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ESTIMATION OF THE DENSITY OF A DETERMINANTAL
PROCESS

YANNICK BARAUD

Abstract. We consider the problem of estimating the density Π of a determinantal process
N from the observation of n independent copies of it. We use an aggregation procedure
based on robust testing to build our estimator. We establish non-asymptotic risk bounds
with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of
convergence over classes of densities Π of interest.

1. Introduction

The starting point of this work goes back to 2007 when Persi Diaconis visited
our Laboratory Jean-Alexandre Dieudonné in Nice. At that time, he explained
that determinantal processes were emerging in many areas and that there was no
statistical procedure to estimate their distributions. Almost five years later, it still
seems to be the case. The aim of this paper is therefore to contribute to the study
of these processes. Our aim is not only to focus on statistical estimation but also to
discuss some related problems. For example, how the class D of all determinantal
densities can be parametrized? Is there an identifiable way of doing it? Another
natural question, at least for a Statistician, is to understand how the elements
of D can be approximated. Are there some specific parametric sets that should
be used to approximate the densities lying in D? If so, what can be said about
the approximation properties of these sets? Finally, given n independent copies of
a determinantal process N , we propose an estimator of the density Π of N . We
establish non-asymptotic risk bounds for our estimator and deduce uniform rates of
convergence over classes of Π of interest. It turns out that our estimation strategy
is robust with respect to the assumption that N is a determinantal process. This
means that the risk bounds we get are not only valid when Π belongs to the class D
but also when Π is close enough to it (in the Hellinger distance). Our approach is
based on T -estimation as introduced by Birgé [5]. More precisely, we start with a
suitable family of models, which typically consists of compact sets of densities, and
the role of which is to provide a good approximation of the elements of D. Then,
we discretize these models. This results in a family of points (Πm)m∈M of D and
we finally use the data in order to select a suitable point among the Πm. The way
we select this point, which provides our estimator of Π, is based on robust testing
and aims at finding an element among the Πm which is as close as possible to the
target density Π. We establish non-asymptotic risk bounds for our estimator and
show how they depend on the approximation properties of the models we started
from. Under a posteriori assumptions on Π and for a suitable choice of the models,
we specify this bounds and derive rates of convergence.

For an introduction to determinantal processes, we refer the interested reader to
Lyons [11], Hough et al [9] and the books by Anderson et al [2] and Hough et al [10]
as well as the references therein. Part of the popularity of determinantal processes
comes from the fact that they naturally arise in the study of the eigenvalues of large
random matrices. Recently, Borodin et al [6] showed that these processes are also
involved in the process of “caries” when adding a column of numbers.

The paper is organized as follows. In Section 2 we settle the probabilistic back-
ground as well as our main notations and conventions. We introduce determinantal
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processes in Section 3 and tackle the problem of estimating of their densities in
Section 4. Finally, Section 5 is devoted to the proofs.

2. The background

2.1. Notations and conventions. Throughout this paper we use the conventions∑
∅ = 0 and

∏
∅ = 1 and set N∗ = N \ {0} and R∗+ = (0,+∞). Given a finite

set A, |A| denotes the cardinality of A and for z ∈ C, <(z), z and |z| denote the
real part, conjugate and modulus of z respectively. We denote by P the class of all
finite subset J of N∗ and set P∗ = P \ {∅}. Moreover, we set

Λ = {λ ∈ [0, 1]N
∗
, |λ|2 =

∑
j>1

λ2
j < +∞}.

All along, we consider a metric space (X , d) which we endow with its Borel σ-field
B(X ) and a σ-finite measure µ. Roughly speaking, a point process on (X ,B(X )) will
correspond to a random choice of a family of distinct points among X . One should
typically think of X as {1, . . . , p}, N, R or Rp for some positive integer p. When X
is not finite, we denote by H the Hilbert space of measurable and complex-valued
functions φ on (X ,B(X )) satisfying

‖φ‖2 =
ˆ
X
|φ|2 dµ < +∞.

We endow H with the Hermitian inner product defined for φ, ψ ∈ H by

〈φ, ψ〉 =
ˆ
X
φψdµ.

For conveniency, we adopt the convention that 〈., .〉 is linear with respect to the
second argument and not the first one, as usually the case. In order to keep our
notation as simple as possible, when X is finite, say X = {1, . . . , p}, we embed X
into N∗ and use

H = `2(N∗) = {φ ∈ CN∗ ,
∑
i>1
|φ(i)|2 < +∞}.

More precisely, a mapping φ on X = {1, . . . , p} with values in C will be viewed
as a sequence (φ(i))i>1 ∈ `2(N∗) with φ(i) = 0 for all i > p. Since H is an
infinite dimensional Hilbert space (whatever X ), we may define U as the set of
all orthonormal sequences Φ = (φj)j>1 in H. For J ∈ P∗ and Φ ∈ U, we set
ΦJ = (φj)j∈J and given an (ordered) finite subset α of X , denote by Φα,J the
|α| × |J |-matrix

Φα,J = (φj(x))x∈α,j∈J .

We extend this notation for rectangle matrices A with entries in C: Aα,J =
(Ai,j)i∈α,j∈J . Moreover, A∗ denotes the transpose of the conjugate of A, that
is, if A = (Ai,j)i=1,...,k,j=1,...,k′ , A∗ = (Aj,i)j=1,...,k′,i=1,...,k.

Finally, we recall that the Hellinger distance h between two densities p, q on a
measured space (E, E , ν) is defined by the formula

h2(p, q) = 1
2

ˆ
E

(√p−√q)2
dν.

For the sake of simplicity, we shall keep the same notation h throughout this paper
even though the measured space (E, E , µ) may vary.
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2.2. The probabilistic background. In this section, our aim is to introduce the
probabilistic background we shall use throughout this paper. We denote by X the
class of all finite subsets of X and for k ∈ N, denote by Xk the class of those subsets
with cardinality k. By convention, X0 = {∅}. We identify X with the set of finite
measures of the form

α =
∑
x∈α

δx with α ∈ X

and denote the same way α and α so that for all B ∈ B, α(B) means |α ∩B|. We
equip X with the smallest σ-field B(X) for which the mappings

X → N
MB : α 7→ α(B)

are measurable for all B ∈ B(X ). In particular, the subsets Xk = M−1
X (k) are

measurable for all k ∈ N. We endow (X,B(X)) with the measure L defined for all
measurable functions f from X into R+ byˆ

X
f(α)dL(α) = f(∅) +

∑
k>1

1
k!

ˆ
X∨k

f({x1, . . . , xk})dµ(x1) . . . dµ(xk)

where X∨k is the set of all k-uplets (x1, . . . , xk) ∈ X k with distinct coordinates. If
X is finite, say X = {1, . . . , p}, and if µ is the counting measure on X then L is
merely the counting measure on X.

Throughout this paper, a point process N on (X ,B(X )) is a random variable
defined on a probability space (Ω,A,P) with values in (X,B(X), L).

3. Introduction to determinantal processes

In this section, our aim is to define a determinantal process on (X ,B(X )). To
do so, we adopt the point of view developed in Hough et al [9]. In particular, we
start with the simpler case of determinantal projection processes.

