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An introduction to constructive algebraic analysis and its applications

CHAPTER 1

Algebraic analysis approach to mathematical systems theory

“La science ne s’apprend pas : elle se comprend. Elle n’est pas lettre morte et les
livres n’assurent pas sa pérennité : elle est une pensée vivante. Pour s’intéresser
à elle, puis la maîtriser, notre esprit doit, habilement guidé, la redécouvrir, de
même que notre corps a dû revivre, dans le sein maternel, l’évolution qui créa
notre espèce ; non point tous ses détails, mais son schéma. Aussi n’y a-t-il qu’une
façon efficace de faire acquérir par nos enfants les principes scientifiques qui sont
stables, et les procédés techniques qui évoluent rapidement : c’est donner à nos
enfants l’esprit de recherche.”

Jean Leray, dans M. Schmidt, Hommes de Sciences : 28 portraits, Hermann, 1990.
The purpose of this chapter is to give a short introduction to basic ideas, concepts and re-

sults of constructive algebraic analysis. Algebraic analysis, pioneered by Malgrange and the
Japanese school of Sato, is a mathematical theory which studies linear systems of partial dif-
ferential equations (PDEs) based on module theory, homological algebra and sheaf theory (see
[10, 11, 13, 44, 45, 66, 67] and the references therein). Basic algebraic analysis has recently been
studied within a constructive viewpoint (see, e.g., [5, 16, 19, 66, 77, 78, 85, 89, 97, 98, 103, 104, 116]).
The module-theoretic approach to linear ordinary differential (OD) or partial differential (PD) sys-
tems developed within the algebraic analysis approach gives a powerful mathematical framework for
the study of the structural properties of general linear differential systems (determined, overdeter-
mined, underdetermined). In particular, the module characterizations of the structural properties
developed in this approach are intrinsic in the sense that they do not depend on particular rep-
resentations of the linear PD system. Using powerful tools of homological algebra, we can obtain
general characterizations for the module properties (e.g., existence of torsion elements, torsion-free,
reflexive, projective, stably free, free). Using constructive algebra (e.g., noncommutative Gröb-
ner or Janet bases), those homological characterizations can be made constructive and can be
implemented in dedicated symbolic computation packages (e.g., OreModules, OreMorphisms,
QuillenSuslin, Stafford, Serre, PurityFiltration). Finally, the module properties have
important interpretations in mathematical systems theory and mathematical physics (e.g., exis-
tence of autonomous elements or (minimal/injective/chain of) parametrizations).

1. Linear systems and finitely presented left D-modules

We recall that the definition of a left D-module (resp., right D-module) M is the same as the one
of a k-vector space but where the field k is replaced by a ring D and the elements of D act on the
left (resp., right) of M , namely, for all m1, m2 ∈M and all d1, d2 ∈ D, we have d1 m1 +d2 m2 ∈M
(resp., m1 d1 + m2 d2). In particular, a k-vector space is a k-module and an abelian group is a
Z-module. For more details, see, e.g., [15, 65, 110].

Within algebraic analysis (see, e.g., [10, 11, 13, 16, 44, 45, 66, 85] and the references therein), a
linear functional system (e.g., linear systems of ODEs or PDEs, OD time-delay equations, difference
equations) can be studied by means of module theory and homological algebra ([15, 65, 110]).
More precisely, if D is a noncommutative polynomial ring of functional operators (e.g., OD or PD
operators, time-delay operators, shift operators, difference operators), R ∈ Dq×p a q × p matrix
with entries in D and F a left D-module, then the linear functional system

kerF (R.) , {η ∈ Fp | Rη = 0}

i.e., the abelian group formed by the F-solutions of Rη = 0, can be studied by means of the left
D-module M , D1×p/(D1×q R) finitely presented by the matrix R. Indeed, Malgrange’s remark
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([67]) asserts the existence of the following abelian group isomorphism (i.e., Z-isomorphism)

kerF (R.) ∼= homD(M,F),

where homD(M,F) is the abelian group of left D-homomorphisms from F to M (i.e., maps f :
M −→ F satisfying f(d1 m1+d2 m2) = d1 f(m1)+d2 f(m2) for all d1, d2 ∈ D and all m1, m2 ∈M)
and ∼= denotes an isomorphism, i.e., a bĳective homomorphism.

Let us describe this isomorphism. To do that, we first give an explicit description of M in
terms of generators and relations. Let π : D1×p −→ M = D1×p/(D1×q R) be the canonical
projection onto M , namely, the left D-homomorphism which sends a row vector of D1×p of length
p to its residue class π(λ) in M , {fj}j=1,...,p the standard basis of D1×p, namely, fj is the row
vector of length p defined by 1 at the jth entry and 0 elsewhere, and yj = π(fj) the residue
class of fj in M for j = 1, . . . , p. Since every element m ∈ M is the residue class of an element
λ = (λ1 . . . λp) ∈ D1×p, then, using the left D-linearity of the left D-homomorphism π, we get

m = π(λ) = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj ,

which shows that {yj}j=1,...,p is a family of generators of the left D-module M . Moreover, if we
denote by Ri• the ith row of the matrix R, then Ri• ∈ D1×q R, which yields π(Ri•) = 0 and thus

(1) π(Ri•) = π

 p∑
j=1

Rij fj

 =
p∑
j=1

Rij π(fj) =
p∑
j=1

Rij yj = 0, i = 1, . . . , q,

which shows that the set of generators {yj}j=1,...,p of M satisfies the left D-linear relations (1) and
all their left D-linear combinations. If y = (y1 . . . yp) ∈Mp, then (1) becomes Ry = 0.

Now, let χ : kerF (R.) −→ homD(M,F) be the Z-homomorphism defined by χ(η) = φη for all
η ∈ kerF (R.), where φη(π(λ)) = λ η ∈ F for all λ ∈ D1×p. The Z-homomorphism φη is well-
defined since π(λ) = π(λ′) yields π(λ− λ′) = 0, i.e., λ− λ = µR for a certain µ ∈ D1×q, and thus
φη(π(λ)) = λ η = λ′ η + µRη = λ′ η = φη(π(λ′)). Moreover, χ is injective since φη = 0 yields
λ η = 0 for all λ ∈ D1×p, and thus ηj = fj η = 0 for all j = 1, . . . , p, i.e., η = 0. It is also surjective
since for all φ ∈ homD(M,F), η = (φ(y1) . . . φ(yp))T ∈ Fp satisfies χ(η) = φ and:

p∑
j=1

Rij ηj =
p∑
j=1

Rij φ(yj) = φ

 p∑
j=1

Rij yj

 = φ(0) = 0.

Thus, the Z-homomorphism χ is an isomorphism and χ−1 : homD(M,F) −→ kerF (R.) is defined
by χ−1(φ) = (φ(y1) . . . φ(yp))T for all φ ∈ homD(M,F). Let us sum up Malgrange’s remark.

Theorem 1.1 ([67]). Let D be a ring, R ∈ Dq×p a matrix, M = D1×p/(D1×q R) the left D-module
finitely presented by R, π : D1×p −→M the canonical projection onto M , {fj}j=1,...,p the standard
basis of D1×p, yj = π(fj) for j = 1, . . . , p, and F a left D-module. Then, we have the following
abelian group isomorphism:

(2)
homD(M,F) −→ kerF (R.) = {η ∈ Fp | Rη = 0}

φ 7−→ η = (φ(y1) . . . φ(yp))T .

Hence, there is a one-to-one correspondence between the elements of homD(M,F) and kerF (R.).

Remark 1.1. Theorem 1.1 shows that the linear functional system kerF (R.) can be studied by
means of the finitely presented left D-module M = D1×p/(D1×q R) and the left D-module F : M
intrinsically describes the linear system of equations defined by the matrix R ∈ Dq×p and F is the
functional space where we seek the solutions of the linear functional system.

A differential ring (A, {δ1, . . . , δn}) is a commutative ring A equipped with commuting deriva-
tions δi : A −→ A for i = 1, . . . , n, namely, maps satisfying

∀ a1, a2 ∈ A, δi ◦ δj = δj ◦ δi, δi(a1 + a2) = δi(a1) + δi(a2), δi(a1 a2) = δi(a1) a2 + a1 δi(a2),
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for all i, j = 1, . . . , n. If we take a1 = a2 = 1, then the above equality yields δi(1) = 2 δi(1), i.e.,
δi(1) = 0. Hence, if A is a field, then δi(a) a−1 + a δi(a−1) = δi(a a−1) = δi(1) = 0, which shows
that the derivation δi satisfies δi(a−1) = −a−2 δi(a). A is then called a differential field.

We shall mainly focus on the differential rings A = k[x1, . . . , xn], kJx1, . . . , xnK (i.e., the ring of
formal power series at 0 with coefficients in k), where k is a field of characteristic 0 (e.g., Q, R, C),
and k{x1, . . . , xn} where k = R or C (i.e., the ring of locally convergent power series at 0 or
the ring of germs of real analytic or holomorphic functions at 0) and the differential fields k or
k(x1, . . . , xn), where k is a field, equipped with the derivations

{
∂
∂x1

, . . . , ∂
∂xn

}
.

The ring D of PD operators in ∂1, . . . , ∂n with coefficients in the commutative differential ring
(A, {δ1, . . . , δn}), simply denoted by D = A〈∂1, . . . , ∂n〉, is the noncommutative polynomial ring
in the ∂i’s with coefficients in the commutative ring A satisfying:

∀ a ∈ A, ∀ i, j = 1, . . . , n, ∂i ∂j = ∂j ∂i, ∂i a = a ∂i + δi(a).

An element d ∈ D can be written as d =
∑

0≤|ν|≤r aν ∂
ν , where aν ∈ A, ν = (ν1, . . . , νn)T ∈ Nn,

|ν| = ν1 + . . .+ νn and ∂ν = ∂ν1
1 . . . ∂νnn .

The first (resp., second) Weyl algebra is defined by An(k) = k[x1, . . . , xn]〈∂1, . . . , ∂n〉 (resp.,
Bn(k) = k(x1, . . . , xn)〈∂1, . . . , ∂n〉). If n = 1, then we shall simply use the notations δ = d

dt
instead of δ1, ∂ instead of ∂1 and k[t], k(t), kJtK and k{t} instead of k[x], k(x), kJxK and k{x}.

More generally, we can consider the noncommutative polynomial rings of functional operators
D = A〈∂1, . . . , ∂n〉, where A = k[x1, . . . , xn], k is a field,

(3) ∀ i, j = 1, . . . ,m, ∀ l = 1, . . . , n, ∂i ∂j = ∂j ∂i, ∂i xl = (ail xk + bil) ∂i + cil,

and ail ∈ k \ {0}, bil ∈ k, cil ∈ A and deg(cil) ≤ 1, such as Ore algebras ([18]). For instance, the
ring of OD time-delay operators or the ring of OD and difference operators are Ore algebras.

Example 1.1. The linearization of the Navier-Stokes equations around the parabolic Poiseuille
profile is defined by the following linear PD system with polynomial coefficients:

(4)


∂t δu1 + 4 y (1− y) ∂x δu1 − 4 (2 y − 1) δu2 − ν (∂2

x + ∂2
y) du1 + ∂x δp = 0,

∂t δu2 + 4 y (1− y) ∂x δu2 − ν (∂2
x + ∂2

y) δu2 + ∂y δp = 0,
∂x δu1 + ∂y δu2 = 0.

If we denote by D = A3(Q(ν)) the first Weyl algebra of PD operators in ∂t, ∂x and ∂y with
coefficients in Q(ν)[t, x, y], then (4) is defined by the following matrix of PD operators

R =

 ∂t + 4 y (1− y) ∂x − ν (∂2
x + ∂2

y) −4 (2 y − 1) ∂x

0 ∂t + 4 y (1− y) ∂x − ν (∂2
x + ∂2

y) ∂y

∂x ∂y 0

 ∈ D3×3,

and the generators {δu1 = π(f1), δu2 = π(f2), δp = π(f3)} of the finitely presented left D-module
M = D1×3/(D1×3 R) satisfy the left D-linear relations generated by (4), where {fj}j=1,2,3 is
the standard basis of D1×3 and π : D1×3 −→ M the canonical projection onto M . Finally, if
F is a left D-module (e.g., C∞(R+ × R2)), then the F-solutions of the linear system (4), i.e.,
kerF (R.) = {η = (δu1 δu2 δp)T ∈ F3 | Rη = 0}, is Z-isomorphic to homD(M,F).

If M and F are two left D-modules, then homD(M,F) usually has an abelian group structure.
Indeed, if homD(M,F) has a left D-module structure defined by (d f)(m) = f(dm), for all d ∈ D
and all m ∈ M , then, according to the definition of a left D-module, for all d, d′ ∈ D and for all
f ∈ homD(M,F), we have (d d′) f = d (d′ f), and thus:{

(d d′ f)(m) = f(d d′m),
(d (d′ f))(m) = (d′ f)(dm) = f(d′ dm),

⇒ f(d d′m) = f(d′ dm).

But, f(d d′m) and f(d′ dm) are not necessarily equal for all d, d′ ∈ D and all m ∈M .
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Example 1.2. Let us consider the first Weyl algebra D = A1(Q(m,σ)), R = (∂ + (t −m)/σ2),
the finitely presented left D-module M = D/(DR) and the left D-module F = C∞(R). Then,
the Gaussian distribution η = e−

(t−m)2

2 σ2 belongs to kerF (R.) since we can easily check that:

∂ η + (t−m)
σ2 η = 0.

But, neither ∂ η nor t η belong to kerF (R.):
∂ (∂ η) + (t−m)

σ2 ∂ η = − (t−m)
σ2 ∂ η − 1

σ2 η + (t−m)
σ2 ∂ η = − 1

σ2 η 6= 0,

∂ (t η) + (t−m)
σ2 (t η) = t

(
∂ η + (t−m)

σ2 η(t)
)

+ η = η 6= 0.

Therefore, kerF (R.) = {η ∈ F | Rη = 0} has no left D-module structure which, by Theorem 1.1,
implies that homD(M,F) is only an abelian group and a Q(m,σ)-vector space.

If D is a commutative ring, then homD(M,F) inherits a D-module structure defined by:
∀ d ∈ D, ∀ m ∈M, (d f)(m) = f(dm).

We recall that a ring D is called a domain if it does not contain non-trivial zero divisors, i.e.,
d1 d2 = 0 implies d1 = 0 or d2 = 0. Moreover, D is a left noetherian ring if every left ideal of D
(i.e., every left D-submodule of D) is finitely generated, i.e., can be generated by a finite family of
generators as a left D-module. Similarly, we can define the concept of a right noetherian ring. A
ring is simply called noetherian if it is both a left and a right noetherian ring ([54, 110]). A result
due to Goldie ([71]) proves that a left (resp., right) noetherian domain is a left (resp., right) Ore
domain, namely, a domain satisfying the left (resp., right) Ore property, i.e., for all d1, d2 ∈ D\{0},
there exist e1, e2 ∈ D \ {0} such that e1 d1 = e2 d2 (resp., d1 e1 = d2 e2).
Example 1.3. The rings A〈∂1, . . . , ∂n〉 of PD operators with coefficient in the differential ring

• A = k, where k is a field,
• A = k[x1, . . . , xn], k(x1, . . . , xn) or kJx1, . . . , xnK, where k is a field,
• A = k{x1, . . . , xn}, where k = R or C,

are noetherian domains, and thus Ore domains ([71]). Moreover, if k is a computable field (e.g.,
Q or Fp for a prime p), A = k, k[x1, . . . , xn] or k(x1, . . . , xn), and R ∈ Dq×p, then, for any
admissible term order, Buchberger’s algorithm terminates and it computes a Gröbner basis of the
left D-submodule D1×q R of D1×p for the corresponding term order. For more details, see, e.g.,
[18, 34, 58] and the references therein. A similar result holds for the Ore algebras satisfying (3).
For an introduction to Gröbner basis techniques, see [8, 18, 58] and the references therein. Finally,
Janet basis techniques can also be used to constructively study module theory over the same classes
of noncommutative polynomial rings (e.g., rings of PD operators) ([12, 40, 84, 109]).

We recall a few definitions of module theory we shall use in what follows (see, e.g., [54, 110]).
Definition 1.1. Let D be a left noetherian domain and M a finitely generated left D-module,
namely, M can be generated by a finite family of elements of M as a left D-module.

(1) M is free if there exists r ∈ N = {0, 1, . . .} such that M ∼= D1×r. Then, r is called the
rank of the free left D-module M and is denoted by rankD(M).

(2) M is stably free if there exist r, s ∈ N such that M ⊕D1×s ∼= D1×r. Then, r − s is called
the rank of the stably free left D-module M .

(3) M is projective if there exist r ∈ N and a left D-module N such that M ⊕ N ∼= D1×r,
where ⊕ denotes the direct sum of left D-modules.

(4) M is reflexive if the following canonical left D-homomorphism
ε : M −→ homD(homD(M,D), D),

m 7−→ ε(m),
where ε(m)(f) = f(m) for all f ∈ homD(M,D) and all m ∈M is a left D-isomorphism.

(5) M is torsion-free if the torsion left D-submodule of M
t(M) = {m ∈M | ∃ d ∈ D \ {0} : dm = 0}

is reduced to 0, i.e., if t(M) = 0. The elements of t(M) are the torsion elements of M .
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(6) M is torsion if t(M) = M , i.e., if every element of M is a torsion element of M .
(7) M is cyclic if M is generated by m ∈M , i.e., M = Dm , {dm | d ∈ D}.

Remark 1.2. The fact that t(M) is a left D-submodule of M is a consequence of the left Ore
property of D (which comes from the left noetherian domain property). Indeed, for all m1, m2 ∈
t(M) and all d1, d2 ∈ D, we need to prove that d1 m1 + d2 m2 ∈ t(M). Since m1, m2 ∈ t(M),
there exist p1, p2 ∈ D \ {0} such that p1 m1 = 0 and p2 m2 = 0. Using the left Ore property of D,
there exist non-trivial r1, r2, s1, s2, t1, t2 ∈ D satisfying:

r1 p1 = s1 d1, r2 p2 = s2 d2, t1 s1 = t2 s2.

Therefore, we get
(t1 s1) (d1 m1 + d2 m2) = t1 (s1 d1)m1 + t2 (s2 d2)m2 = t1 r1 (p1 m1) + t2 r2 (p2 m2) = 0,

which shows that d1 m1 + d2 m2 ∈ t(M) since 0 6= t1 s1 ∈ D.

In the forthcoming Theorem 3.1, we shall explain how the module properties introduced in
Definition 1.1 can be constructively checked when Gröbner basis techniques are available for a
noncommutative polynomial ring D. We shall then give explicit examples.

A free leftD-moduleM ∼= D1×r is clearly stably free since we can take s = 0 in 2 of Definition 1.1
and a stably free left D-module is projective since we can take N = D1×s in 3 of Definition 1.1.
Moreover, if M is a projective left D-module, then M is a reflexive left D-module since M is a
direct summand of a finite free left D-module F ∼= D1×r and F is a reflexive left D-module. If M
is a reflexive left D-module and m ∈ t(M), then there exists d ∈ D \ {0} such that dm = 0, and
thus d f(m) = f(dm) = f(0) = 0 for all f ∈ homD(M,D), i.e., f(m) = 0 since d 6= 0, f(m) ∈ D
and D is a domain, which shows that ε(m)(f) = f(m) = 0 for all f ∈ homD(M,D) and proves
that ε(m) = 0, i.e., m ∈ ker ε = 0, and thus t(M) = 0.

Proposition 1.1 ([110]). A free left D-module is stably free, a stably free left D-module is projec-
tive, a projective left D-module is reflexive and a reflexive left D-module is torsion-free.

The converse of the results of Proposition 1.1 are generally not true. However, it holds in
particular interesting situations.

Theorem 1.2 ([54, 107, 111, 115]). (1) If D is a principal left ideal domain, namely, every
left ideal of the domain D is cyclic (e.g., the ring A〈∂〉 of OD operators with coefficients in
A = k, k(t) and kJtK[t−1], where k is a field of characteristic 0, or k{t}[t−1], where k = R
or C), then every finitely generated torsion-free left D-module is free.

(2) If D = k[x1, . . . , xn] is a commutative polynomial ring with coefficients in a field k, then
every finitely generated projective D-module is free (Quillen-Suslin theorem).

(3) If D is the Weyl algebra An(k) or Bn(k), where k is a field of characteristic 0, then every
finitely generated projective left D-module is stably free and every finitely generated stably
free left D-module of rank at least 2 is free (Stafford’s theorem).

In 1955, Serre wrote “On ignore s’il existe des A-modules projectifs de type fini qui ne soient
pas libres”, where A = k[x1, . . . , xn] and k a field (page 243 of [112]). In 1976, this remark, called
“Serre’s conjecture” ([55]), was independently solved by Quillen ([107]) and Suslin ([115]).

The purpose of the next sections is to explain how to check whether or not a finitely presented
module M over a noetherian domain D is respectively torsion-free, projective, stably free or free,
and give applications of these concepts to mathematical systems theory.

2. Finite free resolutions and extension functor

“S’il est vrai que la mathématique est la reine des sciences, qui est la reine de la
mathématique ? La suite exacte !”, Henri Cartan, Oberwolfach, 1952.
“. . . If I could only understand the beautiful consequence following from the concise
proposition d2 = 0”, Henri Cartan, Laudatio on receiving the Doctor Honoris
Causa degree at Oxford University, 1980.

To simplify the notations, the set Fp×1 of column vectors of length p with coefficients in F will
be denoted by Fp. Let us recall basic concepts of homological algebra (see, e.g., [15, 65, 110]).

287



Alban Quadrat

Definition 2.1. (1) A complex of left (resp., right) D-modules, denoted by

(5) M• . . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . . ,

is a sequence of left (resp., right) D-homomorphisms di : Mi −→Mi−1 between left (resp.,
right) D-modules which satisfy im di+1 ⊆ ker di, i.e., di ◦ di+1 = 0 for all i ∈ Z.

(2) The defect of exactness of (5) at Mi is the left (resp., right) D-module defined by:

Hi(M•) , ker di/im di+1.

(3) The complex (5) is said to be exact at Mi if Hi(M•) = 0, i.e., ker di = im di+1, and exact
if ker di = im di+1 for all i ∈ Z. An exact complex is also called an exact sequence.

(4) The exact sequence of the form 0 −→ M ′
f−→ M

g−→ M ′′ −→ 0, i.e., f is injective,
ker g = im f and g is surjective, is called a short exact sequence.

(5) A finite free resolution of the left D-module M is an exact sequence of the form

(6) . . .
.R4−−→ D1×r3 .R3−−→ D1×r2 .R2−−→ D1×r1 .R1−−→ D1×r0 π−→M −→ 0,

where Ri ∈ Dri×ri−1 and .Ri : D1×ri −→ D1×ri−1 is the left D-homomorphism defined by
(.Ri)(λ) = λRi for all λ ∈ D1×ri .

(6) A finite free resolution of a right D-module N is an exact sequence of the form

(7) 0←− N κ←− Ds0 S1.←−− Ds1 S2.←−− Ds2 S3.←−− Ds3 S4.←−− . . . ,

where Si ∈ Dsi−1×si and Si. : Dsi −→ Dsi−1 is defined by (Si.)(η) = Si η for all η ∈ Dsi .
(7) A short exact sequence 0 −→ M ′

f−→ M
g−→ M ′′ −→ 0 of left D-modules is said to split

if one of the following equivalent assertions holds:
• There exists a left D-homomorphism h : M ′′ −→M such that g ◦ h = idM ′′ .
• There exists a left D-homomorphism k : M −→M ′ such that k ◦ f = idM ′ .
• There exists a left D-isomorphism from M ′ ⊕M ′′ to M , i.e., M ∼= M ′ ⊕M ′′.

We denote the previous split short exact sequence by the following diagram:

(8) 0 −→M ′
f−→ M

g−→ M ′′ −→ 0.
k←− h←−

Example 2.1. If D is a noetherian domain and M is a finitely generated left D-module, then we
have the short exact sequence 0 −→ t(M) i−→ M

ρ−→ M/t(M) −→ 0 of left D-modules, where i
(resp., ρ) denotes the canonical injection (resp., projection).

Example 2.2. If M is a left D-module, m ∈M and annD(m) = {d ∈ D | dm = 0} the annihilator
of m, then annD(m) is a left ideal of D and the following short exact sequence holds

0 −→ annD(m) −→ D
f−→ Dm −→ 0

where the left D-homomorphism f is defined by f(d) = dm for all d ∈ M . Hence, we get
Dm = im f ∼= coim f , D/annD(m). If annD(m) = 0, then Dm ∼= D, which proves that Dm
is a free left D-module of rank 1. If annD(m) 6= 0, then Dm is a torsion left D-module since
D/annD(m) is a torsion left D-module generated by the residue class of 1 in D/annD(m).

If D is a left noetherian ring and M is a finitely generated left D-module, then M admits a finite
free resolution. Indeed, if {yj}j=1,...,r0 is a finite family of generators of M , then we can define the
left D-homomorphism π : D1×r0 −→ M by π(fj) = yj for all j = 1, . . . , r0, where {fj}j=1,...,r0 is
the standard basis of the free left D-module D1×r0 of rank r0. Then, we have the following short
exact sequence:

0 −→ kerπ i−→ D1×r0 π−→M −→ 0.
Now, kerπ is a left D-submodule of the noetherian left D-module D1×r0 , a fact implying that
kerπ is a finitely generated left D-module (see, e.g., [54, 110]). Hence, there exists a finite family
of generators of kerπ. Stacking these row vectors of length r0 into a matrix, we obtain a matrix
R1 ∈ Dr1×r0 such that kerπ = D1×r1 R1, which yields the following long exact sequence:

0 −→ kerD(.R1) −→ D1×r1 .R1−−→ D1×r0 π−→M −→ 0.
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kerD(.R1) is called the (first) syzygy left D-module of D1×r1 R1. We obtain that a finitely generated
left module over a left noetherian ring is finitely presented. Repeating the same process, we obtain
a finite free resolution (6) of the left D-module M (syzygy module computation).

Within mathematical systems theory, we note that the matrixR2 ∈ Dr2×r1 defined by kerD(.R1) =
D1×r2 R2 is a generating set of the compatibility conditions of the inhomogeneous linear system
R1 η = ζ since, for every λ ∈ kerD(.R1), we have λ ζ = λ (R1 η) = (λR1) η = 0. Hence, the
compatibility conditions of R1 η = ζ are generated by R2 ζ = 0. If Gröbner bases exist for finitely
generated left D-submodules of D1×ri and for elimination term orders, then a finite free resolution
(6) of M can be inductively computed by eliminating η from the inhomogeneous linear system
Ri η = ζ to get Ri+1 ζ = 0. For more details, see, e.g., [16, 17].

We give the sketch of an algorithm which computes syzygy modules ([16]).

Algorithm 2.1. • Input: A noncommutative polynomial ring D for which Buchberger’s al-
gorithm terminates for any admissible term order and a finitely generated leftD-submodule
L of D1×p defined by a matrix R ∈ Dq×p, i.e., L = D1×q R.

• Output: A matrix S ∈ Dr×q such that kerD(.R) = D1×r S.
(1) Introduce the indeterminates η1, . . . , ηp, ζ1, . . . , ζq over D and define the following set:

P =


p∑
j=1

Rij ηj − ζi | i = 1, . . . , q

 .

(2) Compute the Gröbner basis G of P in the free left D-module generated by the ηj ’s and
the ζi’s, for j = 1, . . . , p, i = 1, . . . , q, namely,

⊕p
j=1 Dηj ⊕

⊕q
i=1 D ζi, with respect to a

term order which eliminates the ηj ’s.
(3) Compute the intersection G ∩ (

⊕q
i=1 D ζi) = {

∑q
i=1 Ski ζi | k = 1, . . . , r} by selecting the

elements of G containing only the ζi’s and form the matrix S = (Sij) ∈ Dr×q.

Example 2.3. In mathematical physics ([51, 52]), it is well-known that the compatibility con-
ditions of the gradient operator in R3 are defined by the curl operator, and the compatibil-
ity conditions of the curl operator are defined by the divergence operator. It means that the
D = Q[∂1, ∂2, ∂3]-module M = D/(D∂1 +D∂2 +D∂3) admits the following finite free resolution

(9) 0 −→ D
.R3−−→ D1×3 .R2−−→ D1×3 .R1−−→ D

π−→M −→ 0,

with the notations R1 = (∂1 ∂2 ∂3)T , R3 = RT1 and:

(10) R2 =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 ∈ D3×3.

The long exact sequence (9) is the well-known differential sequence “gradient-curl-divergence”
which corresponds to the Poincaré sequence for the exterior derivative ([82, 84]). In what follows,
we shall also use the following classical notations ~∇ ξ = R1 ξ, ~∇∧ η = R2 η and ~∇ . ζ = R3 ζ.

Example 2.4. Let us consider the following linear PD system (Janet’s system) ([84]):

(11)

{
∂2

3 y − x2 ∂
2
1 y = 0,

∂2
2 y = 0.

If D = A3(Q) is the first Weyl algebra, then the presentation matrix R of (11) is defined by:

R1 =

(
∂2

3 − x2 ∂
2
1

∂2
2

)
.

Using Algorithm 2.1, the left D-module M = D/(D1×2 R1) admits the free resolution

0 −→ D
.R3−−→ D1×2 .R2−−→ D1×2 .R1−−→ D

π−→M −→ 0,
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with the following notations:
R2 =(

∂3
2 3 ∂2

1 + x2 ∂
2
1 ∂2 − ∂2 ∂

2
3

−2x2 ∂
2
1 ∂

2
2 ∂

2
3 − 2x2 ∂2 ∂

4
1 + x2

2 ∂
4
1 ∂

2
2 + ∂2

2 ∂
4
3 + 2 ∂2

1 ∂2 ∂
2
3 + 2 ∂4

1 x3
2 ∂

6
1 + 3x2 ∂

2
1 ∂

4
3 − ∂6

3 − 3x2
2 ∂

4
1 ∂

2
3

)
,

R3 =
(
x2

2 ∂
4
1 − 2x2 ∂

2
1 ∂

2
3 + ∂4

3 − ∂2
)
.

We refer the reader to [82, 83, 84, 85] for an introduction to Spencer’s formal theory of PDEs
which studies the existence of canonical resolutions of linear systems based on intrinsic properties
of linear PD systems (e.g., Spencer’s cohomology, formal integrability), i.e., properties which do
not depend on the choice of the coordinate system for the independent variables x1, . . . , xn.

Let us now introduce the concepts of extension modules and extension functor which will play
important roles in what follows (see, e.g., [15, 65, 110]) and in the next chapters.

If F is a left D-module and R1 ∈ Dr1×r0 , then a necessary condition for the solvability of
the inhomogeneous linear system R1 η = ζ for a fixed ζ ∈ Fr1 is R2 ζ = 0, where the matrix
R2 ∈ Dr2×r1 is such that kerD(.R1) = D1×r2 R2. Let us study when this necessary condition is
also sufficient. We need to investigate the defect of exactness of the following complex at Fr1

(12) Fr2 R2.←−− Fr1 R1.←−− Fr0 ,

where Ri. : Fri−1 −→ Fri is defined by (Ri.)(η) = Ri η for all η ∈ Fri−1 and i = 1, 2. Indeed,
for a fixed ζ ∈ Fr1 , there exists η ∈ Fr0 satisfying R1 η = ζ iff ζ ∈ imF (R1.) = R1 Fr0 and the
necessary condition R2 ζ = 0 (since R2 R1 = 0) means that ζ ∈ kerF (R2.). Therefore, there exists
η ∈ Fr1 satisfying R1 η = ζ iff the residue class of ζ in kerF (R2.)/imF (R1.) is reduced to 0. This
fact explains why the defect of exactness of the complex (12) at Fr1 plays an important role in
mathematical systems theory. If the complex (12) is exact at Fr1 , i.e., kerF (R2.) = imF (R1.), then
the necessary condition R2 ζ = 0 is also sufficient. The defect of exactness kerF (R2.)/imF (R1.) of
(12) at Fr1 is simply denoted by ext1

D(M,F) since a key result of homological algebra proves that
it only depends on M and F and not on the choice of the beginning of the finite free resolution
(6) of the left D-module M (see, e.g., [15, 65, 110]).

Using (6), we can define the higher extension abelian groups extiD(M,F)’s for i ≥ 2 as follows.
Up to abelian group isomorphism, they are defined by the defects of exactness of the following
complex of abelian groups

(13) . . .
Ri+1.←−−− Fri Ri.←−− Fri−1

Ri−1.←−−−− . . .
R3.←−− Fr2 R2.←−− Fr1 R1.←−− Fr0 ←− 0,

where Ri. : Fri−1 −→ Fri is defined by (Ri.)(η) = Ri η for all η ∈ Fri−1 and all i ≥ 1, namely:{
ext0

D(M,F) , homD(M,F) ∼= kerF (R1.),
extiD(M,F) ∼= kerF (Ri+1.)/imF (Ri.), i ≥ 1.

In what follows, we shall either use the notation homD(M,F) or ext0
D(M,F).

As for ext1
D(M,F), a classical theorem of homological algebra proves that the extiD(M,F)’s

depend only on the left D-modules M and F (up to abelian group isomorphism), i.e., they do not
depend on the particular finite free resolution (6) of M . For more details, see [15, 65, 110].

Similarly, if D is a right noetherian ring, N a finitely generated right D-module and G a right
D-module, then, using the finite free resolution (7) of N , we can define the abelian groups:{

ext0
D(N,G) = homD(N,G) ∼= kerG(.S1),

extiD(N,G) ∼= kerG(.Si+1)/imG(.Si), i ≥ 1.

Example 2.5. Let D = Q[x], R = (x (x − 1) x (x + 1))T and M = D/(D1×2 R) the D-module
finitely presented by R. Let us compute the extiD(M,D)’s for i ≥ 0. We first note that M =
D/(x (x− 1), x (x+ 1))), where (x (x− 1), x (x+ 1)) is the ideal of D generated by x (x− 1) and
x (x + 1). We first need to compute a finite free resolution of M . Let us characterize kerD(.R):
λ = (λ1 λ2) ∈ kerD(.R) iff λ1 x (x− 1) + λ2 x (x+ 1) = 0, i.e., iff (λ1 (x− 1) + λ2 (x+ 1))x = 0,
i.e., iff λ1 (x − 1) + λ2 (x + 1) = 0 since D is a domain and x 6= 0. As D is a greatest common
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divisor domain and gcd(x− 1, x+ 1) = 1, we get λ1 = d (x+ 1) and λ2 = −d (x− 1) for all d ∈ D,
i.e., λ = d (x+ 1 −x+ 1). Hence, if R1 = R and R2 = (x+ 1 −x+ 1), then kerD(.R1) = DR2.
Moreover, kerD(.R2) = 0 since d (x+ 1 − x+ 1) = (0 0) yields d = 0 since D is a domain and
x+ 1 6= 0. The D-module M then admits the following finite free resolution:

0 −→ D
.R2−−→ D1×2 .R1−−→ D

π−→M −→ 0.

Then, the defects of exactness of the complex 0←− D R2.←−− D2 R1.←−− D ←− 0 are defined by:
ext0

D(M,D) = homD(M,D) ∼= kerD(R1.),
ext1

D(M,D) ∼= kerD(R2.)/imD(R1.),
ext2

D(M,D) ∼= D/(R2 D
2),

extiD(M,D) = 0, i ≥ 3.

We first note that kerD(R1.) = {d ∈ D | R1 d = 0} = 0 since R1 6= 0 and D is a domain, which
shows that ext0

D(M,D) = 0. Let us now compute kerD(R2.): µ = (µ1 µ2)T ∈ kerD(R2.) iff
(x + 1)µ1 = (x − 1)µ2, i.e., iff µ1 = (x − 1) ν and µ2 = (x + 1) ν for all ν ∈ D since D is a
greatest common divisor domain and gcd(x+ 1, x− 1) = 1. Hence, if R′1 = (x− 1 x+ 1)T , then
kerD(R2.) = R′1 D, and thus:

ext1
D(M,D) ∼= (R′1 D)/(R1 D).

We clearly have R1 = R′1 x, which shows that ext1
D(M,D) 6= 0 and the residue class ρ(R′1) of R′1 in

the D-module L , (R′1 D)/(R1 D) generates L, where ρ : DR′1 −→ L is the canonical projection
onto L, and satisfies x ρ(R′1) = ρ(xR1) = ρ(R1) = 0. Hence, ρ(R′1) is a torsion element and thus
ext1

D(M,D) is a torsion D-module. Finally, since 1 ∈ (x+ 1, x− 1), i.e., (x+ 1, x− 1) = D, then
ext2

D(M,D) ∼= D/(x+ 1, x− 1) = 0.

Example 2.6. If D = Q[∂, δ] is the commutative polynomial ring in ∂ and δ with coefficients in
Q, R1 = (∂ 1− δ)T ∈ D2 and M = D/(D1×2 R1) the D-module finitely presented by R. Then,
M admits the following finite free resolution

0 −→ D
.R2−−→ D1×2 .R1−−→ D

π−→M −→ 0,

where R2 = (1− δ − ∂) ∈ D1×2, because λ = (λ1 λ2) ∈ kerD(.R1) iff λ1 ∂+ λ2 (1− δ) = 0, i.e.,
iff λ1 = µ (1− δ) and λ2 = −µ∂ for all µ ∈ D, since D is a greatest common divisor domain and
gcd(∂, 1− δ) = 1, which proves that λ = µR2, and thus kerD(.R1) = DR2.

Let F = C∞(R) be endowed with the D-module structure defined by ∂ η(t) = η̇(t) and δ η(t) =
η(t− 1) for all η ∈ F . The two functional operators ∂ and δ then commute since:

∀ η ∈ F , ∂ (δ η(t)) = ∂ (η(t− 1)) = (∂ η)(t− 1) ∂(t− 1) = (∂ η)(t− 1) = δ (∂ η(t)).

Then, the defects of exactness of the complex 0←− F R2.←−− F2 R1.←−− F ←− 0 are defined by:
ext0

D(M,F) = homD(M,F) ∼= kerF (R1.),
ext1

D(M,F) ∼= kerF (R2.)/imF (R1.),
ext2

D(M,F) ∼= F/(R2 F2),
extiD(M,F) = 0, i ≥ 3.

η ∈ kerF (R1.) is equivalent to η̇ = 0 and η(t) = η(t−1), i.e., to η is an arbitrary real constant, and
thus kerF (R1.) = R. Now, if c1 and c2 are two different real constant, then (1−δ) c1−∂ c2 = 0, i.e.,
(c1 c2)T ∈ kerF (R2.). However, (c1 c2)T /∈ imF (R1.) since the first equation of the following
inhomogeneous linear OD time-delay system{

η̇(t) = c1,

η(t)− η(t− 1) = c2,

gives η(t) = c1 t + c3, where c3 ∈ R, and then the second one yields the contradiction c1 = c2.
Thus, the D-module ext1

D(M,F) is not reduced to 0. Finally, R2. : F2 −→ F is a surjective since
for all φ ∈ F , φ = (1− δ) ζ1 − ∂ ζ2 where ζ1 = 0 and ζ2 = −

∫ t
−∞ φ(s) ds, i.e., ext2

D(M,F) = 0.
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Theorem 1.1 shows that a connection exists between kerF (R.) and homD(M,F). We may
wonder if it still holds for the higher extension abelian groups extiD(M,F)’s for i ≥ 1. If we
consider (6), then we can introduce the following sequence of abelian group homomorphisms
(14)
. . .

(.R3)?←−−−− homD(D1×r2 ,F) (.R2)?←−−−− homD(D1×r1 ,F) (.R1)?←−−−− homD(D1×r0 ,F) ←− 0,

. . .
(.Ri+1)?
←−−−−−− homD(D1×ri ,F) (.Ri)?←−−−− homD(D1×ri−1 ,F)

(.Ri−1)?
←−−−−−− homD(D1×ri−2 ,F) ←− . . .

where (.Ri)?(φ) = φ ◦ (.Ri) for all φ ∈ homD(D1×ri−1 ,F) and all i ≥ 1. Ri+1 Ri = 0 yields
((.Ri+1)? ◦ (.Ri)?)(φ) = (.Ri+1)?((.Ri)?(φ)) = (.Ri+1)?(φ ◦ (.Ri)) = (φ ◦ (.Ri)) ◦ (.Ri+1)

= φ ◦ ((.Ri) ◦ (.Ri+1)) = φ ◦ (.(Ri+1 Ri)) = 0,

for all φ ∈ homD(D1×ri−1 ,F), which proves that (14) is a complex of abelian groups. Now, applying
Theorem 1.1 to homD(D1×ri ,F), i.e., with R = (0 . . . 0) ∈ D1×ri , we obtain homD(D1×ri ,F) ∼=
Fri . Moreover, using Theorem 1.1, the abelian group homomorphism χi : Fri −→ homD(D1×ri ,F)
defined by χi(η) = φη, where φη is defined by φη(λ) = λ η for all λ ∈ D1×ri , is an ismorphism
and its inverse χ−1

i : homD(D1×ri ,F) −→ Fri is defined by χ−1
i (φ) = (φ(e1) . . . φ(eri))T , where

{ek}k=1,...,ri is the standard basis of D1×ri . Hence, we get

(χ−1
i ◦ (.Ri)? ◦χi−1)(η) = (χ−1

i ◦ (.Ri)?)(φη) = χ−1
i ◦φη ◦ (.Ri) = χ−1

i (φη ◦ (.Ri)) =


e1 Ri η

...
eri Ri η

 ,

for all η ∈ Fri−1 , which shows that (χ−1
i ◦ (.Ri)? ◦ χi−1) = (Ri.) and (14) is equivalent to (13) up

to isomorphism. The complex (14) is said to be obtained by applying the contravariant left exact
functor homD( · ,F) to the truncated resolution of M , namely,

(15) M• . . .
.R4−−→ D1×r3 .R3−−→ D1×r2 .R2−−→ D1×r1 .R1−−→ D1×r0 −→ 0,

i.e., the complex M• obtained from (6) by deleting the left D-homomorphism π and the left D-
module M . The truncated resolution (15) is exact at each position i ≥ 1 and H0(M•) = M .
Hence, the complex (13) can be understood as the dual of (15) with values in the left D-module
F . Exactness is generally lost while dualizing and the defects of exactness, called cohomologies,
are characterized by the extiD(M,F)’s for i ≥ 0.

We recall that M is a D − E-bimodule ([110]) if M is a left D-module, a right E-module and:
∀ d ∈ D, ∀ m ∈M, ∀ e ∈ E, (dm) e = d (me).

Lemma 2.1 ([110]). If M is a left (resp., right) D-module and F is a D − D-module, then
extiD(M,F) is a right (resp., left) D-module for all i ∈ N. In particular, if D is a commutative
ring, then the extiD(M,F)’s are D-modules.

If M is a left (resp., right) D-module and D is the D − D-bimodule, then Lemma 2.1 shows
that the extiD(M,D)’s are right (resp., left) D-modules. The next proposition gives a finer char-
acterization when D is a noetherian domain and M a finitely generated left D-module.
Proposition 2.1 ([92]). Let M be a finitely generated left (resp., right) D-module over a noetherian
domain D. Then, for i ≥ 1, the extiD(M,D)’s are either zero or finitely generated torsion right
(resp., left) D-modules.

This result explains why the D-module ext1
D(M,D) obtained in Example 2.5 was torsion.

Let us now state a few classical results on the extension functors.

Theorem 2.1 ([110]). Let 0 −→M ′
f−→M

g−→M ′′ −→ 0 be a short exact sequence of left (resp.,
right) D-modules and N a left (resp., right) D-module. Then, the following long exact sequence of
abelian groups holds

(16)

0 −→ ext0
D(M ′′, N) g?−→ ext0

D(M,N) f?−→ ext0
D(M ′, N)

κ1

−→ ext1
D(M ′′, N) −→ ext1

D(M,N) −→ ext1
D(M ′, N)

κ2

−→ ext2
D(M ′′, N) −→ ext2

D(M,N) −→ . . . ,
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where f? is defined by f?(φ) = φ ◦ f for all φ ∈ homD(M,N) and similarly for g?.

Roughly speaking, Theorem 2.1 explains why homD( · , N) is called a contravariant left exact
functor: the sense of the long exact sequence (16) is reversed while applying homD( · , N) to the
short exact sequence 0 −→M ′

f−→M
g−→M ′′ −→ 0 and g? is injective, namely:

g?(ψ) = ψ ◦ g = 0 ⇒ ψ = 0.

Proposition 2.2 ([110]). If M is a projective left D-module, then extiD(M,N) = 0 for all i ≥ 1
and all left D-modules N . Similarly for right D-modules.

From Theorem 2.1 and Proposition 2.2, we obtain the following proposition.

Proposition 2.3 ([110]). Let 0 −→ Q −→ P −→M −→ 0 be a short exact sequence of left (resp.,
right) D-modules and P a projective left (resp., right) D-module. Then, for every left (resp., right)
D-module N , we have:

∀ i ≥ 1, exti+1
D (M,N) ∼= extiD(Q,N).

Let us state two useful results in module theory and homological algebra.

Proposition 2.4 ([110]). If M is a projective left (resp., right) D-module, then homD(M,D) is
a projective right (resp., left) D-modules.

Proposition 2.5 ([15, 65, 110]). If 0 −→M ′
f−→M

g−→M ′′ −→ 0 is a short exact sequence and
M ′′ is a left (resp., right) D-module, then the short exact splits, i.e., M ∼= M ′ ⊕M ′′.

Let us introduce the concepts of projective dimension and global dimension.

Definition 2.2 ([110]). (1) A projective resolution of a left (resp., right) D-module M is an
exact sequence of the form

. . .
δ4−→ P3

δ3−→ P2
δ2−→ P1

δ1−→ P0
δ0−→M −→ 0,

where the Pi’s are projective left (resp., right) D-modules. If there exists n ∈ N such that
Pm = 0 for all m ≥ n+ 1, then n is called the length of the projective resolution of M .

(2) The left projective dimension of a left D-module M , denoted by lpdD(M), is the minimum
length of the projective resolutions of M . If no such integer exists, then lpdD(M) = ∞.
Similarly, we can define the right projective dimension rpdD(N) of a right D-module N .

(3) The left global dimension (resp., right global dimension) of a ring D, denoted by lgd(D)
(resp., rgd(D)), is the supremum of lpdD(M) (resp., rpdD(N)) for all left D-modules M
(resp., all right D-modules N).

(4) If the left and the right global dimension of D coincide, then the common value is denoted
by gld(D) and called the global dimension of D.

The left projective dimension measures how far a left D-module M is from being projective.

Example 2.7. M is a projective left D-module iff lpdD(M) = 0. M is a quotient of two projective
left D-modules, i.e., M = P0/im δ1, where P0 and im δ1 ∼= P1 are two projective left D-modules,
iff lpdD(M) ≤ 1. In particular, lpdD(M) = 1 if M is not a projective left D-module but M is
isomorphic to the quotient of two projective left D-modules.

Let us show how to compute lpdD(M) when M is a left D-module defined by a finite free
resolution of finite length. We first need to introduce a result which is used to shorten the length
of a finite free resolution of finite length if it is possible.

Proposition 2.6 ([103]). Let M be a left D-module defined by the finite free resolution:

(17) 0 −→ D1×pm .Rm−−−→ D1×pm−1
.Rm−1−−−−→ . . .

.R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0.

(1) If m ≥ 3 and there exists a matrix Sm ∈ Dpm−1×pm satisfying Rm Sm = Ipm , then M
admits the following shorter finite free resolution

(18)
0 −→ D1×pm−1

.Tm−1−−−−→ D1×(pm−2+pm) .Tm−2−−−−→ D1×pm−3
.Rm−3−−−−→ . . .

.R1−−→ D1×p0 π−→M −→ 0,
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with the notations:
Tm−1 = (Rm−1 Sm) ∈ Dpm−1×(pm−2+pm),

Tm−2 =

(
Rm−2

0

)
∈ D(pm−2+pm)×pm−3 .

(2) If m = 2 and there exists a matrix S2 ∈ Dp1×p2 such that R2 S2 = Ip2 , then M admits the
following shorter finite free resolution

(19) 0 −→ D1×p1 .T1−−→ D1×(p0+p2) τ−→M −→ 0,

with the notations T1 = (R1 S2) ∈ Dp1×(p0+p2) and:
τ = π ⊕ 0 : D1×(p0+p2) −→ M

λ = (λ1 λ2) 7−→ τ(λ) = π(λ1).

The existence of a right-inverse of a matrix can be checked by means of Gröbner basis techniques
(e.g., when D = k[x1, . . . , xn], An(k) and Bn(k), where k is a computable field (e.g., Q or Fp for
a prime p). We first shortly explain how to compute a left-inverse of a matrix.

Algorithm 2.2. • Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and a matrix R ∈ Dq×p.
• Output: A matrix S ∈ Dp×q such that S R = Ip if S exists and ∅ otherwise.

(1) Introduce indeterminates λj , j = 1, . . . , p and µi, i = 1, . . . , q, over D and define the set:

P =


p∑
j=1

Rij λj − µi | i = 1, . . . , q

 .

(2) Compute the Gröbner basis G of P in
⊕p

j=1 Dλj⊕
⊕q

i=1 Dµi with respect to a term order
which eliminates the λj ’s.

(3) Remove from G the elements which do not contain any λi and call H this new set.
(4) Write H in the form Q1 (λ1 . . . λp)T −Q2 (µ1 . . . µq)T , where Q1 and Q2 are two matrices

with entries in D.
(5) If Q1 is invertible over D, then return S = Q−1

1 Q2 ∈ Dp×q, else return ∅.

Computer algebra systems contain packages based on left Gröbner basis techniques, i.e., tech-
niques based on computations of Gröbner bases of finitely generated left D-modules. But, they
generally do not allow us to compute Gröbner bases for right D-modules (e.g., Maple).

As explained in [16], one way to handle this problem is to use the concept of involution of the
ring D (i.e., anti-automorphism) ([110]), namely, a map θ : D −→ D satisfying:

∀ d1, d2 ∈ D, θ(d1 + d2) = θ(d1) + θ(d2), θ(d1 d2) = θ(d2) ◦ θ(d1), θ ◦ θ = idD.
If D is a commutative ring, then θ = idD is an involution. If D = A〈∂1, . . . , ∂n〉 is a ring of PD
operators with coefficients in the differential ring A, then we can define an involution θ of D by:
(20) ∀ a ∈ A, θ(a) = a, ∀ i = 1, . . . , n, θ(∂i) = −∂i.
By extension, the involution θ(R) of a matrix R ∈ Dq×p is defined by θ(R) = (θ(Rij))T ∈ Dp×q.
If D = A〈∂1, . . . , ∂n〉 and θ is defined by (20), then θ(R) corresponds to the formal adjoint R̃ of
R, i.e., the adjoint of R in the sense of the theory of distributions (see, e.g., [16, 85, 89, 66]). In
what follows, if D = A〈∂1, . . . , ∂n〉, then we shall use the standard notation R̃ for θ(R).

Example 2.8. We consider matrix R = (∂1 ∂2 x1 ∂1 + x2 ∂2) with entries in the first Weyl
algebra D = A2(Q). Let us compute its formal adjoint R̃. If φ denotes a row vector of test
functions, namely, a compactly supported smooth functions φ ∈ D(R2), then the formal adjoint R̃
of R can be obtained as follows:∫

R2 φ (∂1 η1 + ∂2 η2 + (x1 ∂1 + x2 ∂2) η3) dx1 dx2

=
∫

R2((−∂1 φ) η1 + (−∂2 φ) η2 + (−∂1 (x1 φ)− ∂2 (x2 φ)) η3) dx1 dx2,

=
∫

R2((−∂1 φ) η1 + (−∂2 φ) η2 + ((−x1 ∂1 − x2 ∂2 − 2)φ) η3) dx1 dx2.
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Hence, we get R̃ = −(∂1 ∂2 x1 ∂1 + x2 ∂2 + 2)T ∈ D2, which can directly be found as follows:
θ(R) = (θ(∂1) θ(∂2) θ(x1 ∂1 + x2 ∂2))T = (−∂1 − ∂2 θ(∂1) θ(x1) + θ(∂2) θ(x2))T

= (−∂1 − ∂2 − ∂1 x1 − ∂2 x2)T = −(∂1 ∂2 x1 ∂1 + x2 ∂2 + 2)T .

Let Iq be the q × q identity matrix. If D admits an involution θ, then the search for a right-
inverse T ∈ Dp×q of R ∈ Dq×p can be reduced to the search for a left-inverse S ∈ Dq×p of θ(R)
since S θ(R) = Iq yields θ(S θ(R)) = θ2(R) θ(S) = Rθ(S) = θ(Iq) = Iq, i.e., T = θ(S).

Algorithm 2.3. • Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution θ and
a matrix R ∈ Dq×p.
• Output: A matrix T ∈ Dp×q such that RT = Iq if S exists and ∅ otherwise.

(1) Compute θ(R) ∈ Dp×q.
(2) Using Algorithm 2.2, compute a left-inverse S ∈ Dq×p of θ(R) if S exists.
(3) Compute T = θ(S) ∈ Dp×q.

Let us now illustrate Proposition 2.6 with explicit examples.

Example 2.9. We consider the following time-varying linear OD system{
t2 y(t) = 0,
t ẏ(t) + 2 y(t) = 0,

whose solution in the space of distributions D′(R) is y = δ̇, namely, the derivative of the Dirac
distribution δ at 0. Let D = A1(Q) be the first Weyl algebra, R1 =

(
t2 t ∂ + 2

)T and M =
D/(D1×2 R1) = D/

(
D t2 +D (t ∂ + 2)

)
the left D-module finitely presented by R1. Using Algo-

rithm 2.1, a finite free resolution of M is defined by

0 −→ D
.R2−−→ D1×2 .R1−−→ D

π−→M −→ 0,

where R2 = (∂ − t) ∈ D1×2. Using Algorithm 2.3, we can check that S2 = (t ∂)T ∈ D2 is a
right-inverse of R2. Using Corollary 2.6, we obtain the following finite free resolution of M

(21) 0 −→ D1×2 .T1−−→ D1×2 τ−→M −→ 0,
with the notations:

T1 =

(
t2 t

t ∂ + 2 ∂

)
∈ D2×2, τ0 = δ0 ⊕ 0.

Example 2.10. Let us consider the first Weyl algebra D = A3(Q) and the matrix

(22) R1 = 1
2

 x2 ∂1 2 (x2 ∂2 + 1) 2x2 ∂3 + ∂1

−x2 ∂2 − 3 0 ∂2

−2 ∂1 − x2 ∂3 −2 ∂2 −∂3

 ∈ D3×3,

which defines the PD linear system R1 ξ = 0 of the infinitesimal transformations of the Lie
pseudogroup defined by the contact transformations. Using Algorithm 2.1, the left D-module
M = D1×3/(D1×3 R1) admits the following finite free resolution

0 −→ D
.R2−−→ D1×3 .R1−−→ D1×3 π−→M −→ 0,

where R2 = (∂2 − (∂1 + x2 ∂3) x2 ∂2 + 2) ∈ D1×3. The matrix S2 = (−x2 0 1)T is a
right-inverse of R2, and thus, using Corollary 2.6, we obtain the following finite free resolution

(23) 0 −→ D1×3 .T1−−→ D1×4 τ−→M −→ 0,
where the matrix T1 is defined by:

(24) T1 = 1
2

 x2 ∂1 2 (x2 ∂2 + 1) 2x2 ∂3 + ∂1 −2x2

−x2 ∂2 − 3 0 ∂2 0
−2 ∂1 − x2 ∂3 −2 ∂2 −∂3 2

 ∈ D3×4.

We can now give an algorithm which computes the left projective dimension lpdD(M) of M .

295



Alban Quadrat

Algorithm 2.4. • Input: A left D-module M defined by a finite free resolution of the form
(17).

• Output: The left projective dimension lpdD(M) of M .
(1) Set j = m and Tj = Rm.
(2) Check whether or not Tj admits a right-inverse Sj over D.

(a) If no right-inverse of Tj exists, then lpdD(M) = j and stop the algorithm.
(b) If there exists a right-inverse Sj of Tj and

(i) if j = 1, then we have lpdD(M) = 0 and stop the algorithm.
(ii) if j = 2, then compute (19).
(iii) if j ≥ 3, then compute (18).

(3) Return to step (2) with j ←− j − 1.

Example 2.11. We consider again Example 2.9. We can easily check that the matrix T1 defined in
(21) does not admit a right-inverse over D. Hence, using Algorithm 2.4, we obtain that lpdD(M) =
1. In particular, the left D-module M is not projective. But, the existence of the short exact
sequence (21) shows that M can be expressed as the quotient of two finitely generated free left
D-modules.

If M is a projective left D-module defined by a finite free resolution (17), then lpdD(M) = 0
and using Algorithm 2.4, we obtain a short exact sequence of the form

0 −→ D1×p′ .R′−→ D1×p′ π′−→M −→ 0,

where the matrix R′ admits a right-inverse S′ ∈ Dp′×q′ , i.e., R′ S′ = Iq′ . If we introduce the
following two left D-homomorphisms

f : D1×q′ −→ D1×p′

λ 7−→ λR′,
k : D1×p′ −→ D1×q′

µ 7−→ µS′,

then (k ◦ f)(λ) = k(λR′) = λR′ S′ = λ for all λ ∈ D1×q′ , i.e., k ◦ f = idD1×q′ , which shows that
the above short exact sequence splits (see 7 of Definition 2.1), i.e., D1×p′ ∼= D1×q′ ⊕M , which
proves that M is a stably free left D-module of rank p′− q′. We obtain the next proposition which
can be traced back to Serre’s work on projective modules (Serre’s conjecture).

Proposition 2.7. If a left D-module M admits a finite free resolution of finite length, then M is
a projective left D-module iff M is a stably free left D-module.

Example 2.12. We consider again Example 2.10. We can check that the matrix T1 defined in
(24) admits the following right-inverse over D = A3(Q):

S1 =


0 −1 0
1 0 x2

0 −x2 0
∂2 −∂1 − x2 ∂3 x2 ∂2 + 2

 .

Using Algorithm 2.4, we obtain lpdD(M) = 0, i.e., M is a projective left D-module, and thus a
stably free left D-module of rank 1 by Proposition 2.7. Finally, since rankD(M) = 1, Stafford’s
theorem (see 3 of Theorem 1.2) cannot be used to conclude that M is a free left D-module.

Let us state a classical but non-trivial result due to Auslander.

Theorem 2.2 ([110]). If D is a noetherian ring, then rgd(D) = lgd(D).

Let us give global dimensions of some noetherian domains of PD operators.

Example 2.13. gld(A〈∂1, . . . , ∂n〉) = n, where A = k is a field, k[x1, . . . , xn], k(x1, . . . , xn),
kJx1, . . . , xnK, where k is a field of characteristic 0, and k{x1, . . . , xn}, where k = R or C. A ring
D satisfying gld(D) = 1 is called a hereditary ring (e.g., D = A〈∂〉, where A = k[t], kJtK or k{t}).
If the characteristic of k is a prime p (e.g., k = Fp), then gld(An(k)) = 2n ([10, 13, 44, 66]).

Proposition 2.8 ([110]). lgld(D) ≤ n iff extn+1
D (M,N) = 0 for all left D-modules M and N .
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3. Constructive study of module properties

“Prenons par exemple la tâche de démontrer un théorème qui reste hypothétique
(à quoi, pour certains, semblerait se réduire le travail mathématique). Je vois
deux approches extrêmes pour s’y prendre. [. . . ] On peut s’y mettre avec des
pioches ou des barres à mine ou même des marteaux-piqueurs : c’est la première
approche, celle du “burin” (avec ou sans marteau). L’autre est celle de la mer.
La mer s’avance insensiblement et sans bruit, rien ne semble se casser rien ne
bouge l’eau est si loin on l’entend à peine. . . Pourtant elle finit par entourer la
substance rétive, celle-ci peu à peu devient une presqu’île, puis une île, puis un
îlot, qui finit par être submergé à son tour, comme s’il s’était finalement dissous
à dans l’océan s’étendant à perte de vue. . . ”

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

We are now in a position to characterize the module properties introduced in Definition 1.1.

Theorem 3.1 ([2, 16]). Let D be a noetherian domain with a finite global dimension gld(D),
R ∈ Dq×p a matrix, M = D1×p/(D1×q R) the left D-module finitely presented by R and the
so-called Auslander transpose of M , namely, the right D-module N = Dq/(RDp).

(1) The following left D-isomorphism holds:
(25) t(M) ∼= ext1

D(N,D).
(2) M is a torsion-free left D-module iff ext1

D(N,D) = 0.
(3) We have the following long exact sequence of left D-modules,

(26) 0 −→ ext1
D(N,D) −→M

ε−→ homD(homD(M,D), D) −→ ext2
D(N,D) −→ 0,

where the left D-homomorphism ε is defined in 4 of Definition 1.1.
(4) M is reflexive iff extiD(N,D) = 0 for i = 1, 2.
(5) M is projective iff extiD(N,D) = 0 for i = 1, . . . , gld(D).

Theorem 3.1 was proved in [44] for rings of PD operators and in [96] for finitely presented
modules over coherent commutative domains. See also [85, 89]. But, Theorem 3.1 is first due to
Auslander and Bridger ([2]) and was independently found again in [16].

Remark 3.1. We point out that the Auslander transpose N = Dq/(RDp) depends only on the
left D-module M up to projective equivalence ([110]), namely, if M = D1×p′/(D1×q′ R′) is another
presentation of M and N ′ = Dq′/(R′Dp′), then we have:

N ⊕D(p+q′) ∼= N ′ ⊕D(q+p′).

See Theorem 4.2 and [2, 22, 91]. If R and R′ have full row rank, namely, kerD(.R) = 0 and
kerD(.R′) = 0, then the previous isomorphism reduces to N ∼= N ′. For a constructive version of
the above isomorphism, see [22]. Since a free right D-module is projective (see Proposition 1.1),
Proposition 2.2 yields extiD(D(p+q′), D) = 0 and extiD(D(q+p′), D) = 0 for all i ≥ 1. Using the
additivity of the extension functor (see, e.g., [15, 65, 110]), we obtain

∀ i ≥ 1, extiD(N,D) ∼= extiD(N,D)⊕ extiD(D(p+q′), D) ∼= extiD(N ⊕D(p+q′), D)
∼=

extiD(N ′ ⊕D(q+p′), D) ∼= extiD(N ′, D)⊕ extiD(D(q+p′), D) ∼= extiD(N ′, D),

extiD(N,D) ∼= extiD(N ′, D) for all i ≥ 1, which shows that the extiD(N,D)’s for i ≥ 1 depend only
on M and not on the presentation matrix R ∈ Dq×p of the left D-module M ([2, 22, 91]).

Theorem 3.1 shows that the vanishing of the extiD(N,D)’s for i ≥ 1 characterizes the module
properties of the finitely left D-module M . For a commutative polynomial ring D = k[x1, . . . , xn]
over a computable field k (e.g., Q or Fp for a prime p) or certain classes of noncommutative
polynomial rings of functional operators (e.g., certain classes Ore algebras ([18]) or GR-algebras
([58])) for which Gröbner bases exist for admissible term orders, the results of Theorem 3.1 were
implemented in the package OreModules ([16, 17]).
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If D admits an involution θ, then the right D-module structure of the Auslander transpose
N = Dq/(RDp) of the left D-module M = D1×p/(D1×q R) can be turned into a left D-module
structure by defining the so-called adjoint left D-module module Ñ = D1×q/(D1×p θ(R)) of M .

Let us show how to compute ext1
D(N,D) using only left Gröbner basis computations.

Algorithm 3.1. • Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution θ and
a matrix R ∈ Dq×p.
• Output: Two matrices R′ ∈ Dq′×p and Q ∈ Dp×m such that

ext1
D(N,D) ∼= t(M) = (D1×q′ R′)/(D1×q R), kerD(.Q) = D1×q′ R′,

where N = Dq/(RDp) is the Auslander transpose of M = D1×p/(D1×q R).
(1) Compute θ(R) ∈ Dp×q.
(2) Using Algorithm 2.1, compute a matrix P ∈ Dm×p such that kerD(.θ(R)) = D1×m P .
(3) Compute Q = θ(P ) ∈ Dp×m.
(4) Using Algorithm 2.1, compute a matrix R′ ∈ Dq′×p such that kerD(.Q) = D1×q′ Q′.

If D = k[x1, . . . , xn] is a commutative polynomial ring with coefficients in a computable field k,
then we can use θ = idD in Algorithm 3.1. If D = A〈∂1, . . . , ∂n〉 is a noncommutative polynomial
ring of PD operators, then we can use the involution θ defined by (20).

Similarly, the higher extension left D-modules extiD(N,D)’s can be computed as follows:
(1) Using Algorithm 2.1, we compute the beginning of a finite free resolution of the left D-

module Ñ = D1×q/(D1×p S1), where S1 = θ(R):

(27) 0←− Ñ κ←− D1×q0 .S1←−− D1×q1 .S2←−− . . .
.Si−1←−−− D1×qi−1 .Si←− D1×qi .Si+1←−−− . . .

(2) We apply the involution θ to (27) to get the following complex of left D-modules:

0 −→ D1×q0 .θ(S1)−−−−→ D1×q1 .θ(S2)−−−−→ . . .
.θ(Si−1)−−−−−→ D1×qi−1 .θ(Si)−−−−→ D1×qi .θ(Si+1)−−−−−→ . . .

(3) Using Algorithm 2.1, we compute a matrix Qi ∈ Dq′i−1×qi such that kerD(.θ(Si+1)).
(4) We obtain extiD(N,D) ∼= (D1×q′i−1 Q′i)/(D1×qi−1 θ(Si)).

According to Proposition 2.1, the extiD(N,D)’s are either 0 or torsion left D-modules for all
i ≥ 1. If we denote by zj the residue classes of the jth row of the matrix Q′i in the left D-module
(D1×q′i−1 Q′i)/(D1×qi−1 θ(Si)), then zj is either 0 or a torsion element (i.e., there exists d ∈ D \{0}
such that d zj = 0). Let us now explain how to compute annD(zj) = {d ∈ D | d zj = 0}.

To simplify the notations, we consider the output of Algorithm 3.1, i.e.:

ext1
D(N,D) ∼= (D1×q′ R′)/(D1×q R).

Since (D1×q′ R′)/(D1×q R) is a torsion leftD-module, there exists di ∈ D\{0} such that di π(R′i•) =
0, i.e., π(diR′i•) = 0, which yields the existence of µi ∈ D1×q satisfying:

diR
′
i• = µiR ⇔ (di − µi)

(
R′i•
R

)
= 0.

Hence, we have to compute the compatibility conditions of the inhomogeneous linear systems:

∀ i = 1, . . . , q′,

{
R′i• η = ζi,

R η = 0,
⇒ dij ζi = 0, j = 1, . . . , ri.

Algorithm 3.2. • Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order, R ∈ Dq×p and R′ ∈ Dq′×p satisfying
D1×q R ⊆ D1×q′ R′ and such that L = (D1×q′ R′)/(D1×q R) is a torsion left D-module.

• Output: A set C of generating equations satisfied by the residue class zi of the ith row
R′i• = (R′i1 . . . R′ip) of the matrix R′ in the left module L = (D1×q′ R′)/(D1×q R).

(1) Introduce the indeterminates η1, . . . , ηp and ζ1, . . . , ζq over D.
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(2) For i = 1, . . . , q′, compute the Gröbner basis Gi of the following set

Li =


p∑
j=1

R′ij ηj − ζi

 ⋃ 
p∑
j=1

Rkj ηj | k = 1, . . . , q


in
⊕p

j=1 Dηj ⊕D ζi with respect to a term order which eliminates the ηj ’s.
(3) Return C =

⋃q′
i=1(Gi ∩D ζi)

Let us illustrate Algorithms 3.1 and 3.2 with two explicit examples.

Example 3.1. Let us consider the 2-dimensional Stokes equations ([52]) defined by:

(28)

 −ν (∂2
x + ∂2

y) 0 ∂x

0 −ν (∂2
x + ∂2

y) ∂y

∂x ∂y 0


 u

v

p

 = 0.

Let D = Q(ν)[∂x, ∂y] be the commutative polynomial ring of PD operators with coefficients in
Q(ν), R ∈ D3×3 the matrix appearing in the left-hand side of (28) and M = D1×3/(D1×3 R)
the D-module finitely presented by R. Since D is a commutative ring, we can take the trivial
involution θ = idD, define θ(R) = RT = R and the adjoint D-module Ñ = D1×3/(D1×3 R) = M .
Using Algorithm 2.1, we can easily check that kerD(.R) = 0, i.e., R has full row rank, and thus
the adjoint D-module Ñ admits the following finite free resolution:

0←− Ñ π←− D1×3 .R←− D1×3 ←− 0.
Hence, the defects of exactness of the following complex of D-modules

0 −→ D1×3 .R−→ D1×3 −→ 0
are ext0

D(Ñ ,D) ∼= kerD(.R) = 0 and ext1
D(Ñ ,D) ∼= D1×3/(D1×3 R) = M . Using 1 of Theorem 3.1,

we get t(M) ∼= ext1
D(Ñ ,D) ∼= M , which shows that M is a torsion D-module. Finally, using

Algorithm 3.2, we can decouple the system variables of (28) as follows

(29)


(∂2
x + ∂2

y)2 u = 0,
(∂2
x + ∂2

y)2 v = 0,
(∂2
x + ∂2

y) p = 0,

i.e., annD(u) = annD(v) = D∆2 and annD(p) = D∆, where ∆ = ∂2
x + ∂2

y .

Example 3.2. Let us consider the following linear PD system with polynomial coefficients

(30)


x3 ∂1 ξ1 − x1 ∂3 ξ1 + x3 ∂2 ξ2 − x2 ∂3 ξ2 − ξ3 = 0,
−ξ1 + x1 ∂2 ξ2 − x2 ∂1 ξ2 + x1 ∂3 ξ3 − x3 ∂1 ξ3 = 0,
x2 ∂1 ξ1 − x1 ∂2 ξ1 − ξ2 + x2 ∂3 ξ3 − x3 ∂2 ξ3 = 0,

which appears in the study of the Lie algebra of the special unitary group SU(2) ([9]). We consider
the first Weyl algebra D = A3(Q) and the presentation matrix R of (30) defined by:

(31) R =

 x3 ∂1 − x1 ∂3 x3 ∂2 − x2 ∂3 −1
−1 x1 ∂2 − x2 ∂1 x1 ∂3 − x3 ∂1

x2 ∂1 − x1 ∂2 −1 x2 ∂3 − x3 ∂2

 ∈ D3×3.

Using the involution θ of D defined by (20), the formal adjoint R̃ = θ(R) of R is defined by:

(32) R̃ =

 x1 ∂3 − x3 ∂1 −1 x1 ∂2 − x2 ∂1

x2 ∂3 − x3 ∂2 x2 ∂1 − x1 ∂2 −1
−1 x3 ∂1 − x1 ∂3 x3 ∂2 − x2 ∂3

 ∈ D3×3.

Let Ñ = D1×3/(D1×3 R̃) be the left D-module finitely presented by the matrix R̃. Using Algo-
rithm 2.1, we obtain the following finite free resolution of Ñ

0←− Ñ κ←− D1×3 .R̃←− D1×3 .P←− D ←− 0,
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where P = (x2 ∂3 − x3 ∂2 x3 ∂1 − x1 ∂3 x1 ∂2 − x2 ∂1). If N = D3/(RD3) is the Auslander
transpose of the left D-module M = D1×3/(D1×3 R), then, using Algorithm 3.1, the left D-
modules extiD(N,D)’s, for i = 0, 1, 2, are the defects of exactness of the following complex

0 −→ D
.R−→ D1×3 .Q−→ D −→ 0,

where Q = P̃ = −PT , namely:
ext0

D(N,D) ∼= kerD(.R),
ext1

D(N,D) ∼= kerD(.Q)/imD(.R),
ext2

D(N,D) ∼= cokerD(.Q) = D/(D1×3 Q),
extiD(N,D) = 0, ∀ i ≥ 3.

Using Algorithm 2.1, we obtain kerD(.R) = D (x1 ∂2 − x2 ∂1 x2 ∂3 − x3 ∂2 x3 ∂1 − x1 ∂3) and
kerD(.Q) = D1×2 R′, where the matrix R′ ∈ D2×3 is defined by

(33) R′ =

(
x1 x2 x3

∂1 ∂2 ∂3

)
,

which yields:
ext0

D(N,D) ∼= D (x1 ∂2 − x2 ∂1 x2 ∂3 − x3 ∂2 x3 ∂1 − x1 ∂3),
ext1

D(N,D) ∼= t(M) = (D1×2 R′)/(D1×3 R),
ext2

D(N,D) ∼= D/(D (x1 ∂2 − x2 ∂1) +D (x2 ∂3 − x3 ∂2) +D (x3 ∂1 − x1 ∂3)).

Let zi be the residue class of the ith row of R′ in M for i = 1, 2. If {yi}i=1,2 is the family of
generators of M defined by the residue classes of the standard basis of D1×3 in M , then we have:

(34)

{
z1 = x1 y1 + x2 y2 + x3 y3,

z2 = ∂1 y1 + ∂2 y2 + ∂3 y3.

Using Algorithm 3.2, we obtain that the generators z1 and z2 of t(M) ∼= ext1
D(N,D) are torsion

elements which satisfy the following PDEs:

(35) ∀ i = 1, 2,


(x2 ∂3 − x3 ∂2) zi = 0,
(x1 ∂3 − x3 ∂1) zi = 0,
(x1 ∂2 − x2 ∂1) zi = 0,

Thus, the left D-module M is not torsion-free. Finally, using a Gröbner basis computation, we
can check that 1 /∈ D (x1 ∂2 − x2 ∂1) +D (x2 ∂3 − x3 ∂2) +D (x3 ∂1 − x1 ∂3), and thus the torsion
left D-module ext2

D(N,D) is not reduced to 0.
To check the vanishing of the left D-module ext1

D(N,D), we have to check the vanishing of
the left D-module L = (D1×q′ R′)/(D1×q R). If Gröbner basis techniques can be used over the
noncommutative polynomial ring D, then we can check whether or not the normal forms of the
rows of the matrix R′ vanish in the left D-module L, i.e., whether or not L is reduced to 0.

Let us introduce a useful lemma which gives a finite presentation of a quotient module.

Proposition 3.1 ([19]). Let D be a left noetherian ring, R ∈ Dq×p and R′ ∈ Dq′×p two matrices
satisfying D1×q R ⊆ D1×q′ R′, i.e., such that R = R′′R′ for a certain R′′ ∈ Dq×q′ . Moreover, let
R′2 ∈ Dr′×q′ be a matrix such that kerD(.R′) = D1×r′ R′2 and let us respectively denote by π and
π′ the following canonical projections:

π : D1×q′ R′ −→ (D1×q′ R′)/(D1×q R), π′ : D1×q′ −→ D1×q′/(D1×q R′′ +D1×r′ R′2).
Then, the left D-homomorphism χ defined by

(36)
χ : D1×q′/(D1×q R′′ +D1×r′ R′2) −→ (D1×q′ R′)/(D1×q R)

π′(λ) 7−→ π(λR′),
is an isomorphism and its inverse χ−1 is defined by:

χ−1 : (D1×q′ R′)/(D1×q R) −→ D1×q′/(D1×q R′′ +D1×r′ R′2)
π(λR′) 7−→ π′(λ).
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In other words, we have the following left D-isomorphism:

(D1×q′ R′)/(D1×q R) ∼= D1×q′/(D1×q R′′ +D1×r′ R′2).

In particular, (D1×q′ R′)/(D1×q R) is reduced to 0 iff (R′′T R′T2 )T admits a left-inverse over D.

Example 3.3. We consider again Example 3.2. Using Proposition 3.1, let us compute a finite
presentation of the left D-module L = (D1×2 R′)/(D1×3 R) ∼= ext1

D(N,D). Since kerD(.R′) = 0,
the left D-module L admits the finite presentation L ∼= D1×2/(D1×3 R′′), where

(37) R′′ =

 −∂3 x3

−∂1 x1

−∂2 x2

 ∈ D3×2

satisfies R = R′′R′. Then, the generators z1 and z2 of the left D-module L satisfy:

(38)


−∂3 z1 + x3 z2 = 0,
−∂1 z1 + x1 z2 = 0,
−∂2 z1 + x2 z2 = 0.

