CONFLUENTES

MATHEMATICI

Carlo PANDISCIA

Ergodic Dilation of a Quantum Dynamical System

Tome 6, no 1 (2014), p. 77-91.
http://cml.cedram.org/item?id=CML_2014__6_1_77_0
© Les auteurs et Confluentes Mathematici, 2014.
Tous droits réservés.
L'accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation á fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

ERGODIC DILATION OF A QUANTUM DYNAMICAL SYSTEM

CARLO PANDISCIA

Abstract

Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring's theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.

1. Introduction

A quantum dynamical system is a pair (\mathfrak{M}, Φ) consisting of a von Neumann algebra \mathfrak{M} and a normal, i.e. σ-weakly continuous, unital completely positive map $\Phi: \mathfrak{M} \rightarrow \mathfrak{M}$.

In this work we will prove that is possible to dilate any quantum dynamical system to a quantum dynamical system where the dynamics Φ is a *-homomorphism of a larger von Neumann algebra.

The existence of a dilation for a quantum dynamical system has been proven by Muhly and Solel [8, Prop. 2.24] using the minimal isometric dilation of completely contractive covariant representations of particular W^{*}-correspondences over von Neumann algebras. In contrast, we prove the existence of a dilation for a quantum dynamical system using the Nagy dilations for linear contractions on Hilbert spaces (see [9]) and a particular representation obtained by the Stinespring theorem for completely positive maps (see [13]).

Throughout this paper we will use the abbreviation ucp-map for unital completely positive maps, and we denote by $\mathfrak{B}(\mathcal{H})$ the C^{*}-algebra of all bounded linear operators on a Hilbert space \mathcal{H}.

In the present paper by a dilation of a quantum dynamical system (\mathfrak{M}, Φ), with \mathfrak{M} defined on a Hilbert space \mathcal{H} we mean a quadruple $(\mathfrak{R}, \Theta, \mathcal{K}, Z)$ where (\mathfrak{R}, Θ) is a quantum dynamical system with \mathfrak{R} defined on Hilbert space \mathcal{K} and Θ is a *-homomorphism of \mathfrak{R}; and $Z: \mathcal{H} \rightarrow \mathcal{K}$ is an isometry satisfying the following properties (see [8]):

- $Z \mathfrak{M} Z^{*} \subset \mathfrak{R} ;$
- $Z^{*} \mathfrak{R} Z \subset \mathfrak{M}$;
- $\Phi^{n}(A)=Z^{*} \Theta^{n}\left(Z A Z^{*}\right) Z$ for $A \in \mathfrak{M}$ and $n \in \mathbb{N}$;
- $Z^{*} \Theta^{n}(X) Z=\Phi^{n}\left(Z^{*} X Z\right)$ for $X \in \mathfrak{R}$ and $n \in \mathbb{N}$.

Hence, we have the following commutative diagram:

$$
\begin{array}{rllll}
& \mathfrak{R} \cdot Z^{*} & \xrightarrow{\Theta^{n}} & \mathfrak{R} & \\
& \uparrow & & \downarrow & Z^{*} \cdot Z \\
\mathfrak{M} & \xrightarrow{\Phi^{n}} & \mathfrak{M} &
\end{array}
$$

Notice that in the literature of dynamical systems the dilation problem has taken meanings different from that used here, see e.g. [2, 3, 4, 12].

By a representation of a quantum dynamical system (\mathfrak{M}, Φ) we mean a triple (π, \mathcal{H}, V), where $\pi: \mathfrak{M} \rightarrow \mathfrak{B}(\mathcal{H})$ is a normal faithful representation on the Hilbert space \mathcal{H} and V is an isometry on \mathcal{H} such that

$$
\pi(\Phi(A))=V^{*} \pi(A) V \quad \text { for } \quad A \in \mathfrak{M} .
$$

[^0]Since π is faithful and normal, we identify the quantum dynamical system (\mathfrak{M}, Φ) with $\left(\pi(\mathfrak{M}), \Phi_{\bullet}\right)$ where Φ_{\bullet} is the ucp-map $\Phi_{\bullet}(\pi(A))=V^{*} \pi(A) V$, for any $A \in \mathfrak{M}$. This this leads us to the study of invariant algebras under the action of isometries.

In fact, in Section 3, we consider a concrete C^{*}-algebra \mathfrak{A} with unit of $\mathfrak{B}(\mathcal{H})$ and an isometry V of \mathcal{H} such that

$$
V^{*} \mathfrak{A} V \subset \mathfrak{A} .
$$

If $(\widehat{V}, \widehat{\mathcal{H}}, Z)$ is the minimal unitary dilation of the isometry V, we will prove that there is a C*-algebra $\widehat{\mathfrak{A}}$ of $\mathfrak{B}(\widehat{\mathcal{H}})$ with the following properties:

- $Z \mathfrak{A} Z^{*} \subset \widehat{\mathfrak{A}} ;$
- $Z^{*} \widehat{\mathfrak{A}} Z \subset \mathfrak{A} ;$
- $\widehat{V}^{*} \widehat{\mathfrak{A}} \widehat{V} \subset \widehat{\mathfrak{A}} ;$
- $Z^{*} \widehat{V}^{*} X \widehat{V} Z=V^{*} Z^{*} X Z V$ for $X \in \widehat{\mathfrak{A}}$;
- $Z^{*} \widehat{V}^{*}\left(Z A Z^{*}\right) \widehat{V} Z=V^{*} A V$ for $A \in \mathfrak{A}$.

A dilation of a quantum dynamical system $\left(\pi(\mathfrak{M}), \Phi_{\bullet}\right)$ is given by $(\widehat{\pi(\mathfrak{M})}, \Theta, \widehat{\mathcal{H}}, Z)$, where the *-homomorphism Θ is defined by

$$
\Theta(X):=\widehat{V}^{*} X \widehat{V} \quad \text { for } \quad X \in \widehat{\pi(\mathfrak{M})} .
$$

In Section 4 we prove a Stinespring-type theorem for ucp-maps between C^{*}-algebras with unit, fundamental for the proof of the main result of this paper.

In Section 5 we discuss the ergodic properties of the dilation of a quantum dynamical system. To this end it is worth recalling the notion of φ-adjointness. Let (\mathfrak{M}, Φ) be a quantum dynamical system and let φ be a faithful normal state on \mathfrak{M} with $\varphi \circ \Phi=\varphi$. The dynamics Φ admits a φ-adjoint (see [6]) if there is a normal ucp-map $\Phi_{\natural}: \mathfrak{M} \rightarrow \mathfrak{M}$ such that for each $A, B \in \mathfrak{M}$

$$
\varphi(\Phi(A) B)=\varphi\left(A \Phi_{\natural}(B)\right),
$$

(see $[1,5,7,10]$ for the relation between reversible processes, modular operators and φ-adjointness). If (\mathfrak{R}, Θ) is our dilation of the quantum dynamical system (\mathfrak{M}, Φ), we shall prove that if the dynamics Φ admits a φ-adjoint and

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(A \Phi^{k}(B)\right)-\varphi(A) \varphi(B)\right|=0 \quad \text { for } \quad A, B \in \mathfrak{M}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(Z^{*} X \Theta^{k}(Y) Z\right)-\varphi\left(Z^{*} X Z\right) \varphi\left(Z^{*} Y Z\right)\right|=0 \quad \text { for } \quad X, Y \in \mathfrak{R}
$$

Before proving the existence of a dilation of a quantum dynamical system, it is necessary to recall the fundamental Nagy dilation theorem. This is the subject of the next section.

2. NAGY DILATION THEOREM

If V is an isometry on a Hilbert space \mathcal{H}, there is a triple $(\widehat{V}, \widehat{\mathcal{H}}, Z)$ where $\widehat{\mathcal{H}}$ is a Hilbert space, $Z: \mathcal{H} \rightarrow \widehat{\mathcal{H}}$ is an isometry and \widehat{V} is a unitary operator on $\widehat{\mathcal{H}}$ with

$$
\begin{equation*}
\widehat{V} Z=Z V \tag{2.1}
\end{equation*}
$$

satisfying the following minimal property:

$$
\begin{equation*}
\widehat{\mathcal{H}}=\bigvee_{k \in Z} \widehat{V}^{k} Z \mathcal{H} \tag{2.2}
\end{equation*}
$$

see [9]. However, for our purposes it is still useful to recall here the structure of the unitary minimal dilation of an isometry.

For a Hilbert space \mathcal{K} recall that $l^{2}(\mathcal{K})$ denotes the Hilbert space $\{\xi: \mathbb{N} \rightarrow \mathcal{K}$: $\left.\sum_{n \geqslant 0}|\xi(n)|^{2}<\infty\right\}$. Consider the Hilbert space

$$
\begin{equation*}
\widehat{\mathcal{H}}=\mathcal{H} \oplus l^{2}(F \mathcal{H}) \tag{2.3}
\end{equation*}
$$

and the unitary operator on $\widehat{\mathcal{H}}$ defined as

$$
\widehat{V}=\left|\begin{array}{cc}
V & F \Pi_{0} \tag{2.4}\\
0 & W
\end{array}\right|,
$$

where $F=I-V V^{*}$ and $\Pi_{j}: l^{2}(F \mathcal{H}) \rightarrow \mathcal{H}$ is the canonical projection

$$
\Pi_{j}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=\xi_{j} \quad \text { for } \quad j \in \mathbb{N}
$$

while $W: l^{2}(F \mathcal{H}) \rightarrow l^{2}(F \mathcal{H})$ is the operator

$$
W\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=\left(\xi_{1}, \xi_{, 2} \ldots\right), \quad \text { for } \quad\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right) \in l^{2}(F \mathcal{H}) .
$$

If $Z: \mathcal{H} \rightarrow \widehat{\mathcal{H}}$ is the isometry defined by $Z h=h \oplus 0$ for all $h \in \mathcal{H}$, it is simple to prove that the relations (2.1) and (2.2) are verified.

