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Symbolic dynamics and representations
Valérie Berthé

Abstract
The object of study of symbolic dynamics are discrete dynamical systems made of infinite

sequences of symbols, with the shift acting on them. They come as codings of trajectories of points in
a dynamical system according to a given partition. They are used as discretization tools for analyzing
such trajectories, but they also occur in a natural way in arithmetics for instance. We first will
recall basic definitions concerning symbolic dynamics and illustrate them with transformations like
beta-numeration and continued fractions. We then focus on orbits that are relevant in computer
science, namely finite and periodic ones, together by alluding to numerical issues for the computation
of orbits.
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1. Introduction

The object of study of symbolic dynamics are discrete dynamical systems made of infinite
sequences of symbols with values in a finite alphabet, with the shift map 𝑆 acting on them: the
shift 𝑆 maps an infinite word (𝑢𝑛)𝑛≥0 onto this infinite word from which the first letter has been
taken away, that is, 𝑆((𝑢𝑛)𝑛∈N) = (𝑢𝑛+1)𝑛∈N. Symbolic dynamical systems come in a natural way
as codings of trajectories of points in a dynamical system according to a finite partition. They
are used as discretization tools for analyzing such trajectories, but they also occur in a natural

Course taught during the meeting “Journées Nationales de Calcul Formel” organized by Nicolas Brisebarre, Carole
El Bacha, Pascal Giorgi, Marc Mezzarobba and Guillaume Moroz. 16-20 janvier 2017, C.I.R.M. (Luminy).

I–1
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way in arithmetics for instance for the representation of numbers (real, complex), vectors, or else
polynomials or Laurent formal power series with coefficients in a finite field.

Symbolic dynamics originates in the work of Jacques Hadamard [44], in 1898, through the study
of geodesics on surfaces of negative curvature (see also [23]). It was then also applied by Marston
Morse in 1921 in [62] to the construction of a nonperiodic recurrent geodesic and for the symbolic
representations of geodesics. The study of combinatorics on words originates at the same time in
papers of Axel Thue from 1906 and 1912 (see [75, pp. 139-158 and 413-477]), in particular with the
study of the Thue-Morse word. Symbolic dynamics and Sturmian words then were developed by
Morse and Hedlund in 1938 in [63, 64].

We first will recall basic definitions concerning symbolic dynamics in Section 2. We illustrate
them with transformations like beta-numeration and continued fractions issued from arithmetic
dynamics in Section 3. We focus on orbits that are relevant in computer science, namely finite and
periodic ones, in Section 4. Lastly, Section 5 is devoted to Loch’s theorem. Some parts of this text
come from [10].

2. Discrete dynamical systems

2.1. First definitions. By discrete dynamical system we mean here a piecewise-continuous mapping
𝑇 : 𝑋 → 𝑋 that acts on a space 𝑋 that will be usually assumed to be compact.

The (one-sided) orbit of 𝑥 ∈ 𝑋 under the action of 𝑇 is defined as {𝑇𝑛𝑥 | 𝑛 ∈ N}. If 𝑇 is
assumed to be invertible (e.g., if 𝑇 is a homeomorphism), then the two-sided orbit of 𝑥 ∈ 𝑋 under
the action of 𝑇 is defined as {𝑇𝑛𝑥 | 𝑛 ∈ Z}. Orbits are also called trajectories.

The terminology discrete refers here to the time: we consider trajectories of points of 𝑋 under
the discrete-time deterministic action of the mapping 𝑇 . Discrete dynamical systems can be of a
geometric nature (e.g., 𝑋 = [0, 1]), or of a symbolic nature (e.g., 𝑋 = {0, 1}N), such as described
below. More precisely, as examples of dynamical systems, let us mention

∙ symbolic dynamical systems: these are dynamical systems defined on sets of symbols and
words; we consider them in Section 2.2;

∙ the beta-transformation (see Section 3.1) or the Gauss map (see Section 3.2), that both
act on the unit interval [0, 1], and that allow the representation of real numbers, as
beta-expansions or as continued fractions respectively;

∙ the translation 𝑅𝛼 by 𝛼 on the one-dimensional torus, that is, 𝑅𝛼 : 𝑥 ↦→ 𝑥+ 𝛼 mod 1 (see
Section 3.3).

The notion of dynamical system can be considered in a topological context (this is what we have
considered so far), we get topological dynamics, but this notion can be extended to measurable
spaces: we thus get measure-theoretic dynamical systems, that is, dynamical systems endowed with
a probabilistic structure (an invariant measure). We will consider them in Section 2.3

2.2. Symbolic dynamical systems. For detailed introductions to symbolic dynamics and word
combinatorics, see [3, 7, 19, 14, 15, 50, 55, 59, 60, 37] and the references therein.

An alphabet is a finite set of symbols (or letters). Let 𝒜 be an alphabet. A finite word over 𝒜 is
a finite sequence of letters in 𝒜 (that is, a word of length 𝑛 ∈ N is a map 𝑢 from {0, 1, · · · , 𝑛− 1}
to 𝒜). We write it as 𝑢 = 𝑢0 · · ·𝑢𝑛−1 to express 𝑢 as the concatenation of the letters 𝑢𝑖.

Let 𝑢 = 𝑢0 · · ·𝑢𝑚−1 and 𝑣 = 𝑣0 · · · 𝑣𝑛−1 be two words over 𝒜. The concatenation of 𝑢 and 𝑣 is
the word 𝑤 = 𝑤0 · · ·𝑤𝑚+𝑛−1 defined by 𝑤𝑖 = 𝑢𝑖 if 0 ≤ 𝑖 < 𝑚, and 𝑤𝑖 = 𝑣𝑖−𝑚 otherwise. We write
𝑢 · 𝑣 or simply 𝑢𝑣 to express the concatenation of 𝑢 and 𝑣. The set of all (finite) words over 𝒜 is
denoted by 𝒜*. Endowed with the concatenation of words as product operation, 𝒜* is a monoid
with 𝜀 as identity element. It is the free monoid generated by 𝒜. We thus have endowed the set of
finite words with an algebraic structure.

We also consider infinite words, that is, elements of 𝒜N, as well as bi-infinite (also called
two-sided) words in 𝒜Z. All the notions defined below extend to two-sided words in 𝒜Z.

A word 𝑤1 · · ·𝑤ℓ is a factor of the word 𝑢 (finite, infinite or bi-infinite) if there exists 𝑘 such
that 𝑢𝑘 · · ·𝑢𝑘+ℓ−1 = 𝑤1 · · ·𝑤ℓ. The set of factors ℒ𝑢 of an infinite word 𝑢 is called its language.
The (factor) complexity function of an infinite word 𝑢 counts the number of distinct factors of a
given length: there are exactly 𝑝𝑢(𝑛) factors of length 𝑛 in 𝑢. For more on this function, see for
instance [3].
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The topology is given by the usual metric on infinite words in 𝒜N: two infinite words are close if
they coincide on their first terms. More precisely, the set 𝒜N shall be equipped with the product
topology of the discrete topology on each copy of 𝒜. Thus, this set is a compact space. This
topology is also the topology defined by the following distance:

for 𝑢 ̸= 𝑣 ∈ 𝒜N, 𝑑(𝑢, 𝑣) = 2− min{𝑛∈N; 𝑢𝑛 ̸=𝑣𝑛}.

Note that the space 𝒜N is complete as a compact metric space. Furthermore, it is a Cantor set,
that is, a totally disconnected compact set without isolated points. Note that the topology extends
in a natural way to 𝒜N ∪ 𝒜⋆. Indeed, let ℬ be a new alphabet obtained by adding a further letter
to the alphabet 𝒜; words in 𝒜⋆ can be considered as sequences in ℬN, by extending them by the
new letter in ℬ. The set 𝒜N ∪ 𝒜⋆ is thus metric and compact, as a closed subset of ℬN.

The mapping 𝑆 acting on sets of infinite words is the (one-sided) shift acting on 𝒜N, given by
𝑆((𝑢𝑛)𝑛∈N) = (𝑢𝑛+1)𝑛∈N. It is continuous.

A subshift (also called shift) is a closed shift invariant system included in some 𝒜N. If 𝑌 is a
subshift, there exists a set ℱ ⊂ 𝒜* of finite words such that an infinite word 𝑢 belongs to 𝑌 if, and
only if, none of its factors belongs to ℱ . A subshift 𝑋 is called a subshift of finite type if one can
choose the set ℱ to be finite. A subshift is said to be sofic if the set ℱ is a regular language.

