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THE BASIC ZARISKI TOPOLOGY

DAVIDE RINALDI, GIOVANNI SAMBIN, AND PETER SCHUSTER

Abstract. We present the Zariski spectrum as an inductively generated basic topology à
la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals,
this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment
includes closed subspaces and basic opens: that is, arbitrary quotients and singleton locali-
sations. All the effective objects under consideration are introduced by means of inductive
definitions. The notions of spatiality and reducibility are characterized for the class of Zariski
formal topologies, and their nonconstructive content is pointed out: while spatiality implies
classical logic, reducibility corresponds to a fragment of the Axiom of Choice in the form of
Russell’s Multiplicative Axiom.

1. Introduction

The theory of locales [14, 15, 35] has shown that a large part of general topology
can be described assuming the lattice of open sets, instead of the space of points, as
main object of investigation. In this context, it is possible to reformulate numerous
classical theorems, and to reprove them without invoking the Axiom of Choice
(AC).1

A predicative and constructive approach to locale theory, known as Formal
Topology, was started by Per-Martin Löf and the second author [25] in order to for-
malize and develop general topology in Martin-Löf’s dependent type theory (dTT)
[20]. Rather than the space of points or the lattice of opens, here a basis of opens
(more precisely, an index set for the basis elements) is the primitive object. In
the present paper, we follow this approach for analysing constructively the Zariski
spectrum of a commutative ring.

We will not explicitly refer to a particular constructive foundation, but work
with intuitionistic logic, and avoid using forms of the AC as well as impredicative
definitions. In order to realise the latter requirement, we have to distinguish sets
from collections, and restrict separation to restricted formulas (that is, formulas
that do not contain quantifiers ranging over a collection). As the paradigmatic
example of a collection is formed by all the subsets of a given set, we refrain from
using the Axiom of Power Set (PSA).

The prime spectrum Spec(A) of a commutative ring A is the collection of its
prime ideals p, which is usually endowed with the Zariski topology: the topology
generated from the basis of opens {D(a)}a∈A where

D(a) = {p ∈ Spec(A) : a 6∈ p} (1.1)
for every a ∈ A. This topological space was one of the starting points for mod-
ern algebraic geometry, and its impredicative nature determines the apparent non-
constructive character of large parts of the subsequent theory. Moreover, the ex-
istence of a prime ideal in general depends on Zorn’s Lemma or other forms of
AC.2

The Zariski spectrum lends itself naturally to a point-free description, both in
terms of locales [14, 35] and formal topologies [30, 31, 33]. We develop this second
approach within the so-called basic picture [29, 26, 27]. The basic concept is that

Math. classification: 03E25, 03F65, 13A99, 54B35.
1For instance, one can prove without AC that the locale of Dedekind reals is locally compact;

for the point-wise counterpart, however, AC is required [14].
2Banaschewski [2] has proved that the existence of a prime ideal in a non-trivial ring is equiva-

lent to the Boolean Ultrafilter Theorem. Joyal [17] has built, inside a topos, a ring without prime
ideals.
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56 D. Rinaldi, G. Sambin & P. Schuster

of basic topology, a generalization of the notion of formal topology that allows a
positive description of both open and closed subsets. We work directly on the index
set for the basis (1.1): the ring A.

A cover relation C between element and subsets is common to every formal
topology, and corresponds to the interior operator of a topology. In addition, a
basic topology has a positivity or reduction relation n that describes formally
the behaviour of the closure operator.3 These operators are related through an
appropriate compatibility condition.

In [21], a strategy is given to generate basic topologies by induction and coinduc-
tion. By means of this, we can equip every ring A with a basic topology, starting
from the inductive generation of ideals. The novelty with respect to [30, 31, 33] is
that all the topological definitions, and all the related proofs, are explicitly of in-
ductive/coinductive sort. Therefore, regardless of foundational issues, an effective
implementation of these concepts is direct. Moreover, we can get by with ideals
rather than radical ideals.

To a basic topology, one often assigns an operation which describes formally the
intersection of two basic opens [25, 3]. In our setting, the product of the ring A is a
natural candidate, and the induced notion of formal point matches classically with
that of (the complement of) a prime ideal of A, which is the usual notion of point
of the prime spectrum. In other words, this basic topology corresponds precisely
to the customary Zariski topology. The correspondence which to each ring assigns
a basic topology with operation is then extended to a functor, as in the classical
case.

The formal Zariski topology [30, 31, 33] is obtained from the basic Zariski topol-
ogy by adding a further generation rule; and every property of the latter extends
canonically to the former. One can thus return to radical ideals as occasion de-
mands.