3.1. Determinantal projection processes.

Definition 3.1. — Given J ∈ P∗ and Φ ∈ U, a determinantal projection
process N of rank |J | with parameter ΦJ = (φj)j∈J is a point process with density
(with respect to L) given by

ΠΦ
J (α) = |det [Φα,J ]|2 1X|J|(α) for all α ∈ X. (3.1)

When J = ∅, by convention ΠΦ
∅ = δ∅.

If the matrix Φα,J = (φj(x))x∈α,j∈J depends on an ordering on the set α,
|det [Φα,.]| does not and we shall therefore omit to specify one. It follows from
the definition of ΠΦ

J that with probability 1, |N(X )| = |J |. Hence, a determinantal
projection process N of rank |J | consists of |J | distinct points of X . The location of
these points depends on the geometry of the φj for j ∈ J . If the φj are real-valued,
a configuration α = {x1, . . . , xk} of points is all the more likely that the volume of
the parallelepiped based on the |J | vectors ((φj(x1), . . . , φj(xk))j∈J is large.

The fact that ΠΦ
J is a density on X might not be clear at first sight. In fact,

when X = {1, . . . , p} this comes the the Cauchy-Binet formula: if A,B are k × p
and p× k matrices respectively with p > k, the Cauchy-Binet formula asserts that

det [AB] =
∑
α∈Xk

detA{1,...,k},α detBα,{1,...,k}. (3.2)

Again, note that this formula is independent of the choice of an ordering on α. By
using the Cauchy-Binet formula with B = (φj(x))x∈X ,j∈J = ΦX ,J , A = B∗ and by
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using the fact the family (φj)j∈J is orthonormal we getˆ
Xk

ΠΦ
J (α)dL(α) =

∑
α∈Xk

det [Φα,J ] det [Φα,J ] =
∑
α∈Xk

det
[
Φ∗J,α

]
det [Φα,J ]

= det
[
Φ∗J,XΦX ,J

]
= det

[
〈φi, φj〉i,j∈J

]
= 1.

When X is no longer finite, the Cauchy-Binet formula can be extended by using
the identity below from which we can deduce in a similar way as above that ΠΦ

J is
a density.

Proposition 3.2. — Let Φ = (φ1, . . . , φk) and Ψ = (ψ1, . . . , ψk) be two ele-
ments of Hk. We have that

det
[
(〈φi, ψj〉)i,j=1,...,k

]
=
ˆ
Xk

det
[
Φ∗{1,...,k},α

]
det
[
Ψα,{1,...,k}

]
dL(α).

This identity is known for a long time, especially when X is a compact interval
of R and µ the Lebesgue measure on X (see de Bruijn [7]). The general form of
this identity can be found in Baik and Rains [3].

3.2. The general case. As proved in Hough et al [9], the distribution of a (finite)
determinantal process N can be viewed as a mixture of densities of some determi-
nantal projection processes. More precisely, a determinantal process can be defined
as follows.

Definition 3.3. — Let Φ ∈ U and λ ∈ Λ. A determinantal process N with
parameters (Φ, λ) is a point process with density

ΠΦ,λ =
∑
J∈P

pλJΠΦ
J where pλJ =

∏
j∈J

λ2
j

∏
j 6∈J

(1− λ2
j ) for all J ∈ P. (3.3)

We use the convention ΠΦ
∅ = δ∅.

Since λj ∈ [0, 1] for all j > 1 and∑
j>1

λ2
j < +∞, (3.4)

the numbers pλJ are nonnegative and well defined (the infinite product
∏
j 6∈J(1−λ2

j )
converges for all J ∈ P). Besides,∑

J∈P
pλJ =

∏
j>1

(λ2
j + (1− λ2

j )) = 1.

Consequently, ΠΦ,λ is indeed an (at most countable) mixture of densities. Given
J ∈ P∗, it is not difficult to see that for the particular choice λ = λJ = (1j∈J)j>1,
the density ΠΦ,λ is that of a determinantal projection process with parameter ΦJ :
indeed, for J ′ = J , pλJ′ = 1 and for J ′ 6= J , pλJ′ = 0.

As explained in Hough et al [9], another way of defining a determinantal process
is as follows. First simulate a sequence (Zj)j>1 of independent Bernoulli random
variables with respective parameters (λ2

j )j>1. Consider the subset Ĵ of those indices
j > 1 such that Zj = 1. Finally choose N according to a determinantal projection
process of rank |Ĵ | with parameter Φ

Ĵ
. With such a description, Condition (3.4)

is easy to understand: together with the Borel-Cantelli lemma, it ensures that Ĵ is
finite almost surely. It is also clear that the distribution of a determinantal process
remains unchanged if we change the labelling of the pairs ((λj , φj))j>1. That is, for
all bijection σ on N∗, the parameters ((φj)j>1, (λj)j>1) and ((φσ(j))j>1, (λσ(j))j>1)
lead to the same determinantal distribution. In particular, with no loss of generality,
we may assume that the sequence λ = (λj)j>1 is non-increasing with respect to j.
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In the literature, one usually associates to a determinantal process N a square
integrable kernel K on X 2 which defines a self-adjoint compact operator on H by
the formula

H → H

TK : φ →
[
x 7→

ˆ
X
K(x, y)φ(y)dµ(y)

]
. (3.5)

The sequences (λ2
j )j>1 and Φ = (φj)j>1 mentioned above correspond then to the

eigenvalues and associated eigenvectors of TK . Conversely, given the sequences
λ = (λj)j>1 and Φ = (φj)j>1 and provided that µ(X ) < +∞, the kernel K can be
obtained by the fomula (Mercer’s Theorem)

K(x, y) =
∑
j>1

λ2
jφj(x)φj(y) (3.6)

where the series converge absolutely for almost every (x, y) ∈ X 2. When X =
{1, . . . , p}, K is merely (any) p × p Hermitian matrix with eigenvalues in [0, 1].
Interestingly, the kernel K can be related to the distribution of N by the following
formula which holds for all measurable functions f from X into R+

E

[∑
α⊂N

f(α)
]

=
ˆ
X
f(α) det[Kα,α]dL(α) where Kα,α = (K(x, y))x∈α,y∈α .

The mapping α 7→ det[Kα,α] determines the distribution of N and is called the
correlation function. When X = {1, . . . , p}, this formula simply says that for all
α ⊂ X

P [α ⊂ N ] = det[Kα,α].

3.3. Hellinger distance and determinantal process. In the previous section,
we have seen that the distribution of a determinantal process can be parametrized
by a pair (Φ, λ) in U × Λ and that, conversely, any choice of such a pair allows to
define a determinantal process. The aim of this section is to relate the Hellinger
distance between the distributions of two determinantal processes associated to two
distinct pairs (Φ, λ) and (Ψ, γ) to some distance between these pairs. Again, we
start with the simpler case of a determinantal projection process.

3.3.1. Case of a determinantal projection process. Let Φ = (φj)j>1 and Ψ =
(ψj)j>1 be two elements of U and J, J ′ two elements of P. If |J | 6= |J ′|, the
supports of ΠΦ

J and ΠΨ
J′ are disjoint (the densities are supported by X|J| and X|J′|

respectively) and hence h2(ΠΦ
J ,ΠΨ

J′) = 1. If J = J ′ = ∅, ΠΦ
J = ΠΨ

J′ and therefore
h2(ΠΦ

J ,ΠΨ
J′) = 0. Consequently, the only case we need to consider is the one where

|J | = |J ′| > 1. In fact, as already mentioned, we may re-index one of the two
sequences, say Ψ, in order to have J = J ′ without changing the distribution ΠΨ.
By doing so, the following result holds.