As an example of a shift, take the closure in 𝒜N of 𝑢 = (𝑢𝑛)𝑛≥0, with 𝑢 being some infinite
word in 𝒜N. Let 𝑋𝑢 := 𝒪(𝑢) be the positive orbit closure of the infinite word 𝑢 under the
action of the shift 𝑆, i.e., the closure in 𝒜N of the set 𝒪(𝑢) = {𝑆𝑛(𝑢) | 𝑛 ≥ 0}. One checks that
𝒪(𝑢) = {𝑣 ∈ 𝒜N, ℒ𝑣 ⊂ ℒ𝑢}, where ℒ𝑣 is recalled to be the set of factors of the sequence 𝑣.

For a word 𝑤 = 𝑤0...𝑤𝑟, the cylinder set [𝑤] is the set {𝑣 ∈ 𝑋𝑢 | 𝑣0 = 𝑤0, ..., 𝑣𝑟 = 𝑤𝑟}. The
cylinder sets are clopen (open and closed) sets and form a basis of open sets for the topology of 𝑋𝑢.
Indeed, if the cylinder [𝑤] is nonempty and 𝑣 is a point in it, [𝑤] is identified with both the open
ball {𝑣′ | 𝑑(𝑣, 𝑣′) < 2−𝑛} and the closed ball {𝑣′ | 𝑑(𝑣, 𝑣′) ≤ 2−𝑛−1}. As an exercise, prove that a
clopen set is a finite union of cylinders.

Let us come back to the general case of a discrete dynamical system 𝑇 : 𝑋 → 𝑋. In order to
understand the behavior of trajectories, it is natural to partition the set 𝑋 into a finite number
(say 𝑑) of subsets (𝑋𝑖)1≤𝑖≤𝑑: 𝑋 = ∪𝑑

𝑖=1𝑋𝑖. We then code the trajectory of a point 𝑥 ∈ 𝑋 with
respect to the finite partition (𝑋𝑖)1≤𝑖≤𝑑. One thus associates with each point 𝑥 ∈ 𝑋 an infinite
word with values in the finite alphabet {1, . . . , 𝑑} defined as follows:

∀𝑛 ∈ N, 𝑢𝑛 = 𝑖 if and only if 𝑇𝑛(𝑥) ∈ 𝑋𝑖.

Coding trajectories allows one to go from dynamical systems (𝑋,𝑇 ) defined on ‘geometric’ spaces 𝑋
to symbolic dynamical systems and backwards, provided the coding has been chosen in an efficient
way. Section 3.3 devoted to Sturmian words, provides an example of such a fruitful coding. If the
partition is well-chosen, these symbolic codings allow the statistical analysis (via ergodic theory)
on the underlying dynamical systems. This is the object of next section.

2.3. Measure-theoretic dynamical systems. General references on the subject are [8, 18, 28,
46, 69, 72, 78]. See [31] for connections with number theory and Diophantine approximation.

A measure-theoretic dynamical system is defined as a system (𝑋,𝑇, 𝜇,ℬ), where 𝜇 is a probability
measure defined on the 𝜎-algebra ℬ of subsets of 𝑋, and 𝑇 : 𝑋 → 𝑋 is a measurable map which
preserves the measure 𝜇, that is, 𝜇(𝑇−1(𝐵)) = 𝜇(𝐵) for all 𝐵 ∈ ℬ. The measure 𝜇 is said to be
𝑇 -invariant.

An invariant probability measure on 𝑋 is said ergodic if for every set 𝐵 ∈ ℬ, 𝑇−1(𝐵) = 𝐵 has
either zero or full measure. The system (𝑋,𝑇, 𝜇,ℬ) is then said to be ergodic. This implies that
almost all orbits are dense in 𝑋 (almost all means that the set of elements 𝑥 ∈ 𝑋 whose orbit is
not dense is contained in a set of zero measure). More generally a property is said to hold almost
everywhere (abbreviated as a.e.) if the set of elements for which the property does not hold is
contained in a set of zero measure; this property is said to be generic (the points that satisfy this
property are then also said to be generic). This helps us to give a meaning to the notion of typical
behavior for a dynamical system.

Ergodicity yields furthermore the following striking convergence result. Indeed, measure-theoretic
ergodic dynamical system satisfy the Birkhoff ergodic theorem, also called individual ergodic theorem,
which relates spatial means to temporal means.
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Theorem 1 (Birkhoff Ergodic Theorem). Let (𝑋,𝑇, 𝜇,ℬ) be an ergodic measure-theoretic dynamical
system. Let 𝑓 ∈ 𝐿1(𝑋,R). Then

∀𝑓 ∈ 𝐿1(𝑋,R) , 1
𝑛

𝑛−1∑︁
𝑘=0

𝑓 ∘ 𝑇 𝑘 𝜇−𝑎.𝑒.−−−−→
𝑛→∞

∫︁
𝑋

𝑓 𝑑𝜇 .

Points for which this convergence property holds for a given 𝑓 are generic.
In the case of a symbolic dynamical system (𝒪(𝑢), 𝑆) generated by an infinite word 𝑢, the

following special case of the Daniell-Kolmogorov consistency theorem (see for instance [78]) provides
probability measures on (𝒪(𝑢), 𝑆).

Theorem 2. Let 𝒜 = {1, . . . , 𝑑} and 𝑢 ∈ 𝒜N. Consider a family of maps (𝑝𝑛)𝑛≥1, where 𝑝𝑛 is a

map from 𝒜𝑛 to R, such that for any word 𝑤 in 𝒜𝑛, 𝑝𝑛(𝑤) ≥ 0, 𝑝𝑛(𝑤) =
𝑑∑︁

𝑖=1
𝑝𝑛+1(𝑤1 . . . 𝑤𝑛𝑖), and

𝑑∑︁
𝑖=1

𝑝1(𝑖) = 1. Then there exists a unique probability measure 𝜇 on 𝒜N defined on the cylinders by

𝜇([𝑤1 . . . 𝑤𝑛]) = 𝑝𝑛(𝑤1 . . . 𝑤𝑛).

Furthermore, if for any 𝑛 and for any word 𝑤 = 𝑤1 . . . 𝑤𝑛 in 𝒜𝑛, 𝑝𝑛(𝑤) =
𝑑∑︁

𝑖=1
𝑝𝑛+1(𝑖𝑤1 . . . 𝑤𝑛),

then this measure is 𝑆-invariant (shift-invariant).

Let 𝑢 be a word in 𝒜N. The frequency 𝑓(𝑖) of a letter 𝑖 ∈ 𝒜 in 𝑢 is defined as the limit when 𝑛
tends towards infinity, if it exists, of the number of occurrences of 𝑖 in 𝑢0𝑢1 · · ·𝑢𝑛−1 divided by
𝑛. The word 𝑢 has uniform letter frequencies if, for every letter 𝑖 of 𝑢, the number of occurrences
of 𝑖 in 𝑢𝑘 · · ·𝑢𝑘+𝑛−1 divided by 𝑛 has a limit when 𝑛 tends to infinity, uniformly in 𝑘. Similarly,
we can define the frequency 𝑓(𝑤) and the uniform frequency of a factor 𝑤, and we say that 𝑢 has
uniform frequencies if all its factors have uniform frequency.

In particular, if the frequencies of all factors exist for a given 𝑢 ∈ 𝒜N, then, according to Theorem
2, there exists a unique 𝑆-invariant probability measure 𝜇 which assigns to each cylinder [𝑤] the
frequency 𝑓(𝑤) of the corresponding factor [𝑤], by setting 𝜇[𝑤] := 𝑓(𝑤). Thus a precise knowledge
of the frequencies allows a complete description of the measure 𝜇. One can similarly define a
shift-invariant measure for a subshift 𝑋 ⊂ 𝒜N provided that any factor 𝑤 in the langage of 𝑋 (i.e.,
the set of factors of its elements) has the same frequency in all the infinite words of 𝑋. Moreover,
the property of having uniform factor frequencies for a shift is equivalent to unique ergodicity, that
is, to have a unique invariant measure. Unique ergodicity corresponds in the case of continuous
functions to uniform convergence for all points (and not only for a.e. point) in ergodic sums, in
Birkhoff’s ergodic theorem. For more details on invariant measures and ergodicity, we refer to [72]
and [14, Chap. 7].

Natural questions that can be addressed now concerning discrete dynamical systems are the
following. What is a good coding? How to describe the invariant measures? Can one find geometric
representations of a goven symbolic dynamical system? How to measure the disorder of a dynamical
system? The next sections provides some elements of answer.

2.4. Isomorphisms. Let us come back to the coding a dynamical system via a suitable partition.
In order to make more precise the notion of good coding, let us see how to “compare” two dynamical
systems.