Let us sum up some of the previous results. Let D be a noetherian domain and

0←− N κ←− Dq R.←− Dp Q.←− Dm

the beginning of a finite free resolution of the Auslander transpose N = Dq/(RDp) of the left
D-module M = D1×p/(D1×q R) associated with the linear system kerF (R.), where F is a left D-
module. Applying the contravariant left exact functor homD( · , D) to the previous exact sequence
of right D-modules, we obtain the following complex of left D-modules:

(39) D1×q .R−→ D1×p .Q−→ D1×m.

Then, 1 of Theorem 3.1 asserts that ext1
D(N,D) ∼= t(M) = kerD(.Q)/imD(.R). Hence, if R′ ∈

Dq′×p is a matrix satisfying kerD(.R) = D1×q′ R′, then we obtain:

(40) t(M) = (D1×q′ R′)/(D1×q R).

See Algorithm 3.1. Then, the residue classes {π(R′i•)}i=1,...,q′ of the rows R′i• of the matrix R′ in
the left D-module M define a set of generators of the torsion left D-submodule t(M) of M , i.e.,
t(M) =

∑q′

i=1 Dπ(R′i•). See Algorithm 3.2. Applying Proposition 3.1 to (40), we get

(41) t(M) ∼= D1×q′/(D1×q R′′ +D1×q2 R′2),

where the matrices R′′ ∈ Dq×q′ and R′2 ∈ Dr′×q′ are respectively defined by R = R′′R′ and
kerD(.R′) = D1×r′ R′2. Using the classical third isomorphism theorem (see, e.g., [110]), we obtain:

(42) M/t(M) = [D1×p/(D1×q R)]/[(D1×q′ R′)/(D1×q R)] ∼= D1×p/(D1×q′ R′).

Therefore, the matrix R′ returns by Algorithm 3.1 is a presentation matrix of the torsion-free left
D-module M/t(M), i.e., M/t(M) admits the following finite presentation:

D1×q′ .R′−→ D1×p π′−→M/t(M) −→ 0.

Then, we get the following commutative exact diagram of left D-modules:

(43)

0
↓

t(M)
↓ i

D1×q .R−→ D1×p π−→ M −→ 0
↓ .R′′ ‖ ↓ ρ

D1×r′ .R′2−−→ D1×q′ .R′−→ D1×p π′−→ M/t(M) −→ 0.
↓
0
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Since kerD(.Q) = D1×q′ R′, the exact sequence D1×q′ .R′−→ D1×p .Q−→ D1×m holds, which yields:

M/t(M) ∼= D1×p/(D1×q′ R′) = D1×p/ kerD(.Q) = coimD(.Q) ∼= imD(.Q) ∼= D1×pQ.

Let φ : M/t(M) −→ D1×pQ be the left D-isomorphism defined by φ(π′(λ)) = λQ for all λ ∈ D1×p.
It is well-defined left D-homomorphism since π′(λ) = π′(λ′) yields λ = λ′ + µ′R′ for a certain
µ′ ∈ D1×q′ , and thus φ(π′(λ)) = λQ = λ′Q + µ′R′Q = λ′Q = φ(π′(λ′)). Then, we have the
following commutative exact diagram of left D-modules

0
↑

D1×q′ .R′−→ D1×p .Q−→ D1×pQ −→ 0
‖ ‖ ↑ φ

D1×q′ .R′−→ D1×p π′−→ M/t(M) −→ 0,
↑
0

and φ(M/t(M)) = D1×pQ, i.e., every element m′ = π′(λ) of M/t(M) is in a one-to-one corre-
spondence with the element φ(m′) = λQ. Equivalently, every m′ = π(λ′) ∈ M/t(M) is such
that m′ = φ−1(λ′Q). The matrix Q is called a parametrization of the torsion-free left D-module
M/t(M) since, up to the isomorphism φ, the elements of M/t(M) are parametrized by Q.

Example 3.4. We consider again Example 3.2. We obtain:

M/t(M) ∼= D1×3/(D1×2 R′) ∼= D1×3 Q = D (x1 ∂2 − x2 ∂1) +D (x2 ∂3 − x3 ∂2) +D (x3 ∂1 − x1 ∂3).

Since M/t(M) ∼= D1×3 Q ⊆ D and D is a torsion-free left D-module, we find again that M/t(M)
is a torsion-free left D-module and, up to isomorphism, M/t(M) is parametrized by Q.

Example 3.5. Let D = Q[∂1, ∂2, ∂3], R = (∂1 ∂2 ∂3) ∈ D1×3 be the divergence operator in R3

and M = D1×3/(DR) the left D-module finitely presented by R and associated with the linear PD
system kerF (R.) = {η ∈ F3 | Rη = ~∇ . η = 0}, where F is a D-module (e.g., F = C∞(R3)). Let us
study the module properties of M . Let us first introduce the Auslander transpose N = D/(RD3)
of M . Since D is a commutative ring, N = D/(D1×3 RT ) = Ñ , where θ = idD. Let now us
compute the D-modules extiD(N,D) for 0 ≤ i ≤ 3. We first note that RT = R1, where R1 is
the matrix introduced in Example 2.3. Using Example 2.3, the D-module N admits the following
finite free resolution

(44) 0 −→ D
.R3−−→ D1×3 .R2−−→ D1×3 .R1−−→ D

κ−→ N −→ 0,

where R2 is defined by (10) and R3 = R. The D-modules extiD(N,D)’s are then the defects of
exactness of the following complex of D-modules:

0←− D .RT3←−− D1×3 .RT2←−− D1×3 .RT1←−− D ←− 0.

Since RT3 = RT = R1, RT2 = −R2 and RT1 = R, using the long exact sequence (44), we obtain:

ext0
D(N,D) = 0 ext1

D(N,D) = 0, ext2
D(N,D) = 0, ext3

D(N,D) = D/(D1×3 RT3 ) = M.

Using Theorem 3.1, we obtain that M is a reflexive but not projective D-module.

Example 3.6. Let us consider the first set of Maxwell equations ([51, 84]), namely,

(45)


∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0,

where ~B (resp., ~E) denotes the magnetic (resp., electric) field. For the notations, see Example 2.3.
Let us consider the commutative polynomial ringD = Q[∂t, ∂1, ∂2, ∂3] of PD operators with rational
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constant coefficients, the presentation matrix R1 of (45), namely,

R1 =


∂t 0 0 0 −∂3 ∂2

0 ∂t 0 ∂3 0 −∂1

0 0 ∂t −∂2 ∂1 0
∂1 ∂2 ∂3 0 0 0

 ∈ D4×6,

and the finitely presented D-module M = D1×6/(D1×4 R1). Using Algorithm 2.1, we obtain that
the D-module M admits the following finite free resolution

(46) 0 −→ D
.R2−−→ D1×4 .R1−−→ D1×6 π−→M −→ 0,

where the matrix R2 = (∂1 ∂2 ∂3 − ∂t) ∈ D1×4 defines the compatibility conditions

(47) ~∇ . ~γ1 −
∂γ2

∂t
= 0

of the inhomogeneous linear PD system:
∂ ~B

∂t
+ ~∇∧ ~E = ~γ1,

~∇ . ~B = γ2.

Let us study the module properties of M . The formal adjoint R̃1 of R1 can be obtained by
contracting (45) by a vector and by integrating the result by parts:

(48)
~C .

(
∂ ~B

∂t
+ ~∇∧ ~E

)
+G

(
~∇ . ~B

)
= −∂

~C

∂t
. ~B +

(
~∇∧ ~C

)
. ~E −

(
~∇G

)
. ~B + ∂

∂t

(
~C . ~B

)
+ ~∇ .

(
−~C ∧ ~E

)
+ ~∇ .

(
G ~B

)
The last three terms can be written as (∂t ∂1 ∂2 ∂3) .

(
~C . ~B (G ~B − ~C ∧ ~E)T

)T
, i.e., under

a divergence form in space-time, a fact showing that the adjoint D-module Ñ = D1×4/(D1×6 R̃1)
is defined by the following linear PD system:

(49)

 −
∂ ~C

∂t
− ~∇G = ~0,

~∇∧ ~C = 0.

The compatibility conditions of the inhomogeneous linear PD system

(50)

 −
∂ ~C

∂t
− ~∇G = ~F ,

~∇∧ ~C = ~D,

are obtained by eliminating ~C and G from (50) and we get

(51)


∂ ~D

∂t
+ ~∇∧ ~F = ~0,

~∇ . ~D = 0,

which has exactly the same form as (45). We can easily check that the compatibility conditions of
the following inhomogeneous PD linear system

∂ ~D

∂t
+ ~∇∧ ~F = ~J,

~∇ . ~D = I,

are defined by
~∇ . ~J − ∂I

∂t
= 0,
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which has the same form as (47). Hence, we obtain the following finite free resolution of Ñ

0←− Ñ ←− D1×4 .R̃1←−− D1×6 .R̃0←−− D1×4 .R̃−1←−−− D ←− 0,

where the matrices R̃1, R̃0 and R̃−1 are defined by:

R̃1 =



−∂t 0 0 −∂1

0 −∂t 0 −∂2

0 0 −∂t −∂3

0 −∂3 ∂2 0
∂3 0 −∂1 0
−∂2 ∂1 0 0


, R̃0 = R1, R̃−1 = R2.

Up to isomorphism, the extiD(Ñ ,D)’s are defined by the defects of exactness of the complex:

0 −→ D1×4 .R1−−→ D1×6 .R0−−→ D1×4 .R−1−−−→ D −→ 0.

Moreover, we can easily check that

(52)

 −
~∇ ξ = ~A,

∂ξ

∂t
= V,

⇒


~∇∧ ~A = ~0,

−∂
~A

∂t
− ~∇V = ~0,


~∇∧ ~A = ~B,

−∂
~A

∂t
− ~∇V = ~E,

⇒ (45),

where “a ⇒ b” means “b generates the compatibility conditions of a”, which proves that we
have extiD(Ñ ,D) = 0 for i = 1, 2, and the first set Maxwell equations (45) generates a reflexive
D-module M by 4 of Theorem 3.1. Finally, we have ext3

D(Ñ ,D) ∼= D/(∂1, ∂2, ∂3, ∂t) 6= 0 since
1 /∈ (∂1, ∂2, ∂3, ∂t), which proves that M is not a projective D-module by 5 of Theorem 3.1.

If M is a torsion left module over a domain D, then for every m ∈M , there exists d ∈ D \ {0}
such that dm = 0. If f ∈ homD(M,D), then d f(m) = f(dm) = f(0) = 0 and, since f(m) ∈ D
and D is a domain, then f(m) = 0, i.e., f = 0 and homD(M,D) = 0. If M is a finitely generated
left module over a noetherian domain D, then the converse of this result is true. Indeed, if
homD(M,D) = 0, then homD(homD(M,D), D) = 0 and using 1 and 2 of Theorem 3.1, M =
ker ε ∼= ext1

D(N,D) ∼= t(M), which shows that M is a torsion left D-module.

Corollary 3.1 ([16]). Let M be a finitely generated left module over a noetherian domain D.
Then, M is a torsion left D-module iff homD(M,D) = 0. Similarly for right D-modules.

Example 3.7. Let us consider again Example 3.1, i.e., the D = Q(ν)[∂x, ∂y]-module M =
D1×3/(D1×3 R), where the matrix R is defined by (28). Since kerD(.R) = 0, M admits the
finite free resolution 0 −→ D1×3 .R−→ D1×3 π−→ M −→ 0. Applying Theorem 1.1 to M , we
get homD(M,D) ∼= kerD(R.). Since D is a commutative ring, RT = R and kerD(.R) = 0,
kerD(R.) ∼= kerD(.RT ) = kerD(.R) = 0, i.e., homD(M,D) = 0 and we find again that M is a
torsion D-module by Corollary 3.1 (see Example 3.1).

A straightforward consequence of Theorem 3.1 is the following corollary.

Corollary 3.2 ([16, 89]). Let D be a noetherian domain with a finite global dimension gld(D) = n.
Moreover, let M = D1×p/(D1×q R) be the left D-module finitely presented by the matrix R ∈ Dq×p.
If we set Q1 = R, p1 = p and p0 = q, then we have the following results:

(1) M is a torsion-free left D-module iff there exists a matrix Q2 ∈ Dp1×p2 such that the
following exact sequence of left D-modules holds:

D1×p0 .Q1−−→ D1×p1 .Q2−−→ D1×p2 .

(2) M is a reflexive left D-module iff there exist two matrices Q2 ∈ Dp1×p2 and Q3 ∈ Dp2×p3

such that the following exact sequence of left D-modules holds:

D1×p0 .Q1−−→ D1×p1 .Q2−−→ D1×p2 .Q3−−→ D1×p3 .
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(3) M is a projective left D-module iff there exist n matrices Qi ∈ Dpi−1×pi , i = 2, . . . , n+ 1,
such that the following long exact sequence of left D-modules holds:

(53) D1×p0 .Q1−−→ D1×p1 .Q2−−→ D1×p2 .Q3−−→ D1×p3 .Q4−−→ . . .
.Qn−−→ D1×pn .Qn+1−−−−→ D1×pn+1 .

Corollary 3.2 gives necessary and sufficient conditions for a left D-module M to be embedded
into an exact sequence of finite free left D-modules (inverse syzygy module computation).

Let us give a classical characterization of projectivity which is sometimes simpler to test than
5 of Theorem 3.1 (for more constructive results on projective modules, see [64]).

Proposition 3.2 ([87]). Let M = D1×p/(D1×q R) be a left D-module finitely presented by a matrix
R ∈ Dq×p. Then, the following equivalent conditions hold:

(1) M is a projective left D-module.
(2) R admits a generalized inverse over D, namely, there exists a matrix S ∈ Dp×q such that:

RS R = R.

(3) There exists an idempotent matrix Π ∈ Dp×p, namely, Π2 = Π, presenting M , namely:
M = D1×p/(D1×p Π).

Let us explain how to use Algorithm 2.3 to compute generalized inverses ([87]).

Algorithm 3.3. • Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution θ and
a left D-module M defined by the following finite free resolution of finite length

0 −→ D1×pm .Rm−−−→ D1×pm−1
.Rm−1−−−−→ . . .

.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,
with the notations R1 = R, p0 = p and p1 = q.

• Output: A matrix S ∈ Dp×q such that RS R = R if S exists and ∅ otherwise.
(1) Compute a right-inverse Sm ∈ Dpm−1×pm of Rm if it exists and set S = Sm and i = m−1.

If no such matrix exists, stop the algorithm with S = ∅.
(2) While i > 0, do:

(a) Compute Fi = Ipi − θ(Ri+1) θ(Si+1) ∈ Dpi×pi .
(b) Compute a matrix Li ∈ Dpi×pi−1 such that Fi = Li θ(Ri) if it exists by checking that

the normal forms of the rows of Fi are reduced to 0 with respect to a Gröbner basis
of D1×pi−1 θ(Ri). If such a matrix does not exist, stop the algorithm with S = ∅.

(c) Compute Si = θ(Li) ∈ Dpi−1×pi , set S = Si and return to 2 with i←− i− 1.
(3) Return S.

Example 3.8. Let D = A1(Q) be the first Weyl algebra and M = D1×2/(D1×2 R) the left
D-module finitely presented by the following matrix:

R =

(
−t2 t ∂ − 1

−(t ∂ + 2) ∂2

)
∈ D2×2.

Using Algorithms 2.2 and 2.3, we can check that R does not admit a left- and a right-inverse over
D. Using Algorithm 3.3, let us check whether or not R admits a generalized inverse over D. Using
Algorithm 2.1, we first compute a finite free resolution of M :

0 −→ D
.R2−−→ D1×2 .R−→ D1×2 π−→M −→ 0, R2 = (∂ − t).

Applying Algorithm 2.3 to R2 with the involution θ of D defined by (20), we obtain that R2 admits
the right-inverse S2 = (t ∂)T and:

F1 = I2 − θ(R2) θ(S2) =

(
2 + t ∂ −∂2

t2 −t ∂ + 1

)
.

Using a Gröbner basis computation, we can check that F1 = L1 θ(R), where:

L1 =

(
0 −1
−1 0

)
.
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The matrix S = θ(L1) = L1 then satisfies S2 R2 + RS = I2 and, by post-multiplying the last
identity by R and using R2 R = 0, we obtain RS R = R, which proves that S is a generalized
inverse of R over D and M is a projective left D-module by Proposition 3.2. Since M admits
a finite free resolution, Proposition 2.7 proves that M is a stably free left D-module of rank 1.
Finally, if Π = S R, then Π2 = S (RS R) = S R = Π and we clearly have D1×2 Π = D1×2 R, and
thus M = D1×2/(D1×2 Π).

If M is a stably free left D-module of rank l, then there exist two non-negative integers r and
s such that M ⊕D1×s ∼= D1×r and l = r − s. If φ : M ⊕D1×s −→ D1×r is a left D-isomorphism
and i2 : D1×s −→ M ⊕ D1×s the canonical injection, then the split short exact sequence holds
0 −→ D1×s φ ◦ i2−−−→ D1×r γ−→M −→ 0. If we write the leftD-homomorphism φ◦i2 : D1×s −→ D1×r

in the standard bases of D1×s and D1×r, then there exists a matrix T ∈ Ds×t which admits a
right-inverse over D (see the comment after Example 2.11) such that the above split exact sequence
becomes the following one:

(54) 0 −→ D1×s .T−→ D1×r γ−→M −→ 0.
Conversely, M is defined by the split exact sequence (54), then D1×r ∼= D1×s ⊕M , which proves
that M is a stably free left D-module of rank r − s. The matrix T can be computed by means
of Algorithm 2.4 if the left D-module M admits a finite free resolution of finite length since
lpdD(M) = 0.

Corollary 3.3 ([29, 103]). If R ∈ Dq×p has full row rank, i.e., kerD(.R) = 0, then the following
equivalent assertions hold:

(1) M = D1×p/(D1×q R) is a stably free left D-module.
(2) R admits a right-inverse over D, i.e., there exists S ∈ Dp×q such that RS = Iq.
(3) The Auslander transpose right D-module N = Dq/(RDp) ∼= ext1

D(M,D) of M vanishes.

Algorithm 2.3 can be used to check whether or not a left D-module M finitely presented by a
full row rank matrix R is stably free.

Example 3.9. In Example 2.10, we proved M = D1×3/(D1×3 R) ∼= D1×4/(D1×3 T1), where
D = A3(Q) and the matrices R and T1 are respectively defined by (22) and (24). Moreover, it was
shown that the matrix T1 admitted the left-inverse S1 defined in Example 2.12, which proves that
M is a stably free left D-module of rank 1 (see also Example 2.12).

4. Parametrizations of linear systems

“Pure mathematics and physics are becoming ever more closely connected, though
their methods remain different. One may describe the situation by saying that
the mathematician plays a game in which he himself invents the rules while the
physicist plays a game in which the rules are provided by Nature, but as time
goes on it becomes increasingly evident that the rules which the mathematician
finds interesting are the same as those which Nature has chosen. It is difficult to
predict what the result of all this will be. Possibly, the two subjects will ultimately
unify, every branch of pure mathematics then having its physical application, its
importance in physics being proportional to its interest in mathematics.”

Paul Dirac, The Relation between Mathematics and Physics, Proceedings of the
Royal Society of Edinburgh, LIX, 1939, p. 22.

Let us show how the parametrizations of a torsion-free left D-module M = D1×p/(D1×q R) can
be used to parametrize the solution space kerF (R.). If L = D1×m/(D1×pQ) is the left D-module
finitely presented by the parametrization Q of the torsion-free left D-module M and F a left D-
module, then applying the contravariant functor homD( · ,F) to the truncated finite free resolution
(39) of L, i.e., D1×q .R−→ D1×p .Q−→ D1×m −→ 0, we obtain the following complex:

Fq R.←− Fp Q.←− Fm.
Therefore, ext1

D(L,F) ∼= kerF (R.)/imF (Q.) defines the obstruction for an element η of the linear
system kerF (R.), i.e., for η ∈ Fp satisfying Rη = 0, to belong to imF (Q.), i.e., to be of the form
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η = Qξ for a certain ξ ∈ Fm. Hence, ext1
D(L,F) defines the obstruction for the the linear system

kerF (R.) to be parametrized by the matrix Q, i.e., to have the form kerF (R.) = QFm.
Let us study the dual statement of Proposition 2.2, i.e., when extiD( · ,F) = 0 for all i ≥ 1.

Definition 4.1 ([110]). A left D-module F is called injective if extiD(M,F) = 0 for all left D-
modules M and all i ≥ 1.

Example 4.1. Example 2.6 shows that the Q[∂, δ]-module C∞(R) is not injective.

The next theorem gives a characterization of injective modules over a noetherian ring.

Theorem 4.1 ([110]). (Baer’s criterion) Let D be a left noetherian ring. Then, a left D-module
F is injective iff for every q ≥ 1 and every R ∈ Dq, the linear system Rη = ζ admits a solution
η ∈ F , for all ζ ∈ Fq satisfying the compatibility conditions of Rη = ζ, namely, R2 ζ = 0 whenever
kerD(.R) = D1×r R2.

Let us give a few interesting examples of injective modules.

Example 4.2. If Ω is an open convex subset of Rn, then the space C∞(Ω) (resp., D′(Ω), S ′(Ω),
A(Ω), B(Ω)) of smooth functions (resp., distributions, temperate distributions, real analytic func-
tions, hyperfunctions) on Ω is an injective D = k[∂1, . . . , ∂n]-module, where k = R or C ([67, 78]).
If G denotes the set of all functions that are smooth on R except for a finite number of points, then
G is an injective left B1(k)-module, where k = R or C ([122]). Finally, if I is an open interval of
R and A = C(t) ∩ A(I) the ring of rational functions which are analytic on I, and D = A〈∂〉 the
ring of OD operators with coefficients in A, then the left D-module B(I) of Sato’s hyperfunctions
on I ([45]) is injective cogenerator ([33]).

Let us explain the main interest of the concept of injective left D-module in mathematical
systems. If M is a left D-module admitting a finite free resolution of the form

. . .
.R4−−→ D1×p3 .R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,

then applying the functor homD( · ,F) to the previous exact sequence and using extiD( · ,F) = 0
for all i ≥ 1 and Theorem 1.1, we obtain the following exact sequence of abelian groups:

. . .
R4.←−− Fp3 .R3←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− homD(M,F)←− 0,

Hence, kerF (Ri+1.) = Ri Fpi−1 for all i ≥ 1. We say that the contravariant functor homD( · ,F) is
exact, i.e., transforms exact sequences of left D-modules into exact sequences of abelian groups.

If F is an injective left D-module, then the results of Corollary 3.2 can be dualized to get the
following system-theoretic interpretations of the module properties in terms of the existence of a
chain of parametrizations.

Corollary 4.1 ([16]). Let D be a noetherian domain with a finite global dimension gld(D) = n,
R ∈ Dq×p, M = D1×p/(D1×q R) the left D-module finitely presented by R and F an injective left
D-module. If we set Q1 = R, p1 = p and p0 = q, then we have the following results:

(1) If M is a torsion-free left D-module, then there exists a matrix Q2 ∈ Dp1×p2 such that the
following exact sequence of abelian groups holds

Fp0 Q1.←−− Fp1 Q2.←−− Fp2 ,

i.e., kerF (Q1.) = Q2 Fp2 , and Q2 is called a parametrization of the linear system kerF (Q1.).
(2) If M is a reflexive left D-module, then there exist Q2 ∈ Dp1×p2 and Q3 ∈ Dp2×p3 such

that the following exact sequence of abelian groups holds

Fp0 Q1.←−− Fp1 Q2.←−− Fp2 Q3.←−− Fp3 ,

i.e., kerF (Q1.) = Q2 Fp2 and kerF (Q2.) = Q3 Fp3 .
(3) If M is a projective left D-module, then there exist n matrices Qi ∈ Dpi−1×pi for all

i = 2, . . . , n+ 1 such that the following exact sequence of abelian groups holds

(55) Fp0 Q1.←−− Fp1 Q2.←−− Fp2 Q3.←−− Fp3 Q4.←−− . . .
Qn.←−− Fpn Qn+1.←−−−− Fpn+1 ,

i.e., kerF (Qi.) = Qi+1 Fpi+1 for i = 1, . . . , n.
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Remark 4.1. If the left D-module M admits a finite free resolution of finite length, then (55) does
not need the assumption that the left D-module F is injective, i.e., it holds for all left D-modules
F . This result comes from the fact that Algorithm 3.3 proves that the long exact sequence (53)
splits, namely, there exist n+ 1 matrices Si ∈ Dpi×pi−1 such that:

∀ i = 1, . . . , n, SiQi +Qi+1 Si+1 = Ipi .

Then, the complex (55), i.e., Qi+1 Fpi+1 ⊆ kerF (Qi.) for all i ≥ 1, is exact for all left D-modules F
since η ∈ kerF (Qi.) yields η = SiQi η+Qi+1 Si+1 η = Qi+1 (Si+1 η) ∈ Qi+1 Fpi+1 , i.e., kerF (Qi.) =
Qi+1 Fpi+1 for all i ≥ 1.
Remark 4.2. The converse of the results of Corollary 4.1 holds if we assume that F is a so-called
injective cogenerator left D-module, namely, if F is an injective left D-module and a cogenerator
left D-module, namely, for every left D-module M and every nonzero m ∈ M , there exists f ∈
homD(M,F) such that f(m) 6= 0. If F is a cogenerator left D-module and M 6= 0, then kerF (R.) ∼=
homD(M,F) 6= 0. We can prove that an injective cogenerator left (resp., right) D-module always
exists (see, e.g., [110]). For instance, if Ω is an open convex subset of Rn and k = R or C, then
C∞(Ω) and D′(Ω) are two injective D = k[∂1, . . . , ∂n]-modules ([78]). Similarly, the left B1(k)-
module G defined in Example 4.2 is injective cogenerator ([122]). Roughly speaking, the injective
cogenerator condition on F plays the same role as the condition of algebraically closed base field
in classical algebraic geometry.
Example 4.3. If Ω is an open convex subset of R3, k = R or C, and F = C∞(Ω), D′(Ω),
S ′(Ω), A(Ω) or B(Ω), then Example 4.2 shows that F is an injective D = k[∂1, ∂2, ∂3]-module.
Example 3.5 and Corollary 4.1 then prove the exactness of the following complex:

0←− F R3.←−− F3 R2.←−− F3 R1.←−− F ←− homD(M,F)←− 0.
We find again the well-known result in mathematical physics that the divergence operator in R3 is
parametrized by the curl operator, i.e., kerF (R3.) = R2 F3, and the curl operator is parametrized
by the gradient operator, i.e., kerF (R2.) = R1 F , whenever F = C∞(Ω) and Ω is an open convex
subset of Rn.
Example 4.4. If Ω is an open convex subset of R4 and F is an injective D = R[∂t, ∂1, ∂2, ∂3]-
module (e.g., C∞(Ω), D′(Ω) or S ′(Ω) by Example 4.2), then using Corollary 4.1 and Example 3.6,
the first set of Maxwell equation (45) is parametrized by

(56)


~B = ~∇∧ ~A,

~E = −∂
~A

∂t
− ~∇V ,

where ( ~A, V ) ∈ F4 is called the quadri-potential of (45), i.e., kerF (R1.) = R0 F4. The quadri-
potential ( ~A, V ) is not uniquely defined since the left-hand side of (56) is parametrized by

~A = −~∇ ξ,

V = ∂ξ

∂t
,

i.e., kerF (R0.) = R−1 F (see (52)). Hence, for any ξ ∈ F , the following gauge transformation

~A 7−→ ~A− ~∇ ξ, V 7−→ V + ∂ξ

∂t
,

gives the same fields ( ~E, ~B). This degree of freedom in the choice of the quadri-potential is used
in gauge theory (e.g., gauge fixing condition, Lorenz gauge, Coulomb gauge) ([51, 83, 84]).

Let us generalize the concept of the rank of a finitely generated module M over a noetherian
domain D given in 1 and 2 of Definition 1.1.
Definition 4.2. If D is a noetherian domain and M is a finitely generated left D-module, then
the rank of M , denoted by rankD(M), is the maximal rank of free left D-modules F contained in
M , i.e., the maximal rank of free left D-modules F such that the following short exact sequence

0 −→ F
i−→M

$−→ T −→ 0
holds, where T = M/F is a torsion left D-module.
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Remark 4.3. The rank of a finitely generated left module M over a noetherian domain D can
also be defined as rankD(M) = dimK(K ⊗D M), where K is the division ring of fractions of D
(Ore localization) and ⊗ the tensor product. For more details, see, e.g., [44, 54, 71].

Let us state an extension of the so-called Euler-Poincaré characteristic.

Proposition 4.1 ([71, 110]). If D is a noetherian domain and M ′, M and M ′′ are three finitely
generated left D-modules, then the short exact sequence 0 −→M ′

f−→M
g−→M ′′ −→ 0 yields:

rankD(M) = rankD(M ′) + rankD(M ′′).
A similar result holds for short exact sequence of right D-module.

Using Proposition 4.1 and splicing a long exact sequence into a sequence of short exact sequences,
we can show that the alternative sum of the rank of the modules composing this long exact sequence
is 0. Hence, if M admits the following finite free resolution of finite length

0 −→ D1×pm .Rm−−−→ D1×pm−1
.Rm−1−−−−→ . . .

.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,
then, using Proposition 4.1 and 1 of Definition 1.1, we obtain:

(57) rankD(M) =
m∑
i=0

(−1)i rankD(D1×pi) =
m∑
i=0

(−1)i pi.

Example 4.5. If M is a stably free left D-module of rank l, then there exist two non-negative
integers r and s such that M ⊕D1×s ∼= D1×r and l = r − s. Therefore, the split exact sequence
(54) holds. Using Proposition 4.1 or (57), we find again that rankD(M) = r − s.

Example 4.6. Using Example 2.3 and the finite free resolution (9) of the D = Q[∂1, ∂2, ∂3]-
module M = D/(D1×3 R1), where R1 = (∂1 ∂2 ∂3)T is the gradient operator in R3, we obtain
rankD(M) = 1 − 3 + 3 − 1 = 0. In particular, using Definition 4.2, the trivial exact sequence
D1×0 = 0 −→M −→ T = M −→ 0 holds, and thus M is a torsion D-module.

Similarly, if M2 = D1×3/(D1×3 R2), where R2 is the matrix of PD operators defining the curl
operator (see (10)), then the exact sequence (9) yields the following one:

0 −→ D
.R3−−→ D1×3 .R2−−→ D1×3 π2−→M2 −→ 0.

Then, using (57), we obtain rankD(M2) = 3− 3 + 1 = 1.
Finally, if M3 = D1×3/(DRT1 ) is the D-module defining the divergence operator in R3, then

the exact sequence (9) yields the finite presentation 0 −→ D
.R3−−→ D1×3 π3−→ M3 −→ 0, and (57)

yields rankD(M3) = 3− 1 = 2.

In Example 4.3, the divergence operator in R3 was proved to be parametrized by means of 3
arbitrary functions also called potentials. However, Example 4.6 shows that the rank of the D-
module M3 associated with the divergence operator is 2. Hence, we can ask whether or not there
exists a parametrization of the divergence operator containing only two potentials. This remark
leads to the concept of minimal parametrization of a torsion-free left D-module.

Definition 4.3 ([16, 88]). Let M = D1×p/(D1×q R) be a torsion-free left D-module. A matrix
Q ∈ Dp×m is called a minimal parametrization ofM ifQ is a parametrization ofM , i.e., kerD(.Q) =
D1×q R, such that the left D-module L = D1×m/(D1×pQ) is either zero or torsion.

Equivalently, the matrix Q is a minimal parametrization of the torsion-free left D-module
M = D1×p/(D1×q R) if we have the following exact sequence of left D-modules

(58) D1×q .R−→ D1×p .Q−→ D1×m σ−→ L −→ 0,
where L is either 0 or a torsion left D-module. Let us prove rankD(M) = m. We first note that

M = D1×p/(D1×q R) = D1×p/ kerD(.Q) = coimD(.Q) ∼= imD(.Q) = D1×pQ,

and thus rankD(M) = rankD(D1×pQ). Then, (58) yields the short exact sequence

0 −→ D1×pQ
i−→ D1×m σ−→ L −→ 0
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and Proposition 4.1 yields rankD(L) = m − rankD(D1×pQ) = m − rankD(M), and thus, m =
rankD(M) since rankD(L) = 0 because L is a torsion left D-module.

Let us state a result which proves the existence of minimal parametrizations.
Theorem 4.2 ([16, 88]). Let D a noetherian domain, R ∈ Dq×p and M = D1×p/(D1×q R) a
torsion-free left D-module. Then, there exists a minimal parametrization of M .

Minimal parametrizations of a finitely presented torsion-free left D-module M can be obtained
as explained in the following algorithm.
Algorithm 4.1. • Input: A noetherian domain D and a matrix R ∈ Dq×p defining a

torsion-free left D-module M = D1×p/(D1×q R).
• Output: A matrix Q ∈ Dp×m defining a minimal parametrization of M .

(1) Compute a matrix P ∈ Dp×l such that kerD(R.) = P Dl.
(2) Select m = rankD(M) right D-linearly independent column vectors of P and form a matrix

Q with them.
If the ring D admits an involution θ, then, using Algorithm 2.1, we can compute a matrix

U ∈ Dl×p such that kerD(.θ(R)) = D1×l U , select m left D-linearly independent rows of U and
form a matrix V ∈ Dm×p with them to get the minimal parametrization Q = θ(V ) ∈ Dp×m of the
torsion-free left D-module M = D1×p/(D1×q R) of rank m. The condition that the rows of V are
left D-linearly independent, i.e., kerD(.V ) = 0, can be checked by Algorithm 2.1.
Example 4.7. We consider again Example 4.6. Since the D = Q[∂1, ∂2, ∂3]-module M3 defined
by the divergence operator in R3 is reflexive of rank 2 (see Examples 3.5 and 4.6), we can obtain
a minimal parametrization of M3 by transposing the matrix formed by selecting two D-linearly
independent rows of the matrix RT2 , i.e., by considering two D-linearly independent columns of
the parametrization R2 of M3. Hence, the matrix Q1 (resp., Q2 and Q3) defined by removing
the first (resp., second, third) column of the non-minimal parametrization R2 of M is a minimal
parametrization of M . If Ω is an open convex subset of R3 and F = C∞(Ω), D′(Ω) or S ′(Ω), then
applying the contravariant exact functor homD( · F) to the exact sequence

D
.R3−−→ D1×3 .Qi−−→ D1×2 σi−→ Li −→ 0, i = 1, 2, 3,

we obtain the following exact sequence of D-modules

F R3.←−− F3 Qi.←−− F2 ←− homD(Li,F)←− 0, i = 1, 2, 3,

which proves that the linear PD system kerF (R3.) = {η ∈ F3 | R3 η = ~∇ . η = 0} admits the
following minimal parametrizations:

η1 = −∂3 ξ2 + ∂2 ξ3

η2 = −∂1 ξ3

η3 = ∂1 ξ2,


η1 = ∂2 ξ3,

η2 = ∂3 ξ1 − ∂1 ξ3,

η3 = −∂2 ξ1,


η1 = −∂3 ξ2,

η2 = ∂3 ξ1,

η3 = −∂2 ξ1 + ∂1 ξ2.

∀ ξ1, ξ2, ξ3 ∈ F .

Equivalently, a minimal parametrization of kerF (R3.) can be obtained by setting one of the arbi-
trary potentials ξi’s to 0 in the non-minimal parametrization R2 ([88]).
Example 4.8. We consider again the first set of Maxwell equations (45) (see Example 3.6).
Applying (57) to the finite free resolution of finite length (46) of the D = Q[∂t, ∂1, ∂2, ∂3]-module
M = D1×6/(D1×4 R1), we get rankD(M) = 6 − 4 + 1 = 3. Therefore, the torsion-free D-module
M admits minimal parametrizations defined by matrices Qi ∈ D6×3 formed by selecting three D-
linearly independent columns of R0 defined in Example 3.6. For instance, we obtain the following
four minimal parametrizations of (45):

−∂tA1 − ∂1 V = E1,

−∂tA2 − ∂2 V = E2,

−∂3 V = E3,

−∂3 A2 = B1,

∂3 A1 = B2,

−∂2 A1 + ∂1 A2 = B3,



−∂tA1 − ∂1 V = E1,

−∂2 V = E2,

−∂tA3 − ∂3 V = E3,

∂2 A3 = B1,

∂3 A1 − ∂1 A3 = B2,

−∂2 A1 = B3,



−∂1 V = E1,

−∂tA2 − ∂2 V = E2,

−∂tA3 − ∂3 V = E3,

−∂3 A2 + ∂2 A3 = B1,

−∂1 A3 = B2,

∂1 A2 = B3,

 −
∂ ~A

∂t
= ~E,

~∇∧ ~A = ~B.
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Example 4.9. We quote pages 15-17 of [117]: “The necessary and sufficient conditions, that the
six strain components can be derived from three single-valued functions as given in

(59)
εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
,

γyz = ∂w

∂y
+ ∂v

∂z
, γzx = ∂u

∂z
+ ∂w

∂x
, γxy = ∂v

∂x
+ ∂u

∂y
,

are called the conditions of compatibility. It is shown in Refs. 1 through 5, for example, that the
conditions of compatibility are given in a matrix form as,

[R] =

 Rx Uz Uy

Uz Ry Ux

Uy Ux Rz

 = 0,

(60)

Rx = ∂2εz
∂y2 + ∂2εy

∂z2 −
∂2γyz
∂y ∂z

,

Ry = ∂2εx
∂z2 + ∂2εz

∂x2 −
∂2γzx
∂z ∂x

,

Rz = ∂2εy
∂x2 + ∂2εx

∂y2 −
∂2γxy
∂x ∂y

,

Ux = − ∂2εx
∂y ∂z

+ 1
2
∂

∂x

(
−∂γyz

∂x
+ ∂γzx

∂y
+ ∂γxy

∂z

)
,

Uy = − ∂2εy
∂z ∂x

+ 1
2
∂

∂y

(
∂γyz
∂x
− ∂γzx

∂y
+ ∂γxy

∂z

)
,

Uz = − ∂2εz
∂x ∂y

+ 1
2
∂

∂z

(
∂γyz
∂x

+ ∂γzx
∂y
− ∂γxy

∂z

)
.

[· · · ] We know from Eqs. (1.4) that when the body forces are absent, the equations of equilibrium
can be written as:

(61)

∂σx
∂x

+ ∂τxy
∂y

+ ∂τzx
∂z

= 0,

∂τxy
∂x

+ ∂σy
∂y

+ ∂τyz
∂z

= 0,

∂τzx
∂x

+ ∂τyz
∂y

+ ∂σz
∂z

= 0.

These equations are satisfied identically when stress components are expressed in terms of either
Maxwell’s stress functions χ1, χ2 and χ3 defined by

(62)

σx = ∂2χ3

∂y2 + ∂2χ2

∂z2 , τyz = − ∂
2χ1

∂y ∂z
,

σy = ∂2χ1

∂z2 + ∂2χ3

∂x2 , τzx = − ∂
2χ2

∂z ∂x
,

σz = ∂2χ2

∂x2 + ∂2χ1

∂y2 , τxy = − ∂
2χ3

∂x ∂y
,

or Morera’s stress functions ψ1, ψ3 and ψ3 defined by

(63)

σx = ∂2ψ1

∂y ∂z
, τyz = −1

2
∂

∂x

(
−∂ψ1

∂x
+ ∂ψ2

∂y
+ ∂ψ3

∂z

)
,

σy = ∂2ψ2

∂z ∂x
, τzx = −1

2
∂

∂y

(
∂ψ1

∂x
− ∂ψ2

∂y
+ ∂ψ3

∂z

)
,

σz = ∂2ψ3

∂x ∂y
, τxy = −1

2
∂

∂z

(
∂ψ1

∂x
+ ∂ψ2

∂y
− ∂ψ3

∂z

)
.

It is interesting to note that, when these two kinds of stress functions are combined such that

(64) σx = ∂2χ3

∂y2 + ∂2χ2

∂z2 −
∂2ψ1

∂y ∂z
, . . . , τyz = − ∂

2χ1

∂y ∂z
+ 1

2
∂

∂x

(
−∂ψ1

∂x
+ ∂ψ2

∂y
+ ∂ψ3

∂z

)
, . . . ,

the expressions (60) and (64) have similar forms.”
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Using the concept of minimal parametrizations, let us explain the last sentence and par-
ticularly the relation between (60), (64), Maxwell’s stress functions and Morera’s stress func-
tions. Let D = Q[∂x, ∂y, ∂z] be the ring of PD operators with rational constant coefficients and
N = D1×3/(D1×6 P ) the D-module finitely presented by the matrix P defined by:

P =



∂x 0 0
0 ∂y 0
0 0 ∂z

0 ∂z ∂y

∂z 0 ∂x

∂y ∂x 0


∈ D6×3.

Using Algorithm 2.1, we can check that the D-module N admits the finite free resolution:

(65) 0 −→ D1×3 .R−→ D1×6 .Q−→ D1×6 .P−→ D1×3 π−→ N −→ 0,

Q =



0 ∂2
z ∂2

y −∂y ∂z 0 0

∂2
z 0 ∂2

x 0 −∂x ∂z 0

∂2
y ∂2

x 0 0 0 −∂x ∂y
−∂y ∂z 0 0 − 1

2 ∂
2
x

1
2 ∂x ∂y

1
2 ∂x ∂z

0 −∂x ∂z 0 1
2 ∂x ∂y − 1

2 ∂
2
y

1
2 ∂y ∂z

0 0 −∂x ∂y 1
2 ∂x ∂z

1
2 ∂y ∂z − 1

2 ∂
2
z


∈ D6×6,

R =

 ∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0

 ∈ D3×6.

Let Ω be an open convex subset of R3 and F = C∞(Ω) (resp., D′(Ω), S ′(R3)). Applying the exact
functor homD( · ,F) to the exact sequence (65), we obtain the following exact sequence:

0←− F3 R.←− F6 Q.←− F6 P.←− F3 ←− kerF (P.)←− 0.
The PD operator P. : F6 −→ F3 is defined by (59) and corresponds to the Killing operator
ξ 7−→ 1

2 Lξ(ω) = (ε 1
2 γ), where ξ = u ∂x+v ∂y+w ∂z is a displacement of R3 and ω the euclidean

metric of R3, namely, ωij = 1 for i = j and 0 otherwise (i, j = 1, 2, 3) ([53, 83, 84]). The PD
operator Q. : F6 −→ F4 defines the compatibility conditions (60) of P. : F6 −→ F3. These
compatibility conditions are called the Saint-Venant compatibility conditions.

Let us now consider the Auslander transpose D-module M = D1×6/(D1×3 PT ) of the D-
module N = D1×3/(D1×6 Q) associated with (61). Let us study the properties of M . According
to Theorem 3.1, we need to compute the D-modules extiD(N,D)’s for i = 1, 2, 3, namely, the
defects of exactness of the following complex of D-modules:

(66) 0←− D1×3 .RT←−− D1×6 .QT←−− D1×6 .PT←−− D1×3 ←− 0.
We can check that ext1

D(N,D) = 0, ext2
D(N,D) = 0 and ext3

D(N,D) = D1×3/(D1×6 RT ) 6= 0,
which proves that M is a reflexive but not a projective D-module. Moreover, we obtain that QT
(resp., RT ) defines a parametrization of M (resp., D1×6/(D1×6 QT )). Moreover, applying the
exact functor homD( · ,F) to (66), we obtain the following exact sequence:

0 −→ kerF (RT .) −→ F3 RT .−−→ F6 QT .−−→ F6 PT .−−→ F3 −→ 0.
Thus, the PDl operator QT . : (χ ψ) 7−→ (σ τ) is a parametrization of the stress tensor (61) by
means of 6 arbitrary functions χ ∈ F3 and ψ ∈ F3, i.e., kerF (P.T ) = QT F6. We point out that
this parametrization is exactly the PD operator defined by (64).

Finally, since PT has full row rank, rankD(M) = 6−3 = 3. Hence, (64) does not define a minimal
parametrization of (61). However, according to Theorem 4.2, the torsion-free D-module M can be
embedded into a free D-module of rank 3, which, by exact duality, yields minimal parametrizations
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of kerF (P.T ) depending on three arbitrary potentials of F . Minimal parametrizations can be
obtained by setting 3 of the 6 arbitrary functions χ ∈ F3 and ψ ∈ F3 to 0. Taking ψ = 0 (resp.,
χ = 0), we obtain the Maxwell’s (resp., Morera’s) parametrization (62) (resp., (63)) of the stress
tensor (61). These results explain Washizu’s last sentence.

5. Quillen-Suslin theorem and Stafford’s theorems

Let us now characterize when a finitely presented left D-module M is free.

If M = D1×p/(D1×q R) is a free left D-module of rank m, then there exists a left D-isomorphism
ψ : M −→ D1×m, which yields the following exact sequence:

D1×q .R−→ D1×p ψ ◦π−−−→ D1×m −→ 0.

Writing the left D-homomorphism ψ ◦ π : D1×p −→ D1×m in the standard bases of D1×p and
D1×m, there exists a matrix Q ∈ Dp×m such that the following short exact sequence holds:

(67) 0 −→ D1×q R −→ D1×p .Q−→ D1×m −→ 0.

Since D1×m is a projective left D-module, this short exact sequence splits by Proposition 2.5,
i.e., there exists T ∈ Dm×p such that the left D-homomorphism .T : D1×m −→ D1×p satisfies
(.Q) ◦ (.T ) = .(T Q) = .Im, i.e., T Q = Im. Hence, the minimal parametrization Q of M admits a
left-inverse over D. The converse of this result is clearly true since D1×pQ = D1×m and

M = D1×p/(D1×q R) = D1×p/ kerD(.Q) ∼= D1×pQ = D1×m,

which proves that M is a free left D-module of rank m. We obtain the following result.

Proposition 5.1 ([29, 103]). The finitely presented left D-module M = D1×p/(D1×q R) is free of
rank m iff there exist two matrices Q ∈ Dp×m and T ∈ Dm×p satisfying:

kerD(.Q) = D1×q R, T Q = Im.

Then, {π(Tk•)}k=1,...,m is a basis of the free left D-module M of rank m, where Tk• denotes the
kth row of the matrix T .

The matrix Q defined in Proposition 5.1 is called an injective parametrization of the free left
D-module M of rank m since, with the notation zk = π(Tk•) for all k = 1, . . . ,m, we have

∀ j = 1, . . . , p, yj =
m∑
k=1

Qjk zk, ∀ k = 1, . . . ,m, zk =
p∑
j=1

Tkj yj ,

where yj = π(fj) for j = 1, . . . , p and {fj}j=1,...,p is the standard basis of D1×p (see Section 1).

Example 5.1. We consider again Example 2.10. Using Algorithm 4.1, we can prove that the
matrix R1 admits the following minimal parametrization

Q1 =

 −∂2

∂1 + x2 ∂3

−x2 ∂2 − 2

 ,

i.e., M ∼= D1×3 Q1 and L = D/(D1×3 Q1) is a torsion left D-module. Using Algorithm 2.2, we
can check that the matrix Q1 admits the left-inverse T1 = 1

2 (x2 0 − 1) over D, and thus
M ∼= D1×3 Q1 ∼= D, which proves that M is a free left D-module of rank 1. The matrix Q1 is
an injective parametrization of the free left D-module M of rank 1. Finally, if {fj}j=1,2,3 is the
standard basis of the free left D-module D1×3, π : D1×3 −→ M the canonical projection onto M
and {yj}j=1,2,3 the family of generators of M defined by yj = π(fj), then the residue class of T1
in M , namely, z = 1

2 (x2 y1 − y3), is a basis of M and:
y1 = −∂2 z,

y2 = (x2 ∂3 + ∂1) z,
y3 = −(x2 ∂2 + 2) z.
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Corollary 5.1 ([29, 103]). If M = D1×p/(D1×q R) is a free left D-module of rank m and Q is an
injective parametrization of M , i.e., kerD(.Q) = D1×q R and Q admits a left-inverse T ∈ Dm×p

over D, i.e., T Q = Im, then Q defines an injective parametrization of the linear system kerF (R.)
for all left D-modules F , i.e., kerF (R.) = QFm and Qξ = η implies ξ = T η.

If R has full row rank, i.e., kerD(.R) = 0, then the split exact sequence (67) becomes

0 −→ D1×q .R−→ D1×p .Q−→ D1×m −→ 0,
.S←− .T←−

(see 7 of Definition 2.1), i.e., p = q +m and the following two identities hold:

(68)

(
R

T

)
(S Q) =

(
Iq 0
0 Im

)
= Iq+m, (S Q)

(
R

T

)
= Ip.

Definition 5.1. Let GLp(D) , {U ∈ Dp×p | ∃ V ∈ Dp×p : U V = V U = Ip} be the general
linear group of D of index p. An element U ∈ GLp(D) is called a unimodular matrix.

If kerD(.R) = 0, then the previous result proves that M = D1×p/(D1×q R) is free of rank p− q
iff R can be completed to a unimodular matrix

V =

(
R

T

)
∈ GLp(D),

or equivalently, if there exists U = V −1 ∈ GLp(D) such that RU = (Iq 0). The following
commutative exact diagram of left D-modules holds:

.S←− .T←−
0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0

‖ ‖ ↑ ψ
0 −→ D1×q .R−→ D1×p π−→ M −→ 0.

Corollary 5.2. M is a free left D-module of rank p− q iff there exists U ∈ GLp(D) such that:

(69) RU = (Iq 0).

If we write U = (S Q), where S ∈ Dp×q and Q ∈ Dp×(p−q), then

ψ : M −→ D1×(p−q)

π(λ) 7−→ λQ,

is a left D-isomorphism and its inverse ψ−1 : D1×(p−q) −→ M is defined by ψ−1(µ) = π(µT ) for
all µ ∈ D1×(p−q), where the matrix T ∈ D(p−q)×p is defined by:

U−1 =

(
R

T

)
∈ Dp×p.

Then, M ∼= D1×pQ = D1×(p−q) and the matrix Q is an injective parametrization of M . Finally,
{π(Tk•)}k=1,...,p−q is a basis of the free left D-module M of rank p− q.

Contrary to the linear algebra, the computation of bases of a finitely generated free left D-
module is generally a difficult issue in module theory. We shortly study particular situations.

If D is a principal left ideal domain (e.g., D = Z, k[x], where k is a field, K[∂], where K is
a differential field such that k or k(t)) and R ∈ Dq×p a matrix admitting a right-inverse over D,
then computing the so-called Jacobson normal form of R (generalization of Smith normal form)
(see, e.g., [25, 42, 49]), we obtain two matrices F ∈ GLq(D) and G ∈ GLp(D) satisfying:

R = F (Iq 0)G.
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If r = p − q, G = (GT1 GT2 )T , where G1 ∈ Dq×p, G2 ∈ Dr×p and G−1 = (H1 H2), where
H1 ∈ Dp×q, H2 ∈ Dp×r, then we obtain R = F G1, i.e., G1 = F−1 R, and(

F−1 R

G2

)
G−1 = Ip ⇒

(
F−1 0

0 Ir

) (
R

G2

)
G−1 = Ip,

⇒

(
R

G2

)
G−1

(
F−1 0

0 Ir

)
= Ip ⇒

(
R

G2

)
(H1 F

−1 H2) = Ip,

which shows that we can take U = (H1 F
−1 H2) ∈ GLp(D) and T = G2 in Corollary 5.2. The

computation of Jacobson normal forms was implemented in the package Jacobson ([25]).
The results obtained in Section 3 can be used to check whether or not a finitely presented

D = k[x1, . . . , xn]-module, where k is a field, is projective, i.e., free by the Quillen-Suslin theorem
(see 2 of Theorem 1.2). However, the explicit computation of a basis generally requires dedicated
methods. Known constructive proofs of the Quillen-Suslin theorem are based on the next theorem
which allows one to compute a matrix U ∈ GLp(D) satisfying (69) by an induction on the number
of the variables xi’s.

Theorem 5.1 ([107, 115]). Let k be a field and R ∈ Dq×p a matrix which admits a right-inverse
over D = k[x1, . . . , xn]. Then, for every an ∈ k, there exists a matrix U ∈ GLp(D) satisfying:
(70) R(x1, . . . , xn) U(x1, . . . , xn) = R(x1, . . . , xn−1, an).
Hence, for all a1, . . . , an ∈ k, there exists V ∈ GLp(D) such that:

R(x1, . . . , xn) V (x1, . . . , xn) = R(a1, . . . , an).

The constructive proofs of Theorem 5.1 are rather involved but are generally based on three main
steps: Noether’s normalization processes, computation of local bases (e.g., Horrock’s theorem) and
the patching of the local solutions to get a global basis. See, e.g., [30, 55, 61, 62, 64]. See the
package QuillenSuslin ([29]) for an implementation of Theorem 5.1 and for the computation of
bases and injective parametrizations of free D = k[x1, . . . , xn]-module.

Let us state an interesting system-theoretic interpretation of Theorem 5.1.

Corollary 5.3 ([29]). Let k be a field, D = k[x1, . . . , xn], R ∈ Dq×p a full row rank matrix, i.e.,
kerD(.R) = 0, and F a D-module. If the D-module M = D1×p/(D1×q R) is free, then we have the
following D-isomorphisms

χ : kerF (R(•, an).) −→ kerF (R(•, xn).)
ζ 7−→ η = U ζ,

χ−1 : kerF (R(•, xn).) −→ kerF (R(•, an).)
η 7−→ ζ = U−1 η,

where an ∈ k and U ∈ GLp(D) satisfies (70), i.e., the elements of kerF (R(•, xn).) and kerF (R(•, an).)
are in a one-to-one correspondence. More generally, the linear system kerF (R.) is D-isomorphic
to the linear system obtained by setting all but one variables xi’s to ai ∈ k (e.g., ai = 0) (resp.,
all the variables xi’s to ai ∈ k) in the presentation matrix R.

Example 5.2. Let us consider the following linear OD time-delay system ([73]):

(71)

{
ẏ1(t)− y1(t− h) + 2 y1(t) + 2 y2(t)− 2u(t− h) = 0,
ẏ1(t) + ẏ2(t)− u̇(t− h)− u(t) = 0.

Let D = Q[∂, δ] be the commutative polynomial ring of OD time-delay operators with rational
constant coefficients (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h)) and the presentation matrix of (71):

(72) R =

(
∂ − δ + 2 2 −2 δ

∂ ∂ −∂ δ − 1

)
∈ D2×3.

Using Algorithm 2.2, we can check that R admits a right-inverse S defined by:

S = 1
2

 0 0
∂ δ + 2 −2 δ
∂ −2

 ∈ D3×2.
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Then, using Corollary 3.3, the D-module M = D1×3/(D1×2 R) is projective, i.e., free by the
Quillen-Suslin theorem (see 2 of Theorem 1.2). Applying Theorem 5.1 to the matrix R and
a2 = 0, the linear system (71) is equivalent to the linear OD system obtained by setting δ to 0 in
the presentation matrix R, i.e., (71) is equivalent to:

(73)

{
ż1(t) + 2 z1(t) + 2 z2(t) = 0,
ż1(t) + ż2(t)− v(t) = 0.

Applying a constructive version of the Quillen-Suslin theorem to R, we obtain that a transformation
which bĳectively maps the trajectories of (71) to the ones of (73) is defined by:

(74)


y1(t) = z1(t),
y2(t) = 1

2 (ż1(t− 2h) + z1(t− h)) + z2(t) + v(t− h),
u(t) = 1

2 ż1(t− h) + v(t),

⇔


z1(t) = y1(t),
z2(t) = − 1

2 y1(t− h) + y2(t)− u(t− h),
v(t) = − 1

2 ẏ1(t− h) + u(t).

Applying again Theorem 5.1 to (73), we obtain that the linear OD system (73) is equivalent to
the purely algebraic system obtained by setting to δ and ∂ to 0 in R, namely:

(75)

{
2x1(t) + 2x2(t) = 0,
−w(t) = 0.

Applying a constructive version of the Quillen-Suslin theorem to R(∂, 0), we get that a transfor-
mation which bĳectively maps the trajectories of (73) to the ones of (75) is defined by:

(76)


z1(t) = x1(t),
z2(t) = x2(t)− 1

2 ẋ1(t),
v(t) = w(t)− 1

2 ẍ1(t) + ẋ1(t) + ẋ2(t),
⇔


x1(t) = z1(t),
x2(t) = z2(t) + 1

2 ż1(t),
w(t) = v(t) + ż1(t) + ż2(t).

Composing the invertible transformations (74) and (76), we obtain a one-to-one correspondence
between the solutions of (71) and (75). The solutions of (71) (resp., (73)) are parametrized by
means of (74) (resp., (76)), where z1, z2 and v (resp., x1, x2 and w) satisfy (73) (resp., (75)).
Solving the algebraic system (75), we obtain x2 = −x1 and w = 0 and substituting these values
into the first system of (76) and then the result into the first transformation of (74), we find that
the injective parametrization of (71) is defined by:

∀ x1 ∈ F ,


y1(t) = x1(t),
y2(t) = − 1

2 (ẍ1(t− h)− ẋ1(t− 2h) + ẋ1(t)− x1(t− h) + 2x1(t)),
u(t) = 1

2 (ẋ1(t− h)− ẍ1(t)).

An OD time-delay system kerF (R.) which defines a free D-module M = D1×q/(D1×q R) is called
flat and a basis ofM corresponds to a flat output of kerF (R.) ([73]). The motion planning problem in
control theory can easily be achieved for flat systems (see, e.g., [32, 73, 74, 75, 76, 79]). Corollary 5.3
shows that every linear OD time-delay system is equivalent to the flat (i.e., controllable) linear OD
system obtained by setting all the time-delay operators to 1, i.e., to the corresponding controllable
linear OD system without time-delays ([29]).

The following generalization of Quillen-Suslin theorem was proposed by Lin and Bose in [60].

Lin-Bose’s problems: Let R ∈ Dq×p be a full row rank matrix such that the ideal of D generated
by the q× q-minors {mi}i=1,...,r of R satisfies (m1, . . . ,mr) = (d), where d is the greatest common
divisor of the q × q minors of the matrix R.

(1) Find two matrices R′ ∈ Dq×p and R′′ ∈ Dq×q such that R = R′′R′ and det(R′′) = d and
R′ ∈ Dq×p admits a right-inverse over D.

(2) Find a matrix T ∈ D(p−q)×p such that det((RT TT )T ) = d.
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1 and 2 were shown to be equivalent in [60].
In [29], we proved that the output of the next algorithm returns the matrix R′ defined in 1 and

R′′ can then be found by means of a factorization using Gröbner basis techniques.

Algorithm 5.1. • Input: A commutative polynomial ring D = k[x1, . . . , xn] over a com-
putable field k, a full row rank matrix R ∈ Dq×p and the finitely presented D-module
M = D1×p/(D1×q R) such that M/t(M) is a free D-module.

• Output: A full row rank matrix R′ ∈ Dq×p satisfying M/t(M) = D1×p/(D1×q R′).
(1) Using Algorithm 3.1, compute a matrix Q ∈ Dq′×p satisfying M/t(M) ∼= D1×p/(D1×q′ Q).
(2) Using Algorithm 2.1, compute a matrix Q2 ∈ Dq′2×q

′ satisfying kerD(.Q) = D1×q′2 Q2.
(3) If kerD(.Q) = 0, i.e., if Q has full row rank, then stop the algorithm with R′ = Q.
(4) Compute a basis of the free D-module L = D1×q′/(D1×q′2 Q2) ∼= D1×q′ Q. We obtain a

full row rank matrix B ∈ Dq×q′ such that {π2(Bi•)}i=1,...,q is a basis of free D-module L,
where π2 : D1×q′ −→ L is the canonical projection onto L and Bi• the ith row of B.

(5) Return the full row rank matrix R′ = BQ ∈ Dq×p.

Algorithm 5.1 was implemented in the QuillenSuslin package ([29]).
The next algorithm solves the second problem as explained in [29].

Algorithm 5.2. • Input: A commutative polynomial ring D = k[x1, . . . , xn] over a com-
putable field k, a full row rank matrix R ∈ Dq×p such that the ideal of D generated by
the q × q-minors {mi}i=1,...,r of R satisfies (m1, . . . ,mr) = (d), where d is the greatest
common divisor of the q × q-minors of R.

• Output: A matrix T ∈ D(p−q)×p satisfying det((RT TT )T ) = d.
(1) Using Algorithm 3.1, compute a matrix Q ∈ Dq′×p satisfying M/t(M) ∼= D1×p/(D1×q′ Q).
(2) Using a constructive version of the Quillen-Suslin, compute a basis of the free D-module

M/t(M) = D1×p/(D1×q′ Q). We obtain a full row rank matrix T ∈ D(p−q)×p such that
{π′(Ti•)}i=1,...,p−q is a basis of the free D-module M/t(M), where π′ : D1×p −→M/t(M)
is the canonical projection onto M/t(M) and Ti• is the ith row of T .

(3) Return the matrix U = (RT TT )T .

Algorithm 5.2 is also implemented in the QuillenSuslin package ([29]).

Example 5.3. Let us consider the OD time-delay model of a flexible rod with a force applied on
one end studied in [74]: {

ẏ1(t)− ẏ2(t− 1)− u(t) = 0,
2 ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.

Let D = Q[∂, δ] be the commutative polynomial ring of OD time-delay operators (i.e., ∂ y(t) = ẏ(t),
δ y(t) = y(t− h)) and the D-module M = D1×3/(D1×2 R) finitely presented by:

(77) R =

(
∂ −∂ δ −1

2 ∂ δ −∂ (1 + δ2) 0

)
∈ D2×3.

Using Algorithm 3.1, we obtain that the matrix Q is defined by

Q =

 −2 δ δ2 + 1 0
−∂ ∂ δ 1
∂ δ −∂ δ

 ∈ D3×3

satisfies M/t(M) = D1×3/(D1×3 Q) and t(M) ∼= (D1×3 Q)/(D1×2 R). Reducing the rows of Q
with respect to D1×2 R, we obtain that the only non-trivial torsion element of M is defined by

m = −2 δ y1 + (δ2 + 1) y2, ∂ m = 0,
where y1, y2 and y3 are the residue classes of the standard basis {fj}j=1,2,3 of D1×3 in M , i.e.,
t(M) = Dm. As explained at the end of Section 4, the torsion element m of M corresponds
to the autonomous element θ = −2 δ η1 + (δ2 + 1) η2 of kerF (R.) = {η ∈ F3 | Rη = 0}, where
F is a D-module (e.g., F = C∞(R)), which satisfies θ̇ = 0, i.e., θ = c is a constant (first
integral). Hence, the linear system kerF (R.) is not controllable since we cannot steer y1 and y2
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as we wish due to the constraint −2 δ η1 + (δ2 + 1) η2 = c. Now, using Algorithm 2.1, the matrix
Q2 = (∂ − δ 1) satisfies kerD(.Q) = DQ2. Then, we have to compute a basis of the free
D-module L = D1×3/(DQ2). Using a constructive version of the Quillen-Suslin theorem (e.g., the
QuillenSuslin package), we obtain the split exact sequence

0 −→ D
.Q2−−→ D1×2 .P2−−→ D −→ 0
.S2←−− .B←−

with the following notations:

S2 =

 0
0
1

 , P2 =

 −1 0
0 1
∂ δ

 , B =

(
−1 0 0
0 1 0

)
.

In particular, we have D1×3 Q = D1×2 R′, where the full row rank matrix R′ is defined by:

R′ = BQ =

(
2 δ −δ2 − 1 0
−∂ ∂ δ 1

)
.

Then, we get the factorization R = R′′R′, where the matrix R′′ ∈ D2×2 is defined by:

R′′ =

(
0 −1
∂ 0

)
.

We can check that det R′′ = ∂, where ∂ is the greatest common divisor of the 2 × 2 minors of R
(i.e., annD(m)), which solves the first problem. Let us now study the second one. We have to
compute a basis of the free D-module M/t(M) defined by the following finite free resolution:

0 −→ D
.Q2−−→ D1×3 .Q−→ D1×3 π′−→M/t(M) −→ 0,

Using Algorithm 2.4, M/t(M) admits the following minimal free resolution

0 −→ D1×3 .Q′−→ D1×4 π′⊕ 0−−−−→M/t(M) −→ 0,

where Q′ = (QT ST2 )T . Now, applying a constructive version of the Quillen-Suslin theorem to
the matrix Q′ using, e.g., the QuillenSuslin package, we find that a basis of the free D-module
M/t(M) is defined by (π′ ⊕ 0)(T ′), where T ′ = (1 δ/2 0 0). Hence, if T is the matrix defined
by the first three entries of T ′, then U = (RT TT )T satisfies det U = ∂.

For more applications of the Quillen-Suslin theorem in mathematical systems theory (e.g., com-
putation of (weakly) doubly coprime factorizations of rational transfer matrices ([96])), see [29]
and the QuillenSuslin package. See also Chapters 3 and 4.

Let us now explain the main ideas of the constructive proof of Stafford’s theorem (see 3 of
Theorem 1.2) obtained in [103] and implemented in the package Stafford ([103]).

We first need to introduce a well-known result due to Stafford ([111]) on the efficient generation
of ideals of the Weyl algebras An(k) and Bn(k), whenever k is a field of characteristic 0.

Theorem 5.2 ([111]). Let k be a field of characteristic 0 and D = An(k) or Bn(k). If v1, v2, v3 ∈
D, then there exist a1, a2 of D such that the left ideal I = Dv1 +Dv2 +Dv3 of D can be generated
as follows:

I = D (v1 + a1 v3) +D (v2 + a2 v3).
Hence, every left ideal of D can be generated by two elements of D. Similarly for right ideals.

Example 5.4. Let us consider D = A3(Q) and the left ideal I = D (∂1 + x3) +D∂2 +D∂3 of D.
We can check the identity (∂2 + ∂3) (∂1 + x3)− (∂1 + x3) (∂2 + ∂3) = 1, which yields{

∂2 = (∂2 (∂2 + ∂3)) (∂1 + x3)− (∂2 (∂1 + x3)) (∂2 + ∂3),
∂3 = (∂3 (∂2 + ∂3)) (∂1 + x3)− (∂3 (∂1 + x3)) (∂2 + ∂3),

and shows that I can be generated by ∂1 + x3 and ∂2 + ∂3, i.e., I = D (∂1 + x3) +D (∂2 + ∂3).
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If we now consider the left ideal J = D∂1 +D∂2 +D∂3 of D defined by the gradient operator
in R3, then J satisfies J = D∂1 +D (∂2 + x1 ∂3) since we have:{

∂2 = x1 (∂2 + x1 ∂3) ∂1 + (−x1 ∂1 + 1) (∂2 + x1 ∂3),
∂3 = −(∂2 + x1 ∂3) ∂1 + ∂1 (∂2 + x1 ∂3).

Two constructive algorithms of Theorem 5.2 were developed by Hillebrand and Schmale on
the one hand ([39]) and by Leykin on the other hand ([57]). Both strategies have recently been
implemented in the package Stafford ([103]).

Let us introduce a few more definitions.

Definition 5.2. (1) The elementary group ELm(D) is the subgroup of GLm(D) generated by
all matrices of the form Im + r Eij , where r ∈ D, i 6= j and Eij is the matrix defined by 1
at the position (i, j) and 0 else.

(2) A column vector v = (v1 . . . vm)T ∈ Dm is called unimodular if it admits a left-inverse
over D, i.e., if there exists w = (w1 . . . wm) ∈ D1×m such that w v =

∑m
i=1 wi vi = 1.

The set of unimodular vectors of Dm is denoted by Um(D).

Example 5.5. Upper and lower triangular matrices with 1 on the diagonal belong to the elemen-
tary group ([71]).

Proposition 5.2 ([103]). If k is a field of characteristic 0, D = An(k) or Bn(k), m ≥ 3 and
v ∈ Um(D), then there exists a matrix E ∈ Em(D) satisfying:

E v = (1 0 . . . 0)T .
More precisely, let a1, a2 ∈ D be such that Dv1 +Dv2 +Dvm = D (v1 + a1 vm) +D (v2 + a2 vm),
and d1, . . . , dm−1 ∈ D satisfying the Bézout identity

∑m−1
i=1 di v

′
i = 1, with the following notations:

v′1 = v1 + a1 vm, v′2 = v2 + a2 vm, ∀ i ≥ 3, v′i = vi.

If v′′i = (v′1 − 1− vm) di, for all i = 1, . . . ,m− 1, and

E1 =



1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


∈ Em(D), E2 =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
v′′1 v′′2 v′′3 . . . v′′m−1 1


∈ Em(D),

E3 =



1 0 0 . . . 0 −1
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


∈ Em(D), E4 =



1 0 0 . . . 0 0
−v′2 1 0 . . . 0 0

...
...

...
...

...
...

−v′m−1 0 0 . . . 1 0
−v′1 + 1 0 0 . . . 0 1


∈ Em(D),

then we have (E4 E3 E2 E1) v = (1 0 . . . 0)T .

Proposition 5.2 can be used to handle Gaussian elimination on the columns of the formal adjoint
R̃ of R. For more details, see [103]. We have the following algorithm ([103]).

Algorithm 5.3. • Input: D = An(k) or Bn(k), where k is a computable field of charac-
teristic 0, a matrix R ∈ Dq×p which admits a right-inverse S ∈ Dp×q and p− q ≥ 2.

• Output: Two matrices Q ∈ Dp×(p−q) and T ∈ D(p−q)×p satisfying T Q = Ip−q and
{π(Ti•)}i=1,...,p−q forms a basis of the free left D-module M = D1×p/(D1×q R) of rank
p− q, where Ti• is the ith row of T and π : D1×p −→M the canonical projection onto M .

(1) Compute R̃ = θ(R) ∈ Dp×q and set i = 1, V = R̃ and U = Ip.
(2) Denote by Vi ∈ Dp−i+1 the column vector formed by taking the last p− i+ 1 elements of

the ith column of V .
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(3) Applying Proposition 5.2 to Vi, compute Fi ∈ Ep−i+1(D) such that Fi Vi = (1 0 . . . 0)T .

(4) Define the matrix Gi =

(
Ii−1 0

0 Fi

)
∈ Ep(D) where G1 = F1.

(5) If i < q, then return to 2 with V ←− Gi V , U ←− Gi U and i←− i+ 1.
(6) Define G = Gq U and the matrix P formed by selecting the last p− q rows of G.
(7) Define Q = θ(P ) ∈ Dp×(p−q) and compute a left-inverse T ∈ D(p−q)×p of Q.

Algorithm 5.3 is inspired by a result of [63, 64] obtained for commutative rings.

Example 5.6. Let us consider the first Weyl algebra D = A1(Q), the following matrices

(78) R =

(
0 ∂ 0 −1
∂ 0 −t 0

)
∈ D2×4, S =

(
0 0 0 −1
t 0 ∂ 0

)T
∈ D4×2,

and the left D-module M = D1×4/(D1×2 R). We can easily check that S is a right-inverse of R.
Therefore, M is stably free with rankD(M) = 2, i.e., M is free left D-module of rank 2 by 3 of
Theorem 1.2. Using Algorithm 5.3, let us compute a basis of M .

Let us first compute the formal adjoint R̃ of R:

R̃ =

(
0 −∂ 0 −1
−∂ 0 −t 0

)T
∈ D4×2.

Let us now consider the first column v1 = (0 − ∂ 0 − 1)T of R̃. The vector v′1 = (1 − ∂ 0)T
is unimodular, which shows that we can take a1 = −1, a2 = 0, d1 = 1, d2 = 0 in Proposition 5.2
since w′ = (1 0 0) is a left-inverse of v′1. Applying Proposition 5.2 to v1, we get:

E1 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , E2 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 ,

E3 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
∂ 1 0 0
0 0 1 0
0 0 0 1

 .

In particular, we have:

G1 = E4 E3 E2 E1 =


0 0 0 −1
0 1 0 −∂
0 0 1 0
1 0 0 0

 ∈ E4(D), G1 R̃ =


1 0
0 0
0 −t
0 −∂

 .

Let us now consider the subcolumn v2 = (0 − t − ∂)T of the second column of matrix G1 R̃.
We can easily check that v′2 = (−∂ − t)T has a left-inverse defined by w′2 = (t − ∂). Hence,
taking a1 = 1, a2 = 0, d1 = −t and d2 = −∂ in Proposition 5.2, we get:

E′1 =

 1 0 1
0 1 0
0 0 1

 , E′2 =

 1 0 0
0 1 0
−t ∂ 1

 , E′3 =

 1 0 −1
0 1 0
0 0 1

 , E′4 =

 1 0 0
t 1 0

∂ + 1 0 1

 .

Then, we have:

F2 = E′4 E
′
3 E
′
2 E
′
1 =

 1 + t −∂ t

t (t+ 1) −t ∂ + 1 t2

t ∂ + ∂ + 2 −∂2 t ∂ + 2

 ∈ E4(D), F2 v2 =

 1
0
0

 .
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Let us define the following matrices:

G2 =

(
1 0
0 F2

)
, G = G2 G1 =


0 0 0 −1
t t+ 1 −∂ −(t+ 1) ∂
t2 t (t+ 1) −t ∂ + 1 −t (t+ 1) ∂

t ∂ + 2 (t+ 1) ∂ + 2 −∂2 − ((t+ 1) ∂ + 2) ∂

 .

Then, we have GR̃ = (I2 0)T . Finally, if we consider the following two matrices

(79) Q =


t2 −t ∂ + 1

t2 + t −(t+ 1) ∂ + 1
t ∂ + 2 −∂2

t (t+ 1) ∂ + 2 t+ 1 −(t+ 1) ∂2

 , T =

(
0 0 t+ 1 −1

t+ 1 −t 0 0

)
,

where Q is formed by taking the last two columns of the formal adjoint G̃ of G and T is a left-
inverse of Q, then a basis of M is defined by {π((0 0 t + 1 − 1)), π((t + 1 − t 0 0))},
where π : D1×4 −→M is the canonical projection onto M .

Let us consider a left D-module F (e.g., F = C∞(R+)) and the linear system kerF (R.). Using
the matrix Q defined by (79), we obtain the following parametrization of kerF (R.):

(80)

{
ẋ2(t)− u2(t) = 0,
ẋ1(t)− t u1(t) = 0,

⇔


x1(t) = t2 ξ1(t)− t ξ̇2(t) + ξ2(t),
x2(t) = t (t+ 1) ξ1(t)− (t+ 1) ξ̇2(t) + ξ2(t),
u1(t) = t ξ̇1(t) + 2 ξ1(t)− ξ̈2(t),
u2(t) = t (t+ 1) ξ̇1(t) + (2 t+ 1) ξ1(t)− (1 + t) ξ̈2(t).

Finally, since T Q = I2, (80) is an injective parametrization of kerF (R.), i.e.:

(81)

(
ξ1(t)
ξ2(t)

)
= T


x1(t)
x2(t)
u1(t)
u2(t)

 ⇔

{
ξ1(t) = (t+ 1)u1(t)− u2(t),
ξ2(t) = (t+ 1)x1(t)− t x2(t).

In control theory, the OD system kerF (R.) is called a differentially flat system and the basis (81)
of the free left D-module M corresponds to a non-singular flat output of kerF (R.) ([32]).

For PD examples, see [103] and the library of examples of the Stafford package.

Let us now study the case of stably free left D-module of rank 1.

Proposition 5.3 ([103]). Let D = An(Q) or Bn(Q) be a Weyl algebra and M a stably free left
D-module of rank 1. If Q ∈ Dp is a minimal parametrization of M , then M is a free left D-module
of rank 1 iff the left ideal D1×pQ of D admits a reduced Gröbner defined by only one element P
of D. If so, then the column vector QP−1 ∈ Dp defines an injective parametrization of the free
left D-module M and the residue class in M of a left-inverse T ∈ D1×p of QP−1 defines a basis
of the free left D-module M of rank 1.

Example 5.7. Let us consider the time-varying linear OD system ẋ(t) = tk u(t), k ∈ N, and let
D = A1(Q), Rk = (∂ − tk) and Mk = D1×2/(DRk). Since Rk has full row rank, according
to Corollary 3.3, Mk is stably free iff the left D-module Ñ = D1×q/(D1×p R̃k), where R̃k =(
−∂ − tk

)T is the formal adjoint of Rk, is reduced to zero:{
−λ̇ = 0,
−tk λ = 0,

⇒ tk λ̇+ k tk−1 λ = 0 ⇒ tk−1 λ = 0 ⇒ . . . ⇒ λ = 0 ⇒ Ñ = 0.