Proposition 3.4. — Let J ∈ P∗ and Φ,Ψ ∈ U. We have,

h2(ΠΦ
J ,ΠΨ

J ) = 1−
ˆ
Xk
|det [Φα,J ]| |det [Ψα,J ]| dL(α) (3.7)

6 1−
∣∣∣det

[
(〈φi, ψj〉)i,j∈J

]∣∣∣ .
Moreover,

h2(ΠΦ
J ,ΠΨ

J ) 6 5
2
∑
j∈J
‖φj − ψj‖2 .

Up to constants, the last inequality is sharp. For example, if J = {1}, ΠΦ
{1} and

ΠΨ
{1} correspond to the two densities on (X ,B(X )) given by

ΠΦ
{1}(x) = |φ1(x)|2 and ΠΨ

{1}(x) = |ψ1(x)|2 for all x ∈ X (3.8)
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and hence, if φ1, ψ1 are two nonnegative real-valued functions on (X ,B(X )),

h2
(

ΠΦ
{1},ΠΨ

{1}

)
= 1

2

ˆ
X

(√
ΠΦ
{1} −

√
ΠΨ
{1}

)2
dµ = 1

2 ‖φ1 − ψ1‖2 .

Clearly, this equality is no longer true when the nonnegativity assumption on φ1
and ψ1 is violated. Nevetheless, Proposition 3.4 says that the inequality remains
true (up to a constant). The proof of this proposition is postponed to Section 5.

3.3.2. The general case. Since ΠΦ,λ and ΠΨ,γ are mixtures, the problem of bound-
ing the Hellinger distance between these two densities amounts to understanding
how, more generally, the Hellinger distance behaves with respect to mixtures of
densities. More precisely, let p, q be two densities on the measured space (T, T ,m)
and (Pt)t∈T and (Qt)t∈T two families of densities on a measured space (E,A, ν).
What can we say about the Hellinger distance between the two mixtures

P =
ˆ
T

Ptp(t)dm(t) and Q =
ˆ
T

Qtq(t)dm(t)

when we known how far p is from q and the Pt from the Qt? The following result
gives an answer.

Proposition 3.5. — If m and ν are both σ-finite,

h2(P,Q) 6 2h2(p, q) + 2
ˆ
T

h2(Pt, Qt)q(t)dm(t).

The proof of this result is postponed to Section 5.
We may apply Proposition 3.5 with the choices T = P (m being the counting

measure on P), (E,A, ν) = (X,B(X), L), p = pλ the density defined on P by
pλ(J) = pλJ for all J ∈ P, q = pγ defined analogously and for t = J ∈ P, Pt = ΠΦ

J

and Qt = ΠΨ
J . We obtain the following result the proof of which is detailed in

Section 5.

Proposition 3.6. — Let Φ,Ψ ∈ U and λ, γ ∈ Λ and set

λ̌ =
(

1−
√

1− λ2
j

)
j>1

and γ̌ =
(

1−
√

1− γ2
j

)
j>1

.

The following inequalities hold

h2(pλ, pγ) 6 |λ− γ|2 +
∣∣∣λ̌− γ̌∣∣∣2 (3.9)∑

J∈P
pγJh

2(ΠΦ
J ,ΠΨ

J ) 6
5
2
∑
j>1

γ2
j ‖φj − ψj‖

2
. (3.10)

In particular,

h2(ΠΦ,λ,ΠΨ,γ) 6 2
[
|λ− γ|2 +

∣∣∣λ̌− γ̌∣∣∣2]+ 5
∑
j>1

γ2
j ‖φj − ψj‖

2
. (3.11)

4. Statistical estimation

Throughout this section, we consider a point process N on (X ,B(X )) with den-
sity Π with respect to L. Given n independent copies N1, . . . , Nn of N , our aim is to
estimate Π. One may naturally think of N as being a determinantal process which
means that Π belongs to the set D of all determinantal distributions. Nevertheless,
our result is robust with respect to such an assumption in the sense that Π may not
belong to D. In this case, one may rather consider D as an approximation set for
Π. Before turning to the estimation of Π, we shall first discuss some identifiability
issues which are of independent interest and may therefore be skipped.
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4.1. Identifiability and exterior algebra. When N is a determinantal process,
we may write Π = ΠΦ,λ for some pair (Φ, λ) ∈ U×Λ or, alternatively, define Π from
some kernel K on X 2 as in (3.6). If these two approaches provide a parametrization
of D, none is identifiable. More precisely, two distinct pairs in U × Λ or two
distinct kernels may parametrize the same determinantal distribution. This lack of
identifiability is already true if one restricts to the simpler class of determinantal
projection processes. A simple counter-example can be obtained from (3.8) with
(X ,B(X ), µ) = ([0, 1],B([0, 1], dx) by taking φ1(x) = eix and ψ1(x) = e2ix. In
this case, the corresponding kernels K1(x, y) = ei(x−y) and K2(x, y) = e2i(x−y) are
distinct but both parametrize the uniform distribution on [0, 1]. It is also clear from
this counter-example that there is no hope to estimate φ1, which is not identifiable
either.

Consequently, a question arises. How can we define a one-to-one parametrization
of D? As we shall see, this problem is rather difficult. In fact, we shall partially
answer this question by restricting ourself to the case where X = {1, . . . , p} and
by focusing on the class Dp,k of all determinantal projection distributions of rank
k with k ∈ {1, . . . , p − 1} and p > 2. It follows from Definition 3.1 that for each
element Π ∈ Dp,k, there exists an orthonormal family φ1, . . . , φk (which is certainly
not unique) such that for all α ∈ Xk

Π(α) =
∣∣det

[
Φα,{1,...,k}

]∣∣2 . (4.1)

Let us now consider the exterior algebra E =
∧k Cp consisting of the sums of k-

blades φ1 ∧ . . . ∧ φk with φ1, . . . , φk ∈ Cp. Since we shall only use the algebraic
properties of these objects and more specifically their connections with determi-
nants, we shall not define them and rather refer the interested reader to Mac Lane
and Birkhoff [12] (Chapter XVI, Section 7). Denoting by e1, . . . , ep the canonical
basis of Cp, this exterior algebra E can be viewed as a C-linear space, a basis of
which being given by the k-blades of the form

eα = ei1 ∧ . . . ∧ eik
where α = (i1, . . . , ik) (with 1 6 i1 < i2 . . . < ik 6 p) varies among Xk. This linear
space can be equipped with an Hermitian inner product [., .] for which the elements
(eα)α∈Xk provide an orthonormal family of E. Besides, for a k-blade φ1 ∧ . . . ∧ φk

[eα, φ1 ∧ . . . ∧ φk] = det
[
Φα,{1,...,k}

]
for all α ∈ Xk. (4.2)

Let SE be the unit sphere of (E, [., .]), G the subset of SE gathering the elements
of the form φ1 ∧ . . . ∧ φk for φ1, . . . , φk being an orthonormal family of Cp and G+
be the subset of SE defined by

G+ = {g+ =
∑
α∈Xk

|[eα, g]| eα
∣∣ g ∈ G}.