The last part of the article is devoted to the description of two impredicative
principles associated to the formal Zariski topology, spatiality and reducibility.
Assuming classical logic, each of these two principles is equivalent to Krull’s Lemma,
but with intuitionistic logic they must be kept apart. While spatiality corresponds
to the spatiality of the locale of radical ideals and is a completeness principle,
reducibility affirms the existence of a formal point—that is, an appropriate sort
of model—and so is a satisfiability principle. We will show, strengthening some
results from [12, 22], that these principles are constructively untenable for the class
of formal Zariski topologies as a whole.

Another constructive and predicative approach to the Zariski spectrum, devel-
oped in [16, 17] and used e.g. in [9, 6, 8], is by way of distributive lattices4. In
contrast to this, the avenue via the basic picture is closer to the customary treat-
ment, and allows us to consider simultaneously the notions of closed and open
subsets. Last but not least, the potential presence of points makes working on the
formal side more intuitive. Our approach has already proved fruitful in constructive
commutative algebra [19], e.g. for an elementary characterization of the height of
an ideal in a commutative ring [23].

2. The basic Zariski topology

A basic pair is a structure (X,, S), where X and S are sets and : X → S is
a relation between them. This structure, albeit minimal, is sufficient to introduce
elegantly the topological concepts of closure and interior.

3Such relation can be considered as a generalization of the unary positivity predicate Pos part
of the original definition of formal topology [25].

4This is of particular relevance in view of the strong tradition started by Stone [34], especially
the interplay between spectral spaces and distributive lattices.
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We can in fact think of S as a set of indices for a basis {Ba}a∈S of a topological
space X, and  defined by x  a ≡ x ∈ Ba. In these terms, one has

x ∈ cl D ≡ ∀a ∈ S(x  a→ ∃y ∈ X(y  a & y ∈ D)),
x ∈ int D ≡ ∃a ∈ S(x  a & ∀y ∈ X(y  a→ y ∈ D))

for all x ∈ X and5 D ⊆ X. Inverting formally the roles of X and S, we obtain two
relations between elements a and subsets U of S as follows:

aC U ≡ ∀x ∈ X(x  a→ ∃b ∈ S(x  b & b ∈ U)),
an U ≡ ∃x ∈ X(x  a & ∀b ∈ S(x  b→ b ∈ U)).

Maintaining this topological intuition, the primitive concepts of closure and interior
are reflected by a certain symmetry on the set of the basis indices, which assumes
a role equal to that of space. One thus introduces the main concept of the Basic
Picture:

Definition 2.1. — A basic topology is a structure (S,C,n) where S is a set,
and C, n are relations between elements and subsets of S satisfying:

a ∈ U
aC U

Reflexivity aC U U C V
aC V

Transitivity

an U
a ∈ U Coreflexivity

an U ∀b(bn U → b ∈ V )
an V

Cotransitivity
aC U an V

U n V
Compatibility

where
U C V ≡ (∀u ∈ U)(uC V ) and U n V ≡ (∃u ∈ U)(un V )

for all a, b ∈ S and U, V ⊆ S. The relations C and n are called cover and positivity
respectively.

By Coreflexivity and Cotransitivity, if U ⊆ V , then anU implies anV . Dually,
by Coreflexivity and Compatibility, if aC U and an V , then U n V .

Sometimes we will denote aCU by a ∈ UC and anF by a ∈ Fn. In particular,
from Cotransitivity follows

an U
an S

for all a ∈ S and U ⊆ S. The definition of basic topology axiomatises what happens
in a basic pair on the basis side, avoiding any reference to the existence of a concrete
space X, which often is not available from a constructive point of view.

Let us fix a commutative ring with unit (A,+, ·, 0, 1). We define a basic topology
Zar(A), called the basic Zariski topology, by means of some generation axioms. For
an exhaustive description of the inductive generation of basic topologies we refer
to [21, 10].