Hence, for all k ∈ N, the left D-module Mk is stably free. Using Algorithm 4.1, the torsion-free
left D-module Mk admits the following minimal parametrization:

0 −→ D
.Rk−−→ D1×2 .Qk−−→ D −→ D/(D1×2 Qk) −→ 0, Qk =

(
tk+1

t ∂ + k + 1

)
.
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Therefore, we get Mk = D1×2/(DRk) ∼= D1×2 Qk = D tk+1 + D (t ∂ + k + 1), showing that Mk

is isomorphic to the left ideal Ik of D generated by tk+1 and t ∂ + k + 1. Since D is a domain,
we obtain that Mk is a free left D-module iff Ik is a principal left ideal of D. However, we can
prove that tk+1 and t ∂ + k + 1 form a reduced Gröbner basis of Ik iff k ≥ 1, and thus Mk is
a stably free but not free left D-module whenever k ≥ 1 (see also [103]). For k = 0, we have
I0 = D t+D (t ∂ + 1) = D t because ∂ t = t ∂+ 1. Hence, I0 is a principal left ideal of D and thus
M0 is free. Using (t ∂ + 1) t−1 = ∂, we obtain that an injective parametrization of M0 is defined
by Q0 t

−1 = (1 ∂)T . To conclude, the controllable time-varying linear OD system ẋ(t) = tk u(t)
is flat in a neighbourhood of t = 0 iff k = 0 and, for k ≥ 1, the singularity at t = 0 of its injective
parametrization u(t) = t−k ẋ(t) over B1(Q) cannot be removed.

If M is a stably free left D = A1(k)-module M which is not free, then B1(k)⊗DM is a torsion-
free left B1(k)-module, and thus a free one (see 1 of Theorem 1.2). Hence, the obstructions for M
to be free come from irremovable singularities (see, e.g., Example 5.7).

The next proposition generalizes a remark of Malgrange ([69]) on the results of [70].

Proposition 5.4 ([103]). Let R ∈ Dq×p be a matrix which admits a right-inverse S ∈ Dp×q, the
stably free left D-module M = D1×p/(D1×q R) and π : D1×p −→ M the canonical projection. If
R′ = (R 0) ∈ Dq×(p+q), then we have the following split exact sequence

(82) 0 −→ D1×q .R′−−→ D1×(p+q) .Q′−−→ D1×p −→ 0,
.S′←−− .T ′←−−

with the notations:

S′ =

(
S

−Iq

)
∈ D(p+q)×q, T ′ = (Ip S) ∈ Dp×(p+q), Q′ =

(
Ip − S R

R

)
∈ D(p+q)×p.

Hence, we have M ⊕D1×q ∼= D1×p, i.e., M ⊕D1×q is a free left D-module with a basis defined by
{κ(T ′i•)}i=1,...,p, where T ′i• denotes the ith row of T ′ and κ : D1×(p+q) −→ D1×(p+q)/(D1×q R′) is
the left D-homomorphism defined by κ((λ1 . . . λp+q)) = (π(λ1 . . . λp) λp+1 . . . λp+q).

We have the following system-theoretic interpretation of Proposition 5.4.

Corollary 5.4 ([103]). With the notations of Proposition 5.4, if F is a left D-module, then:

kerF (R′.) =
{

(ηT ζT )T ∈ F (p+q) | Rη = 0
}

= Q′ Fp.

For all ζ ∈ Fq and all η ∈ kerF (R.), there exists a unique ξ = η + S ζ ∈ Fp such that:{
η = (Ip − S R) ξ,
ζ = Rξ.

Finally, the linear system kerF (R′.) = kerF (R.) ⊕ Fq projects onto the linear system kerF (R.)
under the canonical projection ρ : F (p+q) −→ Fp defined by ρ((ηT ζT )T ) = ηT .

If D = A1(k), then Corollary 5.4 can be interpreted as the blowing-up of the singularities:
embedding the linear system kerF (R.) into a larger space F (p+q), the new system kerF (R′.) has no
more singularities, i.e., it is free. The situation is similar to the blowing-up in algebraic geometry
([27]).

Example 5.8. Let us consider Example 5.7 and particularly the stably free but not free left
D = A1(Q)-module M = D1×2/(DR) of rank 1, the matrix R = (∂ − t), which is associated
with the time-varying linear system ẋ(t) − t u(t) = 0. If F is an left D-module, then using
Algorithm 3.1, we obtain the following parametrization of kerF (R.):

∀ ξ1, ξ2 ∈ F ,

{
x(t) = −t ξ̇1(t) + ξ1(t) + t2 ξ2(t),
u(t) = −ξ̈1(t) + t ξ̇2(t) + 2 ξ2(t).

But, we cannot express the potentials ξ1 and ξ2 in terms of x, u and their derivatives, i.e., this
parametrization is not injective since it would imply that rankD(M) is 2 whereas it is 1.
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The left B1(Q)-module B1(Q) ⊗D M ∼= B1(Q)1×2/(B1(Q)R) is free and the corresponding
system kerG(R.), where G is any left B1(Q)-module, admits the injective parametrization:

∀ ψ ∈ G,

 x(t) = ψ(t),

u(t) = 1
t
ψ̇(t).

The fact that M is not a free left D-module means that we cannot remove the singularity
at t = 0. However, if R′ = (R 0) ∈ D1×3, Corollary 5.4 shows that the linear OD system
kerF (R′.) = {(x u v)T ∈ F3 | ẋ(t)− t u(t) = 0} admits an injective parametrization defined by
the matrix Q′ = ((I2 − S R)T RT )T ∈ D3×2, i.e., we have{

ẋ(t)− t u(t) = 0,
v ∈ F ,

⇔


x(t) = −t ϕ̇1(t) + ϕ1(t) + t2 ϕ2(t),
u(t) = −ϕ̈1(t) + t ϕ̇2(t) + 2ϕ2(t),
v(t) = ϕ̇1(t)− t ϕ2(t),

where ϕ1(t) = x(t)+ t v(t) and ϕ2(t) = u(t)+ v̇(t). Hence, Corollary 5.4 allows us to “blow up” the
singularity at t = 0 and the non-flat linear system kerF (R.) is the projection of the flat behaviour
kerF (R′.) = kerF (R.)⊕F ∼= F2 under the following canonical projection:

ρ : F3 −→ F2

(x u v)T 7−→ (x u)T .

Let us now show how the previous results on Stafford’s theorem can be extended to the case of
D = A〈∂〉, where A = kJtK and k is a field of characteristic 0, or k{t} and k = R or C.

Theorem 5.3 ([106]). If A = kJtK and k is a field of characteristic 0, or k{t} and k = R or C,
D = A〈∂〉 and v1, v2, v3 ∈ D, then there exist two elements a1, a2 ∈ D such that the left ideal
I = Dv1 +Dv2 +Dv3 can also be generated as follows:

I = D (v1 + a1 v3) +D (v2 + a2 v3).

In particular, every left ideal of the ring D = A〈∂〉], where A is defined in Theorem 5.3, can be
generated by two elements ([34, 66]).

Proposition 5.2 can also be extended to the ring of OD operators D = A〈∂〉 for the differential
rings A introduced in Theorem 5.3. Let us give an explicit example.

Example 5.9. If D = R{t}[∂] and v = (0 sin(t) ∂)T , then v admits a left-inverse over D since
bringing the OD linear system v y = 0, i.e.,

Φ1 = 0,
Φ2 = sin(t) y,
Φ3 = ∂ y,

to formal integrability yields ∂ Φ2 − sin(t) Φ3 = cos(t) y and then:

sin(t) Φ2 + cos(t) (∂ Φ2 − sin(t) Φ3) = y.

Hence, the column vector v admits the left-inverse w = (0 cos(t) ∂ + sin(t) − cos(t) sin(t))
and D 0 + D sin(t) + D∂ = D. Taking a1 = 1 and a2 = 0, we get I = D (0 + ∂) + D sin(t)
and thus v′1 = ∂, v′2 = sin(t), d1 = − cos(t) sin(t), d2 = cos(t) ∂ + sin(t), v′′1 = cos(t) sin(t),
v′′2 = − cos(t) ∂ − sin(t). Then, we can define the following four matrices:

E1 =

 1 0 1
0 1 0
0 0 1

 , E2 =

 1 0 0
0 1 0

cos(t) sin(t) − cos(t) ∂ − sin(t) 1

 ,

E3 =

 1 0 −1
0 1 0
0 0 1

 , E4 =

 1 0 0
− sin(t) 1 0
−∂ + 1 0 1

 .
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Hence, the matrix E = E4 E3 E2 E1 ∈ E3(D) defined by

E =

 1− cos(t) sin(t) cos(t) ∂ + sin(t) − cos(t) sin(t)
sin(t) (cos(t) sin(t)− 1) − cos(t) (sin(t) ∂ − cos(t)) sin2(t) cos(t)

(cos(t) sin(t)− 1) ∂ + 2 cos2(t) − cos(t) (∂2 + 1) cos(t) (sin(t) ∂ + 2 cos(t))

 ,
satisfies E v = (1 0 0)T . Finally, we check that E−1 ∈ D3×3 since:

E−1 =

 0 − cos(t) ∂ − sin(t) cos(t) sin(t)
sin(t) 1 0
∂ cos(t) ∂ + sin(t) 1− cos(t) sin(t)

 .

Theorem 5.4 ([106]). If A = kJtK and k is a field of characteristic 0, or k{t} and k = R or C,
then every finitely generated projective left D = A〈∂〉-module M of rank at least 2 is free.

We can use Algorithm 5.3 to compute bases of free left A〈∂〉-module M of rank at least 2.

Example 5.10. Let us consider the following time-varying linear OD system:

(83)

{
ẋ2(t)− u2(t) = 0,
ẋ1(t)− sin(t)u1(t) = 0.

We can easily check that (83) admits the following injective parametrization:

(84)

 u1(t) = ẋ1(t)
sin(t)

,

u2(t) = ẋ2(t).

This injective parametrization is singular at t = 0 since sin(t)−1 = t−1 + t/6 + O(t2) and thus
{x1, x2} is a basis of the free E = R{t}[t−1][∂]-module L = E1×4/(E1×2 R) of rank 2, where R
denotes the system matrix of (83) defined by:

R =

(
0 ∂ 0 −1
∂ 0 − sin(t) 0

)
.

This result can be checked again by computing a Jacobson normal form of the matrix R over the
principal left ideal domain E = R{t}[t−1][∂] (see, e.g., [25]), namely,

(85)

(
−1 0
0 − sin(t)−1

)
R


0 0 0 1
0 0 1 0
0 1 0 sin(t)−1 ∂

1 0 ∂ 0

 =

(
1 0 0 0
0 1 0 0

)
,

and considering the last two columns of third matrix of (85).
Let us now study whether or not (83) admits a non-singular injective parametrization at t = 0.

To do that, we consider the left D = R{t}[∂]-module M = D1×4/(D1×2 R) finitely presented by
R. Since R has full row rank, rankD(M) = 2. Moreover, R admits the right-inverse:

S =


0 cos(t) sin(t)
0 0
0 cos(t) ∂ − 2 sin(t)
−1 0

 ∈ D4×2.

Therefore, the left D-module M is stably free of rank 2 and thus free by 3 of Theorem 5.4. Let us
compute a basis of M . Applying Algorithm 5.3 to the first column R̃•1 = (0 − ∂ 0 − 1)T of
the formal adjoint R̃ of R, i.e.,

R̃ =


0 −∂
−∂ 0
0 − sin(t)
−1 0

 ∈ D4×2,
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we can take a1 = 1 and a2 = 0 since D 0 +D (−∂) +D (−1) = D (0− 1) +D (−∂), i.e., v′1 = −1,
v′2 = −∂ and v′3 = 0, and thus d1 = −1, d2 = 0, d3 = 0, v′′1 = 1, v′′2 = 0 and v′′3 = 0, and we define
the following matrices:

E1 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , E2 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 , E3 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
∂ 1 0 0
0 0 1 0
2 0 0 1

 .

Then, we have:

F1 = E4 E3 E2 E1 =


0 0 0 −1
0 1 0 −∂
0 0 1 0
1 0 0 0

 ∈ E4(D), F1 R̃ =


1 0
0 0
0 − sin(t)
0 −∂

 .

We now apply again Algorithm 5.3 to the vector (0 −sin(t) −∂)T . Up to a sign, this was already
done in Example 5.9. Therefore, we obtain that the matrix F2 = −E satisfies F2 (0 − sin(t) −
∂)T = (1 0 0)T , where E is defined in Example 5.9. Then, the matrix G2 = diag(1, F2)F1 ∈
E4(D) is such that G2 R̃ = (IT2 0T )T and thus RV = (I2 0), where the matrix V = G̃2 ∈ E4(D)
is defined by:

V =


0 cos(t) sin(t)
0 −1 + cos(t) sin(t)
0 cos(t) ∂ − 2 sin(t)
−1 (cos(t) sin(t)− 1) ∂ + 2 cos2(t)− 1

− cos(t) sin2(t) cos(t) sin(t) ∂ − 1
− sin(t) (cos(t) sin(t)− 1) (cos(t) sin(t)− 1) ∂ − 1

− cos(t) sin(t) ∂ − 3 cos2(t) + 1 (cos(t) ∂ − 2 sin(t)) ∂
(sin(t)− cos(t) + cos3(t)) ∂ − 3 cos2(t) sin(t) + sin(t) + cos(t) (cos(t) sin(t)− 1) ∂2 − 2 sin2(t) ∂

 .
The matrix Q formed by the last two columns of V defines an injective parametrization of (83),

i.e., kerF (R.) = QF2 for all left D-modules F , and T Q = I2, where the matrix T ∈ D2×4 is
defined by V −1 = (RT TT )T where:

V −1 =


0 ∂ 0 −1
∂ 0 − sin(t) 0

cos(t) ∂ − 2 sin(t) − cos(t) ∂ + 2 sin(t) −1 0
−1 + cos(t) sin(t) − cos(t) sin(t) 0 0

 ∈ D4×4.

Finally, the residue classes of the two rows T1• and T2• of T in the D-module M , namely

(86)

{
z1 = (cos(t) ∂ − 2 sin(t))x1 + (− cos(t) ∂ + 2 sin(t))x2 − u1,

z2 = (−1 + cos(t) sin(t))x1 − cos(t) sin(t)x2,

defines a basis {z1, z2} of the free left D-module M of rank 2 and:

(x1 x2 u1 u2)T = Q (z1 z2)T .

Within the language of control theory ([32]), the linear system (83) is differentially flat and it
admits the non-singular flat outputs (86) and the injective parametrization kerF (R.) = QF2.

The computation of bases of free modules will play an important role in Chapters 3 and 4.

6. Applications to multidimensional control theory

We shortly explain recent applications of the constructive algebraic analysis to control theory.
For more results and extensions, see [16, 17, 25, 29, 31, 73, 78, 80, 88, 92, 104, 103, 118, 121, 122].
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Definition 6.1. Let D be a noetherian domain, R ∈ Dq×p, F an injective cogenerator left D-
module and kerF (R.) = {η ∈ Fp |Rη = 0} the linear system defined by R and F . Then, we have
the following definitions:

(1) An observable of kerF (R.) is a left D-linear combination of the system variables ηi’s.
An observable ψ(η) is autonomous if it satisfies a non-trivial equation over D, namely,
dψ(η) = 0 for some 0 6= d ∈ D. An observable is said to be free if it is not autonomous.

(2) The linear system kerF (R.) is autonomous if every observable of kerF (R.) is autonomous.
(3) The linear system kerF (R.) is autonomous-free if every observable of kerF (R.) is free.
(4) The linear system kerF (R.) is parametrizable if there exists a matrix Q ∈ Dp×m such that

kerF (R.) = QFm, i.e., for every η ∈ kerF (R.), there exists ξ ∈ Fm satisfying that η = Qξ.
The matrix Q is then called a (potential-like) parametrization of kerF (R.) and ξ a potential.

(5) Let R = (R1 R2) be a partition of the matrix R and

kerF (R.) = {η = (ηT1 ηT2 )T ∈ Fp | R1 η1 +R2 η2 = 0}
the corresponding linear system. Then, η1 is said to be observable from η2 if η1 is uniquely
determined by η2 in the sense that ζ = (ζT1 ηT2 )T ∈ kerF (R.) implies that ζ1 = η1 or,
equivalently, R1 (ζ1 − η1) = 0 implies that ζ1 = η1.

(6) The linear system kerF (R.) is flat if it admits an injective parametrization, namely, there
exists a parametrization Q ∈ Dp×m of kerF (R.) which has a left-inverse T ∈ Dm×p, i.e.,
T Q = Im. In other words, kerF (R.) is flat if it is parametrizable and every component ξi
of the corresponding potential ξ is an observable of the system. The potential ξ is then
called a flat output of kerF (R.).

The concepts of observables and autonomous or free observables were first introduced in [84]. For
the introduction of the concept of parametrizable systems in the literature of mathematical systems
theory, see [84]. Moreover, flat systems were first introduced in [32]. The concept of observables of
a linear system defined in 1 of Definition 6.1 and borrowed from quantum mechanics, must not be
confused with the concept of an observable variable defined in 6 of Definition 6.1. Finally, within
the behavioural approach (see, e.g., [81, 78, 80, 92, 118, 121]), a parametrization of a linear system
is called an image representation and a flat system is a behaviour admitting an observable image
representation. In the light of the algebraic analysis framework, it appears that the terminology
developed by different communities should be unified.

We give module-theoretic characterizations of the system properties defined in Definition 6.1.

Theorem 6.1 ([16]). Let D be a noetherian domain, R ∈ Dq×p, F an injective cogenerator
left D-module, kerF (R.) = {η ∈ Fp |Rη = 0} the linear system defined by R and F and M =
D1×p/(D1×q R) the left D-module finitely presented by R. Then, we have:

(1) The observables of kerF (R.) are in a one-to-one correspondence with the elements of M .
(2) The autonomous elements of kerF (R.) are in a one-to-one correspondence with the torsion

elements of M .
(3) The linear system kerF (R.) is autonomous iff the left D-module M is torsion.
(4) The linear system kerF (R.) is autonomous-free iff the left D-module M is torsion-free.
(5) The linear system kerF (R.) is parametrizable iff the left D-module M is torsion-free. Then,

any parametrization Q ∈ Dp×m of M , i.e., M ∼= D1×pQ, defines a parametrization of the
system kerF (R.).

(6) The linear system kerF (R.) is flat iff M is a free left D-module. Then, the bases of M are
in a one-to-one correspondence with the flat outputs of kerF (R.).

(7) If R = (R1 R2) denotes a partition of R, where R1 ∈ Dq×p1 and R2 ∈ Dq×p2 , and
kerF (R.) = {η = (ηT1 ηT2 )T ∈ Fp | R1 η1 + R2 η2 = 0} the corresponding system, then,
η1 is observable from η2 iff we have M1 = D1×p1/(D1×q R1) = 0, i.e., iff R1 admits an
inverse S1 ∈ Dp1×q, i.e., S1 R1 = Ip1 .

We recall the concept of controllability for state-space linear OD systems due to Kalman.

Definition 6.2 ([43]). Let D = R[∂] be the commutative polynomial ring of OD operators,
A ∈ Rn×n, B ∈ Rn×m, R = (∂ In − A − B) ∈ Dn×(n+m) and F a D-module. Then, the linear
system kerF (R.) is said to be controllable if the state x of the system can be transferred from any
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initial state x(0) = x0 to any given terminate state xT ∈ Rn at any time T ≥ 0, i.e., there exists
an input u : [0, T ] −→ Rm such that x(T ) = xT .

In mathematical systems theory, the following results are nowadays very classical.

Proposition 6.1 ([42, 43, 81]). Let D = R[∂] be the commutative ring of OD operators, A ∈ Rn×n,
B ∈ Rn×m, R = (∂ In −A −B) ∈ Dn×(n+m), and F = C∞(R+). Then, we have:

(1) kerF (R.) is controllable iff rankk(B AB A2 B . . . An−1 B) = n.
(2) kerF (R.) is controllable iff R admits a right-inverse S ∈ Dp×q, i.e., RS = Iq.

Example 6.1. Let D = R[∂] be the principal ideal domain of OD operators, the matrices A ∈
Rn×n and B ∈ Rn×m, the presentation matrix R = (∂ In −A −B) ∈ Dn×(n+m) and the finitely
presented D-module M = D1×(n+m)/(D1×nR). If xi (resp., ui) is the residue class of the ith

vector of the standard basis of D1×(n+m) in M for i = 1, . . . , n (resp., i = n+ 1, . . . ,m), then the
family of generators {x1, . . . , xn, u1, . . . , um} of M satisfies the following D-linear relations

∂ xi =
n∑
j=1

Aij xj +
m∑
k=1

Bik uk, i = 1, . . . , n,

i.e., ẋ = Ax + B u, where x = (x1 . . . xn)T and u = (u1 . . . um)T . If F is a D-module (e.g.,
F = C∞(R+)), then we have:

homD(M,F) ∼= kerF (R.) = {(xT uT )T ∈ F (n+m) | ẋ = Ax+B u}.
Since D is a principal ideal domain, the D-module M is torsion-free iff M is free (see 1 of

Theorem 1.2). Since R has full row rank, using Corollary 3.3, the D-module M is torsion-free iff
N = Dn/(RD(n+m)) = 0, i.e., iff the adjoint D-module Ñ = D1×n/(D1×(n+m) R̃) = 0, where
R̃ = (−∂ In −AT −BT )T ∈ D(n+m)×n. If we denote by λj the residue class of the jth vector of
the standard basis of D1×n in Ñ , then the family of generators {λj}j=1,...,n satisfies

(87)

{
µ1 , ∂ λ+AT λ = 0,
µ2 , BT λ = 0.

In the literature of control theory, (87) is called the dual system. (87) is generally not formally
integrable since (87) contains a first order and a zero order ODE, i.e., (87) is generally not a Gröbner
basis of D1×(n+m) R̃. Hence, applying ∂ to the zero order equation, we get that BT ∂ λ = 0 and
taking into account ∂ λ = −AT λ, we obtain the new zero order equation BT AT λ = 0. Repeating
again the same process and using the Cayley-Hamilton theorem saying that An =

∑n−1
i=0 αiA

i, for
some αi’s belonging to R, we obtain the formally integrable system

(87) ⇔



µ1 = ∂ λ+AT λ = 0,
X0

X1
...

Xn−1

 =


BT

BT AT

...
BT (AT )n−1

 λ = 0,

where the elements Xi’s are defined by:{
X0 = µ2,

Xi =
∑i
j=1 B

T (AT )i−j (−∂)j−1 µ1 + (−1)i ∂i µ2, i = 1, . . . , n− 1.

Then, (87) is reduced to 0, i.e., M is a torsion-free D-module, iff:
(88) rankR(B AB A2 B . . . An−1 B) = n.

Hence, kerF (R.) is controllable iff the D-module M is torsion-free, i.e., using Theorem 6.1, iff
kerF (R.) is autonomous-free ([31, 84]). The previous result can be interpreted as the observability
test for the dual system (87) Now, according to 2 of Corollary 3.3, M is a stably free D-module
iff the matrix R admits a right-inverse S ∈ D(n+m)×n, i.e., RS = In, or equivalently, iff ∂ In − A
and B are left-coprime over D. If the rank condition (88) is satisfied, then there exists a matrix
C = (C0 . . . Cn−1) ∈ Rn×(mn) such that C (B AB A2 B . . . An−1 B)T = In. Then, we
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have λ = C0 X0 + . . . + Cn−1 Xn−1 and if ∆ = (1 − ∂ ∂2 . . . (−∂)n−1)T , then we get λ =
C BT H(AT ) ∆µ1 + C ∆µ2, where the matrix H is defined by:

∀ L ∈ Rn×n, H(L) =



0 0 0 0 0 0
In 0 0 0 0 0
L In 0 0 0 0
L2 L In 0 0 0
L3 L2 L In 0 0
...

...
...

...
...

...
Ln−2 Ln−3 Ln−4 . . . In 0


.

Moreover, if U = C BT H(AT ) ∆ V = C ∆, then λ = U µ1 + V µ2, which yields the Bézout
identity U (∂ In + AT ) + V BT = In. Applying the involution θ of D to this Bézout identity, we
get (∂ In −A)X −B Y = In, where:

X = −θ(U) = −
n−2∑
k=0

(
n−1∑
l=k+1

Al−k−1 BCTl

)
∂k, Y = −θ(V ) = −

n−1∑
k=0

CTk ∂
k.

Now, a non-minimal parametrization of kerF (R.) can be obtained by applying the involution
θ to the compatibility conditions of R̃ λ = µ (see Algorithm 4.1). These compatibility conditions
are obtained by substituting λ = U µ1 + V µ2 into R̃ λ = µ to get:

(89)

(
(∂ In +AT )U − In (∂ In +AT )V

BT U BT V − Im

) (
µ1

µ2

)
= 0.

Hence, we obtain the following non-injective parametrization of kerF (R.):

∀ ξ ∈ F (n+m),

(
x

u

)
=

(
X (∂ In −A)− In −X B

Y (∂ In −A) −Y B − Im

)
ξ.

Minimal parametrizations of kerF (R.) can be obtained by setting to zero n components of the
potential ξ. For instance, considering ξ = (0 − χT )T , where χ ∈ Fm, we obtain:

∀ χ ∈ Fm,

(
x

u

)
=

(
X B

Y B + Im

)
χ.

If the linear system ẋ = Ax + B u is not controllable, then, in control theory ([42, 43, 81]), it is
well-known that there exists an invertible matrix P ∈ Rn×n such that the transformation x = P x
defines an equivalent system ẋ = (P AP−1)x+ (P B)u of the form

(90)

{
ẋ1 = A11 x1 +A12 x2 +B1 u,

ẋ2 = A22 x2,

with the notations A = P AP−1 and B = P B ([43]). (90) is called the Kalman’s decomposition
of ẋ = Ax + B u. The dimension of the vector x2 is l = n − rankk(B AB A2 B . . . An−1 B).
Clearly, the invertible transformation x = P x is only a change of generators of the D-module M
from {x1, . . . , xn, u1, . . . , um} to {x1, . . . , xn, u1, . . . , um}. Hence, (90) is only another presentation
of the D-module M . In (90), we can easily see that all the components x2i’s of x2 satisfy det(∂ Il−
A22)x2i = 0, i = 1, . . . , l, i.e., define torsion elements of M , and thus, autonomous elements of
kerF (R.). Finally, we can easily compute first integrals of motion of kerF (R.) using:

λT (ẋ−Ax−B u) = −xT (λ̇+AT λ)− uT (BT λ) + d

dt
(λT x).

Indeed, if η = (xT uT )T ∈ kerF (R.) and λ denotes the general solution of the adjoint system{
λ̇+AT λ = 0,
BT λ = 0,

which, by assumption, is non-trivial, then Φ = λx =
∑n
i=1 λi xi is a first integral, i.e., Φ̇ = 0.
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Figure 1: Controllability à la Willems

Definition 6.2 was generalized by Willems for general time-invariant OD systems.

Definition 6.3 ([81]). Let D = R[∂] be the commutative polynomial ring of OD operators,
R ∈ Dq×p a full row rank matrix and F a D-module. Then, the linear system kerF (R.) is
controllable if for all T ≥ 0 and all ηp and ηf ∈ kerF (R.), there exists η ∈ kerF (R.) such that:

(91)

{
η| ]−∞,0] = ηp | ]−∞,0],

η| [T,+∞[ = ηf | [T,+∞[.

According to Definition 6.3, a time-invariant linear system kerF (R.) is controllable if it can
switch from any arbitrary pasted trajectory ηp of kerF (R.) to any arbitrary future trajectory ηf
in a given time T by means of a third trajectory η ∈ kerF (R.). See Figure 1.

Example 6.2. Let D = R[∂] be the commutative polynomial ring of OD operators, R ∈ Dq×p

a full row rank matrix (e.g., R = (P − Q), where P ∈ Dq×q, detP 6= 0, Q ∈ Dq×p) and
M = D1×p/(D1×q R) the D-module finitely presented by R. Using 1 of Theorem 1.2, M is
a torsion-free D-module iff M is free. According to Corollary 5.2, the D-module M is free iff
the matrix R can be embedded in V ∈ GLp(D), i.e., iff there exist three matrices S ∈ Dp×q,
Q ∈ Dp×(p−q) and T ∈ D(p−q)×p such that the following two Bézout identities hold(

R

T

)
(S Q) =

(
Iq 0
0 Ip−q

)
, (S Q)

(
R

T

)
= Ip,

which are equivalent to the following split exact sequence:

0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0.
.S←− .T←−

If F is a left D-module (e.g., F = C∞(R+)), then applying the functor homD( · ,F) to the previous
split exact sequence, we obtain the following split exact sequence

0 −→ Fq R.←− Fp Q.←− F (p−q) −→ 0.
S.−→ T.−→

which shows that Q is an injective parametrization of the flat linear OD system kerF (R.), i.e.,
kerF (R.) = QF (p−q) and T Q = I(p−q). The injective parametrization η = Qξ of Rη = 0 is called
the controller form and ξ = T η the generalized state of the linear system kerF (R.) (see [42]). We
note that the generalized state ξ is observable from η (see 6 of Definition 6.1).

The generalized state ξ of kerF (R.) can be used to find again Willems’ approach to control-
lability. Indeed, we can define ξp = T ′ ηp and ξf = T ′ ηf . Now, if F = C∞(R), then, using
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the partition of unity on the compact subset [0, T ] of R, we can find ξ ∈ F (p−q) satisfying that
ξ| ]−∞,0] = ξp | ]−∞,0] and ξ| [T,+∞[ = ξf | [T,+∞[. Then, η = Q′ ξ satisfies (91), which shows that a
free D-module M defines a controllable linear OD system kerF (R.).

Finally, since D is a principal ideal domain, the full row rank matrix R ∈ Dq×p admits a
Smith normal form, namely, there exist two matrices V ∈ GLq(D) and W ∈ GLp(D) such that
V RW = diag(d1, . . . , dq), where di ∈ D \ {0} for i = 1, . . . , q. Let M ′ = D1×p′/(D1×q′ R′) be
the D-module finitely presented by R′ = diag(α1, . . . , αq) and π′ : D1×p −→ M ′ the canonical
projection onto M ′. We can easily check that the D-homomorphism f : M −→ M ′ defined by
f(π(λ)) = π′(λW ) is an isomorphism (see Chapter 3), and thus M ′ ∼= M . If {ei}i=1,...,q is the
standard basis of D1×q, then we have:

M ′ = D1×p/

(
q⊕
i=1

Ddi ei

)
∼=

q⊕
i=1

D/(Ddi)⊕D1×(p−q) ⇒ kerF (R.) ∼=
q⊕
i=1

kerF (di.)⊕F (p−q).

Hence, if M ∼= M ′ is not a free D-module, then one the di’s is a non-invertible element of D
and defines a torsion element corresponding to the non-trivial cyclic D-module D/(Ddi). Then,
kerF (di.) is clearly non-controllable and so is kerF (R.), which finally proves that a linear OD
system kerF (R.) is controllable iff M is a free D-module, i.e., iff M is a torsion-free D-module.
Proposition 6.2 ([31, 84, 88]). Let D = R[∂] be the commutative polynomial ring of OD operators,
M = D1×p/(D1×q R) the D-module finitely presented by a full row rank matrix R and F = C∞(R).
Then, the linear system kerF (R.) is controllable iff the D-module M is torsion-free.

Pillai and Shankar have extended Willems’ definition of controllability and Proposition 6.2 to
the case of underdetermined linear PD systems with constant coefficients ([80]).
Theorem 6.2 ([80]). Let D = R[∂1, . . . , ∂n] be the commutative polynomial ring of PD operators,
R ∈ Dq×p, F = C∞(Ω), where Ω is an open convex subset of Rn, M = D1×p/(D1×q R) the
D-module finitely presented by R. Then, the following two assertions are equivalent:

(1) kerF (R.) is controllable in the sense that, for all η1 and η2 ∈ kerF (R.) and all open subsets
U1 and U2 of Ω such that their closures U1 and U2 do not intersect, i.e., U1 ∩ U2 = ∅,
there exists η ∈ kerF (R.) which coincides with η1 on U1 and with η2 in U2.

(2) The D-module M is torsion-free.
The next theorem, due to Malgrange and Komatsu, shows how closely the algebraic and analytic

properties of linear PD systems with constant coefficients are interlinked.
Theorem 6.3 ([48, 68]). Let D = R[∂1, . . . , ∂n], R ∈ Dq×p and M = D1×p/(D1×q R) be the
D-module finitely by R. Then, the following assertions are equivalent:

(1) ext1
D(M,D) = 0.

(2) For all bounded open convex subset Ω of Rn, the restriction D-homomorphism is surjective:
ΓΩ : homD(M,C∞(Rn)) −→ homD(M,C∞(Rn \ Ω)).

(3) For all bounded open convex subset Ω of Rn, the restriction D-homomorphism is surjective:
Γ′Ω : homD(M,D′(Rn)) −→ homD(M,D′(Rn \ Ω)).

According to Theorem 1.1, the D-homomorphism ΓΩ is equivalent to the D-homomorphism:

(92)
γΩ : kerC∞(Rn)(R.) −→ kerC∞(Rn\Ω)(R.)

η 7−→ η|Rn\Ω.

Example 6.3. Let M = D1×3/(DR) be the D = R[∂1, ∂2, ∂3]-module finitely presented by
the divergence operator R = (∂1 ∂2 ∂3) in R3. The Auslander transposed D-module N =
D/(RD3) = D/(D1×3 RT ) of M is to the D-module defined by the gradient operator:

∂1 λ = 0,
∂2 λ = 0,
∂3 λ = 0.

Let Ω be a bounded convex open subset of R3. Then, homD(N,C∞(R3 \ Ω)) is the D-module
formed by constant functions defined over the small open neighbourhood of R3 \ Ω. Then, the
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restriction map γΩ defined by (92) is clearly surjective. Then, we find again that the D-module
M defining the divergence operator is torsion-free (see Example 3.5).

Definition 6.4. Using the previous notations, the linear system homD(M,C∞(Rn)) (resp., homD(M,D′(Rn)))
is said to be extendable if it satisfies 2 (resp., 3) of Theorem 6.3.

We obtain the following corollary of Theorems 6.3 and 3.1.

Corollary 6.1 ([99]). With the previous notations, the following conditions are equivalent:
(1) The linear PD system kerC∞(Rn)(R.) is controllable.
(2) The linear PD system kerC∞(Rn)(R̃.) is extendable.
(3) The linear PD system kerD′(Rn)(R̃.) is extendable.
(4) M = D1×p/(D1×q R) is a torsion-free D-module.

Example 6.4. Example 6.3 shows that the system formed by the smooth solutions of the diver-
gence operator in R3 is controllable in the sense of 1 of Theorem 6.2.

If R has full row rank, then ext1
D(M,D) ∼= N = Dq/(RDp) is the Auslander transpose of

M = D1×p/(D1×q R). Corollary 3.3 shows that M is a stably free, and thus, a free D-module by
the Quillen-Suslin theorem (see 2 of Theorem 1.2) iff ext1

D(M,D) ∼= N = 0.

Corollary 6.2 ([99]). Let D = R[∂1, . . . , ∂n] and M = D1×p/(D1×q R) be the D-module finitely
presented by a full row rank matrix R ∈ Dq×p. Then, the conditions are equivalent:

(1) The D-module M is a free D-module.
(2) The linear PD system kerC∞(Rn)(R.) is extendable.
(3) The linear PD system kerD′(Rn)(R.) is extendable.
(4) The linear PD system kerC∞(Rn)(R.) is flat.
(5) The linear PD system kerD′(Rn)(R.) is flat.

Corollary 6.2 extends the above results obtained for time-invariant linear OD systems.

Let D = A〈∂1, . . . , ∂n〉 be a ring of PD operators, R ∈ Dq×p a matrix of PD operators of order
r, F is an injective left D-module and kerF (R.) the linear PD system defined by R and F . Let us
introduce the quadratic Lagrangian function

(93) L(η) = 1
2
ηTr Lηr,

where η = (η1 . . . ηp)T , ∂α ηk = ∂α1
1 . . . ∂αnn ηk, where α = (α1 . . . αn) ∈ Nn is a multi-index

of length |α| = α1 + . . . + αn, ηr = (∂α ηk, |α| = 0, . . . , r)Tk=1,...,p and L a symmetric matrix with
entries in A, i.e., Lk,lα,β = Ll,kβ,α for all k, l = 1, . . . , p and for all α, β ∈ Nn such that |α| = 0, . . . , r
and |β| = 0, . . . , r. Let us study the problem of extremizing the Lagrangian functional

I =
∫

Ω

1
2
ηTr Lηr dx, η ∈ kerF (R.),

i.e., under the differential constraint formed by the linear PD system kerF (R.). The first variation
of the Lagrangian density is

δL(η) =
∑

|α|=0,...,r, k=1,...,p

πkα δ(∂α ηk), πkα(η) = ∂L(η)
∂(∂α ηk)

=
∑

|β|=0,...,r, i=1,...,p

Lk,iα,β ∂
β ηi,

where δ(∂αηk) denotes the variation of ∂αηk. Let us introduce the following PD operator:

(94)
B : Fp −→ Fp

η 7−→
(∑

|α|=0,...,r(−1)|α| ∂α πkα
)
k=1,...,p

.

Using the symmetry of L, namely, Lk,iα,β = Li,kβ,α, we can prove that B̃ = B ([93]), where B̃ is the
formal adjoint of B. If λ ∈ Fq is a Lagrange multiplier, using the following identity

(95) λT Rη = ηT R̃ λ+ div(Φ(λ, η)),
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where Φ is a vector of bilinear forms in λ, η and their derivatives and div = (∂1 . . . ∂n) is the
divergent operator in Rn (see, e.g., [66, 85]), then we get

δ

∫
Ω

(L(η)− λT Rη) dx =
∫

Ω
(δη)T (B η − R̃ λ) dx+

∫
Ω

div(Φ(λ, δη)) dx,

which proves that a necessary condition for the existence of an extremum of the previous variational
problem is B η − R̃ λ = 0, where η ∈ kerF (R.). We obtain the following result.

Proposition 6.3 ([93]). If F an injective left D-module, then a necessary condition for the exis-
tence of η ∈ kerF (R.) which extremizes the Lagrangian functional (93) is

(96)

{
Rη = 0,
B η − R̃ λ = 0,

where λ is a Lagrangian multiplier, R̃ the formal adjoint of R and B is defined by (94).

Moreover, if Q̃ ∈ Dp×m is a matrix defining the compatibility conditions of the inhomogeneous
linear system R̃ λ = µ, i.e., kerD(.R̃) = D1×m Q̃, then (96) is equivalent to:

(97)

{
Rη = 0,
(Q̃ ◦ B) η = 0.

Finally, we have the following diagram of exact sequences:

Fp R.−→ Fq
↓ B.

Fm Q̃.←− Fp R̃.←− Fq.

Example 6.5. Let us extremize the following Lagrangian functional

I =
∫ t1

t0

1
2

(x u)T
(
L1 0
0 L2

)(
x

u

)
dt+ 1

2
x(t1)T S x(t1),

where L1 (resp., L2, S) is a positive definite (resp., semi-definite) symmetric real matrix and x
and u satisfy the linear system ẋ = Ax+B u and x(t0) = x0 (see Example 6.1). We then get:

B : Fn+m −→ Fn+m(
x

u

)
7−→

(
L1 0
0 L2

) (
x

u

)
=

(
L1 x

L2 u

)
.

Using Proposition 6.3, the optimal system (96) is defined by:

(98)


ẋ−Ax−B u = 0, x(t0) = x0,

λ̇+ATλ+ L1 x = 0, λ(t1) = S x(t1),
L2 u+BT λ = 0.

For instance, let I =
∫ T

0
1
2 (x(t)2 + u(t)2) dt, where x and u satisfy the linear OD system:

(99) ẋ(t) + x(t)− u(t) = 0, x(0) = x0.

Using the integration by parts λ (ẋ+x−u) = (−λ̇+λ)x−λu+ d
dt (λx), we get R̃ = (−∂+1 −1)T .

Moreover, computing the first variation of I, namely,

δI =
∫ T

0
(x(t) δx(t) + u(t) δu(t)) dt =

∫ T

0
(δx(t) δu(t))

(
x(t)
u(t)

)
dt,

we obtain B = I2. Therefore, the optimal system (96) is defined by:
ẋ(t) + x(t)− u(t) = 0, x(0) = x0,

λ̇(t)− λ(t) + x(t) = 0, λ(T ) = 0,
λ+ u = 0.
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Since R̃ clearly defines an injective operator, the linear OD system ẋ(t) + x(t) − u(t) = 0 is
controllable. For more details, see Example 6.1. Hence, substituting λ = −u in the previous
optimal system, we obtain that (97) is defined by:{

ẋ(t) + x(t)− u(t) = 0, x(0) = x0,

u̇(t)− u(t)− x(t) = 0, u(T ) = 0.

Example 6.6. Let us consider the electromagnetism Lagrangian functional∫
1
2

(
ε0 ‖ ~E ‖2 − 1

µ0
‖ ~B ‖2

)
dt dx1 dx2 dx3,

where ε0 is the dielectric constant and µ0 is the magnetic constant, under the differential constraint
formed by the first set of Maxwell equations (see Example 3.6):

(100)


∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0.
Varying the Lagrangian functional, we obtain that B is defined by:

F6 B.−→ F6(
~B

~E

)
7−→

 − 1
µ0

~B

ε0 ~E

 .

Using (49), we obtain that the optimal system (96) is defined by:

∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0,

− 1
µ0

~B = −∂
~C

∂t
− ~∇G,

ε0 ~E = ~∇∧ ~C.

If Q̃ denotes the compatibility conditions (51) of the formal adjoint of the first set of Maxwell
equations (100) (see Example 3.6), then the PD operator Q̃ ◦ B : F6 −→ F4 is defined by

( ~B, ~E) 7−→


1
µ0

~∇∧ ~B − ε0
∂ ~E

∂t
= ~,

ε0 ~∇ . ~E = ρ,

where ~ (resp., ρ) is the density of current (resp., charge) and corresponds to the second set of
Maxwell equations for the electromagnetism induction ~D = ε0 ~E and ~H = ~B/µ0. Hence, using
(50), we obtain that the optimal system (97) is defined by

(101)



∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0,
1
µ0

~∇∧ ~B − ε0
∂ ~E

∂t
= ~0,

ε0 ~∇ . ~E = 0,

i.e., (97) corresponds to the complete set of Maxwell equations in vacuum. Using Algorithms 3.1
and 3.2, we can prove that the finitely presented D = Q(ε0, µ0)[∂t, ∂1, ∂2, ∂3]-module associated
with (101) is torsion and the components of the fields ~B and ~E satisfy the following PDEs

∀ i = 1, 2, 3,
(

1
c2

0
∂2
t −∆

)
Ei = 0,

(
1
c2

0
∂2
t −∆

)
Bi = 0,
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where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplacian operator and c2

0 = 1/(ε0 µ0), i.e., the fields ~B and ~E are
space-time waves. A modern formulation of the previous results uses the rewriting of the Maxwell
equations in terms of differential forms (2-forms) on space-time and the Hodge duality.

According to Corollary 3.3, if the matrix R has full row rank, then the left D-module M =
D1×p/(D1×q R) is stably free iff there exists a matrix S ∈ Dp×q satisfying RS = Iq. Then, we
have S̃ R̃ = Iq, where S̃ is the formal adjoint of S. In this case, pre-multiplying the last equation
of (96) by S̃, we obtain λ = (S̃ ◦ B) η.
Proposition 6.4 ([93]). Let us suppose that the matrix R ∈ Dq×p has full row rank and M =
D1×p/(D1×q R) is a stably free left D-module. Then, from (96), we obtain λ = (S̃ ◦ B) η, where
S̃ ∈ Dq×p is a left-inverse of R̃. Hence, the Lagrange multiplier λ can be observed from the system
variables η in the sense of 6 of Definition 6.1.

Using (95) and (96), ηT B η = ηT R̃ λ = λT Rη − div(Φ(λ, η)) = −div(Φ(λ, η)), we get:

I =
∫

Ω

1
2
ηT B η dx = −1

2

∫
Ω

div(Φ(λ, η)) dx = −1
2

∫
∂Ω

Φ(λ, η) dγ.

Using Example 6.1, every controllable time-invariant linear OD system satisfies the hypotheses
of Proposition 6.4. Hence, if n = 1, then we obtain:

(102)
I =

∫ T

0

1
2
ηT B η dt = 1

2
(Φ(λ(0), η(0))− Φ(λ(T ), η(T )))

= 1
2

(Φ((S̃ B η)(0), η(0))− Φ((S̃ B η)(T ), η(T ))).

Now, let us suppose that the linear system kerF (R.) is parametrizable, i.e., the left D-module
M = D1×p/(D1×q R) is torsion-free. Then, there exists a matrix Q ∈ Dp×m satisfying that
kerF (R.) = QFm, then, by substituting η = Qξ into the Lagrangian I, the previous variational
problem becomes a variational problem without differential constraint which can be solved by
computing the corresponding Euler-Lagrange equations. Let us illustrate this idea.
Example 6.7. We consider again Example 6.5. Using Algorithm 3.1, we can easily check that
the linear OD system (99) is parametrizable and an injective parametrization of (99) is:{

ξ(t) = x(t),
ξ̇(t) + ξ(t) = u(t).

Substituting the previous parametrization into I, the previous optimization problem is equivalent
to extremizing the following Lagrangian

I =
∫ T

0

1
2

(ξ(t)2 + (ξ̇(t) + ξ(t))2) dt

under the only algebraic constraint ξ(0) = x0. We can easily check that we have

δI =
∫ T

0
(−ξ̈(t) + 2 ξ(t)) δξ(t) dt+ [(ξ̇(t) + ξ(t)) δξ(t)]T0 ,

and thus, the optimal system is equivalent to the following OD linear system:

(103)


ξ̈(t)− 2 ξ(t) = 0, ξ(0) = x0, ξ̇(T ) + ξ(T ) = 0,
ξ(t) = x(t),
ξ̇(t) + ξ(t) = u(t).

Integrating (103) and eliminating x0 between x and u, the optimal controller is defined by:

u(t) =
(√

2 cothω − 1
)−1

x(t), ω =
√

2 (t− T ), cothω = eω + e−ω

eω − e−ω
.

Finally, using Example 6.5, the bilinear form Φ is defined by Φ(λ, η) = λx, which, using (102),
yields I = 1

2 (λ(0)x0 − λ(T )x(T )) = 1
2 λ(0)x0 because λ(T ) = 0. Finally, using λ = −u (see

Example 6.5), the extremum value of the Lagrangian functional is then:

I = 1
2

(√
2 cothω0 + 1

)−1
x2

0, ω0 =
√

2T.
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Corollary 6.3 ([93]). Let us suppose that the linear PD system kerF (R.) is parametrized by a
matrix Q ∈ Dp×m, i.e., kerF (R.) = QFm. Then, necessary conditions for the existence of an
extremum of the Lagrangian functional

I =
∫

1
2
ηTr Lηr dx1 dx2 . . . dxn,

where η ∈ kerF (R.) and L is a symmetric matrix with entries in A, are given by

(104)

{
A ξ = 0,
η = Qξ.

where A : Fm −→ Fm is the self-adjoint PD operator defined by A = Q̃ ◦ B ◦ Q, i.e., Ã = A.
Finally, we have the following twisted exact diagram:

(105)
Fm Q.−→ Fp R.−→ Fq
↓ A. ↓ B.

Fm Q̃.←− Fp R̃.←− Fq.

Example 6.8. Let D = R[∂], R ∈ Dq×p and F = C∞(R+). Using Proposition 6.2, the linear OD
system kerF (R.) is controllable iff the D-module M = D1×p/(D1×q R) is a torsion-free. If so, then
there exists a matrix Q ∈ Dp×m satisfying kerF (R.) = QFm. IfL is a symmetric real matrix,
then Theorem 6.3 shows the optimal system which extremizes

∫ +∞
0

1
2 η

T (t)Lη(t) dt is:{
η = Qξ,

A ξ = (Q̃ ◦ L ◦Q) ξ = 0.

If δ = det(A), then δ(∂) = det(A(∂)T ) = det(A(−∂)) = δ(−∂), and thus the eigenvalues of the
dynamics of A ξ = 0 are symmetric with respect to the real axis, which leads to the importance
concept of spectral factorization A = D̃ ◦ D in optimal control problems ([49]).

We now show how Theorem 6.3 can be applied to the case of the Maxwell equations.

Example 6.9. We consider again Example 6.6. In Example 4.4, we proved that the first set of
Maxwell equations (45) were parametrized by means of the quadri-potential ( ~A, V ):

~∇∧ ~A = ~B,

−∂
~A

∂t
− ~∇V = ~E,

⇔


∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0.

The PD operator A : F4 −→ F4 is defined by substituting the previous parametrization in the
last two equations of (101) and using the relation ~∇∧ ~∇∧ ~A = ~∇ (~∇ . ~A)−∆ ~A. Using the notation
c2

0 = 1/(ε0 µ0) for the speed of light in vacuum, we obtain:

( ~A, V ) 7−→


1
µ0

(
1
c2

0

∂2 ~A

∂t2
−∆ ~A+ ~∇

(
~∇ . ~A+ 1

c2
0

∂V

∂t

))
= ~,

ε0

(
1
c2

0

∂2V

∂t2
−∆V − ∂

∂t

(
~∇ . ~A+ 1

c2
0

∂V

∂t

))
= ρ.

Then, using to Theorem 6.3, the optimal system can be rewritten as (104), i.e.:

(106)



1
c2

0

∂2 ~A

∂t2
−∆ ~A+ ~∇

(
~∇ . ~A+ 1

c2
0

∂V

∂t

)
= 0,

1
c2

0

∂2V

∂t2
−∆V − ∂

∂t

(
~∇ . ~A+ 1

c2
0

∂V

∂t

)
= 0,

~∇∧ ~A = ~B,

−∂
~A

∂t
− ~∇V = ~E.
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In electromagnetism, the previous equations are generally simplified as follows

(107)



1
c2

0

∂2 ~A

∂t2
−∆ ~A = 0,

1
c2

0

∂2V

∂t2
−∆V = 0,

~∇∧ ~A = ~B,

−∂
~A

∂t
− ~∇V = ~E,

by fixing the so-called Lorenz gauge defined by ~∇ . ~A + 1
c2

0

∂V

∂t
= 0. This result shows that each

component of the quadri-potential ( ~A, V ) satisfies a wave equation in space-time. This result can
be explained by the fact that the quadri-potential ( ~A, V ) is not uniquely defined since: −

~∇ ξ = ~A,

∂ξ

∂t
= V,

⇔


~∇∧ ~A = ~0,

−∂
~A

∂t
− ~∇V = ~0.

See Example 4.4. Hence, if we consider the new potential ( ~A?, V?) =
(
~A+ ~∇ ξ, V − ∂t ξ

)
instead

of ( ~A, V ), where ξ is an arbitrary function of F = C∞(Ω), where Ω is an open convex subset of
R4, then we can easily check that (106) is unchanged but ( ~A, V ) is replaced by ( ~A?, V?). Moreover,
since F is an injective D = Q(ε0, µ0)[∂t, ∂1, ∂2, ∂3]-module, there always exists ξ ∈ F satisfying
the following inhomogeneous PDE

1
c2

0

∂2ξ

∂t2
−∆ ξ = ~∇ . ~A+ 1

c2
0

∂V

∂t
,

so that the quadri-potential ( ~A?, V?) satisfies the Lorenz gauge.

Finally, we have the following easy corollary of Proposition 6.3.

Corollary 6.4 ([93]). If the PD operator B defined by (94) is invertible, then the optimal system
(97) can be rewritten only in terms of the new variable µ = B η as follows:

(108)

{
(R ◦ B−1)µ = 0,
Q̃ µ = 0.

Moreover, the optimal system (96) is equivalent to the following linear PD system

(109)

{
C λ = 0,
η = (B−1 ◦ R̃)λ,

where the PD operator C : Fq −→ Fq is defined by C = R ◦ B−1 ◦ R̃:

Fp R.−→ Fq
↑ B−1 ↑ C

Fp R̃.←− Fq.

Example 6.10. We consider again Example 6.5 where the matrix L2 is a now supposed to be
positive definite. Hence, the operator B is invertible and B−1 is defined by:

(110)

(
x

u

)
= B−1

(
µ1

µ2

)
=

(
L−1

1 0
0 L−1

2

) (
µ1

µ2

)
=

(
L−1

1 µ1

L−1
2 µ2

)
.
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According to Corollary 6.4, the optimal system (98) is equivalent to (109), i.e.:

−L−1
1 λ̈+ (AL−1

1 − L
−1
1 AT ) λ̇+ (AL−1

1 AT +BL−1
2 BT )λ = 0,

x = −L−1
1 (λ̇+AT λ),

u = −L−1
2 BT λ,

S L−1
1 (λ̇(t1) +AT λ(t1)) + λ(t1) = 0,

λ̇(t0) +AT λ(t0) + L1 x0 = 0.

For instance, if we consider again the second half of Example 6.5, where L1 = L2 = 1, A = −1,
B = 1, S = 0, t0 = 0 and t1 = T , then (109) is defined by:

λ̈(t)− 2λ(t) = 0, λ(T ) = 0, λ̇(0)− λ(0) + x0 = 0,
x(t) = −λ̇(t) + λ(t),
u(t) = −λ(t).

The previous results also apply to linear elasticity. Let us consider again Example 4.9.

Example 6.11. For an isotropic material, the stress-strain relations are defined by



σx

σy

σz

τyz

τzx

τxy


= B



εx

εy

εz

γyz

γzx

γxy


, B = G



2 (1− ν)
1− 2 ν

2 ν
1− 2 ν

2 ν
1− 2 ν

0 0 0

2 ν
1− 2 ν

2 (1− ν)
1− 2 ν

2 ν
1− 2 ν

0 0 0

2 ν
1− 2 ν

2 ν
1− 2 ν

2 (1− ν)
1− 2 ν

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

where ν is the Poisson’s ratio and G the modulus of rigidity. The linear operator B is invertible
and its inverse B−1 is defined by



εx

εy

εz

γyz

γzx

γxy


= B−1



σx

σy

σz

τyz

τzx

τxy


, B−1 =



1
E

− ν
E
− ν
E

0 0 0

− ν
E

1
E

− ν
E

0 0 0

− ν
E
− ν
E

1
E

0 0 0

0 0 0 1
G

0 0

0 0 0 0 1
G

0

0 0 0 0 0 1
G



,

where E is Young’s modulus defined by E = 2G (1+ν). Using the constitutive law B, the notations
and the results of Example 4.9 and P̃ = −PT , Q̃ = QT and R̃ = −RT , we obtain the following
twisted exact diagram

0 −→ kerF (P.) −→ F3 P.−→ F6 Q.−→ F6 R.−→ F3 −→ 0
↓ A. ↓ B. ↑ C. ↑ D.

0 ←− F3 P̃ .←− F6 Q̃.←− F6 R̃.←− F3 ←− kerF (R̃.) ←− 0,
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where A = P̃ ◦B ◦P , C = Q ◦B−1 ◦ Q̃ and D = R ◦ C ◦ R̃ = 0. More precisely, if ∆ = ∂2
x + ∂2

y + ∂2
z ,

then the PD operator A is defined by:

− G

(1− 2 ν)

 (1− 2 ν) ∆ + ∂2
x ∂x ∂y ∂x ∂z

∂x ∂y (1− 2 ν) ∆ + ∂2
y ∂y ∂z

∂x ∂z ∂y ∂z (1− 2 ν) ∆ + ∂2
z


 u

v

w

 = 0.

In other words, we have A = −G
(

∆ I3 + 1
(1−2 ν) grad div

)
, where div = (∂x ∂y ∂z) = gradT ,

or A = −(µ∆ I3 + (λ+ µ) grad div), whenever λ and µ are the two Lamé constants defined by:

λ = E ν

(1− 2 ν) (1 + ν)
, µ = E

2 (1 + ν)
= G.

If ξ = (u v w)T is the displacement and f = (f1 f2 f3) the density of forces acting on the
continuous medium, then the PD operator A ξ = f is usually called the Lamé-Navier operator. Let
us explain how the Lamé-Navier equations appear in linear elasticity. The equation of equilibrium
is defined by P̃ σ = f , where σ = (σx σy σz τyz τzx τxy)T . If there is no density of forces,
according to Proposition 6.3 and Theorem 6.3, the extremization of the energy of deformation
defined by the following Lagrangian

∫
1
2
εT B ε dx dy dz, ε = (εx εy εz γyz γzx γxy)T ,

under the PD constraint Qε = 0 gives the following equivalent linear PD systems:

(111)

{
Qε = 0,
B ε− Q̃ λ = 0,

⇔

{
Qε = 0,
(P̃ ◦ B) ε = 0,

⇔

{
A ξ = 0,
ε = P ξ.

Using Algorithms 3.1 and 3.2, we can prove that the D = Q(G, ν)[∂x, ∂y, ∂z]-module associated
with the PD operator A is torsion and the components u, v and w of the displacement ξ satisfy
∆2 u = 0, ∆2 v = 0 and ∆2 w = 0, i.e., u, v and w are biharmonic functions.

Since the constitution law B is invertible, the second system in the above chain of equivalences
shows that the optimal system (111) can be expressed only in terms of the stress tensor σ ,
(σx σy σz τyz τzx τxy) = B ε as follows:

(112)

{
(Q ◦ B−1)σ = 0,
P̃ σ = 0.
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In Example 4.2, we shall prove that (112) is equivalent to the following linear PD system:

(113)



∆σx + 1
(1 + ν)

∂2

∂x2 (σx + σy + σz) = 0,

∆σy + 1
(1 + ν)

∂2

∂y2 (σx + σy + σz) = 0,

∆σz + 1
(1 + ν)

∂2

∂z2 (σx + σy + σz) = 0,

∆ τyz + 1
(1 + ν)

∂2

∂y ∂z
(σx + σy + σz) = 0,

∆ τzx + 1
(1 + ν)

∂2

∂z ∂x
(σx + σy + σz) = 0,

∆ τxy + 1
(1 + ν)

∂2

∂x ∂y
(σx + σy + σz) = 0,

∂σx
∂x

+ ∂τzx
∂z

+ ∂τxy
∂y

= 0,

∂σy
∂y

+ ∂τyz
∂z

+ ∂τxy
∂x

= 0,

∂σz
∂z

+ ∂τyz
∂y

+ ∂τzx
∂x

= 0.

The first six equations of (113) are called the Beltrami-Michell equations and the last three ones
are the equilibrium equations. Using Algorithms 3.1 and 3.2, we can prove that the D-module
associated with (112) is torsion and each component σi of σ satisfies ∆2 σi = 0 for i = 1, . . . , 6.
Hence, we have ∆2 σ = 0 and, since σ = B ε and B is invertible, we also get ∆2 ε = 0, i.e., both
the strain and stress tensors are biharmonic tensors.

Substituting the parametrization σ = Q̃Φ of the equilibrium system kerF (P̃ .) in (112), we
obtain an optimal system depending only on the Lagrangian multiplier Φ defined by:

(114)

{
C Φ = 0,
ε = (B−1 ◦ R̃) Φ.

See corollary 6.4. Using again Algorithms 3.1 and 3.2, we can prove that the D-module associated
with the PD operator C is torsion and the components Φi’s of Φ satisfy ∆2 Φi = 0 for i = 1, . . . , 6,
i.e., the components of Φ are also biharmonic functions.

Finally, (114) can be simplified by considering a minimal parametrization of the equilibrium
system kerF (P̃ .) such as Maxwell’s or Morera’s parametrization (see Example 4.9):

(1) If we consider Maxwell’s parametrization (62) of (61) obtained by selecting the first three
columns of the formal adjoint Q̃ of Q defined in Example 4.9, namely,

Q̃1 =



0 ∂2
z ∂2

y

∂2
z 0 ∂2

x

∂2
y ∂2

x 0
−∂y ∂z 0 0

0 −∂x ∂z 0
0 0 −∂x ∂y


,

i.e., σ = Q̃1 χ and χ is Maxwell’s stress function, then we obtain the twisted exact diagram

0 −→ kerF (P.) −→ F3 P.−→ F6 Q.−→ F6 R.−→ F6 −→ 0
↓ A. ↑ B−1. ↑ C1. ↑ D1.

0 ←− F3 P̃ .←− F6 Q̃1.←−− F3 ←− kerF (Q̃1.) ←− 0,
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where C1 = Q ◦ B−1 ◦ Q̃1 and D1 = 0. Moreover, (112) is then equivalent to:{
C1 χ = 0,
ε = (B−1 ◦ Q̃1)χ.

(2) If we now consider Morera’s parametrization (63) of (61) obtained by selecting the last
three columns of the formal adjoint Q̃ of Q defined in Example 4.9, namely,

Q̃2 =



−∂y ∂z 0 0

0 −∂x ∂z 0

0 0 −∂x ∂y
− 1

2 ∂
2
x

1
2 ∂x ∂y

1
2 ∂x ∂z

1
2 ∂x ∂y − 1

2 ∂
2
y

1
2 ∂y ∂z

1
2 ∂x ∂z

1
2 ∂y ∂z − 1

2 ∂
2
z


,

i.e., σ = Q̃2 ψ and ψ is Morera’s stress function, then we obtain the twisted exact diagram

0 −→ kerF (P.) −→ F3 P.−→ F6 Q.−→ F6 R.−→ F6 −→ 0
↓ A. ↑ B−1. ↑ C2. ↑ D2.

0 ←− F3 P̃ .←− F6 Q̃2.←−− F3 ←− kerF (Q̃2.) ←− 0,

where C2 = Q ◦ B−1 ◦ Q̃2 and D2 = 0. Moreover, (112) is then equivalent to:{
C2 ψ = 0,
ε = (B−1 ◦ Q̃2)ψ.

Finally, for more results, details and examples on constructive algebraic analysis and its appli-
cations to mathematical systems theory and mathematical physics, see [100].
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CHAPTER 2

Monge parametrizations and purity filtration

“La structure d’une chose n’est nullement une chose que nous puissions “inven-
ter”. Nous pouvons seulement la mettre à jour patiemment, humblement en faire
connaissance, la “découvrir”. S’il y a inventivité dans ce travail, et s’il nous ar-
rive de faire œuvre de forgeron ou d’infatigable bâtisseur, ce n’est nullement pour
“façonner”, ou pour “bâtir”, des “structures”. Celles-ci ne nous ont nullement
attendus pour être, et pour être exactement ce qu’elles sont ! Mais c’est pour
exprimer, le plus fidèlement que nous le pouvons, ces choses que nous sommes
en train de découvrir et de sonder, et cette structure réticente à se livrer, que
nous essayons à tâtons, et par un langage encore balbutiant peut-être, à cerner.
Ainsi sommes-nous amenés à constamment “inventer” le langage apte à ex-
primer de plus en plus finement la structure intime de la chose mathématique, et
à “construire” à l’aide de ce langage, au fur et à mesure et de toutes pièces, les
“théories” qui sont censées rendre compte de ce qui a été appréhendé et vu. Il y
a là un mouvement de va-et-vient continuel, ininterrompu, entre l’appréhension
des choses, et l’expression de ce qui est appréhendé, par un langage qui s’affine
et se re-crée au fil du travail, sous la constante pression du besoin immédiat”.

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

1. Baer’s extensions and Baer’s isomorphism

In Chapter 1, we showed how to compute ext1
D(M,D), whenever M was a finitely presented left

or right D-module. In this section, we study the abelian group ext1
D(M,N), when M and N are

two finitely presented left D-modules. Moreover, we explain Baer’s interpretation of the elements
of ext1

D(M,N) in terms of equivalence classes of short exact sequences of the form

0 −→ N
f−→ E

g−→M −→ 0
for a certain equivalence relation. In particular, we explicitly parametrize all the possible left
D-modules E. The results developed in this section will be abundantly used in the next sections
and are important techniques for the study of mathematical systems theory.

We first introduce the concept of Baer extensions. For more details, see, e.g., [15, 27, 65, 110].

Definition 1.1. (1) Let M and N be two left D-modules. An extension of N by M is a short
exact sequence e of left D-modules of the form:

(115) e : 0 −→ N
f−→ E

g−→M −→ 0.

(2) Two extensions of N by M , ei : 0 −→ N
fi−→ Ei

gi−→ M −→ 0 for i = 1, 2, are said to be
equivalent and denoted by e1 ∼ e2 if there exists a left D-homomorphism φ : E1 −→ E2
such that the following commutative exact diagram holds

0 −→ N
f1−→ E1

g1−→ M −→ 0
‖ ↓ φ ‖

0 −→ N
f2−→ E2

g2−→ M −→ 0,
i.e., such that f2 = φ ◦ f1 and g1 = g2 ◦ φ.

(3) We denote by [e] the equivalence class of the extension e for the equivalence relation defined
by ∼. The set of all equivalence classes of extensions of N by M is denoted by eD(M,N).
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Remark 1.1. Applying the snake lemma to the commutative exact diagram defined in 2 of
Definition 1.1 (see e.g., [15, 27, 65, 110]), we obtain that the left D-homomorphism φ defined in 2
of Definition 1.1 is necessarily an isomorphism. Hence, we can easily check that ∼ is an equivalence
relation (see 3 of Definition 1.1).

We point out that two extensions of N by M , ei : 0 −→ N
fi−→ Ei

gi−→ M −→ 0 for i = 1, 2,
where E1 ∼= E2 are not necessarily equivalent because if φ : E1 −→ E2 is a left D-isomorphism,
then the conditions f2 = φ ◦ f1 and g1 = g2 ◦ φ are not necessarily satisfied.

Let us illustrate Definition 1.1 with a simple but important example.

Example 1.1. Let us consider an extension e of N by M defining the split short exact sequence
(8) where M ′ = N , M = E and M ′′ = M (see 7 of Definition 2.1). Then, we have the following
commutative exact diagram

0 −→ N
f−→ E

g−→ M −→ 0
‖ ↓ (k, g) ‖

0 −→ N
i1−→ N ⊕M p2−→ M −→ 0,

with the following notations:

e′ : 0 −→ N
i1−→ N ⊕M p2−→ M −→ 0.

n 7−→ (n, 0)
(n,m) 7−→ m

We obtain that the extensions e and e′ of N by M are equivalent, i.e., [e] = [e′] ∈ eD(M,N).

Let us introduce the concept of Baer sum of two extensions.

Definition 1.2 ([15]). Let ei : 0 −→ N
fi−→ Ei

gi−→ M −→ 0 for i = 1, 2 be two extensions of N
by M and let us define the following two left D-homomorphisms:

−f1 ⊕ f2 : N −→ E1 ⊕ E2
n 7−→ (−f1(n), f2(n))

(g1,−g2) : E1 ⊕ E2 −→ M
(a1, a2) 7−→ g1(a1)− g2(a2).

Then, the Baer sum of the extensions e1 and e2, denoted by e1 +e2, is defined by the left D-module
E3 = ker(g1, −g2)/im (−f1 ⊕ f2), i.e., by the equivalence class of the following extension

0 −→ N
f3−→ E3

g3−→ M −→ 0,
n 7−→ $(f1(n), 0) = $((0, f2(n)))

$((a1, a2)) 7−→ g1(a1) = g2(a2)
where $ : ker(g1, −g2) −→ E3 is the canonical projection onto E3.

We note that E3 is exactly the defect of exactness of the following complex at E1 ⊕ E2:

0 −→ N
−f1⊕ f2−−−−−→ E1 ⊕ E2

(g1,−g2)−−−−−−→M −→ 0.
The Baer sum can also be defined using the concepts of pullback and pushout ([27, 110]).
The following classical result on extensions can be traced back to Baer’s work [3].

Theorem 1.1 ([15, 65, 110]). The set eD(M,N) equipped with the Baer sum forms an abelian
group: the equivalence class of the split short exact sequence (8) defines the zero element of
eD(M,N) and the inverse of the equivalence class [e] of (115) is defined by the equivalence class
of the following equivalent extensions:

0 −→ N
−f−→ E

g−→M −→ 0, 0 −→ N
f−→ E

−g−→M −→ 0.

The next theorem is an important result of homological algebra.

Theorem 1.2 ([65, 110]). Let M and N be two left D-modules. Then, the abelian groups
ext1

D(M,N) and eD(M,N) are isomorphic, i.e.:
eD(M,N) ∼= ext1

D(M,N).
Similarly for right D-modules.
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We note that Theorem 1.2 explains the etymology of the name of the bifunctor ext1
D( · , · ).

Similar interpretations of the extiD(M,N)’s for i ≥ 2 can be found in [119] (see also [27]).
In what follows, we shall assume that D is a noetherian domain.
Let us explicitly characterize the abelian group ext1

D(M,N) for two finitely presented left D-
modules M = D1×p/(D1×q R) and N = D1×s/(D1×t S). We first consider the beginning of a
finite free resolution of the left D-module M :

(116) D1×r .R2−−→ D1×q .R−→ D1×p π−→M −→ 0.
Applying the contravariant left exact functor homD( · , N) to the exact sequence (116), we get the
following complex of abelian groups (see Section 2)

(117) Nr R2.←−− Nq R.←− Np ←− homD(M,N)←− 0,
where (Ri.)(η) = Ri η for i = 1, 2. In particular, we have:

ext1
D(M,N) ∼= kerN (R2.)/imN (R.).

We recall that the abelian group ext1
D(M,N) characterizes the obstructions for the existence

of ξ ∈ Np satisfying the inhomogeneous linear system Rξ = ζ, where ζ is a fixed element of Nq

verifying the compatibility conditions R2 ζ = 0. Hence, the vanishing of ext1
D(M,N) implies that

R2 ζ = 0 is a necessary and sufficient condition for the existence of ξ ∈ Np satisfying:
Rξ = ζ.

Let us explicitly characterize ext1
D(M,N). If we consider a finite presentation of N

(118) D1×t .S−→ D1×s δ−→ N −→ 0,
then, taking the direct sum of m copies of (118), we obtain the following exact sequence

(119) Dm×t .S−→ Dm×s idm⊗ δ−−−−−→ Nm −→ 0,
where (idm ⊗ δ)(Λ) = (δ(Λ1•) . . . δ(Λm•))T for all Λ ∈ Dm×s. We say that (119) is obtained by
applying the covariant exact functor Dm ⊗D · ([15, 65, 110]) to (118). This functor is exact since
Dm is a free right D-module (and thus, a flat right D-module) ([54, 110]). Then, combining (117)
and (119), we get the following commutative diagram of abelian groups with exact columns:

(120)

0 0 0
↑ ↑ ↑
Nr R2.←−− Nq R.←− Np

↑ idr ⊗ δ ↑ idq ⊗ δ ↑ idp ⊗ δ

Dr×s R2.←−− Dq×s R.←− Dp×s

↑ .S ↑ .S ↑ .S
Dr×t R2.←−− Dq×t R.←− Dp×t.

Indeed, for every Λ ∈ Dq×s, we have

R2(idq ⊗ δ)(Λ)) = R2

 δ(Λ1•)
...

δ(Λq•)

 =


∑q
j=1(R2)1j δ(Λj•)

...∑q
j=1(R2)rj δ(Λj•)

 =


δ
(∑q

j=1(R2)1j Λj•
)

...
δ
(∑q

j=1(R2)rj Λj•
)


= (idr ⊗ δ)(R2 Λ),

i.e., we have (R2.)◦ (idq⊗δ) = (idr⊗δ)◦ (R2.). Similarly, we have (R.)◦ (idp⊗δ) = (idq⊗δ)◦ (R.).
Now, for every Γ ∈ Dq×t, (R2. ◦ .S)(Γ) = R2 (ΓS) = R2 ΓS = (R2 Γ)S = (.S ◦ R2.)(Γ), which
shows that R2. ◦ .S = .S ◦ R2.. Similarly, we have R. ◦ .S = .S ◦ R., which proves that (120) is a
commutative diagram whose columns are exact.

We can now use the commutative diagram (120) to characterize the following abelian groups:
kerN (R2.) = {(idq ⊗ δ)(A) ∈ Nq | A ∈ Dq×s : R2 ((idq ⊗ δ)(A)) = 0},

imN (R.) = {(idq ⊗ δ)(A) ∈ Nq | ∃ X ∈ Dp×s : (idq ⊗ δ)(A) = R ((idp ⊗ δ)(X))}.
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Since the columns of (120) are exact sequences of left D-modules, we get:

R2((idq ⊗ δ)(A)) = (idr ⊗ δ)(R2 A) = 0 ⇔ ∃ B ∈ Dr×t : R2 A = B S.

(idq ⊗ δ)(A) = R ((idp ⊗ δ)(X)) = (idq ⊗ δ)(RX)⇔ (idq ⊗ δ)(A−RX) = 0
⇔ ∃ Y ∈ Dq×t : A = RB + Y S.

Lemma 1.1. With the previous notations, we have:

kerN (R2.) = {(idq ⊗ δ)(A) ∈ Nq | A ∈ Dq×s : ∃ B ∈ Dr×t, R2 A = B S},
imN (R.) = {(idq ⊗ δ)(A) ∈ Nq | ∃ X ∈ Dp×s, ∃ Y ∈ Dq×t : A = RX + Y S}

= (RDp×s +Dq×t S)/(Dq×t S).

If we introduce the following abelian group

(121) Ω = {A ∈ Dq×s | ∃ B ∈ Dr×t : R2 A = B S},

then we have the following isomorphism of abelian groups

(122)
ext1

D(M,N) ∼= kerN (R2.)/imN (R.) υ−→ Ω/(RDp×s +Dq×t S),
ρ((idq ⊗ δ)(A)) 7−→ ε(A),

where A ∈ Ω, ρ : kerN (R2.) −→ kerN (R2.)/imN (R.) and ε : Ω −→ Ω/(RDp×s + Dq×t S) are the
respective canonical projections.

The proof of Lemma 1.1 is just a straightforward application of the classical third isomorphism
theorem in module theory (see, e.g., [110]), namely

ext1
D(M,N) ∼= kerN (R2.)/imN (R.) = [Ω/(Dq×t S)]/[(RDp×s +Dq×t S)/(Dq×t S)]

∼= Ω/(RDp×s +Dq×t S),

for all finitely presented left D-modules M = D1×p/(D1×q R) and N = D1×s/(D1×t S).

Remark 1.2. If kerD(.R) = 0, i.e., R2 = 0, then Lemma 1.1 yields Ω = Dq×s.

In [104, 105], we explicitly characterized the isomorphism eD(M,N) ∼= Ω/(RDp×s + Dq×t S)
and obtained the next theorem which exhibits a representative of each equivalence class of Baer’s
extensions of N by M in terms of ε(A) ∈ Ω/(RDp×s +Dq×t S).

Theorem 1.3 ([104, 105]). Let M = D1×p/(D1×q R) and N = D1×s/(D1×t S) be two finitely
presented left D-modules and R2 ∈ Dr×q satisfying kerD(.R) = D1×r R2. Then, every equivalence
class of extensions of N by M is defined by the following extension of N by M

(123) e : 0 −→ N
α−→ E

β−→M −→ 0,

where the left D-module E is defined by

(124) D1×(q+t) .Q−→ D1×(p+s) %−→ E −→ 0, Q =

(
R −A
0 S

)
∈ D(q+t)×(p+s),

A is a certain element of the abelian group Ω = {A ∈ Dq×s | ∃ B ∈ Dr×t : R2 A = B S} and

α : N −→ E
δ(µ) 7−→ %(µ (0 Is)),

β : E −→ M
%(λ) 7−→ π(λ (Ip 0)T ),

where π : D1×p −→M (resp., δ : D1×s −→ N) is the canonical projection onto E (resp., N).

The equivalence class [e] depends only on the residue class ε(A) of A ∈ Ω in the abelian group
Ω/(RDp×s +Dq×t S) = υ(ext1

D(M,N)), where υ is the Z-isomorphism defined by (122).

Theorem 1.3 will be illustrated in what follows. Let us characterize the matrix A ∈ Ω defining
the left D-module E defined in Theorem 1.3.