It follows from (4.1) and (4.2) that the mapping

G+ → Dp,k
g+ 7→ Πg+ : α 7→ |[eα, g]|2 = |[eα, g+]|2

is surjective. It is also clearly one-to-one and provides thus an identifiable parame-
trization of the elements of Dp,k by those of G+. In fact, if ∆ denotes the Hermitian
distance on E defined for g, g′ ∈ E by ∆2(g, g′) = [g − g′, g − g′], (G+,∆) and
(Dp,k,

√
2h) are isometric: by (3.7), for all g+, g

′
+ ∈ G+,

∆2(g+, g
′
+) =

∑
α∈Xk

∣∣[g+, eα]−
[
g′+, eα

]∣∣2 = 2
[

1−
∑
α∈Xk

|[g, eα]| |[g′, eα]|
]

= 2h2(Πg+,Πg′+).
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The metric dimension (in the sense given in Birgé [5]) of a set of densities is usually
closely related to the minimax rate of estimation over this set. Roughly speaking,
if the metric dimension of the set is D, one can expect that the minimax rate be of
order D/n. The above isometry shows that the metric dimension Dp,k of (Dp,k, h)
is the same as that of the subset G+ ⊂ E for the Hermitian distance. In particular
Dp,k is not larger than the dimension of E (in the usual sense, viewed as a linear
space on R), that is Dp,k 6 2

(
p
k

)
. This upper bound is unfortunately very crude

and we shall see that the minimax rates can be much faster. We believe that the
metric dimension of G+ is actually of order kp.

4.2. The main result. Let us now turn to the statistical part of this paper. As
already mentioned, our aim is to estimate the density Π of a point process N from
the observation of n independent copies of it. Our estimation strategy is based on T -
estimation. More precisely, we start with an at most countable family {Πm, m ∈M}
of candidate determinantal densities, the choice of which will be explained below,
and we use a test possessing robustness properties in view of selecting the closest
element to Π among the Πm. We shall not detail the statistical procedure here and
rather refer the reader to Birgé [5] (Theorem 9) or Baraud [4]. Nevertheless, in order
to give an brief account of the estimation strategies described there, let us merely
say that they allow to endow {Πm, m ∈ M} with a (random) binary relation ∝
by means of a statistical test based on the observations. Given a pair (Πm,Πm′) of
distinct candidate densities, we either have Πm ∝ Πm′ or Πm′ ∝ Πm, the test being
build in such way that the former (respectively the latter) relation is likely to occur
when h(Π,Πm) is small compared to h(Π,Πm′) and vice-versa. If the relation ∝
were a total order on {Πm, m ∈M}, a natural idea would be to define the estimator
of Π as the minimal element of ({Πm, m ∈M},∝). Unfortunately, this is not the
case since ∝ fails to be transitive in general. A nice idea, which is actually due to
Birgé, is to define the estimator as the element Π̂ of {Πm, m ∈M} minimizing the
quantity Πm 7→ crit(Πm) = sup{h(Πm,Πm′),Πm′ ∝ Πm}. The property of the test
ensures that the value of criterion at Πm is likely to be large when Πm is far from
Π (provided that there exist some elements Πm′ which are closer to Π) while it is
likely to be small as soon as Πm lies in a small enough neighborhood of Π. With
such an estimation strategy, we can design an estimator possessing the following
property.

Proposition 4.1. — Let Π = {Πm, m ∈ M} be an at most countable family
of densities on (X,B(X), L) and π a sub-probability on M, that is∑

m∈M

π(m) 6 1 and π(m) > 0 for all m ∈M.

There exist a universal constant C > 0 and an estimator Π̂ = Π̂(Π, π) solely based
on N1, . . . , Nn such that whatever the density Π,

CE
[
h2(Π, Π̂)

]
6 inf

m∈M

[
h2(Π,Πm) + log(1/π(m))

n

]
.

Proof. — Proposition 3 page 363 of Baraud [4] (Example 1, Density Estimation)
ensures that the random measure n−1∑n

i=1 δNi with intensity Π satisfies the as-
sumption of Corollary 5 page 373 of Baraud [4]. The result follows by applying this
corollary with s = Π, Λ = M, sλ = Πm and ∆(Πm) = log(1/π(m)) for all m ∈M,
the summation condition (4) of Baraud [4] being satisfied under the assumption
that π is a sub-probability. �

Before turning to the choice of the family {Πm, m ∈M}, let us comment on the
role of π in our result. When π is a probability, it can be interpreted as a prior
on the family {Πm, m ∈ M} and gives thus a bayesian flavor to our approach.
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Intuitively, our procedure tends to advantage densities Πm associated to values of
π(m) which are not too small.

We design our family {Πm, m ∈ M} in view of possessing good approximation
properties with respect to the elements of the class D. Inequality (3.11) tells us that
one can approximate a determinantal density ΠΦ,λ (with respect to the Hellinger
distance) by suitably approximating the sequence λ and the functions φj of Φ
corresponding to those indices j for which λj is large enough. To do so, we introduce
compacts subsets of Λ and H respectively defined as follows. Concerning λ =
(λj)j>1, with no loss of generality, we may assume the sequence is non-increasing
with respect to j and it is therefore natural to introduce compact sets of the form

Λj = {γ ∈ Λ, γj′ = 0 for all j′ > j}

for different values of j > 1. This amounts to approximating λ by the truncated
sequence keeping the j first entries of λ, the others being turned to 0. In order
to approximate the φj , we introduce an at most countable family H = (Hm)m∈M
of compact subsets of (H, ‖ ‖). Examples of such compacts sets will be given in
Section 4.3 for the purpose of providing rates of convergence. Given a compact
subset H of (H, ‖ ‖) and some positive number η, we denote by H[η] a maximal η-
separated subset of H, that is, any subset H ′ ⊂ H of maximal cardinality satisfying
the property: for all φ, φ′ ∈ H ′ with φ 6= φ′, ‖φ− φ′‖ > η. The maximality of H[η]
implies that for all φ ∈ H, there exists φ′ ∈ H[η] such that ‖φ− φ′‖ 6 η. This
means that H[η] is an η-net for the compact set H. By applying Proposition 4.1
to a suitable discretization of the compact sets Λj and Hm, we deduce the result
below. Its proof is detailed in Section 5.

Theorem 4.2. — Let H = (Hm)m∈M be an at most countable families of
compact subsets Hm of (H, ‖ ‖) and let π be a sub-probability onM. There exists
a density estimator Π̂ such that whatever the density Π on (X,B(X), L),

CE
[
h2(Π, Π̂)

]
6 inf

Φ∈U,λ∈Λ

h2(Π,ΠΦ,λ) + inf
j>1

 j∑
j′=1

O(H, π, φj′) +
∑
j′>j

λ2
j′


where for all j > 1,

O(H, π, φj) = inf
m∈M

[
inf

ψ∈Hm
‖φj − ψ‖2 + 1

n
log
(
|Hm[1/

√
n]|n

π(m)

)]
and C is a positive universal constant.

Let us now comment on this risk bound. The term h2(Π,ΠΦ,λ) corresponds
to the approximation of Π by an element of D. It expresses the fact that our
estimation procedure is robust with respect to the assumption that Π belongs to
D. The quantity

∑
j′>j λ

2
j′ is the bias term that we get for approximating λ by

the elements of Λj . Given j > 1 and m ∈ M, infψ∈Hm ‖φj − ψ‖
2 corresponds to

the best approximation of φj by some element of the compact set Hm. Enlarg-
ing Hm (for the inclusion) makes this term smaller but may increase the quantity
n−1 log (|Hm[1/

√
n]|n/π(m)) which measures in some sense the massiveness of Hm.