We can define a cover C on the ring A which satisfies the axioms
a ∈ U
aC U Refl >

0C U 0 aC U bC U
a+ bC U

Σ aC U λ ∈ A
λ · aC U Π (2.1)

and is the least relation which satisfies this property, that is, the induction axiom

aC U U ⊆ P 0 ∈ P

[a ∈ P, b ∈ P ]....
a+ b ∈ P

[a ∈ P, λ ∈ A]....
λ · a ∈ P

a ∈ P C–induction

5A subset U ⊆ X is intended to be a proposition U(a) depending on one argument a in X. In
plain terms, a ∈ U means U(a). For the sake of readibility, in this paper we only use ∈ as symbol
for membership, though for predicativity’s sake one could distinguish two membership symbols,
∈ and ε, to indicate, respectively, membership to a set and membership to a subset [27].
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holds for all U ⊆ A and a ∈ A.
We can describe the cover in this way: one has a C U if and only if a = 0 or if

there exists a derivation tree which uses just the rules Refl, Σ and Π, and has leaves
of the form c ∈ U and aCU as root. Here is a brief analysis of the derivation trees:

(1) Since the product is associative, if in a proof one applies the product rule
twice consecutively, then one application is sufficient:

π....
aC U

λ · aC U Π

λ′ · (λ · a)C U Π 7→

π....
aC U

(λ′ · λ) · aC U Π

(2) Since the product distributes over the sum, if in a derivation tree the prod-
uct rule follows the sum rule, we can swap the two operations. More pre-
cisely:

πa....
aC U

πb....
bC U

a+ bC U
Σ

λ · (a+ b)C U Π 7→

πa....
aC U

λ · aC U Π

πb....
bC U

λ · bC U Π
λ · a+ λ · bC U Σ

Therefore, given a derivation tree π, by applying these transformations we obtain
a normalized derivation tree: each leaf is followed by an invocation of Refl, then by
one of Π and eventually by Σ a finite number of times.

Hence we have shown

aC U ↔ a = 0 ∨ (∃n ∈ N)(∃u1, . . . , un ∈ U)(∃λ1, . . . , λn ∈ A)(a =
n∑
i=1

λi · ui)

(2.2)
for all a ∈ A and all U ⊆ A. The case a = 0 can be included as combination of
zero coefficients, so that aC U if and only if a belongs to

I(U) = {a ∈ A : (∃n ∈ N)(∃u1, . . . , un ∈ U)(∃λ1, . . . , λn ∈ A)(a =
n∑
i=1

λi · ui)},

the ideal generated by U .
Given a, b ∈ A, one has aC b if and only if there exists c ∈ A such that a = b · c.

In particular b is invertible if and only if 1C b.
It follows from characterization (2.2) that the cover is finitary, that is

aC U ↔ ∃U0 ∈ Pω(U)(aC U0).
where Pω(U) is the set of finite subsets6 of U .

In addition to the cover C, it is possible to generate by coinduction a positivity
n by means of the axioms

an F
a ∈ F

0 n F
⊥

a+ bn F
an F ∨ bn F

a · bn F
an F

closed coinductively by the rule

a ∈ F F ⊆ G ¬(0 ∈ F )

[a+ b ∈ F ]....
a ∈ F ∨ b ∈ F

[λ · a ∈ F, λ ∈ A]....
a ∈ F

anG
n–coinduction

.

6We say that, following [4], a subset U ⊆ S is finite if there exist n ∈ N and x1, . . . , xn ∈ S
such that

x ∈ U ↔ x = x1 ∨ · · · ∨ x = xn.

One can show in dTT that the collection of finite subsets of a given set is again a set.
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The general theory [21] states that n is precisely the greatest positivity compatible
with the cover C. We denote by Zar(A) the basic topology (A,C,n) just defined.

A subset U ⊆ S in a basic topology (S,C,n) is said to be saturated if

aC U ↔ a ∈ U,

and reduced if
an U ↔ a ∈ U.

As cover and positivity encode closure and interior operator, the saturated and
reduced subsets correspond on the basis to open and closed subsets. Hence it is
worthwhile to give an explicit characterization of these two concepts for Zar(A) =
(A,C,n).

The saturated subsets are exactly the U ⊆ A satisfying

0 ∈ U
a ∈ U b ∈ U
a+ b ∈ U

a ∈ U λ ∈ A
λ · a ∈ U

for all a, b ∈ A, and thus are the ideals of A. This is easy to see: one direction
is the Reflexivity axiom, the reverse one is obtained from the C-induction axiom,
setting P = U .

Symmetrically, a subset F ⊆ A is reduced if and only if
0 ∈ F
⊥

a+ b ∈ F
a ∈ F ∨ b ∈ F

a · b ∈ F
a ∈ F

or, in other words, F is a coideal of the ring A. The coideals do not appear in the
usual theory of rings, because with classical logic F is a coideal if and only if ¬F is
an ideal, and the two notions are interchangeable.7 The relation anF asserts that
a belongs to the greatest coideal contained in F . Constructively, the link between
ideals and coideals is richer, and it is contained in the compatibility condition:

I(U) G F → U G F

for all U ⊆ A and F reduced. Explicitly, F is reduced if and only if
λ1 · a1 + · · ·+ λn · an ∈ F

a1 ∈ F ∨ a2 ∈ F ∨ · · · ∨ an ∈ F

for all n ∈ N and λ1, . . . , λn, a1, . . . , an ∈ A. In particular, we notice that a reduced
subset F is inhabited if and only if it contains 1, because (1) = A and (1) G F
implies {1} ∈ F .