Two topological dynamical systems (𝑋,𝑆) and (𝑌, 𝑇 ) are said to be topologically conjugate (or
topologically isomorphic) if there exists an homeomorphism 𝑓 from 𝑋 onto 𝑌 which conjugates 𝑆
and 𝑇 , that is:

𝑓 ∘ 𝑆 = 𝑇 ∘ 𝑓.
Two topological dynamical systems (𝑋,𝑆) and (𝑌, 𝑇 ) are said to be semi-topologically conjugate if
there exist two sets 𝑋1 and 𝑌1 which are at most countable such that 𝐵1 = 𝑋 ∖𝑋1, 𝐵2 = 𝑌 ∖ 𝑌1,
and 𝑓 is a bicontinuous bijection from 𝐵1 onto 𝐵2 which conjugates 𝑆 and 𝑇 . The map 𝑓 is said
to be a semi-topological conjugacy.
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Let us introduce an equivalent of the notion of topological conjugacy for measure-theoretic
dynamical systems. The idea here is to remove sets of measure zero in order to conjugate the
spaces via an invertible measurable transformation. For a nice exposition of connected notions of
isomorphism, see [46, 78].

Two measure-theoretic dynamical systems (𝑋1, 𝑇1, 𝜇1,ℬ1) and (𝑋2, 𝑇2, 𝜇2, ℬ2) are said to be
measure-theoretically isomorphic if there exist two sets of full measure 𝐵1 ∈ ℬ1, 𝐵2 ∈ ℬ2, a
measurable map 𝑓 : 𝐵1 → 𝐵2 called conjugacy map such that

∙ the map 𝑓 is one-to-one and onto,
∙ the reciprocal map of 𝑓 is measurable,
∙ 𝑓 ∘ 𝑇1(𝑥) = 𝑇2 ∘ 𝑓(𝑥) for every 𝑥 ∈ 𝐵1 ∩ 𝑇−1

1 (𝐵1),
∙ 𝜇2 is the image of the measure 𝜇1 with respect to 𝑓 , that is,

∀𝐵 ∈ ℬ2, 𝜇1(𝑓−1(𝐵 ∩𝐵2)) = 𝜇2(𝐵 ∩𝐵2).

2.5. Entropy. We briefly discuss in this section the notion of entropy which provides a measure of
disorder for dynamical systems: in particular, it allows to distinguish between deterministic and
chaotic dynamical systems. Deterministic systems have zero entropy, whereas chaotic systems have
positive entropy. We will not enter into the details of possible definitions for chaoticity. A general
reference on the subject is [32]. We just stress the fact that it is expected from chaotic dynamical
systems that close initial points have divergent orbits, with the separation rate being exponential
(this is called sensitivity to initial conditions), to have dense periodic points, as well as a topological
property of mixing. The beta-transformation (see Section 3.1) and the Gauss map (see Section
3.2) are examples of chaotic systems. Indeed, the Gauss map is sensitive to initial conditions:
rational initial points form a dense set and are attracted to 0, whereas quadratic irrational points
are eventually attracted to a periodic orbit (which is not finite). We focus here on the case of maps
of the unit circle but all these notions hold for more general dynamical systems. For more on the
entropy of dynamical systems, see for instance [46, 78].

As seen before for other dynamical concepts, the notion of entropy can be defined either in
a topological context, or in a measure-theoretic context. Let us start with the case of symbolic
dynamical systems and topological entropy, defined with respect to the complexity function. Let 𝑋
be a subshift of 𝒜N. Recall that the complexity function 𝑝𝑋(𝑛) counts the number of factors of
infinite word in 𝑋 of length 𝑛. The topological entropy of the shift (𝑋,𝑆) is then defined as the
exponential growth rate of the complexity function as the length increases:

𝐻𝑡𝑜𝑝(𝑋) = lim
𝑛→+∞

log𝑑(𝑝𝑋(𝑛))
𝑛

,

where 𝑑 denotes the cardinality of the alphabet 𝒜. The existence of the limit follows from the
subadditivity of the function 𝑛 ↦→ log𝑑(𝑝𝑋(𝑛)):

∀𝑚,𝑛, log𝑑(𝑝𝑋(𝑛+𝑚)) ≤ log𝑑(𝑝𝑋(𝑚)) + log𝑑(𝑝𝑋(𝑛)).
This notion also extends to more general topological dynamical systems by involving open covers.

One then can define a similar notion of measure-theoretic entropy. Let us consider the case of a
symbolic dynamical system for which all elements admit factor frequencies. We assume that for
any factor 𝑤 of the language of 𝑋, all elements in 𝑋 have the same frequency 𝑓(𝑤). Let 𝜇 be the
shift-invariant measure provided by the frequencies. We recall that ℒ𝑋(𝑛) stands for the set of
factors of length 𝑛 of 𝑋. The measure-theoretic entropy of the shift (𝑋,𝑆, 𝜇) is then defined as

𝐻𝜇(𝑋) = lim
𝑛→+∞

1
𝑛

∑︁
𝑤∈ℒ𝑋 (𝑛)

𝐿(𝑓(𝑤)) = lim
𝑛→+∞

1
𝑛

∑︁
𝑤∈ℒ𝑋 (𝑛)

𝐿(𝜇[𝑤])

where 𝐿(𝑥) = −𝑥 log𝑑(𝑥) for 𝑥 ̸= 0, and 𝐿(0) = 0 (𝑑 stands for the cardinality of the alphabet 𝒜).
Once again, this notion extends to the case of general measure-theoretic dynamical systems

through the use of pullbacks and refined partitions. In the particular case where 𝑇 is a piecewise 𝒞1
map from the unit interval 𝐼 = [0, 1] into itself, natural expansion assumptions yield the existence
of an absolutely continuous invariant Borel measure 𝜇 for 𝑇 , then log |𝑇 ′| is 𝜇-integrable and its
metric entropy ℎ𝜇 satisfies, according to Rohlin’s entropy formula:

ℎ𝜇(𝑇 ) =
∫︁

𝐼

log |𝑇 ′|𝑑𝜇.
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One recovers, under the assumption of ergodicity and through Birkhoff’s ergodic theorem, the
notion of Lyapounov exponent of a dynamical system (provided by a one-dimensional differentiable
map), which measures the exponential rate of separation of orbits. It is defined for an orbit of a
dynamical system (𝑋,𝑇 ), with 𝑇 being piecewise differentiable, as

𝜆(𝑥) = lim
𝑛→∞

1
𝑛

log
(︃

𝑛−1∏︁
𝑖=0

| 𝑇 ′(𝑇 𝑖(𝑥))|
)︃

= lim
𝑛→∞

1
𝑛

log (| (𝑇𝑛(𝑥))′|) ,

when this limit exists. Note that the formula given here comes from the chain rule applied to
𝑇𝑛(𝑥) in order to get its derivative. This allows us to get information on |𝑇𝑛(𝑥) − 𝑇𝑛(𝑦)|. Indeed,
intuitively (and as nicely explained in Chap. 9 of [24]), |𝑇 (𝑥) − 𝑇 (𝑦)| is approximatively equal to
𝑇 ′(𝑥) · |𝑥− 𝑦| (under suitable hypotheses such as 𝑥 and 𝑦 being close), whereas |𝑇𝑛(𝑥) − 𝑇𝑛(𝑦)|
has to be compared with

∏︀𝑛−1
𝑖=0 |𝑇 ′(𝑇 𝑖𝑥)| · |𝑥− 𝑦|. This implies

|𝑇𝑛(𝑥) − 𝑇𝑛(𝑦)| ∼ exp𝑛𝜆(𝑥) · |𝑥− 𝑦|,

which allows one to connect the rate of divergence of distinct orbits to the Lyapounov exponent.
Under suitable assumptions for (𝑋,𝑇,ℬ, 𝜇) (ergodicity at least), the ergodic theorem provides that
for a.e. point 𝑥

lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑖=0

log | 𝑇 ′(𝑇 𝑖(𝑥))| =
∫︁

𝐼

log |𝑇 ′|𝑑𝜇 = ℎ𝜇(𝑇 ).

The systems associated with the beta-numeration (that is, with the beta-transformation) and
with continued fractions (that is, with the Gauss map) have positive entropy, whereas the translation
𝑅𝛼 on R/Z has zero entropy (it is deterministic).

3. Arithmetic dynamics

We consider in this section examples of dynamical systems that all pertain to what is called
‘arithmetic dynamics’ in [74]. Note that the term ‘arithmetic dynamics’ also refers in the literature
to the study of the number-theoretic properties of integer, rational, 𝑝-adic, or else algebraic
points under repeated application of a polynomial or rational function (according to Wikipedia
https://en.wikipedia.org/wiki/Arithmetic_dynamics).