The quantity O(H, π, φj) corresponds to the best trade-off that can achieved be-
tween these two terms among the family H. It is typically the bound we would get
for estimating the function φj alone by a model selection procedure among H (up
to possible extra logarithmic factors). The sum

∑j
j′=1O(H, π, φj′) is therefore the

risk bound we get for estimating the j first elements φ1, . . . , φj of Φ = (φj′)j′>1.
In order to specify these quantities, let us turn to the following typical situation.

Let (Sm)m∈M be a family of finite-dimensional subspaces of H with respective
dimension Dm > 1 (viewed as a linear space on R) and for m ∈ M, let us take
Hm = S ∩ Sm where S denotes the unit sphere of H. The following results hold.
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Proposition 4.3. — For all n > 1,

log
∣∣Hm[1/

√
n]
∣∣ 6 Dm log(2

√
n+ 1). (4.3)

Besides, for all φ ∈ S

inf
ψ∈Hm

‖φ− ψ‖ 6 4 inf
ψ∈Sm

‖φ− ψ‖ . (4.4)

The first inequality gives a control of the maximal size of a 1/
√
n-separated sub-

set of Hm. The second one shows that Hm and Sm share similar approximation
properties with respect to the elements of S. The proof of the proposition is de-
layed to Section 5. With such a result, we deduce from Theorem 4.2 the following
corollary.

Corollary 4.4. — Let S = (Sm)m∈M be an at most countable family of finite
dimensional subspaces of (H, ‖ ‖) with respective dimensions Dm > 1 and let π be
a sub-probability on M. There exists a density estimator Π̂ = Π̂(S, π) such that
whatever the density Π on (X,B(X), L),

CE
[
h2(Π, Π̂)

]
6 inf

Φ∈U,λ∈Λ

h2(Π,ΠΦ,λ) + inf
j>1

 j∑
j′=1

O(S, π, φj′) +
∑
j′>j

λ2
j′


where for all j > 1,

O(S, π, φj) = inf
m∈M

[
inf
ψ∈Sm

‖φj − ψ‖2 + Dm logn+ log(1/π(m))
n

]
and C is a positive universal constant.

For illustration, let us consider the elementary situation where X = {1, . . . , p}
and assume that Π ∈ Dp,k is a determinantal projection process on X of rank k as
in Section 4.1. In this case, one can choose S = {S0} where S0 is the linear subspace
of dimension p of H = `2(N∗) gathering the elements of the form (u1, . . . , up, 0, . . .)
with (u1, . . . , up) ∈ Cp and π the Dirac mass at 0. Whatever Π ∈ Dp,k there exists
Φ ∈ U with φ1, . . . , φk ∈ S0 ∩ S such that Π = ΠΦ,λ with λ1 = . . . = λk = 1
and λj = 0 for j > k. Since O({S0}, π, φj′) 6 p logn/n for all j′ ∈ {1, . . . , k} and∑
j′>k λ

2
j′ = 0, by applying Corollary 4.4 we derive the risk bound

CE
[
h2(Π, Π̂)

]
6
kp logn

n
for all Π ∈ Dp,k.

This inequality shows that the minimax rate of estimation over Dp,k is not larger
than kp logn/n. Since we expect that the metric dimension of Dp,k is of order kp,
we believe that the logarithmic factor could probably be dropped.

4.3. Rates of convergence. In this section, we assume that X = [0, 1]k for some
integer k > 1. Our aim is to deduce from Corollary 4.4 some rates of convergence
towards Π when it is of the form ΠΦ,λ for some parameter (Φ, λ) ∈ U×Λ. To do so,
we make some a posteriori smoothness assumptions on Φ = (φj)j>1. More precisely,
we assume that the φj are real-valued and belong to classes Bβp,p([0, 1]k) of (possibly)
anisotropic real-valued Besov functions indexed by a number p ∈ (0,+∞] and a
smoothness parameter β = (βi)i=1,...,k ∈ (0,+∞)k. When p = +∞, Bβ∞,∞([0, 1]k)
is merely the class of anisotropic β-Hölderian functions on [0, 1]k, which means that
a function in Bβ∞,∞([0, 1]k) is βi-Holderian on [0, 1] when we keep all the coordinates
fixed expect the i-th. For a more precise definition of these smoothness classes we
refer to Hochmuth [8], at least when k = 2. The definition there can easily be
generalized to larger values of k. Denoting by |φ|β,p,p the Besov semi-norm of a
function φ in Bβp,p([0, 1]k), we set for any R > 0

Uβp,p(R) =
{

(φj)j>1 ∈ U
∣∣ φj ∈ Bβp,p([0, 1]k), |φj |β,p,p 6 R, ∀j > 1

}
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and for j0 ∈ N∗,
Uβp,p(R, j0) =

{
(φj)j>1 ∈ U

∣∣ φj ∈ Bβp,p([0, 1]k), |φj |β,p,p 6 R, ∀j = 1, . . . , j0
}
.

In order to approximate the elements of such class, we use the following result of
Akakpo [1].

Proposition 4.5. — Let p > 0, k ∈ N∗ and r ∈ N. There exist a collection
of linear spaces (Sm)m∈Mk,r

with Mk,r =
⋃
D>1Mk,r(D) and a positive number

Ck,r such that for all positive integer D,
|Mk,r(D)| 6 eCr,kD, sup

m∈Mk,r(D)
dim(Sm) 6 Cr,kD (4.5)

and
inf

m∈Mk,r(D)
inf
ψ∈Sm

‖φ− ψ‖ 6 C(k, r, p)|φ|β,p,pD−β/k (4.6)

for all φ ∈ Bβp,p([0, 1]k) and β satisfying

sup
16i6k

βi < r + 1 and β =
(

1
k

k∑
i=1

1
βi

)−1

> k
[(
p−1 − 2−1) ∨ 0

]
. (4.7)

Hereafter, k being fixed, we consider the family of linear spaces S = (Sm)m∈M
indexed with M =

⋃
r>0Mk,r (omitting thus the dependency with respect to k)

and endowM with the sub-probability π defined by

π(m) = inf
{
e−(1+Cr,k)D−r ∣∣ (r,D) ∈ N× N∗,m ∈Mk,r(D)

}
.

By using the first part of (4.5),∑
m∈M

π(m) 6
∑
r>0

∑
D>1

∑
m∈Mk,r(D)

e−(1+Cr,k)D−r 6
∑
r>0

e−r
∑
D>1

e−D 6 1

and hence π is a sub-probability onM.
By applying our Corollary 4.4 with the family (Sm)m∈M and this sub-probability

π, we deduce the following uniform rates of convergence over the classes of densities
of determinantal projection processes of rank j0 > 1 and parameter Φ belonging to
Uβp,p(R, j0). The proof of the result is delayed to Section 5.