The saturated subsets of a basic topology (in this case, the ideals of A) form a
collection, denoted by Sat(C). This Sat(C) is endowed with a natural structure of
complete lattice: ∨

i∈I
Ui = I(

⋃
i∈I

Ui) and
∧
i∈I

Ui =
⋂
i∈I

Ui.

We will often identify Sat(C) with the collection PA of subsets of A with the
equality relation =C defined as

U =C V ≡ U C V & V C U.

In the case of Zar(A), two subsets are equal, in this sense, if they generate the
same ideal. Unlike the case of the formal Zariski topology, binary meet does not
distribute over set-indexed join and then the lattice of saturated subsets is not a
locale [14, 30].

In the following section we will show that, in the case of the basic Zariski topol-
ogy, the lattice of saturated subsets is endowed with a further operation that pro-
vides it with a structure of commutative unital quantale. We recall from [24, 28]

7Incidentally, the same criterion does not apply in general topology: open and closed subsets do
coexist and play distinct roles, though these notions are equally interchangeable by complemention.
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that this is a structure (Q,
∨
, ·, 1) such that (Q, ·, 1) is a commutative monoid,

(Q,
∨

) is a complete join-semilattice and · distributes over
∨
.

3. The product as convergence operation

In this section we will show how the basic topology Zar(A) is linked to its classical
counterpart. It is worthwhile to point out its naturalness within the algebraic
context, being just an accurate revision of the inductive generation process of ideals.

In order to make more precise the link to usual topology, we have to introduce
an operation to describe formally the intersection of two basic opens [3]:

Definition 3.1. — A convergence operation for a basic topology (S,C,n) is a
commutative operation ◦ : A×A→ PA which satisfies

aC U bC V
a ◦ bC U ◦ V Stability

where
U ◦ V =

⋃
u∈U,v∈V

u ◦ v

for all a, b ∈ A and U, V ⊆ A.
Stability ensures that ◦ behaves well with respect the equality =C and thus it is

well-defined on the lattice of saturated subsets Sat(C):
U =C U ′ & V =C V ′ ⇒ U ◦ V =C U ′ ◦ V ′

for all U,U ′, V, V ′ ⊆ A.
In practice, if the set A comes with an operation · for which (A, ·) is a monoid, it

is convenient to consider · as convergence operation. This is the case of the product
· of the ring A:

Proposition 3.2. — The product · of the ring A is a convergence operation on
Zar(A). Moreover, the following two conditions are satisfied, for all a, b ∈ A:
(Weakening): a · bC a;
(Unitality): aC a ·A.

Proof. — We first prove Stability. Let πa and πb be two derivation trees for aCU
and bC V respectively, and let us prove a · bC U · V by induction on πa and πb. If
the two derivation trees consist of just one use of rule Refl, we proceed as follows:

a ∈ U
aC U Refl

,
b ∈ V
bC V

Refl 7→

a ∈ U b ∈ V
a · b ∈ U · V
a · bC U · V Refl

If the last rule used in πa is Σ where a = a1 + a2, we apply the following transfor-
mation:

π1....
a1 C U

π2....
a2 C U

aC U Σ
,

πb....
bC V 7→

π1....
a1 C U

πb....
bC V

a1 · bC U · V
Stab.

π2....
a2 C U

πb....
bC V

a2 · bC U · V
Stab.

a · bC U · V Σ

Suppose instead that the last rule is Π, where a = λ · a1. Hence:

πa....
a1 C U λ ∈ A

aC U Π
,

πb....
bC V 7→

π1....
a1 C U

πb....
bC V

a1 · bC U · V
Stab.

λ ∈ A
a · bC U · V Π

By way of these modifications, we get the required deduction tree.
To prove Unitality, it is sufficient to notice that a = a · 1 ∈ a ·A and then to use

Reflexivity. Finally, the weakening property is just a special case of the rule Π. �
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As first consequence, the product is a well-defined operation on the lattice of
ideals Sat(C). Explicitly, for all subsets U, V ⊆ A, we have I(U) · I(V ) = I(U · V ).
It follows that this operation distributes with set-indexed joins and

∨
:

V ·
∨
i∈I

Ui
Stab.=C V ·

⋃
i∈I

Ui =C
⋃
i∈I

V · Ui =
∨
i∈I

V · Ui

In addition, there exists an element A = (1) of Sat(C) such that, for all subsets
U ⊆ A,

U ·A =C U.