The survey [74] deals with explicit arithmetic expansions of reals and vectors that have a
‘dynamical’ flavor. These expansions allow to (semi-)conjugate a given dynamical system and a
symbolic one, with the arithmetic properties of the point 𝑥 in the dynamical system 𝑋 being
reflected in its expansion. We focus here on classical examples of arithmetic dynamics, namely
numeration dynamics, continued fractions and Sturmian shifts. Symbolic representations such as
the ones described below allow for compact representations of real numbers.

3.1. Numeration dynamics. Let us use the usual base 𝑞 numeration, as an illustration of a
numeration system that can be described in terms of a dynamical system, where the integer 𝑞
satisfies 𝑞 ≥ 2. But first recall that there are two well-known algorithmic ways of producing the digits
𝑎𝑖 ∈ {0, . . . , 𝑞− 1} of the expansion of a positive integer 𝑁 = 𝑎𝑘𝑞

𝑘 + · · · + 𝑎0 in base 𝑞. The greedy
algorithm produces the digits of 𝑁 most significant digit first: take 𝑘 such that 𝑞𝑘 ≤ 𝑁 < 𝑞𝑘+1

and set 𝑎𝑘 := ⌊𝑁/𝑞𝑘⌋; one then reiterates the process with 𝑁 being replaced by 𝑁 − 𝑎𝑘𝑞
𝑘 in order

to get the digits in decreasing power order. Now, consider the second generation method. Let the
notation 𝑦 mod 𝑞 stand for the unique number in {0, 1, . . . , 𝑞 − 1} which is congruent to 𝑦 modulo
𝑞. The dynamical system (N, 𝑆𝑞) with

𝑆𝑞 : N → N, 𝑛 ↦→ 𝑛− (𝑛 mod 𝑞)
𝑞

together with the coding map 𝜓𝑞 : N → {0, 1, . . . , 𝑞 − 1}, 𝑛 ↦→ 𝑛 mod 𝑞 (which is associated with
the natural partition of N given by the sets 𝑘 + 𝑞N, for 0 ≤ 𝑘 ≤ 𝑞 − 1), produces the digits least
significant digit first: one has 𝑎𝑖+1 = 𝜓𝑞(𝑆𝑖

𝑞(𝑁)) for all 𝑖. Taking all sequences of digits produced
by considering all integers yields a symbolic dynamical system made of infinite words that all
eventually take the value 0.
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Similarly, the dynamical system producing the 𝑞-ary expansions of positive real numbers is
defined as ([0, 1], 𝑇𝑞), with

𝑇𝑞 : [0, 1] → [0, 1], 𝑥 ↦→ 𝑞𝑥− ⌊𝑞𝑥⌋ = {𝑞𝑥} = 𝑞𝑥 (mod 1),

together with the coding map 𝜙𝑞 : [0, 1] → N, 𝑥 ↦→ ⌊𝑞𝑥⌋. Indeed, if 𝑥 =
∑︀

𝑖≥1 𝑎𝑖𝑞
−𝑖, then ⌊𝑞𝑥⌋ =

𝑎1 +
∑︀

𝑖≥1 𝑎𝑖+1𝑞
−𝑖, and {𝑞𝑥} =

∑︀
𝑖≥1 𝑎𝑖+1𝑞

−𝑖. One thus has 𝑎𝑖 = ⌊𝑞𝑇 𝑖−1
𝑞 (𝑥)⌋ = 𝜙𝑞(𝑇 𝑖−1

𝑞 (𝑥)), for all
𝑖 ≥ 1. Note that the admissible expansions produced by 𝑇𝑞 never terminate in (𝑞−1)(𝑞−1)(𝑞−1) · · · .
When 𝑞 = 10 one recovers the decimal expansion, and the binary one for 𝑞 = 2.

More generally, the so-called beta-numeration embraces and extends 𝑞-ary numeration. Taking a
real number 𝛽 > 1, it consists in expanding numbers 𝑥 ∈ [0, 1] as power series in base 𝛽−1 with
digits in the set {0, . . . , ⌈𝛽⌉ − 1}. The mapping

𝑇𝛽 : 𝑥 ↦→ {𝛽𝑥} = 𝛽𝑥 (mod 1)

together with the coding map 𝜙𝛽 : 𝑥 ↦→ ⌊𝛽𝑥⌋ produces the digits

𝑎𝑖 = ⌊𝛽𝑇 𝑖−1
𝛽 (𝑥)⌋ = 𝜙𝛽(𝑇 𝑖−1

𝛽 (𝑥)),

for 𝑖 ≥ 1, which yields the expansion
𝑥 =

∑︁
𝑖≥1

𝑎𝑖𝛽
−𝑖.

For more on beta-numeration, see e.g. [31, 38, 39]. Such expansions belong to the more general
family of so-called 𝑓 -expansions [73]: one expands real numbers as

𝑥 = lim
𝑛→∞

𝑓(𝑎1 + 𝑓(𝑎2 + 𝑓(𝑎3 + · · · + 𝑓(𝑎𝑛) · · · ))), with 𝑎𝑖 ∈ N.

For 𝛽 > 1, the entropy of the 𝛽-transformation 𝑇𝛽 is equal to log 𝛽.

3.2. The Gauss map. For general references on continued fractions, see e.g. [18, 31, 45, 49].
The Gauss map 𝑇𝐺 is defined on [0, 1] by

𝑇𝐺 : 𝑥 ↦→ {1/𝑥} for 𝑥 ̸= 0, 𝑇𝐺(0) = 0.

Together with the coding map 𝜙𝐺 : 𝑥 ↦→ ⌊1/𝑥⌋, it produces the partial quotients in the continued
fraction expansion of a real number 𝑥 ∈ [0, 1].

Let 𝑥 ∈ (0, 1). If 𝑥1 = 𝑇𝐺(𝑥) = {1/𝑥} = 1
𝑥 − ⌊ 1

𝑥 ⌋ = 1
𝑥 − 𝑎1, then 𝑥 = 1

𝑎1+𝑥1
. Now, set

𝑎𝑛 = ⌊ 1
𝑇 𝑛−1𝑥 ⌋ = 𝜙𝐺(𝑇𝑛−1𝑥) for 𝑛 ≥ 1. One has

𝑥 =
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

𝑎4 + · · ·

.

We also will use the notation 𝑥 = [0; 𝑎1, · · · , 𝑎𝑛, · · · ]. The digits 𝑎𝑛 are called partial quotients.
Continued fractions are known to provide good rational approximations of real numbers. Indeed,
let 𝑝𝑛/𝑞𝑛 = [0; 𝑎1, · · · , 𝑎𝑛] stand for the 𝑛-th truncation of the continued fraction of 𝑥. One has
|𝑥− 𝑝𝑛/𝑞𝑛| < 1/𝑞2

𝑛 for all 𝑛.
Note that continued fractions extend also to Laurent formal power series with coefficients in a

finite field, see e.g. the survey [13] and the references therein. As an application, let us mention some
interesting connections with pseudorandom numbers generated by the digital multistep method
[65], with low-discrepancy sequences [66], or with stream cipher theory and cryptography [67].

Here, we endow ([0, 1], 𝑇𝐺) with the Gauss measure 𝜇𝐺 which is the Borel probability measure
defined as the absolutely continuous measure with respect to the Lebesgue measure by

𝜇𝐺(𝐵) = 1
log 2

∫︁
𝐵

1
1 + 𝑥

𝑑𝑥.

One checks that this measure is 𝑇𝐺-invariant, i.e., 𝜇𝐺(𝐵) = 𝜇𝐺(𝑇−1
𝐺 𝐵) for every Borel subset 𝐵

of [0, 1]. It is also ergodic. This measure is the unique 𝑇𝐺-invariant measure that is absolutely
continuous with respect to Lebesgue measure.

I–7



V. Berthé

By applying the ergodic theorem to the Gauss map, one obtains that the Lyapounov exponent
is a.e. equal to 𝜋2

6 log 2 , which is also equal to the entropy. The statistical properties concerning the
digits in the continued fraction expansion of 𝛼 are provided by the Gauss measure via the ergodic
theorem. For instance, for a.e. 𝑥, one has

lim
𝑁→∞

1
𝑁

Card{𝑛 ≤ 𝑁 ; 𝑎𝑛 = 𝑘} = 1
log 2 log

(︂
(𝑘 + 1)2

𝑘(𝑘 + 1)

)︂
.