Proposition 4.6. — There exists an estimator Π̂ such that for all j0 > 1,
R > 0, β ∈ (0,+∞)k and p ∈ (0,+∞] such that β > k

[(
p−1 − 2−1) ∨ 0

]
, we have

sup
Φ∈Uβp,p(R,j0)

E
[
h2(ΠΦ

{1,...,j0}, Π̂)
]
6 Cj0

(
logn
n

) 2β
2β+k

,

where C denotes some positive number depending on k,R, p and β only.

When j0 = 1, ΠΦ
{1} is merely a density on (X ,B(X )) of the form |φ1|2 for some

function φ1 of unit norm belonging to Bβp,p([0, 1]k). Note that ΠΦ
{1} = |φ1|2 also

belongs to Bβp,p([0, 1]k) and up to the logarithmic factor, the rate we get is the usual
one for estimating a density in Bβp,p([0, 1]k).

Let us now establish uniform rates of convergence towards more general classes
of determinantal densities. To do so, we also need to make a posteriori assumptions
on λ. More precisely, we assume that it belongs to classes of the form

Λ(a)
α (A) =

λ ∈ Λ
∣∣ ∑
j′>j

λ2
j′ 6 Aj

−α, ∀j > 1


or

Λ(g)
α (A) =

λ ∈ Λ
∣∣ ∑
j′>j

λ2
j′ 6 Ae

−αj , ∀j > 1
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for some A,α > 0. These sets contain sequences of (λj)j>1 which are decreasing
polynomially and exponentially fast respectively. We get the following result the
proof of which is delayed to Section 5.

Proposition 4.7. — There exists an estimator Π̂ such that for all A,α,R > 0,
β ∈ (0,+∞)k and p ∈ (0,+∞] such that β > k

[(
p−1 − 2−1) ∨ 0

]
, we have

sup
(Φ,λ)∈Uβp,p(R)×Λ(a)

α (A)
E
[
h2(ΠΦ,λ, Π̂)

]
6 C

(
logn
n

) 2αβ
(2β+k)(1+α)

(4.8)

sup
(Φ,λ)∈Uβp,p(R)×Λ(g)

α (A)
E
[
h2(ΠΦ,λ, Π̂)

]
6 C

(
(logn)2+k/(2β)

n

) 2β
2β+k

(4.9)

where C denotes some positive number depending on k,A,R, p, α and β only.

5. Proofs

Proof of Proposition 3.4. — The first equality is clear since by (3.1) the Hellinger
affinity between ΠΦ

J and ΠΨ
J equals

ρ(ΠΦ
J ,ΠΨ

J ) =
ˆ
Xk

√
ΠΦ
J (α)ΠΨ

J (α)dL(α)

=
ˆ
Xk
|det [Φα,J ]| |det [Ψα,J ]| dL(α).

For the second part we use Proposition 3.2 and get

1−
ˆ
Xk
|det [Φα,J ]| |det [Ψα,J ]| dL(α) 6 1−

∣∣∣∣ˆ
Xk

det
[
Φ∗J,α

]
det [Ψα,J ] dL(α)

∣∣∣∣
= 1−

∣∣∣det
[
(〈φi, ψj〉)i,j∈J

]∣∣∣ .
Let us now prove the last inequality and set a =

∑
j∈J ‖φj − ψj‖

2. If a > 2/5
then the result is true since the Hellinger distance is bounded by 1. We may
therefore assume that a 6 2/5. In the remaining part of the proof we consider the
linear space MJ×J(C) of |J | × |J | matrices indexed by J with entries in C. We
endowMJ×J(C) with the Hilbert-Schmidt norm defined by

‖A‖ =

∑
i∈J

∑
j∈J
|Ai,j |2

1/2

.

It is well-known that this norm is sub-multiplicative in the sense that for all A,B ∈
MJ×J(C), ‖AB‖ 6 ‖A‖ ‖B‖ and it also satisfies

|Tr(AB)| 6 ‖A‖ ‖B‖ . (5.1)

One can decompose the matrix A = (〈φi, ψj〉)i,j∈J as A = D + B where D is
diagonal with entries Di,i = 〈φi, ψi〉 and B = A−D. Since ‖φi‖ = ‖ψi‖ = 1 for all
i

|Di,i| > <(Di,i) = 1− ‖φi − ψi‖
2

2 > 1− a

2 > 0 ∀i = 1, . . . , k (5.2)

and hence, D is non-singular. We may therefore write

detA = detD det(I +M) with M = D−1B

and since for all i,
∑
j∈J |〈φi, ψj〉|2 6 ‖φi‖

2 = 1,

‖M‖2 =
∑
i∈J

1
|Di,i|2

∑
j 6=i
|〈φi, ψj〉|2 6

∑
i∈J

1− |Di,i|2

|Di,i|2
= ∆2

J
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and by using (5.2) with the fact that u 7→ u−2(1− u2) is decreasing on (0,+∞),

‖M‖2 6 ∆2
J 6

1− a/4
(1− a/2)2

∑
j∈J
‖φj − ψj‖2 6

9
16 < 1. (5.3)

The matrix I+M is therefore non-singular and we may write I+M = eL for some
matrix L ∈MJ×J(C). In fact,

L = M − M2

2 +
∑
p>3

(−1)p−1M
p

p

where the series converge normally in (MJ×J(C), ‖ ‖). Moreover,

det(I +M) = eTr(L).

Since the mapping L 7→ Tr(L) is linear and continuous on (MJ×J(C), ‖ ‖) and
since Tr(M) = 0,

Tr(L) = −Tr(M2)
2 +

∑
p>3

(−1)p−1 Tr(Mp)
p

.

By using (5.1) and the sub-multiplicative property of the Hilbert-Schmidt norm,
we get ∣∣∣∣Tr(L) + Tr(M2)

2

∣∣∣∣ 6∑
p>3

‖M‖p

p
6

‖M‖3

3(1− ‖M‖)

and thus, by using that ‖M‖ 6 ∆J ,

<(Tr(L)) > −<
(

Tr(M2)
2

)
− ‖M‖3

3(1− ‖M‖)

> −‖M‖
2

2

(
1 + 2 ‖M‖

3(1− ‖M‖)

)
> −∆2

J

2

(
1 + 2∆J

3(1−∆J)

)
.

This inequality together with the fact that log u > −(1 − u)/u for all u > 0 leads
to

|detA| = |detD| e<(Tr(L))

> exp
[

1
2
∑
i∈J

log
(
|Di,i|2

)
− ∆2

J

2

(
1 + 2∆J

3(1−∆J)

)]

> exp
[
−∆2

J

2 −
∆2
J

2

(
1 + 2∆J

3(1−∆J)

)]
= exp

[
−c(∆J)∆2

J

]
with c(u) = 1 + u/[3(1 − u)] for u > 0. By using the facts that a 6 2/5, c is
increasing and (5.3), we get

h2(ΠΦ
J ,ΠΨ

J ) 6 1− |detA|

6 1− exp
[
−c
(
a(1− a/4)
(1− a/2)2

)
∆2
J

]
6 c

(
a(1− a/4)
(1− a/2)2

)
(1− a/4)
(1− a/2)2

∑
j∈J
‖φj − ψj‖2

6
5
2
∑
j∈J
‖φj − ψj‖2 .

�
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Proof of Proposition 3.5. — Let us set

R =
ˆ
T

Ptq(t)dm(t).