In all, the lattice (Sat(C),
∨
, ·, A) is a commutative unital quantale. The weakening

property implies also U ◦ V C U ∧ V for all U, V ⊆ A.

Points. As already stressed, the intuition behind a basic topology is that of a set
of basis indices for an ideal space of points. A formal point is defined as a subset
of indices that behaves as a neighbourhood filter of an imaginary point.

Definition 3.3. — Let (A,C,n, ◦) be a basic topology with operation. A
subset α ⊆ S is said to be a formal point if:

(1) α is inhabited, i.e. ∃a(a ∈ α);
(2) α is filtering, i.e. a ∈ α & b ∈ α→ a ◦ b G α for all a, b ∈ A;
(3) α is reduced.

In the case of Zar(A), to say that α is a formal point amounts to say that α is
a coideal (i.e. splits the cover C) satisfying 1 ∈ α and a, b ∈ α → a · b ∈ α for
all a, b ∈ A. A subset with all these properties is called prime coideal or, more
commonly, prime filter.

Remark 3.4. — In general, not having the Axiom of Power Set (PSA) at our
disposal, the formal points associated with Zar(A) do not form a set. Then we say
that they form a collection, which we denote by Pt(A). These ideal entities do not
affect the effectivity of the underlying theory, but they provide a valuable help for
our intuition.

Sometimes, it will be useful to consider this collection to be a set, to describe
adequately the formal points and their applications. In these cases, we will indicate
the presence of PSA or of any other impredicative assumption.

We regain moreover the link with the usual notion in algebraic geometry, where
the points of the prime spectrum are the prime ideals of the ring. We recall that a
prime ideal is a subset p ⊆ A such that:

(1) ¬(1 ∈ p) (or, equivalently, p 6= A),
(2) a · b ∈ p→ a ∈ p ∨ b ∈ p, for all a, b ∈ A,
(3) p is an ideal.

With classical logic, p is a prime ideal if and only if its complement −p is a prime
coideal, or formal point. We have therefore a bijective correspondence

− : Spec(A) −→ Pt(A)
p 7→ −p

between the prime spectrum and the collection of formal points of A.
In general, reasoning impredicatively, the space of formal points Pt(A) of a basic

topology defines a basic pair
: Pt(A) −→ A

where
α  x ≡ x ∈ α
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for all x ∈ A and α ∈ Pt(A). We can then associate to Pt(A) a closure and an
interior operator by setting

α ∈ cl D ≡ ∀a ∈ S(α  a→ ∃β ∈ Pt(A)(β  a & β ∈ D)),
α ∈ int D ≡ ∃a ∈ S(α  a & ∀β ∈ Pt(A)(β  a→ β ∈ D))

for all α ∈ Pt(A) and D subcollection of Pt(A).

Proposition 3.5. — Let Zar(A) be the basic Zariski topology on the commu-
tative ring A, and Pt(A) the corresponding collection of points. The operator int
defined impredicatively by the basic pair

: Pt(A) −→ A

is a topological interior operator. This means
int D ∩ intE = int (D ∩ E)

for all pairs D,E of sub-collections of Pt(A).

Proof. — Since int is a monotone operator, ⊆ is the only non-trivial inclusion.
Suppose that α ∈ int D ∩ int E, i.e. α ∈ int D and α ∈ int E; by definition there
exist a, a′ ∈ α such that a ∈ β → β ∈ D and a′ ∈ β → β ∈ E for all β ∈ Pt(A).
We must produce b ∈ α such that b ∈ β → β ∈ D ∩ E for all β ∈ Pt(A). Define
b = a · a′ ∈ S. Then b ∈ α because α is filtering; on the other hand b ∈ β implies
a ∈ β for all β ∈ Pt(A), because b = a · a′ C a (viz. Weakening) and β splits the
cover. It follows that b ∈ β → β ∈ D. Symmetrically, for all β ∈ Pt(A), we have
b ∈ β → β ∈ E and thus b ∈ β → β ∈ D ∩ E. �

The proof makes only use of Weakening and thence admits a slight generalization
to all basic topologies satisfying this property. On Pt(A) one obtains, even if
impredicatively, a structure of topological space. The topology, in the usual sense,
is precisely the one induced by the basic opens of the form Ext(a), defined by