344



An introduction to constructive algebraic analysis and its applications

Corollary 1.1 ([104]). With the notations of Theorem 1.3, if we consider an extension of N =
D1×s/(D1×t S) by M = D1×p/(D1×q R) defined by

(125) 0 −→ N
u−→ F

v−→M −→ 0,

and if {fj}j=1,...,p is the standard basis of D1×p, yj = π(fj) for all j = 1, . . . , p, zj ∈ F any pre-
image of yj under v, then

∑p
j=1 Rij zj ∈ im u for all i = 1, . . . , q, and, since u is injective, there

exists a unique ni ∈ N satisfying u(ni) =
∑p
j=1 Rij zj. If we consider any pre-image ai ∈ D1×s of

ni under δ, i.e., ni = δ(ai) for all i = 1, . . . , q, then the extension (125) of N by M belongs to the
same equivalence class of (123), where the left D-module E is defined by (124) with:

A =

 a1
...
aq

 ∈ Dq×s.

Equivalently, we have the following commutative exact diagram

D1×q .R−→ D1×p π−→ M −→ 0
↓ φ ↓ ψ ‖

0 −→ N
u−→ F

v−→ M −→ 0,

where the left D-homomorphisms ψ and φ are respectively defined by

ψ : D1×p −→ F
fj 7−→ zj , j = 1, . . . , p,

φ : D1×q −→ N
ei 7−→ ni = δ(ai), i = 1, . . . , q,

and {ei}i=1,...,q is the standard basis of D1×q.

Remark 1.3. With the notations of Corollary 1.1, if λ ∈ kerD(.R), then using the commutative
exact diagram of Corollary 1.1, we get u(φ(λ)) = ψ(λR) = ψ(0) = 0, and thus φ(λ) = 0 since
u is injective. Therefore, φ ∈ homD(D1×q, N) yields a unique φ̄ ∈ homD(D1×q R,N) defined by
φ̄(eiR) = ni for all i = 1, . . . , q. Applying the contravariant exact functor homD( · , N) to the short
exact sequence 0 −→ D1×q R

j−→ D1×p π−→M −→ 0 and using ext1
D(D1×p, N) = 0 since D1×p is

a projective left D-module (see Propositions 1.1 and 2.2), Theorem 2.1 yields the following exact
sequence of abelian groups:

0 −→ homD(M,N) −→ homD(D1×p, N) −→ homD(D1×q R,N) κ1

−→ ext1
D(M,N) −→ 0.

Hence, φ̄ ∈ homD(D1×q R,N) defines a unique κ1(φ̄) ∈ ext1
D(M,N) ∼= eD(M,N) and (125).

Let now compute ext1
D(M,N) for a commutative ring D. In this particular case, ext1

D(M,N)
inherits a D-module structure since kerN (R2.) and imN (R.) are then both D-modules. Moreover, if
D is a noetherian ring, then the D-module ext1

D(M,N) can be characterized by means of generators
and relations. To do that, we first recall the definition of the Kronecker product.

Definition 1.3. The Kronecker product of U ∈ Dn×m and V ∈ Dq×p is defined by:

U ⊗ V , (Uij V ) =


U11 V U12 V . . . U1m V

U21 V U22 V . . . U2m V

...
...

...
...

Un1 V Un2 V . . . Unm V

 ∈ Dn q×mp.

The next lemma on Kronecker products is classical for a commutative ring D (see, e.g., [110]).

Lemma 1.2. Let D be a commutative ring and U ∈ Da×b, V ∈ Db×c, W ∈ Dc×d. Then

row(U V W ) = row(V ) (UT ⊗W ),

with the notation row(V ) = (V1• . . . Vb•) and where Vi• denotes the ith row of the matrix V .
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If D is a commutative ring, using Lemma 1.2, then we have:{
row(R2 A) = row(R2 AIs) = row(A) (RT2 ⊗ Is),
row(B S) = row(IpB S) = row(B) (Ip ⊗ S),

⇒ (row(A) − row(B))

(
RT2 ⊗ Is
Ir ⊗ S

)
= 0.

Moreover, an element A ∈ RDp×s + Dq×t S can be written as A = RX + Y S where X ∈ Dp×s

and Y ∈ Dq×s and, using the Kronecker product, we then get:{
row(RX) = row(RX Is) = row(X) (RT ⊗ Is),
row(Y S) = row(Iq Y S) = row(Y ) (Iq ⊗ S),

⇒ row(A) = (row(X) row(Y ))

(
RT ⊗ Is
Iq ⊗ S

)
.

Hence, let us denote by:

(126) L =

(
RT ⊗ Is
Iq ⊗ S

)
∈ D(p s+q t)×q s, P =

(
RT2 ⊗ Is
Ir ⊗ S

)
∈ D(q s+r t)×r s.

If D is a noetherian ring, then kerD(.P ) is a finitely generated D-module, and thus there exists
a matrix (T − U) ∈ Du×(q s+r t), where T ∈ Du×q s and U ∈ Du×r t, such that:

kerD(.P ) = D1×u (T − U).

Hence, the D-module Ω/(RDp×s +Dq×t S) can be rewritten as the following D-module:

(127) J = (D1×u T )/(D1×(p s+q t) L).

Let us now find a finite presentation of the D-module J defined by (127). The inclusion
D1×(p s+q t) L ⊆ D1×u T yields the existence of a matrix F ∈ D(p s+q t)×u satisfying L = F T .
Denoting by V ∈ Dv×u a matrix satisfying kerD(.T ) = D1×v V , then Proposition 3.1 yields:

(128) J ∼= J1 = D1×u/

(
D1×((p s+q t)+v)

(
F

V

))
.

If D = k[x1, . . . , xn] is a polynomial ring over a computable field k (e.g., k = Q or Fp for a
prime p), then using Gröbner basis techniques, we can explicitly describe the D-module J and
thus the D-module ext1

D(M,N) in terms of generators and relations. In particular, using (128),
J1 = 0, i.e., J ∼= ext1

D(M,N) = 0, iff the matrix (FT V T )T admits a left-inverse over D, which
can be tested by means of Algorithm 2.2.

Let us sum up the previous results in the following algorithm.

Algorithm 1.1. • Input: Two matrices R ∈ Dq×p and S ∈ Dt×s with entries in a com-
mutative polynomial ring D = k[x1, . . . , xn] over computable field k and which define two
finitely presented D-modules M = D1×p/(D1×q R) and N = D1×s/(D1×t S).

• Output: A matrix X ∈ D((p s+q t)+v)×u presenting the following D-module:

J1 = D1×u/(D1×((p s+q t)+v) X) ∼= J ∼= Ω/(RDp×s +Dq×t S).

(1) Compute a matrix R2 ∈ Dr×q satisfying kerD(.R) = D1×r R2.
(2) If R has full row rank, i.e., R2 = 0, then return the matrix

X =

(
RT ⊗ Is
Iq ⊗ S

)
∈ D(p s+q t)×q s,

otherwise compute the matrices L and P defined by:

L =

(
RT ⊗ Is
Iq ⊗ S

)
∈ D(p s+q t)×q s, P =

(
RT2 ⊗ Is
Ir ⊗ S

)
∈ D(q s+r t)×r s.

346



An introduction to constructive algebraic analysis and its applications

(3) Compute a matrix (T − U) such that kerD(.P ) = D1×u (T − U), where T ∈ Du×q s

and U ∈ Du×r t.
(4) Compute a matrix F ∈ D(p s+q t)×u such that L = F T .
(5) Compute a matrix V ∈ Dv×u satisfying kerD(.T ) = D1×v V .
(6) Return the matrix X = (FT V T )T .

For an implementation of Algorithm 1.1, see homalg ([4]) and OreMorphisms ([20]).

Example 1.2. Let us consider the commutative polynomial ring D = Q[x1, x2], the matrices

R =

 x1 0
x2 x1

0 x2

 ∈ D3×2, S = (x1 − x2) ∈ D,

and the finitely presented D-module M = D1×2/(D1×3 R) and N = D/(x1 − x2) ∼= Q[x1]. Fol-
lowing Algorithm 1.1, let us compute the D-module ext1

D(M,N). We first obtain that the matrix
R2 = (x2

2 − x1 x2 x2
1) is such that kerD(.R) = D1×3 R2. Hence, we get p = 2, q = 3, r = 1,

s = 1, t = 1 and the matrices L and P are defined by:

L =


x1 x2 0
0 x1 x2

x1 − x2 0 0
0 x1 − x2 0
0 0 x1 − x2

 ∈ D
5×3, P =


x2

2

−x1 x2

x2
1

x1 − x2

 ∈ D4.

Computing the syzygy D-module of D1×4 P , we obtain kerD(.P ) = D1×4 (T − U), where:

T =


1 1 0
x1 x2 0
0 −1 −1
0 x1 x2

 ∈ D4×3, U = −


x2

0
x1

0

 ∈ D4.

Using Lemma 1.1, if Ω = {A ∈ D3 | ∃ B ∈ D : R2 A = B S}, then we have ext1
D(M,N) ∼=

Ω/(RD2 + D3 S) and, using (127), J = (D1×4 T )/(D1×5 L). Moreover, we have L = F T and
kerD(.T ) = DV , where:

F =


0 1 0 0
0 0 0 1
−x2 1 0 0

0 0 x2 1
0 0 −x1 −1

 ∈ D
5×4, V = (x1 − 1 − x2 − 1) ∈ D1×4,

Using (128), if X = (FT V T )T ∈ D6×4 then J1 = D1×4/(D1×6 X) ∼= J . Let {ei}i=1,...,4 be the
standard basis of D1×4 and σ : D1×4 −→ J1 the canonical projection. Using 1 of Theorem 3.1 and
Algorithms 3.1 and 3.2, we can check J1 is a non-trivial torsion D-module and:

x1 σ(ei) = 0, i = 1, 3,
x2 σ(ei) = 0, i = 1, 3,
σ(ei) = 0, i = 2, 4.

Using the D-isomorphism (36) defined in Proposition 3.1, we finally obtain that the residue classes
of the first and third rows of T in J generate the torsion D-module J , i.e., the residue classes
ε((1 1 0)T ) and ε((0 −1 −1)T ) generate the D-module Ω/(RD2 +D3 S) or, in other words,
using (122), ρ((δ(1) δ(1) δ(0))T ) and ρ((δ(0) −δ(1) −δ(1))T ) generate the torsion D-module
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ext1
D(M,N). In particular, we have:

R2

 δ(1)
δ(1)
δ(0)

 = (x2
2 − x1 x2) δ(1) = δ(x2 (x2 − x1)) = 0,

 δ(1)
δ(1)
δ(0)

 /∈ imN (R.),

R2

 δ(0)
−δ(1)
−δ(1)

 = (x1 x2 − x2
1) δ(1) = δ(x1 (x1 − x2)) = 0,

 δ(0)
−δ(1)
−δ(1)

 /∈ imN (R.).

Contrary to the case of a commutative ring D, ext1
D(M,N) has generally no left or right D-

module structure whenever D is a noncommutative ring. It is generally only an abelian group
and a k-vector space when D is a k-algebra and k a field (see, e.g., [110]). If M and N are two
holonomic left modules (see the forthcoming Definition 3.6) over the ring D = A〈∂1, . . . , ∂n〉 of PD
operators with coefficients in A = k[x1, . . . , xn], kJx1, . . . , xnK, where k is a field of characteristic
0, R{x1, . . . , xn} or C{x1, . . . , xn}, then ext1

D(M,N) is a finite-dimensional k-vector space (see
[10, 11]). Hence, a basis of the finite k-vector space ext1

D(M,N) can be computed using, for
instance, the algorithms developed in [77, 116]. Unfortunately, contrary to what happens in
the study of special functions and in combinatorics ([18]), most of the classical linear systems of
partial differential equations studied in mathematical physics and engineering sciences do not define
holonomic differential modules. In this case, we can only obtain a filtration of Ω by computing
the matrices A ∈ Ω formed by PD operators of fixed order and degree/valuation. But, we cannot
generally check whether or not ε(Ω) ∈ Ω/(RDp×s +Dq×t S) ∼= ext1

D(M,N) is reduced to 0.

Example 1.3. Let us consider a noncommutative ring D (e.g., An(k) or Bn(k)), two elements R
and S of D and the finitely presented left D-modules M = D/(DR) and N = D/(DS). Using
Lemma 1.1, we get ext1

D(D/(DR), D/(DS)) ∼= D/(RD +DS). Hence, ext1
D(M,N) = 0 iff there

exists X and Y ∈ D satisfying the identity RX + Y S = 1.

2. Monge parametrizations

“J’espère [que ces résultats] pourront contribuer à appeler l’attention de quelques
jeunes mathématiciens sur un sujet difficile et bien peu étudié”, E. Goursat,
[35], p. 250.

In Chapter 1, we studied when a linear system kerF (R.) could be parametrized by means of
potentials, namely, by arbitrary functions of all the independent variables. In other words, we
studied the existence of a matrix Q ∈ Dp×m such that kerF (R.) = QFm. When F is a rich
enough functional space (i.e., an injective (cogenerator) left D-module), the obstructions for the
existence of a parametrization of the linear system kerF (R.) are given by the torsion elements
of the left D-module M = D1×p/(D1×q R) finitely presented by the system matrix R ∈ Dq×p.
If M admits non-trivial torsion elements, namely, elements m ∈ M \ {0} satisfying dm = 0 for
a certain d ∈ D \ {0}, then we can wonder if the concept of a potential-like parametrization
can be generalized. In this section, we study the so-called Monge parametrization obtained by
glueing the parametrization of the parametrizable linear subsystem kerF (R′.) of kerF (R.), where
M/t(M) = D1×p/(D1×q′ R′), with the integration of the torsion elements, i.e., with the elements
of homD(t(M),F). This new kind of parametrizations, called Monge parametrizations, allows us
to parametrize kerF (R.) by means of a certain number of potentials but also by a certain number
of arbitrary functions in fewer independent variables (e.g., arbitrary constants). This problem was
first studied by Monge in [72] for nonlinear OD systems (the so-called Monge problem).

“Le problème de Monge à une variable indépendante dans le sens le plus large,
consiste à intégrer explicitement un système de k (k ≤ n− 1) équations de Monge

Fi(x1, x2, . . . , xn+1; dx1, dx2, . . . , dxn+1) = 0, (i = 1, 2, . . . , k)

les F étant des fonctions homogènes par rapport à dx1, dx2, . . . , dxn+1.
Par intégration explicite nous entendons celle où l’on exprime les variables x

par des fonctions déterminées d’un paramètre, de n−k fonctions arbitraires de ce
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paramètre et de leurs dérivées jusqu’à celle d’un certain ordre, pouvant contenir
aussi un nombre fini de constantes arbitraires”, P. Zervos, [120], p. 1.

We first give an application of Theorem 1.3 to the parametrization of all the equivalence classes
of extensions of t(M) by M/t(M), whenever M is a finitely presented left D-module.

Let R ∈ Dq×p be a matrix with entries in a noetherian domain D and let us consider the finitely
presented left D-module M = D1×p/(D1×q R). Computing the left D-module ext1

D(N,D), where
N = Dq/(RDp) is the Auslander transpose of M , we get a matrix R′ ∈ Dq′×p satisfying:

(129)

{
t(M) = (D1×q′ R′)/(D1×q R),
M/t(M) ∼= D1×p/(D1×q′ R′).

See Theorem 3.1. We denote by π : D1×p −→ M (resp., π′ : D1×p −→ M/t(M)) the canonical
projection onto M (resp., M/t(M)). Using the following canonical short exact sequence

(130) 0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0,

we have π′ = ρ ◦ π, where ρ is the canonical projection M −→ M/t(M). See the commutative
exact diagram (43). Using Proposition 3.1 and (41), let us find an explicit finite presentation for
the torsion left D-submodule t(M) of M . If R′′ ∈ Dq×q′ and R′2 ∈ Dr′×q′ are respectively defined
by R = R′′R′ and kerD(.R′) = D1×r′ R′2, then applying Proposition 3.1 to the left D-module
t(M), we obtain the following left D-isomorphism

(131)
χ : T , D1×q′/(D1×q R′′ +D1×r′ R′2) −→ t(M)

δ(ν) 7−→ π(ν R′),

where δ : D1×m′ −→ T is the canonical projection onto T , i.e., t(M) ∼= T . For more details, see
(36) and (40). The left D-module t(M) then admits the following finite presentation

D1×(q+r′)

.

(
R′′

R′2

)
−−−−−−−→ D1×q′ χ ◦ δ−−−→ t(M) −→ 0,

where the left D-homomorphism χ ◦ δ is defined by:

χ ◦ δ : D1×q′ −→ t(M)
ν 7−→ π(ν R′).

Hence, we have the following straightforward corollary of Theorem 1.3.

Corollary 2.1 ([104, 105]). With the previous notations, an extension of t(M) by M/t(M)

(132) e : 0 −→ t(M) α−→ E
β−→M/t(M) −→ 0

is defined by the left D-module E = D1×(p+q′)/(D1×(q′+q+r′) PA), where

(133) PA =

 R′ −A
0 R′′

0 R′2

 ∈ D(q′+q+r′)×(p+q′),

and A is an element of the following abelian group Ω defined by:

(134) Ω =

{
A ∈ Dq′×q′ | ∃ B ∈ Dr′×(q+r′) : R′2 A = B

(
R′′

R′2

)}
.

Moreover, the equivalence classes of the extensions of t(M) by M/t(M) depend only on the residue
classes ε(A) of A ∈ Ω in the following abelian group

(135) Ω/

(
R′Dp×q′ +Dq′×(q+r′)

(
R′′

R′2

))
= υ(ext1

D(M/t(M), t(M))),

where υ is the isomorphism defined by (122).
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Example 2.1. Let M = D1×2/(D1×2 R) be the left D = A2(Q)-module finitely presented by:

R =

(
x1 ∂1 + 1 x2 ∂1

x1 ∂2 x2 ∂2 + 1

)
∈ D2×2.

Using Algorithm 3.1, we obtain that R′ = (x1 x2) and Q = (−x2 x1)T satisfy:

t(M) = (DR′)/(D1×2 R), M/t(M) ∼= D1×2/(DR′) ∼= D1×2 Q = Dx1 +Dx2.

Moreover, using Proposition 3.1, we get t(M) ∼= L = D/(D∂1 + D∂2). If I = Dx1 + Dx2,
then the short exact sequence (130) yields the short exact sequence 0 −→ L

j−→ M
p−→ I −→ 0.

Since the left ideal I of D admits the finite free resolution 0 −→ D
.R′−→ D1×2 .Q−→ I −→ 0, then

kerD(.R′) = 0, i.e., R′2 = 0, and Remark 1.2 shows that Ω = D and (122) yields:

ext1
D(M/t(M), t(M)) ∼= D/

(
D1×2

(
∂1

∂2

)
+ (x1 x2)D2

)
= D/(D∂1 +D∂2 + x1 D + x2 D).

Then, ext1
D(M/t(M), t(M)) is reduced to 0 iff 1 ∈ D∂1 + D∂2 + x1 D + x2 D, i.e., iff there exist

d1, d2, d3, d4 ∈ D satisfying d1 ∂1 + d2 ∂2 + x1 d3 + x2 d4 = 1, i.e., 1− x1 d3 − x2 d4 ∈ D∂1 +D∂2,
which shows that we can always assume that d3, d4 ∈ k[x1, x2] and yields 1−x1 d3−x2 d4 = 0. This
equation is impossible since (0, 0) is a common zero of x1 and x2, which proves that the abelian
group ext1

D(M/t(M), t(M)) is not reduced to 0. Finally, since R′′ = (∂1 ∂2)T , Corollary 2.1
shows that every extension of t(M) by M/t(M) can be defined by the short exact sequence (132),
where the left D-module E = D1×3/(D1×3 PA) is finitely presented by

PA =

 x1 x2 −A
0 0 ∂1

0 0 ∂2

 ,

and A ∈ Ω = D is any representative of the residue class ε(A) ∈ D/(D∂1 +D∂2 + x1 D + x2 D).
In particular, we can always choose A ∈ k[x1, x2].

Example 2.2. If we redo Example 2.1 with the following new matrix

R =

(
∂2

1 ∂1 ∂2

∂1 ∂2 ∂2
2

)
∈ D2×2,

then we obtain R′ = (∂1 ∂2), Q = (−∂2 ∂1)T , t(M) = (DR′)/(D1×2 R) ∼= D/(D∂1 + D∂2)
and M/t(M) ∼= D1×2/(DR′) ∼= D1×2 Q = D∂1 + D∂2, where M = D1×2/(D1×2 R) is the left
D = A2(Q)-module finitely presented by R. Then, Remark 1.2 and (122) yield Ω = D and:

ext1
D(M/t(M), t(M)) ∼= D/

(
D1×2

(
∂1

∂2

)
+ (∂1 ∂2)D2

)
= D/(D∂1 +D∂2 + ∂1 D + ∂2 D).

In this case, we have ext1
D(M/t(M), t(M)) = 0 since the following identity holds:

1 = ∂1 x1 − x1 ∂1 ∈ D∂1 +D∂2 + ∂1 D + ∂2 D.

Then, Theorem 1.2 shows that the only equivalence class of extensions of t(M) by M/t(M) is
trivial one, namely, E ∼= t(M)⊕M/t(M), i.e., the one defined by (132), where the left D-module
E = D1×3/(D1×3 P ) is finitely presented by the following block-diagonal matrix:

P =

 ∂1 ∂2 0
0 0 ∂1

0 0 ∂2

 .

Corollary 2.1 gives a parametrization of all the equivalence classes of extensions of t(M) by
M/t(M). In particular, the left D-module M defines the extension (130) of t(M) by M/t(M).
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Hence, there exists a matrix A ∈ Ω such that E = D1×(p+q′)/(D1×(q′+q+r′) PA) ∼= M . Using (43)
and (131), we can easily check that the following commutative exact diagram holds

D1×q′ .R′−→ D1×p π′−→ M/t(M) −→ 0
↓ φ ↓ π ‖

0 −→ T
i ◦χ−1

−−−−→ M
ρ−→ M/t(M) −→ 0,

where φ : D1×q′ −→ T is defined by φ(hk) = δ(hk) = π(hk R′) for k = 1, . . . , q′ and {hk}k=1,...,q′

is the standard basis of D1×q′ . Hence, using Corollary 1.1, we can take A = Iq′ in (133).

Theorem 2.1 ([104, 105]). Let R ∈ Dq×p, R′ ∈ Dq′×p, R′′ ∈ Dq×q′ and R′2 ∈ Dr′×q′ be
four matrices satisfying M = D1×p/(D1×q R), M/t(M) = D1×p/(D1×q′ R′), R = R′′R′ and
kerD(.R′) = D1×r′ R′2. Moreover, let E = D1×(p+q′)/(D1×(q′+q+r′) P ) be the left D-module finitely
presented by the matrix

(136) P =

 R′ −Iq′
0 R′′

0 R′2

 ∈ D(q′+q+r′)×(p+q′),

and % : D1×(p+q′) −→ E (resp., π : D1×p −→M) the canonical projection onto E (resp., M).
(1) If U = (Ip 0) ∈ Dp×(p+q′), then we have the following left D-isomorphism

f : M −→ E = D1×(p+q′)/(D1×(q′+q+r′) P )
π(λ) 7−→ %(λU),

i.e., M ∼= E.
(2) The following two extensions of t(M) by M/t(M) defined by

0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0, 0 −→ t(M) α−→ E

β−→M/t(M) −→ 0,
belong to the same equivalence class in the abelian group eD(M/t(M), t(M)).

(3) For every left D-module F , kerF (R.) ∼= homD(M,F) ∼= homD(E,F) ∼= kerF (P.), i.e.

(137) Rη = 0 ⇔


R′ ζ − θ = 0,
R′′ θ = 0,
R′2 θ = 0,

and the following invertible transformations:
γ : kerF (P.) −→ kerF (R.)(

ζ

θ

)
7−→ η = U

(
ζ

θ

)
= ζ,

γ−1 : kerF (R.) −→ kerF (P.)

η 7−→

(
ζ

θ

)
=

(
Ip

R′

)
η.

We point out that the presentation matrix P of the left D-module E ∼= M is block-triangular.
Theorem 2.1 can be used to parametrize the linear system kerF (R.). Indeed, (137) shows that

the linear system kerF (R.) can be integrated in cascade: we first integrate the linear system

(138)

{
R′′ θ = 0,
R′2 θ = 0,

and then solve the inhomogeneous linear system R′ η = θ. Hence, η is the sum of a particular
solution η? ∈ Fp of R′ η = θ and the general solution of the homogenous linear system R′ η =
0. Since the torsion-free left D-module M/t(M) = D1×p/(D1×q′ R′), Corollary 3.2 shows that
M/t(M) admits a parametrization, i.e., there exists Q ∈ Dp×m such that M/t(M) ∼= D1×pQ.
If F is an injective left D-module, then Corollary 4.1 proves that kerF (R′.) = QFm, i.e., every
element η ∈ kerF (R′.) has the form η = Qξ for a certain ξ ∈ Fm. Therefore, the elements of
kerF (R.) can be parametrized as follows:
(139) ∀ ξ ∈ Fm, η = η? +Qξ.

The parametrization (139) is called a Monge parametrization of the linear system kerF (R.).
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If we consider an injective left D-module F and apply the exact functor homD( · ,F) to the
commutative exact diagram (43) to get the following one

0
↑

homD(t(M),F)
↑

Fq R.←− Fp ←− kerF (R.) ←− 0
↑ R′′. ‖ ↑

Fr′ R′2.←−− Fq′ R′.←− Fp ←− kerF (R′.) ←− 0,
↑
0

where homD(t(M),F) ∼= homD(T,F) ∼= kerF ((R′′T R′T2 )T .) and kerF (R′.) = QFm. Hence, the
above remark can be found again by an easy chase in the previous commutative exact diagram.

Algorithm 2.1. • Input: A matrix R ∈ Dq×p over a noetherian domain D for which
Buchberger’s algorithm terminates for admissible term orders and F a left D-module.

• Output: A set of elements of kerF (R.).
(1) Applying Algorithm 3.1 to the left D-module M = D1×p/(D1×q R), compute two matrices

R′ ∈ Dq′×p and Q ∈ Dp×m such that:

M/t(M) = D1×p/(D1×q′ R′), kerD(.Q) = D1×q′ R′.

(2) Factorize R by R′ to get a matrix R′′ ∈ Dq×q′ satisfying R = R′′R′.
(3) Compute a matrix R′2 ∈ Dr′×q′ satisfying kerD(.R′) = D1×r′ R′2.
(4) Find the F-solutions of the linear system (138), i.e.:{

R′′ θ = 0,
R′2 θ = 0.

If F is a cogenerator left D-module, then a solution of the previous system always exists.
(5) Find a particular solution η? ∈ Fp of the linear inhomogeneous system R′ η = θ, where θ

is a general solution of (138). If F is an injective left D-module, then such a particular
solution η? always exists.

(6) For all ξ ∈ Fm, the element η = η? +Qξ belongs to kerF (R.).

Example 2.3. We consider the linear PD system ~∇ (~∇ . ~v) = ~0 appearing in mathematical physics,
where ~∇ = (∂1 ∂2 ∂3)T (see Example 2.3), namely:

(140)


∂1 (∂1 v1 + ∂2 v2 + ∂3 v3) = 0,
∂2 (∂1 v1 + ∂2 v2 + ∂3 v3) = 0,
∂3 (∂1 v1 + ∂2 v2 + ∂3 v3) = 0.

For instance, in acoustic, the speed ~v satisfies the PD linear system ∂t ~v/c
2 − ~∇ (~∇ . ~v) = ~0, where

c denotes the speed of sound ([52]). Hence, if we want to compute the stationary solutions, then
we have to solve the linear PD system ~∇ (~∇ . ~v) = ~0.

Let us parametrize all the F = C∞(R3)-solutions of (140). Let D = Q[∂1, ∂2, ∂3] be the
ring of PD operators with rational constant coefficients and M = D1×3/(D1×3 R) the D-module
finitely presented by the presentation matrix R ∈ D3×3 of (140). Using Algorithm 3.1 and (40),
we obtain that the matrices R′ = (∂1 ∂2 ∂3) ∈ D1×3 and R′′ = (∂1 ∂2 ∂3)T ∈ D3 satisfy
M/t(M) = D1×3/(DR′), kerD(.R′) = 0 and t(M) = (DR′)/(D1×3 R) ∼= D/(D1×3 R′′). Then,
Theorem 2.1 shows that kerF (R.) ∼= kerF (P.), where P is defined by (136), i.e.:

∂1 v1 + ∂2 v2 + ∂3 v3 − θ = 0,
∂1 θ = 0,
∂2 θ = 0,
∂3 θ = 0.
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Hence, θ is a constant c ∈ R and we then need to parametrize the F-solutions of the inhomo-
geneous linear system ~∇ . ~v = c. We can easily check that a particular solution of the previous
inhomogeneous system is given by ~v? = (c x1 0 0)T . A more symmetric particular solution
is ~v? = 1

3 (c x1 c x2 c x3)T . Since the smooth solutions of the divergence operator in R3 are
parametrized by the curl operator (see Example 4.3), all F-solutions of (140) are of the form:

∀ c ∈ R, ∀ ~ξ ∈ F3, ~v = ~v? + ~∇ ∧ ~ξ =


1
3 c x1 + ∂2 ξ2 − ∂3 ξ3
1
3 c x2 + ∂3 ξ1 − ∂1 ξ3
1
3 c x3 − ∂2 ξ1 + ∂1 ξ2

 .

Example 2.4. Let us consider a model of the motion of a fluid in a one-dimensional tank studied
in [79] and defined by the following system of OD time-delay equations

(141)

{
ẏ1(t)− ẏ2(t− 2h) + α ÿ3(t− h) = 0,
ẏ1(t− 2h)− ẏ2(t) + α ÿ3(t− h) = 0,

where h is a positive real number. Let D = Q(α)[∂, δ] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h)),

R =

(
∂ −∂ δ2 α∂2 δ

∂ δ2 −∂ α ∂2 δ

)
∈ D2×3,

the presentation matrix of (141) and the D-module M = D1×3/(D1×2 R) finitely presented by R.
Using Algorithm 3.1 and (40), we obtain that the following matrices

R′ =

(
1 1 0
0 −1− δ2 α∂ δ

)
, Q =

 −α∂ δα ∂ δ

1 + δ2

 , R′′ =

(
∂ ∂

∂ δ2 ∂

)
,

satisfy M/t(M) = D1×3/(D1×2 R′), kerD(.Q) = D1×3 R′, R = R′′R′, kerD(R′.) = 0 and t(M) =
(D1×2 R′)/(D1×2 R) ∼= D1×2/(D1×2 R′′). Let us find a Monge parametrization of kerF (R.), where
F is an injective D-module. In order to do that, we first need to compute kerF (R′′.), i.e.,{

θ̇1(t) + θ̇2(t) = 0,

θ̇1(t− 2h) + θ̇2(t) = 0,
⇔


θ1(t) = ψ(t) + (c1 − c2)

2h
t,

θ2(t) = −ψ(t) + c1 −
(c1 − c2)

2h
t,

where c1 and c2 are two arbitrary real constants and ψ is an arbitrary 2h-periodic of F .
Then, we have to solve the inhomogeneous system R′ η = θ, namely:

(142)


y1(t) + y2(t) = ψ(t) + (c1 − c2)

2h
t,

−y2(t)− y2(t− 2h) + α ẏ3(t− h) = −ψ(t) + c1 −
(c1 − c2)

2h
t.

We can easily check that a particular solution of (142) is defined by:

y1(t) = 1
2

(
ψ(t) + (c1 − c2)

2h
t+ (c1 + c2)

2

)
,

y2(t) = 1
2

(
ψ(t) + (c1 − c2)

2h
t− (c1 + c2)

2

)
,

y3(t) = 0.

Finally, using kerF (R′.) = QF , (139) shows that every element of kerF (R.) has the form
y1(t) = 1

2
(ψ(t) + C1 t+ C2)− α ξ̇(t− h),

y2(t) = 1
2

(ψ(t) + C1 t− C2) + α ξ̇(t− h),

y3(t) = ξ(t) + ξ(t− 2h),
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where C1 and C2 are two arbitrary real constants, ψ an arbitrary 2h-periodic function of F and
ξ an arbitrary function of F (see also [79]).

Let us explain how the search for a particular solution η? of the inhomogeneous linear system
R′ η = θ can be simplified in certain cases by means of a “method of variation of constants”.

Theorem 2.1 and Corollary 2.1 show that E = D1×(p+q′)/(D1×(q′+q+r′) PA) ∼= M , where the
matrix PA is defined by (133) for all matrices A ∈ Ω belonging to the same equivalence class as
ε(Im′) in the abelian group Ω/

(
R′Dp×q′ +Dq′×q R′′ +Dq′×r′ R′2

)
, i.e., for all matrices

A = Iq′ −R′X − Y R′′ − Z L′2,

where X ∈ Dp×q′ , Y ∈ Dq′×q and Z ∈ Dq′×r′ are arbitrarily matrices. Taking A = 0, the left
D-module F finitely presented by the matrix P0 defines the trivial extension of t(M) by M/t(M)
since the block-diagonal form of P0 yields F ∼= t(M)⊕M/t(M). Hence, the canonical short exact
sequence (130) splits iff ε(Im′) = ε(0), i.e., iff there exist three matrices X ∈ Dp×q′ , Y ∈ Dq′×q

and Z ∈ Dq′×r′ satisfying R′X + Y R′′ + Z R′2 = Iq′ .

Proposition 2.1 ([101, 104, 105]). Let R ∈ Dq×p, R′ ∈ Dq′×p and R′2 ∈ Dr′×q′ be three matrices
such M = D1×p/(D1×q R), M/t(M) ∼= D1×p/(D1×q′ R′) and kerD(.R′) = D1×r′ R′2. Then, the
canonical short exact sequence

(143) 0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0

splits, i.e., M ∼= t(M)⊕M/t(M), iff there exist X ∈ Dp×q′ , Y ∈ Dq′×q and Z ∈ Dq′×r′ satisfying
(144) L′X + Y L′′ + Z L′2 = Iq′ .

or equivalently, if there exist two matrices X ∈ Dp×q′ and Y ∈ Dq′×q satisfying:
(145) R′ −R′X R′ = Y R.

Then, the following left D-homomorphism
σ : M/t(M) −→ M

π′(λ) 7−→ π(λ (Ip −X R′)),
where π : D1×p −→ M and π′ : D1×p −→ M/t(M) are respectively the projections onto M and
M/t(M)), is a right-inverse of the canonical projection ρ : M −→M/t(M) onto M/t(M), i.e.:

ρ ◦ σ = idM/t(M).

Let us explain why (144) is equivalent to (145). Post-multiplying (144) by R′ and using the
relations R = R′′R′ and R′2 R

′ = 0, we get (145). Conversely, using R = R′′R′, (145) yields
(Iq′−R′X−Y R′′)R′ = 0, i.e., D1×q′ (Iq′−R′X−Y R′′) ⊆ kerD(.R′) = D1×r′ R′2, and thus there
exists Z ∈ Dq′×r′ such that Iq′ −R′X − Y R′′ = Z R′2, which implies (144).
Remark 2.1. If D is a commutative polynomial ring, using Kronecker products, then we get:

(144) ⇔ row(Iq′) = (row(X) row(Y ) row(Z))

 R′T ⊗ Iq′
Iq′ ⊗R′′

Iq′ ⊗R′2

 .

Hence, the existence of the matrices X, Y and Z satisfying (144) is reduced to checking whether
or not row(Iq′) belongs to the Gröbner basis of the D-module generated by the rows of the last
matrix. If so, then the computation of the normal form of row(Iq′) gives matrices X, Y and Z.

If M ∼= t(M) ⊕M/t(M), then we can use (144) to obtain a particular solution η? ∈ Fp of the
inhomogeneous linear system R′ η = θ. Indeed, post-multiplying (144) by θ, we get

θ = R′ (X θ) + Y (R′′ θ) + Z (R′2 θ) = R′ (X θ),

since θ ∈ Fq′ satisfies (138). Therefore, η? = X θ is a particular solution of R′ η = θ and thus
every η ∈ kerF (R.) has the form

η = X θ +Qξ,

for all ξ ∈ Fm and θ satisfying (138). Hence, the elements of the linear system kerF (R.) are
parametrized by those of the linear system (138) and arbitrary elements ξ of Fm.
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Corollary 2.2 ([101]). Let M = D1×p/(D1×q R) be a finitely presented left D-module and let us
suppose that the canonical short exact sequence (143) splits, where M/t(M) = D1×p/(D1×q′ R′).
Moreover, let F be an injective left D-module. Then, every element η of kerF (R.) has the form

η = X θ +Qξ,

where θ ∈ Fq′ is a solution of (138), ξ an arbitrary element of Fm and the matrix X ∈ Dp×q′

(resp., Q ∈ Dp×m) satisfies (144) (resp., kerD(.Q) = D1×pR′).

Example 2.5. Let us consider the another model of the motion of a fluid in a one-dimensional
tank studied in [26] and defined by the following system of OD time-delay equations

(146)

{
y1(t− 2h) + y2(t)− 2 ẏ3(t− h) = 0,
y1(t) + y2(t− 2h)− 2 ẏ3(t− h) = 0,

where h is a positive real number. Let D = Q[∂, δ] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h)),

(147) R =

(
δ2 1 −2 ∂ δ
1 δ2 −2 ∂ δ

)
∈ D2×3,

and the D-module P = D1×3/(D1×2 R). Using Algorithm 3.1, we obtain that the matrices

R′ =

(
1 −1 0
0 1 + δ2 −2 ∂ δ

)
, Q =

 2 δ ∂
2 δ ∂

1 + δ2

 , R′′ =

(
δ2 1
1 1

)
,

satisfy M/t(M) = D1×3/(D1×2 R′), kerD(.Q) = D1×3 R′, R = R′′R′, kerD(R′.) = 0 and t(M) =
(D1×2 R′)/(D1×2 R) ∼= D1×2/(D1×2 R′′). Let us find a Monge parametrization of kerF (R.), where
F is an injective D-module. In order to do that, we first need to compute kerF (R′′.), i.e.,{

δ2 θ1 + θ2 = 0,
θ1 + θ2 = 0,

⇔

{
θ2 = −θ1,

δ2 θ1 − θ1 = 0,

which shows that θ1 is a 2h-periodic function of F . Then, we have to find a particular solution
η? ∈ F3 satisfying R′ η = θ. Using Remark 2.1, we can check that the following matrices

X = 1
2

 1 0
−1 0
0 0

 , Y = 1
2

(
0 0
1 1

)
.

satisfy (145). Then, Corollary 2.2 shows that (146) is parametrized by
y1(t) = 1

2 θ1(t) + 2 ξ̇(t− h),
y2(t) = − 1

2 θ1(t) + 2 ξ̇(t− h),
y3(t) = ξ(t) + ξ(t− 2h),

where ξ (resp., θ1) is an arbitrary function (resp., 2h-periodic function) of F (see also [26]).

If M/t(M) is a projective left D-module, then Proposition 2.5 proves that the canonical short
exact sequence (143) splits. We note that combining Proposition 2.2 and Theorem 1.2, we get
eD(M/t(M), t(M)) ∼= ext1

D(M/t(M), t(M)) = 0, which proves again that (143) is a split short
exact sequence. Moreover, Proposition 3.2 proves that the presentation matrix R′ of the left D-
module M/t(M) = D1×p/(D1×q′ R′) admits a generalized inverse over D, namely, there exists a
matrix X ∈ Dp×q′ satisfying R′X R′ = R′. Hence, if M/t(M) is a projective left D-module, then
(145) holds with Y = 0 and the hypothesis of Corollary 2.2 is fulfilled.

Corollary 2.3. Let M = D1×p/(D1×q R) be a left D-module such that the torsion-free left D-
module M/t(M) = D1×p/(D1×q′ R′) is projective and X ∈ Dp×q′ a generalized inverse of the
matrix R′. If F is an injective left D-module, then every element η of kerF (R.) has the form
(148) η = X θ +Qξ,

where θ ∈ Fq′ is a solution of (138) and ξ an arbitrary element of Fm.
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Example 2.6. Let us consider the commutative polynomial algebra D = Q[∂, δ] of OD time-delay
operators (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h), where h ∈ R+) and the following matrix

R =

(
∂ −∂ δ −1

2 ∂ δ −∂ (1 + δ2) 0

)
∈ D2×3,

which describes the torsion of a flexible rod with a force applied on one end studied in [74]:

(149)

{
ẏ1(t)− ẏ2(t− h)− y3(t) = 0,
2 ẏ1(t− h)− ẏ2(t)− ẏ2(t− 2h) = 0.

Using Algorithm 3.1, we can prove that the D-module M = D1×3/(D1×2 R) admits non-trivial
torsion elements and t(M) = (D1×3 R′)/(D1×2 R) and M/t(M) ∼= D1×3/(D1×3 R′), where:

R′ =

 −2 δ 1 + δ2 0
−∂ ∂ δ 1
∂ δ −∂ δ

 ∈ D3×3.

Moreover, we have R = R′′R′ and kerD(.R′) = DR′2, where

R′′ =

(
0 −1 0
0 −δ 1

)
, R′2 = (∂ − δ 1) ,

and the matrix Q =
(
1 + δ2 2 δ (1− δ2) ∂

)T is such that kerD(.Q) = D1×3 R′. Moreover, using
Algorithm 3.3, we can check that R′ admits a generalized inverse X over D defined by

X = 1
2

 δ 0 0
2 0 0
−∂ δ 2 0

 ∈ D3×3,

which shows that the D-module M/t(M) is projective by Proposition 3.2. Now, (138) is the
following linear OD time-delay system:

−θ2 = 0,
−δ θ2 + θ3 = 0,
∂ θ1 − δ θ2 + θ3 = 0,

⇔


∂ θ1 = 0,
θ2 = 0,
θ3 = 0,

⇔


θ1 = c ∈ R,
θ2 = 0,
θ3 = 0.

Then, Corollary 2.3 shows that (149) admits the following Monge parametrization
y1(t) = 1

2 c+ ξ(t) + ξ(t− 2h),
y2(t) = c+ 2 ξ(t− h),
y3(t) = ξ̇(t)− ξ̇(t− 2h),

where c is an arbitrary constant and ξ an arbitrary function of F .

If D = A〈∂〉, where A = k[t] or kJtK and k is a field of characteristic 0 or A = k{t} and k = R
or C, then Example 2.13 shows that gld(D) = 1, i.e., D is a hereditary ring. Thus, Theorem 3.1
proves that the torsion-free left D-module M/t(M) = D1×p/(D1×q′ R′) is projective, and thus
Corollary 2.3 holds for all finitely presented left D-modules M .

Now, if the matrix R′ ∈ Dq′×p in Corollary 2.3 has full row rank and the left D-module
M/t(M) = D1×p/(D1×q′ R′) is free, then Corollary 5.2 shows that there exists U ∈ GLp(D) such
that R′ U = (Iq′ 0). If we write U = (X Q), where X ∈ Dp×q′ and Q ∈ Dp×(p−q′), then
(148) becomes η = U (θT ξT )T (see also (68)). Using 1 of Theorem 1.2, this result holds when
D = K[∂] and K is a differential field such as k a field, k(t), kJtK[t−1] or k{t}[t−1] and k = R or
C, since the torsion-free left D-module M/t(M) is then free.

In this section, we proved that a Monge parametrization of the linear system kerF (R.) could
be obtained by glueing the parametrization of its parametrizable linear subsystem kerF (R′.) with
the elements of homD(t(M),F) (which are the obstructions for kerF (R.) to admit a potential-like
parametrization). This result, based on the system equivalence (137), generalizes 1 of Corollary 4.1.
In Section 4, we shall show that Theorem 2.1 and (137) are just the first steps to more precise
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characterizations of M and kerF (R.) based on the concept of purity filtration of the left D-module
M ([10, 11]). In particular, we shall give an equivalent block-triangular form of the linear system
(138) which is more suitable for its closed-form integration (if it exits) (see 4 of Algorithm 2.1)
and for the study of the structural properties of (138).

Finally, for applications of the Monge parametrization to the study of variational problems (e.g.,
elasticity, electromagnetism) and optimal control, see [93, 102].

3. Characteristic variety and dimensions

“Le savant n’étudie pas la nature parce que cela est utile ; il l’étudie parce qu’il
y prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas
belle, elle ne vaudrait pas la peine d’être connue, la vie ne vaudrait pas la peine
d’être vécue.”

Henri Poincaré, Science et Méthodes.
In this section, we introduce a few classical results of algebraic analysis on the dimension of

the characteristic variety of a left D-module M and on the dimension of the left D-modules
extiD(extiD(M,D), D)’s ([10, 11, 13, 44, 66]). These results will be used in the next section to
develop the purity filtration of the left D-module M which will allow us to generalize the results
obtained in the previous section on the Monge parametrization of the linear system kerF (R.).

In what follows, we shall assume that A is either a field k, k[x1, . . . , xn], k(x1, . . . , xn) or
kJx1, . . . , xnK, where k is a field of characteristic 0, or k{x1, . . . , xn}, where k = R or C.

An element P ∈ D = A〈∂1, . . . , ∂n〉 is uniquely defined by P =
∑
|α|=0,...,r aα ∂

α, where aα ∈ A,
α = (α1, . . . , αn)T ∈ Nn, |α| = α1 + . . . + αn and ∂α = ∂α1

1 . . . ∂αnn . Then, we can introduce the
order filtration of D, namely, Dr =

{∑
0≤|α|≤r aα ∂

α | aα ∈ A
}

for all r ∈ N, with the convention
that D−1 = 0. Then, we can check that the following filtration conditions hold:

(1) ∀ r, s ∈ N, r ≤ s ⇒ Dr ⊆ Ds.
(2) D =

⋃
r≥0 Dr.

(3) ∀ r, s ∈ N, DrDs ⊆ Dr+s.
The ring D is then called a filtered ring and an element of Dr is said to have a degree less or equal
to r. We can easily check that D0 = A and Dr is a finitely generated A-module.

If d1, d2 ∈ D, we can define the bracket of d1 and d2 by [d1, d2] = d1 d2− d2 d1. Now, if d1 ∈ Dr

and d2 ∈ Ds, then d1 d2 and d2 d1 belong to Dr+s since DrDs ⊆ Dr+s and DsDr ⊆ Dr+s.
Moreover, we can check that [d1, d2] ∈ Dr+s−1, i.e., [Dr, Ds] ⊆ Dr+s−1.

Let us now introduce the following A-module:

gr(D) =
⊕
r∈N

Dr/Dr−1.

If πr : Dr −→ Dr/Dr−1 is the canonical projection for all r ∈ N, then the A-module gr(D) inherits
a ring structure defined by:

∀ d1 ∈ Dr, ∀ d2 ∈ Ds,

{
πr(d1) + πs(d2) , πt(d1 + d2) ∈ Dt/Dt−1, t = max(r, s),
πr(d1)πs(d2) , πr+s(d1 d2) ∈ Dr+s/Dr+s−1.

gr(D) is called the graded ring associated with the order filtration of D. If we now introduce
∀ i = 1, . . . , n, χi = π1(∂i) ∈ D1/D0,

then π1([∂i, ∂j ]) = 0 and π1([∂i, a]) = 0 for all a ∈ A and all i, j = 1, . . . , n since [∂i, ∂j ] = 0
and [∂i, a] ∈ D0, which shows that gr(D) = A[χ1, . . . , χn] is the commutative polynomial ring in
χ1, . . . , χn with coefficients in the commutative noetherian ring A.

We can now generalize the concepts of filtered and graded rings for modules.

Definition 3.1 ([10, 13, 66]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module.
(1) A filtration of M is a sequence {Mq}q∈N of A-submodules of M (with the convention that

M−1 = 0) such that:
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(a) For all q, r ∈ N, q < r implies that Mq ⊆Mr.
(b) M =

⋃
q∈N Mq.

(c) For all q, r ∈ N, we have DrMq ⊆Mq+r.
The left D-module M is then called a filtered module

(2) The associated graded left gr(D)-module gr(M) is defined by:
(a) gr(M) =

⊕
q∈N Mq/Mq−1.

(b) For every d ∈ Dr and any m ∈Mq, we set πr(d)σq(m) , σq+r(dm) ∈Mq+r/Mq+r−1,
where σq : Mq −→Mq/Mq−1 is the canonical projection for all q ∈ N.

(3) A filtration {Mq}q∈N is called a good filtration if it satisfies one of the equivalent conditions:
(a) Mq is a finitely generated A-module for all q ∈ N and there exists p ∈ N such that

DrMp = Mp+r for all r ∈ N.
(b) gr(M) =

⊕
q∈N Mq/Mq−1 is a finitely generated left gr(D)-module.

Example 3.1. Let M be a finitely generated left D-module defined by a family of generators
{y1, . . . , yp}. Then, the filtration Mq =

∑p
i=1 Dq yi is a good filtration of M since we then have

gr(M) =
∑p
i=1 gr(D) yi, which proves that gr(M) is a finitely generated left gr(D)-module.

If M is a finitely generated left D = A〈∂1, . . . , ∂n〉-module, then gr(M) is a finitely generated
module over the commutative polynomial ring gr(D) = A[χ1, . . . , χn]. Hence, we are back to
the realm of commutative algebra. Based on techniques of algebraic geometry and commutative
algebra, we can then characterize invariants of gr(M) (e.g., dimension, multiplicity) which are
important invariants of the differential module M .

Let us recall the concept of prime ideals of a commutative polynomial ring.
Definition 3.2. A proper prime ideal of a commutative ring A is an ideal p ( A which satisfies
that a b ∈ p implies a ∈ p or b ∈ p. The set of all the proper prime ideals of A is denoted by
spec(A) and is a topological space endowed with the Zariski topology defined by the Zariski-closed
sets V (I) = {p ∈ spec(A) | I ⊆ p}, where I is an ideal of A.
Example 3.2. If (a1, . . . , an) ∈ Cn, then the finitely generated ideal m = (x− a1, . . . , xn − an) of
the ring D = C[x1, . . . , xn] is a maximal ideal of D, namely, m is not contained in any proper ideal
of D different from m. A maximal ideal m is a prime ideal for if we have x /∈ m and x y ∈ m, then,
since m is maximal, we get Ax + m = A, i.e., there exist a ∈ A and b ∈ m such that a x + b = 1.
Then, we obtain that y = a (x y) + (y b) ∈ m, which proves that m is prime. For instance, the
twisted cubic is defined by the prime ideal p = (x2 − x2

1, x3 − x2
1) of C[x1, x2, x3].

We now introduce the important concept of a characteristic variety of a differential module.
Proposition 3.1 ([10, 13, 66]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module and
G = gr(M) the associated graded gr(D) = A[χ1, . . . , χn]-module for a good filtration of M . Then,
the ideal of the commutative polynomial ring gr(D) defined by

I(M) =
√

ann(G) , {a ∈ gr(D) | ∃ n ∈ N : anG = 0}
does not depend on the good filtration of M . The characteristic variety of M is then the subset
of spec(gr(D)) defined by:

charD(M) = V (I(M)) = {p ∈ spec(gr(D)) |
√

ann(G) ⊆ p}.
According to 1 of Example 3.1, every finitely generated left D = A〈∂1, . . . , ∂n〉-module M admits

a good filtration and thus a characteristic variety. The dimension of the left D-module M can
then be defined as the geometric dimension of the characteristic variety charD(M) of M .
Definition 3.3 ([10, 13, 66]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module. Then,
the dimension of M is the supremum of the lengths of the chains p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ pd of distinct
proper prime ideals in the commutative ring gr(D)/I(M) = A[χ1, . . . , χn]/I(M). If M = 0, then
we set dimD(M) = −1.

For simplicity reasons, we shall write dim(D) instead of dimD(D).
Example 3.3 ([10, 13]). We have dim(k[x1, . . . , xn]) = n and dim(Bn(k)) = n. Moreover, if
A = k[x1, . . . , xn], kJx1, . . . , xnK, where k is a field of characteristic 0, or k{x1, . . . , xn}, where
k = R or C, then we have dim(A〈∂1, . . . , ∂n〉) = 2n.
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Example 3.4. Let us consider the following linear PD system:

(150)

{
Φ1 = (∂4 − x3 ∂2 − 1) y = 0,
Φ2 = (∂3 − x4 ∂1) y = 0.

We can check that (150) is not formally integrable ([82, 84]) since
(∂4 − x3 ∂2 − 1) Φ2 + (x4 ∂1 − ∂3) Φ1 = (∂2 − ∂1) y = 0

is a new non-trivial first order PDE which does not appear in (150). Adding this new equation to
(150), then we can check that the new linear PD system defined by

(151)


(∂4 − x3 ∂2 − 1) y = 0,
(∂3 − x4 ∂1) y = 0,
(∂2 − ∂1) y = 0,

is formally integrable and involutive ([82, 84]). Therefore, using to the Cartan-Kähler-Janet’s
theorem (see [82, 84]), we can obtain a formal power series (analytic) solution of (151) in a neigh-
bourhood of a = (a1, a2, a3, a4) ∈ R4 which satisfies an appropriate set of initial conditions.

Using (151), the characteristic variety of the left D = A4(C)-module M = D/(D1×2 R) finitely
presented by the matrix R = (∂4 − x3 ∂2 + 1 ∂2 − x4 ∂1)T is defined by the ideal

I(M) = (χ4 − x3 χ2, χ3 − x4 χ1, χ2 − χ1)
of the commutative polynomial ring gr(D) = C[x1, x2, x3, x4, χ1, χ2, χ3, χ4]. The characteristic
variety charD(M) of M is then the affine algebraic variety of C8 defined by the ideal I(M) of
gr(D). We can easily check that we have:

charD(M) = {(x1, x2, x3, x4, χ1, χ1, x4 χ1, x3 χ1) | χ1, xi ∈ C, i = 1, . . . , 4}.
Therefore, the Krull dimension of char(M) is 5, i.e., dimD(M) = 5. If instead of D = A4(C), we
use the second Weyl algebra B4(C), then the characteristic variety of M becomes

charD(M) = {(χ1, χ1, x4 χ1, x3 χ1) | χ1 ∈ C},
which proves that charD(M) is a 1-dimensional family of algebraic varieties parametrized by the
point (x1, x2, x3, x4), i.e., dimD(M) = 1. Finally, we point out that we must transform (150) into
the involutive system (151) (i.e., a Gröbner basis) to study the characteristic variety of M .

Let us introduce the important concept of the grade of a finitely generated left D-module.

Definition 3.4 ([10, 11]). The grade of a non-zero finitely generated left D-module M is:
jD(M) = min {i ≥ 0 | extiD(M,D) 6= 0}.

If M 6= 0, then using Proposition 2.8, exti+1
D (M,D) = 0 for all i ≥ gld(D), which yields:

(152) 0 ≤ jD(M) ≤ gld(D),

Theorem 3.1 ([10, 13]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module. Then:
(153) jD(M) = dim(D)− dimD(M).
A similar result holds for finitely generated right D-modules.

Remark 3.1. A ring D satisfying jD(M) = dim(D) − dimD(M) for all finitely generated left
D-modules M and a dimension function dimD( · ) is called a Cohen-Macaulay ring. Hence, the
previous rings of partial differential operators are Cohen-Macaulay. Moreover, they are also Aus-
lander regular rings, namely, noetherian rings with a finite global dimension which satisfy the
Auslander condition, namely, for every i ∈ N, every finitely generated left (resp., right) D-module
M and every left (resp., right) D-module N ⊆ extiD(M,D), then jD(N) ≥ i ([10, 11, 13]).

If M = D1×p/(D1×q R) is a left D-module finitely presented by a full row rank matrix R, then
Theorem 3.1 can be used to check the module properties of M . If N = Dq/(RDp) ∼= ext1

D(M,D)
is the Auslander transpose right D-module of M , then a right module analogue of Theorem 1.1
implies homD(N,D) ∼= kerD(.R) = 0. Hence, we have jD(N) ≥ 1, i.e., dimD(M) ≤ dim(D) − 1.
The computation of dimD(M) then gives jD(M), i.e., the smallest i ≥ 1 such that extiD(N,D) 6= 0.
Using Theorem 3.1, we obtain the following important result.
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Corollary 3.1 ([89]). Let M = D1×p/(D1×q R) is a left D-module finitely presented by a full row
rank matrix R, i.e., kerD(.R) = 0. Then, we have:

(1) t(M) 6= 0 iff jD(N) = 1, i.e., iff dimD(N) = dim(D)− 1.
(2) M is torsion-free iff jD(N) ≥ 2, i.e., iff dimD(N) ≤ dim(D)− 2.
(3) M is reflexive iff jD(N) ≥ 3 i.e., iff dimD(N) ≤ dim(D)− 3.
(4) M is projective (stably free) iff N = 0, i.e., iff dimD(N) = −1.

4 of Corollary 3.1 was already proved in Corollary 3.3. Corollary 3.1 shows that we only need
to compute dimD(N) to check whether or not a left D-module M finitely presented by a full row
rank matrix R admits non-trivial torsion elements, is torsion-free, reflexive or projective. Hence, if
M is finitely presented by a full row rank matrix R, then we only need to determine the dimension
of the left D-module Ñ = D1×q/(D1×p R̃) by means of a Gröbner basis computation to check the
module properties of the left D-module M = D1×p/(D1×q R).

Example 3.5. If we consider again the D = Q[∂1, ∂2, ∂3]-module M = D1×3/(DR) finitely
presented by the divergence operator R = (∂1 ∂2 ∂3) in R3, then the Auslander transpose N =
D/(RD3) = D/(D1×3 RT ) of M is finitely presented by the gradient operator. Since charD(M) =
{(0, 0, 0)}, then dimD(N) = 0 and jD(N) = 3 − 0 = 3. Therefore, we get extiD(N,D) = 0 for
i = 0, 1, 2 and ext3

D(N,D) 6= 0. Using Theorem 3.1, we find again that M is a reflexive but not a
projective D-module.

In the theory of linear PD systems, the following definitions are generally used.

Definition 3.5. Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module.
(1) M is said to be determined if ext0

D(M,D) = 0 and ext1
D(M,D) 6= 0.

(2) M is said to be overdetermined if extiD(M,D) = 0 for i = 0, 1.
(3) M is said to be underdetermined if ext0

D(M,D) 6= 0.

These definitions can be easily explained by means of Theorem 3.1: if M is determined, then
jD(M) = 1, and thus dimD(M) = dim(D)−1. Moreover, if M is overdetermined, then jD(M) ≥ 2,
which yields dimD(M) ≤ dim(D) − 2. Finally, if M is underdetermined, then jD(M) = 0, and
thus dimD(M) = dim(D).

If M 6= 0, then (152) and (153) yield dimD(M) ≥ dim(D)− gld(D).

Example 3.6. Using Examples 2.13 and 3.3, if M is a non-zero left D = A〈∂1, . . . , ∂n〉, then
dimD(M) ≥ n whenever A = k[x1, . . . , xn], kJx1, . . . , xnK, where k is a field of characteristic 0,
or k{x1, . . . , xn}, where k = R or C. Moreover, dimD(M) ≥ 0 whenever A = k or k(x1, . . . , xn),
where k is a field of characteristic 0.

Definition 3.6 ([10, 13, 66]). Let A = k[x1, . . . , xn], kJx1, . . . , xnK, where k is a field of char-
acteristic 0, or k{x1, . . . , xn}, where k = R or C, and M a non-zero finitely generated left
D = A〈∂1, . . . , ∂n〉-module. If dimD(M) = n then M is called a holonomic left D-module.

Example 3.7. The time-varying ODE defined by t ẏ − y = 0 defines the holonomic left D =
A1(C)-module M = D/D (t ∂ − 1). Indeed, the characteristic variety char(M) of M is defined by
the ideal I(M) = (t χ) of the commutative polynomial ring gr(D) = C[t, χ], which implies that
charD(M) = {(t, 0) | t ∈ C} ∪ {(0, χ) |χ ∈ C} is a 1-dimensional affine algebraic variety of C2,
i.e., dimD(M) = 1.

Example 3.8. If D = A〈∂〉, where A = k[t], kJtK, where k is a field of characteristic 0, or k{t},
where k = R or C, then one can prove that a left (resp., right) D-module M is holonomic iff M is
a torsion left (resp., right) D-module. For more details, see [10, 11, 13, 44, 66].

Proposition 3.2 ([10]). Any holonomic left D = A〈∂1, . . . , ∂n〉-module M is cyclic, i.e., M can be
generated by one element as a left D-module. More precisely, if {yj}j=1,...,p is a set of generators
of the holonomic left D-module M , then there exist d2, . . . , dp ∈ D such that M is generated by
z = y1 + d2 y2 + . . .+ dp yp. Similar results hold for holonomic right D-module.

Let us state two difficult but important results of algebraic analysis.

Proposition 3.3 ([10, 11, 13]). If M is a finitely generated left D = A〈∂1, . . . , ∂n〉-module, then:
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(1) dimD(extiD(M,D)) ≤ dim(D)− i.
(2) dimD(extjD(M)

D (M,D)) = dim(D)− jD(M).

Theorem 3.2 ([10, 11, 13]). Let M a finitely generated left D = A〈∂1, . . . , ∂n〉-module.
(1) extjD(extiD(M,D), D) = 0 for j < i.
(2) If extiD(extiD(M,D), D) is non-zero, then dimD(extiD(extiD(M,D), D)) = dim(D)− i.
(3) jD(extjD(M)

D (M,D)) = jD(M).

In particular, 3 of Theorem 3.2 asserts that the first non-zero extiD(M,D)’s of a left D-module
M , i.e., extjD(M)

D (M,D), satisfies the following conditions:{
extjD(extjD(M)

D (M,D), D) = 0, j = 0, . . . , jD(M)− 1,
extjD(M)

D (extjD(M)
D (M,D), D) 6= 0.

Let us introduce the concept of a pure module which will play an important role in Section 4.

Definition 3.7. A finitely generated left D-module M is said to be pure or jD(M)-pure if jD(N) =
jD(M) for all non-zero left D-submodules N of M .

Remark 3.2. If M is a pure left D-module, then the cyclic left D-module Dm ∼= D/annD(M)
generated by 0 6= m ∈ M satisfies jD(Dm) = jD(M). Moreover, if N is a left D-submodule of
a jD(M)-pure left D-module M , then N is also a jD(M)-pure left D-module since every left D-
submodule of N is a left D-submodule of M and jD(N) = jD(M). Finally, if M is a jD(M)-pure
left D-module, then using (153), every left D-submodule of M has dimension dim(D)− jD(M).

Theorem 3.3 ([10, 11]). If M is a non-zero finitely generated left D-module, then we have:
(1) The left D-module extiD(extiD(M,D), D) is pure with jD(extiD(extiD(M,D), D)) = i.
(2) M is pure iff extiD(extiD(M,D), D) = 0 for i 6= jD(M).
(3) M is pure iff M is a left D-submodule of extjD(M)

D (extjD(M)
D (M,D), D).

Example 3.9. According to 3 of Theorem 3.3, M is 0-pure iff M is a left D-submodule of the left
D-module homD(homD(M,D), D). Using 3 of Theorem 3.1, we obtain that M is 0-pure iff M is
a torsion-free left D-module. In particular, the left D-module M/t(M) is either zero or a 0-pure
left D-module.

Example 3.10. If the left D-module M = D1×p/(D1×pR) is finitely presented by a full row
rank square matrix R ∈ Dp×p and R /∈ GLp(D), i.e., M 6= 0, then M is a torsion left D-
module, i.e., M = t(M). Since N = Dp/(RDp) ∼= ext1

D(M,D), then using 1 of Theorem 3.1,
M = t(M) ∼= ext1

D(ext1
D(M,D), D) 6= 0. According to Theorems 3.1 and 3.2, dimD(M) =

dimD(ext1
D(ext1

D(M,D), D)) = dim(D) − 1 and M is a 1-pure left D-module. This result was
conjectured by Janet in 1921 (“Etant donné un système linéaire comprenant autant d’équations
que de fonctions inconnues ; si ces équations sont supposées indépendantes, peut-on affirmer que
la solution, ou bien est entièrement déterminée, ou bien dépend de fonctions arbitraires de n − 1
variables ?”) and proved by Johnson in 1978 ([41]). For more details, see [89, 95].

4. Purity filtration of differential modules

“Les mathématiciens “appliqués” considèrent parfois leurs collègues “purs” comme
des artistes élaborant des constructions théoriques sans doute jolies pour ceux
qui les comprennent, mais totalement inutiles. Et même chez les mathémati-
ciens dits “purs” cette dichotomie se perpétue. Les analystes sont persuadés
que l’intégrale de Lebesgue, c’est du concret, et laissent le maniement des di-
agrammes aux fanatiques de l’algèbre homologique. D’ailleurs Siegel disait en
parlant de Grothendieck que ce n’est pas en répétant “Om Om” que l’on démon-
trera des théorèmes sérieux (jeu de mots entre le “Om” tantrique et le “Hom” des
algébristes).”

P. Schapira, Défense du conceptuel, Le Monde, 26/04/96.
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Based on the concept of purity filtration of the left D-module M = D1×p/(D1×q R) ([10, 11]),
the purpose of this section is to generalize Theorem 2.1. We show that every linear PD system in
n independent variables is equivalent to a linear PD system defined by an upper block-triangular
matrix P of PD operators: each diagonal block of P is respectively formed by the elements of
the left D-module M of dim(D) − j, for j = 0, . . . , n. The linear PD system Rη = 0 can then
be integrated in cascade by successively solving (inhomogeneous) linear i-dimensional PD linear
systems to get a Monge parametrization of its solution space kerF (R.).

The existence of the purity filtration of the left D-module M is proved by means of spectral
sequences, i.e., by means of powerful but rather involved homological algebra techniques (see, e.g.,
[10, 11, 85]). The spectral sequences computing the purity filtration of differential modules have
recently been implemented in the GAP4 package homalg by Barakat ([5]), which is an important
“tour de force” for symbolic computation. However, in this section, we shall show how the pu-
rity filtration of the left D-module M can be explicitly characterized and computed by simply
generalizing the idea developed in Section 3 (particularly the characterization of t(M) in terms
ext1

D(N,D) (see 1 of Theorem 3.1)) ([97, 98]). The corresponding results are implemented in the
package PurityFiltration ([97]). Finally, the techniques developed here can be used to compute
the closed-form solutions (if they exist) of linear PD systems which cannot be solved by means of
the classical computer algebra systems such as Maple ([97]).

In this section, we shall detail the main results concerning the purity filtration since they
illustrate the different techniques and results developed in the previous sections and in Chapter 1.

Let D be a noetherian domain and M a left D-module defined by the following beginning of a
finite free resolution:

0←−M π←− D1×p0 .R1←−− D1×p1 .R2←−− D1×p2 .R3←−− D1×p3 .

Then, the defects of exactness of the following complex of right D-modules

(154) 0 −→ Dp0 R1.−−→ Dp1 R2.−−→ Dp2 R3.−−→ Dp3

are defined by:

(155)


ext2

D(M,D) ∼= kerD(R3.)/(R2 D
p1),

ext1
D(M,D) ∼= kerD(R2.)/(R1 D

p0 .),
ext0

D(M,D) ∼= kerD(R1.).

To characterize the extiD(M,D)’s for all 0 ≤ i ≤ 2, we need to study kerD(Ri.). For 1 ≤ k ≤ 3,
considering the beginning of a finite free resolution of kerD(Rk.), we obtain the following long
exact sequence of right D-modules

(156) Dp(−1)k R0k.−−−→ Dp0k R1k.−−−→ Dp1k R2k.−−−→ . . .
R(k−1)k.−−−−−→ Dp(k−1)k Rkk.−−−→ Dpkk κkk−−→ Nkk −→ 0,

with, for a fixed k from 1 to 3, the notations Rkk = Rk, pkk = pk, p(k−1)k = pk−1 and:
Nkk = cokerD(Rkk.) = Dpkk/(RkkDp(k−1)k).

The choice of these notations is natural if we consider the 3 long exact sequences (156) for all
k = 1, 2, 3 on the same page, where (156) is written at the level k, i.e.:

Dp−13 R03.−−−→ Dp03 R13.−−−→ Dp13 R23.−−−→ Dp23 R33.−−−→ Dp33 κ33−−→ N33 −→ 0,

Dp−12 R02.−−−→ Dp02 R12.−−−→ Dp12 R22.−−−→ Dp22 κ22−−→ N22 −→ 0,

Dp−11 R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0.
Then, the free right D-module Dpjk is at position (j, k) and Rjk arrives at Dpjk with j ≤ k, which
is a good mnemonic device.

Since (154) is a complex, we get Rkk R(k−1)(k−1) = Rk Rk−1 = 0 for all k = 2, 3, and thus:
R(k−1)(k−1) D

p(k−2)(k−1) ⊆ kerD(Rkk.) = R(k−1)kD
p(k−2)k .

Therefore, for k = 1, 2, 3, there exists a matrix F(k−2)k ∈ Dp(k−2)k×p(k−2)(k−1) such that:
(157) R(k−1)(k−1) = R(k−1)k F(k−2)k.
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Then, using (157), we get R(k−1)k F(k−2)k R(k−2)(k−1) = R(k−1)(k−1) R(k−2)(k−1) = 0, i.e.,

∀ k = 2, 3, F(k−2)k R(k−2)(k−1) D
p(k−3)(k−1) ⊆ kerD(R(k−1)k.) = R(k−2)kD

p(k−3)k ,

and thus, there exists a matrix F(k−3)k ∈ Dp(k−3)k×p(k−3)(k−1) such that:

(158) F(k−2)k R(k−2)(k−1) = R(k−2)k F(k−3)k.

Similarly, for k = 3, there exists F−13 ∈ Dp−13×p−12 such that:

F03 R02 = R03 F−13.

Therefore, we obtain the following commutative diagram of right D-modules
(159)

Dp−13 R03.−−−→ Dp03 R13.−−−→ Dp13 R23.−−−→ Dp23 R33.−−−→ Dp33 κ33−−→ N33 −→ 0
↑ F−13. ↑ F03. ↑ F13. ‖

Dp−12 R02.−−−→ Dp02 R12.−−−→ Dp12 R22.−−−→ Dp22 κ22−−→ N22 −→ 0
↑ F−12. ↑ F02. ‖

Dp−11 R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0
↑ ‖
0 −→ Dp00 κ00−−→ N00 −→ 0,

whose horizontal sequences are exact and where:

(160) R00 = 0, N00 = Dp00/0 ∼= D1×p00 , p00 = p01, p12 = p11, p23 = p22.

If we denote by Njk the right D-module defined by

Njk = cokerD(Rjk.) = Dpjk/(RjkDp(j−1)k),

then, using (159), we obtain the following commutative diagram

(161)

Dp−13 R03.−−−→ Dp03 R13.−−−→ Dp13 κ13−−→ N13 −→ 0
↑ F−13. ↑ F03. ↑ F13.

Dp−12 R02.−−−→ Dp02 R12.−−−→ Dp12 κ12−−→ N12 −→ 0
↑ F−12. ↑ F02. ‖

Dp−11 R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0,

whose horizontal sequences are exact. Moreover, we have the following short exact sequences:

(162)

0 −→ N13 −→ Dp23 −→ N23 −→ 0,
0 −→ N23 −→ Dp33 −→ N33 −→ 0,
0 −→ N12 −→ Dp22 −→ N22 −→ 0,
0 −→ N01 −→ Dp11 −→ N11 −→ 0.

Now, using (155), we obtain the following characterization of right D-modules extiD(M,D)’s:

(163)


ext2

D(M,D) ∼= kerD(R33.)/imD(R22.) = (R23 D
p13)/(R22 D

p12),
ext1

D(M,D) ∼= kerD(R22.)/imD(R11.) = (R12 D
p02)/(R11 D

p01),
ext0

D(M,D) ∼= kerD(R11.)/imD(R00.) = R01 D
p−11 .

Then, using (160), (163) yields the following three short exact sequences of right D-modules:

(164)

0 −→ ext2
D(M,D) −→ N22 = Dp23/(R22 D

p12) −→ N23 = Dp23/(R23 D
p13) −→ 0,

0 −→ ext1
D(M,D) −→ N11 = Dp12/(R11 D

p01) −→ N12 = Dp12/(R12 D
p02) −→ 0,

0 −→ ext0
D(M,D) −→ N00 = Dp00 −→ N01 = Dp01/(R01 D

p01) −→ 0.
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Applying the contravariant exact functor homD( · , D) to the three short exact sequences of
(164) and using Theorem 2.1, we obtain the following long exact sequences of left D-modules:

0 −→ ext0
D(N23, D) −→ ext0

D(N22, D) −→ ext0
D(ext2

D(M,D), D)
δ1

−→ ext1
D(N23, D) −→ ext1

D(N22, D) −→ ext1
D(ext2

D(M,D), D)
δ2

−→ ext2
D(N23, D) −→ ext2

D(N22, D) −→ ext2
D(ext2

D(M,D), D)
δ3

−→ ext3
D(N23, D) −→ ext3

D(N22, D) −→ . . .

0 −→ ext0
D(N12, D) −→ ext0

D(N11, D) −→ ext0
D(ext1

D(M,D), D)
σ1

−→ ext1
D(N12, D) −→ ext1

D(N11, D) −→ ext1
D(ext1

D(M,D), D)
σ2

−→ ext2
D(N12, D) −→ ext2

D(N11, D) −→ . . .

0 −→ ext0
D(N01, D) −→ ext0

D(N00, D) −→ ext0
D(ext0

D(M,D), D)
τ1

−→ ext1
D(N01, D) −→ ext1

D(N00, D).
If D is an Auslander regular ring (see Remark 3.1), then we have extiD(extjD(M,D), D) for all

0 ≤ i < j. In particular, we have:
ext0

D(ext1
D(M,D), D) = 0, ext0

D(ext2
D(M,D), D) = 0, ext0

D(ext1
D(M,D), D).

See also Proposition 2.1 and Corollary 3.1. Moreover, ext1
D(N00, D) is reduced to 0 since N00 =

Dp00 is a free, and thus a projective right D-module (see Proposition 2.2). Therefore, the above
three long exact sequences yield the following exact sequences of left D-modules:
(165)
0 −→ ext2

D(N23, D) −→ ext2
D(N22, D) −→ ext2

D(ext2
D(M,D), D),

0 −→ ext1
D(N12, D) −→ ext1

D(N11, D) −→ ext1
D(ext1

D(M,D), D),

0 −→ ext0
D(N01, D) −→ ext0

D(N00, D) −→ ext0
D(ext0

D(M,D), D) −→ ext1
D(N01, D) −→ 0.

Applying Proposition 2.3 to the short exact sequences of (162), we obtain:
ext3

D(N33, D) ∼= ext2
D(N23, D) ∼= ext1

D(N13, D),
ext2

D(N22, D) ∼= ext1
D(N12, D),

ext2
D(N11, D) ∼= ext1

D(N01, D).

Since N11 = Dp11/(R11 D
p01) is the Auslander transpose of M = D1×p01/(D1×p11 R11), 1 of

Theorem 3.1 implies t(M) ∼= ext1
D(N11, D). Moreover, a right D-module analogue of Theorem 1.1

gives ext0
D(N01, D) ∼= kerD(.R01) and (42) implies M/t(M) = D1×p00/ kerD(.R01).

Therefore, (165) yields the following two exact sequences of left D-modules:

0 −→ ext3
D(N33, D) γ32−−→ ext2

D(N22, D) γ22−−→ ext2
D(ext2

D(M,D), D) −→ coker γ22 −→ 0,

0 −→ ext2
D(N22, D) γ21−−→ t(M) γ11−−→ ext1

D(ext1
D(M,D), D) −→ coker γ11 −→ 0,

0 −→ ext0
D(N01, D) γ10−−→ D1×p00

γ00−−→ ext0
D(ext0

D(M,D), D) −→ ext2
D(N11, D) −→ 0.

Combining the above long exact sequences with (26), i.e.,

0 −→ t(M) −→M
ε−→ ext0

D(ext0
D(M,D), D) −→ ext2

D(N11, D) −→ 0,
(see 3 of Theorem 3.1), we obtain the following important exact diagram of left D-modules

(166)

0
↓

0 −→ ext3
D(N33, D) γ32−−→ ext2

D(N22, D) −→ coker γ32 −→ 0
↓ γ21

0 −→ t(M) i−→ M
ρ−→ M/t(M) −→ 0,

↓
coker γ21
↓
0
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where:

(167)


coker γ32 ∼= im γ22 ⊆ ext2

D(ext2
D(M,D), D),

coker γ21 ∼= im γ11 ⊆ ext1
D(ext1

D(M,D), D),
coker i = M/t(M) ∼= coker γ10 ∼= im γ00 ⊆ ext0

D(ext0
D(M,D), D).