We observe that for each $n \in \mathbb{N}$ we have

$$
\widehat{V}^{n}=\left|\begin{array}{cc}
V^{n} & C(n) \tag{2.5}\\
0 & W^{n}
\end{array}\right|,
$$

where $C(n): l^{2}(F \mathcal{H}) \rightarrow \mathcal{H}$ are the following operators:

$$
C(n):=\sum_{j=1}^{n} V^{n-j} F \Pi_{j-1} \quad \text { for } n \geqslant 1 .
$$

Furthermore, for each $n, m \in \mathbb{N}$ we obtain:

$$
\Pi_{n} W^{m^{*}}=\Pi_{n+m} \quad \text { and } \quad \Pi_{n} W^{m^{*}}=\left\{\begin{array}{cl}
\Pi_{n-m} & \text { if } n \geqslant m \tag{2.6}\\
0 & \text { if } n<m
\end{array},\right.
$$

since

$$
W^{m^{*}}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=(0,0 \ldots 0, \overbrace{\xi_{0}}^{m+1}, \xi_{1} \ldots),
$$

while for each $k, p \in \mathbb{N}$ we obtain:

$$
\Pi_{p} C(k)^{*}=\left\{\begin{array}{cl}
F V^{(k-p-1)^{*}} & \text { if } k>p \tag{2.7}\\
0 & \text { elsewhere }
\end{array}\right.
$$

since for each $h \in \mathcal{H}$ we have:

$$
\begin{equation*}
C(k)^{*} h=(\overbrace{F V^{(k-1)^{*}} h \ldots F V^{*} h, F h}^{k \text { times }}, 0,0 \ldots) . \tag{2.8}
\end{equation*}
$$

3. IsOMETRIC DILATION AND INVARIANT ALGEBRAS

In this section we consider a concrete unital C^{*}-algebra \mathfrak{A} of $\mathfrak{B}(\mathcal{H})$ and an isometry V on the Hilbert space \mathcal{H} such that

$$
V^{*} \mathfrak{A} V \subset \mathfrak{A} .
$$

If $(\widehat{V}, \widehat{\mathcal{H}}, Z)$ denotes the minimal unitary dilation of the isometry V, we will prove the following proposition:

Proposition 3.1. - There exists a unital C^{*}-algebra $\widehat{\mathfrak{A}} \subseteq \mathfrak{B}(\widehat{\mathcal{H}})$ such that:
(a) $Z \mathfrak{A} Z^{*} \subset \widehat{\mathfrak{A}}$;
(b) $Z^{*} \widehat{\mathfrak{A}} Z \subset \mathfrak{A}$;
(c) $\widehat{V}^{*} \widehat{\mathfrak{A}} \widehat{V} \subset \widehat{\mathfrak{A}}$;
(d) $Z^{*} \widehat{V}^{*} X \widehat{V} Z=V^{*} Z^{*} X Z V$ for $X \in \widehat{\mathfrak{A}}$;
(e) $Z^{*} \widehat{V}^{*}\left(Z A Z^{*}\right) \widehat{V} Z=V^{*} A V$ for $A \in \mathfrak{A}$.

The statements (d) and (e) are straightforward consequences of (a) and (b) and of the relationship $\widehat{V} Z=Z V$. In order to prove the other statements, we must study two classes of operators on the Hilbert space \mathcal{H}, associated to the pair (\mathfrak{A}, V) defined above, which we shall call the gamma and the napla operators.
3.1. Gamma operators. We consider the sequences

$$
\alpha:=\left(n_{1}, n_{2} \ldots n_{r}, A_{1}, A_{2} \ldots A_{r}\right)
$$

with $n_{j} \in \mathbb{N}$ and $A_{j} \in \mathfrak{A}$ for $j=1,2, \ldots, r$. These elements α are called strings of \mathfrak{A} of length $l(\alpha):=r$ and weight $\dot{\alpha}:=\sum_{i=1}^{r} n_{i}$.

To any string α of \mathfrak{A} correspond two operators of $\mathfrak{B}(\mathcal{H})$ defined by

$$
\mid \alpha):=A_{1} V^{n_{1}} A_{2} V^{n_{2}} \cdots A_{r} V^{n_{r}} \quad \text { and } \quad\left(\alpha \mid:=V^{n_{r}^{*}} A_{r} V^{n_{r-1}^{*}} A_{r-1} \cdots V^{n_{1}^{*}} A_{1}\right.
$$

Furthermore for each natural number n we define the sets

$$
\mid n):=\{|\alpha| \in \mathfrak{B}(\mathcal{H}): \dot{\alpha}=n\}
$$

and

$$
\mid n) \mathfrak{A}=\{\mid \alpha) A \in \mathfrak{B}(\mathcal{H}): A \in \mathfrak{A} \text { and } \alpha \text {-string of } \mathfrak{A} \text { with } \dot{\alpha}=n\} .
$$

The symbols ($n \mid$ and $\mathfrak{A}(n \mid$ have analogous meanings.
Proposition 3.2. - Let α and β be strings of \mathfrak{A}. For each $R \in \mathfrak{A}$ we have:

$$
(\alpha|R| \beta) \in \begin{cases}\mathfrak{A}(\dot{\alpha}-\dot{\beta} \mid & \text { if } \dot{\alpha} \geqslant \dot{\beta} \tag{3.1}\\ \mid \dot{\beta}-\dot{\alpha}) \mathfrak{A} & \text { if } \dot{\alpha}<\dot{\beta}\end{cases}
$$

and

$$
\begin{equation*}
\mid \alpha) R \mid \beta) \in \mid \dot{\alpha}+\dot{\beta}) \tag{3.2}
\end{equation*}
$$

Proof. - For each $m, n \in \mathbb{N}$ and $R \in \mathfrak{A}$ we have:

$$
V^{m^{*}} R V^{n} \in \begin{cases}V^{(m-n)^{*}} \mathfrak{A} & \text { if } m \geqslant n \tag{3.3}\\ \mathfrak{A} V^{(n-m)} & \text { if } m<n\end{cases}
$$

Given $\alpha=\left(m_{1}, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ and $\beta=\left(n_{1}, n_{2} \ldots n_{s}, B_{1}, B_{2} \ldots B_{s}\right)$ we have that

$$
(\alpha|R| \beta)=V^{m_{r}^{*}} A_{r} \cdots V^{m_{1}^{*}} A_{1} R B_{1} V^{n_{1}} \cdots B_{s} V^{n_{s}}=(\widetilde{\alpha}|I| \widetilde{\beta})
$$

where $\widetilde{\alpha}$ and $\widetilde{\beta}$ are strings of \mathfrak{A} with $l(\widetilde{\alpha})+l(\widetilde{\beta})=l(\alpha)+l(\beta)-1$. Moreover if $\dot{\alpha} \geqslant \dot{\beta}$ then $\dot{\tilde{\alpha}} \geqslant \dot{\widetilde{\beta}}$, while if $\dot{\alpha}<\dot{\beta}$ then $\dot{\tilde{\alpha}}<\dot{\widetilde{\beta}}$. In fact if $m_{1} \geqslant n_{1}$ we obtain:

$$
(\alpha|R| \beta)=V^{m_{r}^{*}} A_{r} \cdots A_{2} V^{\left(m_{1}-n_{1}\right)^{*}} R_{1} B_{2} V^{n_{2}} \cdots B_{s} V^{n_{s}}=(\widetilde{\alpha}|I| \widetilde{\beta})
$$

where

$$
\begin{aligned}
R_{1} & =V^{n_{1}^{*}} A_{1} R B_{1} V^{n_{1}} \\
\widetilde{\alpha} & =\left(m_{1}-n_{1}, m_{2} \ldots m_{r}, R_{1}, A_{2} \ldots A_{r}\right), \quad \text { and } \\
\widetilde{\beta} & =\left(n_{2} \ldots n_{s}, B_{2} \ldots B_{S}\right)
\end{aligned}
$$

If $m_{1}<n_{1}$ then we can write:

$$
(\alpha|R| \beta)=V^{m_{r}^{*}} A_{r} \cdots V^{m_{2}^{*}} A_{2} R_{1} V^{\left(n_{1}-m_{1}\right)} B_{2} \cdots B_{s} V^{n_{s}}=(\widetilde{\alpha}|I| \widetilde{\beta})
$$

where

$$
\begin{aligned}
R_{1} & =V^{m_{1}^{*}} A_{1} R B_{1} V^{m_{1}} \\
\widetilde{\alpha} & =\left(m_{2} \ldots m_{r}, A_{2} \ldots A_{r}\right) \quad \text { and } \\
\widetilde{\beta} & =\left(n_{1}-m_{1}, n_{2} \ldots n_{s}, R_{1}, B_{2} \ldots B_{S}\right) .
\end{aligned}
$$

The proof of (3.1) follows by induction on the number $\nu=l(\alpha)+l(\beta)$. The equation (3.2) follows by a direct calculation.