α ∈ Ext(a) ≡ a ∈ α
where α ∈ Pt(A) and a ∈ α. One defines the operators:

α ∈ Ext(U) ≡ α G U α ∈ Rest(F ) ≡ α ⊆ F
where U,F ⊆ A. The sub-collections of the form Ext(U) or Rest(U) are, respectively,
the fixed points of the operators int and cl, that is, the open and closed subsets of
the new topology. Notice that these concepts are not deducible one from another
through complementation. In particular

Ext(U) = Ext(UC) and Rest(F ) = Rest(Fn).
Every open subset is the image of an ideal through Ext and every closed subset is
the image of a coideal through Rest.

Similarly, if we define the relation 6: Spec(A)→ A as
p 6 a ≡ ¬(a ∈ p),

then we have, impredicatively, a basic pair, and a topology on Spec(A) the basis of
which is precisely {D(a)}a∈A; in other words, the Zariski topology. The classical
complementation (−)c extends to an isomorphism of basic pairs:

A
6

{{



""
Spec(A)

(−)c

// Pt(A)oo

and, in particular, to an isomorphism of topological spaces Spec(A) ∼= Pt(A). In
this sense, assuming classical logic, our approach is equivalent to the usual one.

To summarize, the Zariski topology has been obtained by applying the machinery
of basic topologies to the inductive generation of ideals.
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4. Ring homomorphisms and continuous relations

We briefly recall the notion of morphism between basic topologies and between
basic topologies with operation, starting from some generalities on binary relations.
For a more detailed treatment, we refer to [27]. Given a relation r : S → T between
two sets, there are four operators on subsets

P(S)
r
⇒
r−∗
P(T ) and P(T )

r∗

⇒
r−
P(S),

defined by
t ∈ rU ≡ r−t G U t ∈ r−∗U ≡ r−t ⊆ U

s ∈ r−V ≡ rs G V s ∈ r∗V ≡ rs ⊆ V
where s ∈ r−t ≡ srt, U ⊆ S, V ⊆ T , s ∈ S and t ∈ T . If r is a functional relation,
then r− and r∗ coincide with the usual reverse image and r with the direct image.

If r : S → T and s : T → R are two relations, then the composition s ◦ r is
defined as follows:

a(s ◦ r)b ≡ ∃c(arc & csb)
It is straightforward to verify (s ◦ r)− = r− ◦ s−, (s ◦ r)∗ = r∗ ◦ s∗ and (s ◦ r)−∗ =
s−∗ ◦ r−∗.

Definition 4.1. — Let (S,CS ,nS) and (T,CT ,nT ) be two basic topologies.
A relation r : S → T is continuous if

bCT U

r−bCS r−U
ConC and

anS s∗U
ranT U

Conn (4.1)
for all a ∈ S, b ∈ T and U ⊆ T .

From ConC one deduces that the inverse existential image r−U of a saturated
subset U ⊆ T is a saturated subset, while from Conn it follows that the direct
existential image rF of a reduced subset F ⊆ S is a reduced subset. It is easy
to verify that basic topologies with continuous relations form a category, which we
denote by BTop [27].

One verifies that the composition of two continuous relations is a continuous
relation, and that so is also the identity relation [27]. If the basic topology under
consideration is inductively generated, as is the case for the basic Zariski topology,
then from ConC one can deduce the condition Conn [21].

Definition 4.2. — Let (S,CS ,nS , ◦S) and (T,CT ,nT , ◦T ) be two basic topolo-
gies with operation. A continuous relation r : S → T is convergent if it satisfies the
conditions

C1. r−(a) ◦S r−(b)CS r−(a ◦T b)
C2. S CS r−T

for all a, b ∈ A.

The composition of two continuous and convergent operations is again continuous
and convergent [27]. We denote by BTopO the category of basic topologies with
continuous and convergent relations.

Remark 4.3. — The condition C1 can be reformulated by saying that the direct
existential image of a filtering reduced subset F ⊆ S, through a relation r : S → T ,
is filtering. In fact, let a, b ∈ rF ; equivalently r−a G F and r−b G F , from which
we get r−a ◦S r−b G F because F is filtering. Since F is also reduced, from the
first convergence condition, by compatibility we obtain r−(a ◦T b) G F and finally
a ◦T b G rF .