Note that the continued fraction algorithm is closely related to Euclid’s algorithm: let us start
with two (coprime) positive integers 𝑢0 et 𝑢1; Euclid’s algorithm works by subtracting as much as
possible the smallest of both numbers from the largest one (that is, one performs the Euclidean
division of the largest one by the smallest); this yields 𝑢0 = 𝑢1⌊ 𝑢0

𝑢1
⌋ + 𝑢2, 𝑢1 = 𝑢2⌊ 𝑢1

𝑢2
⌋ + 𝑢3, etc.,

until we reach 𝑢𝑚+1 = 1 = pgcd(𝑢0, 𝑢1). By setting for 𝑖 ∈ N, 𝛼𝑖 = 𝑢𝑖

𝑢𝑖+1
and 𝑎𝑖 = ⌊𝛼𝑖⌋, one gets

𝛼𝑖−1 = 𝑎𝑖−1 + 1
𝛼𝑖

and

𝛼0 = 𝑢0/𝑢1 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 + · · · + 1
𝑎𝑚−1+1/𝑎𝑚

3.3. Codings of rotations and Sturmian words. Sturmian words provide symbolic codings of
translations 𝑅𝛼 of the unit circle (that is, the one-dimensional torus T = R/Z) with

𝑅𝛼 : R/Z → R/Z, 𝑥 ↦→ 𝑥+ 𝛼 mod 1.

They have been introduced in [64] and widely studied. For more on Sturmian words, see the
corresponding chapters in [60, 37] and the references therein.

The infinite word 𝑢 = (𝑢𝑛)𝑛∈N ∈ {0, 1}N is said to be a Sturmian word if there exist 𝛼 ∈ (0, 1),
𝛼 ̸∈ Q, 𝑥 ∈ R such that

∀𝑛 ∈ N, 𝑢𝑛 = 𝑖 ⇐⇒ 𝑅𝑛
𝛼(𝑥) = 𝑛𝛼+ 𝑥 ∈ 𝐼𝑖 (mod 1),

with either 𝐼0 = [0, 1 − 𝛼[, 𝐼1 = [1 − 𝛼, 1[, or 𝐼0 =]0, 1 − 𝛼], 𝐼1 =]1 − 𝛼, 1].
A Sturmian word is thus a coding of the dynamical system (T, 𝑅𝛼) with respect either to the

two-interval partition {𝐼0 = [0, 1 − 𝛼[, 𝐼1 = [1 − 𝛼, 1[} or to {𝐼0 =]0, 1 − 𝛼], 𝐼1 =]1 − 𝛼, 1]}.
The following lemma is crucial for the study of Sturmian words.

Lemma 1. The word 𝑤 = 𝑤1 · · ·𝑤𝑛 over the alphabet {0, 1} is a factor of the Sturmian word 𝑢 if
and only if 𝐼𝑤 := 𝐼𝑤1 ∩𝑅−1

𝛼 𝐼𝑤2 ∩ · · ·𝑅−𝑛+1
𝛼 𝐼𝑤𝑛 ̸= ∅.

Proof. By definition, one has

∀𝑖 ∈ N, 𝑢𝑛 = 𝑖 ⇐⇒ 𝑛𝛼+ 𝑥 ∈ 𝐼𝑖 (mod 1).

One first notes that 𝑢𝑘𝑢𝑘+1 · · ·𝑢𝑛+𝑘−1 = 𝑤1 · · ·𝑤𝑛 if and only if⎧⎪⎪⎨⎪⎪⎩
𝑘𝛼+ 𝑥 ∈ 𝐼𝑤1

(𝑘 + 1)𝛼+ 𝑥 ∈ 𝐼𝑤2

...
(𝑘 + 𝑛− 1)𝛼+ 𝑥 ∈ 𝐼𝑤𝑛

.

One then applies the density of (𝑛𝛼)𝑛∈N in Z/R (recall that 𝛼 is assumed to be an irrational
number). �

One first notes that the condition of Lemma 1 does not depend on the point 𝑥 whose orbit is
coded but only on 𝛼. Also, it does not depend on the partition 𝐼0 = [0, 1 − 𝛼[, 𝐼1 = [1 − 𝛼, 1[,
or 𝐼0 =]0, 1 − 𝛼], 𝐼1 =]1 − 𝛼, 1]. One thus can define the Sturmian shift (𝑋𝛼, 𝑆) as the closure in
{0, 1}N of the orbit of any Sturmian word coding 𝑅𝛼 (and also as the closure in {0, 1}N of the orbit
of all Sturmian words coding 𝑅𝛼). Indeed, since two Sturmian words coding the same rotation
have the same set of factors, then one checks that the symbolic dynamical system generated by
a Sturmian word coding the rotation 𝑅𝛼 consists of all the Sturmian words that code the same
rotation. The system (𝑋𝛼, 𝑆) is minimal: it admits no non-trivial closed and shift-invariant subset.
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One easily checks that the sets 𝐼𝑤1 ∩𝑅−1
𝛼 𝐼𝑤2 ∩ · · ·𝑅−𝑛+1

𝛼 𝐼𝑤𝑛 are intervals of T = R/Z. Further-
more, the factors of 𝑢 of length 𝑛 are in one-to-one correspondence with the 𝑛+ 1 intervals of T
whose end-points are given by −𝑘𝛼 mod 1, for 0 ≤ 𝑘 ≤ 𝑛. This implies that two Sturmian words
coding the same rotation 𝑅𝛼 have the same factors. Furthermore, Sturmian words have exactly
𝑛+ 1 factors of length 𝑛, for every 𝑛 ∈ N. This is even a characterization of Stumian words:
Theorem 3 (Coven-Hedlund [29]). A word 𝑢 ∈ {0, 1}N is Sturmian if and only if it has exactly
𝑛+ 1 factors of length 𝑛.

An infinite word 𝑢 is periodic (respectively ultimately periodic) if there exists a positive integer
𝑇 such that ∀𝑛, 𝑢𝑛 = 𝑢𝑛+𝑇 .

Note that the complexity function can be considered as a good measure of the disorder of a
sequence as it is smallest for periodic sequences. Namely, a basic result of [29] is the following.
Proposition 1. If 𝑢 is a periodic or ultimately periodic sequence, 𝑝𝑢(𝑛) is a bounded function. If
there exists an integer 𝑛 such that 𝑝𝑢(𝑛) ≤ 𝑛, 𝑢 is an ultimately periodic sequence.
Proof. The first part is trivial. In the other direction, we have 𝑝𝑢(1) ≥ 2 otherwise 𝑢 is constant,
so 𝑝𝑢(𝑛) ≤ 𝑛 implies that 𝑝𝑢(𝑘 + 1) = 𝑝𝑢(𝑘) for some 𝑘. For each word 𝑤 of length 𝑘 occurring
in 𝑢, there exists at least one word of the form 𝑤𝑎 occurring in 𝑢, for some letter 𝑎 ∈ 𝒜. As
𝑝𝑢(𝑘 + 1) = 𝑝𝑢(𝑘), there can be only one such word. Hence, if 𝑢𝑖...𝑢𝑖+𝑘−1 = 𝑢𝑗 ...𝑢𝑗+𝑘−1, then
𝑢𝑖+𝑘 = 𝑢𝑗+𝑘. As the set ℒ𝑢(𝑘) is finite, there exist 𝑗 > 𝑖 such that 𝑢𝑖...𝑢𝑖+𝑘−1 = 𝑢𝑗 ...𝑢𝑗+𝑘−1, and
hence 𝑢𝑖+𝑝 = 𝑢𝑗+𝑝 for every 𝑝 ≥ 0, one period being 𝑗 − 𝑖. �

By Proposition 1, Sturmian words are non-periodic words of smallest complexity. This explains
why Sturmian words are widely studied and occur in various contexts as models of aperiodic order,
for quasiperidoic structures such as quasicrystals (see the books [4, 48]), or else in discrete geometry,
as (Freeman) coding discrete lines in discrete geometry. More generally, for references on discrete
lines, see the surveys [52, 22].

One deduces from Lemma 1 not only properties of a topological nature on the number of factors,
but also information of a measure-theoretical nature, such as the expression of densities of factors
[11], that can be deduced from the equidistribution of the sequence (𝑛𝛼)𝑛∈N. Indeed, the frequency
of occurrence of the word 𝑤 in the Sturmian word 𝑢 is equal to the length of the interval 𝐼𝑤.
We have seen in Section 2.3 that it allows the expression of a shift-invariant measure. Moreover,
one checks that Sturmian words are uniquely ergodic: the convergence to frequencies is uniform.
Frequencies of factors thus provides the unique shift-invariant measure of the Sturmian shift (𝑋𝛼, 𝑆).
We also deduce from the expression of the complexity function that it has zero topological entropy.