Now, given the orthogonal projection $F=I-V V^{*}$ (see Section 2), for each string α of \mathfrak{A} with $\dot{\alpha} \geqslant 1$ we define

$$
\Gamma(\alpha):=\left(\alpha \mid F \Pi_{\dot{\alpha}-1}\right.
$$

which we call the gamma operator associated to (\mathfrak{A}, V). The linear space generated by all gamma operators $\Gamma(\alpha)$ for $\dot{\alpha} \geqslant 1$ will be denoted by $\mathrm{G}(\mathfrak{A}, V)$.

Proposition 3.3. - For any strings α and β of \mathfrak{A} with $\dot{\alpha}, \dot{\beta} \geqslant 1$, we have

$$
\Gamma(\alpha) \Gamma(\beta)^{*} \in \mathfrak{A}
$$

Proof. - Note that

$$
\Gamma(\alpha) \Gamma(\beta)^{*}=\left(\alpha\left|F \Pi_{\dot{\alpha}-1} \Pi_{\dot{\beta}-1}^{*} F\right| \beta\right)=\left\{\begin{array}{cl}
(\alpha|F| \beta) & \text { if } \dot{\alpha}=\dot{\beta} \\
0 & \text { if } \dot{\alpha} \neq \dot{\beta}
\end{array} .\right.
$$

In fact if $\dot{\alpha}=\dot{\beta}$ we have that

$$
(\alpha|F| \beta)=\left(\alpha\left|\left(I-V V^{*}\right)\right| \alpha\right)=(\alpha|I| \alpha)-\left(\alpha\left|V V^{*}\right| \alpha\right) \in \mathfrak{A},
$$

since $\left(\alpha \mid V \in\left(\dot{\alpha}-1 \mid\right.\right.$ and $\left.\left.V^{*} \mid \alpha\right) \in \mid \dot{\alpha}-1\right)$, and $(\dot{\alpha}-1|I| \dot{\alpha}-1) \subset \mathfrak{A}$ by relationship (3.1).

The gamma operators associated to (\mathfrak{A}, V) define an operator system Σ of $\mathfrak{B}\left(l^{2}(F \mathcal{H})\right)$ by

$$
\begin{equation*}
\Sigma:=\left\{T \in \mathfrak{B}\left(l^{2}(F \mathcal{H})\right): \Gamma_{1} T \Gamma_{2}^{*} \in \mathfrak{A} \quad \text { for all } \Gamma_{1}, \Gamma_{2} \in \mathrm{G}(\mathfrak{A}, V)\right\} \tag{3.4}
\end{equation*}
$$

We observe that the unit I belongs to Σ and that

$$
\Gamma_{1}^{*} A \Gamma_{2} \in \Sigma \quad \text { for } \quad A \in \mathfrak{A}
$$

for any pair of gamma operators Γ_{1}, Γ_{2}. Furthermore, it is easy to prove that Σ is norm closed, and it is weakly closed if \mathfrak{A} is a W^{*}-algebra.
3.2. Napla operators. For strings α and β of \mathfrak{A}, any $A \in \mathfrak{A}$ and $k \in \mathbb{N}$ we define

$$
\left.\Delta_{k}(A, \alpha, \beta):=\Pi_{\dot{\alpha}+k}^{*} F \mid \alpha\right) A\left(\beta \mid F \Pi_{\dot{\beta}+k}\right.
$$

We call these operators of $\mathfrak{B}\left(l^{2}(F \mathcal{H})\right)$ the napla operators associated to the pair (\mathfrak{A}, V).

In the next lines we show that the linear space generated by the napla operators form a $*$-algebra. To this end, it is easily seen that $\Delta_{k}(A, \alpha, \beta)^{*}=\Delta_{k}\left(A^{*}, \beta, \alpha\right)$ for any $h, k \geqslant 0$. Moreover we have the following two relationships: if $k+\dot{\beta} \neq h+\dot{\gamma}$, then

$$
\begin{equation*}
\Delta_{k}(A, \alpha, \beta) \Delta_{h}(B, \gamma, \delta)=0 \tag{3.5}
\end{equation*}
$$

while if $k+\dot{\beta}=h+\dot{\gamma}$, then there is ϑ and $R \in \mathfrak{A}$ with

$$
\Delta_{k}(A, \alpha, \beta) \Delta_{h}(B, \gamma, \delta)= \begin{cases}\Delta_{k}(R, \alpha, \vartheta) & \text { if } h-k \geqslant 0, \text { where } \dot{\vartheta}=\dot{\delta}+h-k \tag{3.6}\\ \Delta_{h}(R, \vartheta, \delta) & \text { if } h-k<0, \text { where } \dot{\vartheta}=\dot{\delta}+k-h\end{cases}
$$

In fact, notice that

$$
\left.\Delta_{k}(A, \alpha, \beta) \Delta_{h}(B, \gamma, \delta)=\Pi_{\dot{\alpha}+k}^{*} F \mid \alpha\right) A\left(\beta\left|F \Pi_{\dot{\beta}+k} \Pi_{\dot{\gamma}+h}^{*} F\right| \gamma\right) B\left(\delta \mid F \Pi_{\dot{\delta}+h}\right.
$$

If $k+\dot{\beta} \neq h+\dot{\gamma}$ it follows that $\Pi_{\dot{\beta}+k} \Pi_{\dot{\gamma}+h}^{*}=0$, and this shows (3.5). If $k+\dot{\beta}=h+\dot{\gamma}$, without lost of generality we can assume that $h \geqslant k$. So $\dot{\beta}=\dot{\gamma}+h-k \geqslant \dot{\gamma}$ and, by relationship (3.1), we have that $(\beta|F| \gamma) \in \mathfrak{A}(\dot{\beta}-\dot{\gamma} \mid$. Consequently, $A(\beta|F| \gamma) B(\delta \mid \in$ $\mathfrak{A}(\dot{\delta}+\dot{\beta}-\dot{\gamma} \mid$, and there exists a ϑ string of \mathfrak{A} and an element $R \in \mathfrak{A}$ such that $\dot{\vartheta}=\dot{\delta}+\dot{\beta}-\dot{\gamma}$ and $A(\beta|F| \gamma) B(\delta \mid=R(\vartheta \mid$. Now, since $\dot{\vartheta}=\dot{\delta}+h-k$ we have:

$$
\begin{aligned}
\Delta_{k}(A, \alpha, \beta) \Delta_{h}(B, \gamma, \delta) & \left.=\Pi_{\dot{\alpha}+k}^{*} F \mid \alpha\right) R\left(\vartheta \mid F \Pi_{\dot{\delta}+h}\right. \\
& \left.=\Pi_{\dot{\alpha}+k}^{*} F \mid \alpha\right) R\left(\vartheta \mid F \Pi_{\dot{\vartheta}+k}=\Delta_{k}(R, \alpha, \vartheta)\right.
\end{aligned}
$$

showing relationship (3.6).

Proposition 3.4. - The linear space \mathfrak{X}_{o} generated by the napla operators is a *-subalgebra of $\mathfrak{B}\left(l^{2}(F \mathcal{H})\right)$ included in the operator systems Σ defined in (3.4).

Proof. - From relationships (3.5),(3.6) the linear space \mathfrak{X}_{o} is a ${ }^{*}$-algebra. Furthermore for each pair $\Gamma(\alpha), \Gamma(\beta)$ of gamma operators we obtain:

$$
\Gamma(\alpha) \Delta_{k}(A, \gamma, \delta) \Gamma(\beta)^{*}=\left(\alpha\left|F \Pi_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} F\right| \gamma\right) A\left(\delta\left|F \Pi_{\dot{\delta}+k} \Pi_{\dot{\beta}-1} F\right| \beta\right) \in \mathfrak{A}
$$

since by the relationships (3.1) and (3.2) we have
$\left(\alpha\left|F \Pi_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} F\right| \gamma\right) A\left(\delta\left|F \Pi_{\dot{\delta}+k} \Pi_{\dot{\beta}-1} F\right| \beta\right) \in\left\{\begin{array}{cl}(k+1|\mathfrak{A}| k+1) & \text { if }\left\{\begin{array}{cl}\dot{\alpha}-1=\dot{\gamma}+k, \\ \dot{\beta}-1=\dot{\delta}+k\end{array}\right. \\ 0 & \text { elsewhere }\end{array}\right.$
In fact, if $\dot{\alpha}=\dot{\gamma}+k+1$ we can write

$$
\left(\alpha\left|F \Pi_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} F\right| \gamma\right)=(\alpha|F| \gamma)=(\alpha|I| \gamma)-\left(\alpha\left|V V^{*}\right| \gamma\right) \in \mathfrak{A}(k+1 \mid,
$$

since $(\alpha|I| \gamma) \in \mathfrak{A}\left(k+1 \mid\right.$ and $\left(\alpha\left|V V^{*}\right| \gamma\right) \in \mathfrak{A}(k+1 \mid$. If $\dot{\beta}=\dot{\delta}+k+1$ we have $\left(\delta\left|F \Pi_{\dot{\delta}+k} \Pi_{\dot{\beta}-1} F\right| \beta\right) \in(k+1 \mid \mathfrak{A}$, completing the proof.