Thus, using Remark 3.2, coker γ32 is a 2-pure left D-module, coker γ21 is a 1-pure left D-module
and M/t(M) is a 0-pure left D-module (see Example 3.9). Moreover, using 1 of Proposition 3.3
and 2 of Theorem 3.2, we obtain:

(168)


dimD(ext3

D(N33, D)) ≤ dim(D)− 3,
dimD(coker γ32) = dim(D)− 2,
dimD(coker γ21) = dim(D)− 1,
dimD(M/t(M)) = dim(D).

If the matrix R3 has full row rank, i.e., kerD(.R3) = 0, then N33 ∼= ext3
D(M,D), and thus

ext3
D(N33, D) ∼= ext3

D(ext3
D(M,D), D) is a 3-pure left D-module and:

(169) dimD(ext3
D(N33, D)) = dim(D)− 3.

Then, we obtain the following filtration {Mi}i=−1,...,3 of M defined by:
(170)
M−1 = 0 ⊆M0 = (γ21 ◦γ32)(ext3

D(N33, D)) ⊆M1 = γ21(ext2
D(N22, D)) ⊆M2 = t(M) ⊆M3 = M.

We note that M0/M−1 ∼= ext3
D(ext3

D(M,D), D) is a 3-pure left D-module, M1/M0 ∼= coker γ32 is
a 2-pure left D-module, M2/M1 ∼= coker γ21 is a 1-pure left D-module and M3/M2 ∼= M/t(M) is
a 0-pure left D-module, i.e., the successive quotients of the elements of {Mi}i=−1,...,3 are all pure
left D-modules. This filtration is called purity filtration of M .

The purpose of the rest of the section is to apply Theorem 1.3 on Baer’s extensions to the
short exact sequences of (166) to find a presentation matrix of the left D-module M defined by
a block-diagonal matrix P , where the block-diagonal matrices of P finitely present the (pure) left
D-modules M/t(M), coker γ21, coker γ32 and ext3

D(N33, D).

Let us now precisely describe the left D-homomorphisms γ32 and γ21 and the left D-modules
coker γ32 and coker γ21. Applying the contravariant left exact functor homD( · , D) to the commu-
tative exact diagram (161), we obtain the following commutative diagram:

(171)

D1×p−13 .R03←−−− D1×p03 .R13←−−− D1×p13

↓ .F−13 ↓ .F03 ↓ .F13

D1×p−12 .R02←−−− D1×p02 .R12←−−− D1×p12

↓ .F−12 ↓ .F02 ‖
D1×p−11 .R01←−−− D1×p01 .R11←−−− D1×p11 .

The defect of exactness of the first (resp., second, third) horizontal complex is ext1
D(N13, D)

(resp., ext1
D(N12, D), ext1

D(N11, D)). Let us introduce the following canonical projections:

ρ3 : kerD(.R03) −→ kerD(.R03)/(D1×p13 R13) ∼= ext1
D(N13, D) ∼= ext3

D(N33, D),
ρ2 : kerD(.R02) −→ kerD(.R02)/(D1×p12 R12) ∼= ext1

D(N12, D) ∼= ext2
D(N22, D),

ρ1 : kerD(.R01) −→ kerD(.R01)/(D1×p11 R11) ∼= ext1
D(N11, D) ∼= t(M).

The commutative diagram (171) induces the following two left D-homomorphisms:

(172) α32 : kerD(.R03)/(D1×p13 R13) −→ kerD(.R02)/(D1×p12 R12)
ρ3(λ) 7−→ ρ2(λF03),

(173) α21 : kerD(.R02)/(D1×p12 R12) −→ kerD(.R01)/(D1×p11 R11)
ρ2(µ) 7−→ ρ1(µF02).

Chases in the commutative diagram (171) show that ρ3 and ρ2 are well-defined (see, e.g., [110]).

365



Alban Quadrat

Let us now find a finite presentation of the left D-modules ext3
D(N33, D), ext2

D(N22, D) and
ext1

D(N11, D). Let R′1k ∈ Dp0k×p′1k be a matrix such that kerD(.R0k) = D1×p′1k R′1k for k = 1, 2, 3.
Moreover, since D1×p1k R1k ⊆ D1×p′1k R′1k, there exists a matrix R′′1k ∈ Dp1k×p′1k such that:

(174) R1k = R′′1k R
′
1k.

If R′2k ∈ Dp′1k×p
′
2k is such that kerD(.R′1k) = D1×p′2k R′2k, then using Proposition 3.1, we obtain

(175)
χk : Lk , D1×p′1k/(D1×p1k R′′1k +D1×p′2k R′2k) −→ (D1×p′1k R′1k)/(D1×p1k R1k) ∼= ext1

D(N1k, D),
ρ′k(λ) 7−→ ρk(λR′1k),

where ρ′k : D1×p′1k −→ Lk is the canonical projection onto Lk.

Since R′1k F0k R0(k−1) = R′1k R0k F−1k = 0, then

D1×p′1k (R′1k F0k) ⊆ kerD(.R0(k−1)) = D1×p′1(k−1) R′1(k−1),

and thus there exists a matrix F ′1k ∈ D
p′1k×p1(k−1)′ such that:

(176) ∀ k = 2, 3, R′1k F0k = F ′1k R
′
1(k−1).

Similarly, we can prove that:

(177) ∀ k = 2, 3, R′2k F
′
1k = F ′2k R

′
2(k−1).

Therefore, we obtain the following commutative exact diagram of left D-modules:

(178)

D1×p−13 .R03←−−− D1×p03
.R′13←−−− D1×p′13

.R′23←−−− D1×p′23

↓ .F−13 ↓ .F03 ↓ .F ′13 ↓ .F ′23

D1×p−12 .R02←−−− D1×p02
.R′12←−−− D1×p′12

.R′22←−−− D1×p′22

↓ .F−12 ↓ .F02 ↓ .F ′12 ↓ .F ′22

D1×p−11 .R01←−−− D1×p01
.R′11←−−− D1×p′11

.R′21←−−− D1×p′21 .

Remark 4.1. If R0k = 0, i.e., kerD(R1k.) = 0, then applying the functor homD( · , D) to the short
exact sequence 0 −→ Dp0k R1k.−−−→ Dp1k κ1k−−→ N1k −→ 0, we obtain the following complex:

0←− D1×p0k .R1k←−−− D1×p1k .

Hence, we get kerD(.R0k) = D1×p0k , i.e., R′1k = Ip0k , p′1k = p0k and R′2k = 0.

Let us now deduce two identities which will be useful in what follows. Combining (157) for
k = 2 with (174) for k = 1 and k = 2 and with (176) for k = 2, we obtain

R′′11 R
′
11 = R11 = R12 F02 = R′′12 R

′
12 F02 = R′′12 F

′
12 R

′
11,

and thus (R′′11 −R′′12 F
′
12)R′11 = 0, i.e., D1×p11 (R′′11 −R′′12 F

′
12) ⊆ kerD(.R′11) = D1×p′21 R′21, which

proves the existence of a matrix X12 ∈ Dp11×p′21 such that:

(179) R′′11 = R′′12 F
′
12 +X12 R

′
21.

Combining (158) for k = 3 with (174) for k = 2 and k = 3 and with (176) for k = 3, we obtain

F13 (R′′12 R
′
12) = F13 R12 = R13 F03 = (R′′13 R

′
13)F03 = R′′13 F

′
13 R

′
12,

and thus (F13 R
′′
12−R′′13 F

′
13)R′12 = 0, i.e., D1×p13 (F13 R

′′
12−R′′13 F

′
13) ⊆ kerD(.R′12) = D1×p′22 R′22,

which proves the existence of a matrix X22 ∈ Dp13×p′22 such that:

(180) F13 R
′′
12 −R′′13 F

′
13 = X22 R

′
22.

Let us recall that:

(181)


L1 = D1×p′11/(D1×p11 R′′11 +D1×p′21 R′21) ∼= ext1

D(N11, D) ∼= t(M),
L2 = D1×p′12/(D1×p12 R′′12 +D1×p′22 R′22) ∼= ext2

D(N22, D),
L3 = D1×p′13/(D1×p13 R′′13 +D1×p′23 R′23) ∼= ext3

D(N33, D).
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Then, we can define the left D-homomorphism α32 = χ−1
2 ◦ α32 ◦ χ3 : L3 −→ L2, where the χi’s

are defined by (175) and α32 is defined by (172). Using (176) for k = 3, we have

α32(ρ′3(λ)) = (χ−1
2 ◦ α32)(ρ3(λR′13)) = χ−1

2 (ρ2(λR′13 F03)) = χ−1
2 (ρ2(λF ′13 R

′
12)) = ρ′2(λF ′13),

for all λ ∈ D1×p′13 . Moreover, using (180) and (177) for k = 3, we get(
R′′13

R′23

)
F ′13 =

(
F13 R

′′
12 −X22 R

′
22

F ′23 R
′
22

)
=

(
F13 −X22

0 F ′23

) (
R′′12

R′22

)
,

which yields the following commutative exact diagram:

D1×(p13+p′23) .(R′′T13 R′T23 )T−−−−−−−−−−→ D1×p′13
ρ′3−→ L3 −→ 0

↓ .
(

F13 −X22

0 F ′23

)
↓ .F ′13 ↓ α32

D1×(p12+p′22) .(R′′T12 R′T22 )T−−−−−−−−−−→ D1×p′12
ρ′2−→ L2 −→ 0.

Up to isomorphism, the short exact sequence

0 −→ ext3
D(N33, D) γ32−−→ ext2

D(N22, D) −→ coker γ32 −→ 0

becomes the following one:

(182) 0 −→ L3
α32−−→ L2

θ2−→ cokerα32 −→ 0.

Using 3 of Proposition 4.1, the left D-module cokerα32 is defined by:

cokerα32 = D1×p′12/(D1×p′13 F ′13 +D1×p12 R′′12 +D1×p′22 R′22).

Then, we can easily check that the following commutative exact diagram

0
↓

D1×p12 R′′12 +D1×p′22 R′22
↓

D1×(p′13+p12+p′22) .(F ′T13 R′′T12 R′T22 )T−−−−−−−−−−−−−−→ D1×p′12
σ2−→ cokerα32 −→ 0

↓ ψ2 ↓ ρ′2 ‖
0 −→ L3

α32−−→ L2
θ2−→ cokerα32 −→ 0,

↓
0

holds, where ψ2 : D1×(p′13+p12+p′22) −→ L3 is the left D-homomorphism defined by:

ψ2(ei) =

{
ρ′3(ei) i = 1, . . . , p′13,

0, i = p′13 + 1, . . . , p′13 + p12 + p′22.

Applying Theorem 1.3 to the short exact sequence (182) with the matrix

A =

 Ip′13

0
0

 ∈ D(p′13+p12+p′22)×p′13 ,

(see Corollary 1.1), we obtain the following characterization of the left D-module L2 in terms of
the presentations of the left D-modules L3 ∼= ext3

D(N33, D) and cokerα32.

Proposition 4.1 ([97, 98]). Let D be an Auslander regular ring (e.g., D = A〈∂1, . . . , ∂n〉, where A
is either a field k, k[x1, . . . , xn], k(x1, . . . , xn) or kJx1, . . . , xnK, where k is a field of characteristic
0, or k{x1, . . . , xn}, where k = R or C). With the previous notations, let us consider the following
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two matrices

Q2 =

(
R′′12

R′22

)
∈ D(p12+p′22)×p′12 , P2 =


F ′13 −Ip′13

R′′12 0
R′22 0
0 R′′13

0 R′23

 ∈ D
(p′13+p12+p′22+p13+p′23)×(p′12+p′13),

and the following two finitely presented left D-modules:{
L2 = D1×p′12/(D1×p12 R′′12 +D1×p′22 R′22),
E2 = D1×(p′12+p′13)/(D1×(p′13+p12+p′22+p13+p′23) P2).

If %2 : D1×(p′12+p′13) −→ E2 is the canonical projection, then we have E2 ∼= L2, with the following
left D-isomorphisms:

(183)
φ2 : L2 −→ E2

ρ′2(µ) 7−→ %2(µ (Ip′12
0)),

φ−1
2 : E2 −→ L2

%2(ν) 7−→ ρ′2(ν (ITp′12
F ′T13 )T ).

Now, applying the functor homD( · ,F) to the isomorphism E2 ∼= L2 and using Theorem 1.1,
we obtain kerF (Q2.) ∼= kerF (P2.). More precisely, using (183), the following corollary of Proposi-
tion 4.1 holds.

Corollary 4.1 ([97, 98]). If F is a left D-module, then we have kerF (Q2.) ∼= kerF (P2.), i.e.,

{
R′′12 υ = 0,
R′22 υ = 0,

⇔



F ′13 τ2 − τ3 = 0,
R′′12 τ2 = 0,
R′22 τ2 = 0,
R′′13 τ3 = 0,
R′23 τ3 = 0,

and the following invertible transformations:

(184)
δ : kerF (P2.) −→ kerF (Q2.)(

τ2

τ3

)
7−→ υ = τ2,

δ−1 : kerF (Q2.) −→ kerF (P2.)

υ 7−→

(
τ2

τ3

)
=

(
Ip′12

F ′13

)
υ.

Now, we can introduce the left D-homomorphism α21 = χ−1
1 ◦ α21 ◦ χ2 : L2 −→ L1, where the

χi’s are defined by (175) and α21 is defined by (173). Then, using (176) for k = 2, we get

α21(ρ′2(µ)) = (χ−1
1 ◦ α21)(ρ2(µR′12)) = χ−1

1 (ρ1(µR′12 F02)) = χ−1
1 (ρ1(µF ′12 R

′
11)) = ρ′1(µF ′12),

for all µ ∈ D1×p′12 . Moreover, using (179) and (177) for k = 2, we have(
R′′12

R′22

)
F ′12 =

(
R′′11 −X12 R

′
21

F ′22 R
′
21

)
=

(
Ip11 −X12

0 F ′22

) (
R′′11

R′21

)
,

which yields the following commutative exact diagram:

D1×(p12+p′22) .(R′′T12 R′T22 )T−−−−−−−−−−→ D1×p′12
ρ′2−→ L2 −→ 0

↓ .
(

Ip11 −X12

0 F ′22

)
↓ .F ′12 ↓ α21

D1×(p11+p′21) .(R′′T11 R′T21 )T−−−−−−−−−−→ D1×p′11
ρ′1−→ L1 −→ 0.

Up to isomorphism, the short exact sequence

0 −→ ext2
D(N22, D) γ21−−→ t(M) −→ coker γ21 −→ 0,

becomes the following one

(185) 0 −→ L2
α21−−→ L1

θ1−→ cokerα21 −→ 0,
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where, using 2 of Proposition 4.1, the left D-module cokerα21 is defined by:

cokerα21 = D1×p′11/(D1×p′12 F ′12 +D1×p11 R′′11 +D1×p′21 R′21).
Using the left D-isomorphism φ−1

2 : E2 −→ L2 defined by (183), the short exact sequence (185)
yields the following short exact sequence

0 −→ E2
α21 ◦φ−1

2−−−−−−→ L1
θ1−→ cokerα21 −→ 0,

where the left D-homomorphism α21 ◦ φ−1
2 : E2 −→ L1 is defined by:

∀ ν ∈ D1×(p′12+p′13), (α21 ◦ φ−1
2 )(%2(ν)) = α21

(
ρ′2

(
ν

(
Ip′12

F ′13

)))
= ρ′1

(
ν

(
F ′12

F ′13 F
′
12

))
.

Now, we can check that the following commutative exact diagram
0
↓

D1×p11 R′′11 +D
1×pp′21 R′21

↓

D1×(p′12+p11+p′21) .(F ′T12 R′′T11 R′T21 )T−−−−−−−−−−−−−−→ D1×p′11
σ1−→ cokerα21 −→ 0

↓ ψ1 ↓ ρ′1 ‖

0 −→ E2
α21 ◦φ−1

2−−−−−−→ L1
θ1−→ cokerα21 −→ 0,

↓
0

where ψ1 : D1×(p′12+p11+p′21) −→ E2 is the left D-homomorphism defined by

ψ1(fj) =

{
%2(fj F ), j = 1, . . . , p′12,

0, j = p′12 + 1, . . . , p′12 + p11 + p′21,

where {fj}j=1,...,p′12+p11+p′21
is the standard basis of D1×(p′12+p11+p′21),

F =

 Ip′12
0

0 0
0 0

 ∈ D(p′12+p11+p′21)×(p′12+p′13),

and σ1 : D1×p11 −→ cokerα21 is the canonical projection onto cokerα21.
If we apply Theorem 1.3 to the short exact sequence (185) with the matrix A = F (see Corol-

lary 1.1), then we obtain the following proposition.

Proposition 4.2 ([97, 98]). With the hypotheses of Proposition 4.1 and the previous notations,
let us consider the following two matrices

Q1 =

(
R′′11

R′21

)
∈ D(p11+p′21)×p′11 ,

P1 =



F ′12 −Ip′12
0

R′′11 0 0
R′21 0 0
0 F ′13 −Ip′13

0 R′′12 0
0 R′22 0
0 0 R′′13

0 0 R′23


∈ D(p′12+p11+p′21+p′13+p12+p′22+p13+p′23)×(p′11+p′12+p′13),

and the following two finitely presented left D-modules:{
L1 = D1×p′11/(D1×(p11+p′21) Q1),
E1 = D1×(p′11+p′12+p′13)/(D1×(p′12+p11+p′21+p′13+p12+p′22+p13+p′23) P1).
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If %1 : D1×(p′11+p′12+p′13) −→ E1 is the canonical projection, then we have E1 ∼= L1, with the
following left D-isomorphisms:

(186) φ1 : L1 −→ E1
ρ′1(ν) 7−→ %1(ν (Ip′11

0 0)),

φ−1
1 : E1 −→ L1

%1(λ) 7−→ ρ′1

λ
 Ip′11

F ′12

F ′13 F
′
12


 .

Finally, we have L1 ∼= t(M), with the following left D-isomorphisms:

ϑ : L1 −→ t(M)
ρ′1(ν) 7−→ π(ν R′11),

ϑ−1 : t(M) −→ L1
π(ν R′11) 7−→ ρ′1(ν).

Applying the functor homD( · ,F) to the isomorphism E1 ∼= L1 and using Theorem 1.1, we
obtain kerF (Q1.) ∼= kerF (P1.). More precisely, using (186), we get the following corollary.

Corollary 4.2 ([97, 98]). If F is a left D-module, then we have kerF (Q1.) ∼= kerF (P1.), i.e.,

{
R′′11 θ = 0,
R′21 θ = 0,

⇔



F ′12 τ1 − τ2 = 0,
R′′11 τ1 = 0,
R′21 τ1 = 0,
F ′13 τ2 − τ3 = 0,
R′′12 τ2 = 0,
R′22 τ2 = 0,
R′′13 τ3 = 0,
R′23 τ3 = 0,

and the following invertible transformations:
(187)

$ : kerF (P1.) −→ kerF (Q1.) τ1

τ2

τ3

 7−→ θ = τ1,

$−1 : kerF (Q1.) −→ kerF (P1.)

θ 7−→

 τ1

τ2

τ3

 =

 Ip′12

F ′12

F ′13 F
′
12

 θ.

Using Proposition 4.2, let ϑ ◦ φ−1
1 : E1 −→ t(M) be the left D-isomorphism defined by:

(ϑ ◦ φ−1
1 )(%1(λ)) = π

λ
 R′11

F ′12 R
′
11

F ′13 F
′
12 R

′
11


 .

Then, the short exact sequence 0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0 yields the following one:

(188) 0 −→ E1
i ◦ϑ ◦φ−1

1−−−−−−→M
ρ−→M/t(M) −→ 0.

Now, we can easily check that the following commutative exact diagram holds

D1×p′11
.R′11−−−→ D1×p01 π′−→ M/t(M) −→ 0

↓ ψ ↓ π ‖

0 −→ E1
i ◦ϑ ◦φ−1

1−−−−−−→ M
ρ−→ M/t(M) −→ 0,

where the left D-homomorphism ψ : D1×p′11 −→ E1 is defined by ψ(gk) = %1(gk (Ip′11
0 0)), and

{gk}k=1,...,p′11
is the standard basis of D1×p′11 . Then, we can apply Theorem 1.3 to the short exact

sequence (188) with A = (Ip′11
0 0) ∈ Dp′11×(p′11+p′12+p′13) (see Corollary 1.1) and we obtain the

following main theorem.
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Theorem 4.1 ([97, 98]). With the hypotheses of Proposition 4.1 and the previous notations, let
us consider the following matrix

P =



R′11 −Ip′11
0 0

0 F ′12 −Ip′12
0

0 R′′11 0 0
0 R′21 0 0
0 0 F ′13 −Ip′13

0 0 R′′12 0
0 0 R′22 0
0 0 0 R′′13

0 0 0 R′23


∈ D(p′11+p′12+p11+p′21+p′13+p12+p′22+p13+p′23)×(p01+p′11+p′12+p′13),

and the following two finitely presented left D-modules:{
M = D1×p01/(D1×p11 R11),
E = D1×(p01+p′11+p′12+p′13)/(D1×(p′11+p′12+p11+p′21+p′13+p12+p′22+p13+p′23) P ).

If % : D1×(p01+p′11+p′12+p′13) −→ E is the canonical projection, then we have E ∼= M , with the
following left D-isomorphisms:

(189) φ : M −→ E
π(λ) 7−→ %(λ (Ip01 0 0 0)),

φ : E −→ M

%(ε) 7−→ π

ε



Ip01

R′11

F ′12 R
′
11

F ′13 F
′
12 R

′
11



 .

Applying the functor homD( · ,F) to the isomorphism E ∼= M and using Theorem 1.1, we obtain
kerF (R11.) ∼= kerF (P.). More precisely, using (189), we get the following corollary.
Corollary 4.3 ([97, 98]). If F is a left D-module, then we have kerF (R11.) ∼= kerF (P.), i.e.,

(190) R11 η = 0 ⇔



R′11 ζ − τ1 = 0,
F ′12 τ1 − τ2 = 0,
R′′11 τ1 = 0,
R′21 τ1 = 0,
F ′13 τ2 − τ3 = 0,
R′′12 τ2 = 0,
R′22 τ2 = 0,
R′′13 τ3 = 0,
R′23 τ3 = 0,

and the following invertible transformations:
(191)
γ : kerF (P.) −→ kerF (R11.)

ζ

τ1

τ2

τ3

 7−→ η = ζ,

γ−1 : kerF (R11.) −→ kerF (P.)

η 7−→


ζ

τ1

τ2

τ3

 =


Ip01

R′11

F ′12 R
′
11

F ′13 F
′
12 R

′
11

 η.

Remark 4.2. If we set

S0 = R′11, S1 =

 F ′12

R′′11

R′21

 , S2 =

 F ′13

R′′12

R′22

 , S3 =

(
R′′13

R′23

)
,

then using (168), we get:
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(1) kerF (S3.) ∼= homD(L3,F) ∼= homD(ext3
D(N33, D),F) is either 0 or has dimension less or

equal to dim(D)− 3,
(2) kerF (S2.) ∼= homD(cokerα32,F) ∼= homD(coker γ32,F) has dimension dim(D) − 2 when-

ever it is non-trivial,
(3) kerF (S1.) ∼= homD(cokerα21,F) ∼= homD(coker γ21,F) has dimension dim(D) − 1 when-

ever it is non-trivial,
(4) kerF (S0.) ∼= homD(M/t(M),F) has dimension dim(D) whenever it is non-trivial.

If R3 has full row rank, i.e., kerD(.R3) = 0, then N33 ∼= ext3
D(N33, D) and thus ext3

D(N33, D) ∼=
ext3

D(ext3
D(M,D), D), and kerF (S3.) is either 0 or has dim(D)− 3 (see (169)).

The linear system kerF (R11.) can be obtained by first integrating the linear system kerF (P.),
i.e., by integrating in cascade the linear system kerF (S3.) of dimension less or equal to dim(D)−3,
then the inhomogeneous linear systems of dimension respectively dim(D) − 2, dim(D) − 1 and
dim(D). If F is an injective left D-module, then kerF (R′11.) = R01 Fp−11 .

Using the regular patterns of the matrix P and (189), we can easily generalize Theorem 4.1,
Corollary 4.3 and Remark 4.3 when kerD(.R3) 6= 0, i.e., for a finitely presented left D-module
M = D1×p01/(D1×p11 R11) defined by a longer finite free resolution of the form:

0←−M π←− D1×p0 .R1←−− D1×p1 .R2←−− D1×p2 .R3←−− D1×p3 .R4←−− . . .
.Rm←−−− D1×pm .

If kerD(.Rm) = 0, then the corresponding generalization defines a purity filtration of M . For more
results, details and examples on Baer’s extensions and purity filtrations, see [100].

Finally, even if the size of the matrix P is larger than the one of R11, P is more suitable for a
fine study of the module properties of the left D-module M ∼= E than R11, for the study of the
structural properties of the linear system kerF (R11.) ∼= kerF (P.) as well as for computing closed-
form solutions of kerF (R11.) (if they exist). We refer the reader to [97] for examples of linear PD
systems kerF (R11.) which cannot be integrated by means of computer algebra systems such as
Maple contrary to their equivalent forms kerF (P.). Let us give an example ([86]).

Example 4.1. Let us consider the D = Q[∂1, ∂2, ∂3]-module M = D1×4/(D1×6 R) finitely pre-
sented by the following matrix:

R =



0 −2 ∂1 ∂3 − 2 ∂2 − ∂1 −1
0 ∂3 − 2 ∂1 2 ∂2 − 3 ∂1 1
∂3 −6 ∂1 −2 ∂2 − 5 ∂1 −1
0 ∂2 − ∂1 ∂2 − ∂1 0
∂2 −∂1 −∂2 − ∂1 0
∂1 −∂1 −2 ∂1 0


.

Using Algorithm 2.1, we obtain that the D-module M admits the following finite free resolution

0←−M π←− D1×4 .R←− D1×6 .R2←−− D1×4 .R3←−− D ←− 0,

where:

R2 =


2 ∂2 ∂2 −∂2 −∂3 ∂3 0
2 ∂1 ∂2 −2 ∂1 + ∂2 −∂3 8 ∂1 − ∂3 −8 ∂2 + 2 ∂3

0 ∂1 − ∂2 ∂1 − ∂2 ∂3 −8 ∂1 + ∂3 8 ∂2 − ∂3

0 0 0 ∂1 −∂1 ∂2

 ,

R3 = (∂1 ∂2 − ∂2 ∂3).
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Using the notations R11 = R, R22 = R2 and R33 = R3, the commutative diagram (159) becomes
the following commutative diagram

0 −→ D
R13.−−−→ D4 R23.−−−→ D4 R33.−−−→ D

κ33−−→ N33 −→ 0
↑ F03. ↑ F13. ‖

0 −→ D3 R12.−−−→ D6 R22.−−−→ D4 κ22−−→ N22 −→ 0
↑ F02. ‖

0 −→ D
R01.−−−→ D4 R11.−−−→ D6 κ11−−→ N11 −→ 0

‖
0 −→ D4 κ00−−→ N00 −→ 0,

whose horizontal sequences are exact and with the following notations:

R01 =


1
−1
1

∂1 − 2 ∂2 + ∂3

 , R12 =



1 0 0
−1 4 ∂1 − ∂3 0
1 4 ∂1 − ∂3 ∂3

0 ∂1 − ∂2 0
0 ∂1 − ∂2 0
0 0 ∂1


, R23 =


−∂3 ∂2 0 0

0 0 1 0
0 ∂1 −1 ∂3

∂1 0 0 ∂2

 ,

R13 =


−∂2

−∂3

0
∂1

 , F02 =

 0 −2 ∂1 −∂1 − 2 ∂2 + ∂3 −1
0 −1 −1 0
1 −1 −2 0

 ,

F13 =


0 0 0 1 −1 0
2 1 −1 0 0 0

2 ∂1 ∂2 −2 ∂1 + ∂2 −∂3 8 ∂1 − ∂3 −8 ∂2 + 2 ∂3

0 0 0 0 0 1

 , F03 = (0 0 1) ,

R03 = 0 and R02 = 0. Using Remark 4.1 with p03 = 1 and p02 = 3, we obtain R′13 = 1, R′12 = I3 ,
R′23 = 0 and R′13 = 0. The commutative diagram (178) becomes the following one

0 ←− D
.R′13←−−− D ←− 0

↓ .F03 ↓ .F ′13

0 ←− D1×3 .R′12←−−− D1×3 ←− 0
↓ .F02 ↓ .F ′12

D
.R01←−−− D1×4 .R′11←−−− D1×3 ←− 0,

with the following notations:

R′11 =

 1 0 −1 0
0 1 1 0
0 0 ∂1 − 2 ∂2 + ∂3 −1

 , F ′13 = F03, F ′12 =

 0 −2 ∂1 1
0 −1 0
1 −1 0

 .

Moreover, using (174), we have R′′13 = R13, R′′12 = R12 and:

R′′11 =



0 −2 ∂1 1
0 −2 ∂1 + ∂3 −1
∂3 −6 ∂1 1
0 −∂1 + ∂2 0
∂2 −∂1 0
∂1 −∂1 0


.

Since kerD(.R3) = 0, N33 ∼= ext3
D(M,D) and thus ext3

D(N33, D) ∼= ext3
D(ext3

D(M,D), D), which
shows that the filtration {Mi}i=−1,...,3 of the left D-module M defined by (170) is a purity filtration
of M .
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Using (181), if N11 = D6/(R11 D
4), N22 = D4/(R22 D

6) and N33 = D/(R33 D
4), then we

obtain the finitely left D-modules:
L1 = D1×3/(D1×6 R′′11) ∼= ext1

D(N11, D) ∼= t(M),
L2 = D1×3/(D1×6 R12) ∼= ext2

D(N22, D),
L3 = D/(D1×4 R13) ∼= ext3

D(N33, D).

Theorem 4.1 yields M ∼= E = D1×11/(D1×23 P ), where the matrix P is defined by:

P =



1 0 −1 0 −1 0 0 0 0 0 0
0 1 1 0 0 −1 0 0 0 0 0
0 0 ∂1 − 2 ∂2 + ∂3 −1 0 0 −1 0 0 0 0
0 0 0 0 0 −2 ∂1 1 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 0 0
0 0 0 0 1 −1 0 0 0 −1 0
0 0 0 0 0 −2 ∂1 1 0 0 0 0
0 0 0 0 0 −2 ∂1 + ∂3 −1 0 0 0 0
0 0 0 0 ∂3 −6 ∂1 1 0 0 0 0
0 0 0 0 0 −∂1 + ∂2 0 0 0 0 0
0 0 0 0 ∂2 −∂1 0 0 0 0 0
0 0 0 0 ∂1 −∂1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 4 ∂1 − ∂3 0 0
0 0 0 0 0 0 0 1 4 ∂1 − ∂3 ∂3 0
0 0 0 0 0 0 0 0 ∂1 − ∂2 0 0
0 0 0 0 0 0 0 0 ∂1 − ∂2 0 0
0 0 0 0 0 0 0 0 0 ∂1 0
0 0 0 0 0 0 0 0 0 0 −∂2

0 0 0 0 0 0 0 0 0 0 −∂3

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ∂1



.

If F = C∞(R3), then let us explicitly compute kerF (P.). We first integrate the last diagonal
block of P , i.e., the 0-dimensional linear system kerF (R13.):

−∂2 τ3 = 0,
−∂3 τ3 = 0,
∂1 τ3 = 0,

⇔ τ3 = c1 ∈ R.

We then integrate the inhomogeneous linear system in τ2 = (τ21, τ22, τ23) and τ3 formed by the
third triangular block of P , namely:

τ23 − τ3 = 0,
τ21 = 0,
−τ21 + (4 ∂1 − ∂3) τ22 = 0,
τ21 + (4 ∂1 − ∂3) τ22 + ∂3 τ23 = 0,
(∂1 − ∂2) τ22 = 0,

⇔


τ23 = τ3 = c1,

τ21 = 0,
(4 ∂1 − ∂3) τ22 = 0,
(∂1 − ∂2) τ22 = 0,

We obtain τ21 = 0, τ22 = f1(x3 + 1
4 (x1 + x2)), where f1 is an arbitrary smooth function, and

τ23 = c1, where c1 is an arbitrary constant. Then, we have to integrate the inhomogeneous linear
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system in τ1 = (τ11, τ12, τ13) and τ2 formed by the second triangular block of P , namely:

−2 ∂1 τ12 + τ13 − τ21 = 0,
−τ12 − τ22 = 0,
τ11 − τ12 − τ23 = 0,
−2 ∂1 τ12 + τ13 = 0,
(−2 ∂1 + ∂3) τ12 − τ13 = 0,
∂3 τ11 − 6 ∂1 τ12 + τ13 = 0,
(−∂1 + ∂2) τ12 = 0,
∂2 τ11 − ∂1 τ12 = 0,
∂1 τ11 − ∂1 τ12 = 0,

⇔


τ12 = −τ22 = −f1(x3 + 1

4 (x1 + x2)),
τ11 = τ12 + τ23 = −f1(x3 + 1

4 (x1 + x2)) + c1,

τ13 = 2 ∂1 τ12 + τ21 = − 1
2 ḟ1(x3 + 1

4 (x1 + x2)).

The entries of τ1 are 1-dimensional and not 2-dimensional. This result comes from the fact
that the matrix S1 defined in Remark 4.2 admits a left-inverse over D, and thus kerF (S1.) ∼=
homD(cokerα21,F) ∼= homD(coker γ21,F) = 0. Finally, we integrate the inhomogeneous linear
system in ζ = (ζ1, . . . , ζ4) and τ1 formed by the first triangular block of P , namely:
(192)

ζ1 − ζ3 − τ11 = 0,
ζ2 + ζ3 − τ12 = 0,
(∂1 − 2 ∂2 + ∂3) ζ3 − ζ4 − τ13 = 0,

⇔


ζ1 − ζ2 = −f1(x3 + 1

4 (x1 + x2)) + c1,

ζ2 + ζ3 = −f1(x3 + 1
4 (x1 + x2)),

(∂1 − 2 ∂2 + ∂3) ζ3 − ζ4 = − 1
2 ḟ1(x3 + 1

4 (x1 + x2)).

The D-module M/t(M) = D1×4/(D1×3 R′11) is parametrized by R01, i.e., M/t(M) ∼= D1×4 R01.
Since F is an injective D-module (see Example 4.2), the linear system kerF (R′11.) is parametrized
by R01, i.e., kerF (R′11.) = R01 F . Since the matrix R′11 admits the following right-inverse

X =


1 0 0
0 1 0
0 0 0
0 0 −1

 ,

Corollary 3.3 shows that M/t(M) is a stably free D-module, and thus M/t(M) is a free D-module
of rank 1 by the Quillen-Suslin theorem (see 2 of Theorem 1.2). Hence, Corollary 2.2 proves that
the general F-solution of (192) is defined by ζ = R01 ξ +X τ1, i.e.:

∀ ξ ∈ C∞(R3), ∀ f1 ∈ C∞(R), ∀ c1 ∈ R,


ζ1 = ξ − f1(x3 + 1

4 (x1 + x2)) + c1,

ζ2 = −ξ − f1(x3 + 1
4 (x1 + x2)),

ζ3 = ξ,

ζ4 = (∂1 − 2 ∂2 + ∂3) ξ + 1
2 ḟ1(x3 + 1

4 (x1 + x2)).
Finally, using the D-isomorphism γ defined by (191), we obtain

−2 ∂1 η2 + ∂3 η3 − 2 ∂2 η3 − ∂1 η3 − η4 = 0,
∂3 η2 − 2 ∂1 η2 + 2 ∂2 η3 − 3 ∂1 η3 + η4 = 0,
∂3 η1 − 6 ∂1 η2 − 2 ∂2 η3 − 5 ∂1 η3 − η4 = 0,
∂2 η2 − ∂1 η2 + ∂2 η3 − ∂1 η3 = 0,
∂2 η1 − ∂1 η2 − ∂2 η3 − ∂1 η3 = 0,
∂1 η1 − ∂1 η2 − 2 ∂1 η3 = 0,

⇔


η1 = ξ − f1(x3 + 1

4 (x1 + x2)) + c1,

η2 = −ξ − f1(x3 + 1
4 (x1 + x2)),

η3 = ξ,

η4 = (∂1 − 2 ∂2 + ∂3) ξ + 1
2 ḟ1(x3 + 1

4 (x1 + x2)),

where ξ (resp., f1, c1) is an arbitrary function of C∞(R3) (resp., C∞(R), constant).

375





An introduction to constructive algebraic analysis and its applications

CHAPTER 3

Factorization, reduction and decomposition problems

Nowadays, mathematics focuses on the concept of categories (see [15, 65, 110]) which simulta-
neously study objects and homomorphisms between objects. In Chapter 1, we studied the objects
of the category DModf formed by finitely generated left D-modules and left D-homomorphisms
between finitely generated left D-modules, where D is a noetherian domain or a noncommutative
polynomial ring for which Buchberger’s algorithm terminates for any admissible term order. In
this chapter, we study the left D-homomorphisms between two finitely generated left D-modules,
i.e., between two finitely presented left D-modules since D is a left noetherian domain.

We shall explain that the computation of homomorphisms has many interesting applications in
mathematical systems theory. In particular, the elements of the endomorphism ring endD(M) =
homD(M,M) of a finitely presented left D-module M = D1×p/(D1×q R) naturally define the in-
ternal symmetries of the linear system kerF (R.), where F is a left D-module, namely, D-linear
transformations which send elements of kerF (R.) to elements of kerF (R.). The subgroup autD(M)
of endD(M) formed by the automorphisms of M (namely, the bĳective left D-homomorphisms of
M) defines Galois-like transformations of kerF (R.). A first application of the computation of ho-
momorphisms is the computation of quadratic conservation laws of linear PD systems coming from
mathematical physics. They can be obtained in a purely algorithmic way without any knowledge
of physics. Other applications of the computation of endD(M) are the so-called factorization, re-
duction and decomposition problems largely studied in the symbolic computation literature. These
problems aim at factoring a matrix of functional operators (e.g., PD operators, OD time-delay
operators, difference operators) or at finding an equivalence matrix having a block-triangular or
block-diagonal structure. We study those problems by generalizing the eigenring approach devel-
oped for linear OD systems by Singer and others ([7, 94, 114]) to more general linear functional
(determined/underdetermined/overdetermined) systems.

1. Homomorphisms between two finitely presented modules

As explained in Chapter 1, if M = D1×p/(D1×q R) (resp., M ′ = D1×p′/(D1×q′ R′)) is a left D-
module finitely presented by R ∈ Dq×p (resp., R′ ∈ Dq′×p′) and if {ej}j=1,...,p (resp., {e′k}k=1,...,p′)
is the standard basis of D1×p (resp., D1×p′), then {π(ej)}j=1,...,p (resp., {π′(e′k)}k=1,...,p′) is a
family of generators of M (resp., M ′). Now, f ∈ homD(M,M ′) sends the generators of M to
certain elements of M ′, i.e., we have f(π(ej)) =

∑p′

k=1 Pjk π
′(e′k) for j = 1, . . . , p, where the Pjk’s

are elements of D which must satisfy the relations coming from f(0) = 0, i.e., f must send the
left D-linear relations

∑p
j=1 Rij π(ej) = 0 for i = 1, . . . , q between the generators π(ej)’s of M to

0. Hence, for i = 1, . . . , q, by left D-linearity, we have:

f

 p∑
j=1

Rij π(ej)

 =
p∑
j=1

Rij f(π(ej)) =
p∑
j=1

Rij

 p′∑
k=1

Pjk π
′(e′k)

 = π′

 p′∑
k=1

 p∑
j=1

Rij Pjk

 e′k

 = 0,

and thus, (
∑p
j=1 Rij Pj1, . . . ,

∑p
j=1 Rij Pjp′) ∈ D1×q′ R′, i.e., there exists Qi• ∈ D1×q′ such that

(
∑p
j=1 Rij Pj1, . . . ,

∑p
j=1 Rij Pjp′) = Qi•R

′. If Q = (QT1• . . . QTq•)T ∈ Dq×q′ , then we obtain:

RP = QR′.
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We can check that the Pjk’s are not uniquely defined by f ∈ homD(M,M ′). Indeed, if we have
f(π(ej)) =

∑p′

k=1 P jk π
′(e′k), where the P jk’s are elements of D, then we have

∀ j = 1, . . . , p,
p′∑
k=1

(P jk − Pjk)π′(e′k) = 0 = π′

 p′∑
k=1

(P jk − Pjk) e′k

 ,

and thus, the row vector P j• − Pj• = (P j1 − Pj1, . . . , P jp′ − Pjp′) belongs to D1×q′ R′, i.e.,
there exists Zj ∈ D1×q′ satisfying P j• − Pj• = Zj R

′. Hence, we obtain P − P = Z R′, where
Z = (ZT1 . . . ZTp )T ∈ Dp×q′ . Finally, if R′2 ∈ Dr′×q′ is a matrix satisfying kerD(.R′) = D1×r′ R′2
and Z ′ ∈ Dq×r′ is any arbitrary matrix, then we have

RP = RP +RZ R′ = QR′ +RZ R′ = (Q+RZ)R′ = (Q+RZ + Z ′R′2)R′,

which proves that we have RP = QR′ where Q = Q+RZ + Z ′R′2 ∈ Dq×q′ .

Proposition 1.1 ([19]). Let R ∈ Dq×p and R′ ∈ Dq′×p′ be two matrices, M = D1×p/(D1×q R)
and M ′ = D1×p′/(D1×q′ R′) two finitely presented left D-modules and the canonical projections
π : D1×p −→M and π′ : D1×p′ −→M ′. Then, f ∈ homD(M,M ′) is defined by

(193) ∀ m = π(λ), λ ∈ D1×p : f(m) = π′(λP ),

where P ∈ Dp×p′ is such that D1×q (RP ) ⊆ D1×q′ R′, i.e., such that the following identity holds

(194) RP = QR′,

for a certain matrix Q ∈ Dq×q′ . Then, we have the following commutative exact diagram:

(195)
D1×q .R−→ D1×p π−→ M −→ 0
↓ .Q ↓ .P ↓ f

D1×q′ .R′−→ D1×p′ π′−→ M ′ −→ 0.

Conversely, a pair of matrices (P,Q) satisfying (194) defines f ∈ homD(M,M ′) by (193), i.e.:

(196) homD(M,M ′) ∼= {P ∈ Dp×p′ | ∃ Q ∈ Dq×q′ : RP = QR′}/(Dp×q′ R′)

The matrices P and Q are defined up to a homotopy equivalence: the matrices defined by

(197)

{
P = P + Z R′,

Q = Q+RZ + Z ′R′2,

where Z ∈ Dp×q′ and Z ′ ∈ Dq×r′ are arbitrary matrices and the matrix R′2 ∈ Dr′×q′ is such that
kerD(.R′) = D1×r′ R′2, satisfy the relation RP = QR′ and define the left D-homomorphism f .

Remark 1.1. Applying the contravariant functor homD( · ,M ′) to the finite presentationD1×q .R−→
D1×p π−→M −→ 0 of M , we obtain the following exact sequence of abelian groups:

M ′q
R.←−M ′p ←− kerM ′(R.)←− 0.

Theorem 1.1 then shows that homD(M,M ′) ∼= kerM ′(R.) = {η ∈ M ′p | Rη = 0} and if η =
(π′(µ1), . . . , π′(µp))T ∈ kerM ′(R.), then χ(η) = φη ∈ homD(M,M ′) is defined by

φη(π(λ)) = λ η =
p∑
j=1

λj π
′(µj) = π′

 p∑
j=1

λj µj

 = π′(λP ),

where P = (µT1 . . . µTp )T ∈ Dp×p′ and the µj ∈ D1×p′ for j = 1, . . . , p satisfy Rη = 0, i.e.,

∀ i = 1, . . . , q,
p∑
j=1

Rij π
′(µj) = π′

 p∑
j=1

Rij µj

 = 0,

which implies the existence of νi ∈ D1×q′ for i = 1, . . . , q such that
∑p
j=1 Rij µj = νiR

′, i.e., such
that (194) holds where Q = (νT1 . . . νTq )T ∈ Dq×q′ , which also leads to Proposition 1.1.
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Let us now explain one of the main interests of characterizing homD(M,M ′).
Applying the contravariant left exact functor homD( · ,F) to the commutative exact diagram

(195) and using Theorem 1.1, i.e., the Z-isomorphism kerF (R.) ∼= homD(M,F) (resp., kerF (R′.) ∼=
homD(M ′,F)), we get the following commutative exact diagram of abelian groups

Fq R.←− Fp i←− kerF (R.) ←− 0
↑ Q. ↑ P. ↑ f?

Fq′ R′.←−− Fp′ i′←− kerF (R′.) ←− 0,
where f? : kerF (R′.) −→ kerF (R.) is defined by f?(ζ) = P ζ for all ζ ∈ kerF (R′.). Indeed,
RP = QR′ and R′ ζ = 0 yields R (P ζ) = Q′ (R′ ζ) = 0, i.e., η = P ζ ∈ kerF (R.).

Corollary 1.1 ([19]). Let F be a left D-module, R ∈ Dq×p, R′ ∈ Dq′×p′ and the linear systems
kerF (R.) = {η ∈ Fp | Rη = 0} and kerF (R′.) = {η′ ∈ Fp′ | R′ η′ = 0}. Then, an element
f ∈ homD(M,M ′) defined by matrices P ∈ Dp×p′ and Q ∈ Dq×q′ satisfying (194) induces the
following abelian group homomorphism:

f? : kerF (R′.) −→ kerF (R.)
η′ 7−→ η = P η′.

Corollary 1.1 shows that an element of homD(M,M ′) defines a transformation which sends
the elements of kerF (R′.) ∼= homD(M ′,F) to those of kerF (R.) ∼= homD(M,F). If M ′ = M ,
then the elements of the D-endomorphism ring endD(M) = homD(M,M) of M define internal
transformations of kerF (R.). We note that the ring endD(M) contains the subgroup autD(M)
formed by the left D-automorphisms of M , namely, the bĳective endomorphisms of M . The
elements of autD(M) define Galois-like transformations of the linear system kerF (R.).

Proposition 1.1 and Corollary 1.1 allow us to find again the theory of eigenrings ([7, 114]).

Example 1.1. Let D = A〈∂〉 be the ring of OD operators with coefficients in a differential ring
A, E, F ∈ Ap×p, R = ∂ Ip − E ∈ Dp×p, R′ = ∂ Ip − F ∈ Dp×p, M = D1×p/(D1×pR) and
M ′ = D1×p/(D1×pR′). Let π (resp., π′) be the canonical projection of D1×p onto M (resp., M ′)
and {ej}j=1,...,p the standard basis of the free left D-module D1×p. As explained in Section 1,
{yj = π(ej)}j=1,...,p (resp., {zj = π′(ej)}j=1,...,p) defines a family of generators of M (resp., M ′)
and the yj ’s (resp., zj ’s) satisfy the following left D-linear relations:

(198) ∀ i = 1, . . . , p, ∂ yi =
p∑
j=1

Eij yj ,

resp., ∂ zi =
p∑
j=1

Fij zj

 .

Let us now consider a non-trivial f ∈ homD(M,M ′). Then, f sends the generators yj ’s of M
to left D-linear combinations of the generators zj ’s of M ′, i.e., there exists a matrix P ∈ Dp×p

such that f(yi) =
∑p
j=1 Pij zj for i = 1, . . . , p. Using (198), every left D-linear combination of

the zj ’s can be rewritten in the form of an A-linear combination of the zj ’s, i.e., we can suppose
without loss of generality that all the entries Pij of P belong to A, i.e., P ∈ Ap×p. According to
Proposition 1.1, there exists a matrix Q ∈ Dp×p such that (194), and thus:
(199) (194) ⇔ (∂ Ip − E)P = Q (∂ Ip − F ) ⇔ P ∂ + Ṗ − E P = Q∂ −QF.
Since the degrees of P ∂ and Q∂ are respectively 1 and r + 1, where r is the maximum of the
degrees of the entries of Q, then we must have r = 0, i.e., Q ∈ Ap×p, a fact yielding

(200) (199) ⇔ (P −Q) ∂ + (Ṗ − E P +QF ) = 0 ⇔

{
Q = P,

Ṗ = E P − P F.

Any f ∈ homD(M,M ′) can then be defined by f(π(λ)) = π′(λP ), where P ∈ Ap×p satisfies
Ṗ = E P − P F . If F is a left D-module, ζ ∈ kerF (R′.), i.e., ∂ ζ − F ζ = 0, and η = P ζ, then:

Rη = ∂ (P ζ)− E (P ζ) = P ∂ ζ + Ṗ ζ − (E P ) ζ = P (∂ ζ − F ζ) = 0 ⇒ η ∈ kerF (R.).
If P ∈ GLp(A), then the second equation of (200) yields F = P−1 E P −P−1 Ṗ . In particular, if

P is a constant matrix, i.e., Ṗ = 0, then we find again the transformation F = P−1 E P classically
used in the integration of first order linear OD systems with constant coefficients.
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If F = E, then the second equation of (200) defines the eigenring of the linear OD system
∂ η = E η, namely, E = {P ∈ Ap×p | Ṗ = E P − P E}, introduced by Singer in [114]. Using the
properties tr(P1 + P2) = tr(P2 + P1) and tr(P1 P2) = tr(P2 P1) of the trace, for all P ∈ E , we get

∀ k ∈ N,
d tr(P k)

dt
= tr

(
dP k

dt

)
= tr

(
d (P . . . P )

dt

)
= tr(Ṗ P k−1 + P Ṗ P k−2 + P 2 Ṗ P k−3 + . . .+ P k−1 Ṗ ) = k tr(Ṗ P k−1)

= k tr((E P − P E)P k−1) = k tr(E P k − P E P k−1)

= k tr(E P k − E P k) = 0,

i.e., the tr(P k)’s are first integrals. Since the coefficients ai’s of the characteristic polynomial of
P are symmetric functions of the eigenvalues of P and can be expressed in terms of the tr(P k)’s
(Newton’s formulas), they are also first integrals. Therefore, the eigenvalues of P are first integrals
because they are algebraic functions of the ai’s, i.e., P ∈ E is isospectral. Following the ideas
of [7, 94, 114], we can then compute a Jordan normal form of P ∈ E and use the corresponding
change of bases to transform the linear OD system ∂ η = E η into ∂ ζ = E ζ, where E ∈ Ap×p is
either a block-triangular or a block-diagonal matrix.

Let us illustrate the results with the following explicit example over A = Q[t]:

(201) η̇ = E η, E =

(
t (2 t+ 1) −2 t3 − 2 t2 + 1

2 t −t (2 t+ 1)

)
∈ A2×2.

Using algorithms which compute polynomial solutions of linear OD systems ([1, 7]), we get:

E =

{
P =

(
a1 − a2 (t+ 1) a2 t (t+ 1)

−a2 a2 t+ a1

)
| a1, a2 ∈ Q

}
.

If P ∈ E , then det(P − λ I2) = (λ− a1) (λ− a1 + a2) and the Jordan normal form of P is:

J = U−1 P U =

(
a1 0
0 a1 − a2

)
, U =

(
−t t+ 1
−1 1

)
, U−1 =

(
1 −(t+ 1)
1 −t

)
.

If ζ = U−1 η = (η1 − (t+ 1) η2 η1 − t η2)T , then the linear OD system η̇ = E η is equivalent to:

ζ̇ = U−1 (E U − U̇) ζ =

(
−t 0
0 t

)
ζ ⇔ ∀ C1, C2 ∈ R,

{
ζ1 = C1 e

−t2/2,

ζ2 = C2 e
t2/2.

Finally, using the invertible transformation η = U ζ, we obtain the general solution of (201):

∀ C1, C2 ∈ R,

{
η1 = −C1 t e

−t2/2 + C2 (t+ 1) et2/2,

η2 = −C1 e
−t2/2 + C2 e

t2/2.

Example 1.1 can be generalized to the so-called integrable algebraic connections ([94]).

Let D = Bn(k) be the second Weyl algebra, where k is a field, and Ei ∈ k(x1, . . . , xn)p×p for
i = 1, . . . , n. Then, an algebraic connection is a linear PD system of the form:

(202)


∂1 y − E1 y = 0,

...
∂n y − En y = 0.

Let ∇i = ∂i Ip − Ei ∈ Dp×p for i = 1, . . . , n. Then, the algebraic connection (202) is said to be
integrable if the following integrability conditions are satisfied:

(203) [∇i,∇j ] , ∇i∇j −∇j ∇i = ∂Ei
∂xj
− ∂Ej
∂xi

+ EiEj − Ej Ei = 0, 1 ≤ i < j ≤ n.

The next proposition characterizes the ring of endomorphisms of an integrable connection.
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Proposition 1.2 ([19]). Let D = Bn(k) be the second Weyl algebra over a field k, n matrices
E1, . . . , En ∈ k(x1, . . . , xn)p×p satisfying (203), R = ((∂1 Ip − E1)T · · · (∂n Ip − En)T )T ∈ Dn p×p,
and the left D-module M = D1×p/(D1×n pR). Then, f ∈ endD(M) is defined by the matrices
P ∈ k(x1, . . . , xn)p×p and Q ∈ k(x1, . . . , xn)n p×n p satisfying the following relations

(204)


∂P

∂xi
+ P Ei − Ei P = 0, i = 1, . . . , n,

Q = diag(P, . . . , P ),
where diag(P, . . . , P ) denotes the diagonal matrix formed by n matrices P on the diagonal.

Example 1.2. The strain tensor ε = (εij)i,j=1,2 of R2 is defined by the Killing operator, i.e., the
Lie derivative of the euclidean metric defined by ωij = 1 for i = j and 0 otherwise, namely

(205)


ε11 = ∂1 ξ1,

ε12 = ε21 = 1
2 (∂2 ξ1 + ∂1 ξ2),

ε22 = ∂2 ξ2,

where, using the euclidean metric of R2, ξi = ξi, i = 1, 2, and ξ = (ξ1, ξ2) is a displacement.
Let us consider (205) with ε = 0, i.e., the system corresponding to the Lie algebra of the Lie

group of rigid motions in R2 ([83, 84]). (205) can be written as the integrable connection:

∀ i = 1, 2, ∇i = ∂i I3 − Ei, E1 =

 0 0 0
0 0 1
0 0 0

 , E2 =

 0 0 −1
0 0 0
0 0 0

 , y =

 ξ1

ξ2

∂1 ξ2

 .

Let D = Q[∂1, ∂2], R = (∇T1 ∇T2 )T and M = D1×3/(D1×6 R). According to Proposition 1.2,
f ∈ endD(M) can be defined by P ∈ R3×3 satisfying:

(206)

{
P E1 − E1 P = 0,
P E2 − E2 P = 0,

⇔ P =

 α 0 γ

0 α β

0 0 α

 , ∀ α, β, γ ∈ R.

We can easily check that the general solution of ∇i η(x1, x2) = 0 for i = 1, 2 is defined by:
∀ a, b, c ∈ R, η1(x1, x2) = −a x2 + b, η2(x1, x2) = a x1 + c, η3(x1, x2) = a.

Finally, if P is defined by (206), then according to Corollary 1.1,

ζ = P η =

 −(αa)x2 + (α b+ γ a)
(αa)x1 + (α c+ β a)

αa


is another solution of the integrable algebraic connection ∇i η(x1, x2) = 0 for i = 1, 2.

2. Computation of left D-homomorphisms

We now turn to the problem of solving the general equation RP = QR′. The situation is
different if we consider a commutative or a noncommutative ring D. Indeed, if D is a commutative
ring, then homD(M,M ′) is a D-module whereas homD(M,M ′) is usually an abelian group if D
is a noncommutative ring (see Section 1). If D is a noetherian commutative ring, then M ′k is a
noetherian D-module for all k ∈ N, and thus so is the D-module kerM ′(R.) ∼= homD(M,M ′) (see,
e.g., [54, 110]). Thus, homD(M,M ′) is a finitely generated D-module, and thus a finitely presented
D-module since D is a noetherian ring (see Section 1). Hence, homD(M,M ′) can be defined by a
finite family of generators and D-linear relations, i.e., by a finite presentation.

If D is a noetherian commutative ring, then let us explain how to find a finite presentation of
the D-module homD(M,M ′). Let R ∈ Dq×p, R′ ∈ Dq′×p′ , P ∈ Dp×p′ and Q ∈ Dq×q′ be four
matrices satisfying (194). Since D is a commutative ring, then using Lemma 1.2, we obtain{

row(RP ) = row(RP Ip′) = row(P ) (RT ⊗ Ip′),
row(QR′) = row(Iq QR′) = row(Q) (Iq ⊗R′),
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(194) ⇔ (row(P ) − row(Q)) L = 0, L =

(
RT ⊗ Ip′
Iq ⊗R′

)
∈ D(p p′+q q′)×q p′ .

Now, there exists a matrix L2 ∈ Ds×(p p′+q q′) such that kerD(.L) = D1×s L2. Stacking the rows
of L2, we find a set of matrices {Pi}i=1,...,s and {Qi}i=1,...,s, where Pi ∈ Dp×p′ and Qi ∈ Dq×q′ ,
satisfying the relation RPi = QiR

′ for i = 1, . . . , s. Moreover, we can easily check that every
solution P ∈ Dp×p′ and Q ∈ Dq×q′ of (194) has the form{

P =
∑s
i=1 αi Pi,

Q =
∑s
i=1 αiQi,

where αi ∈ D for i = 1, . . . , s, i.e., {Pi}i=1,...,s is a set of generators of the following D-module:

E = {P ∈ Dp×p′ | ∃ Q ∈ Dq×q′ : RP = QR′}.

Therefore, the set {P i}i=1,...,s of the residue classes of the matrices Pi’s in theD-module E/(Dp×q′ R′) ∼=
homD(M,M ′) (see (196)) generates E/(Dp×q′ R′), i.e., homD(M,M ′) up to isomorphism. In par-
ticular, if P i = Pi +ZiR

′ for certain matrices Zi ∈ Dp×q′ and i = 1, . . . , s, then we can introduce
the matrices Qi = Qi + RZi for i = 1, . . . , s, and Pi and Qi satisfy the relation RP i = QiR

′ for
i = 1, . . . , s, i.e., they induce fi ∈ homD(M,M ′) defined by:

∀ λ ∈ D1×p, fi(π(λ)) = π′(λP i), i = 1, . . . , s.

Then, {fi}i=1,...,s is a family of generators of homD(M,M ′). A D-linear relation
∑s
j=1 dj fj = 0

between the fi’s is equivalent to the existence of Z ∈ Dp×q′ satisfying
∑s
j=1 dj P j = Z R′, i.e.:

s∑
j=1

dj row(P j)− row(Z) (Ip ⊗R′) = 0 ⇔ (d1 . . . ds − row(Z))


row(P 1)

...
row(P s)
Ip ⊗R′

 = 0.

If we introduce the matrices U =
(
row(P 1)T . . . row(P s)T

)T ∈ Ds×p p′ , V = Ip ⊗ R′ ∈ Dp q′×p p′

and W = (UT V T )T ∈ D(s+p q′)×p p′ , then there exist X ∈ Dl×s and Y ∈ Dl×p q′ satisfying
kerD(.W ) = D1×l (X − Y ). If Yi,j denotes the i× j entry of the matrix Y and

Zi =


Yi,1 . . . Yi,q′

Yi,(q′+1) . . . Yi,2 q′

...
...

Yi,(p−1) q′+1 . . . Yi,p q′

 ∈ Dp×q′ , i = 1, . . . , l,

then
∑s
j=1 Xij P j = ZiR

′, and thus the fi’s satisfy the following D-linear relations:

(207)
s∑
j=1

Xij fj = 0, i = 1, . . . , l.

Hence, homD(M,M ′) ∼= D1×s/(D1×lX), i.e., homD(M,M ′) is finitely presented by X ∈ Dl×s.

Let us now study the particular case M ′ = M , i.e., using (196):

endD(M) ∼= {P ∈ Dp×p | ∃ Q ∈ Dq×q : RP = QR}/(Dp×q R).

We note that A , {P ∈ Dp×p | ∃ Q ∈ Dq×q : RP = QR} is a ring. Indeed, 0 ∈ A, Ip ∈ A and if
P1, P2 ∈ A, i.e., RP1 = Q1 R and RP2 = Q2 R for certain matrices Q1, Q2 ∈ Dq×q, then:{

R (P1 + P2) = (Q1 +Q2)R,
R (P1 P2)R = (Q1 R)P2 = Q1 (RP2) = (Q1 Q2)R,

⇒

{
P1 + P2 ∈ A,
P1 P2 ∈ A.
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The other properties of a ring can easily be checked. Ring A is generally a noncommutative ring
since P1 P2 is generally different from P2 P1. Moreover, I , Dp×q R is a two-sided ideal of A.
Indeed, if P1, P2 ∈ A and Z1 R, Z2 R ∈ I, where Zi ∈ Dp×q for i = 1, 2, then:{

P1 (Z1 R) + P2 (Z2 R) = (P1 Z1 + P2 Z2)R,
(Z1 R)P1 + (Z2 R)P2 = Z1 Q1 R+ Z2 Q2 R = (Z1 Q1 + Z2 Q2)R.

Therefore, B , A/I is a ring. If κ : A −→ B is the canonical projection onto B, then the product
of B is defined by κ(P1)κ(P2) , κ(P1 P2) for all P1, P2 ∈ A.

The ring structure of endD(M) can be characterized by the expressing of the compositions fi◦fj
in the family of generators {fk}k=1,...,s for i, j = 1, . . . , s, i.e.:

(208) ∀ i, j = 1, . . . , s, fi ◦ fj =
s∑

k=1
γijk fk, γijk ∈ D.

The γijk’s look like the structure constants appearing in the theory of finite-dimensional algebras.
Hence, if F = (f1 . . . fs)T , then the matrix Γ formed by the γijk satisfies F ⊗F = ΓF . Γ is called
a multiplication table in group theory. Finally, if D〈f1, . . . fs〉 is the free associative D-algebra
generated by the fi’s and

I =

〈
s∑
j=1

Xij fj , i = 1, . . . , l, fi ◦ fj −
s∑

k=1
γijk fk, i, j = 1, . . . , s

〉
is the two-sided ideal of D generated by the polynomials corresponding to the identities (207) and
(208), then the noncommutative ring endD(M) is defined by

(209) endD(M) = D〈f1, . . . fs〉/I,

which shows that endD(M) can be defined as the quotient of a free associative algebra by a
two-sided ideal generated by linear and quadratic relations ([20]).

We sum up the previous result in the following algorithm.

Algorithm 2.1. • Input: Two matrices R ∈ Dq×p and R′ ∈ Dq′×p′ defined over a com-
mutative polynomial ring D over a computational field k.
• Output: A finite family of generators {f1, . . . , fs} of the D-module homD(M,M ′), where
M = D1×p/(D1×q R) (resp., M ′ = D1×p′/(D1×q′ R′)) and a set of D-linear relations of
the fi’s generating the D-module structure of homD(M,M ′).

(1) Compute the matrix L =

(
RT ⊗ Ip′
Iq ⊗R′

)
∈ D(p p′+q q′)×q p′ .

(2) Using Algorithm 2.1, compute a matrix L2 ∈ Ds×(p p′+q q′) satisfying kerD(.L) = D1×s L2.
(3) For i = 1, . . . , s, construct the matrices Pi ∈ Dp×p′ and Qi ∈ Dq×q′ defined by{

Pi(j, k) = L(i, (j − 1) p′ + k), j = 1, . . . , p, k = 1, . . . , p′,
Qi(l,m) = −L(i, p p′ + (l − 1) q′ +m), l = 1, . . . , q, m = 1, . . . , q′,

where L(i, j) denotes the i× j entry of the matrix L. We then have:

RPi = QiR
′, i = 1, . . . , s.

(4) Compute a Gröbner basis G of the rows of R′ for a total degree order.
(5) For i = 1, . . . , s, reduce the rows of Pi with respect to G by computing their normal forms

with respect to G. We obtain the matrices P i which satisfy P i = Pi + ZiR
′, for certain

matrices Zi ∈ Dp×q′ which can be obtained by means of factorizations.
(6) For i = 1, . . . , s, define the following matrices Qi = Qi + RZi. The pair (Pi, Qi) then

satisfies the relation RP i = QiR
′ and the D-module homD(M,M ′) is finitely generated by

{fi}i=1,...,s, where fi ∈ homD(M,M ′) is defined by fi(π(λ)) = π′(λP i), for all λ ∈ D1×p,
and π : D1×p −→ M (resp., π′ : D1×p′ −→ M ′) denotes the projection onto M (resp.,
M ′).
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(7) Form the three matrices U = (row(P 1)T . . . row(P s)T )T ∈ Ds×p p′ , V = Ip ⊗ R′ ∈
Dp q′×p p′ and W = (UT V T ) ∈ D(s+p q′)×p p′ .

(8) Using Algorithm 2.1, compute a matrix (X − Y ), where X ∈ Dl×s and Y ∈ Dl×p q′ ,
such that kerD(.W ) = D1×l (X − Y ). Then, the family of generators {fi}i=1,...,s of the
D-module homD(M,M ′) satisfies the D-linear relations X F = 0, where F = (f1 . . . fs)T ,
i.e., homD(M,M ′) ∼= D1×s/(D1×lX).

(9) If R′ = R, then, for i, j = 1, . . . , s, compute the normal form of row(P i P j) with respect to
a Gröbner basis of the D-module D1×(s+p q) W . With these formal forms, form the matrix
(Γ1 Γ2) ∈ Ds2×(s2+p q), where Γ1 ∈ Ds2×s and Γ2 ∈ Ds2×p q. Then, the matrix Γ1 defines
the multiplication table of family of generators {fi}i=1,...,s of the D-module endD(M).

Example 2.1. Let us consider a commutative ring D, R ∈ Dq a column vector with entries in
D, I = D1×q R the ideal of D generated by the entries of R and M = D/I the D-module finitely
presented by the matrix R. Then, a D-endomorphism f of M is defined by f(π(λ)) = π(λP ),
where π : D −→ M is the canonical projection onto M , λ ∈ D and P ∈ D is such that there
exists Q ∈ Dq×q satisfying the relation RP = QR. Since D is a commutative ring, we can
choose any P ∈ D and Q = P Iq, a fact showing that we can take P = 1 and f = idM generates
the endomorphism ring endD(M). The relations satisfied by idM are obtained by computing
kerD(.W ), where W = (1 RT )T : if λ = (λ1 λ2) ∈ kerD(.W ), where λ1 ∈ D and λ2 ∈ D1×q,
i.e., λ1 + λ2 R = 0, then λ1 = −λ2 R, i.e., λ = −λ2 (R − 1), a fact showing that we can take
X = R and Y = 1. Hence, we get R idM = 0 and endD(M) ∼= M = D/I as a D-module. Finally,
idM ◦ idM = idM defines a trivial ring structure on endD(M) and:

endD(M) ∼= D < idM > / < R1 idM , . . . , Rq idM , idM ◦ idM − idM > ∼= D/I = M.

We note that we could have directly obtained endD(M) ∼= M = D/I by applying the left con-
travariant functor homD( · , D/I) to the finite presentation D1×q .R−→ D

π−→ D/I −→ 0 of the
D-module D/I to get the following exact sequence of D-modules:

(D/I)q R.←− D/I ←− endD(D/I)←− 0,

i.e., kerD/I(R.) ∼= endD(D/I). Using the fact that all the Ri’s belong to I, we then get

∀ d ∈ D, Rπ(d) =

 R1
...
Rq

 π(d) =

 π(R1 d)
...

π(Rq d)

 =

 π(dR1)
...

π(dRq)

 = 0,

which finally shows that endD(D/I) ∼= kerD/I(R.) = D/I.

Example 2.2. Let us consider again the model of the motion of a fluid in a one-dimensional tank
studied in Example 2.5. Let D = Q(α)[∂, δ] be the commutative polynomial ring of OD time-delay
operators with rational constant coefficients (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h)),

(210) R =

(
δ2 1 −2 ∂ δ

1 δ2 −2 ∂ δ

)
∈ D2×3.

the presentation matrix of (146) and the D-module M = D1×3/(D1×2 R) finitely presented by R.
Applying Algorithm 2.1 to R, we obtain that endD(M) is generated by the D-endomorphisms fe1 ,
fe2 , fe3 and fe4 defined by fα(π(λ)) = π(λPα), for all λ ∈ D1×3, where

Pα =

 α1 α2 2α3 ∂ δ

α2 + 2α4 ∂ α1 − 2α4 ∂ 2α3 ∂ δ

α4 δ −α4 δ α1 + α2 + α3 (δ2 + 1)

 , Qα =

(
α1 − 2α4 ∂ α2 + 2α4 ∂

α2 α1

)
,

α = (α1, α2, α3, α4) ∈ D1×4 and {ei}i=1,...,4 is the standard basis of D1×4. To simplify the
notations, we denote by fi = fei . We can check that the generators {fi}i=1,...,4 of the D-module
endD(M) satisfy the following D-linear relations:

(211) (δ2 − 1) f4 = 0, δ2 f1 + f2 − f3 = 0, f1 + δ2 f2 − f3 = 0.
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A complete description of the noncommutative ring endD(M) is given by the knowledge of the
expressions of the compositions fi ◦ fj in the family of generators {fk}k=1,...,4 for i, j = 1, . . . , 4:

(212)



f1 ◦ fi = fi ◦ f1 = fi, i = 1, . . . , 4,
f2 ◦ f2 = f1,

f2 ◦ f3 = f3 ◦ f2 = f3,

f2 ◦ f4 = 2 ∂ f1 − 2 ∂ f2 + f4,

f4 ◦ f2 = −f4,


f3 ◦ f3 = (δ2 + 1) f3,

f3 ◦ f4 = 2 ∂ f1 − 2 ∂ f2 + 2 f4,

f4 ◦ f3 = 0,
f4 ◦ f4 = −2 ∂ f4.

Denoting by fc ◦ fr the composition of an element fc in the first column by an element fr in the
first row, we can write (212) in the form of the following multiplication table:

fc ◦ fr f1 f2 f3 f4

f1 f1 f2 f3 f4
f2 f2 f1 f3 2 ∂ f1 − 2 ∂ f2 + f4
f3 f3 f3 (δ2 + 1) f3 2 ∂ f1 − 2 ∂ f2 + 2 f4
f4 f4 −f4 0 −2 ∂ f4

We finally obtain endD(M) = D〈f1, f2, f3, f4〉/I, where
I = 〈(δ2 − 1) f4, δ

2 f1 + f2 − f3, f1 + δ2 f2 − f3, f1 ◦ f1 − f1, . . . , f4 ◦ f4 + 2 ∂ f4〉
is the two-sided ideal of the free D-algebra D〈f1, f2, f3, f4〉 generated by the polynomials defined
by the identities (211) and (212).

If D is a noncommutative polynomial k-algebra, where k is a field, then homD(M,M ′) has
generally no D-module structure but is a k-vector space. Thus, we cannot repeat what we have
done for commutative rings. Let us explain what we can be done if D = An(k) or Bn(k) and k is
a field. For r, s, t ∈ N, let us introduce the finite-dimensional k-vector spaces:

k[x1, . . . , xm]s = {a ∈ k[x1, . . . , xm] | deg a ≤ s},

k(x1, . . . , xm)s,t = {a/b ∈ k(x1, . . . , xm) | 0 6= b, a ∈ k[x1, . . . , xn], deg a ≤ s, deg b ≤ t},

Ers = {P =
∑
|µ|=0,...,r aµ ∂

µ | aµ ∈ k[x1, . . . , xm]p×p′s },

Ers,t = {P =
∑
|µ|=0,...,r aµ ∂

µ | aµ ∈ k(x1, . . . , xm)p×p
′

s,t }.

We note that Ers,0 = Ers and Er0 = {P =
∑
|µ|=0,...,r aµ ∂

µ | aµ ∈ k}. Even if homD(M,M ′) is
generally an infinite-dimensional k-vector space, we can compute the finite-dimensional k-vector
space {P ∈ Ers,t | RP ∈ Dq×p′ R′} by solving the algebraic systems of equations in the coefficients
of an ansatz P ∈ Ers,t obtained by reducing to zero the normal forms of the rows of the matrix
RP with respect to a Gröbner basis of the left D-module D1×q′ R′. More precisely, we have the
following algorithm which computes the elements of homD(M,M ′) defined by means of a matrix P
with a fixed total order in the operators ∂i and fixed degree (resp., degrees) in xi for the polynomial
(resp., for the numerators and denominators of the rational) coefficients.

Algorithm 2.2. • Input: Two matrices R ∈ Dq×p and R′ ∈ Dq′×p′ defined over a non-
commutative polynomial ring D admitting Gröbner bases for admissible term orders and
three non-negative integers α, β and γ.
• Output: A finite family {fi}i∈I of elements of homD(M,M ′), where M = D1×p/(D1×q R)

and M ′ = D1×p′/(D1×q′ R′), defined by matrices Pi ∈ Eαβ,γ , i.e., satisfying RPi ∈ Dq×pR′

and fi(π(λ)) = π′(λPi), where π : D1×p −→M (resp., π′ : D1×p′ −→M ′) is the canonical
projection onto M (resp., M ′) and λ an arbitrary element of D1×p.

(1) Take an ansatz L =
∑
|µ|=0,...,α aµ ∂

µ ∈ Eαβγ .
(2) Compute the product RL and denote the result by F .
(3) Compute a Gröbner basis G of the left D-module D1×p′ R′ for a total degree order.
(4) Compute the normal forms of the rows of F with respect to G.
(5) Solve the system for the coefficients aµ so that all the normal forms vanish.
(6) Substitute the solutions into the matrix L. Denote the set of solutions by {Li}i∈I .
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(7) For i ∈ I, form the matrix Pi obtained by computing the normal forms of the rows of Li
with respect to G.

Remark 2.1. We note that algebraic systems obtained in the case Eαβ = Eαβ,0 are linear, and
thus, their solutions belong to the field k, whereas the solutions of systems of algebraic equations
corresponding to Eαα,γ , γ ≥ 1, belong to the algebraic closure k of k.

Example 2.3. We consider the Euler-Tricomi equation ([23]) appearing in transonic flow:
∂2

1 u(x1, x2)− x1 ∂
2
2 u(x1, x2) = 0,

Let D = A2(Q) be the first Weyl algebra, R = (∂2
1 −x1 ∂

2
2) ∈ D and M = D/(DR). We can easily

check that endD(M) is an infinite-dimensional Q-vector space. Let us denote by endD(M)rs the
Q-vector space formed by the elements of endD(M) defined by PD operators P whose total orders
(resp., degrees) in the ∂i’s (resp., xj ’s) are less or equal to r (resp., s).

Below, we list of a few examples of endD(M)rs, where the ai’s belong to Q:
• endD(M)0

0 is defined by P = Q = a1.
• endD(M)1

1 is defined by P = a1 + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1 and Q = P + 2 a3.

• endD(M)2
0 is defined by P = Q = a1 + a2 ∂2 + a3 ∂

2
2 .

• endD(M)2
1 is defined by{

P = a1 + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1 + a4 ∂

2
2 + 3

2 a5 x2 ∂
2
2 + a5 x1 ∂1 ∂2,

Q = P + 2 a3 + 2 a5 ∂2.

Example 2.4. Let us consider the first Weyl algebra D = A2(Q) and the finitely presented left
D-module M = D1×2/(D1×2 R) defined by the following matrix of PD operators:

R =
(
∂1 −x1∂2
∂2 x1 ∂1

)
∈ D2×2.

The left D-module M is associated with the so-called conjugate Beltrami equations. The endomor-
phism ring endD(M) is an infinite-dimensional Q-vector space and, using the notations defined in
Example 2.3, we obtain the following examples of endD(M)rs:

• endD(M)0
1 is defined by P = Q = a1 I2, where a1 ∈ Q.

• endD(M)1
0 is defined by:

P = Q =
(
a1 + a2 ∂2 0

0 a1 + a2 ∂2

)
, a1, a2 ∈ Q.