The property C2 entails that the direct image of a reduced inhabited subset
F ⊆ S is inhabited. Suppose that F G S; since F is reduced, we have F G r−T and
therefore rF G T .
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The direct existential image of a continuous and convergent morphism r : S → T
determines an operator

Pt(r) : Pt(S) → Pt(T ).
α 7→ rα

This Pt(r) is continuous in the classical sense if we endow the two collections Pt(S)
and Pt(T ) with the topology generated by the basic opens Ext(a). This correspon-
dence, being nothing but the direct image, defines impredicatively a functor

Pt : BTopO→ Top.
We now analyse the Zariski case, and to this end we fix two commutative rings

with unit, A and B. One of the most fundamental properties of the prime spectrum
lies in the fact that the inverse image of a prime ideal q ∈ Spec(B) through a ring
homomorphism f : A → B is a prime ideal f−q ∈ Spec(A). In other words, f
induces a map f− : Spec(B)→ Spec(A).

If the two spectra are equipped with the Zariski topology, then f− is also con-
tinuous; more generally, this correspondence extends to a contravariant functor

Spec : CRings→ Top
from the category of commutative rings to that of topological spaces. These clas-
sical observations find their constructive counterpart in the framework of the basic
picture.

Let Zar(A) = (A,CA,nA, ·) and Zar(B) = (B,CB ,nB , ·) be the basic Zariski
topologies on A and B respectively.

Proposition 4.4. — A relation r : Zar(B)→ Zar(A) is continuous if and only
if it respects the axioms, i.e.

r−0A CB ∅ r−(a+ a′)CB r−{a, a′} r−(a · a′)CB r−a
for all a, a′ ∈ A. In particular, if f : A → B is a ring homomorphism, then the
inverse relation f̂ : B → A defined by bf̂a ≡ afb is a continuous and convergent
morphism of basic Zariski topologies.

Proof. — (→) This is an instance of continuity.
(←) It is sufficient to show the first condition in (4.1). We will show this by

induction on the deductions of aCA U . If the last rule is Refl, and therefore a ∈ U ,
then one has

a ∈ U
r−a ⊆ r−U
r−aCB r−U

Refl
.

If a CA U was deduced from a = 0A, then by r−a CB ∅ we have r−a CB r−U . If
the last rule is Σ, that is

aCA U a′ CA U
a+ a′ CA U ,

then one has r−a CB r−U and r−a′ CB r−U by induction hypothesis; whence
r−{a, a′}CB r−U . By transitivity and the hypotheses, we have r−(a+a′)CB r−U .
One deals with the product in the same way.

Suppose now that f : A→ B is a ring homomorphism; since f̂− = f as operators
on subsets, the continuity conditions read as

f(0A)CB ∅ f(a+ a′)CB {f(a), f(a′)} f(a · a′)CB f(a),
which is to say that

0B CB ∅ f(a) + f(a′)CB {f(a), f(a′)} f(a) · f(a′)CB f(a).
These are clearly satisfied. Finally, the two convergence properties can be rewritten
as

f(a) · f(a′) =CB
f(a · a′), B CB f(A).
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The first one follows from the fact that f respects the product, the second one
follows from f(1A) = 1B . �

Since ĝ ◦ f = f̂ ◦ ĝ and ˆidA = idA, the correspondence that assigns to each
ring homomorphism a continuous and convergent relation defines a contravariant
functor

Zar : CRings→ BTopO
from the category of commutative rings to the one of basic topologies with opera-
tion.

As a further consequence, the direct existential image through f̂ of a formal
point α ∈ Pt(B) is again a formal point f̂α ∈ Pt(A), and the map

Pt(f̂) : Pt(B)→ Pt(A)
is continuous with respect to the induced topologies. In the light of the classical link
between formal points and prime ideals, the description above matches perfectly
with the usual treatment.

Finally, the relation f̂ induces a morphism
Sat(f̂) : Sat(CA)→ Sat(CB)

of commutative unital quantales, defined by U → I(f(U)). To Sat(f̂), corresponds
to the morphism Pt(f̂)− between the frames of opens associated with the spectra.

More generally, we have a functor
Sat : CRings→ CQuantU

from the category of commutative rings to that of commutative unital quantales.

5. Closed subspaces and localisations

In this section, we will show that the class of basic Zariski topologies is closed
under the construction of closed subspaces and the localisation in a submonoid.
Let A be a commutative ring with unit A and let

Zar(A) = (A,C,n, ·)
be the corresponding basic Zariski topology.

