" over D defined by:

01 00 0O
'=1 00 0 1 0 O
00 0 0 01

Hence, let us compute V € GLg(D) and W € GLg(D) such that VRW = diag(l3,Q2). The
D-module kerp(.QQ1) is a stably free and thus a free D-module of rank 3 by the Quillen-Suslin
theorem. This last result can be checked again by computing the D-module kerp(.Q1): we have
kerp(.Q1) = DY*3 F = D1*3 where the full row rank matrix F' € D3*? is defined by:

0 —-K; 0 0 0 0 0 00
F=120 0 0 —-K; O 0 000
0 0 0 0 0 —K; 0 0 0

Computing a right-inverse of F, we obtain that the matrix Q3 € D% defined by

Q=

SO O O O O O o = O
o O O o o = o o ©
o O O 2 O O o o o
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0 0 0 0 0 0
1
i 0 0 0 0 0
0 0 0 0 0 0
1
0 0 i 0 0 0
0 0 0 0 0 0
1
. 0 0 0 0 i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
T. + Ko
S0 1 0 0 0 0
Te + K>
0 0 — o -l 0 0
T. + K>
0 0 0 0 — g0 -
KT, 0 0
T.d 0 0
0 0 K\ T,
0 0 T.d
0 0 0
0 0 0
@= 0 T. (K, + Ko 0
0 ~K.T. 0
0 KT, 0
(T.0+K2) 0 (K, +2K.) (K. —K,) 6 0
0 0 (T.0+ Kz) 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 K T. 0
0 T.d 0
“K.T. 0 “K.T.
T. (K, + K. 0 ~K.T.
“K.T. 0 T. (K, + K.)
0 0 0
(K, +2K.) (Ke — K,) 8 0 0
0 (T.0+K2) 8 (2K.+K,) (Ko — K,) 0

Figure 2: Matrices S and @
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is such that the matrix W defined by

W=(Qs Q)=
0 0 0 KT 0 0
-K;'Y 0 0 T.0 0 0
0 0 0 0 0 K.\ T,
0 —-K;* 0 0 0 T.0
0 0 0 0 0 0
0 0 —-K;* o0 0 0
0 0 0 0 T.(K,+K.) 0
0 0 0 0 ~K.T, 0
0 0 0 0 ~-K.T. 0
0 0 0
0 0 0
0 0 0
0 0 0
0 K\ T, 0
0 T.0 0
KT, 0 ~K.T,
T. (Ky+K:) 0 -K.T.
_KcTe 0 Te (Kp+Kc)

is unimodular, i.e., W € GLg(D). Forming the matrix X = (RQ3 A) € D®*6 namely,

1 0 0 0 0 O
T.0+ Ky
_res T2 1
KT, 0 0 0 0
0 1 0 0 0 O
X = Tea—i-KQ 5
0 — 0 01 0
KlTe
0 0 1 0 0 O
T.0+ Ky
0 0 — 0 0 1
KlTe

then X € GLg(D). Its inverse is defined by

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
T.0+ Ko
=X1= i 0 0 0 0
V=X KT
T.0+ Ko
0 0 ——— 1 0 0
KlTe
T.0+ Ko
— 1
0 0 0 0 KT,
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and R =V RW has finally the form diag(I3, Q2):

100 0 0
01 0 0 0
E_vRw_| 001 0 0 0
00 0 (T.o+Ky) 0 (K,+2K,) (K,—K,) 5 0
00 0 0 0 0
00 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(T.0+ K) 0 (Kp+2K,.) (K.—Kp) 6 0 0
0 0 (T.0+ K) & (K, +2K,) (K.—Kp) 6

Finally, the D-module L = D**2 /(D ((T. 0+ K2) 0 (K, +2K.) (K. — K,) d) is clearly torsion-
free and d-free ([73, 75]) and, using (268), so is M = N3 (see also [75]).

We have the following consequence of Corollary 2.4, Example 3.8 and Theorem 5.4.

Corollary 3.2 ([21]). Let D = A(9), where A = k[t], k[t][0] and k is a field of characteristic 0,
or k{t}[0] and k = R or C, R € DI*? q full row rank matriz and M = D'*P/(D**9 R) the left
D-module finitely presented by R. Then, Theorem 2.1 holds and A € D? can be chosen so that
it admits a left-inverse over D and T(A) generates the right D-module exth (M, D). Moreover, if
p—q > 1, then Theorem 2.2 and Corollaries 2.1 and 2.2 hold. Finally, if ¢ > 3, then Corollary 3.1
holds.

Example 3.6. Let us illustrate Corollary 3.2 by an example coming from linear elasticity and stud-
ied by Hadamard in [38]. Let M = D1*4/(D'*3 R) be the left D = A;(Q(\, 1)) = Q(\, w)[p][0)-
module finitely presented by the matrix:

1 1 1
P8+§ §(A+p)(p8—1) 5 0 -
— X
R=1 92,0 —3)—24 pd+3 0 €D
—p0 A -1 2u(pd+1)

Since R has full row rank, exth,(M,D),D) = D3/(RD*) and a right D-module analogue of
Theorem 1.1 yields homp(exth (M, D), D) = kerp(.R) = 0 and Corollary 3.1 then shows that
the Auslander transpose module N = D3 /(R D*) = ext},(M, D) of M is a torsion right D-module.
Moreover, since we can easily check that R does not admit a right-inverse over D, N is not reduced
to 0. Therefore, the adjoint module N = D**3/(D*4 R) of M, defined by

1
—<p3+2> 21—2(p3+1)z2+(p3+1)23:0,

1
75(Ap8+)\7up3+2u)217(3)\+2u)22+)\u3:0,
1
521+(—p8—|—2)z2—23:0,

—2ppdzz =0,
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is a non-trivial torsion left D-module which is then cyclic by Example 3.8 and Proposition 3.2. In
particular, the element z, generates the left D-module N, i.e., N = D z,, since we have:

1
(A+2p)

22 = 22,

7= (A+3p)p0d —2(A+2p)) 2,

1
z3=————((A\+ 0—2(A+2p)).
3= g (A THe (A+2p))
Then, A= (0 1 0)7 issuch that P=(R —A)€ D3*° admits a right-inverse over D, i.e., the
left D-module E = D'*5/(D'*%3 P) is stably free of rank 2, i.e., free by Stafford’s theorem (see 3
of Theorem 1.2). Computing an injective parametrization @ of E, we get

—2p (A+p) (2p0+1) —2p
8u (pd+1) 0
Q= 2pA\+p) (4po+5) 2p (2p0+1) ;
2N+ ) pd+A+5pu 1

20 BA+Tu) (p0+1) 2u(p0+3) (2p0+1)

which proves that Q2 = (2p BA+7pu) (p0+1) 2p (pd+3) (2pd+1)). Moreover, since A
admits the left-inverse I' = (0 1 0), the matrix R is equivalent to R = diag(l2,Q2), i.e., R =
VRW, where V= (RQ3 A)~!eGL3(D), W =(Qs @Q1)¢€ GLs(D) and Q3 is a matrix which
can be obtained by computing a right-inverse of the syzygy module of @1, i.e.:

V= 0 0 ~1
CO43wpd+3A+TH | M 4p)pd+3A+5p |
(A+2p) 2\ +2p)
(A+n) AN+ p)
2(Z+24) 200 +2p) —2p(A+p)(2p0+1) “op
1 1
- _()\+2,u) _()\4_2’“) 8u(pd+1) 0
B (A—n) (A +5p)
T2 t2p) 200 +2p) 2u(A+p)(4pd+5)  2u(2p0+1)
(A + p) A+ 1) (s 1) pdt (A5 ) X

dpA+2p) ApA+2p)
Using the relation (p90+3) (2p0+1) =(pd+1)(2p0+ 3), we obtain that the linear system

00 1 A+p) [ Oo

— K - 7 _ = =
pap—|—2(9+ )+ 5 pap o 0,
00 oK
2p—+p—=— +3K — 2 =
pap+pap+3 BA+2p)o=0,
Ao+2pu G+p% —p@—Kzo,

dp dp

is equivalent to the following sole ODE in the new variables (n;, 172)T =W (0 o K G)T:
(p0+1) (BA+Tu)m+ (2p0+3)n2) =0.

The last presentation of M shows that ¢(M) = D/(D (p9+1)) and M /t(M) = D since the residue
classes 77; and 7}, of 1 and o in M /t(M) satisfy

(2p0+3) _

Tay Lo 12

BAX+T7w)

which finally yields M = t(M) ® M/t(M) = D/(D (p0+1)) ® D.

m=-
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Since the rings D = By (k), k[t][t71][0], where k is a field of characteristic 0, or k{t}[t~*][9],
where & = R or C, are simple principal left ideal domains (see, e.g., [10, 13]), using the concept
of Jacobson normal form, namely, a generalization of the Smith normal form to principal left or
right principal ideal domains (see, e.g., [25, 122]), one can prove that for every matrix R € DI*P,
there exist V € GLy(D), W € GL,(D) and d € D such that V RW = diag(1,...,1,d,0,...,0),
i.e., R is equivalent to the diagonal matrix R = diag(1,...,1,d,0,...,0), for a certain d € D. In
particular, if R has full row rank, i.e., kerp(.R) = 0, then R is equivalent to diag(1,...,1,d).

Now, if D = A;(k), k[t][0], where k is a field of characteristic 0, or k{t}[9], where k = R
or C, and R € D?*P  then the Jacobson normal form of R can be computed by considering
the injection of D into the simple principal left ideal domain F, where E is respectively Bj(k),
E[t][t=1][0] and k{t}[t~1][0]. Therefore, there exist V € GL,(E), W € GL,(E) and e € E such
that V RW = diag(1,...,1,¢e,0,...,0). However, artificial singularities may have been introduced
in e, V and W. The main interest of Corollary 3.2 is to show that there exist three matrices
Qo € D=9t X € GL,(D) and Y € GL,(D) such that:

I,1 0
XRY = :
0 Q2

In particular, the entries of Q2, X, Y, X~ ! and Y ! belong to D, i.e., do not contain singularities.

For more results, details and examples on Serre’s reduction, see [100].

“Ce qui fait la qualité de l'inventivité et de 'imagination du chercheur, c’est la
qualité de son attention, a ’écoute de la voix des choses. Car les choses de
I’Univers ne se lassent jamais de parler d’elles-mémes et de se révéler, a celui qui
se soucie d’entendre”.

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

La Nature est un temple ou de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe a travers des foréts de symboles
Qui l'observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,

Vaste comme la nuit et comme la clarté,

Les parfums, les couleurs et les sons se répondent. . .

Charles Baudelaire, Correspondances, Les Fleurs du Mal.
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CHAPTER 5

Implementations

The purpose of this chapter is to shortly demonstrate the Maple packages I have been developing
these last years with my colleagues: Chyzak (INRIA Rocquencourt) and Robertz (RWTH Aachen
University) for OREMODULES ([17]), Cluzeau (ENSIL, University of Limoges) for OREMORPHISMS
([20]), Robertz for STAFFORD ([103]) and Culianez (internship) for JACOBSON ([25]). The SERRE
package is in development in collaboration with Cluzeau ([21]) and the PURITYFILTRATION pack-
age ([98]) will be soon available and is developed by myself.

1. THE OREMODULES PACKAGE

Example 1.1. We consider the linearized model of a bipendulum studied in [85], i.e., a linear OD
system composed of a bar where two pendula are fixed, one of length [; and one of length I5. We
first introduce the ring A = Q(ly, 12, g)[d] of OD operators in d with coefficients in Q(I1, 2, 9):

> A:=DefinelreAlgebra(diff=[d,t],polynom=[t],comm=[g,1[1],1[2]]):

The presentation matrix of the corresponding system is defined by:

> R:=evalm([[d~2+g/1[1],0,-g/1[1]1]1,[0 d~2+g/1[2],-g/1[2]11);
2, 9 _9
d® + I 0 I
2, 9 _9

0 d® + L l2

In terms of equations, the linearized model of the bipendulum is described by:

R =

> ApplyMatrix(R, [x[1] (t),x[2] (t),u(t)],A)=evalm([[0]1$2]);

(;iz z1(t)) + Ll(t) _ gu(t)

I 1 _ 0
(j—ia:g(t)) n gxa(t) gu(t) 0

la lo
Using the involution 6 defined by (20), the adjoint R of R is defined by RT:

> R_adj:=Involution(R,A);

&2+ 2 0
Iy
R_adj:— 0 &+ lﬁ
2
g g

h b

Using Algorithm 3.1, the A-module M = A*3/(A1*2 R) is torsion-free iff the A-module ext!, (N, A)
vanishes, where N = A1%2 /(A3 RT) A) is the Auslander transpose of M:

> Ext:=Exti(R_adj,A,1);

10 Q21 0 Ldg +g°
Ext := , L+yg 2 9 @ +d*hyg
0 1 0 d?lao+g —g
lolyd* +1lyd? g+ d%1y g + >
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The fact that the first matrix Fzt[1] of Ext is the identity matrix means that M is generically
torsion-free, i.e., torsion-free for at most all values of the system parameters I, lo and g. We can
only conclude that it is generically the case because OREMODULES considers the system parameters
as independent variables which do not fulfill algebraic relations. The second matrix Ext[2] of Fxt
is the matrix R’ defined in Algorithm 3.1. The last matrix Fxt[3] of Ext is to the matrix @ of
Algorithm 3.1, i.e., the parametrization of the torsion-free A-module M.