• endD(M)1
1 is defined by:

P =
(
a3 (x2 ∂2 + x1 ∂1 − 1) + a2 ∂2 + a1 0

−a3 ∂2 a3 x2 ∂2 + a2 ∂2 + a1

)
,

Q =
(
a3 (x2 ∂2 + x1 ∂1) + a2 ∂2 + a1 a3 x1 ∂2

0 a2 ∂2 + a3 x2 ∂2 + a1

)
, a1, a2, a3 ∈ Q.

3. Conservations laws of linear PD systems

Let D = A〈∂1, . . . , ∂n〉 be a ring of PD operators with coefficients in a differential ring A and
R ∈ Dq×p. One can prove that the formal adjoint R̃ ∈ Dp×q of R satisfies the following identity

(213) (λ,R η) = (R̃ λ, η) +
n∑
i=1

∂i Φi(λ, η),

where ( · , · ) denotes the standard inner product of Rq and the Φi’s are bilinear forms in the
variables ηi’s and λj ’s (see, e.g., [66, 85]). If F is a left D-module (e.g., F = A) and η ∈ kerF (R.),
then (213) yields (R̃ λ, η) +

∑n
i=1 ∂i Φi(λ, η) = 0. Now, if we choose λ ∈ kerF (R̃.), then the vector

~Φ = (Φ1(λ, η), . . . ,Φn(λ, η))T satisfies

~∇ . ~Φ =
n∑
i=1

∂i Φi(λ, η) = 0,

i.e., Φ is a conservation law of the linear PD system kerF (R.) ([51, 52]).
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If n = 1, then Φ = Φ1 is a first integral of the linear OD system kerF (R.) (see, e.g., [50, 88]).
Moreover, if R has full row rank and A is either k, k[t], k(t), JtK or k{t}, where k = R or C, then
Corollary 3.1 shows that M = D1×p/(D1×qD) is torsion-free, i.e., projective (see Example 2.13), iff
N = Dq/(RDp) = 0, i.e., iff Ñ = D1×q/(D1×p R̃) = 0, which yields kerF (R̃.) ∼= homD(Ñ ,F) = 0.
Hence, if F is a cogenerator left D-module (see Remark 4.2) and M admits non-trivial torsion
element, then kerF (R̃.) admits a first integral.

Example 3.1. Let us consider the following linear OD control system:{
ẋ1 = x2 + u,

ẋ2 = x1 − u.

Let D = Q[∂] be the ring of OD operators and the D-modules M = D1×3/(D1×2 R) and Ñ =
D1×2/(D1×3 R̃) respectively presented by the matrices R and R̃ = θ(R) defined by:

R =

(
∂ −1 −1
−1 ∂ 1

)
, R̃ =

 −∂ −1
−1 −∂
−1 1

 .

We can check that z = x1 + x2 satisfies ∂ z = 0, i.e., is a torsion element of M . Thus, the linear
OD system kerF (R.) admits a first integral. Integrating the linear OD system kerF (R̃.), we get:

∀ C ∈ R,

{
λ1 = C e−t,

λ2 = C e−t.

Using the identity λT (Rη) = ηT (R̃ λ) + ∂ (λ1 x1 + λ2 x2), where η = (x1 x2 u)T ∈ kerF (R̃.)
and F = C∞(R+), the first integrals of kerF (R.) are defined by Φ = C e−t (x1 + x2), i.e., Φ̇ = 0.

Example 3.2. Let us consider again the first set of Maxwell equations defined by (45). In
Example 3.6, we proved that the corresponding differential module was torsion-free, and thus
parametrizable (see Example 4.4). If ~B and ~E satisfy (45), and ~C and ~G satisfy (49), using (48),
we obtain that (45) admits the following conservation law:

∂

∂t

(
~C . ~B

)
+ ~∇ .

(
G ~B − ~C ∧ ~E

)
= 0.

Now, if we substitute the quadri-potential ( ~A, V ) by (~C,G) in Example 3.6, we obtain that the
smooth solutions of (49) are parametrized by −

∂ ~C

∂t
− ~∇G = ~0,

~∇∧ ~C = ~0,
⇔


~C = −~∇ ξ,

G = ∂ξ

∂t
,

ξ ∈ F = C∞(R4),

a fact proving that (45) admits the following family of conservation laws:

∀ ξ ∈ F , ∂

∂t

(
−~∇ ξ . ~B

)
+ ~∇ .

(
∂ξ

∂t
~B + ~∇ ξ ∧ ~E

)
= 0.

Since the differential module defined by the first set of Maxwell equations is torsion-free (see
Example 3.6), contrary to the OD case (see above), a PD linear system can admit conversation
laws even if its underlying differential module is torsion-free.

The above computation of conservation laws of the linear PD system kerF (R.) requires the
knowledge of a solution of the adjoint system kerF (R̃.). The computation of a particular solution
of kerF (R̃.) is generally a difficult issue. If M = D1×p/(D1×q R) and Ñ = D1×q/(D1×p R̃), then
f ∈ homD(Ñ ,M) is defined by P ∈ Dq×p and Q ∈ Dp×q satisfying R̃ P = QR and Corollary 1.1
shows that f induces the Z-homomorphism f? : kerF (R.) −→ kerF (R̃.) defined by f?(η) = P η.
We can consider λ = P η, which yields a quadratic conservation law of kerF (R.).

Theorem 3.1 ([19]). Let D = A〈∂1, . . . , ∂n〉 be a ring of PD operators with coefficients in a
differential ring A, R ∈ Dq×p, F a left D-module (e.g., F = A) and the linear PD system kerF (R.).
Moreover, let R̃ ∈ Dq×p the formal adjoint of R and the left D-modules M = D1×p/(D1×q R) and

387



Alban Quadrat

Ñ = D1×q/(D1×p R̃). Then, f ∈ homD(Ñ ,M), defined by P ∈ Dq×p and Q ∈ Dp×q satisfying
R̃ P = QR, defines the quadratic conservation law

Φ = (Φ1(P η, η) . . . Φn(P η, η))T

of kerF (R.), i.e., div Φ =
∑n
i=1 ∂i Φi = 0, where the Φi’s are the bilinear forms defined by (213).

We point out that no integration of linear PD system is needed to compute the quadratic
conversation laws of the system. Our approach only uses Gröbner basis techniques.

Example 3.3. Let us consider the Maxwell equations in the vacuum ([51, 83, 84])

(214)


∂ ~B

∂t
+ ~∇∧ ~E = ~0,

1
µ0

~∇∧ ~B − ε0
∂ ~E

∂t
= ~0,

where ~B (resp., ~E) is the magnetic (resp., electric) field, µ0 (resp., ε0) the magnetic (resp., electric)
constant. Let D = Q(µ0, ε0)[∂t, ∂1, ∂2, ∂3] be the polynomial ring of PD operators,

R =



∂t 0 0 0 −∂3 ∂2

0 ∂t 0 ∂3 0 −∂1

0 0 ∂t −∂2 ∂1 0
0 −∂3/µ0 ∂2/µ0 −ε0 ∂t 0 0

∂3/µ0 0 −∂1/µ0 0 −ε0 ∂t 0
−∂2/µ0 ∂1/µ0 0 0 0 −ε0 ∂t


∈ D6×6

the presentation matrix of (214) and M = D1×6/(D1×6 R). Then, the formal adjoint R̃ of R is:

R̃ =



−∂t 0 0 0 −∂3/µ0 ∂2/µ0

0 −∂t 0 ∂3/µ0 0 −∂1/µ0

0 0 −∂t −∂2/µ0 ∂1/µ0 0
0 −∂3 ∂2 ε0 ∂t 0 0
∂3 0 −∂1 0 ε0 ∂t 0
−∂2 ∂1 0 0 0 ε0 ∂t


∈ D6×6.

If we denote by η = (B1 B2 B3 E1 E2 E3)T and λ = (C1 C2 C3 F1 F2 F3)T , then we have:
(215)

(λ,R η) = (η, R̃ λ) + ∂t

( 3∑
i=1

CiBi − ε0
3∑
i=1

FiEi

)
+ ~∇.

 C3 E2 − C2 E3 + (F3 B2 − F2 B3)/µ0

C1 E3 − C3 E1 + (F1 B3 − F3 B1)/µ0

C2 E1 − C1 E2 + (F2 B1 − F1 B2)/µ0

 .

Denoting by Ñ = D1×6/(D1×6 R̃) the adjoint D-module of M , an element f ∈ homD(Ñ ,M) can
be defined by the following two matrices:

P =



1/µ0 0 0 0 0 0
0 1/µ0 0 0 0 0
0 0 1/µ0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


= −Q.

We can easily check that f is an isomorphism, i.e., Ñ ∼= M . Hence, if η is a solution of the system
Rη = 0, then λ = P η, i.e., Ci = Bi/µ0, Fi = −Ei, i = 1, 2, 3, is a solution of R̃ λ = 0. Using
(215), we then obtain the following conservation law of (214):

∂t

(
1
µ0
‖ ~B ‖2 +ε0 ‖ ~E ‖2

)
+ ~∇ .

(
1
µ0

( ~E ∧ ~B)
)

= 0.
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ω =‖ ~B ‖2 /µ0 + ε0 ‖ ~E ‖2 is the electromagnetic energy and Π = ( ~E ∧ ~B)/µ0 the Poynting vector.
Other conservation laws can be obtained by considering different elements of endD(M).

Example 3.4. The movement of an incompressible fluid rotating with a small velocity around
the axis lying along the x3 axis can be defined by

(216)



ρ0
∂u1

∂t
− 2 ρ0 Ω0 u2 + ∂p

∂x1
= 0,

ρ0
∂u2

∂t
+ 2 ρ0 Ω0 u1 + ∂p

∂x2
= 0,

ρ0
∂u3

∂t
+ ∂p

∂x3
= 0,

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0,

where u = (u1, u2, u3)T denotes the local rate of velocity, p the pressure, ρ0 the constant
fluid density and Ω0 the constant angle speed ([52]). Let D = Q(ρ0,Ω0)[∂t, ∂1, ∂2, ∂3t] be the
commutative polynomial ring of PD operators,

R =


ρ0 ∂t −2 ρ0 Ω0 0 ∂1

2 ρ0 Ω0 ρ0 ∂t 0 ∂2

0 0 ρ0 ∂t ∂3

∂1 ∂2 ∂3 0

 ∈ D4×4

the presentation matrix of (216) and the D-module M = D1×4/(D1×4 R) associated with (216).

If we denote by η = (u1 u2 u2 p)T , then we have the following identity

(217) (λ,R η) = (η, R̃ λ) + (∂t ∂1 ∂2 ∂3)


ρ0 (λ1 u1 + λ2 u2 + λ3 u3)

λ1 p+ λ4 u1

λ2 p+ λ4 u2

λ3 p+ λ4 u3

 ,

where R̃ = −R is the formal adjoint of R. Hence, we get Ñ = D1×4/(D1×4 R̃) = M and
homD(Ñ ,M) = endD(M). Hence, if (~u, p) is a solution of (216), then λ1 = u1, λ2 = u2, λ3 = u3
and λ4 = p is a solution of R̃ λ = 0. Taking λ = η, i.e., idM ∈ endD(M), and using (217), we obtain
∂t (ρ0 (u2

1 + u2
2 + u2

3)) + ∂1 (2 p u1) + ∂2 (2 p u2) + ∂3 (2 p u3) = 0, i.e., (216) admits the following
quadratic conservation of law:

∂t

(ρ0

2
‖ ~u ‖2

)
+ ~∇ . (p ~u) = 0.

Other conservation laws can be obtained by considering different elements of endD(M).

More examples of quadratic conservation laws of physical systems can be found in [100].

4. System equivalences

If f ∈ homD(M,M ′), then we have the following left D-modules:{
ker f = {m ∈M | f(m) = 0},
im f = {m′ ∈M ′ | ∃ m ∈M : m′ = f(m)},

{
coim f = M/ ker f
coker f = M ′/im f.

Let us explicitly characterize the kernel, image, coimage and cokernel of f ∈ homD(M,M ′),
where M and M ′ are two finitely presented left D-modules.

Proposition 4.1 ([19]). Let M = D1×p/(D1×q R) (resp., M ′ = D1×p′/(D1×q′ R′)) be a left D-
module finitely presented by R ∈ Dq×p (resp., R′ ∈ Dq′×p′). Let f ∈ homD(M,M ′) be defined by
the matrices P ∈ Dp×p′ and Q ∈ Dq×q′ satisfying the relation RP = QR′. Then, we have:
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(1) ker f = (D1×r S)/(D1×q R), where S ∈ Dr×p is a matrix defined by:

(218) kerD

(
.

(
P

R′

))
= D1×r (S − T ), T ∈ Dr×q′ .

(2) coim f = D1×p/(D1×r S) ∼= im f =

(
D1×(p+q′)

(
P

R′

))
/(D1×q′ R′),

(3) coker f = D1×p′/

(
D1×(p+q′)

(
P

R′

))
.

The left D-module coker f admits the following beginning of a finite free presentation:

(219) D1×r .(S −T )−−−−−−→ D1×(p+q′)
.

(
P
R′

)
−−−−−−−→ D1×p′ ε−→ coker f −→ 0.

(4) We have the following commutative exact diagram of left D-modules

(220)

0
↓

D1×r .S−→ D1×p κ−→ coim f −→ 0
↓ .T ↓ .P ↓ f]

D1×q′ .R′−→ D1×p′ π′−→ M ′ −→ 0,
↓ σ

coker f
↓
0

where f ] : coim f −→M ′ is defined by f ](κ(λ)) = π′(λP ), for all λ ∈ D1×p.

Corollary 4.1 ([19]). With the notations of Proposition 4.1, f ∈ homD(M,M ′) is:
(1) The zero homomorphism, i.e., f = 0, iff one of the following equivalent conditions holds:

(a) There exists a matrix Z ∈ Dp×q′ such that P = Z R′. Then, there exists Z ′ ∈ Dq×q′2

such that Q = RZ + Z ′R′2, where R′2 ∈ Dq′2×q
′ is such that kerD(.R′) = D1×q′2 R′2.

(b) The matrix S admits a left-inverse over D.
(2) Injective, i.e., ker f = 0, iff one of the following equivalent conditions holds:

(a) There exists a matrix F ∈ Dr×q such that S = F R, i.e., we have the following
commutative exact diagram of left D-modules:

0 0
↑ ↑

D1×q .R−→ D1×p π−→ M −→ 0
↑ .F ‖ ↑ ρ−1

D1×r .S−→ D1×p κ−→ coim f −→ 0.
↑ ↑
0 0

(b) The matrix (LT ST2 )T admits a left-inverse over D.
(3) Surjective, i.e., im f = M ′, iff (PT R′T )T admits a left-inverse over D.

Then, the long exact sequence (219) splits. In particular, there exist (X Y ) ∈ Dp′×(p+q′)

and (UT V T )T ∈ D(p+q′)×r, where X ∈ Dp′×p, Y ∈ Dp′×q′ , U ∈ Dp×r and V ∈ Dq′×r,
such that the following identities hold:

(221)



X P + Y R′ = Ip′ ,

P X + U S = Ip,

P Y − U T = 0,
R′X + V S = 0,
R′ Y − V T = Iq′ .

390



An introduction to constructive algebraic analysis and its applications

Moreover, we have the following commutative exact diagram of left D-modules:
0
↑

D1×r .S−→ D1×p κ−→ coim f −→ 0
↑ .− V ↑ .X ↑ f]−1

D1×q′ .R′−→ D1×p′ π′−→ M ′ −→ 0.
↑
0

(4) An isomorphism, i.e., M ∼= M ′, if the matrices (LT ST2 )T and (PT R′T )T admit left-
inverses over D. The inverse f−1 of f is then defined by

∀ λ′ ∈ D1×p′ , f−1(π′(λ′)) = π(λ′X),

where X ∈ Dp′×p is defined in 3 and we have the following commutative exact diagram:

(222)
D1×q .R−→ D1×p π−→ M −→ 0
↑ .− V F ↑ .X ↑ f−1

D1×q′ .R′−→ D1×p′ π′−→ M ′ −→ 0.

Example 4.1. We consider two PD systems used in the theory of elasticity: the Lie derivative of
the euclidean metric of R2 defined in Example 1.2 and its Spencer operator (see [82, 84]):


∂1 ξ1 = 0,
1
2 (∂2 ξ1 + ∂1 ξ2) = 0,
∂2 ξ2 = 0,



∂1 ζ1 = 0,
∂2 ζ1 − ζ2 = 0,
∂1 ζ2 = 0,
∂1 ζ3 + ζ2 = 0,
∂2 ζ3 = 0,
∂2 ζ2 = 0.

See Example 1.2. Let D = Q∂1, ∂2] be the commutative polynomial ring of PD operators with
rational constant coefficients and let us define the following two matrices

(223) R =

 ∂1 0
1
2 ∂2

1
2 ∂1

0 ∂2

 ∈ D3×2, R′ =

 ∂1 ∂2 0 0 0 0
0 −1 ∂1 1 0 ∂2

0 0 0 ∂1 ∂2 0


T

∈ D6×3,

and the associated finitely presented D-modules M = D1×2/(D1×3 R) and M ′ = D1×3/(D1×6 R′).
We can check that the following matrices

(224) P =

(
1 0 0
0 0 1

)
, Q = 1

2

 2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0

 ,

satisfy the relation RP = QR′, i.e., define f ∈ homD(M,M ′) by f(ξ1) = ζ1 and f(ξ2) = ζ3. With
the notations of Proposition 4.1, we obtain that f is injective as the matrices

S =

(
∂2 ∂1 ∂2

2 0
∂1 0 0 ∂2

)T
, F =


0 2 0
1 0 0
0 2 ∂2 −∂1

0 0 1

 ,

satisfy the relation S = F R. Moreover, f is surjective as the matrix (PT R′T )T admits the
left-inverse (X Y ) over D defined by:

(225) X =

 1 0
0 −∂1

0 1

 ∈ D3×2, Y =

 0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

 ∈ D3×6.
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These results prove that f is a D-isomorphism and M ∼= M ′ whose inverse f−1 is defined by:

f−1(ζ1) = ξ1, f−1(ζ2) = −∂1 ξ2 = ∂2 ξ1, f−1(ζ3) = ξ2.

Example 4.2. In Example 6.10, without giving a proof, we stated that (112) defined by
(226)

ν
(
∂2
y + ∂2

z

)
1 + ν

ν ∂2
y − ∂2

z

1 + ν

−∂2
y + ν ∂2

z

1 + ν
2 ∂y ∂z 0 0

ν ∂2
x − ∂2

z

1 + ν

ν
(
∂2
x + ∂2

z

)
1 + ν

−∂2
x + ν ∂2

z

1 + ν
0 2 ∂x ∂z 0

ν ∂2
x − ∂2

y

1 + ν

−∂2
x + ν ∂2

y

1 + ν

ν
(
∂2
x + ∂2

y

)
1 + ν

0 0 2 ∂x ∂y

∂y ∂z
1 + ν

−∂y ∂z ν
1 + ν

−ν ∂y ∂z
1 + ν

∂2
x −∂x ∂y −∂x ∂z

−ν ∂x ∂z
1 + ν

∂x ∂z
1 + ν

−ν ∂x ∂z
1 + ν

−∂x ∂y ∂2
y −∂y ∂z

−ν ∂x ∂y
1 + ν

−ν ∂x ∂y
1 + ν

∂x ∂y
1 + ν

−∂x ∂z −∂y ∂z ∂2
z

∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0





σx

σy

σz

τyz

τzx

τxy


= 0,

was equivalent to (113) defined by

(227)



∆ + ∂2
x

1 + ν

∂2
x

1 + ν

∂2
x

1 + ν
0 0 0

∂2
y

1 + ν
∆ +

∂2
y

1 + ν

∂2
y

1 + ν
0 0 0

∂2
z

1 + ν

∂2
z

1 + ν
∆ + ∂2

z

1 + ν
0 0 0

∂y ∂z
1 + ν

∂y ∂z
1 + ν

∂y ∂z
1 + ν

∆ 0 0

∂x ∂z
1 + ν

∂x ∂z
1 + ν

∂x ∂z
1 + ν

0 ∆ 0

∂x ∂y
1 + ν

∂x ∂y
1 + ν

∂x ∂y
1 + ν

0 0 ∆

∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0





σx

σy

σz

τyz

τzx

τxy


= 0,

where ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplacian operator in R3. Let D = Q(ν)[∂x, ∂y, ∂z] be the

commutative polynomial ring of PD operators with rational coefficients in ν and R ∈ D9×6 (resp.,
R′ ∈ D9×6) the presentation matrix of (226) (resp., (227)). Using the package OreMorphisms
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([20]), we can prove that R = V R′, where V is the unimodular matrix defined by:

V =



1 + ν

2 + ν
− 1

2 + ν
− 1

2 + ν
0 0 0 −∂x ∂y ∂z

− 1
2 + ν

1 + ν

2 + ν
− 1

2 + ν
0 0 0 ∂x −∂y ∂z

− 1
2 + ν

− 1
2 + ν

1
2 + ν

0 0 0 ∂x ∂y −∂z

0 0 0 1 0 0 0 −∂z −∂y
0 0 0 0 1 0 −∂z 0 −∂x
0 0 0 0 0 1 −∂y −∂x 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



∈ GL9(D).

We have the following corollary of Corollary 4.1.

Corollary 4.2 ([100]). Let F be a left D-module, R ∈ Dq×p, R′ ∈ Dq′×p′ , M = D1×p/(D1×q R),
M ′ = D1×p′/(D1×q′ R′) and f ∈ homD(M,M ′) defined by two P ∈ Dp×p′ and Q ∈ Dq×q′

satisfying (158). Then, we have:
(1) If coker f = 0, then the following Z-homomorphism is injective:

f? : kerF (R′.) −→ kerF (R.)
ζ 7−→ P ζ.

(2) If ker f = 0 and ext1
D(coker f,F) = 0, then the Z-homomorphism f? is surjective.

(3) If f is a left D-isomorphism, then so is f? and f?−1 is defined by

f?−1 : kerF (R.) −→ kerF (R′.)
η 7−→ X η,

where the matrix (X Y ) is a left-inverse of (PT R′T )T with X ∈ Dp′×p and Y ∈ Dp′×q′

and we have the following commutative exact diagram of abelian groups:

Fq R.←− Fp ←− kerF (R.) ←− 0
↓ −V F. ↓ X. ↓ f?−1

Fq′ R′.←−− Fp′ ←− kerF (R′.) ←− 0.

The next result is a result due to Fitting, but we give here an explicit formulation.

Theorem 4.1 ([22]). Let M = D1×p/(D1×q R) and M ′ = D1×p′/(D1×q′ R′) be two left D-
modules finitely presented respectively by R ∈ Dq×p and R′ ∈ Dq′×p′ and φ : M −→ M ′ a left
D-isomorphism. Moreover, let R2 ∈ Dr×q (resp., R′2 ∈ Dr′×q′) be a matrix such that kerD(.R) =
D1×r R2 (resp., kerD(.R′) = D1×r′ R′2). Then, there exist P ∈ Dp×p′ , P ′ ∈ Dp′×p, Q ∈ Dq×q′ ,
Q′ ∈ Dq′×q, Z ∈ Dp×q, Z ′ ∈ Dp′×q′ , Z2 ∈ Dq×r and Z ′2 ∈ Dq′×r′ such that:{

RP = QR′,

R′ P ′ = Q′R,

{
P P ′ + Z R = Ip,

P ′ P + Z ′R′ = Ip′ .

{
QQ′ +RZ + Z2 R2 = Iq

Q′Q+R′ Z ′ + Z ′2 R
′
2 = Iq′ .

(1) The following two matrices

X =

(
Ip P

−P ′ Ip′ − P ′ P

)
, Y =


Iq 0 R Q

0 Ip′ −P ′ Z ′

−Z P 0 P Z ′ − Z Q
−Q′ −R′ 0 Z ′2 R

′
2

 ,
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are unimodular, i.e., X ∈ GLp+p′(D) and Y ∈ GLq+p′+p+q′(D), and:

X−1 =

(
Ip − P P ′ −P

P ′ Ip′

)
, Y −1 =


Z2 R2 0 −R −Q

P ′ Z − Z ′Q′ 0 P ′ −Z ′

Z −P Ip 0
Q′ R′ 0 Iq′

 .

(2) The following commutative diagram of left D-modules holds

(228)

0 0 0
↓ ↓ ↓

D1×(q+p′+p+q′) .L−→ D1×(p+p′) π⊕ 0−−−→ M −→ 0
↓ .Y ↓ .X ↓ φ

D1×(q+p′+p+q′) .L′−→ D1×(p+p′) 0⊕π′−−−−→ M ′ −→ 0,
↓ ↓ ↓
0 0 0

where π ⊕ 0 and 0⊕ π′ are defined by

D1×(p+p′) π⊕ 0−−−→ M
(λ λ′) 7−→ π(λ),

D1×(p′+p) 0⊕π′−−−−→ M ′

(λ λ′) 7−→ π′(λ′).

and with the following notations

L =


R 0
0 Ip′

0 0
0 0

 ∈ D(q+p′+p+q′)×(p+p′), L′ =


0 0
0 0
Ip 0
0 R′

 ∈ D(q+p′+p+q′)×(p+p′),

i.e., we have LX = Y L′, and thus, L′ = Y −1 LX or equivalently L = Y L′X−1.

Example 4.3. We consider again Example 4.1. With the notations of Proposition 4.1, the matrices
X ∈ GL5(D) and Y ∈ GL14(D) are defined by

U =


1 0 1 0 0
0 1 0 0 1
−1 0 0 0 0
0 ∂1 0 1 ∂1

0 −1 0 0 0

 , U−1 =


0 0 −1 0 0
0 0 0 0 −1
1 0 1 0 0
0 −∂1 0 1 0
0 1 0 0 1

 ,

Y =



1 0 0 0 0 0 ∂1 0 1 0 0 0 0 0
0 1 0 0 0 0 1

2 ∂2
1
2 ∂1 0 1

2 0 1
2 0 0

0 0 1 0 0 0 0 ∂2 0 0 0 0 1 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 ∂1 0 0 0 1 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 −∂1 0 0 0 0 0 0 0 0 0 0
0 −2 0 −∂2 1 0 0 0 0 0 0 0 0 0
−∂2 2 ∂1 0 0 −∂1 0 0 0 −∂2 ∂1 1 0 0 0

0 0 0 0 −1 −∂1 0 0 0 0 0 0 0 0
0 0 −1 0 0 −∂2 0 0 0 0 0 0 0 0
0 0 ∂1 0 −∂2 0 0 0 0 0 0 −∂2 ∂1 1



.
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and its inverse is defined by:

Y −1 =



0 0 0 0 0 0 −∂1 0 −1 0 0 0 0 0
0 0 0 0 0 0 − 1

2 ∂2 − 1
2 ∂1 0 − 1

2 0 − 1
2 0 0

0 0 0 0 0 0 0 −∂2 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −∂1 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0 0 0
1 0 0 ∂1 0 0 0 0 1 0 0 0 0 0
0 2 0 ∂2 −1 0 0 0 0 1 0 0 0 0
∂2 −2 ∂1 0 0 ∂1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 ∂1 0 0 0 0 0 1 0 0
0 0 1 0 0 ∂2 0 0 0 0 0 0 1 0
0 0 −∂1 0 ∂2 0 0 0 0 0 0 0 0 1



.

Then, the matrices L = (diag(R, I3)T 0T )T ∈ D14×5 and L′ = (0T diag(I2, R
′)T ) ∈ D14×5 are

equivalent, namely, we have:



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 ∂1 0 0
0 0 ∂2 −1 0
0 0 0 ∂1 0
0 0 0 1 ∂1

0 0 0 0 ∂2

0 0 0 ∂2 0



= Y −1



∂1 0 0 0 0
1
2 ∂2

1
2 ∂1 0 0 0

0 ∂2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



U.

Finally, let us show how to use Theorem 4.1 to prove the result stated in Remark 3.1 on the
Auslander tranposes. Let M = D1×p/(D1×q R) and M ′ = D1×p′/(D1×q′ R′) be two left D-
modules finitely presented respectively by R ∈ Dq×p and R′ ∈ Dq′×p′ and φ : M −→ M ′ a
left D-isomorphism. Moreover, let N = Dq/(RDp) (resp., N ′ = Dq′/(R′Dp′)) be the Auslander
transpose right D-module of M (resp., M ′) and κ : Dq −→ N (resp., κ′ : Dq′ −→ N ′) the canonical
projection onto N (resp., N ′). With the notations of Theorem 4.1, we get:

cokerD(.L) = D(q+p′+p+q′)/(LD(p+p′)) ∼= Dq/(RDp)⊕D(p′+p+q′)/(Dp′) ∼= N ⊕D(p+q′),

cokerD(.L′) = D(q+p′+p+q′)/(L′D(p+p′)) ∼= D(q+p′+p)/(Dp)⊕Dq′/(R′Dp′) ∼= D(q+p′) ⊕N ′.
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Now, applying the contravariant left exact functor homD( · , D) to the commutative exact dia-
gram (228), we obtain the following one:
(229)

0 0 0
↑ ↑ ↑

0←− N ⊕D(p+q′) κ⊕ id(p+q′)←−−−−−−− D(q+p′+p+q′) L.←− D(p+p′) ←− homD(M,D) ←− 0
↑ Y. ↑ X. ↑ φ?

0←− D(q+p′) ⊕N ′
id(q+p′)⊕κ

′

←−−−−−−−− D(q+p′+p+q′) L′.←− D(p+p′) ←− homD(M ′, D) ←− 0.
↑ ↓ ↑
0 0 0

Since Y ∈ GL(q+p′+p+q′)(D), (229) induces the following right D-isomorphism

(230)
γ : D(q+p′) ⊕N ′ −→ N ⊕D(p+q′)

(idq+p′ ⊕ κ′)(λ′) 7−→ (κ⊕ idp+q′)(Y λ′),

which proves that N ⊕D(p+q′) ∼= N ′ ⊕D(q+p′). We have just explicitly proved a result first due
to Auslander (see, e.g., [2]) which plays an important role in Chapter 1 (see Remark 3.1).

Theorem 4.2 ([2, 22, 91]). Let us consider two finite presentations of a left D-module M :

D1×q .R−→ D1×p π−→M −→ 0, D1×q′ .R′−→ D1×p′ π′−→M −→ 0.

If we denote by N = Dp/(RDq) and N ′ = Dq′/(R′Dp′) the Auslander transposes, then we have
the right D-isomorphism γ defined by (230), i.e., N ⊕D(p+q′) ∼= N ′ ⊕D(q+p′), which proves that
N and N ′ are two projectively equivalent right D-modules.

Example 4.4. Let us consider again Example 4.1. Using Theorem 4.2, the Auslander trans-
poses N = D3/(RD2) = D1×3/(D1×2 RT ) of the D-module M = D1×2/(D1×3 R) and N ′ =
D6/(R′D3) = D1×6/(D1×3 R′T ) of the D-module M ′ = D1×3/(D1×6 R′) satisfy:

N ⊕D8 ∼= N ′ ⊕D6.

In particular, the above D-isomorphism is defined by (230), where the matrix Y ∈ GL14(D) is
defined in Example 4.3. The D-module N corresponds to the following linear PD system

(231) RT1

 σ11

2σ12

σ22

 = 0 ⇔

{
∂1 σ

11 + ∂2 σ
12 = 0,

∂1 σ
12 + ∂2 σ

22 = 0,

where (σ11, σ12, σ22) denotes the symmetric stress tensor ([53]). Moreover, the D-module N ′

corresponds to the following linear PD system

(232) R′T1



σ11

σ12

µ1

σ21

σ22

µ2


= 0 ⇔


∂1 σ

11 + ∂2 σ
12 = 0,

∂1 µ
1 + ∂2 µ

2 + σ21 − σ12 = 0,
∂1 σ

21 + ∂2 σ
22 = 0,

where (σ11, σ12, σ21, σ22) denotes a possibly non-symmetric stress tensor and (µ1, µ2) a couple-
stress ([53]). In particular, if the couple-stress vanishes, then (232) becomes (231). (231) corre-
sponds to the equilibrium of the stress tensor (i.e., without couple-stress and density of forces) and
(232) corresponds to the equilibrium of the stress and couple-stress tensors (i.e., without density of
forces and volume density of couple) ([53]). This last system was discovered by E. and F. Cosserat
in 1909 and it is nowadays used in the study of liquid crystals, rocks and granulear media. See
[83, 84] for a general variational formulation of Cosserat’s equations based on the Spencer operator
and Lie pseudogroups ([83, 84]) and extensions of Cosserat’s ideas in mathematical physics (e.g.,
electromagnetism, general relativity).
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5. Factorization problem

The next theorem gives a sufficient condition for the existence of a factorization of R.

Theorem 5.1 ([19]). Let M = D1×p/(D1×q R) and M ′ = D1×p′/(D1×q′ R′) be two finitely pre-
sented left D-modules and f ∈ homD(M,M ′). Every element f ∈ homD(M,M ′) defines a factor-
ization of the matrix R ∈ Dq×p of the form

(233) R = LS,

where L ∈ Dq×r and S ∈ Dr×p are such that coim f = D1×p/(D1×r S).

The following commutative exact diagram of left D-modules holds

(234)

0
↓

0 ker f
↓ ↓ i

D1×q .R−→ D1×p π−→ M −→ 0
↓ .L ‖ ↓ ρ

D1×r .S−→ D1×p κ−→ coim f −→ 0,
↓ ↓
0 0

where ρ : M −→ coim f is the canonical projection onto coim f = M/ ker f and ρ is defined by
ρ(π(λ)) = κ(λ) for all λ ∈ D1×p. In particular, if f is not injective, i.e., ker f 6= 0, then the
factorization R = LS is non-trivial.

If F is a left D-module and R = LS is a factorization, then kerF (S.) ⊆ kerF (R.), i.e., every
F-solution of the linear system S η = 0 is a F-solution of the linear system Rη = 0.

Corollary 5.1 ([19]). With the notations of Proposition 4.1, if L ∈ Dq×r (resp., S2 ∈ Dr2×r) is
a matrix such that R = LS (resp., kerD(.S) = D1×r2 S2), then we have:

ker f ∼= D1×r/

(
D1×(q+r2)

(
L

S2

))
.

Moreover, if U = (LT ST2 )T ∈ D(q+r2)×r and F is a left D-module, then the following short exact
sequence of abelian groups holds

(235) 0 −→ kerF (S.) ι−→ kerF (R.) $−→ kerF (U.),

where the Z-homomorphisms ι and $ are respectively defined by:

ι : kerF (S.) −→ kerF (R.)
ζ 7−→ ζ,

$ : kerF (R.) −→ kerF (U.)
η 7−→ S η.

Finally, if F is an injective left D-module, then $ is a surjective Z-homomorphism and:

kerF (R.)/ kerF (S.) ∼= kerF (U.).

Example 5.1. Let us consider the acoustic equations for a compressible perfect gas

(236)


ρ0 ~∇ . ~v(x, t) + 1

c2
∂p(x, t)
∂t

= 0,

ρ0
∂~v(x, t)
∂t

+ ~∇ p(x, t) = 0,

where x = (x1, x2, x3), ~v = (v1 v2 v3)T (resp., p) is the perturbations of the speed (resp., pres-
sure), ρ0 the average density of gas and c the speed of sound ([52]). Let D = Q(ρ0, c)[∂t, ∂1, ∂2, ∂3]
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be the commutative polynomial ring of PD operators with coefficients in Q(ρ0, c),

R =


ρ0 ∂1 ρ0 ∂2 ρ0 ∂3

∂t
c2

ρ0 ∂t 0 0 ∂1

0 ρ0 ∂t 0 ∂2

0 0 ρ0 ∂t ∂3

 ∈ D
4×4.

and the finitely generated D-module M = D1×4/(D1×4 R) associated with (236). Computing the
set of generators of the D-module endD(M) and their D-linear relations by means of Algorithm 2.1,
we obtain that f ∈ endD(M) can be defined by the following matrices:

P =


0 ∂3 −∂2 0
−∂3 0 ∂1 0
∂2 −∂1 0 0
0 0 0 0

 , Q =


0 0 0 0
0 0 ∂3 −∂2

0 −∂3 0 ∂1

0 ∂2 −∂1 0

 .

Using Algorithm 2.1, we can compute kerD(.(PT RT )T ) and we obtain a presentation matrix S
of coim f and the factorization R = LS defined by:

S =


∂1 ∂2 ∂3 0
ρ0 ∂t 0 0 0

0 ρ0 ∂t 0 0
0 0 ρ0 ∂t 0
0 0 0 1

 , L =


ρ0 0 0 0 ∂t

c2

0 1 0 0 ∂1

0 0 1 0 ∂2

0 0 0 1 ∂3

 .

We can check that ker f = (D1×5 S)/(D1×4 R) 6= 0, which shows that R = LS is a non-trivial
factorization of R and coim f = D1×4/(D1×5 S) is a non-trivial D-submodule of M . If we consider
F = C∞(Ω), where Ω is an open convex subset of R4 (e.g., Ω = R+ ×R3), then all F-solutions of
S η = 0 have the form:

~v(x, t) = ~v(x),
~∇ . ~v(x) = 0,
p(x, t) = 0,

⇔

{
~v(x, t) = ~∇∧ ~ψ(x),
p(x, t) = 0,

~ψ = (ψ1 ψ2 ψ3)T ∈ C∞(Ω ∩ R3).

Finally, we can check that this solution of S η = 0 is a particular solution of (236).

Let us introduce the concept of a generic solution of the linear system kerF (R.).

Definition 5.1. Let F be a left D-module, M = D1×p/(D1×q R) a finitely presented left D-
module and π : D1×p −→ M the canonical projection. Then, η ∈ kerF (R.) is called a generic
solution if the left D-homomorphism φη ∈ homD(M,F) defined by φη(π(λ)) = λ η is injective.

Equivalently, η ∈ kerF (R.) is generic if the left D-homomorphism φη : M −→ F defined by
φ(yj) = ηj for all j = 1, . . . p, is injective, where {yj = π(fj)}j=1,...,p is the set of generators of M
defined in Section 1 and {fj}j=1,...,p is the standard basis of D1×p. In particular, we have

∀ dj ∈ D, φη

 p∑
j=1

dj yj

 =
p∑
i=1

dj ηj = 0 ⇒
p∑
j=1

dj yj = π

 p∑
j=1

dj fj

 = 0,

and thus (d1 . . . dp) ∈ D1×q R. This is equivalent to saying that the solution η does not satisfy
other equations than those defined by the left D-module D1×q R.

Example 5.2. Let M = D1×p/(D1×q R) be a non-trivial finitely presented left D-module and
{yj}j=1,...,p a family of generators of M , where π : D1×p −→ M is the canonical projection onto
M and {fj}j=1,...,p the standard basis of D1×p. As explained at the beginning of Section 1,
y = (y1 . . . yp) ∈ Mp satisfies Ry = 0 and y corresponds to φy = idM ∈ endD(M) by the
isomorphism χ : kerM (R.) −→ endD(M) explained in Theorem 1.1, which shows that y is a
generic solution of the linear system kerM (R.) ∼= endD(M).
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Example 5.3. Let us consider the commutative polynomial ring D = Q[∂] of OD operators, the
matrix R = (∂2 − ∂) ∈ D1×2, the D-module M = D1×2/(DR) and the D-module F = D(R) of
compactly supported smooth functions on R. If η = (η1 η2)T ∈ kerF (R.), i.e., ∂2 η1 − ∂ η2 = 0,
then ∂ (∂ η1 − η2) = 0, i.e., ζ = ∂ η1 − η2 must be a constant of F . Since the only constant of
F is 0 and (∂ − 1) /∈ DR, we obtain ζ = 0, which proves that every η ∈ kerF (R.) satisfies the
new equation ∂ η1 − η2 = 0, i.e., kerF (R.) = kerF ((∂ − 1).) ∼= F and shows that no solution of
kerF (R.) is generic.

Let us study the converse of Theorem 5.1.

Corollary 5.2 ([100]). If R ∈ Dq×p, then the following assertions are equivalent:
(1) There exist L ∈ Dq×r and S ∈ Dr×q such that D1×q R ( D1×r S and R = LS.
(2) There exist a finitely presented left D-module F and f ∈ homD(M,F) such that:

ker f 6= 0.

(3) There exists a finitely presented left D-module F such that the linear system kerF (R.)
admits a non-generic solution in the sense of Definition 5.1.

Example 5.4. In this example, we show that an operator R ∈ D can admit a non-trivially
factorization R = LS even if endD(M) is reduced to k idM (see [7, 94, 114]). Let us consider the
OD operator R = ∂2 + t ∂ ∈ D = B1(Q). Without loss of generality, any element of endD(M) can
be defined by P = a ∂+ b, where a, b ∈ Q(t), which satisfies RP = QR, for a certain Q ∈ D. But,
we first have:

RP = (∂2 + t ∂) (a ∂ + b) = a ∂3 + (2 ȧ+ t a+ b) ∂2 + (ä+ t (ȧ+ b) + 2 ḃ) ∂ + b̈+ t ḃ.

Hence, Q has the form Q = a ∂ + c, where c ∈ Q(t), which yields

QR = (a ∂ + c) (∂2 + t ∂) = a ∂3 + (t a+ c) ∂2 + (a+ t c) ∂,

and thus RP = QR is equivalent to the following linear OD system:
2 ȧ+ b− c = 0,
ä+ t (ȧ+ b− c) + 2 ḃ− a = 0,
b̈+ t ḃ = 0.

If we denote by d = ḃ, then the last equation gives ḋ + t d = 0, i.e., d = C1 e
−t2/2, and thus

b = C1
∫ t

0 e
−s2/2 ds + C2, where C1 and C2 are two arbitrary constants of Q. Since b ∈ Q(t),

b = C2 and the previous system becomes:
ä− t ȧ− a = d

dt (ȧ− t a) = 0,
b = C2,

c = 2 ȧ+ C2.

The integration of the first equation gives ȧ− t a = C3 and thus a = (C4 + C3
∫ t

0 e
−s2/2 ds) et2/2,

where C3 and C4 are two arbitrary constants of Q. Since, a ∈ Q(t), we must have C3 = C4 = 0,
i.e., a = 0 and b = c = C2. Hence, we obtain P = Q = C2, i.e., any element of endD(M) has
the form of f = C2 idM , where C2 is an arbitrary constant of Q, and thus ker f = 0. Efficient
algorithms for computing rational solutions of linear OD systems, which do not need an explicitly
computation of the whole linear OD system, can be found in [1, 6] and the references therein.

Corollary 5.2 asserts that R admits a non-trivial factorization iff there exists a finitely presented
left D-module F and f ∈ homD(M,F) such that ker f 6= 0. If we consider the finitely presented left
D-module F = Q(t) ∼= D/(D∂), then the OD equation η̈+ t η̇ = 0 admits the non-generic solution
η = C ∈ Q, which shows that f ∈ homD(M,F) defined by f(π(λ)) = κ(C λ), for all λ ∈ D, where
κ : D −→ F is the canonical projection onto F , admits the kernel ker f = (D∂)/(DR) 6= 0, which
yields the non-trivial factorization R = LS, where:

L = ∂ + t, S = ∂.

Let us now introduce the concept of a simple module.
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Definition 5.2. A non-zero left D-module M is called simple if M has only 0 and M as left
D-submodules.

Example 5.5. The holonomic left D = A2(Q)-module M = D/(D∂1+D∂2) ∼= k[x1, x2] is simple.
Indeed, if L is a left D-submodule of M and z = d y is an element of L, where d ∈ D, y = π(1)
is the generator of M and π : D −→ M the canonical projection onto M , then we can assume
without loss of generality that d ∈ k[x1, x2] since y satisfies the following equations:

(237)

{
∂1 y = 0,
∂2 y = 0.

Differentiating z with respect to x1 and x2 a certain number of times and using (237), we obtain
y = d′ z for a certain d′ ∈ D, i.e., y ∈ L, which proves L = M and M is a simple left D-module.

Using Theorem 5.1, we obtain that the existence of a non-trivial factorization of R of the form
R = LS, i.e., D1×q R ( D1×r S, implies that ker f 6= 0, which shows that M is not a simple left
D-module. Hence, if M is a simple left D-module, then any non-zero left D-endomorphism of M
is injective. Moreover, since im f is a non-zero left D-submodule of M and M is simple, we get
im f = M , which shows that any non-trivial f ∈ endD(M) is an automorphism, i.e., f ∈ autD(M).
This last result is the classical Schur’s lemma stating that the endomorphism ring endD(M) of a
simple left D-module M is a division ring (see, e.g., [71]).

6. Reduction problem

Let us now state the second main result of this chapter on the reduction problem.

Theorem 6.1 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be defined by two
matrices P ∈ Dp×p and Q ∈ Dq×q such that RP = QR. If the left D-modules

kerD(.P ), coimD(.P ), kerD(.Q), coimD(.Q),

are free of rank m, p −m, l, q − l, then there exist four matrices U1 ∈ Dm×p, U2 ∈ D(p−m)×p,
V1 ∈ Dl×q and V2 ∈ D(q−l)×q such that
(238) U = (UT1 UT2 )T ∈ GLp(D), V = (V T1 V T2 )T ∈ GLq(D),
and

R = V RU−1 =

(
V1 RW1 0
V2 RW1 V2 RW2

)
∈ Dq×p,

where U−1 = (W1 W2) ∈ Dp×p, W1 ∈ Dp×m and W2 ∈ Dp×(p−m).
In particular, the full row rank matrices U1, U2, V1 and V2 respectively define a basis of the free

left D-module kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q), namely, they are such that
kerD(.P ) = D1×m U1,

coimD(.P ) = κ(D1×(p−m) U2),
kerD(.Q) = D1×l V1,

coimD(.Q) = ρ(D1×(q−l) V2),

where κ : D1×p −→ coimD(.P ) (resp., ρ : D1×q −→ coimD(.Q)) denotes the canonical projection
onto coimD(.P ) (resp., coimD(.Q)) and satisfy (238).
Example 6.1. Let us consider the following four complex matrices:

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ3 =


0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

 , γ4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
The Dirac equation for a massless particle has the form

(239)
4∑
j=1

γj
∂ψ(x)
∂xj

= 0,
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where ψ = (ψ1 ψ2 ψ3 ψ4)T and x = (x1, x2, x3, x4) are the space-time coordinates ([23]).

Let D = Q(i)[∂1, ∂2, ∂3, ∂4] be the commutative polynomial ring of PD operators (∂4 = −i ∂t),

R =


∂4 0 −i ∂3 −(i ∂1 + ∂2)
0 ∂4 −i ∂1 + ∂2 i ∂3

i ∂3 i ∂1 + ∂2 −∂4 0
i ∂1 − ∂2 −i ∂3 0 −∂4

 ∈ D4×4

the presentation matrix of (239) and the finitely presented D-module M = D1×4/(D1×4 R).

Using Algorithm 2.1, we obtain that f ∈ endD(M) is defined by:

P = 1
2


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 , Q = 1
2


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

As the entries of P and Q belong to Q, using linear linear techniques, we can easily compute
bases of the free Q-modules kerQ(.P ), coimQ (.P ), kerQ(.Q) and coimQ (.Q), i.e., bases of the free
D-modules kerD(.P ), coimD (.P ), kerD(.Q) and coimD (.Q):

U1 =

(
1 0 1 0
0 1 0 1

)
,

U2 =

(
0 0 1 0
0 0 0 1

)
,


V1 =

(
−1 0 1 0
0 −1 0 1

)
,

V2 =

(
0 0 −1 0
0 0 0 −1

)
.

Forming the unimodular matrices U = (UT1 UT2 )T ∈ GL4(D) and V = (V T1 V T2 )T ∈ GL4(D),
we then obtain that the matrix R is equivalent to the following block-triangular one:

R = V RU−1 =


−∂4 + i ∂3 i ∂1 + ∂2 0 0
i ∂1 − ∂2 −∂4 − i ∂3 0 0
−i ∂3 −i ∂1 − ∂2 ∂4 + i ∂3 i ∂1 + ∂2

−i ∂1 + ∂2 i ∂3 i ∂1 − ∂2 ∂4 − i ∂3

 .

Example 6.2. Let us consider the linear PD system defined by

(240) σ ∂t ~A+ 1
µ
~∇∧ ~∇ ~A− σ ~∇V = 0,

where ( ~A, V ) denotes the electromagnetic quadri-potential, σ the electric conductivity and µ the
magnetic permeability. This system corresponds to the equations satisfied by ( ~A, V ) when it is
assumed that the term ∂t ~D can be neglected in the Maxwell equations, i.e., the electric displace-
ment ~D is constant in time. For more details, see [28]. It seems that Maxwell was led to introduce
the term ∂t ~D in his famous equations for pure mathematical reasons ([28]).

Let D = Q[∂t, ∂1, ∂2, ∂3] be the commutative polynomial ring of PD operators,

R = 1
µ

 σ µ∂t − (∂2
2 + ∂2

3) ∂1 ∂2 ∂1 ∂3 −σ µ∂1

∂1 ∂2 σ µ∂t − (∂2
1 + ∂2

3) ∂2 ∂3 −σ µ∂2

∂1 ∂3 ∂2 ∂3 σ µ∂t − (∂2
1 + ∂2

2) −σ µ∂3


the presentation matrix of (240) and the finitely presented D-module M = D1×4/(D1×3 R).

The matrices P and Q defined by

P =


0 0 0 0
0 σ µ∂t 0 −σ µ∂2

0 0 σ µ∂t −σ µ∂3

0 ∂t ∂2 ∂t ∂3 −(∂2
2 + ∂2

3)

 , Q =

 0 0 0
−∂1 ∂2 σ µ∂t − ∂2

2 −∂2 ∂3

−∂1 ∂3 −∂2 ∂3 σ µ∂t − ∂2
3

 ,
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satisfy the relation RP = QR, and thus, define a D-endomorphism f of M . Using Theorem 3.1,
we can check that kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q) are free D-modules of rank 2,
2, 1 and 2. Hence, computing bases of these free D-modules by means of a constructive version of
the Quillen-Suslin theorem explained in Chapter 1, we obtain the following matrices:

U1 =

(
1 0 0 0
0 ∂2 ∂3 −σ µ

)
,

U2 = 1
σ µ

(
0 1 0 0
0 0 1 0

)
,


V1 = (1 0 0) ,

V2 =

(
0 1 0
0 0 1

)
.

Defining U = (UT1 UT2 )T ∈ GL4(D) and V = (V T1 V T2 )T ∈ GL3(D), we get R = V RU−1 is the
following block-triangular matrix:

R = 1
µ

 σ µ∂t − (∂2
2 + ∂2

3) ∂1 0 0
∂1 ∂2 ∂2 σ µ (σ µ∂t − (∂2

1 + ∂2
2 + ∂2

3)) 0
∂1 ∂3 ∂3 0 σ µ (σ µ∂t − (∂2

1 + ∂2
2 + ∂2

3))

 .

7. Decomposition of finitely presented left D-modules

Let us introduce a few definitions which will play important roles in this section.

Definition 7.1. (1) An element a of a ring A satisfying a2 = a is called an idempotent.
(2) A non-zero left D-module M is said to be decomposable if it can be written as a direct sum

of two proper left D-submodules of M . A left D-module M which is not decomposable, i.e.,
which is not the direct sum of two proper left D-submodules, is said to be indecomposable.

In linear algebra, projectors, i.e., idempotent endomorphisms, play an important role for de-
composing vector spaces into direct sums. Idempotents of the endomorphism ring endD(M) of a
finitely presented left D-module M will play the same role. Hence, we first need to characterize
idempotents of endD(M).

Lemma 7.1 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be defined by two
matrices P ∈ Dp×p and Q ∈ Dq×q satisfying RP = QR. Then, f is an idempotent of the ring
endD(M), namely f2 = f , iff there exists a matrix Z ∈ Dp×q such that:

(241) P 2 = P + Z R.

Moreover, if we denote by R2 ∈ Dq2×q a matrix satisfying kerD(.R) = D1×q2 R2, then there exists
a matrix Z ′ ∈ Dq×q2 such that Q2 = Q+ RZ + Z ′R2. In particular, if R has full row rank, i.e.,
kerD(.R) = 0, then we have Q2 = Q+RZ.

Let us explain how to compute idempotents of the ring endD(M).

Algorithm 7.1. • Input: A matrix R ∈ Dq×p and the output of Algorithm 2.2 for R′ = R
and fixed positive integers α, β and γ.

• Output: A finite family {fj}j∈J of idempotents of the endomorphism ring endD(M) of
M = D1×p/(D1×q R), defined by matrices Pj ∈ Eαβ,γ , i.e., satisfying P 2

j = Pj + Zj R

for certain matrices Zj ∈ Dp×q, RPj ∈ Dq×pR and fj(π(λ)) = π(λPj), where λ is an
arbitrary element of D1×p and π : D1×p −→M denotes the canonical projection onto M .

(1) Consider a generic element L =
∑
i∈I ci Li of the output of Algorithm 2.2 for fixed α, β

and γ, where ci are new independent variables, i ∈ I.
(2) Compute L2 − L and denote the result by F .
(3) Compute a Gröbner basis G of the left D-module D1×q R.
(4) Compute the normal forms of the rows of F with respect to G.
(5) Solve the system in the coefficients ci’s so that all the previous normal forms vanish.
(6) Substitute the solutions into the matrix L and denote the set of solutions by {Lj}j∈J .
(7) For j ∈ J , form the matrix Pj obtained by computing the normal forms of the rows of Lj

with respect to G.
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Example 7.1. Let us consider D = A1(Q), R =
(
∂2 − t ∂ − 1

)
and M = D1×2/(DR). Search-

ing for idempotents of endD(M) defined by matrices P and Q of total order 1 and total degree 2,
Algorithm 7.1 gives P1 = Q1 = 0, P2 = Q2 = I2 and

(242)

 P3 =

(
−(t+ a) ∂ + 1 t2 + a t

0 1

)
,

Q3 = −((t+ a) ∂ + 1),

 P4 =

(
(t− a) ∂ −t2 + a t

0 0

)
,

Q4 = (t− a) ∂ + 2,

where a is an arbitrary constant of Q. We can check that P 2
i = Pi + ZiR, for i = 3, 4, where:

Z3 = ((t+ a)2 0)T , Z4 = ((t− a)2 0)T .

Lemma 7.2 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be an idempotent.
Then, we have the following left D-isomorphism:

M ∼= ker f ⊕ coim f.

More precisely, the following split exact sequence of left D-modules holds

0 −→ ker f i−→ M
ρ−→ coim f −→ 0,

idM−f←−−−− f]←−

where f ] : coim f −→M is defined by f ](ρ(m)) = f(m) for all m ∈M .

According to Lemma 7.2, we obtain that the existence of a non-trivial idempotent f of endD(M)
implies that we have M ∼= ker f ⊕ coim f , i.e., M is a decomposable left D-module. Conversely,
if there exist two left D-modules M1 and M2 such that M is isomorphic to M1 ⊕M2 and if we
denote this isomorphism by φ : M −→ M1 ⊕M2 and p1 : M1 ⊕M2 −→ M1 ⊕ 0 the canonical
projection (i.e., p2

1 = p1), then p = φ−1 ◦ p1 ◦ φ is an idempotent of endD(M).

We obtain the following well-known corollary of Lemma 7.2.

Corollary 7.1 ([71, 54]). M is decomposable iff endD(M) admits a non-trivial idempotent.

Example 7.2. In Example 2.1, we proved that the endomorphism ring of D/I, where D was a
commutative ring and I an ideal of D, satisfied endD(D/I) ∼= D/I. Hence, the D-module D/I is
decomposable iff the commutative ring D/I admits non-trivial idempotents. For instance, if we
consider the commutative polynomial ring D = Q[∂t, ∂x] of PD operators with rational constant
coefficients and I = (∂t−∂x, ∂t−∂2

x) the ideal of D formed by the transport and the heat operators,
then we have ∂2

t − ∂t = (∂t + ∂x) (∂t − ∂x) − (∂t − ∂2
x) ∈ I showing that the residue class π(∂t)

of ∂t in D/I is a non-trivial idempotent of D/I, i.e., π(∂t)2 = π(∂t). Hence, the D-module D/I
is decomposable. Now, if I is a prime ideal of D, then D/I is an integral domain, a fact showing
that endD(D/I) ∼= D/I only admits the trivial idempotents 0 and idD/I . Using Corollary 7.1, we
obtain that D/I is indecomposable. For instance, if we consider D = Q[∂t, ∂x] and the principal
ideal of D generated by the heat operator I = (∂t − ∂2

x), then D/I ∼= Q[∂x] is an integral domain,
which proves that the D-module D/I is indecomposable.

The next proposition gives another characterization of an idempotent of the ring endD(M).

Proposition 7.1 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be defined by two
matrices P ∈ Dp×p and Q ∈ Dq×q such that RP = QR. Then, f is an idempotent of endD(M)
iff there exists X ∈ Dp×r such that

(243) P = Ip −X S,

where S ∈ Dr×p is the matrix defined in Proposition 4.1, namely, coim f = D1×p/(D1×r S). Then,
there exist two matrices X ∈ Dp×r and X2 ∈ Dr×r2 such that the following identity holds

(244) S X +X2 S2 = Ir − T L,

where S2 ∈ Dr2×r (resp., T ∈ Dr×q) is such that kerD(.S) = D1×r2 S2 (resp., (218) holds).
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Remark 7.1. If S has full row rank, i.e., kerD(.S) = 0, then (244) becomes:
(245) S X + T L = Ir.

Then, the factorization R = LS satisfies (245), which is nothing else than the generalization for
matrices and noncommutative rings of the classical decomposition of a commutative polynomial
into coprime factors. Indeed, if R ∈ D = k[x1, . . . , xn], where k is a field, then (245) becomes
X S + T L = 1 (Bézout identity), i.e., the ideal of D generated by S and L is equal to D, and
shows that R = LS is a factorization of the polynomial R into the coprime factors L and S.

The knowledge of idempotents of endD(M) allows us to decompose the system Ry = 0 into two
decoupled systems T1 y1 = 0 and T2 y2 = 0, where T1 and T2 are two matrices with entries in D.
Consequently, as it is shown in the next theorem, the integration of the system Ry = 0 is then
equivalent to the integrations of the two independent systems T1 y1 = 0 and T2 y2 = 0.

Theorem 7.1. Let R ∈ Dq×p, M = D1×p/(D1×q R), f ∈ endD(M) be a non-trivial idempotent
and F a left D-module. Moreover, let us denote by S ∈ Dr×p, L ∈ Dq×r, X ∈ Dp×r and
S2 ∈ Dr2×r four matrices defined by:

coim f = D1×p/(D1×r S),
R = LS,

Ip − P = X S,

kerD(.S) = D1×r2 S2.

Then, every element of the form η = ζ +X τ , where ζ ∈ kerF (S.) and τ ∈ Fr satisfies

(246)

{
Lτ = 0,
S2 τ = 0,

belongs to kerF (R.). Conversely, every element η ∈ kerF (R.) has the form η = ζ + X τ , for a
certain ζ ∈ kerF (S.) and a certain τ ∈ kerF ((LT ST2 )T .). In other words, we have:

kerF (R.) = kerF (S.)⊕X kerF ((LT ST2 )T .).

Example 7.3. We consider the commutative polynomial ring D = Q
[
∂t; id, ∂∂t

] [
∂x; id, ∂∂x

]
of PD

operators with rational constant coefficients and I = (∂t − ∂x, ∂t − ∂2
x) the ideal of D formed by

the transport and the heat operators. In Example 7.2, we proved that π(∂x) defined a non-trivial
idempotent of D/I, where π : D −→ D/I denotes the canonical projection onto D/I. Hence, the
D-endomorphism f ∈ endD(D/I) ∼= D/I defined by f(π(1)) = ∂t is an idempotent. Using the
notations of Theorem 7.1, we have R = (∂t − ∂x ∂t − ∂2

x)T , P = ∂t, Q = ∂t I2,

S =

 ∂x − 1
∂t − 1

0

 , L =

(
−1 1 1

−∂x − 1 1 0

)
, S2 =

(
∂t − 1 −∂x + 1 0

0 0 1

)
,

and X = (−1 0 0). Considering the injective D-module F = C∞(R2), we can easily check that
we have kerF (S.) = {ζ = c1 e

x+t | c1 ∈ R}. Finally, (246) is defined by
−τ1 + τ2 + τ3 = 0,
−∂x τ1 − τ1 + τ2 = 0,
∂t τ1 − τ1 − ∂x τ2 + τ2 = 0, τ3 = 0,

⇔


∂x τ1 = 0,
∂t τ1 = 0,
τ2 = τ1,

τ3 = 0,

⇔


τ1 = c2,

τ2 = c2,

τ3 = 0,
c2 ∈ R,

which proves that kerF (R.) = {η = c1 e
x+t − c2 | c1, c2 ∈ R} = {η = c1 e

x+t + c3 | c1, c3 ∈ R}.
Similarly, if we consider the ideal J = (∂2

t − ∂2
x, ∂t − ∂2

x) formed by the wave and the heat
operators, then π(∂t) is an idempotent of the ring D/J and, using the notations of Theorem 7.1,
we get R = (∂2

t − ∂2
x ∂t − ∂2

x)T , P = ∂t, Q = ∂t I2,

S =

 ∂t − 1
∂2
x − 1

0

 , L =

(
∂t + 1 −1 0

1 −1 0

)
, S2 =

(
∂2
x − 1 −∂t + 1 0

0 0 1

)
,
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and X = (−1 0 0). We can easily check that kerF (S.) = {ζ = c1 e
t−x + c2 e

t+x | c1, c2 ∈ R}
and kerF ((LT ST2 )T .) = {τ = (c3 x + c4 c3 x + c4 0)T | c3, c4 ∈ R}, which finally proves that
we have kerF (R.) = {η = c1 e

t−x + c2 e
t+x − c3 x− c4 | ci ∈ R, i = 1, . . . , 4}.

Finally, let us explain another way to obtain Theorem 7.1.

If R = LS, then Corollary 5.1 (see (235)) shows that kerF (S.) ⊆ kerF (R.) for all left D-
modules F . If we introduce the new unknown τ = S η, then we have S2 τ = 0, where the matrix
S2 ∈ Dr2×r is such that kerD(.S) = D1×r2 S2 (see Corollary 5.1). Moreover, the linear system
Rη = L(S η) = 0, where η ∈ Fp, can be integrated in cascade as follows:

S η − τ = 0,
L τ = 0,
S2 τ = 0.

This remark can easily be understood using the results on Baer’s extensions developed in Sec-
tion 1. As explained in Theorem 5.1, we have the short exact sequence

0 −→ ker f i−→M
ρ−→ coim f −→ 0,

where M = D1×p/(D1×q R), ker f = (D1×r S)/(D1×q R) ∼= P , D1×r/(D1×q L + D1×r2 S2) (see
Corollary 5.1) and coim f = D1×p/(D1×r S). Therefore, the above short exact sequence yields the
following one 0 −→ P

j−→M
ρ−→ coim f −→ 0, i.e., yields an extension of P by coim f .

Proposition 7.2. Using the notations of Corollary 5.1, if F is a left D-module,

A = Ir + U1 L+ U2 S2 + S V ∈ Dr×r,

where U1 ∈ Dr×q, U2 ∈ Dr×r2 and V ∈ Dp×r are three arbitrary matrices (e.g., U1 = 0, U2 = 0,
V = 0 which yields A = Ir) and

Q =

 S −A
0 L

0 S2

 ∈ D(r+q+r2)×(p+r),

then the following equivalence of linear systems holds

Rη = 0 ⇔


S ζ −Aτ = 0,
L τ = 0,
S2 τ = 0,

under the following invertible transformations:
φ : kerF (R.) −→ kerF (Q.)

η 7−→

{
ζ = η + V S η,

τ = S η,

φ−1 : kerF (Q.) −→ kerF (R.)(
ζ

τ

)
7−→ η = ζ − V τ.

Moreover, if there exist three matrices U1 ∈ Dr×q, U2 ∈ Dr×r2 and V ∈ Dp×r such that

Ir + U1 L+ U2 S2 + S V = 0,

then M ∼= ker f ⊕ coim f and the linear system Rη = 0 is equivalent to η = ζ + V τ , where:

S ζ = 0,

{
Lτ = 0,
S2 τ = 0.

8. Decomposition problem

Let us start with two simple lemmas.

Lemma 8.1 ([19]). Let R ∈ Dq×p be a full row rank matrix, i.e., kerD(.R) = 0, and P ∈ Dp×p,
Q ∈ Dq×q two matrices satisfying the relation RP = QR. If P is an idempotent of Dp×p, i.e.,
P 2 = P , then so is Q, i.e., Q2 = Q.
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Lemma 8.2 ([19]). Let R ∈ Dq×p be a full row rank matrix and M = D1×p/(D1×q R). Let
f ∈ endD(M) be an idempotent defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying the
relations RP = QR, P 2 = P + Z R and Q2 = Q + RZ. If there exists a solution Λ ∈ Dp×q of
the following algebraic Riccati equation

(247) ΛRΛ + (P − Ip) Λ + ΛQ+ Z = 0,

then the matrices defined by

(248)

{
P = P + ΛR,
Q = Q+RΛ,

satisfy the following relations:

RP = QR, P
2 = P , Q

2 = Q.

Example 8.1. We consider again Example 7.1 where we proved that the matrices P3 and P4
defined by (242) were such that P 2

i = Pi + ZiR, for i = 3, 4, for certain matrices Z1 and Z2
defined in Example 7.1. Searching for solutions of (247) of order 1 and degree 1, we obtain the
solutions Λ3 = (a t a ∂ − 1)T , Λ4 = (a t a ∂ + 1)T . Then, the matrices (248) defined by P 3 =

(
a t ∂2 − (t+ a) ∂ + 1 t2 (1− a ∂)

(a ∂ − 1) ∂2 −a t ∂2 + (t− 2 a) ∂ + 2

)
,

Q3 = 0, P 4 =

(
a t ∂2 + (t− a) ∂ −t2 (1 + a ∂)

(a ∂ + 1) ∂2 −a t ∂2 − (t+ 2 a) ∂ − 1

)
,

Q4 = 1,

satisfy the relations Ri P i = QiR, P 2
i = P i and Q

2
i = Qi for i = 3, 4.

Remark 8.1. Using Proposition 3.2, if P 2 = P , then we can easily check that imD(.P ) is a
projective left D-module. Moreover, we then have kerD(.P ) = imD(.(Ip − P )), which shows that
kerD(.P ) is also a projective left D-module since the matrix Ip − P is an idempotent.

The next theorem shows that the matrix R is equivalent to a block-diagonal matrix if endD(M)
admits an idempotent f which can be defined by two idempotent matrices P and Q such that
their kernels and images are free left D-modules (see Remark 8.1).

Theorem 8.1 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be an idempotent,
i.e., f2 = f , defined by two idempotents matrices P ∈ Dp×p and Q ∈ Dq×q satisfying the relations
RP = QR, P 2 = P and Q2 = Q. If the left D-modules

kerD(.P ), imD(.P ) = kerD(.(Ip − P )), kerD(.Q), imD(.Q) = kerD(.(Iq −Q)),

are free of rank m, p − m = tr(P ), l, q − l = tr(Q), then there exist matrices U1 ∈ Dm×p,
U2 ∈ D(p−m)×p, V1 ∈ Dl×q and V2 ∈ D(q−l)×q satisfying

(1) U = (UT1 UT2 )T ∈ GLp(D),
(2) V = (V T1 V T2 )T ∈ GLq(D),

(3) R = V RU−1 =

(
V1 RW1 0

0 V2 RW2

)
∈ Dq×p,

where U−1 = (W1 W2), W1 ∈ Dp×m and W2 ∈ Dp×(p−m).
In particular, the full row rank matrix U1 (resp., U2, V1, V2) defines a basis of the free left

D-module kerD(.P ), (resp., imD(.P ), kerD(.Q), imD(.Q)) of rank m (resp., p−m, l, q − l), i.e.:

(249)


kerD(.P ) = D1×m U1,

imD(.P ) = D1×(p−m) U2,

kerD(.Q) = D1×l V1,

imD(.Q) = D1×(q−l) V2.
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Finally, we have ker f ∼= D1×m/(D1×l (V1 RW1)) and im f ∼= D1×(p−m)/(D1×(q−l) (V2 RW2)),
i.e., up to isomorphism, the first (resp., second) diagonal block of R corresponds to ker f (resp.,
im f) and we have M ∼= ker f ⊕ im f .

Let us illustrate Theorem 8.1.

Example 8.2. Let us consider again the Dirac equation for a massless particle studied in Exam-
ple 6.1. We can check that the matrices P and Q defined in Example 6.1 are idempotents of D4×4,
i.e., P 2 = P and Q2 = Q. Since the entries of P and Q belong to Q, the D-modules kerD(.P ),
imD(.P ), kerD(.Q) and imD(.Q) are free. Hence, by Theorem 8.1, the presentation matrix R of
the Dirac equation defined in Example 6.1 is equivalent to a block-diagonal matrix. In order to
compute this equivalent form, we only need to compute a basis of the free D-modules imD(.P ) and
imD(.Q) instead of a basis of the free D-modules coimD(.P ) and coimD(.Q) computed in Exam-
ple 6.1 for the reduction problem. Using linear algebra techniques, we obtain imD(.P ) = D1×2 U ′2
and imD(.Q) = D1×2 V ′2 , where:

U ′2 =
(

1 0 −1 0
0 1 0 −1

)
, V ′2 =

(
1 0 1 0
0 1 0 1

)
.

Hence, if we define by U ′ = (UT1 U ′T2 )T ∈ GL4(D) and V ′ = (V T1 V ′T2 )T ∈ GL4(D), where the
matrices U1 and V1 are defined in Example 6.1, we then obtain:

R = V ′RU ′−1 =


−∂4 + i ∂3 ∂2 + i ∂1 0 0
−∂2 + i ∂1 −∂4 − i ∂3 0 0

0 0 ∂4 + i ∂3 ∂2 + i ∂1
0 0 −∂2 + i ∂1 ∂4 − i ∂3

 .

Finally, let us study whether or not the block-diagonal submatrices of R can also be decomposed.
Let S ∈ D2×2 be the first block-diagonal submatrix of R and N = D1×2/(D1×2 S). Using Algo-
rithm 2.1, the D-modules endD(N) is generated by {gi}i=1,2,3, where gi(κ(µ)) = κ(µXi), where
κ : D1×2 −→ N is the canonical projection onto N , µ ∈ D1×2 and:

X1 = I2, X2 =

(
0 −∂2 − i ∂1

0 −∂4 + i ∂3

)
, X3 =

(
0 −∂4 − i ∂3

0 ∂2 − i ∂1

)
.

Moreover, the generators gi’s satisfy the following D-linear relations:
(∂4 − i ∂3) g1 + g2 = 0,
(∂2 − i ∂1) g1 − g3 = 0,
−(∂4 + i ∂3) g2 + (∂2 + i ∂1) g3 = 0,
(∂2 − i ∂1) g2 + (∂4 − i ∂3) g3 = 0.

The two first equations of the above system yield g2 = −(∂4− i ∂3) g1 and g3 = (∂2− i ∂1) g1, which
shows that endD(N) is a cyclic D-module generated by g1 = idN . Hence, using Example 2.2, we
get endD(N) = Dg1 ∼= D/(annD(g1)), where annD(g1) = ∆ = ∂2

1 + ∂2
2 + ∂2

3 + ∂2
4 . Since ∆ is an

irreducible polynomial, D/(annD(g1)) is an integral domain which shows that it does not admit
idempotents and proves that N cannot be decomposed and S is not equivalent to a block-diagonal
matrix. The same result holds for the second block-diagonal of the matrix R.

Example 8.3. Let us consider again Example 2.4, namely, the model of a tank containing a fluid
and subjected to a one-dimensional horizontal move studied in [79]:{

ẏ1(t)− ẏ2(t− 2h) + α ÿ3(t− h) = 0,
ẏ1(t− 2h)− ẏ2(t) + α ÿ3(t− h) = 0.

Let D = Q(α)[∂, δ] the commutative polynomial ring of OD time-delay operators with rational
constant coefficients (i.e., ∂ y(t) = ẏ(t), δ y(t) = y(t− h)),

R =

(
∂ −∂ δ2 α∂2 δ

∂ δ2 −∂ α ∂2 δ

)
∈ D2×3,
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the presentation matrix of (141) and the D-module M = D1×3/(D1×2 R) finitely presented by R.
Using Algorithm 7.1, we obtain that the matrices defined by

P = 1
2

 1 −1 0
−1 1 0
0 0 2

 , Q = 1
2

(
1 1
1 1

)
,

satisfy the relations RP = QR, P 2 = P and Q2 = Q, i.e., define an idempotent f ∈ endD(M).
Since the entries of P and Q belong to Q, kerD(.P ), imD(.P ), kerD(.Q), imD(.Q) are free

D-modules. Computing basis of these Q-vector spaces, we get:

U =

 1 1 0
1 −1 0
0 0 1

 ∈ GL3(D), V =

(
1 −1
1 1

)
∈ GL2(D).

Therefore, we obtain that R is equivalent to the following block-diagonal matrix:

R = V RU−1 =

(
∂ (1− δ) (1 + δ) 0 0

0 ∂ (δ2 + 1) 2α∂2 δ

)
.

Hence, we obtain M ∼= M1 ⊕M2, where:
M1 = D/(D (∂ (δ2 − 1))), M2 = D1×2/(D (∂ (δ2 + 1) 2α∂2 δ)).

Let us now consider the D-module F = C∞(R) and the linear system kerF (R.) and let us
characterize the elements kerF (R.), and thus, those of kerF (R.). If we denote by C1 and C2 two
arbitrary real constants and ψ a 2h-periodic of F , then we can check that we have:

R

 z1(t)
z2(t)
z3(t)

 = 0 ⇔


z1(t) = ψ(t) + C1 t,

z2(t) = −2α ξ̇(t− h) + C2,

z3(t) = ξ(t− 2h) + ξ(t),
∀ ξ ∈ F .

Finally, using the invertible transformation defined by the matrix U , we obtain: y1(t)
y2(t)
y3(t)

 = U−1

 z1(t)
z2(t)
z3(t)

 =


1
2 (ψ(t) + C1 t+ C2)− α ξ̇(t− h)
1
2 (ψ(t) + C1 t− C2) + α ξ̇(t− h)

ξ(t− 2h) + ξ(t)

 .

We find again the parametrization of kerF (R.) obtained in Example 2.4 and [79].
The choice of another idempotent of endD(M) defined by the two idempotent matrices

P ′ =

 0 0 0
−δ2 1 −α δ ∂

0 0 0

 , Q′ =

(
0 δ2

0 1

)
,

gives another decomposition of M . Indeed, the matrices X ∈ GL3(D) and Y ∈ GL2(D) obtained
by stacking bases of free D-modules kerD(.P ′) and imD(.P ′) (resp., kerD(.Q′) and imD(.Q′)),

X =

 1 0 0
0 0 1
δ2 −1 α δ ∂

 , Y =

(
−1 δ2

0 1

)
,

are such that R = Y RX−1 is the following block-diagonal matrix:

R =

(
∂ (δ2 − 1) (δ2 + 1) α∂2 δ (δ2 − 1) 0

0 0 ∂

)
.

Hence, we obtain M ∼= M3 ⊕M4, where:
M3 = D1×2/(D (∂ (δ2 − 1) (δ2 + 1) α∂2 δ (δ2 − 1))), M4 = D/(D∂).

Since M1 and M4 are torsion D-modules and M2/t(M2) 6= 0 and M3/t(M3) 6= 0, we obtain
that M1 6∼= M3 and M2 6∼= M4. Moreover, we have M1 6∼= M4 since homD(M4,M1) is generated by
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the injective but not surjective D-homomorphism φ(π1(λ)) = π4(λ (δ2 − 1)) for all λ ∈ D, where
π1 : D −→M1 (resp., π4 : D −→M4) is the canonical projection onto M1 (resp., M4). Moreover,
we have t(M2) ∼= M4 and t(M3) ∼= M1, a fact implying that M2 6∼= M3. Hence, the D-module M
admits the two decompositions formed by pairwise non-isomorphic D-modules:

M ∼= M1 ⊕M2 ∼= M3 ⊕M4.

The converse of Theorem 8.1 is also true as it is explained in the next corollary.