The next result is concerned with W-invariance.
Proposition 3.5. - The *-algebra \mathfrak{X}_{o} and the operator system Σ are W invariants:

$$
W^{*} \mathfrak{X}_{o} W \subset \mathfrak{X}_{o} \quad \text { and } \quad W^{*} \Sigma W \subset \Sigma
$$

Proof. - The first inclusion follows by (2.6). Concerning the second one, let $T \in \Sigma$. For each pair $\Gamma(\alpha), \Gamma(\beta)$ of gamma operators

$$
\begin{aligned}
\Gamma(\alpha)\left(W^{*} T W\right) \Gamma(\beta)^{*} & =\left(\alpha\left|F \Pi_{\dot{\alpha}-1} W^{*} T W \Pi_{\dot{\beta}-1} F\right| \beta\right) \\
& =\left(\alpha\left|F \Pi_{\dot{\alpha}-2} T \Pi_{\dot{\beta}-2} F\right| \beta\right) \in \mathfrak{A} V^{*} \Gamma_{1}\left(\alpha_{o}\right) T \Gamma_{2}\left(\beta_{o}\right) V \mathfrak{A},
\end{aligned}
$$

where α_{o} and β_{o} are strings of \mathfrak{A} with $\dot{\alpha}_{o}=\dot{\alpha}-1$ and $\dot{\beta}_{o}=\dot{\beta}-1$. In fact if $\alpha=\left(m_{1}, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$, then, by definition of the gamma operator, there is $i \leqslant r$ with $m_{i} \geqslant 1$ such that

$$
\left(\alpha \mid F \Pi_{\dot{\alpha}-2}=A_{1} \cdots A_{i} V^{*}\left(\alpha_{o} \mid F \Pi_{\dot{\alpha}-2}=A_{1} \cdots A_{i} V^{*} \Gamma\left(\alpha_{o}\right),\right.\right.
$$

where

$$
\alpha_{o}=\left(0, \ldots 0, m_{i}-1, m_{i+1} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)
$$

with $\dot{\alpha}_{o}=\dot{\alpha}-1$. Consequently

$$
\Gamma(\alpha)\left(W^{*} T W\right) \Gamma(\beta)^{*} \subset V^{*} \mathfrak{A} V \subset \mathfrak{A}
$$

completing the proof.
3.3. The algebra generated by the napla and gamma operators. Let \mathfrak{X} be the closure in norm of the ${ }^{*}$-algebra \mathfrak{X}_{o} of the apla operators previously defined. Since the operator system Σ defined in (3.4) is a norm closed set, we have $\mathfrak{X} \subset \Sigma$. Notice that in case \mathfrak{A} is a von Neumann algebra of $\mathfrak{B}(\mathcal{H})$, the operator system Σ is weakly closed and $\mathfrak{X}_{o}^{\prime \prime} \subset \Sigma$.

Proposition 3.6. - The set

$$
\mathcal{S}=\left\{\left|\begin{array}{cc}
A & \Gamma_{1} \tag{3.7}\\
\Gamma_{2}^{*} & T
\end{array}\right|: A \in \mathfrak{A}, T \in \mathfrak{X} \text { and } \Gamma_{1}, \Gamma_{2} \in G(\mathfrak{A}, V)\right\}
$$

is an operator system of $\mathfrak{B}(\widehat{\mathcal{H}})$ such that:

$$
\widehat{V}^{*} \mathcal{S} \widehat{V} \subset \mathcal{S}
$$

Furthermore

$$
\widehat{V}^{*} \mathcal{A}^{*}(\mathcal{S}) \widehat{V} \subset \mathcal{A}^{*}(\mathcal{S})
$$

where $\mathcal{A}^{*}(\mathcal{S})$ is the ${ }^{*}$-algebra generated by the set \mathcal{S}.

Proof. - From relationship (2.4) we obtain:
$\widehat{V}^{*} \mathcal{S} \widehat{V}=\left|\begin{array}{cc}V^{*} A V & V^{*} A C(1)+V^{*} \Gamma_{1} W \\ C(1)^{*} A V+W^{*} \Gamma_{2}^{*} V & C(1)^{*} A C(1)+W^{*} \Gamma_{2}^{*} C(1)+C(1)^{*} \Gamma_{1} W+W^{*} T W\end{array}\right|$
We observe that $V^{*} \Gamma(\alpha) W$ and $V^{*} A C(1)$ are gamma operators associated to the pair (\mathfrak{A}, V), while $C(1)^{*} A C(1), C(1)^{*} \Gamma(\alpha) W$ and $W^{*} T W$ are operators belonging to \mathfrak{X}. In fact we have $V^{*} A C(1)=V^{*} A F \Pi_{0}=\Gamma(\vartheta)$ with $\vartheta=(1, A)$; while if

$$
\alpha=\left(m_{1}, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)
$$

then $V^{*} \Gamma(\alpha) W=V^{*}\left(\alpha \mid F \Pi_{\dot{\alpha}-1} W=\Gamma(\vartheta)\right.$, with

$$
\vartheta=\left(m_{1}+1, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)
$$

since $\Pi_{\dot{\alpha}-1} W=\Pi_{\dot{\alpha}}$. Furthermore

$$
C(1)^{*} A C(1)=\Pi_{0}^{*} F A F \Pi_{0}=\Delta_{0}(A, \alpha, \beta)
$$

with $\alpha=\beta=(0, I)$; while

$$
C(1)^{*} \Gamma(\alpha) W=\Pi_{0}^{*} F\left(\alpha\left|F \Pi_{\dot{\alpha}-1} W=\Pi_{0}^{*} F\right| \gamma\right)\left(\alpha \mid F \Pi_{\dot{\alpha}+0}=\Delta_{0}(I, \gamma, \alpha)\right.
$$

with $\gamma=(0, I)$, where the last statement follows from the fact that \widehat{V} is unitary.
We observe that $\mathcal{A}^{*}(\mathcal{S})$, the ${ }^{*}$-algebra generated by the operator system \mathcal{S} defined in (3.7), is the linear space generated by the following elements of $\mathfrak{B}(\widehat{\mathcal{H}})$:

$$
\left|\begin{array}{cc}
A_{1} & A_{2} \Gamma_{1} T_{1} \\
T_{2} \Gamma_{2}^{*} A_{3} & T_{3}
\end{array}\right|
$$

with $A_{i} \in \mathfrak{A}, \Gamma_{j} \in \mathrm{G}(\mathfrak{A}, V)$ and $T_{k} \in \mathfrak{X}$ for all $i, k=1,2,3$ and $j=1,2$. We list here some easy properties of the ${ }^{*}$-algebra $\mathcal{A}^{*}(\mathcal{S})$:
(a) $Z \mathfrak{A} Z^{*} \subset \mathcal{A}^{*}(\mathcal{S})$;
(b) $Z^{*} \mathcal{A}^{*}(\mathcal{S}) Z \subset \mathfrak{A}$;
(c) $\widehat{V}^{*} \mathcal{A}^{*}(\mathcal{S}) \widehat{V} \subset \mathcal{A}^{*}(\mathcal{S})$.

Furthermore, since $\widehat{V} Z=Z V$ we have:
(d) $Z^{*} \widehat{V}^{*} X \widehat{V} Z=V^{*} Z^{*} X Z V$;
(e) $Z^{*} \widehat{V}^{*}\left(Z A Z^{*}\right) \widehat{V} Z=V^{*} A V$.

Using these results we prove the Proposition 3.1.
Proof of Proposition 3.1.- Let $\widehat{\mathfrak{A}}$ be the C^{*}-subalgebra of $\mathcal{B}(\widehat{\mathcal{H}})$ generated by

$$
\begin{equation*}
\bigcup_{k=0}^{\infty} \widehat{V}^{k^{*}} Z A Z^{*} \widehat{V}^{k} \quad \text { for } \quad A \in \mathfrak{A} \tag{3.8}
\end{equation*}
$$

For each natural number k we have that $\widehat{V}^{k^{*}} Z \mathfrak{A} Z^{*} \widehat{V}^{k} \subset \widehat{V}^{k^{*}} \mathcal{S} \widehat{V}^{k} \subset \mathcal{S}$, since $Z \mathfrak{A} Z^{*} \subset \mathcal{S}$; so $\widehat{\mathfrak{A}} \subset C^{*}(\mathcal{S})$, the norm closure of the ${ }^{*}$-algebra $\mathcal{A}^{*}(\mathcal{S})$. It is easily seen that $\widehat{\mathfrak{A}}$ satisfies the conditions of Proposition 3.1, completing the proof.

Remark 3.7. - It is straightforward to show that if \mathfrak{A} is a von Neumann algebra of $\mathcal{B}(\mathcal{H})$, then the Proposition 3.1 still holds true, with $\widehat{\mathfrak{A}}$ the von Neumann algebra of $\mathcal{B}(\widehat{\mathcal{H}})$ generated by the elements (3.8).