Moreover, one checks that the systems (𝑅𝛼,T) and (𝑋𝛼, 𝑆) are measure-theorerically isomorphic,
and even semi-conjugate. We thus can consider that the chosen partition provides a good coding.
One has the following commutative diagram:

R/Z 𝑅𝛼−→ R/Z⎮⎮⌄ ⎮⎮⌄
𝑋𝛼 −→

S
𝑋𝛼

Let us consider now a combinatorial way of generating Sturmian words. A substitution 𝜎 is
an application from an alphabet 𝒜 into the set of nonempty finite words on 𝒜; it extends to a
morphism of the free monoid 𝒜* by concatenation, that is, 𝜎(𝑤𝑤′) = 𝜎(𝑤)𝜎(𝑤′) and 𝜎(𝜀) = 𝜀. It
also extends in a natural way to a map defined over 𝒜N or 𝒜Z.

Substitutions are very efficient tools for producing sequences. Let 𝜎 be a substitution over the
alphabet 𝒜, and 𝑎 be a letter such that 𝜎(𝑎) begins with 𝑎 and |𝜎(𝑎)| ≥ 2. Then there exists a
unique fixed point 𝑢 of 𝜎 beginning with 𝑎. This sequence is obtained as the limit in 𝒜N (when 𝑛
tends toward infinity) of the sequence of words 𝜎𝑛(𝑎), which is easily seen to converge.

The Fibonacci sequence is the fixed point 𝑣 beginning with 𝑎 of the Fibonacci substitution 𝜎
defined over the two-letter alphabet {𝑎, 𝑏} by 𝜎(𝑎) = 𝑎𝑏 and 𝜎(𝑏) = 𝑎.

𝑣 = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎...

The Fibonacci word is a particular case of a Sturmian word. It belongs to the Sturmian shift
associated with the Golden ratio 𝛼 = 1+

√
5

2 .
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Let us see how to generate all the Sturmian shifts with substitutions. We work now on the
alphabet {𝑎, 𝑏}. We consider the substitutions 𝜏𝑎 and 𝜏𝑏 defined over the alphabet 𝒜 = {𝑎, 𝑏} by
𝜏𝑎 : 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑎𝑏 and 𝜏𝑏 : 𝑎 ↦→ 𝑏𝑎, 𝑏 ↦→ 𝑏. Let (𝑖𝑛) ∈ {𝑎, 𝑏}N. The following limits
(3.1) 𝑢 = lim

𝑛→∞
𝜏𝑖0𝜏𝑖1 · · · 𝜏𝑖𝑛−1(𝑎) = lim

𝑛→∞
𝜏𝑖0𝜏𝑖1 · · · 𝜏𝑖𝑛−1(𝑏)

exist and coincide whenever the directive sequence (𝑖𝑛)𝑛 is not ultimately constant (it is easily
shown that the shortest of the two images by 𝜏𝑖0𝜏𝑖1 . . . 𝜏𝑖𝑛−1 is a prefix of the other). One checks
that the infinite words thus produced are all Sturmian words: indeed, it suffices to consider and
compute their factor complexity. More generally, one can prove that a Sturmian word is an infinite
word whose set of factors coincides with the set of factors of a sequence 𝑢 of the form (3.1), with
the sequence (𝑖𝑛)𝑛≥0 being not ultimately constant (that is, it is an element of the symbolic
dynamical system 𝑋𝑢 generated by 𝑢, since (𝑋𝑢, 𝑆) is minimal). The proof relies on the fact that
in a Sturmian language, either 𝑎𝑎 (the letter 𝑏 occurs as an isolated letter) or 𝑏𝑏 (𝑎 is isolated)
occurs: one cannot have simultaneously 𝑎𝑎 and 𝑏𝑏 since there are 3 factors of length 2. One then
desubstitutes according to the isolated letter: if 𝑏 is isolated in 𝑢, then one can write 𝑢 as 𝑢 = 𝜎𝑎(𝑣)
(one reduces the ranges of successive occurrences of 𝑎’ by 1). One checks that 𝑣 (possibly up to a
prefix letter) is again a Sturmian word (associated with a different 𝛼). If one wants to generate
a specific Sturmian word (not only a Sturmian language/shift), one can use four substitutions.
One striking property of Sturmian words is the following: the way one iterates the substitutions is
governed by the continued fraction expansion of 𝛼. This method can be used for the generation
of discrete lines and planes in discrete geometry, as well as for the recognition of discrete planes
[33]. More generally shifts with at most linear factor complexity can also be generated in terms of
composition of substitutions, see e.g. the survey [12] and the references therein.

Let us see now an example of an arithmetical discrepancy property of 𝑅𝛼 that can be proved
symbolically. Let 𝑢 ∈ 𝒜N and assume that each letter 𝑖 has frequency 𝑓𝑖 in 𝑢. The discrepancy of
𝑢 is Δ(𝑢) = lim sup𝑖∈𝒜, 𝑛∈N ||𝑢0𝑢1 . . . 𝑢𝑛−1|𝑖 − 𝑛𝑓𝑖|. The quantity Δ(𝑢) is considered e.g. in [1, 2].
A word 𝑢 ∈ 𝒜N is said to be 𝐶-balanced if for any pair 𝑣, 𝑤 of factors of the same length of 𝑢,
and for any letter 𝑖 ∈ 𝒜, one has ||𝑣|𝑖 − |𝑤|𝑖| ≤ 𝐶. It is said balanced if there exists 𝐶 > 0 such
that it is 𝐶-balanced. If 𝑢 has letter frequencies, then 𝑢 is balanced if and only if its discrepancy
Δ(𝑢) is finite. It is also said to have bounded deviation (the term ‘deviation’ refers here to the
ergodic averages, that is, the Birkhoff sums associated with the indicator function of the cylinders
associated with letters).

A subset 𝐴 of T with (Lebesgue) measure 𝜇(𝐴) is said to be a bounded remainder set for the
translation 𝑅𝛼 : 𝑥 ↦→ 𝑥 + 𝛼 (𝛼 ∈ T) if there exists 𝐶 > 0 such that for a.e. 𝑥 the following
holds: ∀𝑁, |Card{0 ≤ 𝑛 < 𝑁 ; 𝑥 + 𝑛𝛼 ∈ 𝐴} − 𝑁𝜇(𝐴)| ≤ 𝐶. Let 𝑓 := 1𝐴(𝑥) − 𝜇(𝐴)1. The
notation 1 stands for the constant function that takes value 1. Note that Card{𝑛 < 𝑁 ; 𝑅𝑛

𝛼(𝑥) ∈
𝐴} − 𝑁𝜇(𝐴) =

∑︀
𝑛<𝑁 𝑓(𝑅𝑛

𝛼𝑥). Hence, 𝐴 is a bounded remainder set if and only if the Birkhoff
sum

∑︀
𝑛<𝑁 𝑓(𝑅𝑛

𝛼𝑥) is a.e. uniformly bounded.
Sturmian words are known to be 1-balanced [60] (they have bounded deviation with respect to

the ergodic theorem); they even are exactly the 1-balanced infinite words that are not eventually
periodic. This result can be shown with a purely combinatorial proof. One can also show a balance
property for factors (instead of letters) [77]. One thus deduces from Lemma 1 that intervals of the
form 𝛼Z + Z are bounded remainder sets for 𝑅𝛼. One recovers with a purely symbolical proof one
direction of Kesten’s characterization of intervals that are bounded remainder sets as intervals with
length in 𝛼Z + Z [47].

4. Dynamics and computation

The aim of this section is to discuss dynamical systems and their orbits from a computational
viewpoint, motivated by the question of numerical simulations in the framework of finite precision
computer arithmetic, but also by applications in discrete geometry or for gcd computations.

4.1. First definitions. An orbit (𝑇𝑛(𝑥))𝑛∈N of the dynamical system (𝑋,𝑇 ) is said to be eventually
periodic if there exists 𝑛 such that 𝑇𝑛(𝑥) = 𝑇𝑛+𝑘(𝑥), for all 𝑘 ∈ N. If 𝑛 = 0, then the orbit is
said to be purely periodic. In order to define a stronger notion of “finiteness” for an orbit, we will
assume that (𝑋,𝑇 ) has 0 as a fixed point: 0 ∈ 𝑋 and 𝑇 (0) = 0. The orbit (𝑇𝑛(𝑥))𝑛∈N is thus said
to be finite if there exists 𝑛 such that 𝑇𝑛(𝑥) = 0; this yields 𝑇 𝑘+𝑛(𝑥) = 0 for all 𝑘 ∈ N. Finite
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orbits are thus particular cases of periodic orbits. For instance, in base 10, rational numbers have
periodic orbits, whereas decimal numbers have finite orbits.