Since h2(P,Q) 6 2h2(P,R) + 2h2(R,Q), it remains to bound each of those terms
from above. The measures ν and m being σ-finite, we may apply Fubini-Tonnelli
theorem. By using the Cauchy-Schwarz inequality, we bound the first term as
follows.

2h2(P,R) =
ˆ
E

(√
P −

√
R
)2
dν =

ˆ
E

(P −R)2

(
√
P +

√
R)2

dν

6
ˆ
E

(´
T
Pt(p(t)− q(t))dm(t)

)2
P +R

dν

6
ˆ
E

(´
T

√
Pt(
√
p(t)−

√
q(t))

√
Pt(
√
p(t) +

√
q(t))dm(t)

)2

P +R
dν

6
ˆ
E

[ˆ
T

Pt

(√
p(t)−

√
q(t)

)2
dm(t)×

´
T
Pt(
√
p(t) +

√
q(t))2dm(t)

P +R

]
dν

6 2
ˆ
T

[ˆ
E

Pt(x)
(√

p(t)−
√
q(t)

)2
dν(x)

]
dm(t) = 4h2(p, q).

Let us now turn to the second term. By using similar arguments,

2h2(R,Q) 6
ˆ
E

(´
T

(Pt −Qt)q(t)dm(t)
)2

R+Q
dν

=
ˆ
E

(´
T

(
√
Pt −

√
Qt)
√
q(t)× (

√
Pt +

√
Qt)
√
q(t)dm(t)

)2

R+Q
dν

6
ˆ
E

[ˆ
T

(√
Pt −

√
Qt

)2
q(t)dm(t)×

´
T

(
√
Pt +

√
Qt)2q(t)dm(t)

R+Q

]
dν

6 4
ˆ
T

h2(Pt, Qt)q(t)dm(t).

We conclude by adding these two upper bounds. �

Proof of Proposition 3.6. — Inequality (3.11) derives from (3.9), (3.10) and
Proposition 3.5. Hence, it remains to prove (3.9) and (3.10).

Let us prove (3.9). To do so, we set a−1 = e/[2(e−1)] < 1 and prove the stronger
inequality

h2(pλ, pγ) 6 a−1
[
|λ− γ|2 +

∣∣∣λ̌− γ̌∣∣∣2] .
If there exists j > 1 such that |λj − γj |2 +

∣∣∣λ̌j − γ̌j∣∣∣2 > a then the result is clear
since h2(pλ, pγ) 6 1. Otherwise,

h2(pλ, pγ) = 1−
∑
J∈P

∏
j∈J

λjγj
∏
j 6∈J

λ̌j γ̌j = 1−
∏
j>1

(
λjγj + λ̌j γ̌j

)
= 1−

∏
j>1

[
1− 1

2

(
|λj − γj |2 +

∣∣∣λ̌j − γ̌j∣∣∣2)]

= 1− exp

∑
j>1

log
(

1− 1
2

(
|λj − γj |2 +

∣∣∣λ̌j − γ̌j∣∣∣2))
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and by using that log(1− u) > [2a−1 log(1− a/2)]u for all u ∈ [0, a/2], we get

h2(pλ, pγ) 6
− log(1− a/2)

a

∑
j>1

[
|λj − γj |2 +

∣∣∣λ̌j − γ̌j∣∣∣2]

= 1
a

[
|λ− γ|2 +

∣∣∣λ̌− γ̌∣∣∣2]
with our choice of a.

Let us now prove (3.10). By using Proposition 3.4 we have that for all J ∈ P,
J 6= ∅

h2(ΠΦ
J ,ΠΨ

J ) 6 5
2
∑
j∈J
‖φj − ψj‖2 . (5.4)

With the convention
∑

∅ = 0, this inequality remains true when J = ∅ since in
this case ΠΦ

J = ΠΨ
J = δ∅ and thus h2(ΠΦ

J ,ΠΨ
J ) = 0. We may therefore write∑

J∈P
pγJh

2(ΠΦ
J ,ΠΨ

J ) 6
5
2
∑
J∈P

pγJ
∑
j∈J
‖φj − ψj‖2

6
5
2
∑
j>1
‖φj − ψj‖2

∑
J∈P,j∈J

pγJ

6
5
2
∑
j>1

γ2
j ‖φj − ψj‖

2 ∑
J∈P,j∈J

∏
j′∈J,j′ 6=j

γ2
j′

∏
j′ 6∈J

(1− γ2
j′)

= 5
2
∑
j>1

γ2
j ‖φj − ψj‖

2 ∏
j′>1,j′ 6=j

(γ2
j′ + (1− γ2

j′))

= 5
2
∑
j>1

γ2
j ‖φj − ψj‖

2

as claimed. �

Proof of Theorem 4.2. — The proof is based on Proposition 4.1 with suitable
choices of (Πm)m∈M and sub-probability π′ on M.

Let j be some positive integer. We set

Λj [1/n] = {γ ∈ Λ| γ` ∈ {i/n, i = 1, . . . n} if ` 6 j, γ` = 0 otherwise},

and
Uj = {Φ{1,...,j}| Φ ∈ U} ⊂ Hj .

We endow Hj with the distance d(·, ·) defined for (φj)`=1,...,j and (ψj)`=1,...,j in Hj
by

d2((φj)`=1,...,j , (ψj)`=1,...,j) =
j∑
`=1
‖φ` − ψ`‖2 .

For all m1, . . . ,mj ∈ M and Φ ∈ U, there exist φ̃1 ∈ Hm1 [1/
√
n], . . . , φ̃j ∈

Hmj [1/
√
n] such that for all ` ∈ {1, . . . , j},∥∥∥φ` − φ̃`∥∥∥ 6 inf

ψ∈Hm`
‖φ` − ψ‖+ 1/

√
n (5.5)

since Hm` [1/
√
n] is a 1/

√
n-net for Hm` . For such an element (φ̃j)`=1,...,j ∈ Hj ,

there exists Φ ∈ U such that

d((φ̃j)`=1,...,j ,Φ{1,...,j}) 6 inf
Ψ∈U

d((φ̃j)`=1,...,j ,Ψ{1,...,j}) + 1√
n
.

Since Φ only depends on φ̃1, . . . , φ̃j , the cardinality of the set U(j,m1, . . . ,mj) gath-
ering such Φ when φ̃1, . . . , φ̃j vary among Hm1 [1/

√
n], . . . ,Hmj [1/

√
n] respectively
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is not larger than
∏j
`=1 |Hm` [1/

√
n]|. Besides, by using that Φ ∈ U

d(Φ{1,...,j},Φ{1,...,j}) 6 d(Φ{1,...,j}, (φ̃j)`=1,...,j) + inf
Ψ∈U

d((φ̃j)`=1,...,j ,Ψ{1,...,j}) + 1√
n

6 2d(Φ{1,...,j}, (φ̃j)`=1,...,j) + 1√
n

and hence, by using (5.5)

d2(Φ{1,...,j},Φ{1,...,j}) 6 8
j∑
`=1

∥∥∥φj − φ̃j∥∥∥2
+ 2
n

6 16
j∑
`=1

inf
ψ∈Hm`

‖φ` − ψ‖2 + 16j + 2
n

. (5.6)

For all λ ∈ Λ, let us set λ̃ = (λ`1`6j)`>1 ∈ Λ. Since for all ` > 1, λ` ∈ [0, 1], we
have ∣∣∣λ− λ̃∣∣∣2 +