If F = C*(R.), then, for almost all the values of the system parameters g, l; and Iy, kerz(R.) does
not admit autonomous elements (see the end of Section 4). Below, we shall actually determine the
only configuration where kerz(R.) is not parametrizable. Let us write down the parametrization
Ext[3] of kerz(R.) in terms of arbitrary functions of F:

> Q:=Parametrization(R,A);
Iy ;Tzz §i(t) +g(g9&(t))
Q:= b g €1(t) + 9 (960(1)
lily (% §1(t) +gla % §1(t) +gl % &(t)+ g2 &)

We have kerr(R.) = QF,ie., R(z1 z2 w)T =0 (27 20 u)T = Q& for a certain & € F.
Since M is generically torsion-free over the principal ideal domain A, it is generically free (see 3
of Theorem 1.2). Hence, kerz(R.) is generically flat (see Section 5). A flat output of kerz(R.)
corresponds to a left-inverse of the parametrization @ of kerx(R.)

> T:=LeftInverse(Ext[3],A);
ll l2

T := —
g*(li—12)  g*(lhi—12)

0

i.e., a flat output of the system kerx(R.) is defined by & =T (x1 22 )T, namely:

> xi[1] (t)=ApplyMatrix(T, [x[1] (t),x[2] (t),u(t)],A)[1,1];

o ll X1 (t) lQ $2(t)
&alt) = g% (ly —12) - g% (1 —I2)

Let us compute the Brunovsky normal form of ker z(R.), namely, a certain first order representation
of kerz(R.).

> B:=Brunovsky(R,A);

I B Iy 0 T
g2(h—1l)  g?(h—12)
dly - dls 0
g% (ly — 1) g% (ly = 12)
1 1
B=1] — 0
ghh=12)  g(li—1l2)
o d
g(li—=12) gl —12)
1 o1 1
)l (bl Lis |

The matrix B defines the Brunovsky transformation between the system variables x1, zo and u
and the Brunovsky variables z;’s, ¢ = 1,...,4, and v:

> evalm([seq([z[i](t)],i=1..4),[v(t)]])=ApplyMatrix (B, [x[1](t),x[2] (t),u(t)],A);
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B l1 xl(t) B lo :L‘Q(t) ]
g (lh—1la)  g*(lh—1l2)
() h(ge(t) (g 2a(t))
Zz(t) 92 (ll - 12) 92 (ll - Z2)
P _ _ 1’1(t) Z'Q(t)
zzgg gl —12) * g(li —12)
w(t) F 20 & o(t)
gl =1l)  g(lh—1a)
xl(t) _ l‘g(t) @
L (lh—12) 14 (lh—=1l)l Ll |

Let us check that the new variables z;’s and v satisfy the Brunovsky normal form:

> F:=Elimination(linalg[stackmatrix] (B,R), [x[1],x[2],u],
> [seq(z[i],i=1..4),v,0,0], A):
> ApplyMatrix(F[1], [x[1](t),x[2] (t),u(t)],A)=ApplyMatrix(F[2],
> [seq(z[il(t),i=1..4),v(£)]1,A);
SR [ —(g (1) +o(1) ]
0 —(g #3(t)) + 2()
0 —(g 2(t) + 2(1)
0 |- (L5 (0) + ()
u(®) g2 2 (t) + (912 + gly) 25(t) + L Iz v(t)
t
f t; 9> 21 (t) + gl z(t)
1
) . g* z1(t) + gla z3(t) i

The first four equations define the Brunovsky normal form of ker z(R.). The last three equations
express u, 1 and x4 in terms of the z;’s and v.

We note that the previous flat output of kerz(R.) is only defined for iy — Iy # 0. Then, the
non-generic situation {; = Iy corresponds to the only case where kerz(R.) may admit non-trivial
autonomous elements. We now turn to the case where the lengths of the pendula are equal:

> U:=subs(1[2]=1[1],evalm(R));

U .= h h
o a@+2 2
1 l1
> ext:=Exti(Involution(U,A),A,1);
d2li+g 0 ] { 1 -1 0 g
ext 1= [ ) 2 . ) g

If we denote by 0(U) = U” the formal adjoint of U and N’ = A'*2/(A'*39(U)) the Auslander
transpose of the A-module M’ = A'*3/(A*2 ) finitely presented by U, then the computation of
ext!y (N, A) gives the torsion submodule ¢(M’) of M’: it is generated by the residue class of the
row z of ext[2] in M’ which corresponds to the non-trivial entries in ext[1], i.e., Iy d*> + g. This
means that we have (I;1d?> +g)z=01in M', where z = (1 —1 0)(z1 22 u) =21 — 29, ie,
the difference of the positions of the pendula (relative to the bar) is a torsion element of M’ which
generates t(M') = (DY*2U")/(D**2U), where U’ = ext[2] (see Algorithm 3.1).

We can directly obtain the torsion elements of M’ as follows:

> TorsionElements (U, [x1(t),x2(t),u(t)],A);

[ (L 00) +9000) =0 |, [ 02(8) = 21(t) = 22(t) ]
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We can explicitly integrate the corresponding autonomous element of kerz(U.) as follows

> AutonomousElements (U, [x[1] (t),x[2] (t),u(t)],A) [2];

{ 01 = Clsin (Vﬁf) €2 cos (ij) }

where _ C1 and _ (2 denote two arbitrary real constants.

According to 2 of Theorem 6.1, the existence of an autonomous element of kerz(U.) implies that
of a first integral of kerz(U.). We can compute this first integral as follows:

> V:=FirstIntegral (U, [x[1] (t),x[2](t),u(t)],A);

V= —(—(La1(t) Clsin (ﬁt) Vi — (£ 21(t)) _C2 cos <

Vit
# a0 Cteos (V) - g oz (V2)

T (4 22(t))_C1 sin (\@t) VI + (L aa(t))_C2 cos (ﬂt> Vi

Vit
i)V

NG Vi
— /g xa(t) Ol cos <\/\/g}1t> + /g z2(t) _C2 sin (%)) Vi1

We let the reader check that we have V(t) = 0. For the explicit computations, see [17].

Even if a non-trivial autonomous element exists in kerz(U.), we can parametrize all elements of
kerz(U.) in terms of one arbitrary function & € F and two arbitrary constants _C7 and _Cy
using the following Monge parametrization (see Section 2):

> P:=Parametrization(U,A);

9&i(t)
P:=| — Clsin (%) —_C2 cos ({/%) +9&i(t)

11(L5 &) + g&(t)

Therefore, we have U (z1 22 u)l =0 & (z; 23 w)T = P(_C1, _(C2,&), where & is an
arbitrary element of 7 = C*°(R;) and _C1 and _ C?2 two arbitrary real constants. In particular,
we can check that P parametrizes elements of kerz(U.) as we have:

o)

Finally, the constants can easily be computed in terms of the initial conditions of the system.

> simplify(ApplyMatrix(U,P,A));

Example 1.2. We study an OD time-delay model of a two reflector antenna considered in Ex-
ample 3.5. Let A = Q(K1, K2, Te, K, K.)[d, §] be the commutative Ore algebra of OD time-delay
operators, where d (resp., ¢) is the OD (resp., time-delay) operator.

> A:=DefinelOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[K1,K2,Te,Kp,Kc],shift_action=[delta,t]):

We enter the presentation matrix R of the two reflector antenna:

R := evalm([[d, -K[1], O, O, O, O, O, O, O],

[0, d+K[2]/T[e]l, O, O, O, O, -K[pl/T[el*delta, -K[c]/T[e]l*delta,
-K[c]l/T[e]l*deltal, [0, O, 4, -K[1], 0, 0, 0, O, 0],

[0, 0, 0, d+K[2]/T[el, O, O, -K[c]l/T[el*delta, -K[p]/T[e]l*delta,
-K[c]/T[e]l*deltal, [0, O, O, O, 4, -K[1], O, O, O],

(o, 0, 0, 0, 0, d+K[2]/T[el, -K[cl/T[el*delta, -K[c]/T[el*delta,
-K[pl/Tlel*deltall);

VVV VV VYV
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rd —-K; O 0 0 0 0 0 0 7
K Kp§ K.§ K.§
0 d+T—: 0 0 0 0 - o —TF
. 0 0 d -K; 0 0 0 0 0
= Ky K. K,$6 K.6
0 0 0 d—l—Ti 0 0 - e —F
0 0 0 0 d —-K; 0 0 0
K K.§ K. 6 Kpé
| O 0 0 0 0d+Tf -7 7 7

The matrix R defines the following OD time-delay linear system:

> ApplyMatrix (R, [y[1]1(t),y[2]1(t),y[31(t),y[4]1(t),y[6](t),yl6]1(t),
> ul1](t),ul2] (t),ul3](t)],A)=evalm([[0]$6]);
I D (y1) (1) — K1 y2 (1) 1
D) ()T —Koya () + Kpui (t—1) + Keup (t— 1) + Keug (t — 1) [
Te
D (ys) (t) — K1ya (t)
D(y4) (t)Te+K2y4(t) — K. u; (t*l) 7Kp’u,2 (t*l) 7KCU3 (t*l) =
T:
D (ys) (1) — K1 ys (1)
D(yﬁ)(t) Te—l—KgyG(t)—Kcul(t—l)—KCUQ(t—l)—KpU{),(t—l) - -
L T, i

o O O o o o

Using the involution § = id4 of A, we can define the adjoint matrix R_adj = 0(R) = RT of R:

> R_adj:=Involution(R,A):

Let us consider the A-module M = AY9/(A'*6 R) finitely presented by R and let us check
whether or not M is a torsion-free A-module by computing the A-module ext!(N, A), where
N = A6 /(A9 RTY is the Auslander transpose of M (see Corollary 3.1):

> st:=time(): Extl:=Exti(R_adj,A,1): time()-st;

0.920
> Ext1[1];
1 0 00 0 O
01 0 0 0 O
0 0 1 0 0 O
00 0 1 0 O
00 0 0 1 0
00 0 0 01

The fact that the first matrix Ezt1[1] of Extl is the identity matrix implies extl (N, A) = 0, i.e.,
using Corollary 3.1, M is a torsion-free A-module. Moreover, according to Algorithm 3.1, the third
matrix Eztl[3] of Extl defines a parametrization of M.

> Ext1[3];
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[ K. K¢ K. K6 K, K16
K.5d K.é6d K,dd
K. K6 K, K16 K. K6
K.od K,dd K.5d
K, K16 K. K6 K. Ky
K,dd K.éd K.5d
0 0 T.d* + K»d
0 T.d* + Kyd 0
| &?T, + Ky d 0 0 ]

If F is an injective A-module, then, using 1 of Corollary 4.1, the system ker z(R.) is parametrizable
and Q = Ext1[3] defines a parametrization of kerz(R.), i.e., kerz(R.) = Q F>. This parametriza-
tion can be obtained by using the function Parametrization:

> Parametrization(R,A);

K K& (t—1)+K K1 &(t—1)+ K, K& (t—1)
K.D(&)(t-1)+K:D(&)(t—1)+Kp,D (&) (t—1)
KKi&(t—1)+ K, K1§(@t—-1)+ K K 63(t—1)
K.D(&)(t—1)+ K, D(&)(t—1)+ KD (&) (t—1)
KyKi§&(t—1)+ K. K1&t—1)+ K. K183 (t—1)

KpD (&) (t—1)+K.D(&)(t—1)+ KD (&) (t—1)
T. (D@) (&) (t) + K2 D (&) (t)
T. (D®) (&) (t) + K2 D (&) (1)
T. (D®) (&) (t) + K2 D (&) (¢)

The previous parametrization involves three arbitrary functions &1, & and &3 of F.