By finite state machine simulation of the dynamical system (𝑋,𝑇 ), we mean the following: we
consider

∙ a finite set 𝑋̂, which is a set of finite sequences of, usually, binary digits, this is a
discretization of the space 𝑋,

∙ a coding map 𝜙 : 𝑋 → 𝑋̂, i.e., a projection onto the discretized space 𝑋̂,
∙ and a map 𝑇 that acts on 𝑋̂ with 𝑇 (𝑋̂) ⊂ 𝑋̂, whose action is defined as a finite state

machine, i.e., the image of 𝑥 ∈ 𝑋̂ by 𝑇 is computed by a finite state machine that takes as
input the sequence of digits of 𝑥 and then outputs the sequence of digits of 𝑇 (𝑥); we also
want the behavior of 𝑇 to be close to the behavior of 𝑇 , that is, 𝑇 ∘ 𝜙 to be close to 𝜙 ∘ 𝑇 .
Let us stress the fact that the transformation 𝑇 acts on a discrete space whereas 𝑇 acts on
a continuous space.

The underlying discretization can be chosen either uniform (see e.g. [61]), or non-uniform, for
instance, if one works on floating-point arithmetics, in a domain where the precision is not the
same at every point of the space; it is concentrated around 0 and gets less and less accurate when
the number to be represented increases. The question is now to understand what happens when
the number of points 𝑁 of the finite space 𝑋̂ tends to infinity or when the precision tends to 0.

As an example, consider the floating-point simulation ̂︀𝑇𝐺 of the Gauss map (see e.g. [25, 26, 27]),
defined as ̂︀𝑇𝐺(0) = 0, ̂︀𝑇𝐺(𝑥) = 1/𝑥 mod 1 otherwise, with the operations of division and reduction
modulo 1 being defined in floating-point arithmetics on the floating-point domain (i.e., on the finite
set of numbers represented in this fixed-precision system).

4.2. Main issues. The following issues are thus to be considered. These questions are addressed
in full generality and answers depend on the nature of the dynamical system (𝑋,𝑇 ) (the two
extreme cases are usually considered, chaotic case or uniquely ergodic case, but also conservative
vs. dissipative dynamics), but we use as a guideline the Gauss map acting on [0, 1].

∙ Periodic orbits for (𝑋,𝑇 ) and (𝑋̂, 𝑇 ) The orbits produced by a finite state machine
simulation of a dynamical system are eventually periodic (the set of representable numbers
𝑋̂ is finite). What are the finite or the periodic expansions of the dynamical system (𝑋,𝑇 )?
What is the number of periodic cycles and their lengths for (𝑋̂, 𝑇 )? What is the size of
connected components (i.e., the number of points attracted by a given cycle)? What is the
time to reach it (stabilization time)?

∙ Genericity and ergodic properties for periodic orbits for (𝑋,𝑇 ) Do periodic expan-
sions for (𝑋,𝑇 ) have a typical behavior? But what could be considered as a typical orbit? a
generic orbit, but with respect to which invariant measure? What is the spatial distribution
of periodic cycles for (𝑋,𝑇 )? Indeed, since measure-theoretical dynamical systems are
defined up to sets of zero measure, the relevance of the statistical properties provided by
the ergodic theorem with respect to computation can be questioned. In particular, what
can be said concerning the behavior of rational points under the Gauss map? We just
know that their orbits are finite, and that they correspond to the application of Euclid’s
algorithm. We also know that points having finite, or periodic orbits are dense. This does
not imply a priori that their orbits behave in a generic way.

∙ Genericity and ergodic properties for periodic orbits for (𝑋̂, 𝑇 ) Same questions
on the orbits of (𝑋̂, 𝑇 ). What is the impact of the fact that the space 𝑋̂ is discrete? Does
discretization detect typical behavior? Are there typical orbits (with respect to (𝑋,𝑇 ))
among computable ones?

∙ Rounding and truncation errors are then to be taken care of. What can be said
concerning the roundoff errors when simulating trajectories? How far are computed orbits
from exact ones?

4.3. Roundoffs and shadowing. We focus here on the example of the floating-point Gauss map
to illustrate this section. We follow here mainly [25, 26, 27, 40]. Orbits under the real Gauss map
𝑇𝐺 are all finite (they reach 0) since machine-representable numbers are rational numbers. If one
looks at the orbits produced by the floating-point Gauss map, it is a priori unclear to know
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whether they also reach 0. In the case of the Gauss map, the notion of genericity refers to the
Gauss measure 𝜇𝐺 = 1

log 2
∫︀ 1

1+𝑥𝑑𝑥 (see Section 3.2), that is the unique ergodic invariant measure
absolutely continuous with respect to the Lebesgue measure.

As seen in the previous section, there are two levels of difficulties that have to be handled.

∙ First, one has to check that the roundoff errors do not accumulate. One way to handle
this problem is to prove that orbits under the simulation of the dynamical system have
a counterpart in the exact dynamical system, i.e., that they are uniformly close to exact
orbits of 𝑇 . These orbits are said to shadow the simulated orbits; see [70] for more on the
concept of shadowing (roughly speaking, approximate orbits of a dynamical system are
closely followed by exact orbits). Shadowing or pseudo-orbit tracing started with the works
of Anosov and Bowen (for smooth uniformly hyperbolic systems) in the seventies, and is
now a classical object of study for chaotic dynamical systems.

∙ But, a second problem occurs: even if orbits under a floating-point version of the dynamical
system are proved to be close to exact orbits, there is no reason for these orbits to be
generic with respect to 𝑇 . In other words, what is the measure carried by the true orbit
that shadows the computer orbit (in terms of time averages lim 1

𝑁

∑︀𝑁
𝑛=0 𝛿𝑇 𝑛(𝑥))?

It is proved in [25, 27] that orbits under the floating-point Gauss map are uniformly close to
exact orbits with an explicit construction of the initial point of the exact orbit. The proof relies on
“backward error” analysis. As stressed in [26], “the 𝑦 whose actual orbit is shadowing the numerical
simulation is a quadratic irrational or rational number, and thus is from a set of zero measure.”
But the shadowing orbits are usually long, they thus have a tendency to behave like a generic one.

Consider now a general dynamical system (𝑋,𝑇 ). If it admits invariant measures absolutely
continuous with respect to the Lebesgue measure, then among these measures, there exist a unique
ergodic one. It is proved in [40], whose expressive title is “Why do computers like Lebesgue
measure”, that the histograms of computer simulations display the ergodic invariant measure that
is absolutely continuous with respect to Lebesgue measure under the main assumption that there
exist long trajectories for the computer transformation 𝑇 . Long means here that these orbits visit
a fixed portion of the space 𝑋̂. As stressed in [40], the very process of discretization of the spaces
forces computer orbits to display only the ergodic invariant measure that is absolutely continuous.

The situation is more contrasted in the general case of conservative homeomorphisms such as
highlighted and studied in detail in [43] (see also [42]), where the dynamical behavior of spacial
discretizations of a generic homeomorphism of a compact manifold is investigated. The behavior of
discretizations is shown to be quite erratic in the conservative case. A property is said to be generic
here if it is satisfied (at least) on a countable intersection of dense open sets. It is proved that
dynamical properties of a generic conservative homeomorphism cannot be detected using a single
discretization, even if subsequences of discretizations allow to detect some dynamical features. The
behavior in the conservative and dissipative case for homeomorphims of compact manifolds is also
shown to be quite different with respect to spatial discretization.

The case of uniform discretization for circle homeomorphisms is investigated in [61]: in particular,
the discrete dynamics induced by Diophantine diffeomorphisms is proved to be asymptotically
random (they behave like random mappings such as described in the next section). Moreover,
in [61, Proposition 8.1], uniquely ergodic homeomorphisms on a compact Riemannian manifold
are considered. It is proved that the uniformly distributed measure on a periodic cycle of the
discretization tends to the invariant measure when the number of points tends to infinity.

4.4. Random mappings. It is usual to compare the behaviour of a discretization of a chaotic
dynamical system with the behaviour of random mappings. A random mapping is a map uniformly
chosen randomly among all the maps from {1, . . . , 𝑁} to itself (each map has probability 1/𝑁𝑁

to be chosen). There is an important literature devoted to random mappings, see for instance
[20, 34, 51].

We represent a random mapping as a functional graph: nodes are elements of {1, . . . , 𝑁}, there
is an arrow from 𝑖 to 𝑗 if 𝑓(𝑖) = 𝑗. Note that each connected component contains one cycle. An
orbit is made of a path (a tail) that connects to a cycle. A connected component is made of possibly
several orbits and can be seen as trees rooted on a cycle.
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The expectations of the following parameters have the asymptotics given below when 𝑁 tends
to infinity (note that the distributions are Gaussian).

∙ The mean number of nodes without antecedents is equivalent to 𝑁/𝑒.
∙ The mean number of cyclic nodes is equivalent to

√︀
𝜋𝑁/2.