Corollary 8.1 ([100]). A matrix R ∈ Dq×p is equivalent to a block-diagonal matrix R ∈ Dq×p,
i.e., there exist two matrices U ∈ GLp(D) and V ∈ GLq(D) such that

(250) R = V RU−1 =

(
R11 0
0 R22

)
, R11 ∈ Dl×m, R22 ∈ D(q−l)×(p−m),

iff there exist two idempotent matrices P ∈ Dp×p and Q ∈ Dq×q, i.e., P 2 = P , Q2 = Q, such
that RP = QR and kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q) are free left D-modules of rank
respectively m, p−m, l and q − l.

According to Remark 8.1, the kernel and the image of an idempotent matrix are projective
modules. Theorem 8.1 shows that the matrix R is equivalent to a block-diagonal matrix if the
kernels and the images of certain idempotent matrices are free. Hence, using Theorem 1.2, we
obtain the following result.

Theorem 8.2 ([19]). Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be an idempotent
defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying RP = QR, P 2 = P and Q2 = Q.

Assume further that one of the following conditions holds:
(1) D = A〈∂〉 is a ring of OD operators over a differential field A such as k, k(t) and kJtK[t−1],

where k is a field of characteristic 0, or k{t}[t−1], where k = R or C),
(2) D = k[x1, . . . , xn] is a commutative polynomial ring over a field k,
(3) D = An(k), Bn(k), kJtK[∂], where k is a field of characteristic 0, or k{t}[∂], where k = R

or C, and: {
rankD(kerD(.P )) ≥ 2,
rankD(imD (.P )) ≥ 2,

{
rankD(kerD(.Q)) ≥ 2,
rankD(imD (.Q)) ≥ 2.

Then, there exist U ∈ GLp(D) and V ∈ GLq(D) such that

R = V RU−1 =

(
R11 0
0 R22

)
∈ Dq×p,

where R11 ∈ Dl×m, R22 ∈ D(q−l)×(p−m), m = rankD(kerD(.P )) and l = rankD(kerD(.Q)).

Example 8.4. Let us consider again Example 2.6, namely, the model of a flexible rod with a
torque studied in [74]:

(251)

{
ẏ1(t)− ẏ2(t− 1)− u(t) = 0,
2 ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.

Let us consider the commutative polynomial algebra D = Q[∂, δ] of OD time-delay operators (i.e.,
∂ y(t) = ẏ(t), δ y(t) = y(t− h), where h ∈ R+), the corresponding presentation matrix

R =

(
∂ −∂ δ −1

2 ∂ δ −∂ (1 + δ2) 0

)
∈ D2×3,

and the D-module M = D1×3/(D1×2 R). Using Algorithm 7.1, we obtain that the matrices

P =

 1 + δ2 − 1
2 δ

2 (1 + δ) 0
2 δ −δ2 0
0 0 1

 , Q =

(
1 − 1

2 δ

0 0

)
,
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are idempotent, i.e., P 2 = P and Q2 = Q, and define an idempotent element f of endD(M). Using
the implementation of the Quillen-Suslin theorem in QuillenSuslin, we obtain:

U =


−2 δ δ2 + 1 0

2 ∂ (1− δ2) ∂ δ (δ2 − 1) −2

−1 1
2
δ 0

 ∈ GL3(D), V =

(
0 −1
2 −δ

)
∈ GL2(D).

Then, the matrix R is equivalent to the following block-diagonal matrix:

R = V RU−1 =

(
∂ 0 0
0 1 0

)
.

Hence, we get the following D-isomorphisms
M ∼= D1×3/(D1×2 R) = D/ (D∂)⊕D1×2/(D (1 0)) ∼= D/ (D∂)⊕D,

which show that t(M) ∼= D/ (D∂) and M/t(M) ∼= D. We note that M is extended from the ring
E = Q[∂], namely, M ∼= D ⊗E L, where L = E1×3/(E1×2 R) (see [110]). This result shows that
the first scalar diagonal block (resp., second diagonal block) of R corresponds to the autonomous
elements (resp., flat subsystem of kerF (R.)) of kerF (R.), where F is a D-module (e.g., C∞(R)).

Finally, all smooth solutions of Rz = 0 are defined by z = (c 0 z3)T , where c ∈ R and z3 is
an arbitrary smooth function. Hence, all smooth solutions of (251) are parametrized by y1(t)

y2(t)
u(t)

 = U−1

 c

0
z3(t)

 =


1
2 c− z3(t− 2)− z3(t)

c− 2 z3(t− 1)
ż3(t− 2)− ż3(t)

 ,

where c is an arbitrary constant and z3 an arbitrary smooth function.

For more results on the factorization, reduction and decomposition problems, see [19, 20, 100].
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CHAPTER 4

Serre’s reduction

“Comme tout être vivant, pour ne pas mourir la mathématique doit se recréer sans
cesse. Ainsi la mort de la recherche mathématique serait la mort de la pensée
mathématique, c’est-à-dire du langage même de la science. Car expérimenter
n’est pas seulement employer nos sens et nos mains, c’est aussi schématiser la
petite partie de la réalité physique que nous observons, c’est mettre en relation le
monde physique et le monde abstrait que nous révèlent les mathématiques. Notre
civilisation n’est pas mécanique mais scientifique : il est vital qu’elle transmette
l’essentiel de sa science aux jeunes générations ; la science ne peut se stocker
exclusivement dans des bibliothèques ; elle n’est pas lettre morte, elle est une
pensée vivante ; il faut qu’elle vive dans nos esprits ; si elle y meure, ni nos
machines, ni nous-mêmes n’y survivrions. Nous avons donc tous besoin que la
jeunesse développe toutes ses capacités intellectuelles en ayant bonne conscience
et foi en son avenir.”

Jean Leray, Remise du prix Feltrinelli, Roma 1971 et Congrès Pan-Africain,
Rabat 1976.

1. Introduction

Let R ∈ Dq×p be a full row rank matrix, i.e., kerD(.R) = 0, and M = D1×p/(D1×q R) the left
D-module finitely presented by R. Then, the following short exact sequence holds:

(252) 0 −→ D1×q .R−→ D1×p π−→M −→ 0,

The purpose of this section is to study the existence of extensions of D1×(q−r) by M , where
0 ≤ r ≤ q − 1, which define free left D-modules E (see Definition 1.1). If such an extension of
D1×(q−r) by M exists, then applying Proposition 4.1 to the following short exact sequence

0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

we get rankD(E) = rankD(D1×(q−r)) + rankD(M) = (q − r) + (p− q) = p− r, i.e., E is a free left
D-module of rank p− r. Therefore, if ψ : D1×(q−r) −→ E is a left D-isomorphism, then we obtain
the commutative exact diagram

(253)
0 −→ D1×(q−r) α−→ E

β−→ M −→ 0,
‖ ↓ ψ ‖

0 −→ D1×(q−r) ψ ◦α−−−→ D1×(p−r) β ◦ψ−1

−−−−−→ M −→ 0,

which proves that a representative of the equivalence class of the extension of D1×(q−r) by M
defined by the left D-module E is defined by the second horizontal short exact sequence of (253)
(see Definition 1.1). If we write the left D-homomorphism β ◦ ψ−1 : D1×(q−r) −→ D1×(p−r) in
the standard bases of the free left D-modules D1×(q−r) and D1×(p−r), then there exists a matrix
R ∈ D(q−r)×(p−r) such that the second short exact sequence of (253) becomes the following one

0 −→ D1×(q−r) .R−→ D1×(p−r) γ−→M −→ 0,
which yields M ∼= D1×(p−r)/(D1×(q−r) R), i.e., M admits a finite presentation by a matrix R ∈
D(q−r)×(p−r). In terms of unknowns and equations, it means that the linear system kerF (R.)
defined by q left D-linearly independent equations in p unknowns is equivalent to the linear system
kerF (R.) defined by q − r left D-linearly independent equations in p − r unknowns. Hence, the
existence of an extension of D1×(q−r) by M defined by a free left D-module E is equivalent to the
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possibility of reducing the number of equations and unknowns of the linear system kerF (R.) by
r. Motivated by the study of complete intersections of algebraic varieties, Serre first studied this
problem in [113]. Hence, we shall call it Serre’s reduction problem. The purpose of this section is
to study this problem within a constructive viewpoint.

2. Generalization of Serre’s theorem

According to Theorem 1.2, the extensions of D1×(q−r) by M are classified by the right D-module
ext1

D(M,D1×(q−r)). A classical result of homological algebra asserts that

ext1
D(M,D1×(q−r)) ∼= ext1

D(M,D)⊗D D1×(q−r),

where · ⊗D · denotes the tensor product. See, e.g., [15, 65, 110]. Moreover, since R has full row
rank, Remark 1.2 shows that Ω = Dq×(q−r). Applying Theorem 1.3 to the left D-modules M
and N = D1×(q−r) ∼= D1×(q−r)/(DS), where S = (0 . . . 0) ∈ D1×(q−r), then any extension of
D1×(q−r) by M can be defined by a left D-module E = D1×(p+q−r)/(D1×(q+1) Q), where

Q =

(
R −Λ
0 0

)
∈ D(q+1)×(p+q−r),

and Λ ∈ Ω = Dq×(q−r), i.e., by the the left D-module E = D1×(p+q−r)/(D1×q P ), where:

P = (R − Λ) ∈ Dq×(p+q−r).

Since R has full row rank, so has P , and we have the following short exact sequence

(254) 0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0,

where % : D1×(p+q−r) −→ E is the canonical projection onto E, i.e., the left D-homomorphism
which sends ζ ∈ D1×(p+q−r) to its residue class %(ζ) in E.

Since both R and P have full row rank, we get:

ext1
D (M,D) ∼= Dq/ (RDp) , ext1

D (E,D) ∼= Dq/
(
P D(p+q−r)

)
.

Using the following inclusions of right D-modules RDp ⊆ P D(p+q−r) = RDp + ΛD(q−r) ⊆ Dq,
we get the following short exact sequence of right D-modules

(255) 0 −→
(
P D(p+q−r)

)
/(RDp) j−→ ext1

D (M,D) σ−→ ext1
D (E,D) −→ 0,

where j is the canonical injection and σ the canonical projection. Hence, (255) shows that

ext1
D (E,D) = 0 ⇔ ext1

D (M,D) =
(
RDp + ΛD(q−r)

)
/(RDp)

⇔ ext1
D (M,D) =

(
RDp +

q−r∑
i=1

Λ•iD

)
/(RDp),

⇔ ext1
D (M,D) =

q−r∑
i=1

τ(Λ•i)D,

where τ : Dp −→ ext1
D (M,D) = Dp/(RDq) is the canonical projection. Hence, ext1

D (E,D) = 0
iff the right D-module ext1

D (M,D) is generated by the family {τ(Λ•i)}i=1,...,q−r of q− r elements.
Let us now study the condition ext1

D(E,D) = 0. By definition, ext1
D(E,D) = 0 is equivalent

to the existence of a matrix S = (S1 . . . Sq) ∈ D(p+q−r)×q satisfying P S = Iq, which, by 2 of
Corollary 3.3, is equivalent to E is a stably free left D-module of rank p− r.

Theorem 2.1 ([14]). Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix, namely,
kerD(.R) = 0, Λ ∈ Dq×(q−r), P = (R − Λ) ∈ Dq×(p+q−r) and M = D1×p/(D1×q R) (resp.,
E = D1×(p+q−r)/(D1×q P )) the left D-module finitely presented by R (resp., P ) which defines the
following extension of D1×(q−r) by M :

0 −→ D1×(q−r) α−→ E
β−→M −→ 0.

Then, the following results are equivalent:
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(1) The left D-module E is stably free of rank p− r.
(2) The matrix P = (R − Λ) ∈ Dq×(p+q−r) admits a right-inverse over D.
(3) ext1

D(E,D) ∼= Dq/
(
P D(p+q−r)) = 0.

(4) The right D-module ext1
D(M,D) = Dq/(RDp) is generated by {τ(Λ•i)}i=1,...,q−r, where

τ : Dq −→ ext1
D(M,D) is the canonical projection onto ext1

D(M,D).
Finally, the previous equivalences depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in

ext1
D

(
M,D1×(q−r)

)
∼= Dq×(q−r)/

(
RDp×(q−r)

)
∼= ext1

D(M,D)1×(q−r),

i.e., they depend only on the row vector (τ(Λ•1) . . . τ(Λ•(q−r))) ∈ ext1
D(M,D)1×(q−r).

Remark 2.1. Theorem 2.1 was first obtained by J.-P. Serre in [113] for a commutative ring D and
r = q − 1. In this case, ext1

D(M,D) is the (right) D-module generated by τ(Λ), i.e., ext1
D(M,D)

is the cyclic (right) D-module generated by τ(Λ).

Example 2.1. Theorem 2.1 is fulfilled if ext1
D(M,D) = 0, i.e., if M is a stably free left D-module

or, equivalently, if R admits a right-inverse over D (see Corollary 3.3) since we can take Λ = 0.
Another explanation of this result is that ext1

D(M,D) is then the trivial cyclic left D-module.
Equivalently, the short exact sequence (255) yields ext1

D(E,D) = 0.

On simple examples over a commutative polynomial ring D = k[x1, . . . , xn] with coefficients in a
computable field k (e.g., k = Q or Fp for a prime p), we can take a generic matrix Λ ∈ Dq×(q−r) with
a fixed total degree in the xi’s and, using Gröbner basis techniques, check whether or not the D-
module ext1

D(E,D) = D1×q/
(
D1×(p+q−r) PT

)
vanishes on certain branches of the corresponding

tree of integrability conditions ([90]) or on certain parts of the underlying constellation of semi-
algebraic sets in the k-parameters of Λ ([59]). See [59] for a survey explaining the constellation
techniques and their implementations in Singular. In particular, we can test whether or not a
non-zero constant belongs to the annihilator of ext1

D(E,D),

annD(ext1
D(E,D)) = {d ∈ D | ∀ n ∈ ext1

D(E,D), d n = 0},

i.e., whether or not annD(ext1
D(E,D)) = D. Indeed, since ext1

D(E,D) is a torsion right D-module
by Proposition 2.1, ext1

D(E,D) = 0 iff annD(ext1
D(E,D)) = D.

The constellation technique is particularly interesting when the D = k[x1, . . . , xn]-module
ext1

D(M,D) ∼= Dq/(RDp) is 0-dimensional, i.e., dimD(Dq/(RDp)) = 0, or equivalently, when
the ring A = D/I is a finite k-vector space, where I = annD(ext1

D(M,D)) (see Section 3). In-
deed, a Gröbner basis computation of the D-module RDp then gives a finite set of row vectors
{λk}k=1,...,s, where λk ∈ Dq and s = dimk(A), such that ext1

D(M,D) =
⊕s

k=1 k τ(λk). Then, we
can consider a generic matrix of the form

Λ =

(
s∑

k=1
a1k λk . . .

s∑
k=1

a(q−r)k λk

)
∈ Dq×(q−r),

where the alk’s are arbitrary elements of k for l = 1, . . . , (q− r) and k = 1, . . . , s, and compute the
constellation of semi-algebraic sets corresponding to the possible vanishing of ext1

D(E,D).

Example 2.2. We consider the model of a string with an interior mass defined by

(256)


φ1(t) + ψ1(t)− φ2(t)− ψ2(t) = 0,
φ̇1(t) + ψ̇1(t) + η1 φ1(t)− η1 ψ1(t)− η2 φ2(t) + η2 ψ2(t) = 0,
φ1(t− 2h1) + ψ1(t)− u(t− h1) = 0,
φ2(t) + ψ2(t− 2h2)− v(t− h2) = 0,

introduced and studied in [76], where h1, h2 ∈ R+ are such that Qh1 + Qh2 is a 2-dimensional Q-
vector space and η1 and η2 are two constant parameters. Let us denote by D = Q(η1, η2) [∂, σ1, σ2]
the commutative polynomial algebra of differential incommensurable time-delay operators in ∂,
σ1 and σ2, where ∂ f(t) = ḟ(t), σ1 f(t) = f(t − h1) and σ2 f(t) = f(t − h2). Now, let M =
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D1×6/(D1×4 R) be the D-module finitely presented by the presentation matrix of (2.2):

R =


1 1 −1 −1 0 0

∂ + η1 ∂ − η1 −η2 η2 0 0
σ2

1 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2

 ∈ D4×6.

Then, ext1
D(M,D) = D4/(RD6) and computing a Gröbner basis of the D-module ext1

D(M,D),
we obtain that ext1

D(M,D) is a 1-dimensional Q(η1, η2)-vector space and τ((0 0 0 1)T ) is a
basis, where τ : D4 −→ ext1

D(M,D) is the canonical projection onto ext1
D(M,D). Hence, the

only possible Λ’s for which the matrix P = (R − Λ) admits a right-inverse over D belong to{
a (0 0 0 1)T | a ∈ Q(η1, η2)

}
. In particular, if we consider Λ = (0 0 0 1)T , then we can

easily check that P = (R − Λ) ∈ D4×7 admits the following right-inverse over D:

S =



0 0 −1
2

−1
2

0 −1
2
σ2 −1

2

0 0 − 1
2 η2

1
2 η2

0 1
2 η2

σ2 − 1
2 η2

−1 1 −η1

η2

η1

η2
−σ1

η1

η2
σ2 −η1

η2

0 0 0 0 0 0 −1



T

.

Hence, the D-module ext1
D(M,D) ∼= D4/(RD6) is cyclic and is generated by τ(Λ).

Remark 2.2. If D = k[x1, x2] is a commutative polynomial ring over a field k, R ∈ Dq×p

and M = D1×p/(D1×q R), then, using Theorem 3.1, M can either admit a non-trivial torsion
submodule t(M), be torsion-free or projective, i.e., free by the Quillen-Suslin (see 2 of Theorem 1.2).
Hence, if p > q and R has full row rank, then the generic situation is that M is a torsion-free
D-module, which implies that ext1

D(M,D) is generically 0-dimensional by 2 of Corollary 3.1 since
dim(D) = 2. Hence, using the constellation techniques, we can check whether or not there exists
a matrix Λ ∈ Dq×(q−r) such that P = (R − Λ) admits a right-inverse over D, whenever R is
a generic full row rank matrix with p > q and the columns of the matrix Λ are generic k-linear
combinations of the basis of the finite-dimensional k-vector ext1

D(M,D). This situation particularly
holds in the study of control linear differential time-delay systems defined over D = k[∂, δ], where
k is a computable field (see [16, 17, 19, 20]).

Apart from the previous 0-dimensional case, we do not know yet how to recognize the existence
of Λ ∈ Dq×(q−r) satisfying 2 of Theorem 2.1. However, using an ansatz, we can give the sketch of
an algorithm in the case of the second Weyl algebra Bn(k). This case encapsulates the cases of a
commutative polynomial ring and the first Weyl algebra An(k) since we have:

k[x1, . . . , xn] ⊂ An(k) ⊂ Bn(k).

Algorithm 2.1. • Input: Let k be an algebraically closed computational field, D = Bn(k),
R ∈ Dq×p a full row rank matrix and three non-negative integers α, β and γ.
• Output: A set (possibly empty) of {Λi}i∈I such that the matrix (R − Λi) admits a

right-inverse over D.
(1) Consider an ansatz Λ ∈ Dq×(q−r) whose entries have a fixed total order α in the ∂i’s and a

fixed total degree β (resp., γ) for the polynomial numerators (resp., denominators) in the
xj ’s of the arbitrary coefficients of the ansatz Λ.

(2) Compute a Gröbner basis of the right D-module RDp.
(3) Compute the normal form Λ•i ∈ Dq of the ith column Λ•i of Λ in the right D-module

ext1
D(M,D) ∼= Dq/(RDp) for all i = 1, . . . , q − r.

(4) Compute the obstructions for projectivity of E = D1×(p+q−r)/(D1×q (R − Λ)) (e.g.,
compute a Gröbner basis of the right D-module (R − Λ)D(p+q−r) or the π-polynomials
of E ([16, 73]), namely, the generators of the ideal

⋂
{i≥1 | exti

D
(L,D) 6=0} annD(extiD(L,D)),

where L = Dq/((R − Λ)D(p+q−r)) ∼= ext1
D(E,D) is the Auslander transpose of E).
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(5) Solve the systems in the arbitrary coefficients of the ansatz Λ obtained by making the
obstructions vanish.

(6) Return the set of solutions for Λ.

Example 2.3. Let us consider a general transmission line defined by

(257)


∂V

∂x
+ L

∂I

∂t
+RI = 0,

C
∂V

∂t
+GV + ∂I

∂x
= 0,

where I denotes the current, V the voltage, L the self-inductance, R the resistance, C the capacitor
and G the conductance. Let D = Q(L,R,C,G)[∂t, ∂x] be the commutative polynomial ring of PD
operators in ∂t and ∂x with coefficients in the field Q(L,R,C,G), the presentation matrix J ∈ D2×2

of (257) defined by

(258) J =

(
∂x L∂t +R

C ∂t +G ∂x

)
,

and the D-module M = D1×2/(D1×2 J). In this example, we slightly change the previous notations
since we want to keep here the standard notation R for a resistance. Let us consider Λ = (α β)T ,
where α and β are two new variables, A = D[α, β], P = (J − Λ) ∈ A2×3 and the A-module
E = A1×3/(A1×2 P ) finitely presented by P . The obstructions for E to be a stably free A-module
are defined by A/(π1, π2), where the π-polynomials π1 and π2 are respectively:{

π1 = (C α2 − Lβ2) ∂t +Gα2 −Rβ2,

π2 = (C α2 − Lβ2) ∂x + (LG−RC)αβ.

They can be computed by OreModules. Hence, if C α2 = Lβ2 and Gα2 − Rβ2 6= 0 (resp.,
(LG−RC)αβ 6= 0), then π1 (resp., π2) is a non-zero constant. In particular, if we consider

β = C 6= 0, α2 = LC 6= 0, LG−RC 6= 0,

the ring B = (Q(L,R,C,G)[α]/(α2 − LC))[∂t, ∂x] and Λ = (α C)T ∈ B2, then the matrix
P = (J − Λ) ∈ B2×3 admits the following right-inverse over B:

S = 1
(RC − LG)

 −α L

−C α

−(C ∂x + αC ∂t + αG)/C (α∂x + LC ∂t +RC)/C

 .

Therefore, the B-module ext1
B(M,B) ∼= B2/(J B3) is cyclic and is generated by τ(Λ), where

τ : B2 −→ ext1
B(M,B) is the canonical projection onto ext1

B(M,B).

Example 2.4. Let us consider the conjugate Beltrami equations with σ = x−1:

(259)


∂u

∂x
− x ∂v

∂y
= 0,

∂u

∂y
+ x

∂v

∂x
= 0.

Let D = A2(Q(a, b)), R ∈ D2×2 be the presentation matrix of (259) defined by

(260) R =

(
∂x −x ∂y
∂y x ∂x

)
,

and M = D1×2/(D1×2 R) the left D-module finitely presented by R. If we consider the column
vector Λ = (a b)T , the matrix P = (R −Λ) ∈ D2×3 and the left D-module E = D1×3/(D1×2 P ),
then we can check that P admits the following right-inverse over D whenever both a and b are
non-zero:

S =

 x (a x ∂x + b x ∂y + a)/a −x (a x ∂x + b x ∂y + a)/b
−(a x ∂y − b x ∂x − 2 b)/a (a x ∂y − b x ∂x − 2 b)/b

x (x ∂2
x + x ∂2

y + 3 ∂x)/a −(x2 ∂2
x + x2 ∂2

y + 3x ∂x + 1)/b

 ∈ D3×2.
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Hence, the right D-module ext1
D(M,D) ∼= D2/(RD3) is cyclic and is generated by τ(Λ), where

τ : D2 −→ ext1
D(M,D) is the canonical projection onto ext1

D(M,D).

We can now use Theorem 2.1 to study Serre’s reduction.

Theorem 2.2 ([14]). Let D be a noetherian domain, R ∈ Dq×p be a full row rank matrix, 0 ≤
r ≤ q − 1 and a matrix Λ ∈ Dq×(q−r) such that there exists U ∈ GLp+q−r(D) satisfying:

(R − Λ)U = (Iq 0).
If we decompose the unimodular matrix U as follows

(261) U =

(
S1 Q1

S2 Q2

)
,

where S1 ∈ Dp×q, S2 ∈ D(q−r)×q, Q1 ∈ Dp×(p−r), Q2 ∈ D(q−r)×(p−r), and if we introduce the
left D-module L = D1×(p−r)/(D1×(q−r) Q2) finitely presented by the full row rank matrix Q2, i.e.,
defined by the following short exact sequence

(262) 0 −→ D1×(q−r) .Q2−−→ D1×(p−r) κ−→ L −→ 0,
then we have:
(263) M = D1×p/(D1×q R) ∼= L = D1×(p−r)/(D1×(q−r) Q2).
Conversely, if M is isomorphic to a left D-module L defined by the short exact sequence (262),
then there exist two matrices Λ ∈ Dq×(q−r) and U ∈ GLp+q−r(D) such that:

(R − Λ)U = (Iq 0).

We now can give an explicit description of the isomorphism obtained in Theorem 2.2.

Corollary 2.1 ([14]). With the notations of Theorem 2.2, the left D-isomorphism (263) obtained
in Theorem 2.2 is explicitly defined by:

ϕ : M = D1×p/(D1×q R) −→ L = D1×(p−r)/(D1×(q−r) Q2)
π(λ) 7−→ κ(λQ1).

Moreover, its inverse ϕ−1 : L −→M is defined by ϕ−1(κ(µ)) = π(µT1), where:

U−1 =

(
R −Λ
T1 −T2

)
∈ GLp+q−r(D), T1 ∈ D(p−r)×p, T2 ∈ D(p−r)×(q−r).

These results depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in the right D-module:

ext1
D

(
M,D1×(q−r)

)
∼= Dq×(q−r)/(RDp×(q−r)).

A straightforward consequence of Corollary 2.1 is the following result.

Corollary 2.2 ([14]). Let F be a left D-module and:

kerF (R.) = {η ∈ Fp | Rη = 0}, kerF (Q2.) = {ζ ∈ F (p−r) | Q2 ζ = 0}.
Then, we have the abelian group isomorphism kerF (R.) ∼= kerF (Q2.) and:

kerF (R.) = Q1 kerF (Q2.), kerF (Q2.) = T1 kerF (R.).

Using Theorem 1.2, we obtain the following corollary of Theorem 2.2.

Corollary 2.3 ([14]). Let R ∈ Dq×p be a full row rank matrix and Λ ∈ Dq×(q−r) a matrix such
that P = (R − Λ) ∈ Dq×(p+q−r) admits a right-inverse over D. Then, Theorem 2.2 holds when
D satisfies one of the following properties:

(1) D is a left principal ideal domain (e.g., the ring A〈∂〉 of OD operators with coefficients in
a differential field A such as k or k(t), where k is a field),

(2) D = k[x1, . . . , xn] is a commutative polynomial ring over a field k,
(3) D is either An(k) or Bn(k), where k is a field of characteristic 0 and p− r ≥ 2.
(4) D = A〈∂〉 is the ring of OD operators, where A = kJtK and k is a field of characteristic 0,

or k{t} and k = R or C, and p− r ≥ 2.
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If D satisfies the conditions of Corollary 2.3, then, by 2 of Corollary 3.3, it is enough to search
for Λ ∈ Dq×(q−r) such that P = (R − Λ) ∈ Dq×(p+q−r) admits a right-inverse over D.
Remark 2.3. Corollary 2.3 can also be understood as follows: if the noetherian domain D is a
so-called Hermite ring, namely, if every finitely generated stably free left D-module is free, and
M = D1×p/(D1×q R) is the left D-module finitely presented by the full row rank matrix R, then
M can be generated by p− r elements iff its Auslander transpose right D-module ext1

D(M,D) ∼=
Dq/(RDp) can be generated by q − r elements (see Theorem 2.2).
Example 2.5. Let us consider again Example 2.2 where the D = Q(η1, η2) [∂, σ1, σ2]-module
E = D1×7/(D1×4 P ) was proved to be a stably free and thus free by Quillen-Suslin theorem (see
2 of Corollary 2.3). Using constructive versions of the Quillen-Suslin theorem ([29]) and their
implementations in the package QuillenSuslin ([29]) and OreModules ([16]), we obtain that

U =



0 0 −1 0 −1 −σ1 0
0 0 1 0 0 σ1 0
0 0 0 1 0 0 σ2

−1 0 0 −1 −1 0 −σ2

0 0 −σ1 0 −σ1 1− σ2
1 0

−σ2 0 0 −σ2 −σ2 0 1− σ2
2

η2 1 2 η1 2 η2 ∂ + η1 + η2 2 η1 σ1 2 η2 σ2


∈ GL7(D),

satisfies (R − Λ)U = (I4 0), and thus we get Q2 = (∂ + η1 + η2 2 η1 σ1 2 η2 σ2). We then
have M = D1×6/(D1×4 R) ∼= L = D1×3/(DQ2), i.e., using Corollary 2.2, (256) is equivalent to
the following sole OD time-delay equation:
(264) ẋ1(t) + (η1 + η2)x1(t) + 2 η1 x2(t− h1) + 2 η2 x3(t− h2) = 0.
This result was also obtained in [20] after the resolutions of algebraic Riccati equations of the form
X RX = X ([19, 20]). But, Serre’s reduction allows us to obtain this result in a more direct and
simpler way. Finally, the study of the algebraic properties of (256) is now highly simplified and
we can easily check that M ∼= L is torsion-free and σ1 and σ2-free (see [74]).
Example 2.6. Let us consider again the general transmission line (257) studied in Example 2.3. If
B = K[∂t, ∂x] is the commutative polynomial ring of PD operators in ∂t and ∂x with coefficients in
the field K = Q(L,R,C,G)[α]/(α2−LC) and P = (J −Λ) ∈ B2×3 is the matrix formed by the
matrix J defined by (258) and Λ = (α C)T , then the stably free B-module E = B1×3/(B1×2 P )
is free by the Quillen-Suslin theorem. Computing a basis of E using the constructive versions of
the Quillen-Suslin theorem explained in [29] and implemented in QuillenSuslin ([29]), we obtain
that the matrix U = (ST QT )T ∈ GL3(B), where the matrix S ∈ B3×2 is defined in Example 2.3
and Q = (QT1 QT2 )T is defined by{

Q1 = (α∂x − LC ∂t −RC C ∂x − αC ∂t − αG)T ,
Q2 = ∂2

x − LC ∂2
t − (LC +RC) ∂t −RG,

satisfies (J −Λ)U = (I2 0). Hence, if C 6= 0, L 6= 0 and LG−RC 6= 0, then (257) is equivalent
to the following sole PDE:

(∂2
x − LC ∂2

t − (LC +RC) ∂t −RG)Z(t, x) = 0.
Example 2.7. Let us consider again Example 2.4 where the left D = A2(Q(a, b))-module E =
D1×3/(D1×2 P ) was proved to be stably free and P = (R −Λ) is formed by the matrix R defined
by (260) and by Λ = (a b)T . Since the rank of E is 3− 2 = 1, we cannot use Stafford’s theorem
(see 3 of Theorem 1.2) to conclude that E is a free left D-module of rank 1. We need to investigate
when E is a free left D-module of rank 1 for particular values of a and b. Using Algorithm 4.1,
the stably free left D-module E admits the minimal parametrization:

Q = −a2 b+ b a2 x ∂x − a3 x ∂y − a
(
a2 + b2

)
x2 ∂x ∂y − b

(
a2 + b2

)
x2 ∂2

y

a b2 ∂x − b
(
2 b2 + 3 a2) ∂y − b (a2 + b2

)
x ∂x ∂y + a (a2 + b2)x ∂2

y

−a2 ∂y −
(
a2 + b2

)
x2 ∂y ∂

2
x + a b x ∂2

x − 3
(
a2 + b2

)
x ∂x ∂y + a b x ∂2

y −
(
a2 + b2

)
x2 ∂3

y

 .
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Hence, E ∼= D1×3 Q =
∑3
i=1 DQi1, i.e., E is isomorphic to the left ideal of D generated by the

three entries of Q. Therefore, the following long exact sequence holds

0 −→ D1×2 .P−→ D1×3 .Q−→ D
σ−→ L −→ 0,

where σ : D −→ L is the canonical projection onto L = D/(D1×3 Q). If there exists a set of
values for the arbitrary constant parameters a and b such that the left D-module L vanishes, then
the above long exact sequence shows that D1×3 Q = D, and thus E ∼= D1×3 Q = D is a free left
D-module of rank 1. Computing a Gröbner basis of the left D-module D1×3 Q, we obtain that the
generator z = σ(1) of the left D-module L satisfies d z = 0, where:

d = −
(
a2 + b2)2

x2 ∂2
y + 2 a b

(
a2 + b2) x ∂y − a2 b2 ∈ D.

Therefore, if we consider a solution of the following polynomial system
(
a2 + b2)2 = 0,
a b
(
a2 + b2) = 0,

a2 b2 = −1,
⇔

{
a2 + b2 = 0,
a2 b2 = −1,

⇔

{
b2 = −a2,

a4 = 1,
⇔

{
b = ± i a,
a ∈ {±1, ±i},

such as a = 1 and b = i, then d is reduced to 1. If we consider the new ring A = A2(Q(i)), then
the left A-module E = A1×3/(A1×2 P ), where Λ = (1 i)T , admits the following parametrization

(265) Q =

 x (i ∂x − ∂y)− i
−(∂x + i ∂y)

i x (∂2
x + ∂2

y)− ∂y

 ,

and T = (i −x 0) is a left-inverse ofQ overA, which shows thatQ is an injective parametrization
of E and E is a free left A-module of rank 1. Finally, using Theorem 2.2 and Corollary 2.2, we
obtain M ∼= A/(A (i x (∂2

x + ∂2
y)− ∂y)) and:

(2.4) ⇔ (i x (∂2
x + ∂2

y)− ∂y))u = 0 ⇔ (x (∂2
x + ∂2

y) + i ∂y)u = 0.

Since holonomic right D-modules are cyclic (see Proposition 3.2), using Stafford’s theorem (see
3 of Theorem 1.2), we obtain the following interesting result.

Corollary 2.4 ([21]). Let D = A〈∂1, . . . , ∂n〉, where A is either k[x1, . . . , xn], kJx1, . . . , xnK and
k is a field of characteristic 0, or k{x1, . . . , xn} and k = R or C, R ∈ Dq×p be a full row
rank matrix and M = D1×p/(D1×q R). If ext1

D(M,D) ∼= Dq/(RDp) is a holonomic right D-
module, then Theorem 2.1 holds and we can choose a column vector Λ ∈ Dq which admits a
left-inverse over D and which is such that τ(Λ) generates the right D-module ext1

D(M,D), where
τ : Dq −→ ext1

D(M,D) is the canonical projection. Finally, if A = k[x1, . . . , xn] and p − q ≥ 1,
then Theorem 2.2 and Corollaries 2.1 and 2.2 hold.

Example 2.8. Let us consider the commutative polynomial ring D = Q [∂x, ∂y] of PD operators
and the D-module M = D1×3/(D1×2 R) finitely presented by R defined by:

(266) R =

(
∂x ∂y 0
0 ∂x ∂y

)
∈ D2×3.

The matrix R defines the equation of the equilibrium of the stress tensor in R2 ([85]), namely:

(267)

{
∂x σ

11 + ∂y σ
12 = 0,

∂x σ
12 + ∂y σ

22 = 0.

We can easily check that the D-module ext1
D(M,D) ∼= D1×2/

(
D1×3 RT

)
is a Q-vector space

of dimension 3 and a basis of ext1
D(M,D) is defined by the vectors τ((1 0)T ), τ((0 1)T ) and

τ((0 ∂x)T ), where τ : D2 −→ D2/(RD3) is the canonical projection. Hence, without loss of
generality, we can assume that Λ has the form of Λ = (a b + c ∂x)T , where a, b and c are three
arbitrary constants. Considering the new ring A = Q[a, b, c] [∂x, ∂y], P = (R − Λ) ∈ A2×4,
the A-module E = A1×4/(A1×2 P ) and the A-module ext1

A(E,A) ∼= N = A1×2/(A1×4 PT ) and
using Algorithm 3.1 implemented in OreModules, we can check that t(E) ∼= ext1

A(N,A) = 0
and ext2

A(N,A) ∼= A/(∂x, ∂y) 6= 0. According to Theorem 3.1, we obtain that the A-module E is
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a torsion-free but not projective whatever the values of the parameters a, b and c, which proves
that (267) cannot be defined by a sole PDE with constant coefficients, and the minimal number
of generators µ(M) of the D-module M is 3.

We can now introduce the left B = A2(Q)-module M ′ = B ⊗D M = B1×3/(B1×2 R). Clearly,
the right B-module ext1

B(M ′, B) ∼= B2/(RB3) is holonomic and thus cyclic by Proposition 3.2.
Moreover, the element τ(Λ) of ext1

B(M ′, B), where Λ = (1 x)T , generates ext1
B(M ′, B) because

the matrix P = (R − Λ) ∈ B2×4 admits the following right-inverse over B:

T =


−x 1
−x2 x

−x3 x2

−x (x ∂y + ∂x)− 2 ∂x + x ∂y

 .

The left B-module E′ = B1×4/(B1×2 P ) is then stably free of rank 2, i.e., free by Stafford’s theorem
(see 3 of Theorem 1.2). We can compute an injective parametrization of the free left B-module E′
using the package Stafford ([103])

Q =


∂y ∂x

x ∂y x ∂x − 1
x2 ∂y − 1 x ∂x − x

(∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y

 ,

which yields M ′ ∼= B1×2/(B ((∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y)).

3. Equivalence to Serre’s reduction

Corollary 3.1 ([14]). With the notations of Theorem 2.2 and Corollary 2.1, if the matrix Λ ∈
Dq×(q−r) admits a left-inverse Γ ∈ D(q−r)×q, i.e., Γ Λ = Iq−r, then the matrix Q1 admits the
left-inverse T1 − T2 ΓR ∈ D(p−r)×p and the left D-module kerD(.Q1) is stably free of rank r.

Moreover, if the left D-module kerD(.Q1) is free of rank r, then there exists Q3 ∈ Dp×r such that
W , (Q3 Q1) ∈ GLp(D). If we write W−1 = (Y T3 Y T1 )T , where Y3 ∈ Dr×p and Y1 ∈ D(p−r)×p,
then the matrix X , (RQ3 Λ) is unimodular, i.e., X ∈ GLq(D) and:

V , X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

The matrix R is then equivalent to the matrix X diag(Ir, Q2)W−1 or equivalently:

V RW =

(
Ir 0
0 Q2

)
.

Finally, the left D-module kerD(.Q1) is free when D satisfies 1 or 2 of Corollary 2.3 or if D is
An(k) or Bn(k), where k is a field of characteristic 0, and r ≥ 2 (e.g., if q ≥ 3 in Corollary 2.4)
or if D = A〈∂〉, where A = kJtK and k a field of characteristic 0, or A = k{t} and k = R or C,
and r ≥ 2.

Let us illustrate Corollary 3.1 with explicit examples.

Example 3.1. We consider again Examples 2.2 and 2.5. Since Λ clearly admits a left-inverse
over D, we can check that the matrix Q1 ∈ D6×3 defined by the first 6 rows of Q also admits a
right-inverse over D. Using constructive versions of the Quillen-Suslin theorem and their imple-
mentations in QuillenSuslin ([29]) and OreModules ([17]), we can complete the matrix Q1 to
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the following unimodular matrix:

W = (Q3 Q1) =



1 0 0 −1 −σ1 0
0 −1 0 0 σ1 0
0 0 1 0 0 σ2

0 −1 −1 −1 0 −σ2

0 0 0 −σ1 1− σ2
1 0

0 −σ2 −σ2 −σ2 0 1− σ2
2



T

∈ GL6(D).

We can now check that the following matrix

X = (RQ3 Λ) =


1 0 0 0

∂ + η1 −∂ + η1 − η2 −2 η2 −1
σ2

1 −1 0 0
0 0 1 0

 ∈ D4×4

is unimodular over D, i.e., X ∈ GL4(D), and satisfies
RW = X diag(I3, Q2) ⇔ diag(I3, Q2) = X−1 RW,

which finally proves that R is equivalent to diag(I3, Q2).

Example 3.2. We consider again Examples 2.3 and 2.6. We can easily check that Λ admits a
left-inverse over B. Using Corollary 3.1, the matrix Q1 ∈ B2 defined by the first 2 entries of Q
admits a right-inverse over B. Then, using constructive versions of the Quillen-Suslin theorem and
their implementations in QuillenSuslin ([29]) and OreModules ([17]), we can complete Q1 to
the following unimodular matrix:

W = (Q3 Q1) =


α

C (RC − LG)
−C (L∂t +R) + α∂x

1
RC − LG

C (∂x − α∂t)− αG

 ∈ GL2(A).

Moreover, we can check that the matrix

X = (J Q3 Λ) =


α∂x + C (L∂t +R)
C (RC − LG)

α

C (∂x + α∂t) + αG

C (RC − LG)
C

 ∈ B2×2

is unimodular over B, i.e., X ∈ GL2(B), and satisfies
J W = X diag(1, Q2) ⇔ X−1 J W = diag(1, Q2),

which proves that the matrix R is equivalent to diag(1, Q2).

Example 3.3. We consider again Examples 2.4 and 2.7. Since Λ = (1 i)T admits the left-
inverse Γ = (1 0) over A, Corollary 3.1 shows that the matrix R defined by (260) is equivalent
to diag(1, i x (∂2

x + ∂2
y)− ∂y)). If Q1 denotes the column vector formed by the first two entries of

(265), then kerA(.Q1) = A (−i ∂x+∂y x (∂x+ i ∂y)) ∼= A, i.e., kerA(.Q1) is a free left A-module of
rank 1. Since Q3 = (i x − 1)T is a right-inverse of (−i ∂x + ∂y x (∂x + i ∂y)) over A, we obtain
the unimodular matrix:

W =

(
i x x (i ∂x − ∂y)− i
−1 −∂x − i ∂y

)
, W−1 =

(
−i ∂x + ∂y x (∂x + i ∂y)

i −x

)
.

Moreover, using Corollary 3.1, we can also introduce the unimodular matrices:

X = (RQ3 Λ) =

(
x (i ∂x + ∂y) + i 1
−x (∂x − i ∂y) i

)
,

V = X−1 =

(
−i 1

−x (∂x − i ∂y) −x (i ∂x + ∂y)− i

)
.
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Finally, we can easily check that V RW = diag(1, i x (∂2
x + ∂2

y)− ∂y)).

Example 3.4. Let us consider again Example 2.8. Since Γ = (1 0) is a left-inverse of Λ and
using Corollary 3.1, we obtain the following unimodular matrices:

W =

 −1 ∂y ∂x

−x x ∂y x ∂x − 1
−x2 x2 ∂y − 1 x (x ∂x − 1)

 , W−1 =

 x ∂x x ∂y − ∂x −∂y
0 x −1
x −1 0

 ,

X =

(
−(∂x + x ∂y) 1

−x (∂x + x ∂y)− 1 x

)
, X−1 =

(
x −1

x2 ∂y + x ∂x + 2 −(∂x + x ∂y)

)
.

Hence, the matrix R defined by (266) is equivalent to

R = X−1 RW =

(
1 0 0
0 (∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y

)
,

which proves that (267) is equivalent to the following PDE with varying coefficients
(∂x + x ∂y) ∂y τ2 + (∂x + x ∂y) ∂x τ3 − ∂y τ3 = 0,

under the following invertible transformations:
σ11 = ∂y τ2 + ∂x τ3,

σ12 = x ∂y τ2 + x ∂x τ3 − τ3,

σ22 = x2 ∂y τ2 − τ2 + x2 ∂x τ3 − x τ3,


τ1 = x (∂x σ11 + ∂y σ

12)− (∂x σ12 + ∂y σ
22) = 0,

τ2 = xσ12 − σ22,

τ3 = xσ11 − σ12.

We note that we have lost the symmetry of (267). It would be interesting to get a more symmetric
equivalent PDE by considering another cyclic vector of ext1

E(M ′, E).

Let us illustrate the interest of Serre’s reduction with a larger example.

Example 3.5. Let us consider a model of a two reflector antenna studied in [47, 75] which is
defined by the linear differential time-delay system kerF (R.), where

R =



∂ −K1 0 0 0 0 0 0 0

0 ∂ + K2

Te
0 0 0 0 −Kp

Te
δ −Kc

Te
δ −Kc

Te
δ

0 0 ∂ −K1 0 0 0 0 0

0 0 0 ∂ + K2

Te
0 0 −Kc

Te
δ −Kp

Te
δ −Kc

Te
δ

0 0 0 0 ∂ −K1 0 0 0

0 0 0 0 0 ∂ + K2

Te
−Kc

Te
δ −Kc

Te
δ −Kp

Te
δ


,

∂ y(t) = ẏ(t), δ y(t) = y(t − 1) for all y ∈ F = C∞(R), and K1, K2, Kc, Ke, Kp and Te are
constant parameters. Let D = Q(K1,K2,Kc,Ke, Te) [∂, δ] be the commutative polynomial ring of
OD time-delay operators and M = D1×9/(D1×6 R) the D-module finitely presented by R. If

Λ =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


∈ D6×3,

then the matrix S ∈ D12×6 defined in Figure 2 is a right-inverse of P = (R −Λ) ∈ D6×12. Hence,
the D-module E = D1×12/(D1×6 P ) is projective, and thus free by the Quillen-Suslin theorem.
Using the packages QuillenSuslin ([29]) or OreModules ([17]), we can compute a basis and
an injective parametrization of E. We get that the matrix Q ∈ D12×6 given in Figure 2 defines
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an injective parametrization of E, i.e., kerD(.Q) = D1×6 P ∼= D1×6. Using Theorem 2.2 and
Corollary 2.2, we obtain that M ∼= L = D1×6/(D1×3 Q2), where Q2 is the matrix defined by the
last three rows of Q, and thus kerF (R.) ∼= kerF (Q2.), i.e.:


Te ζ̈1(t) +K2 ζ̇1(t) + (Kp + 2Kc) (Kc −Kp) ζ2(t− 1) = 0,
Te ζ̈3(t) +K2 ζ̇3(t) + (Kp + 2Kc) (Kc −Kp) ζ4(t− 1) = 0,
Te ζ̈5(t) +K2 ζ̇5(t) + (Kp + 2Kc) (Kc −Kp) ζ6(t− 1) = 0.

We note that the equations of the previous system are uncoupled, i.e.:

(268) M ∼= [D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ)]3.

We note that Λ admits a left-inverse Γ over D defined by:

Γ =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

Hence, let us compute V ∈ GL6(D) and W ∈ GL9(D) such that V RW = diag(I3, Q2). The
D-module kerD(.Q1) is a stably free and thus a free D-module of rank 3 by the Quillen-Suslin
theorem. This last result can be checked again by computing the D-module kerD(.Q1): we have
kerD(.Q1) = D1×3 F ∼= D1×3, where the full row rank matrix F ∈ D3×9 is defined by:

F =

 ∂ −K1 0 0 0 0 0 0 0
0 0 ∂ −K1 0 0 0 0 0
0 0 0 0 ∂ −K1 0 0 0

 .

Computing a right-inverse of F , we obtain that the matrix Q3 ∈ D9×3 defined by

Q3 = − 1
K1



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0


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S =



0 0 0 0 0 0

− 1
K1

0 0 0 0 0

0 0 0 0 0 0

0 0 − 1
K1

0 0 0

0 0 0 0 0 0

0 0 0 0 − 1
K1

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Te +K2

K1 Te
∂ −1 0 0 0 0

0 0 −Te +K2

K1 Te
∂ −1 0 0

0 0 0 0 −Te +K2

K1 Te
∂ −1



Q =



K1 Te 0 0
Te ∂ 0 0

0 0 K1 Te

0 0 Te ∂

0 0 0
0 0 0
0 Te (Kp +Kc) 0
0 −Kc Te 0
0 −Kc Te 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0
0 0 (Te ∂ +K2) ∂
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 K1 Te 0
0 Te ∂ 0

−Kc Te 0 −Kc Te
Te (Kp +Kc) 0 −Kc Te
−Kc Te 0 Te (Kp +Kc)

0 0 0
(Kp + 2Kc) (Kc −Kp) δ 0 0

0 (Te ∂ +K2) ∂ (2Kc +Kp) (Kc −Kp) δ


Figure 2: Matrices S and Q
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is such that the matrix W defined by

W = (Q3 Q1) =

0 0 0 K1 Te 0 0
−K−1

1 0 0 Te ∂ 0 0
0 0 0 0 0 K1 Te

0 −K−1
1 0 0 0 Te ∂

0 0 0 0 0 0
0 0 −K−1

1 0 0 0
0 0 0 0 Te (Kp +Kc) 0
0 0 0 0 −Kc Te 0
0 0 0 0 −Kc Te 0

0 0 0
0 0 0
0 0 0
0 0 0
0 K1 Te 0
0 Te ∂ 0

−Kc Te 0 −Kc Te

Te (Kp +Kc) 0 −Kc Te

−Kc Te 0 Te (Kp +Kc)


is unimodular, i.e., W ∈ GL9(D). Forming the matrix X = (RQ3 Λ) ∈ D6×6, namely,

X =



1 0 0 0 0 0

−Te ∂ +K2

K1 Te
0 0 1 0 0

0 1 0 0 0 0

0 −Te ∂ +K2

K1 Te
0 0 1 0

0 0 1 0 0 0

0 0 −Te ∂ +K2

K1 Te
0 0 1


,

then X ∈ GL6(D). Its inverse is defined by

V = X−1 =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0
Te ∂ +K2

K1 Te
1 0 0 0 0

0 0 Te ∂ +K2

K1 Te
1 0 0

0 0 0 0 Te ∂ +K2

K1 Te
1



424



An introduction to constructive algebraic analysis and its applications

and R = V RW has finally the form diag(I3, Q2):

R = V RW =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0 0
0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ


.

Finally, the D-module L = D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ) is clearly torsion-
free and δ-free ([73, 75]) and, using (268), so is M ∼= N3 (see also [75]).

We have the following consequence of Corollary 2.4, Example 3.8 and Theorem 5.4.

Corollary 3.2 ([21]). Let D = A〈∂〉, where A = k[t], kJtK[∂] and k is a field of characteristic 0,
or k{t}[∂] and k = R or C, R ∈ Dq×p a full row rank matrix and M = D1×p/(D1×q R) the left
D-module finitely presented by R. Then, Theorem 2.1 holds and Λ ∈ Dq can be chosen so that
it admits a left-inverse over D and τ(Λ) generates the right D-module ext1

D(M,D). Moreover, if
p−q ≥ 1, then Theorem 2.2 and Corollaries 2.1 and 2.2 hold. Finally, if q ≥ 3, then Corollary 3.1
holds.

Example 3.6. Let us illustrate Corollary 3.2 by an example coming from linear elasticity and stud-
ied by Hadamard in [38]. Let M = D1×4/(D1×3 R) be the left D = A1(Q(λ, µ)) = Q(λ, µ)[ρ][∂]-
module finitely presented by the matrix:

R =


ρ ∂ + 1

2
1
2

(λ+ µ) (ρ ∂ − 1) 1
2

0

2 ρ ∂ −3λ− 2µ ρ ∂ + 3 0

−ρ ∂ λ −1 2µ (ρ ∂ + 1)

 ∈ D3×4.

Since R has full row rank, ext1
D(M,D), D) ∼= D3/(RD4) and a right D-module analogue of

Theorem 1.1 yields homD(ext1
D(M,D), D) ∼= kerD(.R) = 0 and Corollary 3.1 then shows that

the Auslander transpose module N = D3/(RD4) ∼= ext1
D(M,D) of M is a torsion right D-module.

Moreover, since we can easily check that R does not admit a right-inverse over D, N is not reduced
to 0. Therefore, the adjoint module Ñ = D1×3/(D1×4 R̃) of M , defined by



−
(
ρ ∂ + 1

2

)
z1 − 2 (ρ ∂ + 1) z2 + (ρ ∂ + 1) z3 = 0,

−1
2

(λ ρ ∂ + λ− µρ ∂ + 2µ) z1 − (3λ+ 2µ) z2 + λµ3 = 0,

1
2
z1 + (−ρ ∂ + 2) z2 − z3 = 0,

−2µρ ∂ z3 = 0,
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is a non-trivial torsion left D-module which is then cyclic by Example 3.8 and Proposition 3.2. In
particular, the element z2 generates the left D-module Ñ , i.e., Ñ = D z2, since we have:

z1 = 1
(λ+ 2µ)

((λ+ 3µ) ρ ∂ − 2 (λ+ 2µ)) z2,

z2 = z2,

z3 = − 1
(λ+ 2µ)

((λ+ µ) ρ ∂ − 2 (λ+ 2µ)).

Then, Λ = (0 1 0)T is such that P = (R −Λ) ∈ D3×5 admits a right-inverse over D, i.e., the
left D-module E = D1×5/(D1×3 P ) is stably free of rank 2, i.e., free by Stafford’s theorem (see 3
of Theorem 1.2). Computing an injective parametrization Q of E, we get

Q =


−2µ (λ+ µ) (2 ρ ∂ + 1) −2µ

8µ (ρ ∂ + 1) 0
2µ (λ+ µ) (4 ρ ∂ + 5) 2µ (2 ρ ∂ + 1)
−2 (λ+ µ) ρ ∂ + λ+ 5µ 1
2µ (3λ+ 7µ) (ρ ∂ + 1) 2µ (ρ ∂ + 3) (2 ρ ∂ + 1)

 ,

which proves that Q2 = (2µ (3λ+ 7µ) (ρ ∂ + 1) 2µ (ρ ∂ + 3) (2 ρ ∂ + 1)). Moreover, since Λ
admits the left-inverse Γ = (0 1 0), the matrix R is equivalent to R = diag(I2, Q2), i.e., R =
V RW , where V = (RQ3 Λ)−1 ∈ GL3(D), W = (Q3 Q1) ∈ GL5(D) and Q3 is a matrix which
can be obtained by computing a right-inverse of the syzygy module of Q1, i.e.:

V =


2 0 2
0 0 −1

− (λ+ 3µ) ρ ∂ + 3λ+ 7µ
(λ+ 2µ)

1 (λ+ µ) ρ ∂ + 3λ+ 5µ
2 (λ+ 2µ)

 ,

W =



(λ+ µ)
2 (λ+ 2µ)

(λ+ µ)
2 (λ+ 2µ)

−2µ (λ+ µ) (2 ρ ∂ + 1) −2µ

− 1
(λ+ 2µ)

− 1
(λ+ 2µ)

8µ (ρ ∂ + 1) 0

− (λ− µ)
2 (λ+ 2µ)

(λ+ 5µ)
2 (λ+ 2µ)

2µ (λ+ µ) (4 ρ ∂ + 5) 2µ (2 ρ ∂ + 1)

(λ+ µ)
4µ (λ+ 2µ)

(λ+ µ)
4µ (λ+ 2µ)

−2 (λ+ µ) ρ ∂ + (λ+ 5µ) 1


.

Using the relation (ρ ∂ + 3) (2 ρ ∂ + 1) = (ρ ∂ + 1) (2 ρ ∂ + 3), we obtain that the linear system

ρ
∂θ

∂ρ
+ 1

2
(θ +K) + (λ+ µ)

2

(
ρ
∂σ

∂ρ
− σ

)
= 0,

2 ρ ∂θ
∂ρ

+ ρ
∂K

∂ρ
+ 3K − (3λ+ 2µ)σ = 0,

λ σ + 2µ
(
G+ ρ

∂G

∂ρ

)
− ρ ∂θ

∂ρ
−K = 0,

is equivalent to the following sole ODE in the new variables (η1 η2)T = W (θ σ K G)T :

(ρ ∂ + 1) ((3λ+ 7µ) η1 + (2 ρ ∂ + 3) η2) = 0.

The last presentation of M shows that t(M) ∼= D/(D (ρ ∂+1)) and M/t(M) ∼= D since the residue
classes η1 and η2 of η1 and η2 in M/t(M) satisfy

η1 = − (2 ρ ∂ + 3)
(3λ+ 7µ)

η2,

which finally yields M ∼= t(M)⊕M/t(M) ∼= D/(D (ρ ∂ + 1))⊕D.
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Since the rings D = B1(k), kJtK[t−1][∂], where k is a field of characteristic 0, or k{t}[t−1][∂],
where k = R or C, are simple principal left ideal domains (see, e.g., [10, 13]), using the concept
of Jacobson normal form, namely, a generalization of the Smith normal form to principal left or
right principal ideal domains (see, e.g., [25, 122]), one can prove that for every matrix R ∈ Dq×p,
there exist V ∈ GLq(D), W ∈ GLp(D) and d ∈ D such that V RW = diag(1, . . . , 1, d, 0, . . . , 0),
i.e., R is equivalent to the diagonal matrix R = diag(1, . . . , 1, d, 0, . . . , 0), for a certain d ∈ D. In
particular, if R has full row rank, i.e., kerD(.R) = 0, then R is equivalent to diag(1, . . . , 1, d).

Now, if D = A1(k), kJtK[∂], where k is a field of characteristic 0, or k{t}[∂], where k = R
or C, and R ∈ Dq×p, then the Jacobson normal form of R can be computed by considering
the injection of D into the simple principal left ideal domain E, where E is respectively B1(k),
kJtK[t−1][∂] and k{t}[t−1][∂]. Therefore, there exist V ∈ GLq(E), W ∈ GLp(E) and e ∈ E such
that V RW = diag(1, . . . , 1, e, 0, . . . , 0). However, artificial singularities may have been introduced
in e, V and W . The main interest of Corollary 3.2 is to show that there exist three matrices
Q2 ∈ D1×(p−q+1), X ∈ GLq(D) and Y ∈ GLp(D) such that:

X RY =

(
Iq−1 0

0 Q2

)
.

In particular, the entries of Q2, X, Y , X−1 and Y −1 belong to D, i.e., do not contain singularities.
For more results, details and examples on Serre’s reduction, see [100].

“Ce qui fait la qualité de l’inventivité et de l’imagination du chercheur, c’est la
qualité de son attention, à l’écoute de la voix des choses. Car les choses de
l’Univers ne se lassent jamais de parler d’elles-mêmes et de se révéler, à celui qui
se soucie d’entendre”.

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur
un passé de mathématicien.

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.
Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,
Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent. . .
Charles Baudelaire, Correspondances, Les Fleurs du Mal.
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CHAPTER 5

Implementations

The purpose of this chapter is to shortly demonstrate the Maple packages I have been developing
these last years with my colleagues: Chyzak (INRIA Rocquencourt) and Robertz (RWTH Aachen
University) for OreModules ([17]), Cluzeau (ENSIL, University of Limoges) for OreMorphisms
([20]), Robertz for Stafford ([103]) and Culianez (internship) for Jacobson ([25]). The Serre
package is in development in collaboration with Cluzeau ([21]) and the PurityFiltration pack-
age ([98]) will be soon available and is developed by myself.

1. The OreModules package

Example 1.1. We consider the linearized model of a bipendulum studied in [85], i.e., a linear OD
system composed of a bar where two pendula are fixed, one of length l1 and one of length l2. We
first introduce the ring A = Q(l1, l2, g)[d] of OD operators in d with coefficients in Q(l1, l2, g):

> A:=DefineOreAlgebra(diff=[d,t],polynom=[t],comm=[g,l[1],l[2]]):

The presentation matrix of the corresponding system is defined by:

> R:=evalm([[d^2+g/l[1],0,-g/l[1]],[0 d^2+g/l[2],-g/l[2]]]);

R :=

 d2 + g

l1
0 − g

l1

0 d2 + g

l2
− g
l2


In terms of equations, the linearized model of the bipendulum is described by:

> ApplyMatrix(R,[x[1](t),x[2](t),u(t)],A)=evalm([[0]$2]); ( d
2

dt2 x1(t)) + g x1(t)
l1

− g u(t)
l1

( d
2

dt2 x2(t)) + g x2(t)
l2

− g u(t)
l2

 =

[
0
0

]

Using the involution θ defined by (20), the adjoint R̃ of R is defined by RT :

> R_adj:=Involution(R,A);

R_adj :=


d2 + g

l1
0

0 d2 + g

l2

− g
l1

− g
l2


Using Algorithm 3.1, theA-moduleM = A1×3/(A1×2 R) is torsion-free iff theA-module ext1

A(N,A)
vanishes, where N = A1×2/(A1×3 RT ), A) is the Auslander transpose of M :

> Ext:=Exti(R_adj,A,1);

Ext :=
[[

1 0
0 1

]
,

[
d2 l1 + g 0 −g

0 d2 l2 + g −g

]
,

 l2 d
2 g + g2

g2 + d2 l1 g

l2 l1 d
4 + l2 d

2 g + d2 l1 g + g2



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The fact that the first matrix Ext[1] of Ext is the identity matrix means that M is generically
torsion-free, i.e., torsion-free for at most all values of the system parameters l1, l2 and g. We can
only conclude that it is generically the case because OreModules considers the system parameters
as independent variables which do not fulfill algebraic relations. The second matrix Ext[2] of Ext
is the matrix R′ defined in Algorithm 3.1. The last matrix Ext[3] of Ext is to the matrix Q of
Algorithm 3.1, i.e., the parametrization of the torsion-free A-module M .

If F = C∞(R+), then, for almost all the values of the system parameters g, l1 and l2, kerF (R.) does
not admit autonomous elements (see the end of Section 4). Below, we shall actually determine the
only configuration where kerF (R.) is not parametrizable. Let us write down the parametrization
Ext[3] of kerF (R.) in terms of arbitrary functions of F :

> Q:=Parametrization(R,A);

Q :=


l2

d2

dt2 ξ1(t) + g (g ξ1(t))

l1
d2

dt2 ξ1(t) + g (g ξ1(t))

l1 l2 ( d
4

dt4
ξ1(t)) + g l2

d2

dt2 ξ1(t) + g l1
d2

dt2 ξ1(t) + g2 ξ1(t)


We have kerF (R.) = QF , i.e., R (x1 x2 u)T = 0⇔ (x1 x2 u)T = Qξ1, for a certain ξ1 ∈ F .
Since M is generically torsion-free over the principal ideal domain A, it is generically free (see 3
of Theorem 1.2). Hence, kerF (R.) is generically flat (see Section 5). A flat output of kerF (R.)
corresponds to a left-inverse of the parametrization Q of kerF (R.)

> T:=LeftInverse(Ext[3],A);

T :=
[

l1
g2 (l1 − l2)

− l2
g2 (l1 − l2)

0
]

i.e., a flat output of the system kerF (R.) is defined by ξ1 = T (x1 x2 u)T , namely:

> xi[1](t)=ApplyMatrix(T,[x[1](t),x[2](t),u(t)],A)[1,1];

ξ1(t) = l1 x1(t)
g2 (l1 − l2)

− l2 x2(t)
g2 (l1 − l2)

Let us compute the Brunovský normal form of kerF (R.), namely, a certain first order representation
of kerF (R.).

> B:=Brunovsky(R,A);

B :=



l1
g2 (l1 − l2)

− l2
g2 (l1 − l2)

0

d l1
g2 (l1 − l2)

− d l2
g2 (l1 − l2)

0

− 1
g (l1 − l2)

1
g (l1 − l2)

0

− d

g (l1 − l2)
d

g (l1 − l2)
0

1
(l1 − l2) l1

− 1
(l1 − l2) l2

1
l1 l2


The matrix B defines the Brunovský transformation between the system variables x1, x2 and u
and the Brunovský variables zi’s, i = 1, . . . , 4, and v:

> evalm([seq([z[i](t)],i=1..4),[v(t)]])=ApplyMatrix(B,[x[1](t),x[2](t),u(t)],A);
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
z1(t)
z2(t)
z3(t)
z4(t)
v(t)

 =



l1 x1(t)
g2 (l1 − l2)

− l2 x2(t)
g2 (l1 − l2)

l1 ( ddt x1(t))
g2 (l1 − l2)

−
l2 ( ddt x2(t))
g2 (l1 − l2)

− x1(t)
g (l1 − l2)

+ x2(t)
g (l1 − l2)

−
d
dt x1(t)
g (l1 − l2)

+
d
dt x2(t)
g (l1 − l2)

x1(t)
(l1 − l2) l1

− x2(t)
(l1 − l2) l2

+ u(t)
l1 l2


Let us check that the new variables zi’s and v satisfy the Brunovský normal form:

> F:=Elimination(linalg[stackmatrix](B,R),[x[1],x[2],u],
> [seq(z[i],i=1..4),v,0,0], A):
> ApplyMatrix(F[1],[x[1](t),x[2](t),u(t)],A)=ApplyMatrix(F[2],
> [seq(z[i](t),i=1..4),v(t)],A);

0
0
0
0
u(t)
x2(t)
x1(t)


=



−( ddt z4(t)) + v(t)

−( ddt z3(t)) + z4(t)

−( ddt z2(t)) + z3(t)

−( ddt z1(t)) + z2(t)

g2 z1(t) + (g l2 + g l1) z3(t) + l1 l2 v(t)

g2 z1(t) + g l1 z3(t)

g2 z1(t) + g l2 z3(t)


The first four equations define the Brunovský normal form of kerF (R.). The last three equations
express u, x1 and x2 in terms of the zi’s and v.
We note that the previous flat output of kerF (R.) is only defined for l1 − l2 6= 0. Then, the
non-generic situation l1 = l2 corresponds to the only case where kerF (R.) may admit non-trivial
autonomous elements. We now turn to the case where the lengths of the pendula are equal:

> U:=subs(l[2]=l[1],evalm(R));

U :=

 d2 + g

l1
0 − g

l1

0 d2 + g

l1
− g
l1


> ext:=Exti(Involution(U,A),A,1);

ext :=

[ d2 l1 + g 0
0 1

]
,

[
1 −1 0
0 d2 l1 + g −g

]
,

 g
g

d2 l1 + g


If we denote by θ(U) = UT the formal adjoint of U and N ′ = A1×2/(A1×3 θ(U)) the Auslander
transpose of the A-module M ′ = A1×3/(A1×2 U) finitely presented by U , then the computation of
ext1

A(N ′, A) gives the torsion submodule t(M ′) of M ′: it is generated by the residue class of the
row z of ext[2] in M ′ which corresponds to the non-trivial entries in ext[1], i.e., l1 d2 + g. This
means that we have (l1 d2 + g) z = 0 in M ′, where z = (1 − 1 0) (x1 x2 u)T = x1 − x2, i.e.,
the difference of the positions of the pendula (relative to the bar) is a torsion element of M ′ which
generates t(M ′) = (D1×2 U ′)/(D1×2 U), where U ′ = ext[2] (see Algorithm 3.1).
We can directly obtain the torsion elements of M ′ as follows:

> TorsionElements(U,[x1(t),x2(t),u(t)],A);[[
l1 ( d

2

dt2 θ1(t)) + g θ1(t) = 0
]
,
[
θ1(t) = x1(t)− x2(t)

]]
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We can explicitly integrate the corresponding autonomous element of kerF (U.) as follows

> AutonomousElements(U,[x[1](t),x[2](t),u(t)],A)[2];[
θ1 = _C1 sin

(√
g t
√
l1

)
+ _C2 cos

(√
g t
√
l1

) ]
where _C1 and _C2 denote two arbitrary real constants.
According to 2 of Theorem 6.1, the existence of an autonomous element of kerF (U.) implies that
of a first integral of kerF (U.). We can compute this first integral as follows:

> V:=FirstIntegral(U,[x[1](t),x[2](t),u(t)],A);

V := −(−( ddt x1(t)) _C1 sin
(√

g t
√

l1

) √
l1− ( ddt x1(t)) _C2 cos

(√
g t
√

l1

) √
l1

+√g x1(t) _C1 cos
(√

g t
√

l1

)
−√g x1(t) _C2 sin

(√
g t
√

l1

)
+ ( ddt x2(t)) _C1 sin

(√
g t
√

l1

) √
l1 + ( ddt x2(t)) _C2 cos

(√
g t
√

l1

) √
l1

−√g x2(t) _C1 cos
(√

g t
√

l1

)
+√g x2(t) _C2 sin

(√
g t
√

l1

)
)
/√

l1

We let the reader check that we have V̇ (t) = 0. For the explicit computations, see [17].
Even if a non-trivial autonomous element exists in kerF (U.), we can parametrize all elements of
kerF (U.) in terms of one arbitrary function ξ1 ∈ F and two arbitrary constants _C1 and _C2
using the following Monge parametrization (see Section 2):

> P:=Parametrization(U,A);

P :=


g ξ1(t)

−_C1 sin
(√

g t
√

l1

)
−_C2 cos

(√
g t
√

l1

)
+ g ξ1(t)

l1 ( d
2

dt2 ξ1(t)) + g ξ1(t)


Therefore, we have U (x1 x2 u)T = 0 ⇔ (x1 x2 u)T = P (_C1, _C2, ξ1), where ξ1 is an
arbitrary element of F = C∞(R+) and _C1 and _C2 two arbitrary real constants. In particular,
we can check that P parametrizes elements of kerF (U.) as we have:

> simplify(ApplyMatrix(U,P,A)); [
0
0

]
Finally, the constants can easily be computed in terms of the initial conditions of the system.

Example 1.2. We study an OD time-delay model of a two reflector antenna considered in Ex-
ample 3.5. Let A = Q(K1,K2, Te,Kp,Kc)[d, δ] be the commutative Ore algebra of OD time-delay
operators, where d (resp., δ) is the OD (resp., time-delay) operator.

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[K1,K2,Te,Kp,Kc],shift_action=[delta,t]):

We enter the presentation matrix R of the two reflector antenna:
> R := evalm([[d, -K[1], 0, 0, 0, 0, 0, 0, 0],
> [0, d+K[2]/T[e], 0, 0, 0, 0, -K[p]/T[e]*delta, -K[c]/T[e]*delta,
> -K[c]/T[e]*delta],[0, 0, d, -K[1], 0, 0, 0, 0, 0],
> [0, 0, 0, d+K[2]/T[e], 0, 0, -K[c]/T[e]*delta, -K[p]/T[e]*delta,
> -K[c]/T[e]*delta],[0, 0, 0, 0, d, -K[1], 0, 0, 0],
> [0, 0, 0, 0, 0, d+K[2]/T[e], -K[c]/T[e]*delta, -K[c]/T[e]*delta,
> -K[p]/T[e]*delta]]);
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R :=



d −K1 0 0 0 0 0 0 0

0 d+ K2
Te

0 0 0 0 −Kp δTe
−Kc δTe

−Kc δTe

0 0 d −K1 0 0 0 0 0

0 0 0 d+ K2
Te

0 0 −Kc δTe
−Kp δTe

−Kc δTe

0 0 0 0 d −K1 0 0 0

0 0 0 0 0 d+ K2
Te

−Kc δTe
−Kc δTe

−Kp δTe


The matrix R defines the following OD time-delay linear system:

> ApplyMatrix(R,[y[1](t),y[2](t),y[3](t),y[4](t),y[5](t),y[6](t),
> u[1](t),u[2](t),u[3](t)],A)=evalm([[0]$6]);

D (y1) (t)−K1 y2 (t)

−−D (y2) (t)Te −K2 y2 (t) +Kp u1 (t− 1) +Kc u2 (t− 1) +Kc u3 (t− 1)
Te

D (y3) (t)−K1 y4 (t)
D (y4) (t)Te +K2 y4 (t)−Kc u1 (t− 1)−Kp u2 (t− 1)−Kc u3 (t− 1)

Te

D (y5) (t)−K1 y6 (t)
D (y6) (t) Te +K2 y6 (t)−Kc u1 (t− 1)−Kc u2 (t− 1)−Kp u3 (t− 1)

Te


=



0
0
0
0
0
0



Using the involution θ = idA of A, we can define the adjoint matrix R_adj = θ(R) = RT of R:

> R_adj:=Involution(R,A):

Let us consider the A-module M = A1×9/(A1×6 R) finitely presented by R and let us check
whether or not M is a torsion-free A-module by computing the A-module ext1

A(N,A), where
N = A1×6/(A1×9 RT ) is the Auslander transpose of M (see Corollary 3.1):

> st:=time(): Ext1:=Exti(R_adj,A,1): time()-st;
0.920

> Ext1[1]; 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


The fact that the first matrix Ext1[1] of Ext1 is the identity matrix implies ext1

A(N,A) = 0, i.e.,
using Corollary 3.1, M is a torsion-free A-module. Moreover, according to Algorithm 3.1, the third
matrix Ext1[3] of Ext1 defines a parametrization of M .

> Ext1[3];
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

KcK1 δ KcK1 δ KpK1 δ

Kc δ d Kc δ d Kp δ d

KcK1 δ KpK1 δ KcK1 δ

Kc δ d Kp δ d Kc δ d

KpK1 δ KcK1 δ KcK1 δ

Kp δ d Kc δ d Kc δ d

0 0 Te d
2 +K2 d

0 Te d
2 +K2 d 0

d2 Te +K2 d 0 0


If F is an injective A-module, then, using 1 of Corollary 4.1, the system kerF (R.) is parametrizable
and Q = Ext1[3] defines a parametrization of kerF (R.), i.e., kerF (R.) = QF3. This parametriza-
tion can be obtained by using the function Parametrization:

> Parametrization(R,A);

KcK1 ξ1 (t− 1) +KcK1 ξ2 (t− 1) +KpK1 ξ3 (t− 1)
Kc D (ξ1) (t− 1) +Kc D (ξ2) (t− 1) +Kp D (ξ3) (t− 1)
KcK1 ξ1 (t− 1) +KpK1 ξ2 (t− 1) +KcK1 ξ3 (t− 1)
Kc D (ξ1) (t− 1) +Kp D (ξ2) (t− 1) +Kc D (ξ3) (t− 1)
KpK1 ξ1 (t− 1) +KcK1 ξ2 (t− 1) +KcK1 ξ3 (t− 1)
Kp D (ξ1) (t− 1) +Kc D (ξ2) (t− 1) +Kc D (ξ3) (t− 1)

Te
(
D(2)) (ξ3) (t) +K2 D (ξ3) (t)

Te
(
D(2)) (ξ2) (t) +K2 D (ξ2) (t)

Te
(
D(2)) (ξ1) (t) +K2 D (ξ1) (t)


The previous parametrization involves three arbitrary functions ξ1, ξ2 and ξ3 of F .

Let us now check whether or not the A-module M is reflexive. According to Theorem 3.1, we need
to check that the second extension A-module ext2

A(N,A) vanishes.

> Ext2[1]; 

δ 0 0
Te d

2 +K2 d 0 0
0 δ 0
0 Te d

2 +K2 d 0
0 0 δ

0 0 Te d
2 +K2 d


As the first matrix Ext2[1] of Ext2 is not equal to the identity matrix, we obtain that the A-
module ext2

A(N,A) is not reduced to zero, and thus, M is a torsion but not reflexive A-module.
In particular, M is not a free A-module, and by duality, the linear system kerF (R.) is not flat.