Let us now check whether or not the A-module M is reflexive. According to Theorem 3.1, we need
to check that the second extension A-module ext? (N, A) vanishes.

> Ext2[1];
[ 1) 0 0 1
T.d*+ Ko d 0 0
0 ) 0
0 T.d*> + Ko d 0
0 0 1)
i 0 0 T.d*+ Ko d |

As the first matrix Ext2[1] of Exzt2 is not equal to the identity matrix, we obtain that the A-
module ext? (N, A) is not reduced to zero, and thus, M is a torsion but not reflexive A-module.
In particular, M is not a free A-module, and by duality, the linear system kerz(R.) is not flat.

> PiPolynomial(R,A, [deltal);
[4]

By definition of 7-polynomials (see Algorithm 2.1), it means that L = A3*%/(A}*° R) = A; @4 M
is a free As = Q(K1, K2, T¢, Kp, K.)[d,d,6-module. If G is an As-module, then the new system
kerg(R.) is flat.
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Let us compute a basis of the free As-module L, and thus, a flat output of kerg(R.). To do that, we
apply the function LocalLeftInverse to the parametrization @ = Ext1[3] of M but by allowing
the invertibility of the polynomial § in As:

> T:=LocallLeftInverse(Ext1[3], [delta],A);

K, K, K,+ K,
—— 0 —— 0 2" 00 0 0
%1 %1 %1
K K,+ K. K.
T .= ——_< 0o —2__—<°< ¢ -—== 0 0 00
%1 %1 %1
KP+KC Kc KC
— 0 —— 0 —— 0 0 0 O
%1 %1 %1

%1 =0 K, (—2K.> + K,” + K, K.)

By construction, the matrix T is a left-inverse of ) over As. Let us check this fact:

> Mult(T,Ext1[3],A);

1 0 0
0 1 0
0 0 1
Then, (21 22 23)T =T (y1 ... y¢ w1 wuz wug)? is a basis of the free As-module L, and thus,

a flat output of the system kerg(R.), where (y1 ... y¢ w1 us uz)l =Q(z1 22 23)T. More
precisely, the flat output 21, 2z and z3 of kerg(R.) is defined by:

> evalm([seq([z[1]1(t)],i=1..3)])=ApplyMatrix(T, [seq(x[i] (t),i=1..6),
> seq(ul[il (£),i=1..3)1,48);

[ —Kex1(t+1)—Kexg(t+ 1)+ Kpas(t+ 1)+ Kexs (t+ 1)
Ki (2K + K, + K, K.)

21 (1)

0 | = Koz (t+1)+ Kpzs(t+1)+ Keas (t+1) — Kexs (t+ 1)
=2 - K (—2K2 + K> + K, K.)
23 (1)

Kpyzi(t+1)+ Koy (t+1) - Keas(t+1) — Keas (E+ 1)
Ki (2K + K,” + K, K.)

Substituting the previous flat output of kerg(R.) into its parametrization Ext1[3], we obtain the
identity (y1 ... ys w1 us uz)=U(y1 ... y¢ u1 wuz us), where U is defined by:

> U:=simplify(evalm(Ext1[3]&*S));
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i 1 0 0 0 0 0 0 0 O
d
?1 0 0 0 0 0 0 0 O
0 0 1 0 0 0 0 0 O
0 0 i 0 0 0 0 0 O
K,
0 0 0 0 1 0 0 0 O
U .= d
0 0 0 0 — 0 0 0 O
K,
(K, + K.) %2d K.%2d K%2d
- 0 — 0 — 0 0 0 O
%1 %1 %1
K. %2d (K, + K.) %2d K. %2d
— 0 2 <77 9 — 0 0 0 O
%1 %1 %1
K.%2d K.%2d (K, + K.) %2d
— 0 — 0 ~2 <77 0 0 0 0
L %1 %1 %1 J

%1 :=6 K (—2K.> + K,” + K, K.)
%2 := (T, d + K>)

We note that (y1 ... y¢ w1 wu2 wus) can only be expressed in terms of y1, y3 and ys. Hence,
{y1, y3, ys} also defines a basis of the free As-module L (see also [73]). More precisely, we have:

> evalm([seq([y[i] (t)=ApplyMatrix (U, [seq(y[jl(t),j=1..6),
> seq(uljl(t),j=1..3)]1,M)[1,1]1],i=1..6)1);

v1 (1) =1 (1)

> evalm([seq([uli] (t)=ApplyMatrix (U, [seq(x[j](t),j=1..6),
> seq(uljl(t),j=1..3)],A) [6+i,1]1],i=1..3)1);
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Ky (Kp+ Keo)D (1) (t+ 1) + T (Kp + Ke) (D@) (1) (t+1)
K1 (2K + K, + K, K.)
CKa KD (ys) (¢ +1) + Te Ke (DP) (y3) (t+ 1)
Ki (—2K>+ K,* + K, K.)
Ky KD (ys) (t+1) + T. Ko (D®) (y5) (£ +1)
Ki (—2K°+ K, + K, K.)

Ul (t) =

Ky KD (1)
K,

t+1)+T. K. (DP) (y1) (t+1)
2K+ K,” + K, K.)
K (K + KD (ys) (t+ 1) + T (K + Ko) (DP) (o) (t+1)
Ki (—2K° + K, + K, K.)
K3 KD (y5) (t+1) + T Ke (D) (y5) (t +1)
Ki (—2K° + K, + K, K.)

—| = | =

KR KD () (t+1) + Te Ko (D®) (1) (E+1) + K2 KD (ys) (£ +1)
Ki (2K + K, + K, K.)
Te Ke (D) (ys) (t+ 1) — Ko (Kp + Ko) D (ys) (¢ + 1)
Ky (—2K° + K,? + K, K.)
T (Kp + Ke) (D®) (ys) (t+1)
Ki (2K + K,” + K, K.)

us (t) =

Finally, the previous expressions of the inputs u;’s, i = 1, 2, 3, in terms of the flat outputs y1,
ys and ys can be used to solve motion planning problems in which the outputs of the system are
exactly the previous flat outputs. For more details, see [73].

Example 1.3. We consider Example 2.10, namely, the linear PD system formed by the infinites-
imal transformations of the Lie pseudogroup defining the contact transformations.

We first introduce the first Weyl algebra A = A3(Q) of PD operators in dj, dy and ds and with
coefficients in the commutative polynomial ring Q[z1, z2, z3].

> A:=DefinelreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]1]):

The linear PD system is then defined by the following presentation matrix R of PD operators:

> Rri=evalm([[(x[2]/2)*d[1],x[2]*d[2]+1,x[2]*d[3]+d[1]/2],
> [-(x[2]/2)*d[2]-3/2,0,d[2]/2], [-d[1]-(x[2]/2)*d[3],-d[2],-d[3]/2]]);

Tod d

221 Z2d2+1 $2d3+31
R = _T2dy 3 0 da
2 2 2
zod3 d3
—d — —d _s
== 2 2

Let us compute a finite free resolution of the left A-module M = A>3 /(A>3 R):

> F:=FreeResolution(R,A);
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d d
33221 Tods + 1 1‘2d3+?1
Fi—table(l = | %292 3 0 a2 7
2 2 2
T d3 ds
—di - 2 —d 2

2:[ d2 —d1—$2d3 2+1’2d2 ],3=INJ(1)])

Let us check whether or not the left A-module M admits a shorter free resolution.

> G:=ShorterFreeResolution(F,A);

d d
.CU22 ! rodo +1 xo dg + ?1 —T2
Gi=—table(l= | —%2%_3 d2 0 |.2=INJ@E))
2 2 2
xods3 ds
—dy — - % 1
dq 5 do 5

We obtain that the first matrix G; of G defines a shorter free resolution of the left A-module M,

namely, we have M = A*4/(A1*3G1). We note that this shorter free resolution of M can be
directly obtained as folllows:

> ShortestFreeResolution(R,A);

d d
$22 ! i) d2 +1 T2 d3 —+ 51 —T2
T dg 3 d2
table([1 = — - = 0 = 0 ,2=1INJ(3
( = ; ®)
T dg ds
—d; — - _=3 1
dy 5 do 5

According to Proposition 3.3, the left A-module M is a stably free iff the matrix G; admits a
right-inverse over A:

> RightInverse(G[1],A);

0 -1 0
1 0 To
0 —x2 0

d2 —dl — X2 d3 24+ i) dg

We obtain that the left A-module M is stably free of rank 4 — 3 = 1. This result can also be
obtained by checking that lpd, (M) = 0 as it then implies that M is a projective left A-module,
i.e., stably free by Proposition 2.7:

> ProjectiveDimension(R,A);

0

Let us compute the rank of the finitely generated left A-module M:

> QOreRank(R,A);
1

The fact that ranks (M) < 2 implies that we cannot use Stafford’s theorem which asserts that
every stably free left A-module of rank at least 2 is free (3 of Proposition 1.2) to conclude that M
is a free left A-module of rank 1. However, we can try to find if there exists an injective minimal
parametrization of M (see Corollary 5.1):

> (Q:=MinimalParametrization(R,A);
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—dy
Q:=| di+az2ds3
-2 — xro dQ
> T:=LeftInverse(Q,A);
—1
Ti=[ 2 0 -]
2 2

> Mult(T,Q,A);

[1]
Hence, we obtain that M is a free left A-module of rank 1 and a basis z of M is defined by the
residue class of T' in the left A-module M. Moreover, the set of generators {y; = m(f;)};=1,23 of
M satisfy (y1 y2 y3)T = Qz, ie., Q is an injective parametrization of M. Finally, if F is a left
A-module (e.g., F = Q[x1,z2]), then the underdetermined linear PD system kerz(R.) admits the
following injective parametrization

> evalm([seq([etal[i] (x)],i=1..3)])=Parametrization(R,A);

m(z1, z2, T3) —(3% &1(21, 29, 3))
ma(1, w2, w3) | = | (32 &1(21, w2, 23)) + 72 (5 &i (w1, @2, 73))
(a1, T2, 3) —2&1 (w1, T2, w3) — T2 (3% &1 (w1, @2, T3))

ie, kerr(R)=QF and TQ =1, and & = T 5 is defined by:
> xi[1] (x)=ApplyMatrix (T, [seq(etali] (x),i=1..3)1,A)[1,1];

1 1
f1($17 Z2, 363) = §$2 m(x1, x2, 333) - 5773(331, T2, 96’3)

2. THE JACOBSON PACKAGE
Example 2.1. Let us consider the first Weyl algebra A = 4;(Q):
> A:=DefineOreAlgebra(diff=[d,t],polynom=[t])
and the following matrix R with entries in A:
> R:=evalm([[-t*d+1,t"2*d,-1,0],[-d,-t*d+1,0,-111);

R | td+1 t?d -1 0
- —-d  —td+1 0 -1

Let us compute the Hermite form of the matrix R over the principal left ideal domain B1(Q) of
OD operators with rational coefficients containing A:

> H:=0reHermite(R,A,"monic");
g_|[1 -t 1 282d—-t -1 ¢t
o d —td |7 0 2d%t*+2td —-d —td
The second matrix Hy of H is the Hermite form of R and the relation Hy = H; R holds, where
Hy is the first matrix of H. Let us check this point:

> Mult(H[1],R,A);

1 2¢2d —t -1 t
0 2d%t>+2td —d td

Let us check that the matrix H; is unimodular over B, i.e., H; € GLa(B):

> LeftInverseRat(H[1],4);

—td+1 t
—d 1

Let us now compute the Jacobson normal form of the matrix R:

> J:=0reJacobson(R,A);
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00 1 0
J_[—1 o}[1ooo 00 0 1
"l o —1]'lo 100|100 —td+1 2d

01 —d —td+1

The Jacobson form J, of R satisfies Jo = Ji R J3, where J; is the ¢*® matrix of J:

10 0 0
01 00

The matrix Jj is trivially invertible over B as its inverse is defined by:

o]

Similarly, the matrix Js is unimodular over B as we have:

> Mult(J[1],R,J[3],4);

> LeftInverseRat(J[1],4);

> LeftInverseRat(J[3],4);

td—1 —t3d 1 0
d td—1 0 1
1 0 0 0
0 1 0 0

Example 2.2. Let us consider the skew polynomial ring A = Q[n]{c) of forward shift operators
with polynomial coefficients, namely, for all a € Q[n], o(a(n)) = a(n + 1):

> A:=DefinelreAlgebra(shift=[sigma,n],polynom=[n]):
Let R be the matrix with entries in A obtained by substituting d by ¢ and t by n in Example 2.1:
> R:=evalm([[-n*sigma+l,n"2*sigma,-1,0], [-sigma,n*sigma+1,0,-111);

R —no+1 n?c -1 0
T —0 no+1 0 -1

Let us compute the Hermite normal form of R over the principal left ideal domain B = Q(n)(o)
containing the ring A:

> H:=0OreHermite(R,A,"monic");
H[[ (i 1—ng—a }’ [ 3) 1—n0 —i na+na—1 ]]
The matrix Hs satisfies the relation Ho = H; R, where H; is the i*" matrix of H:
> Mult(H[1],R,A);
[ 1 —n -1 n ]
0 1-0 —0 no+o-1
The matrix H; is unimodular over B as we have:

> LeftInverseRat(H[1],4);

—no+1 n
—0 1

Let us compute the Jacobson normal form of the matrix R:

> J:=0reJacobson(R,A);

0 0 1 0
J._{l 0] {1000} 0 0 0 1
T 0O -1’0 1 0 0”1 0 —no+1 n’o
0 1 —0 no+1
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The Jacobson normal form .J, of R satisfies Jo = J1 R J3, where J; is the i** matrix of J:

1 0 00
01 00

The matrix Jj is clearly unimodular and we can check that J3 is unimodular over B:

> Mult(J[1],R,J[3],4);

> LeftInverseRat(J[3],4);

no—1 —n2o 1 0
o —no—1 0 1
1 0 0 0
0 1 0 0

3. THE QUILLENSUSLIN PACKAGE
Example 3.1. We consider the following row vector R with entries in A = Q[z, y]:
> var:=[x,y]:
> Ri=[x-4*y+2,xxy+x,x+4*y~2-2%y+1] ;
Ri=[v—4y+2, vy+ax, x+4y>—2y+1]
Let us check that the ideal generated by the entries of R is equal to A:

> IsUnimod(R,var,true);
true

Therefore, the matrix R admits a right-inverse over A defined by:

> RightInverse(R,var,true);
[y7 _17 1]

Using Corollary 3.3, the A-module M = A**3/(AR) is stably free and thus free by the Quillen-
Suslin theorem (2 of Theorem 1.2). Let us now compute a basis of the free A-module M:

> U:=QSAlgorithm(R,var,true);

y —2y+4yP—zy+1l —yx+4y*-2y+1)
U:=| -1 r—4y+2 r+4y?—2y+1
1 —x+4y—2 —r—4y?+2y

We can check that the first row of the inverse of U, denoted by Uy, is exactly R:

> U_inv:=CompleteMatrix(R,var,true);

r—4y+2 zy+zr v+4y?-2y+1
U inv:= 1 Y 0
0 1 1

Therefore, the residue classes of the last two rows of U;,, in M form a basis of the free A-module
M of rank 2. This result can directly be obtained by using the function Basis0OfCokernelModule:

> BasisOfCokernelModule (Matrix(R),var,true);
1 3y 0
0 1 1
Finally, an injective parametrization of the A-module M is given by the last two columns of U:

> InjectiveParametrization(Matrix(R),var,false);

2y+4y? —zy+1 —y(x+4y*-2y+1)
x—4y+2 r+4y?—2y+1
—z+4y—2 —z—4y*+2y
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Example 3.2. We consider the linear OD time-delay system (71). The presentation matrix R of
(71) is defined by
> R:=Matrix([[d-delta+2, 2,-2*delta],[d,d,-d*delta-1]]);

d—6+2 2 —26

Ri= d d —dé—1

where d (resp., §) is the OD (resp., time-delay) operator. We consider the commutative polynomial
ring A = Qld, §] of OD time-delay operators and the A-module M = A3 /(A1*2 R).
> var:=[d,deltal;
var = [d, ¢]
Let us check whether or not the matrix R admits a right-inverse over A:

> IsUnimod(R,var);
true

Since R admits a right-inverse over A, the A-module M is stably free, and thus, free by the
Quillen-Suslin theorem (2 of Theorem 1.2). Therefore, according to Corollary 5.2, there exists
U € GL3(D) such that RU = (Iz 0). Let us compute such a matrix U:

> U:=QSAlgorithm(R,var);

0 0 -2
s 1 , ,
v=| 373 -0 d°0+d—dé°—0+2
d
= -1 2 _
5 d*—do

We can check again that the matrix U satisfies RU = (I 0)

100
01 0

and U is a unimodular matrix over A since the entries of its inverse U ! belong to A:

> simplify(R.U);

> LinearAlgebra[MatrixInverse] (U);
d—56+2 2 -2
d d —dé—1
~1/2 0 0

The residue class of the last row T of the matrix U~! in M defines a basis of the free A-module
M. In particular, the free A-module M admits the following injective parametrization

> Q:=InjectiveParametrization(R,var,true);

-2
Q:=| d*5+d—dé>—5+2
d>—ds

i.e., we have kers(.Q) = A2 R and TQ = I,. Moreover, the linear OD time-delay system
kerz(R.) is flat and @ is an injective parametrization of kerz(R.), where F is a A-module (e.g.,
C>(R)), i.e., every element 7 € kerx(R.) has the form n = Q¢, for a unique element £ € F.

Moreover, according to Corollary 5.3, the flat linear OD time-delay system kerz(R(d, d).) is equiv-
alent to the linear controllable OD system kerz(R(d, 1).). Let us compute an invertible transfor-
mation which sends the elements of kerz(R(d, 1).) to those of kerz(R(d,J).):

> V:=SetLastVariableA(R,var,1,true);
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1 0 0
1, 1 1.1
S do— - Sf—- 1 6-1
Vo 2d6 2d5+26 5 1
d(3—1)
- 1
5 0

Let us check that the relation R(d,d)V = R(d, 1) holds:
> S:=simplify(R.V);

d+1 2 -2
d d —-1-d

Then, for all ¢ € kerz(R(d,1).), we have n = V { € kerz(R(d,?).). The inverse transformation,
i.e., the transformation sending ker=(R(d,d).) to ker£(R(d, 1).), is defined by V1

S =

> LinearAlgebra[MatrixInverse] (V);

1 0 0

1 1.1 1
—d6—Z64+-4=d 1 —6+1
sdd— 5o+ 5 +5d d+

d(s—1)
il Sy 1
5 0

Now, since the E = Q[d]-module N = E1*3/(E'*2 S) is free, there exists W € GL3(FE) such that
SW = (I, 0). For instance, we can take the matrix

> W:=QSAlgorithm(S,var);

0 0 -2
1 d )
w33 -1 d?+1
d
— -1 d*—d
2

whose determinant equals 1. Hence, the matrix W defines a one-to-one correspondence between
the elements of kerz((Iz 0).) = F and those of kerz(R(d,1).). Composing the transformations
defined by V and W, we get a one-to-one correspondence between the elements of ker#((I2  0).) =
F and those of ker=(R(d,§).). More precisely, for all # € F, we have (0 0 )T € kerz((Io 0).)
and, using the relation U = V W and the fact that the last row of U is defined by the matrix @,
we finally get n =U (0 0 0)T = Q6 € kerr(R(d,0)). Hence, we find again that @ defines an
injective parametrization of kerz(R.).

Example 3.3. Let us consider the OD time-delay model of a flexible rod with a force applied
on one end defined in Example 5.3. Let A = Q[d, d] be the commutative polynomial ring of OD
time-delay operators, where d (resp., §) is the OD (resp., time-delay) operator and the presentation
matrix R € A2%3 of (77) defined by

> var:=[d,deltal;
var := [d, ¢]
> R:=Matrix([[d,-d*delta,-1], [2*delta*d,-d*delta”2-d,0]]);

d —dd -1
2d6 —dé*—d 0

Let us check whether or not the A-module M = A'*3/(A'*2 R) is stably free, and thus, free by
the Quillen-Suslin theorem:

R =

> IsUnimod(R,var);

false

We obtain that R does not admit a right-inverse over A, and thus, the A-module M is not free.
In particular, there does not exist a matrix U € GL3(A) such that RU = (I, 0) or, equivalently,
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R cannot be completed to a matrix V' € GL3(A). Let us compute the set of all maximal minors
of R:

> m:=MaxMinors(R);
m = [d?* 6% — d?, 2d6, —d % — d]
The ideal I of A defined by the maximal minors is generated by

> Involutive[InvolutiveBasis] (m,var);
[d]

i.e., I = (d). Thus, d is the greatest common divisor of the maximal minors of R. In particular,
we obtain that the torsion A-submodule t(M) of M is not reduced to 0. A solution of the first
Lin-Bose’s problem (see Section 5) can be obtained by means of LinBosel as follows:

> F:=LinBosel(R,var);
P -1 0 —d dé 1
o 0 —d || -25 6%+1 0
We then have R = R” R’ and det R” = d and R’ admits a right-inverse over A:
> simplify(F[1].F[2]);
d —dé -1
2dé —ddé*—d 0
> LinearAlgebra[Determinant] (F[1]);
d

> IsUnimod(F[2],var);
true

Let us now solve the second Lin-Bose’s problem (see Section 5).

> P:=LinBose2(R,var);

d —ds -1
2

p._ | 2ds —déd—d 0
-1 e

5 0

Hence, we have embedded R in the square matrix P whose determinant is:
> LinearAlgebra[Determinant] (C);
d
4. THE STAFFORD PACKAGE

Example 4.1. Let us consider Example 2 of [57], namely, the left ideal I of the first Weyl algebra
A = A3(Q) defined by the following three PD operators

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]1]):

> P[1]:=d[1]1*d[3]72; P[2]:=d[1]*d[2]; P[3]:=d[2]*d[3]72;

P1 = dl d%
PQ = dl d2
P3 = dz dg

namely, I = AP, + APy + A P;. According to Stafford’s theorem (see Theorem 5.2), we know that
the left ideal I can be generated by only two elements of A. Let us compute such pairs:

> G:=TwoGenerators(P[1],P[2],P[3],A);
G :=[dy d}, dydy + (2133 + aF w5 + 23) dy d3, [0, 21 23 + 2} w3 + 27]]
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Therefore, the left ideal I is also generated by the first two entries G; and G5 of G. Let us check
this result again by computing Grobner bases of I and the left ideal J = AG; + A Go:

> Gbasis([P[1],P[2],P[3]1]1,A); Gbasis([G[1],G[2]],A);
[d1 do, dyd3, dy d2]
[d1 da, d> d3, dy df]
The left ideal I can also be generated by the first two entries Hy and Hy of H defined by:
> H:=TwoGenerators(P[3],P[1],P[2],4);
H :=[d2d3, d1d} + (2} 2o + 23 + x3) dy da, [0, 2% 22 + 23 + 24]]

Let us check this result by computing a Grobner basis of the left ideal of A generated by the first
two entries H; and Hs of H:

> Gbasis([H[1],H[2]],4);
[d1 do, dod3, dy d2]
Finally, I can also be generated by the first two following entries K7 and K5 of K defined by
> K:=TwoGeneratorsRat(P[2],P[3],P[1],4);
K = [dydo, dydi + (w1 w2 + 23) d1 d, [0, 21 w2 + 23]
ie., I = AK;, + A K>, because we also have:
> Gbasis([K[1],K[2]]1,4);
[d1 do, dyd3, dy d2]

Example 4.2. Let us consider the first Weyl algebra A = A3(Q) of PD operators with coefficients
in the commutative polynomial ring Q[z1, z2, z3):

> A:=DefinelOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]1]):

We consider the following system matrix of PD operators:
> R:=evalm([[d[1]+x[3],d[2],d[3]1]11);
RZ:[d1+.’[3 d2 dg]

The corresponding PD linear system is V. ¥+ x3y1 =0 (where V. i/ is the divergence operator in
R3), namely:

> x :=x[1],x[2],x[3]:
> ApplyMatrix(R, [seq(y[i]l (x),i=1..3)],4)[1,1]=0;
w3 y1(21, T2, 23) + (505 y1(21, T2, 23)) + (5% (@1, T2, 23)) + (52 ya(@1, 22, 23)) =0
Let us check whether or not the finitely presented left A-module M = A**3/(A R) is stably free:
> S:=RightInverse(R,Alg);

—ds
S = 0
di + x3

Hence, the matrix R admits a right-inverse S as we have
> Mult(R,S,Alg);
[ 1]
and thus, using Corollary 3.3, the left A-module M is stably free. Let us compute its rank:

> OreRank(R,Alg);
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According to Stafford’s theorem (see 3 of Theorem 1.2), the left A-module M is a free of rank 2.
Let F be a left A-module (e.g., F = C*°(R?)) and let us consider the linear PD system kerr(R.)
with polynomial coefficients. Using the fact that M is a free left A-module, the linear system
kerz(R.) admits an injective parametrization. Let us compute an injective parametrization:

> Q:=InjectiveParametrization(R,A);
Q:=[-d%dy —dix3—2d3+d3+d3dy,—3dy —dids —2dyd3 w3
+dszdy +dsdyde — 33 —d3 2% + d3 s + 2 + 23 d3 da + da)
[ds, dy + 23]
[M+d?ds+2dyd3xs+dza3 —dsdy —dzws — dzdy dy — w3d3 do,
d} +3d3z3 +3dy23 —d3 —2dy 23 — d3dy — 2dy dy x5 + 23 — 2% — dy 2]

We can check that the matrix @ defines an injective parametrization of M, and thus, of kerz(R.)
because we first have ker4(.QQ) = A R, a fact which can be checked by

> SyzygyModule(Q,A);
[ dl + 3 d2 d3 ]
and the matrix Q € A%*2? admits a left-inverse over A defined by:

> T:=LeftInverse(Q,A);

T.— 0 —d%+d2d1—2d1$3+d2$3—$§+d1+$3 1
’ 1 dsdi —dsds +dsxs —ds + 2 0

Therefore, M = A3 @Q = A, which proves again that M is a free left A-module of rank 2.
Moreover, the residue classes of the rows of T in M define a basis of the free left A-module M.
This last result can directly be obtained by using the function BasisOfModule:

> BasisOfModule(R,A);

0 —d%—‘rdgdl—2d11‘3+d2w3—$§+d1+$3 1
1 d3di —dsds +d3xs —d3 + 2 0

The functions InjectiveParametrization and BasisOfModule are based on Algorithm 5.3 but
they also use extra methods to speed up the consuming computations by avoiding as much as
possible to compute two generators of left ideals of A appearing in Algorithm 5.3.

5. THE PURITYFILTRATION PACKAGE

Example 5.1. Let us first introduce the commutative polynomial ring A of PD in 0; and 0, with
rational constant coefficients

> A:=DefinelOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]]):
and the system matrix R of the linear PD system defined by:
> R:=matrix(3,3,[0,d[2]-d[1],d[2]-d[1],d[2],-d[1],-d[2]-d[1],d[1],-d[1],-2*d[1]]);
0 do—dy do—ds
da —dy —dy — d;y
dy —dy —2d;

This example is due to Janet (see [84]). Let us study the purity filtration of the A-module M =
A1><3/(Al><3 R)

> F:=PurityFiltration(R,A);

0 do—dy dy—d 0 dy—d 1 0

[| a le fz clz Lo d le 0 d—d 1 —do |]
= 2 1 2 1 ) 0 1 1 ) 2 1 ) 1 1 ) 2
d —dy 24 4 —dy 0 —dy
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If we denote by F; the i*P matrix of F', then we have:

M = A1><3/(A1><3 F1)7

M/H(M) = AV3 (A2 Fy),

t(M) — (A1><2 FQ)/(A1X3 Fl) o A1><2/(A1><3 F3)7
ext, (ext! (M, A), A) = A2 /(A1X2 Fy),

ext? (ext? (M, A), A) =2 A2 /(A1X3 Fy).

The first matrix Fy defines a finite free resolution of the A-module M = A'*3/(A**3 R) of length
at most two, and thus F; = R. Let us check that dim 4 (ext (ext’ (M, A), A)) = 1:

> DimensionRat (F[4],A);
1

Moreover, let us check that dim 4 (ext? (ext? (M, A), A)) = 0:

> DimensionRat(F[5],A);
0

Let now us compute an equivalence presentation of the A-module ¢(M) = A*2/(A*3 F3):

> U:=PurityFiltrationTorsion(R,A);

0 dy—dy -1 1 0 -1
Uw=[|d -d |, 0 10 |
d —dy 0 1 —dy
0 0 0 —dy

Hence, we have t(M) = A2 /(A3 Uy) =2 AV /(A5 Us). Let us check whether or not we can
simplify again the presentation matrix Us by decoupling the two diagonal blocks of Us:

> B:= BaerExtensionTorsionConstCoeff (R,A);
0 dy—di O 0

1 0
0 do—d do —d -1 1 0
B [| d 2 d 1 ; ; 0 0 1 L oo ! 0
= 2 1 2 1 ) ) 010 1 ) 0 d2—d1
dy —d; —2d; 0 0 1 —dy ) )
0 0 0 —dy
‘We obtain

t(M) _ A1><3/(Al><3 Bl) o~ A1><4/(Al><5 Bg)
~ A1><2/(Al><2 F4) ® A1><2/(A1><3 F5)
=~ exth (extl (M, A), A) @ ext? (ext? (M, A), A),

where the third and fourth matrices B3 and B, of B define the first A-isomorphism.

Let us now compute an equivalent presentation of the A-module M = A1*3 /(A3 R):

> (:=BaerExtensionConstCoeff(R,A);
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10 -1 0 0 0 0
01 1 0 0 0 0
0 do—dy do—dy 00 0 0 do—di 0O O
Q = [| dz —dy —do—d; |[,] 0 0 0 -1 1 0 0 ,
dy —dy —2d; 0 0 O 0 1 0
0 0 O 0 1 —dy
1 0 0 O 0 0 —dy
[ 1 0 0
-1 0 0
10 0 0 0 0 1 0 0
0 1 0 2 0 1], 1 0 -1 ]
0 0 0 -1 0 0 1 0 -1
0 do—dy do—d
| —1 1 2 i
We obtain

M = AV /(ASB Q) = [ & ALXT /(A1XT )
A3 /(AVX2 By) @ ATX2/(AV2 ) @ AT )(AV3 Fy)
= M/t(M) @ extly(extly (M, A), A) @ ext? (ext? (M, A), A),
and the third and fourth matrices of E define the first A-isomorphism. We can use the package
OREMORPHISMS (see Section 5) to check again this A-isomorphism:

> with(OreMorphisms):

Following Proposition 1.1, we first need to compute X € A3X7 satisfying Q1 Q3 = X Q2, where
@1 =R:
> X:=Factorize(Mult(Q[1],Q[3],A),Q[2],A);
0 do—dy 1 0 1 -1 1
X :=|d —-d 100 0 1
d —-d 000 0 1
Then, using the command TESTISO of OREMORPHISMS, we can test whether or not the pair of

matrices (@3, X) defines an A-isomorphism from M to L:

> TestIso(Q[1]1,Q[2]1,Q[3]1,X,A);
true

Let us check that the matrix Q4 defines an A-isomorphism from P to L. We first compute Y € A7<3
satisfying Q2 Q4 =Y @1, where @1 = R:

> Y:=Factorize (Mult(Q[2],Q[4],A),Q[1],A);

0
00 0
01 -1
Y:i=1]00 0
10 0
01 0
00 1 |
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Then, we can check again that the matrices Q4 and Y define an A-isomorphism from L to M:

> TestIso(Q[2],Q[1],Q[4]1,Y,4);
true

The main interest of the presentation Q2 (resp., representation) of M (resp., kerz(R.)) is that
the different i*"-dimensional layers of the linear PD system kerr(Qs.) are uncoupled. Hence, the
integration of kerz(Qs.) is then highly simplified:

> Egs:=convert(convert (ApplyMatrix(E[2], [zeta[1] (x[1],x[2]),zetal2] (x[1],x[2]),
> zetal3](x[1],x[2]),taul1] (x[1],x[2]),taul2] (x[1],x[2]),upsilon[1] (x[1],x[2]),
> upsilon[2] (x[1],x[2]1)]1,A),vector),list):
> eqgs:=map(a->a=0,Eqgs);

[C1 (@1, 22) — G5 (21, 22) = 0,C2 (21, 22) + G5 (21, 22) =0, *3%72 (1, 22) + 3%272 (z1,22) =0,

—71 (21, 2) + 72 (21, 2) = 0,01 (21, T2) = 0,01 (21, T2) — 52 va (1, 22) = 0, — 520y (21, 22) = 0]

If F = C°°(R?), then a generic element of ker7(Q2.) has the form (¢; (o (3 71 7T v wv2)T,
where:

> S:=pdsolve(eqgs,{zetal1] (x[1],x[2]),zetal2] (x[1],x[2]),zetal3] (x[1],x[2]),
> taul1] (x[1],x[2]),taul2] (x[1],x[2]) ,upsilon[1] (x[1],x[2]) ,upsilon[2] (x[1],
> x[2D1);

S = {vg (w1,22) = _C1,(1 (w1, 72) = (3 (21, 72) , G2 (21, 72) = —(3 (71, 72) ,
G (x1,22) = (G (21,22), 2 (x1,22) = _Fl(za+ 1), 71 (x1,22) = _F1(z2+x1),v1 (x1,22) =0}
Finally, n=Q3 (&1 ¢ ¢ 71 72 vi v2)T, namely,
> sols:=convert(S,list):

> eta:=ApplyMatrix(Q[3], [rhs(sols[2]),rhs(sols[3]),rhs(sols[4]),rhs(sols[6]),
> rhs(sols[5]),rhs(sols[7]),rhs(sols[1]1)],4);

(3 (z1,2)
ni= | —CGx,22)+2 Fl(zg+x1)+ _ CI
(3 (x1,m2) — _F1(x2 + 1)
is the general solution of the linear PD system kerz(R.):

> ApplyMatrix(R,eta,A);
0
0
0

Finally, we point out that the computer algebra system Maple cannot compute the closed-form
solutions of the linear PD system R7n = 0, a fact which illustrates the interest of the results
obtained in Section 4 based on the purity filtration and of the PURITYFILTRATION package.

Example 5.2. Let us study the purity filtration of the left A = A3(Q)-module M = A'*3 /(A4 R),
where R is the matrix of PD operators defined by:

> R:=evalm([[d[1],x[2],d[2]1], [x[1],d4[2],0],[d[1],x[2],d[1]1],
> [x[11*d[1]+1,d[1]1*d[2],d[2]11]);

d1 i) d2
R = T d2 0
d1 i) d1

l‘ldl +1 dldg d2
Let us compute the purity filtration of the left A-module M:

449



ALBAN QUADRAT

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]]):
> F:=PurityFiltration(R,A);

d x d d x d
1 d2 02 10 0 1 d2 02
X X
Foo 1 2 o1 ol 1 2 ’
dy Z2 dy 00 1 dy T2 dy
14+ 21d; didy do 14+ 21dy didy do
p p 1 0 0
x
! ; 02 0 -1 0 |
—r _ ;
! ? 1 0 —dq + do
0 0 -1
0 —d; —ds

We get M/t(M) = AV3/(AV3 Fy) = 0, t(M) = A3 /(A4 F3) = M, i.e., M is a torsion left
D-module, exth (extl (M, A), A) = A3 /(A3 Fy) and ext? (ext? (M, A), A) =2 AV3 /(A4 Fy).
Looking at the matrices Fy and Fs, we can check that extl (ext) (M, A), A) = AY¥2 /(A2 F}),
where the matrix F is defined by

and ext? (ext? (M, A), A) = A/(Ad, + Ady).

Let us compute dim 4 (ext! (ext!y (M, A), A)) and dim 4 (ext? (ext? (M, A), A)):

> Dimension(F[4],A);
> Dimension(F[5],A);
2
We have dim 4 (ext}; (extl (M, A), A)) = 3 and dim 4 (ext? (ext? (M, A), A)) = 2.

Let us check whether or not M is the direct sum of ext; (ext!y (M, A), A) and ext? (ext? (M, A), A).