4. Stinespring representation and quantum dynamical systems

We consider a concrete C^{*}-algebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ with unit and a ucp-map $\Phi: \mathfrak{A} \rightarrow$ \mathfrak{A}.
On the algebraic tensor product $\mathfrak{A} \otimes \mathcal{H}$ we can define a semi-inner product by

$$
\left\langle A_{1} \otimes h_{1}, A_{2} \otimes h_{2}\right\rangle_{\Phi}:=\left\langle h_{1}, \Phi\left(A_{1}^{*} A_{2}\right) h_{2}\right\rangle_{\mathcal{H}}
$$

for all $A_{1}, A_{2} \in \mathfrak{A}$ and $h_{1}, h_{2} \in \mathcal{H}$. We denote by $\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ the Hilbert space completion of the quotient space of $\mathfrak{A} \otimes \mathcal{H}$ by the linear subspace $\left\{\mathrm{T} \in \mathfrak{A} \otimes \mathcal{H}:\langle\mathrm{T}, \mathrm{T}\rangle_{\Phi}=0\right\}$,
with inner product induced by $\langle\cdot, \cdot\rangle_{\Phi}$. Furthermore, we denote the image of $A \otimes h \in$ $\mathfrak{A} \otimes \mathcal{H}$ in $\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ by $A \bar{\otimes}_{\Phi} h ;$ so

$$
\left\langle A_{1} \bar{\otimes}_{\Phi} h_{1}, A_{2} \bar{\otimes}_{\Phi} h_{2}\right\rangle_{\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}}=\left\langle h_{1}, \Phi\left(A_{1}^{*} A_{2}\right) h_{2}\right\rangle_{\mathcal{H}}
$$

for all $A_{1}, A_{2} \in \mathfrak{A}$ and $h_{1}, h_{2} \in \mathcal{H}$.
Moreover, we define a representation $\sigma_{\Phi}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}\right)$ by

$$
\sigma_{\Phi}(A)\left(X \bar{\otimes}_{\Phi} h\right):=A X \otimes_{\Phi} h \quad \text { for } \quad A \in \mathfrak{A} \text { and } X \bar{\otimes}_{\Phi} h \in \mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}
$$

and a linear isometry $V_{\Phi}: \mathcal{H} \rightarrow \mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ by

$$
V_{\Phi} h:=1 \bar{\otimes}_{\Phi} h \quad \text { for } \quad h \in \mathcal{H},
$$

satisfying the equation

$$
\begin{equation*}
\Phi(A)=V_{\Phi}^{*} \sigma_{\Phi}(A) V_{\Phi} \quad \text { for } \quad A \in \mathfrak{A} \tag{4.1}
\end{equation*}
$$

The triple $\left(V_{\Phi}, \sigma_{\Phi}, \mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}\right)$ is the Stinespring representation of the ucp-map Φ (see [13]).

Our aim is to analyze the behaviour of the isometry V_{Φ} and of its adjoint V_{Φ}^{*} on the multiplicative domain of the ucp-map Φ. To this end note that the adjoint V_{Φ}^{*} verifies $V_{\Phi}^{*} A \bar{\otimes}_{\Phi} h=\Phi(A) h$ for any $A \in \mathfrak{A}$ and $h \in \mathcal{H}$. Furthermore, recall that the multiplicative domain of the ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ is the C^{*}-subalgebra with unit of \mathfrak{A} defined as

$$
\mathcal{D}_{\Phi}=\left\{A \in \mathfrak{A}: \Phi\left(A^{*}\right) \Phi(A)=\Phi\left(A^{*} A\right) \text { and } \Phi(A) \Phi\left(A^{*}\right)=\Phi\left(A A^{*}\right)\right\}
$$

see [11]. The multiplicative domain is characterized by the following relationship

$$
\begin{equation*}
A \in \mathcal{D}_{\Phi} \Longleftrightarrow \sigma_{\Phi}(A) V_{\Phi} V_{\Phi}^{*}=V_{\Phi} V_{\Phi}^{*} \sigma_{\Phi}(A) \tag{4.2}
\end{equation*}
$$

In fact, we first note that

$$
A \bar{\otimes}_{\Phi} h=1 \bar{\otimes}_{\Phi} \Phi(A) h \quad \text { for all } h \in \mathcal{H} \quad \Longleftrightarrow \quad \Phi\left(A^{*} A\right)=\Phi\left(A^{*}\right) \Phi(A)
$$

since

$$
\left|A \bar{\otimes}_{\Phi} h-1 \bar{\otimes}_{\Phi} \Phi(A) h\right|^{2}=\left\langle h, \Phi\left(A^{*} A\right) h\right\rangle-\left\langle h, \Phi\left(A^{*}\right) \Phi(A) h\right\rangle .
$$

Consequently, for any $A \in \mathcal{D}_{\Phi}$ and $B \bar{\otimes}_{\Phi} h \in \mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ we have

$$
\begin{aligned}
\sigma_{\Phi}(A) V_{\Phi} V_{\Phi}^{*} B \bar{\otimes}_{\Phi} h & =A \bar{\otimes}_{\Phi} \Phi(B) h=1 \bar{\otimes}_{\Phi} \Phi(A) \Phi(B) h \\
& =1 \bar{\otimes}_{\Phi} \Phi(A B) h=V_{\Phi} V_{\Phi}^{*} \sigma_{\Phi}(A) B \bar{\otimes}_{\Phi} h
\end{aligned}
$$

where we have used the property of the multiplicative domain $\Phi(A) \Phi(B)=\Phi(A B)$ (see [13]). Conversely, if $\sigma_{\Phi}(A) V_{\Phi} V_{\Phi}^{*}=V_{\Phi} V_{\Phi}^{*} \sigma_{\Phi}(A)$ then

$$
\begin{aligned}
\Phi\left(A^{*} A\right) & =V_{\Phi}^{*} \sigma_{\Phi}\left(A^{*} A\right) V_{\Phi}=V_{\Phi}^{*} \sigma_{\Phi}\left(A^{*}\right) \sigma_{\Phi}(A) V_{\Phi} V_{\Phi}^{*} V_{\Phi} \\
& =V_{\Phi}^{*} \sigma_{\Phi}\left(A^{*}\right) V_{\Phi} V_{\Phi}^{*} \sigma_{\Phi}(A) V_{\Phi}=\Phi\left(A^{*}\right) \Phi(A),
\end{aligned}
$$

and this completes the proof of (4.2).
It is easily seen from (4.2) that Φ is a *homomorphism if, and only if, V_{Φ} is a unitary operator.

The next steps provides some simple applications of the Stinespring representation of ucp-maps.

Let \mathfrak{A} be a concrete C^{*}-subalgebra with unit of $\mathcal{B}(\mathcal{H})$ and $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ a ucp-map. By the Stinespring's theorem we obtain a triple $\left(V_{0}, \sigma_{1}, \mathcal{H}_{1}\right)$, with $\mathcal{H}_{1}=\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ such that $\Phi(A)=V_{0}^{*} \sigma_{1}(A) V_{0}$ for all $A \in \mathfrak{A}$. Moreover the application $\Phi_{1}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ defined by $\Phi_{1}(A):=\sigma_{1}(\Phi(A))$, for $A \in \mathfrak{A}$, is a ucp-map because it is a composition of ucp-maps. By applying the Stinespring's theorem to Φ_{1}, we have a new triple $\left(V_{1}, \sigma_{2}, \mathcal{H}_{2}\right)$, with $\mathcal{H}_{2}=\mathfrak{A} \bar{\otimes}_{\Phi_{1}} \mathcal{H}_{1}$ such that $\Phi_{1}(A)=V_{1}^{*} \sigma_{2}(A) V_{1}$ for all $A \in \mathfrak{A}$. So, iterating this procedure we obtain, for each natural number $n \geqslant 1$, a ucp-map $\Phi_{n}: \mathfrak{A} \rightarrow \mathfrak{B}\left(\mathcal{H}_{n}\right)$ such that

$$
\begin{equation*}
\Phi_{n}(A)=\sigma_{n}(\Phi(A)) \quad \text { for } \quad A \in \mathfrak{A}, \tag{4.3}
\end{equation*}
$$

and a new triple $\left(V_{n}, \sigma_{n+1}, \mathcal{H}_{n+1}\right)$, where $\mathcal{H}_{n+1}=\mathfrak{A} \bar{\otimes}_{\Phi_{n}} \mathcal{H}_{n}$, and an isometry V_{n} : $\mathcal{H}_{n} \rightarrow \mathcal{H}_{n+1}$ such that $\Phi_{n}(A)=V_{n}^{*} \sigma_{n+1}(A) V_{n}$ for all $A \in \mathfrak{A}$.