∙ The mean number of connected components is equivalent to (1/2) log𝑁 .
For a random point 𝜈, the expectations of

∙ the size of the component that contains 𝜈 is equivalent to 2𝑁/3;
∙ the tail length is equivalent to

√︀
𝜋𝑁/8 (i.e., the maximal length of the injective orbit);

∙ the cycle length is equivalent to
√︀
𝜋𝑁/8 (i.e., the average length of the period of its orbit).

In summary, one has a one giant component and few large trees. Furthermore, periods (cycles)
tend to be “long”.

4.5. Finite and periodic orbits of the Gauss map. Let us come back to the Gauss map. If
𝑁 stands for the total number of floating-point numbers in a simulation, then the average length
of the period of an orbit is thus expected to be in

√︀
𝜋𝑁/8 + 𝑂(1). The equidistribution results

for quadratic irrational numbers obtained in [71], through the use of Parry’s prime orbit method
[68], confirm this long orbit behavior, and the fact that the periodic orbits capture some kind of
genericity: taking averages on periodic orbits yields the usual ergodic limits; if each individual
periodic orbit behaves in a non-generic way, the distribution of the quadratic irrational numbers
ordered with respect to the lengths of their period follows the Gauss measure.

We find the same kind of paradox within the so-called framework of “dynamical analysis of
algorithms” which mixes analysis of algorithms (such as initiated by D. E. Knuth) and spectral
study of dynamical systems through their transfer operators, with probabilistic and ergodic methods.
In particular, the dynamical analysis of Euclid’s algorithm (performed in full details in [58, 5], see
also [35, 36, 76]), proves that the orbits of rational points behave indeed in a generic way.

This confirms the pertinence of a dynamical approach in contexts where only integer parameters
are to be considered. Let us quote two applications fields. In discrete geometry, continued fractions
and Euclid’s algorithm are indeed known to describe discretizations of lines, and their possible
generalizations describe discrete planes [33]. In order to understand statistical properties of such
discretizations, it is useful to rely on the continuous counterpart, that is, on the Gauss map, and on
its multidimensional generalizations. Continued fraction algorithms can also be used to describe gcd
algorithms such as developed in [16, 17] for real numbers as well as polynomials with coefficients in
a finite field. The underlying dynamical systems allow to handle a complete probabilistic analysis
of the associated gcd algorithms, by providing both the average-case and the distributional analysis.
In particular, the expectation of number of steps is proved to be connected to the entropy of the
dynamical system.

5. Continued fractions vs. decimal expansions: Lochs’ theorem

The aim of this section is to compare in average the level of information required for computing
the continued fraction expansion of a positive real number 𝑥 whose expansion in some numeration
system (decimal, binary, base 𝛽 etc.) is given. More precisely, we want to know in average the
number of digits in one symbolic representation (here, the continued fraction expansion) that can
be obtained from the first 𝑛 digits in another representation.

We first start with decimal expansions (this is the case that has been first handled in the
literature, it also yields the more striking result) and ask for the number of decimal digits required
for expanding 𝑥 in continued fraction. We first fix the notation. Let 𝑥 ∈ (0, 1) be an irrational
number with continued fraction 𝑥 = [0; 𝑎1, · · · , 𝑎𝑛, · · · ], and with decimal expansion 𝑥 =

∑︀
𝑖≥1

𝜀𝑖

10𝑖 ,
with 𝜀𝑖 ∈ {0, 1, . . . , 9} for all 𝑖 ≥ 1. For 𝑛 ≥ 1, let 𝑥𝑛 be the lower 𝑛-th decimal approximations of
𝑥: 𝑥𝑛 =

∑︀𝑛
𝑖=1

𝜀𝑖

10𝑖 .
If two numbers are sufficiently close, then their respective continued fraction expansions have the

same first partial quotients. Let us quantify this. For a fixed non-negative integer 𝑛, let 𝑘𝑛(𝑥) be
the largest non-negative integer 𝑘 such that the first 𝑘 partial quotients of 𝑥𝑛 are equal to the first
𝑘 partial quotients of 𝑥. The following classic result by G. Lochs [56] describes the a.e. behavior of
the quantity 𝑘𝑛(𝑥) and indicates that the 𝑛 first decimals determine approximatively 𝑛 of the first
partial quotients, which might seem at first view non-intuitive.
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Theorem 4. [56] For almost every irrational number 𝑥 ∈ [0, 1] (with respect to the Lebesgue
measure)

(5.1) lim
𝑛→∞

𝑘𝑛(𝑥)
𝑛

= 6 log 10 log 2
𝜋2 ∼ 0.9702.

In particular, Lochs has shown in [57] that the first 1000 decimals of 𝜋 give the first 968 partial
quotients of the continued fraction expansion of 𝜋 − 3.

Note that we recognize in (5.1) the Lyapounov exponent 𝜆𝐺 (the entropy) of the Gauss map, i.e.,

lim
𝑛→∞

𝑘𝑛(𝑥)
𝑛

= log 10
𝜆𝐺

.

This is in fact not surprising to have the Lyapounov exponent 𝜆𝐺 intervening in the statement of
Lochs’ theorem. Indeed, the sensitive dependence on initial conditions (i.e., the fact of having a
positive Lyapounov exponent) governs the accuracy of computations and makes it even decrease
exponentially fast. As quoted from [24], “Due to the sensitive dependence on initial conditions [· · · ]
there is a possibility of obtaining meaningless output after many iterations of a transformation in
computer experiment. Once we begin with sufficiently many digits, however, iterations can be done
without paying much attention to the sensitive dependence on initial data. The optimal number
of significant digits can be given in terms of the Lyapounov exponent.” Still following [24], the
divergence speed for a dynamical system (𝑋,𝑇 ), and for 0 ≤ 𝑥 ≤ 1 − 10−𝑛 with a fixed 𝑛 ≥ 1, is
defined as

𝑉𝑛(𝑥) = min{𝑗 ≥ 1 | |𝑇 𝑗(𝑥) − 𝑇 𝑗(𝑥+ 10−𝑛)| ≥ 10−1}.
This quantity is related to the Lyapounov exponent: 𝑉𝑛(𝑥) ∼ 𝑛/𝜆(𝑥), which implies that on average,
the number of significant digits for 𝑇 (𝑥) becomes 𝑛− 𝜆(𝑥). The computations made in [24] are
based on the maximal number of iterations that can be performed with no loss of precision when
working with 𝑛 significant digits, which can be quantified thanks to the Lyapounov exponent.

A natural question is to understand the dependence of Lochs’ theorem with respect to the
choice of the basis, namely, here, 10. Lochs’s theorem was generalized to more general numerations
and transformations in [21, 30, 54, 6], where it was shown that these generalizations of Lochs’
theorem can be expressed in terms of the ratio of the entropies (i.e., of the Lyapounov exponents)
of the maps involved. In particular, the question of the comparison with 𝛽-expansions (𝛽 > 1) is
thoroughly answered in [6] (thus also covering the case of 𝑞-adic expansions). One expands 𝑥 as∑︀

𝑖≥1
𝜀𝑖

𝛽𝑖 , where 𝜀𝑖 ∈ {0, 1, . . . , ⌈𝛽⌉ − 1} for all 𝑖 ≥ 1. Recall that the Lyapounov exponent 𝜆𝛽 of
the 𝛽-transformation 𝑇𝛽 is equal to log 𝛽. Lochs’ theorem becomes in this more general framework,
with 𝑘𝑛(𝑥) being defined in a similar way as in the decimal case:
Theorem 5. [6] For every 𝑥 ∈ |0, 1]

lim
𝑛→∞

𝑘𝑛(𝑥)
𝑛

= 𝜆𝛽(𝑥)
𝜆𝐺(𝑥) = 6 log 2 log 𝛽

𝜋2 ,

whenever both limit exist simultaneously.
Note that the Lyapounov exponent 𝜆𝐺 of the Gauss map is also expressed as the following limit

(when it exists):
𝜆𝐺(𝑥) = − lim

𝑛→∞

1
𝑛

log |𝑥− 𝑝𝑛/𝑞𝑛|,

where 𝑝𝑛/𝑞𝑛 = [0; 𝑎1, · · · , 𝑎𝑛]. It thus also measures the exponential speed of convergence of the
convergents. Theorem 5 makes Lochs’ theorem more intuitive since, as underlined in [6], “if 𝑥
is well approximated by rational numbers, then the amount of information about the continued
fraction expansion that can be obtained from its 𝛽-expansion is small. Moreover, the larger 𝛽 is
(that is, the more symbols we use to code a number 𝑥), the more information about the continued
fraction expansion we obtain”. Moreover, [6] also provides the Hausdorff dimension of level sets via
multifractal analysis and thermodynamic formalism, and proves that a similar result holds for more
general Markov maps. Lochs’ theorem has also been the object of further extensions for formal
power series with coefficients in a finite field (see [53]).
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