> B:=BaerExtensionTorsion(R,A,0,1);

dy T2 da 0 0 0
—x1 —dg 0 0 0 0
d1 To dg
0 0O -1 0 O 0 1 00 0 -1 O
T d2 0
= ) 0 0 1 0 0 o100
d1 i) d1
Vb ad dids d 0 0 0O 0 -1 0 00 10 -1
x
T 0 0 0 1 0 —di+d
0 0 0 0 —d —dy |
—l—l‘1 —dg T
0 1
0 0
d1 T2 dg ’
—X1 —dg 0
L 0 0 -1 |
[Ore_algebm, [“diff”a “diff//]v [ZL’l, 552}’ [dla d2]a [iBl, 1’2], []7 07 []7 H? [xlv xQ]a []a []7

[dlﬁ = [dh .’171], dlﬁ = [dQ, 372]], [70, = a dl,ia = a dg]]]
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Since By = diag(Fy, F5), we obtain that M = ext} (ext!, (M, A), A) @ ext? (ext? (M, A), A). More-
over, the third matrix Bs of B defines a left A-isomorphism ¢ : M — L = A*¢ /(AT By), and
the fourth matrix B, defines its inverse ¢ 1.

Using the package OREMORPHISMS ([20]), let us check this result:

> TestIso(B[1],B[2],B[3],Factorize(Mult(B[1],B[3],A),B[2],A),A);
true

> TestIso(B[2],B[1],B[4],Factorize(Mult(B[2],B[4],A),B[1],A),A);
true

Hence, we have M = L = A2 /(A2 F]) & A/(Ady + Ads), and thus we obtain:

ker}-(R.) = Bg ker]:(Bg.) = B3 (keI‘]:(F4.) D ker].-(F5.)).

Example 5.3. We consider a linear OD time-delay system describing a model of a tank containing
a fluid and subjected to a one-dimensional horizontal move studied in Example 2.4.

Let us introduce the commutative polynomial ring A = Q(«)[d, ] of OD time-delay operators

> A:=DefinelOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],comm=[alpha]):

where dy(t) = y(t), dy(t) = y(t — 1) and « is a system parameter and the matrix system R:

> R:=matrix(2,3, [d,-d*delta”2,alpha*d~2*delta,d*delta”2,-d,alpha*d~2*deltal);
d —dé® ad®é 1

R =
dé?  —d  ad?6

Let M = A3 /(A'*2 R) the A-module finitely presented by R. Let us compute the purity filtration
of the A-module M = A1*3 /(A2 R):

> Q:=PurityFiltration(R,A);
0= d —d&® ad?®s 1 1 0 d d d d 10 |
T ds? —d ad®5 || 0 —1-6% aéd || ds? d || ds® d|'| 0 1

Therefore, we have:
M = AV3 /(A2 Q),
M/t(M) = AVC /(A2 @),
t(M) _ (A1><3 Q2)/(A1X2 Ql) o~ A1><2/(Al><2 Q3)7
extl (exty (M, A), A) = A1*2 /(A2 Q,) = t(M),
ext? (ext? (M, A), A) = A2 /(A3 Qs5) = 0.

Using the purity filtration of the A-module M, let us compute a linear OD time-delay system
which is equivalent to kerz(R.):

> P:=BaerExtensionConstCoeff(R,A);
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M1 1 0 0 0 O
0 —1-6%2 add -1 0 O
d —dé* ad*s 0 0 0 d 0 0
Po= 2 2 i 2 ’
dé —d «ad?d 0 0 0 dé d 0 0
0 0 0 0 1 0
0 0 0 0 0 1|
[0 —1 0 ]
0 1 0
1 0 01 0 0 O 0 0 1
o1 0 0 0 0 0|, 1 1 0 ]
001 00 0O 0 —-1-6% aéd
d —dé?  ad?s
482 —d  ad’s |

We obtain that kerz(P;.) = kerz(P,.), where P, = R and the corresponding A-isomorphism and
its inverse are defined by the matrices P3 and Pj. In particular, on the matrix P, we can easily
check that M is not the direct sum of M/¢t(M) and ¢(M). Following Example 2.4, we can easily
integrate kerz(P,.) and thus kerz(R.) = P3 kerz(Ps.).

Finally, let us consider the second model of a tank containing a fluid and subjected to a one-
dimensional horizontal move studied in Example 2.5 and defined by the following matrix:

> R:=evalm([[delta~2,1,-2*d*deltal], [1,delta”2,-2*d*deltall);
0 1 —2d6
R =
1 6 —2d5
Let us compute the purity filtration of the finitely presented A-module M = A'*3/(A1*2 R):

> Q:=PurityFiltration(R,A);
0 [ 5 1 —2d6 1 -1 0 52 -1 5% -1 1 0 ]
T 1 82 =245 |70 —1-62 2d5 || 1 -1 || 1 =10 1
Therefore, we have:

M = A1><3/(Al><2 Ql),

M/t(M) = AVE /(A2 Qg),

t(M) — (A1><3 Q2)/(A1><2 Ql) o~ A1><2/(Al><2 Q3)7
ext}y (ext)y (M, A), A) = A2 /(A2 Qq) = (M),
ext? (ext? (M, A), A) =2 A2 /(A3 Qs5) = 0.

Using the purity filtration of the A-module M, let us compute a linear OD time-delay system
which is equivalent to kerz(R.):

> P:=BaerExtensionConstCoeff(R,A);
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Tl -1 0 0 0 0 07
0 —1—6%2 2d6 0 0 0 0
P:[V? 1 2d5] 0 0 0 62 -1 0 0
1 62 —2ds 0 0 0 1 -1 0 0]’
0 0 0 0 1 0
L0 0 0 0 0 1|
[ 1 1/241/262 —d§ ]
1/2 1/2 0
100 0 1/2 0 0 0 0 1
010 —-1/2 0 00],| 1 —1 0 ]
001 0 0 00 0 —1—§2 2ds
52 1 —2d6
|1 52 —2d6 |

We obtain:
M:A1><3/(A1><2P) L A1><7/(Al><6p)
~ A1><3/(Al><2Q ) D A1><2/(Al><2 QS)
= M/t(M) & t(M).
The A-homomorphism ¢ : M — L defined by ¢(7(\)) = o(A P3), where g : A7 — L is the
canonical projection and A € A'*3, is an A-isomorphism. Moreover, ¢~ : L — M is defined by
¢ Yo(p)) = m(u Py) for all p € A7, These results can be checked using the OREMORPHISMS
package ([20]):
> with(OreMorphisms) :
> TestIso(P[1],P[2],P[3],Factorize(Mult(P[1],P[3],A),P[2],A),A);
true
> TestIso(P[2],P[1],P[4],Factorize(Mult(P[2],P[4],A),P[1],A),A);
true
Hence, we have kerz(R.) = kerz(Ps.) = kerzg(Q2.) ® kerf(Qg.) and we can easily integrate

kerz(Q2.) as explained in Example 2.5. Finally, since Ps. : kerg(P;.) — kerz(R.) is an A-
isomorphism, we obtain the Monge parametrization kerz(R.) = Q3 kerz(Bs.).

6. THE OREMORPHISMS PACKAGE
Example 6.1. We consider the Dirac equations for a massless particle defined by the matrix

> R:=matrix(4,4,[d[4],0,-i*d[3],-(i*d[1]+d[2]),0,d[4],-i*d[1]+d[2],i*d[3],
> i*xd[3],i*d[1]+d[2],-d[4],0,i*d[1]-d[2],-1*d[3],0,-d[4]]);

da 0 —ids  —idy —do
o 0 dy  —idi+do ids
ids  idy4+dy  —dy 0
idi—ds  —ids 0 —dy

with entries in the Ore algebra A = Q(¢)[d1, da, ds, d4] of PD operators with coefficients in Q(4):

> A:=DefinelreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],

> diff=[d[4],x[4]],polynom=[x[1],x[2],x[3],x[4]],comm=[i],
> alg_relations=[i"2+1]):

See Example 6.1. Let us consider the A-module M = A'**/(A'** R) finitely presented by the
matrix R and let us compute its endomorphism ring F = end 4 (M ):
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> Endo:=MorphismsConstCoeff (R,R,A):

The A-module structure of the ring F can be generated by

> nops(Endo[1]);
18

generators which satisfy

> rowdim(Endo[2]);
22

A-linear relations. Let us compute idempotents of E defined by matrices with entries in Q(¢):

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);

10 00 1/2 0 -1/2 0 0 00O
1 0 0 0 1/2 0 -1/2 0 0 0 O
Idem = || , , ,
001 0 ~1/2 0 1/2 0 000 0
0 0 01 0 -1/2 0 1/2 0 00O

12 0 1/2 0
0 1/2 0 1/2
12 0 1/2 0
0 1/2 0 1/2

[Orefal.QEbTa? [“diﬁu7 “diﬁ”? “diﬁ”a “diﬁ//]7 [‘Tla I2,$37I4], [d17d23 d37 d4]a [1:171'2,:173, I4L [7’}707
[]a [22 + 1]7 [.I'],J}Q,ZL'Z;, 1‘4]7 Ha []a [dlﬁ = [d17 xl], dlﬁ = [dg,l'g], dlﬁ = [d37$3]7 dlﬁ = [d47 1‘4]]}]

We obtain the trivial idempotents 0 and id; of E as well as two non-trivial idempotents e; and eq
respectively defined by the matrices Idem[1,2] and Idem[1,4]. Let us denote by P = Idem]1,2]
and Q € A**4 such that RP = Q R:

> P:=Idem[1,2]; Q:=Factorize(Mult(R,P,A),R,A);

12 0 -1/2 0 12 0 1/2 0
0 12 0 —1/2 0 12 0 1/2
Tl -2 00 12 o T2 0 12 0
0 —1/2 0 1/2 0 12 0 1/2

As the entries of the matrices P and Q belong to the field Q and P? = P and Q? = Q, using linear
algebraic techniques, we can easily compute bases of the free Q-modules kerg(.P), img(.P) =
kerg(.(Iy — P)), kerg(.Q)) and img(.Q)) = kerg(.(I4 — @Q)) as follows:

> Ul:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):

> U:=stackmatrix(U1,U2);

> V1:=SyzygyModule(Q,A): V2:=SyzygyModule (evalm(1-Q) ,A):

> V:=stackmatrix(V1i,V2);
-1 0 -1 0 -1 0 1 0
0 -1 0 -1 0 0 -1

U := V.=

1 0 -1 0 1 0 1 0
0 -1 0 1 0o -1 0 -1

In particular, the previous matrices define bases of the free A-modules ker 4(.P), im4(.P), ker4(.Q)
and im4(.Q). Hence, the unimodular matrices U and V, i.e., U € GL4(A) and V' € GL4(A), are
such that the matrices U PU~! and V Q V! are block-diagonal formed by the diagonal matrices
0o and Is:
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> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

0 0 0O 0 0 0O

0 0 0O 0 0 0O
VERIF1 := VERIF?2 =

0 010 0 010

0 0 01 0 0 01

By Theorem 8.1, R is equivalent to the block-diagonal matrix S = V RU ! defined by:

> S:=Mult(V,R,LeftInverse(U,A),A);

Cidytdy —idy —ds 0 0
idi—dy —ds—ids 0 0
5= 0 0 di+ids —idi —dy
0 0 Cidi+dy —ids+dy

This result can directly be obtained by using the function HeuristicDecomposition:

> HeuristicDecomposition(R,P,A) [1];

—ids+dy —idy —do 0 0
—idi+dy  ditids 0 0
0 0 dy+ids idy+do
0 0 —idi+dy —dy+ids

As we have coim4(.P) & imy(.P) and coimy(.Q) = im4(.Q), we obtain that the A-modules
coim4 (.P) and coim4(.Q) are free. Hence, using Theorem 6.1, we obtain that R is equivalent to a
block-triangular matrix. It can be obtained by computing bases of the free A-modules ker 4(.P),
coim4 (. P), ker4(.Q) and coim4(.Q) as follows:

> Y2:=LeftInverse(Exti(Involution(Y1,A),A,1)[3],A): Y:=stackmatrix(U1,Y2);
> Z2:=LeftInverse(Exti(Involution(Z1,A),A,1)[3],A): Z:=stackmatrix(V1,Z2);