Now we prove the following Stinespring-type theorem (see [14]):
Proposition 4.1. - Let \mathfrak{A} be a concrete C^{*}-algebra with unit of $\mathcal{B}(\mathcal{H})$ and $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ a ucp-map. There exists an injective representation $\left(\pi_{\infty}, \mathcal{H}_{\infty}\right)$ of \mathfrak{A} and a linear isometry V_{∞} on the Hilbert Space \mathcal{H}_{∞} such that

$$
\pi_{\infty}(\Phi(A))=V_{\infty}^{*} \pi_{\infty}(A) V_{\infty} \quad \text { for } \quad A \in \mathfrak{A}
$$

Furthermore, $A \in \mathcal{D}_{\Phi}$ if, and only if, $V_{\infty} V_{\infty}^{*} \pi_{\infty}(A)=\pi_{\infty}(A) V_{\infty} V_{\infty}^{*}$.
Proof. - We consider for each natural number n the ucp-map $\Phi_{n}: \mathfrak{A} \rightarrow \mathfrak{B}\left(\mathcal{H}_{n}\right)$ defined in (4.3) and its Stinespring representation $\left(V_{n}, \sigma_{n+1}, \mathcal{H}_{n+1}\right)$ with $\mathcal{H}_{0}=\mathcal{H}$ and $\sigma_{0}=i d$. Then, we obtain a faithful representation $\pi_{\infty}: \mathfrak{A} \rightarrow \mathfrak{B}\left(\mathcal{H}_{\infty}\right)$ on the Hilbert space $\mathcal{H}_{\infty}=\underset{n \geqslant 0}{\bigoplus} \mathcal{H}_{n}$ by defining

$$
\pi_{\infty}(A):=\bigoplus_{n \geqslant 0} \sigma_{n}(A) \quad \text { for } \quad A \in \mathfrak{A}
$$

Now, let $V_{\infty}: \mathcal{H}_{\infty} \rightarrow \mathcal{H}_{\infty}$ be the isometry defined by

$$
\begin{equation*}
V_{\infty}\left(h_{0}, h_{1} \ldots h_{n} \ldots\right):=\left(0, V_{0} h_{0}, V_{1} h_{1} \ldots V_{n} h_{n} \ldots\right), \tag{4.4}
\end{equation*}
$$

for all $h_{n} \in \mathcal{H}_{n}$ and $n \in \mathbb{N}$. Note that the adjoint of V_{∞} is

$$
\begin{equation*}
V_{\infty}^{*}\left(h_{0}, h_{1}, \ldots h_{n} \ldots\right)=\left(V_{0}^{*} h_{1}, V_{1}^{*} h_{2} \ldots V_{n-1}^{*} h_{n} \ldots\right) \tag{4.5}
\end{equation*}
$$

for all $h_{n} \in \mathcal{H}_{n}$ and $n \in \mathbb{N}$. Hence, for any n and $h_{n} \in \mathcal{H}_{n}$ we have

$$
V_{\infty}^{*} \pi_{\infty}(A) V_{\infty} \underset{n \geqslant 0}{\bigoplus} h_{n}=\bigoplus_{n \geqslant 0} \Phi_{n}(A) h_{n}=\bigoplus_{n \geqslant 0} \sigma_{n}(\Phi(A)) h_{n}=\pi_{\infty}(\Phi(A)) \bigoplus_{n \geqslant 0} h_{n} .
$$

Finally, the last statement easily follows by 4.2 .
In fact if $A \in \mathcal{D}_{\Phi}$ then $A \in \mathcal{D}_{\Phi_{n}}$ for all natural number n, where $\mathcal{D}_{\Phi_{n}}$ is the multiplicative domain of the ucp-map (4.3), then

$$
V_{\infty} V_{\infty}^{*} \in \pi_{\infty}\left(\bigcap_{n \geqslant 0} \mathcal{D}_{\Phi_{n}}\right)^{\prime} \subset \pi_{\infty}\left(\mathcal{D}_{\Phi}\right)^{\prime} .
$$

We have the following remark on the existence of a representation of a quantum dynamical system:

Remark 4.2. - Let (\mathfrak{M}, Φ) be a quantum dynamical system. The injective representation $\pi_{\infty}(A): \mathfrak{M} \rightarrow \mathfrak{B}\left(\mathcal{H}_{\infty}\right)$ defined in proposition 4.1 is normal, since the Stinespring representation $\sigma_{\Phi}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{L}_{\Phi}\right)$ is a normal map. Then $\left(\pi_{\infty}, \mathcal{H}_{\infty}, V_{\infty}\right)$ is a representation of the quantum dynamical system (\mathfrak{M}, Φ).
4.1. Dilation of a quantum dynamical system. We use the results of the previous section to analyze the problem of dilation of quantum dynamical systems.

Consider a ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ with \mathfrak{A} a concrete C*-algebra with unit of $\mathfrak{B}(\mathcal{H})$. If $\left(\mathcal{H}_{\infty}, \pi_{\infty}, V_{\infty}\right)$ is the Stinespring representation of Proposition 4.1, then

$$
V_{\infty}^{*} \pi_{\infty}(\mathfrak{A}) V_{\infty} \subset \pi_{\infty}\left(\Phi(\mathfrak{A}) \subset \pi_{\infty}(\mathfrak{A})\right.
$$

Hence, we can define a normal ucp-map $\Phi_{\infty}: \pi_{\infty}(\mathfrak{A})^{\prime \prime} \rightarrow \pi_{\infty}(\mathfrak{A})^{\prime \prime}$ as

$$
\Phi_{\infty}(B):=V_{\infty}^{*} B V_{\infty} \quad \text { for } \quad B \in \pi_{\infty}(\mathfrak{A})^{\prime \prime}
$$

Clearly we have that $\Phi_{\infty}\left(\pi_{\infty}(A)\right)=\pi_{\infty}(\Phi(A))$ for all $A \in \mathfrak{A}$.
Now, if $(\widehat{V}, \widehat{\mathcal{H}}, Z)$ is minimal unitary dilation of the isometry $V_{\infty}: \mathcal{H}_{\infty} \rightarrow \mathcal{H}_{\infty}$, then by Proposition 3.1 there is a C^{*}-algebra with unit $\widehat{\mathfrak{A}}$ of $\mathcal{B}(\widehat{\mathcal{H}})$ such that:
(a) $Z \pi_{\infty}(\mathfrak{A}) Z^{*} \subset \widehat{\mathfrak{A}}$,
(b) $Z^{*} \widehat{\mathfrak{A}} Z=\pi_{\infty}(\mathfrak{A})$,
(c) $\widehat{V}^{*} \widehat{\mathfrak{A}} \widehat{V} \subset \widehat{\mathfrak{A}}$.

Furthermore, we have a *-homomorphism $\widehat{\Phi}: \widehat{\mathfrak{A}} \rightarrow \widehat{\mathfrak{A}}$ defined by

$$
\begin{equation*}
\widehat{\Phi}(X)=\widehat{V}^{*} X \widehat{V} \quad \text { for } \quad X \in \widehat{\mathfrak{A}}, \tag{4.6}
\end{equation*}
$$

such that for any $A \in \mathfrak{A}, X \in \widehat{\mathfrak{A}}$ and any natural number n we have:

$$
\pi_{\infty}\left(\Phi^{n}(A)\right)=Z^{*} \widehat{\Phi}^{n}\left(Z A Z^{*}\right) Z
$$

and

$$
\pi_{\infty}\left(\Phi^{n}\left(Z^{*} X Z\right)\right)=Z^{*} \widehat{\Phi}^{n}(X) Z
$$

In conclusion, it is straightforward to prove that $\left(\widehat{\mathfrak{A}}^{\prime \prime}, \Theta, \widehat{\mathcal{H}}, Z\right)$, with $\Theta: \widehat{\mathfrak{A}}^{\prime \prime} \rightarrow \widehat{\mathfrak{A}}^{\prime \prime}$ the normal *-homomorphism

$$
\Theta(X):=\widehat{V}^{*} X \widehat{V} \quad \text { for } \quad X \in \widehat{\mathfrak{A}}^{\prime \prime}
$$

is a dilation of the quantum dynamical system $\left(\pi_{\infty}(\mathfrak{A})^{\prime \prime}, \Phi_{\infty}\right)$ above defined.
Summarizing, the quantum dynamical system (\mathfrak{M}, Φ) can be identified with its associated quantum dynamical system $\left(\pi_{\infty}(\mathfrak{M}), \Phi_{\infty}\right)$ which admits the dilation $\left(\widehat{\pi_{\infty}(\mathfrak{M})}, \Theta, \widehat{\mathcal{H}}, Z\right)$.
4.2. The deterministic part of a quantum dynamical system and its dilations. In this section we study which relationships there are between the dilations and the deterministic part of a quantum dynamical system.

Let $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ be a ucp-map as described in previous section and $C^{*}(\mathcal{S})$ the C^{*}-algebra generated by the operator systems \mathcal{S} defined in (3.7).

We recall that $\mathcal{S} \subset \mathcal{A}^{*}(\mathcal{S}) \subset C^{*}(\mathcal{S}) \subset \mathfrak{B}(\widehat{\mathcal{H}})$ where $\left.\widehat{\mathcal{H}}=\mathcal{H}_{\infty} \oplus l^{2}\left(F \mathcal{H}_{\infty}\right)\right)$ with $F=I-V_{\infty} V_{\infty}^{*}$. By relationships (a), (b) and (c) of Section 3.3, we can define a *-homomorphism $\Lambda: C^{*}(\mathcal{S}) \rightarrow C^{*}(\mathcal{S})$ as follows:

$$
\begin{equation*}
\Lambda(X)=\widehat{V}^{*} X \widehat{V} \quad \text { for } \quad X \in C^{*}(\mathcal{S}) \tag{4.7}
\end{equation*}
$$

Furthermore, we have a ucp-map $\mathcal{E}: C^{*}(\mathcal{S}) \rightarrow \mathfrak{A}$ such that

$$
\pi_{\infty}(\mathcal{E}(X))=Z^{*} X Z \quad \text { for } \quad X \in C^{*}(\mathcal{S})
$$

and for any natural number $n \in \mathbb{N}$

$$
\mathcal{E} \circ \Lambda^{n}=\Phi^{n} \circ \mathcal{E}
$$

Hence, we have the following diagram:

where $\mathcal{E}\left(Z A Z^{*}\right)=A$ for all $A \in \mathfrak{A}$.
We consider now the C^{*}-algebra $\mathcal{D}:=\bigcap_{n \geqslant 0} \mathcal{D}_{\Phi^{n}}$ where the set $\mathcal{D}_{\Phi^{n}}$ is the multiplicative domain of the ucp-map $\Phi^{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ for all natural numbers n. The restriction of Φ to \mathcal{D} is a *-homomorphism $\Phi_{\circ}: \mathcal{D} \rightarrow \mathcal{D}$ of C^{*}-algebras. It is said to be the deterministic part of the ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$.