> PiPolynomial(R,A,[delta]);

[δ]

By definition of π-polynomials (see Algorithm 2.1), it means that L = A1×9
δ /(A1×6

δ R) ∼= Aδ⊗AM
is a free Aδ = Q(K1,K2, Te,Kp,Kc)[d, δ, δ−1]-module. If G is an Aδ-module, then the new system
kerG(R.) is flat.
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Let us compute a basis of the free Aδ-module L, and thus, a flat output of kerG(R.). To do that, we
apply the function LocalLeftInverse to the parametrization Q = Ext1[3] of M but by allowing
the invertibility of the polynomial δ in Aδ:

> T:=LocalLeftInverse(Ext1[3],[delta],A);

T :=


−Kc

%1
0 −Kc

%1
0 Kp +Kc

%1
0 0 0 0

−Kc

%1
0 Kp +Kc

%1
0 −Kc

%1
0 0 0 0

Kp +Kc

%1
0 −Kc

%1
0 −Kc

%1
0 0 0 0


%1 := δ K1

(
−2Kc

2 +Kp
2 +KpKc

)

By construction, the matrix T is a left-inverse of Q over Aδ. Let us check this fact:

> Mult(T,Ext1[3],A);  1 0 0
0 1 0
0 0 1



Then, (z1 z2 z3)T = T (y1 . . . y6 u1 u2 u3)T is a basis of the free Aδ-module L, and thus,
a flat output of the system kerG(R.), where (y1 . . . y6 u1 u2 u3)T = Q (z1 z2 z3)T . More
precisely, the flat output z1, z2 and z3 of kerG(R.) is defined by:

> evalm([seq([z[i](t)],i=1..3)])=ApplyMatrix(T,[seq(x[i](t),i=1..6),
> seq(u[i](t),i=1..3)],A);

 z1 (t)
z2 (t)
z3 (t)

 =



−Kc x1 (t+ 1)−Kc x3 (t+ 1) +Kp x5 (t+ 1) +Kc x5 (t+ 1)
K1

(
−2Kc

2 +Kp
2 +KpKc

)
−Kc x1 (t+ 1) +Kp x3 (t+ 1) +Kc x3 (t+ 1)−Kc x5 (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
Kp x1 (t+ 1) +Kc x1 (t+ 1)−Kc x3 (t+ 1)−Kc x5 (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)



Substituting the previous flat output of kerG(R.) into its parametrization Ext1[3], we obtain the
identity (y1 . . . y6 u1 u2 u3) = U (y1 . . . y6 u1 u2 u3), where U is defined by:

> U:=simplify(evalm(Ext1[3]&*S));
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U :=



1 0 0 0 0 0 0 0 0
d

K1
0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 d

K1
0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 d

K1
0 0 0 0

(Kp +Kc) %2 d
%1

0 −Kc%2 d
%1

0 −Kc%2 d
%1

0 0 0 0

−Kc %2 d
%1

0 (Kp +Kc) %2 d
%1

0 −Kc %2 d
%1

0 0 0 0

−Kc %2 d
%1

0 −Kc %2 d
%1

0 (Kp +Kc) %2 d
%1

0 0 0 0


%1 := δ K1

(
−2Kc

2 +Kp
2 +KpKc

)
%2 := (Te d+K2)

We note that (y1 . . . y6 u1 u2 u3) can only be expressed in terms of y1, y3 and y5. Hence,
{y1, y3, y5} also defines a basis of the free Aδ-module L (see also [73]). More precisely, we have:

> evalm([seq([y[i](t)=ApplyMatrix(U,[seq(y[j](t),j=1..6),
> seq(u[j](t),j=1..3)],A)[i,1]],i=1..6)]);

y1 (t) = y1 (t)

y2 (t) = D(y1)(t)
K1

y3 (t) = y3 (t)

y4 (t) = D(y3)(t)
K1

y5 (t) = y5 (t)

y6 (t) = D(y5)(t)
K1



> evalm([seq([u[i](t)=ApplyMatrix(U,[seq(x[j](t),j=1..6),
> seq(u[j](t),j=1..3)],A)[6+i,1]],i=1..3)]);
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

u1 (t) =
K2 (Kp +Kc) D (y1) (t+ 1) + Te (Kp +Kc)

(
D(2)) (y1) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
−
K2 Kc D (y3) (t+ 1) + TeKc

(
D(2)) (y3) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
−
K2 Kc D (y5) (t+ 1) + TeKc

(
D(2)) (y5) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
u2 (t) = −

K2 Kc D (y1) (t+ 1) + TeKc

(
D(2)) (y1) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
+
K2 (Kp +Kc) D (y3) (t+ 1) + Te (Kp +Kc)

(
D(2)) (y3) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
−
K2 Kc D (y5) (t+ 1) + TeKc

(
D(2)) (y5) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
u3 (t) = −

K2 Kc D (y1) (t+ 1) + TeKc

(
D(2)) (y1) (t+ 1) +K2 Kc D (y3) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
−
TeKc

(
D(2)) (y3) (t+ 1)−K2 (Kp +Kc) D (y5) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)
+
Te (Kp +Kc)

(
D(2)) (y5) (t+ 1)

K1
(
−2Kc

2 +Kp
2 +KpKc

)


Finally, the previous expressions of the inputs ui’s, i = 1, 2, 3, in terms of the flat outputs y1,
y3 and y5 can be used to solve motion planning problems in which the outputs of the system are
exactly the previous flat outputs. For more details, see [73].

Example 1.3. We consider Example 2.10, namely, the linear PD system formed by the infinites-
imal transformations of the Lie pseudogroup defining the contact transformations.

We first introduce the first Weyl algebra A = A3(Q) of PD operators in d1, d2 and d3 and with
coefficients in the commutative polynomial ring Q[x1, x2, x3].

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]]):

The linear PD system is then defined by the following presentation matrix R of PD operators:

> R:=evalm([[(x[2]/2)*d[1],x[2]*d[2]+1,x[2]*d[3]+d[1]/2],
> [-(x[2]/2)*d[2]-3/2,0,d[2]/2],[-d[1]-(x[2]/2)*d[3],-d[2],-d[3]/2]]);

R :=



x2 d1

2
x2 d2 + 1 x2 d3 + d1

2

−x2 d2

2
− 3

2
0 d2

2

−d1 −
x2 d3

2
−d2 −d3

2


Let us compute a finite free resolution of the left A-module M = A1×3/(A1×3 R):

> F:=FreeResolution(R,A);
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F := table([1 =



x2 d1

2
x2 d2 + 1 x2 d3 + d1

2

−x2 d2

2
− 3

2
0 d2

2

−d1 −
x2 d3

2
−d2 −d3

2

 ,
2 =

[
d2 −d1 − x2 d3 2 + x2 d2

]
, 3 = INJ(1)])

Let us check whether or not the left A-module M admits a shorter free resolution.

> G:=ShorterFreeResolution(F,A);

G := table([1 =



x2 d1

2
x2 d2 + 1 x2 d3 + d1

2
−x2

−x2 d2

2
− 3

2
0 d2

2
0

−d1 −
x2 d3

2
−d2 −d3

2
1

 , 2 = INJ(3)])

We obtain that the first matrix G1 of G defines a shorter free resolution of the left A-module M ,
namely, we have M ∼= A1×4/(A1×3 G1). We note that this shorter free resolution of M can be
directly obtained as folllows:

> ShortestFreeResolution(R,A);

table([1 =



x2 d1

2
x2 d2 + 1 x2 d3 + d1

2
−x2

−x2 d2

2
− 3

2
0 d2

2
0

−d1 −
x2 d3

2
−d2 −d3

2
1

 , 2 = INJ(3)])

According to Proposition 3.3, the left A-module M is a stably free iff the matrix G1 admits a
right-inverse over A:

> RightInverse(G[1],A);
0 −1 0
1 0 x2
0 −x2 0
d2 −d1 − x2 d3 2 + x2 d2


We obtain that the left A-module M is stably free of rank 4 − 3 = 1. This result can also be
obtained by checking that lpdD(M) = 0 as it then implies that M is a projective left A-module,
i.e., stably free by Proposition 2.7:

> ProjectiveDimension(R,A);
0

Let us compute the rank of the finitely generated left A-module M :

> OreRank(R,A);
1

The fact that rankA(M) < 2 implies that we cannot use Stafford’s theorem which asserts that
every stably free left A-module of rank at least 2 is free (3 of Proposition 1.2) to conclude that M
is a free left A-module of rank 1. However, we can try to find if there exists an injective minimal
parametrization of M (see Corollary 5.1):

> Q:=MinimalParametrization(R,A);
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Q :=

 −d2
d1 + x2 d3
−2− x2 d2


> T:=LeftInverse(Q,A);

T :=
[ x2

2
0 −1

2

]
> Mult(T,Q,A); [

1
]

Hence, we obtain that M is a free left A-module of rank 1 and a basis z of M is defined by the
residue class of T in the left A-module M . Moreover, the set of generators {yj = π(fj)}j=1,2,3 of
M satisfy (y1 y2 y3)T = Qz, i.e., Q is an injective parametrization of M . Finally, if F is a left
A-module (e.g., F = Q[x1, x2]), then the underdetermined linear PD system kerF (R.) admits the
following injective parametrization

> evalm([seq([eta[i](x)],i=1..3)])=Parametrization(R,A); η1(x1, x2, x3)
η2(x1, x2, x3)
η3(x1, x2, x3)

 =

 −( ∂
∂x2

ξ1(x1, x2, x3))
( ∂
∂x1

ξ1(x1, x2, x3)) + x2 ( ∂
∂x3

ξ1(x1, x2, x3))
−2 ξ1(x1, x2, x3)− x2 ( ∂

∂x2
ξ1(x1, x2, x3))


i.e., kerF (R.) = QF and T Q = 1, and ξ1 = T η is defined by:

> xi[1](x)=ApplyMatrix(T,[seq(eta[i](x),i=1..3)],A)[1,1];

ξ1(x1, x2, x3) = 1
2
x2 η1(x1, x2, x3)− 1

2
η3(x1, x2, x3)

2. The Jacobson package

Example 2.1. Let us consider the first Weyl algebra A = A1(Q):

> A:=DefineOreAlgebra(diff=[d,t],polynom=[t])

and the following matrix R with entries in A:

> R:=evalm([[-t*d+1,t^2*d,-1,0],[-d,-t*d+1,0,-1]]);

R :=
[
−t d+ 1 t2 d −1 0
−d −t d+ 1 0 −1

]
Let us compute the Hermite form of the matrix R over the principal left ideal domain B1(Q) of
OD operators with rational coefficients containing A:

> H:=OreHermite(R,A,"monic");

H :=
[[

1 −t
d −t d

]
,

[
1 2 t2 d− t −1 t
0 2 d2 t2 + 2 t d −d −t d

]]
The second matrix H2 of H is the Hermite form of R and the relation H2 = H1 R holds, where
H1 is the first matrix of H. Let us check this point:

> Mult(H[1],R,A); [
1 2 t2 d− t −1 t
0 2 d2 t2 + 2 t d −d t d

]
Let us check that the matrix H1 is unimodular over B, i.e., H1 ∈ GL2(B):

> LeftInverseRat(H[1],A); [
−t d+ 1 t
−d 1

]
Let us now compute the Jacobson normal form of the matrix R:

> J:=OreJacobson(R,A);
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J :=

[ −1 0
0 −1

]
,

[
1 0 0 0
0 1 0 0

]
,


0 0 1 0
0 0 0 1
1 0 −t d+ 1 t2 d
0 1 −d −t d+ 1




The Jacobson form J2 of R satisfies J2 = J1 RJ3, where Ji is the ith matrix of J :

> Mult(J[1],R,J[3],A); [
1 0 0 0
0 1 0 0

]
The matrix J1 is trivially invertible over B as its inverse is defined by:

> LeftInverseRat(J[1],A); [
−1 0

0 −1

]
Similarly, the matrix J3 is unimodular over B as we have:

> LeftInverseRat(J[3],A);
t d− 1 −t2 d 1 0
d t d− 1 0 1
1 0 0 0
0 1 0 0


Example 2.2. Let us consider the skew polynomial ring A = Q[n]〈σ〉 of forward shift operators
with polynomial coefficients, namely, for all a ∈ Q[n], σ(a(n)) = a(n+ 1):

> A:=DefineOreAlgebra(shift=[sigma,n],polynom=[n]):

Let R be the matrix with entries in A obtained by substituting d by σ and t by n in Example 2.1:

> R:=evalm([[-n*sigma+1,n^2*sigma,-1,0],[-sigma,n*sigma+1,0,-1]]);

R :=
[
−nσ + 1 n2 σ −1 0
−σ nσ + 1 0 −1

]
Let us compute the Hermite normal form of R over the principal left ideal domain B = Q(n)〈σ〉
containing the ring A:

> H:=OreHermite(R,A,"monic");

H := [
[

1 −n
σ 1− nσ − σ

]
,

[
1 −n −1 n
0 1− σ −σ nσ + σ − 1

]
]

The matrix H2 satisfies the relation H2 = H1 R, where Hi is the ith matrix of H:

> Mult(H[1],R,A); [
1 −n −1 n
0 1− σ −σ nσ + σ − 1

]
The matrix H1 is unimodular over B as we have:

> LeftInverseRat(H[1],A); [
−nσ + 1 n
−σ 1

]
Let us compute the Jacobson normal form of the matrix R:

> J:=OreJacobson(R,A);

J :=

[ −1 0
0 −1

]
,

[
1 0 0 0
0 1 0 0

]
,


0 0 1 0
0 0 0 1
1 0 −nσ + 1 n2 σ
0 1 −σ nσ + 1



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The Jacobson normal form J2 of R satisfies J2 = J1 RJ3, where Ji is the ith matrix of J :

> Mult(J[1],R,J[3],A); [
1 0 0 0
0 1 0 0

]
The matrix J1 is clearly unimodular and we can check that J3 is unimodular over B:

> LeftInverseRat(J[3],A);
nσ − 1 −n2 σ 1 0
σ −nσ − 1 0 1
1 0 0 0
0 1 0 0


3. The QuillenSuslin package

Example 3.1. We consider the following row vector R with entries in A = Q[x, y]:

> var:=[x,y]:

> R:=[x-4*y+2,x*y+x,x+4*y^2-2*y+1];

R := [x− 4 y + 2, x y + x, x+ 4 y2 − 2 y + 1]

Let us check that the ideal generated by the entries of R is equal to A:

> IsUnimod(R,var,true);
true

Therefore, the matrix R admits a right-inverse over A defined by:

> RightInverse(R,var,true);

[y, −1, 1]

Using Corollary 3.3, the A-module M = A1×3/(AR) is stably free and thus free by the Quillen-
Suslin theorem (2 of Theorem 1.2). Let us now compute a basis of the free A-module M :

> U:=QSAlgorithm(R,var,true);

U :=

 y −2 y + 4 y2 − x y + 1 −y (x+ 4 y2 − 2 y + 1)
−1 x− 4 y + 2 x+ 4 y2 − 2 y + 1
1 −x+ 4 y − 2 −x− 4 y2 + 2 y


We can check that the first row of the inverse of U , denoted by Uinv, is exactly R:

> U_inv:=CompleteMatrix(R,var,true);

U_inv :=

 x− 4 y + 2 x y + x x+ 4 y2 − 2 y + 1
1 y 0
0 1 1


Therefore, the residue classes of the last two rows of Uinv in M form a basis of the free A-module
M of rank 2. This result can directly be obtained by using the function BasisOfCokernelModule:

> BasisOfCokernelModule(Matrix(R),var,true);[
1 y 0
0 1 1

]
Finally, an injective parametrization of the A-module M is given by the last two columns of U :

> InjectiveParametrization(Matrix(R),var,false); −2 y + 4 y2 − x y + 1 −y (x+ 4 y2 − 2 y + 1)
x− 4 y + 2 x+ 4 y2 − 2 y + 1
−x+ 4 y − 2 −x− 4 y2 + 2 y


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Example 3.2. We consider the linear OD time-delay system (71). The presentation matrix R of
(71) is defined by

> R:=Matrix([[d-delta+2, 2,-2*delta],[d,d,-d*delta-1]]);

R :=
[
d− δ + 2 2 −2 δ

d d −d δ − 1

]
where d (resp., δ) is the OD (resp., time-delay) operator. We consider the commutative polynomial
ring A = Q[d, δ] of OD time-delay operators and the A-module M = A1×3/(A1×2 R).

> var:=[d,delta];
var := [d, δ]

Let us check whether or not the matrix R admits a right-inverse over A:

> IsUnimod(R,var);
true

Since R admits a right-inverse over A, the A-module M is stably free, and thus, free by the
Quillen-Suslin theorem (2 of Theorem 1.2). Therefore, according to Corollary 5.2, there exists
U ∈ GL3(D) such that RU = (I2 0). Let us compute such a matrix U :

> U:=QSAlgorithm(R,var);

U :=


0 0 −2

d δ

2
+ 1

2
−δ d2 δ + d− d δ2 − δ + 2

d

2
−1 d2 − d δ


We can check again that the matrix U satisfies RU = (I2 0)

> simplify(R.U); [
1 0 0
0 1 0

]
and U is a unimodular matrix over A since the entries of its inverse U−1 belong to A:

> LinearAlgebra[MatrixInverse](U); d− δ + 2 2 −2 δ
d d −d δ − 1
−1/2 0 0


The residue class of the last row T of the matrix U−1 in M defines a basis of the free A-module
M . In particular, the free A-module M admits the following injective parametrization

> Q:=InjectiveParametrization(R,var,true);

Q :=

 −2
d2 δ + d− d δ2 − δ + 2

d2 − d δ


i.e., we have kerA(.Q) = A1×2 R and T Q = I2. Moreover, the linear OD time-delay system
kerF (R.) is flat and Q is an injective parametrization of kerF (R.), where F is a A-module (e.g.,
C∞(R)), i.e., every element η ∈ kerF (R.) has the form η = Qξ, for a unique element ξ ∈ F .
Moreover, according to Corollary 5.3, the flat linear OD time-delay system kerF (R(d, δ).) is equiv-
alent to the linear controllable OD system kerF (R(d, 1).). Let us compute an invertible transfor-
mation which sends the elements of kerF (R(d, 1).) to those of kerF (R(d, δ).):

> V:=SetLastVariableA(R,var,1,true);
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V :=


1 0 0

1
2
d δ2 − 1

2
d δ + 1

2
δ − 1

2
1 δ − 1

d (δ − 1)
2

0 1


Let us check that the relation R(d, δ)V = R(d, 1) holds:

> S:=simplify(R.V);

S :=
[
d+ 1 2 −2
d d −1− d

]
Then, for all ζ ∈ kerF (R(d, 1).), we have η = V ζ ∈ kerF (R(d, δ).). The inverse transformation,
i.e., the transformation sending kerF (R(d, δ).) to kerF (R(d, 1).), is defined by V −1:

> LinearAlgebra[MatrixInverse](V);
1 0 0

−1
2
d δ − 1

2
δ + 1

2
+ 1

2
d 1 −δ + 1

−d (δ − 1)
2

0 1


Now, since the E = Q[d]-module N = E1×3/(E1×2 S) is free, there exists W ∈ GL3(E) such that
SW = (I2 0). For instance, we can take the matrix

> W:=QSAlgorithm(S,var);

W :=


0 0 −2

1
2

+ d

2
−1 d2 + 1

d

2
−1 d2 − d


whose determinant equals 1. Hence, the matrix W defines a one-to-one correspondence between
the elements of kerF ((I2 0).) = F and those of kerF (R(d, 1).). Composing the transformations
defined by V and W , we get a one-to-one correspondence between the elements of kerF ((I2 0).) =
F and those of kerF (R(d, δ).). More precisely, for all θ ∈ F , we have (0 0 θ)T ∈ kerF ((I2 0).)
and, using the relation U = V W and the fact that the last row of U is defined by the matrix Q,
we finally get η = U (0 0 θ)T = Qθ ∈ kerF (R(d, δ)). Hence, we find again that Q defines an
injective parametrization of kerF (R.).

Example 3.3. Let us consider the OD time-delay model of a flexible rod with a force applied
on one end defined in Example 5.3. Let A = Q[d, δ] be the commutative polynomial ring of OD
time-delay operators, where d (resp., δ) is the OD (resp., time-delay) operator and the presentation
matrix R ∈ A2×3 of (77) defined by

> var:=[d,delta];
var := [d, δ]

> R:=Matrix([[d,-d*delta,-1],[2*delta*d,-d*delta^2-d,0]]);

R :=
[

d −d δ −1
2 d δ −d δ2 − d 0

]
Let us check whether or not the A-module M = A1×3/(A1×2 R) is stably free, and thus, free by
the Quillen-Suslin theorem:

> IsUnimod(R,var);
false

We obtain that R does not admit a right-inverse over A, and thus, the A-module M is not free.
In particular, there does not exist a matrix U ∈ GL3(A) such that RU = (I2 0) or, equivalently,
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R cannot be completed to a matrix V ∈ GL3(A). Let us compute the set of all maximal minors
of R:

> m:=MaxMinors(R);

m := [d2 δ2 − d2, 2 d δ, −d δ2 − d]

The ideal I of A defined by the maximal minors is generated by

> Involutive[InvolutiveBasis](m,var);
[d]

i.e., I = (d). Thus, d is the greatest common divisor of the maximal minors of R. In particular,
we obtain that the torsion A-submodule t(M) of M is not reduced to 0. A solution of the first
Lin-Bose’s problem (see Section 5) can be obtained by means of LinBose1 as follows:

> F:=LinBose1(R,var);

F :=
[[
−1 0

0 −d

]
,

[
−d d δ 1
−2 δ δ2 + 1 0

]]
We then have R = R′′R′ and detR′′ = d and R′ admits a right-inverse over A:

> simplify(F[1].F[2]); [
d −d δ −1

2 d δ −d δ2 − d 0

]
> LinearAlgebra[Determinant](F[1]);

d

> IsUnimod(F[2],var);
true

Let us now solve the second Lin-Bose’s problem (see Section 5).

> P:=LinBose2(R,var);

P :=

 d −d δ −1
2 d δ −d δ2 − d 0

−1 δ

2
0


Hence, we have embedded R in the square matrix P whose determinant is:

> LinearAlgebra[Determinant](C);

d

4. The Stafford package

Example 4.1. Let us consider Example 2 of [57], namely, the left ideal I of the first Weyl algebra
A = A3(Q) defined by the following three PD operators

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]]):
> P[1]:=d[1]*d[3]^2; P[2]:=d[1]*d[2]; P[3]:=d[2]*d[3]^2;

P1 := d1 d
2
3

P2 := d1 d2

P3 := d2 d
2
3

namely, I = AP1 +AP2 +AP3. According to Stafford’s theorem (see Theorem 5.2), we know that
the left ideal I can be generated by only two elements of A. Let us compute such pairs:

> G:=TwoGenerators(P[1],P[2],P[3],A);

G := [d1 d
2
3, d1 d2 + (x1 x

2
3 + x2

1 x3 + x3
1) d2 d

2
3, [0, x1 x

2
3 + x2

1 x3 + x3
1]]
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Therefore, the left ideal I is also generated by the first two entries G1 and G2 of G. Let us check
this result again by computing Gröbner bases of I and the left ideal J = AG1 +AG2:

> Gbasis([P[1],P[2],P[3]],A); Gbasis([G[1],G[2]],A);

[d1 d2, d2 d
2
3, d1 d

2
3]

[d1 d2, d2 d
2
3, d1 d

2
3]

The left ideal I can also be generated by the first two entries H1 and H2 of H defined by:

> H:=TwoGenerators(P[3],P[1],P[2],A);

H := [d2 d
2
3, d1 d

2
3 + (x2

3 x2 + x3 + x4
3) d1 d2, [0, x2

3 x2 + x3 + x4
3]]

Let us check this result by computing a Gröbner basis of the left ideal of A generated by the first
two entries H1 and H2 of H:

> Gbasis([H[1],H[2]],A);

[d1 d2, d2 d
2
3, d1 d

2
3]

Finally, I can also be generated by the first two following entries K1 and K2 of K defined by

> K:=TwoGeneratorsRat(P[2],P[3],P[1],A);

K := [d1 d2, d2 d
2
3 + (x1 x2 + x2

2) d1 d
2
3, [0, x1 x2 + x2

2]]

i.e., I = AK1 +AK2, because we also have:

> Gbasis([K[1],K[2]],A);

[d1 d2, d2 d
2
3, d1 d

2
3]

Example 4.2. Let us consider the first Weyl algebra A = A3(Q) of PD operators with coefficients
in the commutative polynomial ring Q[x1, x2, x3]:

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]]):

We consider the following system matrix of PD operators:

> R:=evalm([[d[1]+x[3],d[2],d[3]]]);

R :=
[
d1 + x3 d2 d3

]
The corresponding PD linear system is ~∇ . ~y+ x3 y1 = 0 (where ~∇ . ~y is the divergence operator in
R3), namely:

> x :=x[1],x[2],x[3]:
> ApplyMatrix(R,[seq(y[i](x),i=1..3)],A)[1,1]=0;

x3 y1(x1, x2, x3) + ( ∂
∂x1

y1(x1, x2, x3)) + ( ∂
∂x2

y2(x1, x2, x3)) + ( ∂
∂x3

y3(x1, x2, x3)) = 0

Let us check whether or not the finitely presented left A-module M = A1×3/(AR) is stably free:

> S:=RightInverse(R,Alg);

S :=

 −d3
0

d1 + x3


Hence, the matrix R admits a right-inverse S as we have

> Mult(R,S,Alg); [
1
]

and thus, using Corollary 3.3, the left A-module M is stably free. Let us compute its rank:

> OreRank(R,Alg);
2
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According to Stafford’s theorem (see 3 of Theorem 1.2), the left A-module M is a free of rank 2.
Let F be a left A-module (e.g., F = C∞(R3)) and let us consider the linear PD system kerF (R.)
with polynomial coefficients. Using the fact that M is a free left A-module, the linear system
kerF (R.) admits an injective parametrization. Let us compute an injective parametrization:

> Q:=InjectiveParametrization(R,A);

Q := [−d2
3 d1 − d2

3 x3 − 2 d3 + d2
3 + d2

3 d2 ,−3 d1 − d2
1 d3 − 2 d1 d3 x3

+ d3 d1 + d3 d1 d2 − 3x3 − d3 x
2
3 + d3 x3 + 2 + x3 d3 d2 + d2]

[d3 , d1 + x3]
[1 + d2

1 d3 + 2 d1 d3 x3 + d3 x
2
3 − d3 d1 − d3 x3 − d3 d1 d2 − x3 d3 d2 ,

d3
1 + 3 d2

1 x3 + 3 d1 x
2
3 − d2

1 − 2 d1 x3 − d2
1 d2 − 2 d1 d2 x3 + x3

3 − x2
3 − d2 x

2
3]

We can check that the matrix Q defines an injective parametrization of M , and thus, of kerF (R.)
because we first have kerA(.Q) = AR, a fact which can be checked by

> SyzygyModule(Q,A); [
d1 + x3 d2 d3

]
and the matrix Q ∈ A3×2 admits a left-inverse over A defined by:

> T:=LeftInverse(Q,A);

T :=
[

0 −d2
1 + d2 d1 − 2 d1 x3 + d2 x3 − x2

3 + d1 + x3 1
1 d3 d1 − d3 d2 + d3 x3 − d3 + 2 0

]
Therefore, M ∼= A1×3 Q = A, which proves again that M is a free left A-module of rank 2.
Moreover, the residue classes of the rows of T in M define a basis of the free left A-module M .
This last result can directly be obtained by using the function BasisOfModule:

> BasisOfModule(R,A);[
0 −d2

1 + d2 d1 − 2 d1 x3 + d2 x3 − x2
3 + d1 + x3 1

1 d3 d1 − d3 d2 + d3 x3 − d3 + 2 0

]
The functions InjectiveParametrization and BasisOfModule are based on Algorithm 5.3 but
they also use extra methods to speed up the consuming computations by avoiding as much as
possible to compute two generators of left ideals of A appearing in Algorithm 5.3.

5. The PurityFiltration package

Example 5.1. Let us first introduce the commutative polynomial ring A of PD in ∂1 and ∂2 with
rational constant coefficients

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]]):

and the system matrix R of the linear PD system defined by:

> R:=matrix(3,3,[0,d[2]-d[1],d[2]-d[1],d[2],-d[1],-d[2]-d[1],d[1],-d[1],-2*d[1]]); 0 d2 − d1 d2 − d1

d2 −d1 −d2 − d1

d1 −d1 −2 d1


This example is due to Janet (see [84]). Let us study the purity filtration of the A-module M =
A1×3/(A1×3 R).

> F:=PurityFiltration(R,A);

F := [

 0 d2 − d1 d2 − d1

d2 −d1 −d2 − d1

d1 −d1 −2 d1

 ,[ 1 0 −1
0 1 1

]
,

 0 d2 − d1

d2 −d1

d1 −d1

 ,[ 0 d2 − d1

−1 1

]
,

 1 0
1 −d2

0 −d1

]
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If we denote by Fi the ith matrix of F , then we have:

M = A1×3/(A1×3 F1),
M/t(M) ∼= A1×3/(A1×2 F2),
t(M) = (A1×2 F2)/(A1×3 F1) ∼= A1×2/(A1×3 F3),
ext1

A(ext1
A(M,A), A) ∼= A1×2/(A1×2 F4),

ext2
A(ext2

A(M,A), A) ∼= A1×2/(A1×3 F5).

The first matrix F1 defines a finite free resolution of the A-module M = A1×3/(A1×3 R) of length
at most two, and thus F1 = R. Let us check that dimA(ext1

A(ext1
A(M,A), A)) = 1:

> DimensionRat(F[4],A);
1

Moreover, let us check that dimA(ext2
A(ext2

A(M,A), A)) = 0:

> DimensionRat(F[5],A);
0

Let now us compute an equivalence presentation of the A-module t(M) ∼= A1×2/(A1×3 F3):

> U:=PurityFiltrationTorsion(R,A);

U := [

 0 d2 − d1

d2 −d1

d1 −d1

 ,


0 d2 − d1 −1 0
−1 1 0 −1
0 0 1 0
0 0 1 −d2

0 0 0 −d1

]

Hence, we have t(M) ∼= A1×2/(A1×3 U1) ∼= A1×4/(A1×5 U2). Let us check whether or not we can
simplify again the presentation matrix U2 by decoupling the two diagonal blocks of U2:

> B:= BaerExtensionTorsionConstCoeff(R,A);

B := [

 0 d2 − d1 d2 − d1

d2 −d1 −d2 − d1

d1 −d1 −2 d1

 ,


0 d2 − d1 0 0
−1 1 0 0
0 0 1 0
0 0 1 −d2

0 0 0 −d1

 ,
[

1 0 0 0
0 1 0 1

]
,


1 0
1 0
0 d2 − d1

−1 1

]

We obtain

t(M) = A1×3/(A1×3 B1) ∼= A1×4/(A1×5 B2)
∼= A1×2/(A1×2 F4)⊕A1×2/(A1×3 F5)
∼= ext1

A(ext1
A(M,A), A)⊕ ext2

A(ext2
A(M,A), A),

where the third and fourth matrices B3 and B4 of B define the first A-isomorphism.

Let us now compute an equivalent presentation of the A-module M = A1×3/(A1×3 R):

> Q:=BaerExtensionConstCoeff(R,A);
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Q := [

 0 d2 − d1 d2 − d1

d2 −d1 −d2 − d1

d1 −d1 −2 d1

 ,



1 0 −1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 0 d2 − d1 0 0
0 0 0 −1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 −d2

0 0 0 0 0 0 −d1


,

 1 0 0 0 0 0 0
0 1 0 0 2 0 1
0 0 1 0 −1 0 0

 ,



1 0 0
−1 0 0
1 0 0
1 0 −1
1 0 −1
0 d2 − d1 d2 − d1

−1 1 2


]

We obtain
M = A1×3/(A1×3 Q1) ∼= L , A1×7/(A1×7 Q2)

∼= A1×3/(A1×2 F2)⊕A1×2/(A1×2 F4)⊕A1×2/(A1×3 F5)
∼= M/t(M)⊕ ext1

A(ext1
A(M,A), A)⊕ ext2

A(ext2
A(M,A), A),

and the third and fourth matrices of E define the first A-isomorphism. We can use the package
OreMorphisms (see Section 5) to check again this A-isomorphism:

> with(OreMorphisms):

Following Proposition 1.1, we first need to compute X ∈ A3×7 satisfying Q1 Q3 = X Q2, where
Q1 = R:

> X:=Factorize(Mult(Q[1],Q[3],A),Q[2],A);

X :=

 0 d2 − d1 1 0 1 −1 1
d2 −d1 1 0 0 0 1
d1 −d1 0 0 0 0 1


Then, using the command TestIso of OreMorphisms, we can test whether or not the pair of
matrices (Q3, X) defines an A-isomorphism from M to L:

> TestIso(Q[1],Q[2],Q[3],X,A);
true

Let us check that the matrixQ4 defines an A-isomorphism from P to L. We first compute Y ∈ A7×3

satisfying Q2 Q4 = Y Q1, where Q1 = R:

> Y:=Factorize(Mult(Q[2],Q[4],A),Q[1],A);

Y :=



0 0 0
0 0 0
0 1 −1
0 0 0
1 0 0
0 1 0
0 0 1


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Then, we can check again that the matrices Q4 and Y define an A-isomorphism from L to M :

> TestIso(Q[2],Q[1],Q[4],Y,A);
true

The main interest of the presentation Q2 (resp., representation) of M (resp., kerF (R.)) is that
the different ith-dimensional layers of the linear PD system kerF (Q2.) are uncoupled. Hence, the
integration of kerF (Q2.) is then highly simplified:

> Eqs:=convert(convert(ApplyMatrix(E[2],[zeta[1](x[1],x[2]),zeta[2](x[1],x[2]),
> zeta[3](x[1],x[2]),tau[1](x[1],x[2]),tau[2](x[1],x[2]),upsilon[1](x[1],x[2]),
> upsilon[2](x[1],x[2])],A),vector),list):

> eqs:=map(a->a=0,Eqs);

[ζ1 (x1, x2)− ζ3 (x1, x2) = 0, ζ2 (x1, x2) + ζ3 (x1, x2) = 0,− ∂
∂x1

τ2 (x1, x2) + ∂
∂x2

τ2 (x1, x2) = 0,
−τ1 (x1, x2) + τ2 (x1, x2) = 0, υ1 (x1, x2) = 0, υ1 (x1, x2)− ∂

∂x2
υ2 (x1, x2) = 0,− ∂

∂x1
υ2 (x1, x2) = 0]

If F = C∞(R2), then a generic element of kerF (Q2.) has the form (ζ1 ζ2 ζ3 τ1 τ2 υ1 υ2)T ,
where:

> S:=pdsolve(eqs,{zeta[1](x[1],x[2]),zeta[2](x[1],x[2]),zeta[3](x[1],x[2]),
> tau[1](x[1],x[2]),tau[2](x[1],x[2]),upsilon[1](x[1],x[2]),upsilon[2](x[1],
> x[2])});

S := {υ2 (x1, x2) = _C1, ζ1 (x1, x2) = ζ3 (x1, x2) , ζ2 (x1, x2) = −ζ3 (x1, x2) ,
ζ3 (x1, x2) = ζ3 (x1, x2) , τ2 (x1, x2) = _F1 (x2 + x1) , τ1 (x1, x2) = _F1 (x2 + x1) , υ1 (x1, x2) = 0}

Finally, η = Q3 (ζ1 ζ2 ζ3 τ1 τ2 υ1 υ2)T , namely,

> sols:=convert(S,list):

> eta:=ApplyMatrix(Q[3],[rhs(sols[2]),rhs(sols[3]),rhs(sols[4]),rhs(sols[6]),
> rhs(sols[5]),rhs(sols[7]),rhs(sols[1])],A);

η :=

 ζ3 (x1, x2)
−ζ3 (x1, x2) + 2 _F1 (x2 + x1) + _C1

ζ3 (x1, x2)−_F1 (x2 + x1)


is the general solution of the linear PD system kerF (R.):

> ApplyMatrix(R,eta,A);  0
0
0


Finally, we point out that the computer algebra system Maple cannot compute the closed-form

solutions of the linear PD system Rη = 0, a fact which illustrates the interest of the results
obtained in Section 4 based on the purity filtration and of the PurityFiltration package.

Example 5.2. Let us study the purity filtration of the leftA = A2(Q)-moduleM = A1×3/(A1×4 R),
where R is the matrix of PD operators defined by:

> R:=evalm([[d[1],x[2],d[2]],[x[1],d[2],0],[d[1],x[2],d[1]],
> [x[1]*d[1]+1,d[1]*d[2],d[2]]]);

R :=


d1 x2 d2

x1 d2 0
d1 x2 d1

x1d1 + 1 d1d2 d2


Let us compute the purity filtration of the left A-module M :
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> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]]):

> F:=PurityFiltration(R,A);

F := [


d1 x2 d2

x1 d2 0
d1 x2 d1

1 + x1d1 d1d2 d2

 ,
 1 0 0

0 1 0
0 0 1

 ,


d1 x2 d2

x1 d2 0
d1 x2 d1

1 + x1d1 d1d2 d2

 ,
 d1 x2 d2

−x1 −d2 0
0 0 −1

 ,


1 0 0
0 −1 0
1 0 −d1 + d2

0 −d1 −d2

]

We get M/t(M) = A1×3/(A1×3 F2) = 0, t(M) = A1×3/(A1×4 F3) = M , i.e., M is a torsion left
D-module, ext1

A(ext1
A(M,A), A) ∼= A1×3/(A1×3 F4) and ext2

A(ext2
A(M,A), A) ∼= A1×3/(A1×4 F5).

Looking at the matrices F4 and F5, we can check that ext1
A(ext1

A(M,A), A) ∼= A1×2/(A1×2 F ′4),
where the matrix F ′4 is defined by

F ′4 =

(
d1 x2

x1 d2

)
,

and ext2
A(ext2

A(M,A), A) ∼= A/(Ad1 +Ad2).

Let us compute dimA(ext1
A(ext1

A(M,A), A)) and dimA(ext2
A(ext2

A(M,A), A)):

> Dimension(F[4],A);
3

> Dimension(F[5],A);
2

We have dimA(ext1
A(ext1

A(M,A), A)) = 3 and dimA(ext2
A(ext2

A(M,A), A)) = 2.

Let us check whether or notM is the direct sum of ext1
A(ext1

A(M,A), A) and ext2
A(ext2

A(M,A), A).

> B:=BaerExtensionTorsion(R,A,0,1);

B := [


d1 x2 d2

x1 d2 0
d1 x2 d1

1 + x1d1 d1d2 d2

 ,



d1 x2 d2 0 0 0
−x1 −d2 0 0 0 0

0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 1 0 −d1 + d2

0 0 0 0 −d1 −d2


,

 1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 −1

 ,



1− x1 −d2 0
0 1 0
0 0 0
d1 x2 d2

−x1 −d2 0
0 0 −1


,

[Ore_algebra, [“diff ′′, “diff ′′], [x1, x2], [d1, d2], [x1, x2], [], 0, [], [], [x1, x2], [], [],
[diff = [d1, x1], diff = [d2, x2]], [_a 7→ _a d1,_a 7→ _a d2]]]
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Since B2 = diag(F4, F5), we obtain that M ∼= ext1
A(ext1

A(M,A), A)⊕ ext2
A(ext2

A(M,A), A). More-
over, the third matrix B3 of B defines a left A-isomorphism φ : M −→ L = A1×6/(A1×7 B2), and
the fourth matrix B4 defines its inverse φ−1.

Using the package OreMorphisms ([20]), let us check this result:

> TestIso(B[1],B[2],B[3],Factorize(Mult(B[1],B[3],A),B[2],A),A);
true

> TestIso(B[2],B[1],B[4],Factorize(Mult(B[2],B[4],A),B[1],A),A);
true

Hence, we have M ∼= L ∼= A1×2/(A1×2 F ′4)⊕A/(Ad1 +Ad2), and thus we obtain:

kerF (R.) = B3 kerF (B2.) = B3 (kerF (F4.)⊕ kerF (F5.)).

Example 5.3. We consider a linear OD time-delay system describing a model of a tank containing
a fluid and subjected to a one-dimensional horizontal move studied in Example 2.4.

Let us introduce the commutative polynomial ring A = Q(α)[d, δ] of OD time-delay operators

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],comm=[alpha]):

where d y(t) = ẏ(t), δ y(t) = y(t− 1) and α is a system parameter and the matrix system R:

> R:=matrix(2,3,[d,-d*delta^2,alpha*d^2*delta,d*delta^2,-d,alpha*d^2*delta]);

R :=

[
d −d δ2 αd2 δ

d δ2 −d α d2 δ

]

LetM = A1×3/(A1×2 R) the A-module finitely presented byR. Let us compute the purity filtration
of the A-module M = A1×3/(A1×2 R):

> Q:=PurityFiltration(R,A);

Q := [

[
d −d δ2 αd2 δ

d δ2 −d α d2 δ

]
,

[
1 1 0
0 −1− δ2 α δ d

]
,

[
d d

d δ2 d

]
,

[
d d

d δ2 d

]
,

[
1 0
0 1

]
]

Therefore, we have: 

M = A1×3/(A1×2 Q1),
M/t(M) ∼= A1×3/(A1×2 Q2),
t(M) = (A1×3 Q2)/(A1×2 Q1) ∼= A1×2/(A1×2 Q3),
ext1

A(ext1
A(M,A), A) ∼= A1×2/(A1×2 Q4) ∼= t(M),

ext2
A(ext2

A(M,A), A) ∼= A1×2/(A1×3 Q5) = 0.

Using the purity filtration of the A-module M , let us compute a linear OD time-delay system
which is equivalent to kerF (R.):

> P:=BaerExtensionConstCoeff(R,A);
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P := [

[
d −d δ2 αd2 δ

d δ2 −d α d2 δ

]
,



1 1 0 0 0 0 0
0 −1− δ2 α δ d 0 −1 0 0
0 0 0 d d 0 0
0 0 0 d δ2 d 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

 1 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 ,



0 −1 0
0 1 0
0 0 1
1 1 0
0 −1− δ2 α δ d

d −d δ2 αd2 δ

d δ2 −d α d2 δ


]

We obtain that kerF (P1.) ∼= kerF (P2.), where P1 = R and the corresponding A-isomorphism and
its inverse are defined by the matrices P3 and P4. In particular, on the matrix P2, we can easily
check that M is not the direct sum of M/t(M) and t(M). Following Example 2.4, we can easily
integrate kerF (P2.) and thus kerF (R.) = P3 kerF (P2.).

Finally, let us consider the second model of a tank containing a fluid and subjected to a one-
dimensional horizontal move studied in Example 2.5 and defined by the following matrix:

> R:=evalm([[delta^2,1,-2*d*delta],[1,delta^2,-2*d*delta]]);

R :=

[
δ2 1 −2 d δ
1 δ2 −2 d δ

]

Let us compute the purity filtration of the finitely presented A-module M = A1×3/(A1×2 R):

> Q:=PurityFiltration(R,A);

Q := [

[
δ2 1 −2 d δ
1 δ2 −2 d δ

]
,

[
1 −1 0
0 −1− δ2 2 d δ

]
,

[
δ2 −1
1 −1

]
,

[
δ2 −1
1 −1

]
,

[
1 0
0 1

]
]

Therefore, we have: 

M = A1×3/(A1×2 Q1),
M/t(M) ∼= A1×3/(A1×2 Q2),
t(M) = (A1×3 Q2)/(A1×2 Q1) ∼= A1×2/(A1×2 Q3),
ext1

A(ext1
A(M,A), A) ∼= A1×2/(A1×2 Q4) ∼= t(M),

ext2
A(ext2

A(M,A), A) ∼= A1×2/(A1×3 Q5) = 0.

Using the purity filtration of the A-module M , let us compute a linear OD time-delay system
which is equivalent to kerF (R.):

> P:=BaerExtensionConstCoeff(R,A);
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P := [

[
δ2 1 −2 dδ
1 δ2 −2 dδ

]
,



1 −1 0 0 0 0 0
0 −1− δ2 2 dδ 0 0 0 0
0 0 0 δ2 −1 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

 1 0 0 0 1/2 0 0
0 1 0 −1/2 0 0 0
0 0 1 0 0 0 0

 ,



1 1/2 + 1/2 δ2 −dδ
1/2 1/2 0
0 0 1
1 −1 0
0 −1− δ2 2 dδ
δ2 1 −2 dδ
1 δ2 −2 dδ


]

We obtain:
M = A1×3/(A1×2 P1) ∼= L , A1×7/(A1×6 P2)

∼= A1×3/(A1×2 Q2)⊕A1×2/(A1×2 Q3)
∼= M/t(M)⊕ t(M).

The A-homomorphism φ : M −→ L defined by φ(π(λ)) = %(λP3), where % : A1×7 −→ L is the
canonical projection and λ ∈ A1×3, is an A-isomorphism. Moreover, φ−1 : L −→ M is defined by
φ−1(%(µ)) = π(µP4) for all µ ∈ A1×7. These results can be checked using the OreMorphisms
package ([20]):

> with(OreMorphisms):
> TestIso(P[1],P[2],P[3],Factorize(Mult(P[1],P[3],A),P[2],A),A);

true
> TestIso(P[2],P[1],P[4],Factorize(Mult(P[2],P[4],A),P[1],A),A);

true

Hence, we have kerF (R.) ∼= kerF (P2.) ∼= kerF (Q2.) ⊕ kerF (Q3.) and we can easily integrate
kerF (Q2.) as explained in Example 2.5. Finally, since P3. : kerF (P2.) −→ kerF (R.) is an A-
isomorphism, we obtain the Monge parametrization kerF (R.) = Q3 kerF (B2.).

6. The OreMorphisms package

Example 6.1. We consider the Dirac equations for a massless particle defined by the matrix
> R:=matrix(4,4,[d[4],0,-i*d[3],-(i*d[1]+d[2]),0,d[4],-i*d[1]+d[2],i*d[3],
> i*d[3],i*d[1]+d[2],-d[4],0,i*d[1]-d[2],-i*d[3],0,-d[4]]);

R :=


d4 0 −i d3 −i d1 − d2

0 d4 −i d1 + d2 i d3

i d3 i d1 + d2 −d4 0
i d1 − d2 −i d3 0 −d4


with entries in the Ore algebra A = Q(i)[d1, d2, d3, d4] of PD operators with coefficients in Q(i):

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> diff=[d[4],x[4]],polynom=[x[1],x[2],x[3],x[4]],comm=[i],
> alg_relations=[i^2+1]):

See Example 6.1. Let us consider the A-module M = A1×4/(A1×4 R) finitely presented by the
matrix R and let us compute its endomorphism ring E = endA(M):
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> Endo:=MorphismsConstCoeff(R,R,A):

The A-module structure of the ring E can be generated by

> nops(Endo[1]);
18

generators which satisfy

> rowdim(Endo[2]);
22

A-linear relations. Let us compute idempotents of E defined by matrices with entries in Q(i):

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);

Idem := [[


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1/2 0 −1/2 0
0 1/2 0 −1/2
−1/2 0 1/2 0

0 −1/2 0 1/2

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

],

[Ore_algebra, [“diff ′′, “diff ′′, “diff ′′, “diff ′′], [x1, x2, x3, x4], [d1, d2, d3, d4], [x1, x2, x3, x4], [i], 0,

[], [i2 + 1], [x1, x2, x3, x4], [], [], [diff = [d1, x1], diff = [d2, x2], diff = [d3, x3], diff = [d4, x4]]]]

We obtain the trivial idempotents 0 and idM of E as well as two non-trivial idempotents e1 and e2
respectively defined by the matrices Idem[1, 2] and Idem[1, 4]. Let us denote by P = Idem[1, 2]
and Q ∈ A4×4 such that RP = QR:

> P:=Idem[1,2]; Q:=Factorize(Mult(R,P,A),R,A);

P :=


1/2 0 −1/2 0
0 1/2 0 −1/2
−1/2 0 1/2 0

0 −1/2 0 1/2

 Q :=


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2


As the entries of the matrices P and Q belong to the field Q and P 2 = P and Q2 = Q, using linear
algebraic techniques, we can easily compute bases of the free Q-modules kerQ(.P ), imQ(.P ) =
kerQ(.(I4 − P )), kerQ(.Q) and imQ(.Q) = kerQ(.(I4 −Q)) as follows:

> U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q,A): V2:=SyzygyModule(evalm(1-Q),A):
> V:=stackmatrix(V1,V2);

U :=


−1 0 −1 0
0 −1 0 −1
1 0 −1 0
0 −1 0 1

 V :=


−1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 −1


In particular, the previous matrices define bases of the free A-modules kerA(.P ), imA(.P ), kerA(.Q)
and imA(.Q). Hence, the unimodular matrices U and V , i.e., U ∈ GL4(A) and V ∈ GL4(A), are
such that the matrices U P U−1 and V QV −1 are block-diagonal formed by the diagonal matrices
02 and I2:
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> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

VERIF1 :=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 VERIF2 :=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


By Theorem 8.1, R is equivalent to the block-diagonal matrix S = V RU−1 defined by:

> S:=Mult(V,R,LeftInverse(U,A),A);

S :=


−i d3 + d4 −i d1 − d2 0 0
i d1 − d2 −d4 − i d3 0 0

0 0 d4 + i d3 −i d1 − d2

0 0 −i d1 + d2 −i d3 + d4


This result can directly be obtained by using the function HeuristicDecomposition:

> HeuristicDecomposition(R,P,A)[1];
−i d3 + d4 −i d1 − d2 0 0
−i d1 + d2 d4 + i d3 0 0

0 0 d4 + i d3 i d1 + d2

0 0 −i d1 + d2 −d4 + i d3


As we have coimA(.P ) ∼= imA(.P ) and coimA(.Q) ∼= imA(.Q), we obtain that the A-modules
coimA(.P ) and coimA(.Q) are free. Hence, using Theorem 6.1, we obtain that R is equivalent to a
block-triangular matrix. It can be obtained by computing bases of the free A-modules kerA(.P ),
coimA(.P ), kerA(.Q) and coimA(.Q) as follows:

> Y2:=LeftInverse(Exti(Involution(Y1,A),A,1)[3],A): Y:=stackmatrix(U1,Y2);
> Z2:=LeftInverse(Exti(Involution(Z1,A),A,1)[3],A): Z:=stackmatrix(V1,Z2);

Y :=


−1 0 −1 0
0 1 0 1
0 0 1 0
0 0 0 −1

 Z :=


−1 0 1 0
0 1 0 −1
0 0 −1 0
0 0 0 1


The matrices Y ∈ GL4(A) and Z ∈ GL4(A), respectively formed by the bases of kerA(.P ) and
coimA(.P ) and by the bases of kerA(.Q) and coimA(.Q), are such that T = Z RY −1 is a block-
triangular matrix defined by:

> T:=Mult(Z,R,LeftInverse(Y,A),A);

T :=


d4 − i d3 i d1 + d2 0 0
i d1 − d2 d4 + i d3 0 0
i d3 −i d1 − d2 d4 + i d3 −i d1 − d2

−i d1 + d2 −i d3 −i d1 + d2 d4 − i d3


This last result can directly be obtained by using the function HeuristicReduction:

> HeuristicReduction(R,P,A)[1];
d4 − i d3 i d1 + d2 0 0
i d1 − d2 d4 + i d3 0 0
i d3 −i d1 − d2 d4 + i d3 −i d1 − d2

−i d1 + d2 −i d3 −i d1 + d2 d4 − i d3


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Example 6.2. We consider a model of a tank containing a fluid and subjected to a one-dimensional
horizontal move (see Example 8.3). The presentation matrix is defined by:

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[alpha]):

> R:=matrix(2,3,[d,-d*delta^2,alpha*d^2*delta,d*delta^2,-d,alpha*d^2*delta]);

R :=

[
d −d δ2 αd2δ

d δ2 −d α d2δ

]

We consider the A = Q(α)[d, δ]-module M = A1×3/(A1×2 R) finitely presented by the matrix R.
Let us compute the endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A):

The A-module E is generated by the endomorphisms fi’s defined by fi(π(λ)) = π(λPi), where
π : A1×3 −→M is the canonical projection, λ ∈ A1×3 and Pi is one of the following matrices:

> Endo[1];

[

 0 1 0
1 0 0
0 0 −1

 ,
 0 0 0

0 0 0
δ2 −1 αd δ

 ,
 1 0 0

0 1 0
0 0 1

 ,
 0 0 0

0 0 0
1− δ2 1− δ2 0

 ,
 0 0 0
−1 + δ2 −1 + δ2 0

0 0 0

 ,
 0 0 0
αd α d 0
δ δ 0

 ,
 0 0 αd δ

1 −δ2 0
0 0 −δ2 − 1

 ,
 0 0 0

1 −δ2 αd δ

0 0 0

]

The generators fi’s of E satisfy the following A-linear relations

> Endo[2]; 

−d 0 d δ2 0 0 0 d 0
d δ2 0 −d 0 0 0 −d 0
0 d 0 0 0 0 0 0
0 0 0 d 0 0 0 0
0 0 0 δ 0 −1 + δ2 0 0
0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 d


i.e., if we denote by F = (f1 . . . f8)T , we then have Endo[2]F = 0.

The multiplication table Endo[3] of the generators fi’s gives us a way to rewrite the composition
fi ◦ fj in terms of A-linear combinations of the fk’s or, in other words, if we denote by ⊗ the
Kronecker product, namely, F ⊗F = ((f1 ◦F )T . . . (f8 ◦F )T )T , then the multiplication table T of
the generators fj ’s satisfies F ⊗F = T F , where T is the matrix Endo[3] without the first column
which corresponds to the indices (i, j) of the product fi ◦ fj . We do not print here this matrix as
it belongs to A64×8. We can use it for rewriting any polynomial in the fi’s with coefficients in A
in terms of a simple A-linear combination of the generators fj ’s.

Let us now try to compute idempotents of E defined by idempotent matrices, namely, elements
e ∈ E satisfying e2 = e and defined by matrices P ∈ A3×3 and Q ∈ A2×2 satisfying the relations
RP = QR, P 2 = P and Q2 = Q:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);
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Idem := [[

 1/2 1/2 0
1/2 1/2 0

−c51
(
−1 + δ2) −c51

(
−1 + δ2) 0

 ,
 0 0 0

0 0 0
0 0 0

 ,
 1 0 0

0 1 0
0 0 1

 ,
 0 0 0
−δ2 1 −α δ d

0 0 0

 ,
 1 0 0
δ2 0 α δ d

0 0 1

 ,
 1/2 −1/2 0

−1/2 1/2 0
−c51

(
−1 + δ2) −c51

(
−1 + δ2) 1

],

[Ore_algebra, [“diff ′′, dual_shift], [t, s], [d, δ], [t, s], [α, c51], 0, [], [], [t, s], [], [], [diff = [d, t],

dual_shift = [δ, s]]]]

Let us consider the first entry P1 of Idem[1] where we have set the arbitrary constant c51 to 0 for
simplicity reason and let us compute a matrix Q1 ∈ A2×2 such that RP1 = Q1 R:

> P[1]:=subs(c51=0,evalm(Idem[1,1])); Q[1]:=Factorize(Mult(R,P[1],A),R,A);

P1 :=

 1/2 1/2 0
1/2 1/2 0
0 0 0

 Q1 :=

[
1/2 −1/2
−1/2 1/2

]

As the entries of the matrices P1 and Q1 belong to Q, using linear algebraic techniques, we can
easily compute bases of the free A-modules kerA(.P1), kerA(.Q1), imA(.P1) = kerA(.(I3−P1)) and
imA(.Q1) = kerA(.(I2 −Q1)):

> U1:=SyzygyModule(P[1],A): U2:=SyzygyModule(evalm(1-P[1]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule(evalm(1-Q[1]),A):
> V:=stackmatrix(V1,V2);

U :=

 1 −1 0
0 0 1
1 1 0

 V :=

[
1 1
1 −1

]

We can check that J1 = U P1 U
−1 and J2 = V Q1 V

−1 are block-diagonal matrices formed by the
matrices 0n and Im:

> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

VERIF1 :=

 0 0 0
0 0 0
0 0 1

 VERIF2 :=

[
0 0
0 1

]

According to Theorem 8.1, the matrix R is then equivalent to the following block-diagonal matrix
V RU−1:

> R_dec:=map(factor,simplify(Mult(V,R,LeftInverse(U,A),A)));

R_dec :=

[
d
(
δ2 + 1

)
2αd2δ 0

0 0 −d (δ − 1) (δ + 1)

]
This last result can directly be obtained by means of the function HeuristicDecomposition:

> map(factor,HeuristicDecomposition(R,P[1],A)[1]);[
d
(
δ2 + 1

)
2αd2 δ 0

0 0 −d (δ − 1) (δ + 1)

]
We can use another idempotent matrix P2 listed in Idem[1] to obtain another decomposition of
the A-module M . Let us consider the fourth one and the corresponding idempotent matrix Q2:
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> P[2]:=Idem[1,4]; Q[2]:=Factorize(Mult(R,P[2],A),R,A);

P2 :=

 0 0 0
−δ2 1 −α δ d

0 0 0

 Q2 :=

[
0 δ2

0 1

]

Since we have P 2
2 = P2 and Q2

2 = Q2, we know that the A-modules kerA(.P2), kerA(.Q2),
imA(.P2) = kerA(.(I3 − P2)) and imA(.Q2) = kerA(.(I2 − Q2)) are projective, and thus, free
by the Quillen-Suslin theorem (see 3 of Theorem 1.2). Let us compute bases of those A-modules:

> U11:=SyzygyModule(P[2],A): U21:=SyzygyModule(evalm(1-P[2]),A):
> UU:=stackmatrix(U11,U21);
> V11:=SyzygyModule(Q[2],A): V21:=SyzygyModule(evalm(1-Q[2]),A):
> VV:=stackmatrix(V11,V21);

UU :=

 1 0 0
0 0 1
δ2 −1 α δ d

 VV :=

[
−1 δ2

0 1

]

As previously, we can check that the idempotent matrices P2 and Q2 are equivalent to block-
diagonal matrices formed by the matrices 0n and Im:

> VERIF1:=Mult(UU,P[1],LeftInverse(UU,A),A);
> VERIF2:=Mult(VV,Q[1],LeftInverse(VV,A),A);

VERIF1 :=

 0 0 0
0 0 0
0 0 1

 VERIF2 :=

[
0 0
0 1

]

According to Theorem 8.1, the matrix R is then equivalent to the block-diagonal matrix:

> R_dec1:=map(factor,simplify(Mult(VV,R,LeftInverse(UU,A),A)));

R_dec1 :=

[
d (δ − 1) (δ + 1)

(
δ2 + 1

)
αd2 δ (δ − 1) (δ + 1) 0

0 0 d

]
We can check this last result by means of the function HeuristicDecomposition:

> map(factor,HeuristicDecomposition(R,P[2],A)[1]);[
d (δ − 1) (δ + 1)

(
δ2 + 1

)
αd2 δ (δ − 1) (δ + 1) 0

0 0 d

]
Hence, we obtain another decomposition of the matrix R. If we denote by

(269)


T1 = (d (δ2 + 1) 2αd2 δ),
T2 = d (δ2 − 1),
T3 = (d (δ2 − 1) (δ2 + 1) αd2 δ (δ2 − 1)),
T4 = d,


M1 = A1×2/(AT1),
M2 = A/(AT2),
M3 = A1×2/(AT3),
M4 = A/(AT4),

then we have the two following decompositions of the A-module M :
(270) M ∼= M1 ⊕M2, M ∼= M3 ⊕M4.

which proves again E ∼= [A/(Ad)]4 ⊕ [A/(Ad (δ2 − 1))]2 ⊕A.

7. The Serre package

Example 7.1. We consider the model (256) of a string with an interior mass studied in Exam-
ple 2.2. Let A = Q(η1, η2)[d, σ1, σ2] be the commutative polynomial ring of OD incommensurable
time-delay operators, where d y(t) = ẏ(t) and σi y(t) = y(t− hi) for i = 1, 2.

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[sigma[1],x[1]],
> dual_shift=[sigma[2],x[2]],polynom=[t,x[1],x[2]],comm=[eta[1],eta[2]]):
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The presentation matrix R ∈ A4×6 of (256) is defined by:

> R:=matrix(4,6,[1,1,-1,-1,0,0,d+eta[1],d-eta[1],-eta[2],eta[2],0,0,
> sigma[1]^2,1,0,0,-sigma[1],0,0,0,1,sigma[2]^2,0,-sigma[2]]);

R :=


1 1 −1 −1 0 0

d+ η1 d− η1 −η2 η2 0 0
σ1

2 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2


Let us illustrate Algorithm 2.1 with this example. As explained in Section 2, the hypothesis
of Theorem 2.2 can be completely checked when the A-module ext1

A(M,A) = A3/(RA4) is 0-
dimensional, i.e., is a finite-dimensional Q(η1, η2)-vector space. Let us check whether or not this
hypothesis is fulfilled using the command DimensionRat of OreModules:

> DimensionRat(transpose(R),A);
0

Now, we can compute a finite basis of the Q(η1, η2)-vector space ext1
A(M,A) using the command

KBasis of OreModules:

> KBasis(transpose(R),A);

[λ4]

We obtain that the A-module ext1
A(M,A) = A3/(RA4) is a 1-dimensional Q(η1, η2)-vector space

of basis the residue class τ(Λ) of the column vector Λ = (0 0 1)T in ext1
A(M,A). Hence, let us

consider the column vector Λ = (0 0 1)T

> Lambda:=evalm([[0],[0],[0],[1]]);

Λ :=


0
0
0
1


the matrix P = (R − Λ) defined by

> P:=augment(R,-evalm([[0],[0],[0],[1]]));

P :=


1 1 −1 −1 0 0 0

d+ η1 d− η1 −η2 η2 0 0 0
σ1

2 1 0 0 −σ1 0 0
0 0 1 σ2

2 0 −σ2 −1


and the A-module E = A1×7/(A1×4 P ). Let us now check whether or not the A-module E is free.
According to Theorem 2.1, the full row rank matrix P presents a stably free A-module E iff P
admits a right-inverse over A. Let us check this point:

> RightInverse(P,A); 

0 0 −1 0
0 0 1 0
−1/2 −1/2 η2

−1 −η1
η2

0

−1/2 1/2 η2
−1 η1

η2
0

0 0 −σ1 0
−1/2σ2 1/2 σ2

η2

η1σ2
η2

0

−1/2 −1/2 η2
−1 −η1

η2
−1


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We obtain that E is a stably free A-module, and thus, is free of rank 2 by the Quillen-Suslin
theorem (2 of Theorem 1.2). Let us compute a minimal parametrization of the A-module E:

> Q:=MinimalParametrization(P,A);

Q :=



−2 η2 η2 σ1 0
0 −η2 σ1 0

−d− η1 − η2 σ1 η1 0
η1 − η2 + d −σ1 η1 0
−2 η2 σ1 −η2 + η2 σ1

2 0
η1 σ2 − σ2 η2 + σ2d −σ1 η1 σ2 1
−d− η1 − η2 σ1 η1 −σ2


Hence, we get kerA(.Q) = A1×4 P or equivalently E ∼= A1×7 Q. Let us check whether or not this
parametrization is injective:

> T:=LeftInverse(Q,A);

T :=

 0 0 −1/2 η2
−1 −1/2 η2

−1 0 0 0
0 −σ1

η2
σ1
η2

σ1
η2

−η2
−1 0 0

0 0 0 −σ2 0 1 0


We get T Q = I3, i.e., A1×7 Q = A1×3, which proves that Q is an injective parametrization of E.
Let us now write Q = (QT1 QT2 )T , where the submatrix Q1 ∈ A6×3 is defined by

> Q_1:=submatrix(Q,1..6,1..3);

Q1 :=



−2 η2 η2 σ1 0
0 −η2 σ1 0

−d− η1 − η2 σ1 η1 0
η1 − η2 + d −σ1 η1 0
−2 η2 σ1 −η2 + η2 σ1

2 0
η1 σ2 − σ2 η2 + σ2 d −σ1 η1 σ2 1


and the matrix Q2 ∈ A1×3 is defined by:

> Q_2:=submatrix(Q,7..7,1..3);

Q2 :=
[
−d− η1 − η2 σ1 η1 −σ2

]
According to Theorem 2.2, we have M ∼= A1×3/(AQ2), which, using Corollary 2.2, proves again
that the linear system kerF (R.) is equivalent to kerF (Q2.), namely, (264).

Since the column vector Λ admits a left-inverse over A defined by

> LeftInverse(Lambda,A); [
0 0 0 1

]
the Quillen-Suslin theorem (2 of Theorem 1.2) implies that there exist V ∈ GL4(A) and W ∈
GL6(A) such that V RW = diag(I3, Q2). For more details, see Corollary 3.1. Let us compute
such matrices V and W following Corollary 3.1. We first need to check that kerA(.Q1) is a free
A-module of rank 3:

> K:=SyzygyModule(Q_1,A);

K :=

 1 1 −1 −1 0 0
0 −2 η1 η1 − η2 + d d+ η2 + η1 0 0
0 −1 + σ1

2 −σ1
2 −σ1

2 σ1 0


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Then, we get kerA(.Q1) = A1×3 K. Moreover, K has full row rank since:

> SyzygyModule(K,A);

INJ (3)

Hence, we get A1×3 K ∼= A1×3, a fact proving that kerA(.Q1) is a free A-module of rank 3. Let us
now compute a matrix Q3 ∈ A6×3 such that W = (Q3 Q1) ∈ GL6(A). We can take:

> Q_3:=RightInverse(K,A);

Q3 :=



1 0 1
0 0 −1
0 −1/2 η2

−1 η1
η2

0 1/2 η2
−1 −η1

η2

0 0 σ1

0 0 0


Then, the matrix W = (Q3 Q1) defined by

> W:=augment(Q_3,Q_1);

W :=



1 0 1 −2 η2 η2 σ1 0
0 0 −1 0 −η2 σ1 0
0 −1/2 η2

−1 η1
η2

−d− η1 − η2 σ1 η1 0

0 1/2 η2
−1 −η1

η2
η1 − η2 + d −σ1 η1 0

0 0 σ1 −2 η2 σ1 −η2 + η2 σ1
2 0

0 0 0 η1 σ2 − σ2 η2 + σ2 d −σ1 η1 σ2 1


is invertible over A, i.e., W ∈ GL6(A), and its inverse W−1 ∈ A6×6 is defined by:

> W_inv:=inverse(W);

W_inv :=



1 1 −1 −1 0 0
0 −2 η1 η1 − η2 + d d+ η2 + η1 0 0
0 −1 + σ1

2 −σ1
2 −σ1

2 σ1 0
0 0 −1/2 η2

−1 −1/2 η2
−1 0 0

0 −σ1
η2

σ1
η2

σ1
η2

−η2
−1 0

0 −σ1
2 η1 σ2
η2

1/2 σ2 (2σ1
2 η1+η1−η2+d)
η2

1/2 σ2(2σ1
2 η1+η1−η2+d)

η2
−σ1 η1 σ2

η2
1


Finally, if we define the matrix X = (RQ3 Λ), namely,

> X:=augment(Mult(R,Q_3,A),Lambda);

X :=


1 0 0 0

d+ η1 1 0 0
σ1

2 0 −1 0

0 1/2 −1+σ2
2

η2
−η1 (−1+σ2

2)
η2

1


then X is invertible over A, i.e., V ∈ GL4(A), and its inverse V = X−1 ∈ A4×4 is defined by:

> V:=inverse(X);
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V :=


1 0 0 0

−d− η1 1 0 0
σ1

2 0 −1 0

1/2 (−1+σ2
2)(d+η1+2σ1

2 η1)
η2

−1/2 −1+σ2
2

η2
−η1 (−1+σ2

2)
η2

1


Finally, by Corollary 3.1, the matrix R is then equivalent to the matrix V RW = diag(I3, Q2):

> Mult(V,R,W,A); 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −d− η1 − η2 σ1 η1 −σ2


Example 7.2. We consider the conjugate Beltrami equations (259) studied in Examples 2.4, 2.7
and 3.3. We first introduce the first Weyl algebra A = A2(Q) = Q[x, y][dx, dy] of differential
operators in dx and dy with coefficients in the commutative polynomial ring Q[x, y]:

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[a,b]):

The presentation matrix (259) is defined by:

> R:=evalm([[dx, -x*dy],[dy, x*dx]]);

R :=

[
dx −xdy
dy xdx

]
Let us introduce the following column vector

> Lambda:=evalm([[a],[b]]);

Λ :=

[
a

b

]
where a and b are two arbitrary constants, and the matrix P = (R − Λ) defined by:

> P:=augment(R,-Lambda);

P :=

[
dx −xdy −a
dy xdx −b

]
Let us check whether or not the matrix P admits a right-inverse over A:

> RightInverse(P,A);
x(axdx+xdy b+a)

a −x(axdx+xdy b+a)
b

−ady x−2 b−dx bx
a

ady x−2 b−dx bx
b

x(xdx2+3 dx+xdy2)
a − 1+x2dx2+3 xdx+x2dy2

b


We obtain that P admits the previous right-inverse whenever a 6= 0 and b 6= 0, which shows that P
generically admits a right-inverse over A. We shall suppose that a 6= 0 and b 6= 0 in what follows.
Then, the left A-module E = A1×3/(A1×2 P ) is stably free of rank 1.
Let us compute minimal parametrizations of E, namely, matrices Li ∈ A3 such that the left
A-modules Ni = A/(A1×3 Li) are torsion and kerA(.Li) = A1×2 R, i.e., E ∼= A1×3 Li.

> L:=map(collect,MinimalParametrizations(P,A),{x,y,dx,dy},distributed):

> nops(L);
2
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The OreModules command MinimalParametrizations returns 2 minimal parametrizations.
The first one is

> L[1];  axdy2b− adx2bx+ adx b+ dy b2 +
(
a2 − b2) dy xdx

−a2dy2 + 2 ady dx b− dx2b2

adx2xdy + ady dx + ady3x− dx3bx+ dy2b− dx dy2bx


and the second one is:

> L[2]; −ba2 − xdy a3 + dx ba2x− a
(
a2 + b2)x2dy dx − b

(
a2 + b2)x2dy2

a
(
a2 + b2)xdy2 + dx b2a− b

(
3 a2 + 2 b2) dy − b

(
a2 + b2) dy xdx

axdy2b+ adx2bx− a2dy −
(
a2 + b2) dx2x2dy −

(
a2 + b2)x2dy3 − 3

(
a2 + b2) dy xdx


Let us check whether or not they are injective, i.e., whether or not they admit a left-inverse:

> map(LeftInverse,L,A);

[[], []]

None of them is injective. The left A-module N1 = A/(A1×3 L1) is then defined by

> J_1:=map(collect,Exti(Involution(Min[1],A),A,1),{dx,dy,x,y},distributed);

J1 := [

[
dx2b2 − 2 ady dx b+ a2dy2(

−b2a− a3)xdy2 − dx b2a− dy b3 +
(
ba2 + b3)xdy dx

]
,
[

1
]
,SURJ (1)]

i.e., the two entries of the first matrix J1[1] of J1 annihilate the generator σ1(1) of N1, where σ1(1)
denotes the residue class of the standard basis 1 of A in N1.

> J_2:=map(collect,Exti(Involution(Min[2],A),A,1),{dx,dy,x,y},distributed);

J2 := [

[
−dx b2a+

(
2 b3 + 3 ba2) dy +

(
ba2 + b3)xdy dx +

(
−b2a− a3)xdy2

a2b2 +
(
−2 a3b− 2 ab3)xdy +

(
2 a2b2 + a4 + b4)x2dy2

]
,
[

1
]
,SURJ (1)]

Similarly, the two entries of the first matrix J2[1] of J2 annihilate the generator σ2(1) of N2, where
σ2(1) denotes the residue class of 1 in the left A-module N2 = A/(A1×3 L2), i.e., σ2(1) satisfies
di σ2(1) = 0, for i = 1, 2, where d1 ∈ A is defined by

> N2[1][1,1];

−dx b2a+
(
2 b3 + 3 ba2) dy +

(
ba2 + b3)xdy dx +

(
−b2a− a3)xdy2

and d2 is defined by:

> N2[1][2,1];

a2b2 +
(
−2 a3b− 2 ab3)xdy +

(
2 a2b2 + a4 + b4)x2dy2

Since the two entries of J1[1] do not contain constant terms, they cannot be equal to non-zero
constants for particular values of the constants a and b. The same comment holds for d1. However,
the coefficients of d2 in dx and dy are:

> l:=[coeffs(%,{dx,dy})]: coefs:=map(factor,map(coeffs,l,x));

coefs := [a2b2,
(
a2 + b2)2

,−2 ba
(
a2 + b2)]

Let us find a and b such that d2 becomes the non-zero constant −1:

> Eqs:={coefs[1]=-1,seq(coefs[i]=0,i=2..nops(coefs))};

Eqs :=
{(
a2 + b2)2 = 0, a2b2 = −1,−2 ba

(
a2 + b2) = 0

}
> Sols:=solve(Eqs,{a,b});
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Sols :=
{
a = RootOf

(
_Z2 + 1

)
, b = 1

}
,
{
a = RootOf

(
_Z2 + 1

)
, b = −1

}
,{

a = 1, b = RootOf
(
_Z2 + 1

)}
,
{
a = −1, b = RootOf

(
_Z2 + 1

)}
For instance, if we take a = 1 and b = i, then the coefficients of d2 become:

> subs({a=1,b=I},coefs);
[−1, 0, 0]

Hence, let us consider the new ring B = Q[i]/(i2 + 1)[x, y][dx, dy] of differential operators in dx
and dy with coefficients in the field Q(i) = Q[i]/(i2 + 1):

> B:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[i,a,b],
> alg_relations=[i^2=-1]):

The column vector Λ is then

> Lambda_2:=subs({a=1,b=i},evalm(Lambda));

Λ2 :=

[
1
i

]
and the matrix P becomes:

> P_2:=simplify(subs({i^2=-1,i^3=-i},subs({a=1,b=i},evalm(P))));

P2 :=

[
dx −xdy −1
dy xdx −i

]
Substituting a = 1 and b = i into L2, we obtain the matrix Q defined by:

> Q:=simplify(subs({i^2=-1,i^3=-i},subs({a=1,b=i},evalm(L[2]))));

Q :=

 −i− xdy + dx ix
−dx − dy i

xdy2i+ dx2ix− dy


We can check that the last matrix defines a minimal parametrization of B1×3/(B1×2 P2):

> MinimalParametrizations(P_2,B);

[

 −dx ix+ i+ xdy
dx + dy i

−dx2ix+ dy − xdy2i

]

Moreover, the minimal parametrization Q admits a left-inverse over B defined by:

> T:=LeftInverse(Q,B);

T :=
[
−i−1 −x 0

]
Hence, the left B-module F = B1×3/(B1×2 P2) is free of rank 1 and Theorem 2.2 shows that F is
isomorphic to the cyclic left B-module B/(BQ2), where Q2 is defined by:

> Q_2:=submatrix(Q,3..3,1..1);

Q2 :=
[
xdy2i+ dx2ix− dy

]
Moreover, the column vector Γ admits the following left-inverse Γ over B:

> Gamma:=LeftInverse(Lambda_2,B);

Γ :=
[

0 i−1 ]
If we denote by Q1 ∈ B2 defined by the first two components of Q

> Q_1:=submatrix(Q,1..2,1..1);
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Q1 :=

[
−i− xdy + dx ix
−dx − dy i

]
then Corollary 3.1 shows that kerB(.Q1) is a stably free left B-module of rank 1. Moreover, we
have kerB(.Q1) = BK, where the matrix K is defined by

> K:=SyzygyModule(Q_1,B);

K :=
[
−dx i+ dy dy ix+ xdx

]
i.e., kerB(.Q1) is a free left B-module of rank 1. Corollary 3.1 then shows that the matrices R
and diag(1, Q2) are equivalent, where Q2 = i x (dx2 + dy2) − dy. Let us compute two matrices
V, W ∈ GL2(B) such that V RW = diag(1, Q2).
The right-inverse Q3 of K over B defined by

> Q_3:=RightInverse(K,B);

Q3 :=

[
−xi
−1

]
is such that the following matrix W = (Q3 Q1) defined by

> W:=augment(Q_3,Q_1);

W :=

[
−xi −i− xdy + dx ix
−1 −dx − dy i

]
is unimodular, i.e., W ∈ GL2(B):

> W_inv:=LeftInverse(W,B);

W _inv :=

[
−dx i+ dy dy ix+ xdx

i −x

]
Moreover, the matrix X = (RQ3 Λ) defined by

> X:=augment(Mult(R,Q_3,B),Lambda_2);

X :=

[ −xdx−1+dy ix
i 1

−x(dy+dx i)
i i

]
i.e., after simplifications, by

> map(expand,subs(i=I,evalm(X)));[
ixdx + i+ xdy 1
idy x− xdx i

]
is also unimodular, i.e., X ∈ GL2(B), and its inverse V = X−1 is defined by

> V:=LeftInverse(X,B);

V :=

[
i−1 1

−xdx + dy ix −i− xdy − dx ix

]
or, equivalently, after simplifications, by

> map(expand,subs(i=I,evalm(V)));[
−i 1

idy x− xdx −i− xdy − ixdx

]
Finally, we obtain that V RW = diag(1, Q2):

> map(collect,subs(i=I,Mult(V,R,W,B)),x);
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[
1 0
0 ix

(
dx2 + dy2)− dy

]
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morphism, 390
image representation, 326

observable, 326
injective, 390
integrable, 380
inverse

generalized, 305
right, 306

isomorphism, 391
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parametrization, 326

injective, 326
minimal, 309

potential-like parametrization, 326

quadri-potential, 335, 401

reduction problem, 400
Riccati equation
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