-1 0 -1 O -1 0 1 0

0 1 0 1 0o 1 0 -1
Y = 7 =

0 0 1 0 0O 0 -1 0

o 0 0 -1 0 0 O 1

The matrices Y € GL4(A) and Z € GL4(A), respectively formed by the bases of kers(.P) and
coim 4 (.P) and by the bases of kera(.QQ) and coim(.Q), are such that T = Z RY ! is a block-
triangular matrix defined by:

> T:=Mult(Z,R,LeftInverse(Y,A),A);

dy—ids  idi+do 0 0

T idy —dy ds+1ds 0 0
ids —idy —dy dy+ids —idi—ds
Cidy+dy  —ids  —iditdy  dy—ids

This last result can directly be obtained by using the function HeuristicReduction:

> HeuristicReduction(R,P,A) [1];

dy —ids idy + do 0 0

idy — do dy +1ids 0 0
ids —id; —dy dy+idz —idy —dy

—idy +ds —ids —idy +dy dy—ids
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Example 6.2. We consider a model of a tank containing a fluid and subjected to a one-dimensional
horizontal move (see Example 8.3). The presentation matrix is defined by:

> A:=DefinelreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],

> comm=[alphal):

> R:=matrix(2,3, [d,-d*xdelta”2,alpha*d~2*delta,d*delta”2,-d,alpha*d~2*deltal);
d —dé&* ad*s

R =
dé? —d ad®*

We consider the A = Q(a)[d, §]-module M = A1*3/(A*2 R) finitely presented by the matrix R.
Let us compute the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A):

The A-module E is generated by the endomorphisms f;’s defined by f;(w(\)) = w(\ P;), where
7 AY3 — M is the canonical projection, A € A>3 and P; is one of the following matrices:

> Endo[1];
01 0 100 0 0 0
[[1 0 0 |, ] 01 01|, 0 0 01,
0 0 -1 62 -1 add 0 0 1 1— 42 2 0
0 0 0 0 0 0 add 0 0 0
1462 -1+ 0|,| ad ad 0 { 0 1 =62 add |]
0 0 0 1 0 —5% -1 0 0 0
The generators f;’s of E satisfy the following A-linear relations
> Endo[2];
[ —d 0 dé* 0 0 0 d 0]
dé> 0 —d 0 0 0 —d 0
0O 4 0 00 0 0 0
0 0 0 d 0 0 0 0
0 0 0 6 0 —-1+462 0 O
0 0 0 0 d 0 0 0
| 0 0 0 0 0 0 0 d |

i.e., if we denote by F = (f1 ... fs)T, we then have Endo[2] F = 0.

The multiplication table Endo[3] of the generators f;’s gives us a way to rewrite the composition
fio f; in terms of A-linear combinations of the fi’s or, in other words, if we denote by ® the
Kronecker product, namely, F@ F = ((fio F)T ... (fsoF)T)T, then the multiplication table T of
the generators f;’s satisfies '@ F = T F, where T is the matrix Endo[3] without the first column
which corresponds to the indices (i, 7) of the product f; o f;. We do not print here this matrix as
it belongs to A%4*8. We can use it for rewriting any polynomial in the f;’s with coefficients in A
in terms of a simple A-linear combination of the generators f;’s

Let us now try to compute idempotents of E defined by idempotent matrices, namely, elements
e € E satisfying €2 = e and defined by matrices P € A3*3 and Q € A?*? satisfying the relations
RP=QR,P?=Pand Q*=Q:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);
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1/2 1/2 0 000 100
Idem = [| 1/2 1/2 0,00 0],]0 1 0]/,
—c51 (=1+6%) —c51 (=146 0 000 0 0 1
0 0 0 1 0 0 1/2 -1/2 0
—6* 1 —add |,| 6 0 add |, -1/2 1/2 0 11,
0 0 0 0 0 1 —c51 (—1402) —cb1 (-1+46°%) 1
[Ore_algebra, [“diff", dual_shift], [t 5], d, 8], [t, 5], [, ¢51,0, 1, [1, [t, 8], [1, [ [diff = [d, 1],

dual__shift = [4, s]]]]

Let us consider the first entry Py of Idem[1] where we have set the arbitrary constant ¢51 to 0 for
simplicity reason and let us compute a matrix Q; € A?*? such that R P, = Q, R:

> P[1] :=subs(c51=0,evalm(Idem[1,1])); Q[1] :=Factorize (Mult(R,P[1],A),R,A);

1/2 1/2 0
12 —1/2
Po=|1/2 1/2 0| @ =
~1/2  1/2
0 0 0

As the entries of the matrices P; and @ belong to Q, using linear algebraic techniques, we can
easily compute bases of the free A-modules ker4(.Py), ker4(.Q1), ima(.P1) = kera(.(Is — P;)) and
imA(.Ql) = keI‘A(.(IQ — Ql))Z

Ul:=SyzygyModule(P[1],A): U2:=SyzygyModule (evalm(1-P[1]),A):

>
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule(evalm(1-Q[1]),A):
> V:=stackmatrix(V1,V2);
1 -1 0
1 1
U:=]10 0 1 V=
1 -1
1 1 0

We can check that J; = UP,U~! and J, = V Q1 V! are block-diagonal matrices formed by the
matrices 0, and I,,:

> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

0 0 0 0 0
VERIF1 == | 0 0 O VERIF?2 = l 01 ]
0 0 1

According to Theorem 8.1, the matrix R is then equivalent to the following block-diagonal matrix
VRU L

> R_dec:=map(factor,simplify(Mult(V,R,LeftInverse(U,A),A)));
d((52—|—1) 2ad%§ 0

0 0 —d(0—-1)(6+1)

This last result can directly be obtained by means of the function HeuristicDecomposition:

R _dec := [

> map(factor,HeuristicDecomposition(R,P[1],A)[1]);
ld(52+-0 2ad?6 0

0 0 —d@B-1)(5+1)

We can use another idempotent matrix P listed in Idem[1] to obtain another decomposition of
the A-module M. Let us consider the fourth one and the corresponding idempotent matrix Qs:
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> P[2]:=Idem[1,4]; Q[2] :=Factorize(Mult(R,P[2],A),R,A);

0 0 0 ,
P 52 1 sd | 0O 09
= | — -« =
? 2 0 1
0 0 0

Since we have P = P, and Q3 = @2, we know that the A-modules kera(.P), kera(.Qs2),
ima(.P) = kera(.(I3 — P)) and ima(.Q2) = kera(.(I2 — Q2)) are projective, and thus, free
by the Quillen-Suslin theorem (see 3 of Theorem 1.2). Let us compute bases of those A-modules:

> Ul1:=SyzygyModule(P[2],A): U21:=SyzygyModule (evalm(1-P[2]),A):
> UU:=stackmatrix(U11,U21);
> V11:=SyzygyModule(Q[2],A): V21:=SyzygyModule (evalm(1-Q[2]),A):
> VV:=stackmatrix(V1i1,V21);
1 0 0
-1 4
vu =] 0 O 1 VV =
0 1
52 —1 add

As previously, we can check that the idempotent matrices P, and ()2 are equivalent to block-
diagonal matrices formed by the matrices 0,, and I,,:

> VERIF1:=Mult(UU,P[1],LeftInverse(UU,A),A);
> VERIF2:=Mult(VV,Q[1],LeftInverse(VV,A),A);

0 0 0 0 0
VERIF1 == | 0 0 O VERIF?2 = [ 0 1 1
0 0 1

According to Theorem 8.1, the matrix R is then equivalent to the block-diagonal matrix:
> R_decl:=map(factor,simplify (Mult(VV,R,LeftInverse(UU,A),A)));
d(6—1)(6+1)(6*+1) ad®’s§(6-1)0+1) 0
R _decl :=
0 0 d
We can check this last result by means of the function HeuristicDecomposition:
> map(factor,HeuristicDecomposition(R,P[2],A)[1]);
l d@—1)(6+1)(82+1) ad?s(6—-1)(F+1) 0 ]
0 0 d

Hence, we obtain another decomposition of the matrix R. If we denote by

Ty =(d(6?+1) 2ad*)), My = AY2/(ATy),
(269) T, =d(6* - 1), My =A/(ATy),

T3 =(d(6%2 —1)(62+1) ad?§(6% 1)), Mz = A2 /(ATs),

T, =d, My =A/(ATy),
then we have the two following decompositions of the A-module M:
(270) M =M &My, M=DM;d M.

which proves again E = [A/(Ad)]* @ [A/(Ad (6% —1)))? @ A.

7. THE SERRE PACKAGE

Example 7.1. We consider the model (256) of a string with an interior mass studied in Exam-
ple 2.2. Let A = Q(n1,12)[d, 01, 02] be the commutative polynomial ring of OD incommensurable
time-delay operators, where dy(t) = y(t) and o; y(t) = y(t — h;) for i = 1, 2.

> A:=DefinelOreAlgebra(diff=[d,t],dual_shift=[sigmal1],x[1]],
> dual_shift=[sigmal[2],x[2]],polynom=[t,x[1],x[2]],comm=[etal1],etal2]]):
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The presentation matrix R € A**5 of (256) is defined by:

> R:=matrix(4,6,[1,1,-1,-1,0,0,d+eta[1],d-etal[1],-etal2],etal2],0,0,
> sigmal[1]72,1,0,0,-sigma[1],0,0,0,1,sigma[2]"2,0,-sigma[2]]);

1 1 -1 -1 0 0

d+mn; d—n; -nz n2 0 0

T o2 1 0 0 -0, 0
0 0 1 022 0 —o0p

Let us illustrate Algorithm 2.1 with this example. As explained in Section 2, the hypothesis
of Theorem 2.2 can be completely checked when the A-module extl (M, A) = A3/(R A%) is 0-
dimensional, i.e., is a finite-dimensional Q(71, 12)-vector space. Let us check whether or not this
hypothesis is fulfilled using the command DimensionRat of OREMODULES:

> DimensionRat (transpose(R),A);

0

Now, we can compute a finite basis of the Q(n1, 72)-vector space ext’ (M, A) using the command
KBasis of OREMODULES:

> KBasis(transpose(R),A);
[Ad]

We obtain that the A-module ext!, (M, A) = A3/(R A*) is a 1-dimensional Q(ny, n2)-vector space
of basis the residue class 7(A) of the column vector A = (0 0 1)7 in extl (M, A). Hence, let us
consider the column vector A = (0 0 1)T

> Lambda:=evalm([[0],[0],[0],[1]1]);

= o O O

the matrix P = (R — A) defined by

> P:=augment(R,-evalm([[0], [0],[0],[111));

1 1 -1 -1 0 0 0
d+m d—m -n2 m 0 0 0

| o2 1 0 0 -0 0 0
0 0 1 092 0 —0y —1

and the A-module E = A7 /(A'** P). Let us now check whether or not the A-module E is free.
According to Theorem 2.1, the full row rank matrix P presents a stably free A-module F iff P
admits a right-inverse over A. Let us check this point:

> RightInverse(P,A);

_ _ -1 _m
12 —1/2n I

~1/2  1/2pt m

72

O O O O O O

~1/20, 1j2%2 me

-1/2  —1/2pt -1
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We obtain that E is a stably free A-module, and thus, is free of rank 2 by the Quillen-Suslin
theorem (2 of Theorem 1.2). Let us compute a minimal parametrization of the A-module E:

> Q:=MinimalParametrization(P,A);

—219 N2 01 0

0 —M201 0

—d—n1 — 1 o1 m 0

Q= m—mn+d —011 0

—2n201 —m2+m201? 0

N o2 — 0212 +02d  —0111 02 1
—d—n1—1n g1 —02 |

Hence, we get ker4(.Q) = A P or equivalently E =2 A7 Q. Let us check whether or not this
parametrization is injective:

> T:=LeftInverse(Q,A);
0 0 —1/2np ' —1/2np7! 0 00

._ _ o o1 o1 =1
T = 0 n2 12 n2 2
0 0 0 —09 0 1 0

We get T Q = I3, i.e., A7 Q = A3, which proves that @ is an injective parametrization of E.
Let us now write @ = (QT  Q¥)T, where the submatrix Q; € A®*3 is defined by

> Q_1:=submatrix(Q,1..6,1..3);

=219 Ny 01 07
0 —1201 0
—d—m —mn o1m 0
Q1 =
m—mn2+d —01Mm 0
—2m 01 —ne+n2012 0
_7710—270_2772+0'2d —0117102 ]__

and the matrix Q, € A>3 is defined by:

> Q_2:=submatrix(Q,7..7,1..3);
Q2 = [ —d—m—m2 o1m —02 ]

According to Theorem 2.2, we have M = A'*3/(AQ,), which, using Corollary 2.2, proves again
that the linear system kerz(R.) is equivalent to kerz(Q2.), namely, (264).