∣∣∣λ̌− ˇ̃
λ
∣∣∣2 =

∑
`>1

(∣∣∣λ` − λ̃`∣∣∣2 +
∣∣∣∣√1− λ2

` −
√

1− λ̃2
`

∣∣∣∣2
)

6
∑
`>j

(
λ2
` +

∣∣∣∣1−√1− λ2
`

∣∣∣∣2
)

6
∑
`>j

λ2
` + λ4

`(
1 +

√
1− λ2

`

)2


6 2

∑
`>j

λ2
` . (5.7)

By construction of Λj [1/n], there exists λ ∈ Λj [1/n] such that
∣∣∣λ̃` − λ`∣∣∣ 6 1/n for

all ` > 1 and by using that
∣∣√1− u2 −

√
1− v2

∣∣ 6 √2|u− v| for all u, v ∈ [0, 1],
for such an element of Λj [1/n],∣∣∣λ− λ̃∣∣∣2 +

∣∣∣λ̌− ˇ̃
λ
∣∣∣2 6

j∑
`=1

(∣∣∣λ` − λ̃`∣∣∣2 +
∣∣∣∣√1− λ2

` −
√

1− λ̃2
`

∣∣∣∣2
)

6 3
j∑
`=1

∣∣∣λ` − λ̃`∣∣∣ 6 3j
n
. (5.8)

By using (5.7) and (5.8) with the triangular inequality, we obtain that∣∣λ− λ∣∣2 +
∣∣∣λ̌− λ̌∣∣∣2 6 4

∑
`>j

λ2
` + 6j

n
. (5.9)

By combining (3.11) with (5.6) and (5.9), for all Φ ∈ U and λ ∈ Λ, there exists
(Φ, λ) ∈ U(j,m1, . . . ,mj)× Λj [1/n] such that

h2(ΠΦ,λ,ΠΦ,λ) 6 2
[∣∣λ− λ∣∣2 +

∣∣∣λ̌− λ̌∣∣∣2]+ 5
∑
j>1

λ
2
j

∥∥φj − φj∥∥2

6 8
∑
`>j

λ2
` + 12j

n
+ 5d2(Φ{1,...,j},Φ{1,...,j})

6 8
∑
`>j

λ2
` + 80

j∑
`=1

inf
ψ∈Hm`

‖φ` − ψ‖2 + 92j + 10
n

. (5.10)
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Let us now set

M =
⋃
j>1

⋃
m1∈M,...,mj∈M

{j} ×
j⊗
`=1
{mj} × U(j,m1, . . . ,mj)× Λj [1/n]

and for m = (j,m1, . . . ,mj ,Ψ, γ) ∈M, Πm = ΠΨ,γ and

π′(m) = 1
(2n)j

j∏
`=1

π(m`)
|Hm` [1/

√
n]|
.

Since for all j > 1 and m1, . . . ,mj ∈M,

|U(j,m1, . . . ,mj)| 6
j∏
`=1

∣∣Hm` [1/
√
n]
∣∣

and |Λj [1/n]| 6 nj ,

∑
m∈M

π′(m) 6
∑
j>1

∑
m1,...,mj∈M

∑
Ψ∈U(j,m1,...,mj)

∑
γ∈Λj [1/n]

1
(2n)j

j∏
`=1

π(m`)
|Hm` [1/

√
n]|

6
∑
j>1

1
2j

( ∑
m∈M

π(m)
)j
6 1

and hence, π′ is a sub-probability on M. By using Proposition 4.1 with the family
of densities (Πm)m∈M and the sub-probability π′ on M, we obtain an estimator Π̂
for which E

[
h2(Π, Π̂)

]
is, up to a universal constant C > 0, not larger than

h2(Π,Πm) + log(1/π′(m))
n

6 2h2(Π,ΠΦ,λ) + 2h2(ΠΦ,λ,Πm) + log(1/π′(m))
n

whatever (Φ, λ) ∈ U×Λ and m ∈M. In particular by using (5.10), for any choices
of j > 1 and m1, . . . ,mj ∈ M, there exists some m = (j,m1, . . . ,mj ,Φ, λ) ∈ M
such that

h2(ΠΦ,λ,Πm) + log(1/π′(m))
n

= h2(ΠΦ,λ,ΠΦ,λ) + 1
n

j∑
`=1

log
(

2 |Hm` [1/
√
n]|n

π(m`)

)

6 102

∑
`>j

λ2
` +

j∑
`=1

(
inf

ψ∈Hm`
‖φ` − ψ‖2 + 1

n
log
(

2 |Hm` [1/
√
n]|n

π(m`)

)
+ 1
n

) .
Finally, we get the result from the fact that Φ, λ, j,m1, . . . ,mj are arbitrary. �

Proof of Proposition 4.3. — For all m ∈ M, Hm[1/
√
n] is a 1/

√
n- separated

subset of the unit ball of a finite-dimensional linear space Sm on R of dimension
Dm. Consequently, for all m ∈M

log
∣∣Hm[1/

√
n]
∣∣ 6 Dm log(2

√
n+ 1).

Let a < 1. If infψ∈Sm ‖φ− ψ‖ > a, then by the triangular inequality, for all ψ′ in
Hm

‖φ− ψ′‖ 6 2 6 2
a

inf
ψ∈Sm

‖φ− ψ‖ .

Otherwise, there exists ψ ∈ Sm such that ‖φ− ψ‖ < a. Hence,

‖ψ‖ > ‖φ‖ − ‖φ− ψ‖ > 1− a > 0.
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In particular, ψ 6= 0 and we may set ψ′ = ψ/ ‖ψ‖ ∈ Hm. Since ‖φ‖ = 1, we have

‖φ− ψ′‖ =
∥∥∥∥φ− ψ

‖ψ‖

∥∥∥∥ =
∥∥∥∥φ− φ

‖ψ‖
+ φ

‖ψ‖
− ψ

‖ψ‖

∥∥∥∥
6

∣∣∣∣‖ψ‖ − ‖φ‖‖ψ‖

∣∣∣∣+ 1
‖ψ‖
‖φ− ψ‖

6
2 ‖φ− ψ‖
‖ψ‖

6
2 ‖φ− ψ‖

1− a .

We get the result by choosing a = 1/2. �

Proofs of Propositions 4.6 and 4.7. — By using the collections of linear spaces
S and our choice of π, and by using some classical optimization with respect to
m ∈M, we get that for all j > 1

O(S, π, φj) 6 C(logn/n)2β/(2β+k)

where C is a positive constant depending on R, k, β and p. Up to the logarithmic
factor, this bounds correspond to the usual estimation rate over Bβp,p([0, 1]k). When
λ = (1j6j0)j>1, ΠΦ,λ = ΠΦ

{1,...,j0} and Corollary 4.4 leads to Proposition 4.6. For
all λ ∈ Λ(a)

α (A), we get from Corollary 4.4 that

C ′E
[
h2(Π, Π̂)

]
6 inf

j>1

[
j(logn/n)2β/(2β+k) +Aj−α

]
.

The minimum is achieved for j of order (n/ logn)2β/[(2β+k)(1+α)], which leads to the
rate (logn/n)2αβ/[(2β+k)(1+α)] as claimed. The other rate is obtained by arguing
similarly and by choosing j of order

2β
α(2β + k)

logn.

�
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