The *-homomorphism Λ defined above is related to the deterministic part of Φ in the following way:

Proposition 4.3. - There is an injective *-homomorphism i: $\mathcal{D} \rightarrow C^{*}(\mathcal{S})$ such that for each natural number n and $D \in \mathcal{D}$ we have:

$$
\mathcal{E}\left(\Lambda^{n}(i(D))\right)=\Phi^{n}(D)
$$

and

$$
\Lambda^{n}(i(D))=i\left(\Phi^{n}(D)\right)
$$

Proof. - Since $F \in \pi_{\infty}\left(\mathcal{D}_{\Phi}\right)^{\prime} \subset \pi_{\infty}(\mathcal{D})^{\prime}$ by Proposition 4.1, the map $\Xi: \mathcal{D} \rightarrow$ $\mathfrak{B}\left(l^{2}\left(F \mathcal{H}_{\infty}\right)\right)$ defined by

$$
\Xi(D)=\sum_{k \geqslant 0} \Pi_{k}^{*} F \pi_{\infty}\left(\Phi_{r}^{-(k+1)}(D) F \Pi_{k} \quad D \in \mathcal{D}\right.
$$

is a representation. Furthermore for any $D \in \mathcal{D}$ we have that $\Xi(D)$ belongs to \mathfrak{X}_{0}, the linear space generated by the napla operators defined in Proposition 3.4, since $\Pi_{k}^{*} F \pi_{\infty}\left(\Phi_{r}^{-(k+1)}(D) F \Pi_{k}\right.$ is the napla operator $\Delta_{k}\left(\pi_{\infty}\left(\Phi_{r}^{-(k+1)}(D)\right), \alpha, \beta\right)$ with the strings $\alpha=\beta=(0, I)$.

We define a ${ }^{*}$-homomorphism $i: \mathcal{D} \rightarrow C^{*}(\mathcal{S})$ as follows

$$
i(D)=\pi_{\infty}(D) \oplus \Xi(D) \quad \text { for } \quad D \in \mathcal{D}
$$

and by relationship (2.5) we obtain that

$$
\Lambda^{n}(i(D))=\left|\begin{array}{cc}
V^{n^{*}} \pi_{\infty}(D) V^{n}, & V^{n^{*}} \pi_{\infty}(D) C_{n} \\
C_{n}^{*} \pi_{\infty}(D) V^{n}, & C_{n}^{*} \pi_{\infty}(D) C_{n}+W^{n^{*}} \Xi(D) W^{n}
\end{array}\right|
$$

It is straightforward to prove that

$$
C_{n}^{*} \pi_{\infty}(D) C_{n}+W^{n^{*}} \Xi(D) W^{n}=\Xi\left(\Phi^{n}(D)\right)
$$

and $C_{n}^{*} \pi_{\infty}(D) V^{n}=0$, since by relationship (2.8) we have

$$
F V^{(n-k)^{*}} \pi_{\infty}(D) V^{n}=\pi_{\infty}\left(\Phi^{(n-k)}(D)\right) F V^{k}=0
$$

for all $1 \leqslant k \leqslant n$, completing the proof.
Finally, we observe that there is the following relationship between dilations and the deterministic part of a quantum dynamical system:

If ($\mathfrak{R}, \Theta, \mathcal{K}, Z$) is any dilation of quantum dynamical system (\mathfrak{M}, Φ), then for any natural number n and $D \in \mathcal{D}$ we have :

$$
\Theta^{n}\left(Z D Z^{*}\right) Z=Z \Phi_{\circ}^{n}(D),
$$

since if $Y=\Theta^{n}\left(Z D Z^{*}\right) Z-Z \Phi^{n}(D)$, then $Y^{*} Y=0$.

5. Ergodic properties

Let \mathfrak{A} be a concrete C^{*}-algebra of $\mathcal{B}(\mathcal{H})$ with unit, $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ a ucp-map and φ a state on \mathfrak{A} such that $\varphi \circ \Phi=\varphi$. We recall that φ is an ergodic state, relative to the ucp-map Φ (see [10]), if for each $A, B \in \mathfrak{A}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left(\varphi\left(A \Phi^{k}(B)\right)-\varphi(A) \varphi(B)\right)=0
$$

and that φ is weakly mixing if for each $A, B \in \mathfrak{A}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(A \Phi^{k}(B)\right)-\varphi(A) \varphi(B)\right|=0
$$

By Proposition 4.1 we can assume that \mathfrak{A} is a concrete C^{*}-algebra of $\mathfrak{B}(\mathcal{H})$, and that there is an isometry V on \mathcal{H} such that:

$$
\Phi(A)=V^{*} A V \quad \text { for } \quad A \in \mathfrak{A}
$$

Let $(\widehat{V}, \widehat{\mathcal{H}}, Z)$ be the minimal unitary dilation of (V, \mathcal{H}) defined in (2.4), let $\widehat{\mathfrak{A}}$ be the C*-algebra included in $\mathfrak{B}(\widehat{\mathcal{H}})$ defined in Proposition 3.1, and let $\widehat{\Phi}: \widehat{\mathfrak{A}} \rightarrow \widehat{\mathfrak{A}}$ be the ucp-map defined in (4.6).

Proposition 5.1. - If the ucp-map Φ admits a φ-adjoint and φ is an ergodic state, then:

$$
\left.\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left[\varphi\left(Z^{*} X \widehat{\Phi}^{k}(Y) Z\right)-\varphi\left(Z^{*} X Z\right) \varphi\left(Z^{*} Y Z\right)\right)\right]=0
$$

for all $X, Y \in \widehat{\mathfrak{A}}$, while if φ is weakly mixing, then:

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(Z^{*} X \widehat{\Phi}^{k}(Y) Z\right)-\varphi\left(Z^{*} X Z\right) \varphi\left(Z^{*} Y Z\right)\right|=0
$$

for all $X, Y \in \widehat{\mathfrak{A}}$.
The proof of this proposition is a straightforward consequence of the next lemma.
To this purpose, we make a preliminary observation. Recall that $\widehat{\mathcal{H}}=\mathcal{H} \oplus l^{2}(F \mathcal{H})$ and that, writing an element X of $\mathcal{B}(\widehat{\mathcal{H}})$ in matrix representation

$$
X=\left|\begin{array}{ll}
X_{1,1} & X_{1,2} \\
X_{2,1} & X_{2,2}
\end{array}\right|
$$

the following relationship holds:

$$
\varphi\left(Z^{*} X \widehat{\Phi}^{k}(Y) Z\right)=\varphi\left(X_{1,1} \Phi^{k}\left(Y_{1,1}\right)\right)+\varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right)+\varphi\left(X_{1,2} W^{k^{*}} Y_{2,1} V^{k}\right)
$$

Lemma 5.2. - Let $X \in \mathcal{A}^{*}(\mathcal{S})$, the *-algebra generated by the operator system \mathcal{S} defined in (3.7) and $Y \in \widehat{\mathfrak{A}}$. The following relations hold:
(a) If φ is an ergodic state then we have:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}+X_{1,2} W^{k^{*}} Y_{2,1} V^{k}\right)=0 \tag{5.1}
\end{equation*}
$$

(b) If φ is weakly mixing then we have:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}+X_{1,2} W^{k^{*}} Y_{2,1} V^{k}\right)\right|=0 \tag{5.2}
\end{equation*}
$$

Proof. - Since $X \in \mathcal{A}^{*}(\mathcal{S})$, we can assume without loss of generality that $X_{1,2}=$ $A \Gamma(\gamma) \Delta_{m}(B, \alpha, \beta)$ with $A, B \in \mathfrak{A}$ and α, β, γ strings of \mathfrak{A}. Then we can write

$$
X_{1,2}=\left\{\begin{array}{cl}
A(\gamma|F| \alpha) B\left(\beta \mid F \Pi_{\dot{\beta}+m}\right. & \text { if } \dot{\gamma}-1=\dot{\alpha}+m \tag{5.3}\\
0 & \text { elsewhere }
\end{array}\right.
$$

since

$$
X_{1,2}=A\left(\gamma\left|F \Pi_{\dot{\gamma}-1} \Pi_{\dot{\alpha}+m}^{*} F\right| \alpha\right) B\left(\beta \mid F \Pi_{\dot{\beta}+m}\right.
$$

Observe that we can find a natural number k_{o} such that the relation

$$
\begin{equation*}
X_{1,2} W^{k^{*}} Y_{2,1} V^{k}=0 \tag{5.4}
\end{equation*}
$$

holds for each $k>k_{o}$. In fact

$$
W^{k^{*}}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots\right)=(\overbrace{0 \ldots, 0}^{k-\text { time }}, \xi_{0}, \xi_{1}, \ldots),
$$

for all vectors $\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots\right) \in l^{2}(F \mathcal{H})$; so $\Pi_{\beta+m} W^{k^{*}}=0$ for all $k>\dot{\beta}+m$. Then by equation (5.4) it follows that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}+X_{1,2} W^{k^{*}} Y_{2,1} V^{k}\right) \\
&=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right)
\end{aligned}
$$