Since the column vector A admits a left-inverse over A defined by

> LeftInverse(Lambda,A);
[00 0 1]
the Quillen-Suslin theorem (2 of Theorem 1.2) implies that there exist V € GL4(A) and W €
GLg(A) such that V RW = diag(l3,@2). For more details, see Corollary 3.1. Let us compute

such matrices V and W following Corollary 3.1. We first need to check that ker4(.Q1) is a free
A-module of rank 3:

> K:=SyzygyModule(Q_1,A);

1 1 -1 -1
K:=10 —2m m-—m+d d+m+m 0 0
0 —1+0‘12 —0’12 —0’12 o1
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Then, we get kera(.Q1) = A3 K. Moreover, K has full row rank since:

> SyzygyModule(X,A);
INJ (3)

Hence, we get AY3 K = A1X3 a fact proving that ker4(.Q1) is a free A-module of rank 3. Let us
now compute a matrix Q3 € A®*3 such that W = (Q3 Q1) € GLg(A). We can take:

> Q_3:=RightInverse(K,A);

1 0 1
0 0 -1
= 4 m
0 1/27m i
0 0 g1
| 0 0 0 |
Then, the matrix W = (Q3 Q1) defined by
> W:=augment(Q_3,Q_1);
(1 0 1 21 12 01 0
0 0 -1 0 —M2 01 0
0 —1/2m~t I —d—m —n o1 0
W =
0 1/277271 7% 7717772+d —o01m 0
0 0 o1 —2n901 —ma+m201% 0
_0 0 0 77102—02772+02d —01 1M1 02 1_
is invertible over A, i.e., W € GLg(A), and its inverse W1 € A%%6 is defined by:
> W_inv:=inverse(W);
M1 1 -1 -1 017
0 —2m m—1n2+d d+mn2+m 0
0 —1+4042 —0q? —0q? o1 0
W _inv := 0 0 —1/2p5 1 —1/2n971 0 0
o o o —1
0o -z % % 0
0 _@i’mas 1/2 o2 (201% mi+m —m>+d) 1/2 o2(201 mAm-—natd) oy o 1
- 2 2 2 2 -

Finally, if we define the matrix X = (RQ3 A), namely,

> X:=augment (Mult(R,Q_3,A),Lambda) ;

1 0 0 0
d+m 1 0 0
X = 52 0 1 0

e 71 (*1+0’22)
0 1paet _nlued

then X is invertible over A, i.e., V € GL4(A), and its inverse V = X1 € A**4 is defined by:

> V:=inverse(X);
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1 0 0
—d—mn 1 0 0
V= 12 0 -1 0
1/2 (—1+022)(d+m+2 012711) _1/2 —1402 ™M (—1+<722) 1
M2 M2 72

Finally, by Corollary 3.1, the matrix R is then equivalent to the matrix V RW = diag(I3, Q2):

> Mult(V,R,W,A);

1 00 0 0 0
01 0 0 0 0
0 01 0 0 0

0 0 O —d—’r]l—’f]g g1 —09

Example 7.2. We consider the conjugate Beltrami equations (259) studied in Examples 2.4, 2.7
and 3.3. We first introduce the first Weyl algebra A = A3(Q) = Qlz, y][dz, dy] of differential
operators in dx and dy with coefficients in the commutative polynomial ring Q[z, y]:

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[a,b]):
The presentation matrix (259) is defined by:
> R:=evalm([[dx, -x*dy], [dy, x*dx]]);

dr —xdy
dy xdx

1

where a and b are two arbitrary constants, and the matrix P = (R — A) defined by:

R =

Let us introduce the following column vector

> Lambda:=evalm([[a]l, [b]]);

A=

> P:=augment (R,-Lambda) ;

P =

dr —xdy -—a
dy xdr —b
Let us check whether or not the matrix P admits a right-inverse over A:

> RightInverse(P,A);

z(azdz+zdy b+a) i z(azdz+zdy b+a)
a b
_adyx—2b—dzbx adyx—2b—dzbx
a b
;c(;cdw2+3 dw+wdy2) 1422 dz? 43 wda+a2 dy?
a - b

We obtain that P admits the previous right-inverse whenever a # 0 and b # 0, which shows that P
generically admits a right-inverse over A. We shall suppose that a # 0 and b # 0 in what follows.
Then, the left A-module E = A1*3/(A1*2 P) is stably free of rank 1.

Let us compute minimal parametrizations of E, namely, matrices L; € A3 such that the left
A-modules N; = A/(AY3 L;) are torsion and kera(.L;) = A2 R, ie., E = AY3 L,.

> L:=map(collect,MinimalParametrizations(P,A),{x,y,dx,dy},distributed):

> mnops(L);
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The OREMODULES command MINIMALPARAMETRIZATIONS returns 2 minimal parametrizations.
The first one is

> L[1];
ardy®b — adz®bx + adrb + dyb? + (a® — b%) dyxdz
—a?dy?® 4+ 2ady dz b — dzb?
adz®zdy + ady dz + ady®z — dz’bx + dy®b — dz dy*bx
and the second one is:
> L[2];
—ba? — zdya® + drba’x —a (a2 + b2) 22dydz —b (a2 + b2) z2dy?
a (a2 + b2) xdy? + dzb?a —b (3 a? + 2b2) dy —b (a2 + b2) dy xdx
azdy®b + adz’bz — a®dy — (a2 + bz) de?x?dy — (a2 + b2) 22dy® — 3 (a2 + b2) dy xdx
Let us check whether or not they are injective, i.e., whether or not they admit a left-inverse:

> map(LeftInverse,L,A);

[0, [

None of them is injective. The left A-module N; = A/(A'*3 L) is then defined by
> J_l:=map(collect,Exti(Involution(Min[1],A),A,1),{dx,dy,x,y},distributed);
dz*b? — 2ady dv b + a*dy®
Jo= , Y Y [ 1],SURJ (1)
(—b2a — a3) zdy® — deb’a — dy b + (ba2 + b3) xdy dz

i.e., the two entries of the first matrix J;[1] of J; annihilate the generator o1(1) of Ny, where o1(1)
denotes the residue class of the standard basis 1 of 4 in Nj.
> J_2:=map(collect,Exti(Involution(Min[2],A),A,1),{dx,dy,x,y},distributed);
—dzb?a+ (20° 4+ 3ba?) dy + (ba? + b®) zdy dz + (—b%a — a®) xdy?
Ty = ( )y +( ) wdy du+ ( 2) Y1, sURT (1)
ab? + (—2 a’b — 2 ab3) xdy + (2 a?b? 4+ a* + b4) 22 dy

Similarly, the two entries of the first matrix Jo[1] of J annihilate the generator o2(1) of N2, where
o2(1) denotes the residue class of 1 in the left A-module Ny = A/(AY3 L), i.e., 02(1) satisfies
d;o2(1) =0, for ¢ =1, 2, where d; € A is defined by

> N2[1]1[1,1];
—dzb*a + (2 b +3 ba2) dy + (ba2 + b3) xdy dx + (—62(1 — a3) xdy?
and dy is defined by:
> N2[1]1[2,1];
a’b? + (—2 a’b — 2ab3) xdy + (2 a’b® 4+ a* + b4) 22 dy?

Since the two entries of Ji[1] do not contain constant terms, they cannot be equal to non-zero
constants for particular values of the constants a and b. The same comment holds for d;. However,
the coefficients of dy in dz and dy are:

> 1l:=[coeffs(¥,{dx,dy})]: coefs:=map(factor,map(coeffs,l,x));
coefs = [a®b?, (a® + 62)2 ,—2ba (a® +b°)]
Let us find @ and b such that dy becomes the non-zero constant —1:
> Egs:={coefs[1]=-1,seq(coefs[i]=0,i=2. .nops(coefs))};
Egs = {(a2 + b2)2 =0,a%0? = —1,—2ba (a2 + bz) = 0}

> Sols:=solve(Egs,{a,b});
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Sols := {a = RootOf (722 + 1) b= 1} , {a = RootOf (7Z2 + 1) b= —1} ,
{a =1,b = RootOf (7Z2 + 1)} , {a = —1,b = RootOf (7Z2 + 1)}
For instance, if we take a = 1 and b = 4, then the coefficients of ds become:

> subs({a=1,b=I},coefs);
[-1,0,0]

Hence, let us consider the new ring B = Q[i]/(i* + 1)[x, y][dz, dy] of differential operators in dz
and dy with coefficients in the field Q(i) = Q[i]/(i® + 1):

> B:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[i,a,b],
> alg_relations=[i"2=-1]):

The column vector A is then

> Lambda_2:=subs({a=1,b=i},evalm(Lambda)) ;

and the matrix P becomes:
> P_2:=simplify(subs({i~2=-1,i"3=-i},subs({a=1,b=i},evalm(P))));
Py [ dr —xdy -1 ]
dy xdr —i
Substituting « = 1 and b = ¢ into Lo, we obtain the matrix ) defined by:
> Q:=simplify(subs({i"2=-1,i1"3=-i},subs({a=1,b=1i},evalm(L[2]))));
—i —xdy + dzix
Q = —dz — dy1
zdy?i + de’iz — dy
We can check that the last matrix defines a minimal parametrization of B1*3/(B1*2 P,):
> MinimalParametrizations(P_2,B);
—dxix + 1+ xdy
[ dz + dy1 ]
—dz?iz + dy — xdy?i
Moreover, the minimal parametrization ) admits a left-inverse over B defined by:
> T:=LeftInverse(Q,B);
T:=]-i"' —z 0]

Hence, the left B-module F' = B1*3/(B'*? P,) is free of rank 1 and Theorem 2.2 shows that F' is
isomorphic to the cyclic left B-module B/(B Q2), where Q5 is defined by:

> Q_2:=submatrix(Q,3..3,1..1);
Q2 = [ xdy?i + di*ic — dy }
Moreover, the column vector I' admits the following left-inverse I' over B:

> Gamma:=LeftInverse(Lambda_2,B);
r:= [ 0 it ]
If we denote by Q1 € B? defined by the first two components of Q

> Q_1:=submatrix(Q,1..2,1..1);
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—i —xdy + drix
Q1 = .
—dzr — dy1

then Corollary 3.1 shows that kerp(.Q1) is a stably free left B-module of rank 1. Moreover, we
have kerg(.Q1) = B K, where the matrix K is defined by

> K:=SyzygyModule(Q_1,B);
K = [ —dzi+ dy dyier:rdx]

i.e., kerg(.Q1) is a free left B-module of rank 1. Corollary 3.1 then shows that the matrices R

and diag(1,Q3) are equivalent, where Qo = iz (dx? + dy?) — dy. Let us compute two matrices
V, W € GLy(B) such that V RW = diag(1, Q2).

The right-inverse Q3 of K over B defined by

o= 7]

is such that the following matrix W = (Qs Q1) defined by

> Q_3:=RightInverse(K,B);

> W:=augment(Q_3,Q_1);
—% —i—wdy+ drvix
l -1 —dx — dy1 ]
is unimodular, i.e., W € GLy(B):
> W_inv:=LeftInverse(W,B);
W iny = [ fdxi.Jr dy dyir+ xdx ]
i -z

Moreover, the matrix X = (RQs A) defined by

> X:=augment (Mult(R,Q_3,B),Lambda_2);

—xdac—}+dyi;c 1
X = [ _m(dy%‘»da:i) . ]

i
i.e., after simplifications, by
> map(expand,subs(i=I,evalm(X)));
txdr +1+xzdy 1
l idyr —xdr @ ]
is also unimodular, i.e., X € GL2(B), and its inverse V = X ! is defined by
> V:=LeftInverse(X,B);

Vo=

i1 1
—xdr + dyix —i—xdy — drix
or, equivalently, after simplifications, by

> map(expand,subs(i=I,evalm(V)));
—1 1
tdyx —xdr —i—xdy —ixdz

Finally, we obtain that V RW = diag(1, Q-):
> map(collect,subs(i=I,Mult(V,R,W,B)),x);
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0 iz (dx2 + dy2) —dy
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