Hence we have to compute only $\varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right)$. Notice that

$$
X_{1,2} C(k)^{*} Y_{1,1} V^{k}=A(\gamma|F| \alpha) B\left(\beta \mid F \Pi_{\dot{\beta}+m} C(k)^{*} Y_{1,1} V^{k}\right.
$$

by relationship (5.3), and that

$$
\Pi_{\dot{\beta}+m} C(k)^{*}=F V^{(k-\dot{\beta}-m-1)^{*}} \quad \text { for } \quad k>\dot{\beta}+m,
$$

by relationship (2.7). It follows that

$$
\begin{aligned}
X_{1,2} C(k)^{*} Y_{1,1} V^{k} & =A(\gamma|F| \alpha) B\left(\beta \mid F V^{(k-\dot{\beta}-m-1)^{*}} Y_{1,1} V^{k}\right. \\
& =A(\gamma|F| \alpha) B\left(\beta \mid F \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right) V^{\dot{\beta}+m+1} .\right.
\end{aligned}
$$

Since $\dot{\gamma}=\dot{\alpha}+m+1$, we have $A(\gamma|F| \alpha) B(\beta \mid \in \mathfrak{A}(\dot{\beta}+m+1 \mid$ by relationship (3.1). Hence there is a string ϑ of \mathfrak{A} with $\dot{\vartheta}=\dot{\beta}+m+1$ and an operator $R \in \mathfrak{A}$, such that $A(\gamma|F| \alpha) B(\beta \mid=R(\vartheta \mid$. So we can write

$$
X_{1,2} C(k)^{*} Y_{1,1} V^{k}=R\left(\vartheta \mid F \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right) V^{\dot{\beta}+m+1}\right.
$$

If we set $\vartheta=\left(n_{1}, n_{2}, \ldots n_{r}, A_{1}, A_{2}, \ldots A_{r}\right)$ then we have $n_{1}+n_{2}+\ldots+n_{r}=\dot{\beta}+m+1$ and

$$
\begin{aligned}
R\left(\vartheta \mid F \Phi^{(k-\dot{\beta}-1)}\right. & \left(Y_{1,1}\right) V^{\dot{\beta}+m+1} \\
& =R V^{n_{r}^{*}} A_{r} V^{n_{r-1}^{*}} A_{r-1} \cdots A_{2} V^{n_{1}^{*}} A_{1} F \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right) V^{\dot{\beta}+m+1} \\
& =R \Phi^{n_{r}}\left(A_{r} \Phi^{n_{r-1}}\left(A_{r-1} \cdots \Phi^{n_{2}}\left(A_{2} R_{k}\right)\right)\right),
\end{aligned}
$$

where

$$
R_{k}=\Phi^{n_{1}}\left(A_{1} \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)-\Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right) \in \mathfrak{A} .
$$

Using the φ-adjont, we have

$$
\begin{equation*}
\varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right)=\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} R_{k}\right) . \tag{5.5}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right) & =\varphi\left(R \Phi^{n_{r}}\left(A_{r} \Phi^{n_{r-1}}\left(A_{r-1} \cdots \Phi^{n_{2}}\left(A_{2} R_{k}\right)\right)\right)\right) \\
& =\varphi\left(\Phi_{\natural}^{n_{r}}(R) A_{r} \Phi^{n_{r-1}}\left(A_{r-1}\left(\cdots \Phi^{n_{2}}\left(A_{2} R_{k}\right)\right)\right)\right) \\
& =\varphi\left(\Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) A_{r-1}\left(A_{r-2} \cdots A_{3} \Phi^{n_{2}}\left(A_{2} R_{k}\right)\right)\right. \\
& =\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} R_{k}\right),
\end{aligned}
$$

and replacing R_{k} we obtain that

$$
\begin{aligned}
\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots\right. & \left.\Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} R_{k} \\
= & \Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}}\left(A_{1} \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)- \\
& -\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\varphi\left(X_{1,2} C(k)^{*}\right. & \left.Y_{1,1} V^{k}\right) \\
= & \varphi\left(\Phi_{\natural}^{n_{1}}\left(\Phi_{\natural}^{n_{2}}\left(\cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots\right) A_{2}\right) A_{1} \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)- \\
& \left.-\varphi\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots\right) A_{2}\right) \Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right) .
\end{aligned}
$$

Now, assume that φ is ergodic. Then we have that

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{1}}\left(\Phi_{\natural}^{n_{2}}\left(\cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots\right) A_{2}\right) A_{1} \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right) \\
\quad=\varphi\left(\Phi_{\natural}^{n_{1}}\left(\Phi_{\natural}^{n_{2}}\left(\cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots\right) A_{2}\right) A_{1}\right) \varphi\left(Y_{1,1}\right),
\end{gathered}
$$

and that

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N+1} & \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots\right) A_{2}\right) \Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right) \\
& =\varphi\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right) \Phi\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right) \\
& =\varphi\left(\Phi_{\natural}\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right)\right) A_{1}\right) \varphi\left(Y_{1,1}\right) .
\end{aligned}
$$

Thus

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} C(k)^{*} Y_{1,1} V^{k}\right)=0
$$

completing the proof of item (a).
In the weakly mixing case, using relationship (5.5) we obtain:

$$
\begin{aligned}
& \left|\varphi\left(X_{1,2} C_{k}^{*} Y_{1,1} V^{k}\right)\right| \\
& \quad=\mid \varphi\left(T \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)-\varphi\left(T \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right) \mid\right.
\end{aligned}
$$

where $T=\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}$.
Adding and subtracting the element $\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)$ we can write:

$$
\begin{aligned}
\left|\varphi\left(X_{1,2} C_{k}^{*} Y_{1,1} V^{k}\right)\right| \leqslant & \left|\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)-\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right| \\
& +\left|\varphi\left(T \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right)-\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right| .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \left|\varphi\left(T \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right)-\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right| \\
& \quad=\mid \varphi\left(\Phi_{\natural}^{n_{1}-1}(T) \Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)-\varphi\left(\Phi_{\natural}^{n_{1}-1}(T) \Phi\left(A_{1}\right) \varphi\left(Y_{1,1}\right) \mid,\right.
\end{aligned}
$$

and by the weakly mixing properties we obtain:

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)-\varphi\left(T \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right|=0
$$

and
$\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(\Phi_{\natural}^{n_{1}-1}(T) \Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)-\varphi\left(\Phi_{\natural}^{n_{1}-1}(T) \Phi\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right|=0$ completing the proof of item (b).

Finally, the proof of proposition Proposition 5.1 is a simple consequence of this lemma since the C^{*}-algebra $\widehat{\mathfrak{A}}$ is included in $C^{*}(\mathcal{S})$, the norm closure of *-algebra $\mathcal{A}(\mathcal{S})$.

It is clear that Proposition 5.1 can be extended to a quantum dynamical system (\mathfrak{M}, Φ) with φ a normal faithful state on \mathfrak{M}.

Acknowledgments.

Thanks are due to László Zsidó and Giuseppe Ruzzi of the Università di Roma - Tor Vergata, for various fruitful discussions.

References

[1] L. Accardi and C. Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Ana., 45:245-273, 1982.
[2] W. Arveson. Non commutative dynamics and Eo-semigroups, Monograph in mathematics, Springer-Verlag, 2003.
[3] B.V. Bath and K.R. Parthasarathy. Markov dilations of nonconservative dynamical semigroups and quantum boundary theory, Ann. I.H.P. sec. B, 31(4):601-651, 1995.
[4] D. E. Evans and J. T. Lewis. Dilations of dynamical semi-groups, Comm. Math. Phys., 50(3):219-227, 1976.
[5] A. Frigerio, V.Gorini, A. Kossakowski and M. Verri. Quantum detailed balance and KMS condition, Commun. Math. Phys., 57:97-110, 1977.
[6] B. Kümmerer. Markov dilations on W*-algebras, J. Funct. Ana., 63:139-177, 1985.
[7] W.A. Majewski. On the relationship between the reversibility of dynamics and balance conditions, Ann. I. H. P. sec. A, 39(1):45-54, 1983.
[8] P.S. Muhly and B. Solel. Quantum Markov Processes (correspondeces and dilations), Int. J. Math., 13(8):863-906, 2002.
[9] B.Sz. Nagy and C. Foiaş. Harmonic analysis of operators on Hilbert space, Regional Conf. Ser. Math., 19, 1971.
[10] C. Niculescu, A. Ströh and L.Zsidó. Noncommutative extensions of classical and multiple recurrence theorems, J. Oper. Th., 50:3-52, 2002.
[11] V.I. Paulsen. Completely bounded maps and dilations, Pitman Res. Notes Math. 146, Longman Scientific \& Technical, 1986.
[12] M. Skeide. Dilation theory and continuous tensor product systems of Hilbert modules, in: PQ-QP: Quantum Probability and White Noise Analysis XV, World Scientific, 2003.
[13] F. Stinesring. Positive functions on C* algebras, Proc. Amer. Math. Soc., 6:211-216, 1955.
[14] L. Zsido. Personal communication, 2008.

Manuscript received August 13, 2012,
revised June 11, 2013,
accepted April 18, 2014.

Carlo PANDISCIA

Universitá degli Studi di Roma "Tor Vergata", Dipartimento di Ingegneria Elettronica, via del Politecnico, 00133 Roma, Italia
pandiscia@ing.uniroma2.it

[^0]: Math. classification: 46L07, 46L55, 46L57.
 Keywords: Quantum Markov process, completely positive maps, Nagy dilation, ergodic state.