5.1. Closed subspaces. The closed subspace of Zar(A) defined by a subset U of
A is the basic topology (A,CU ,nU , ·) generated by the axioms of the basic Zariski
topology (see (2.1)) together with

u ∈ U
uCU V

CCU
unU V u ∈ U

⊥ Cn
U

where V ⊆ A. Since in a deduction tree for such a cover the rule CCU can only occur
at a leaf, we have

aCU V ↔ aC V ∪ U (5.1)

for all a ∈ A and V ⊆ A. Hence CU coincides with the usual definition, given for
example in [12]. Since the cover CU was obtained by adding a rule, we get

aC V → aCU V

for all a ∈ A and U ⊆ A. In other words, the identity relation idA : A → A is a
continuous morphism from (A,CU ,nU ) to (A,C,n).

Thanks to (5.1), one can easily verify that the product · is an operation for
(A,CU ,nU ) satisfying, as in Zar(A), Stability and Weakening.

The points α ∈ PtU (A) of the closed subspace (A,CU ,nU , ·) are the prime
coideals α ∈ Pt(A) that split the extra axiom CU , which is to say

U G α

⊥ .
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In all, PtU (A) can be identified with the closed subspace Rest(−U) ⊆ Pt(A).
Let us now denote by A/U the set A equipped with the equality predicate

x =U y ≡ x− y C U
for all x, y ∈ A. This is nothing but the quotient A/I(U) and therefore inherits
a ring structure from A. The identity function is a well-defined ring homomor-
phisms πU : A → A/U and therefore, as described in the previous section, we
have a continuous and convergent morphism π−U : Zar(A/U )→ Zar(A) between the
corresponding basic Zariski topologies. This morphism, in the light of the equiva-
lence (5.1), restricts to an isomorphism between Zar(A/U ) and the closed subspace
Zar(A) defined by U .

Proposition 5.1. — Let A be a commutative ring, (A/U ,C/(U),n/(U), ·) the
basic Zariski topology on the quotient ring A/U , and (A,CU ,nU , ·) the closed
subspace of the basic Zariski topology on A defined by U ⊆ A. The relations

π−U : A/U → A and idA : A→ A/U

form an isomorphism between the basic topologies under considerations.

In conclusion, the closed subspaces and corresponding morphisms are represented
by quotient rings and projection homomorphisms.

5.2. Localisations. Let now S ⊆ A be any subset. The localisation of Zar(A) in
S is the basic topology (A,CS ,nS) generated by the usual axioms (see (2.1)) and
by

s ∈ S a · sCS U
aCS U

LCS and
s ∈ S anS U
a · snS U

Ln
S

where a ∈ A and U ⊆ A. The cover CS is generated by adding a rule to C and
therefore

aC U → aCS U

for all a ∈ A and U ⊆ A.
The identity function idA : A → A is a continuous morphism from (A,CS ,nS)

to (A,C,n). The induction rule LS commutes with the other rules. In particular:
(1) Any application of the rule LS followed by Π can be transformed as follows:

λ ∈ A
s ∈ S

π....
a · sCS U

aCS U
LS

λ · aCS U
Π 7→

s ∈ S

π....
a · sCS U

λ · a · sCS U
Π

λ · aCS U
LS

(2) We can work similarly with respect to the rule Σ:

s ∈ S

πa·s....
a · sCS U

aCS U
LS

πb....
bCS U

a+ bCS U
Σ 7→

s ∈ S

πa·s....
a · sCS U

πb....
bCS U
b · sCS U

Π

(a+ b) · sCS U
Σ

a+ bCS U
LS

If S is closed under multiplication ·, then two consecutive applications of LS can
be rewritten as a single one:

s ∈ S
t ∈ S

πa·s·t....
a · s · tCS U

a · sCS U
LS

aCS U
LS 7→

s · t ∈ S

πa·s·t....
a · s · tCS U

aCS U
LS
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Suppose, from now on, that S is a monoid,8 that is, closed under multiplication
and 1 ∈ S. As a consequence, the cover CS acquires, in the light of the previous
observations, the following reduced form:

aCS U ↔ (∃s ∈ S)(a · sC U), (5.2)

for all a ∈ A and U ⊆ A.
Starting from (5.2), it is easy to verify that the product · is a convergence opera-

tion for the localized basic topology, and moreover satisfies, as for Zar(A), Stability
and Weakening. We finally denote with ZarS(A) the basic topology (A,CS ,nS , ·)
obtained in this way.

The saturated subsets of ZarS(A) coincide with the ideals I of A which satisfy
s ∈ S a · s ∈ I

a ∈ I

for all a ∈ A. Analogously, the reduced subsets of A are the coideals P such that
s ∈ S a ∈ P
a · s ∈ P . (5.3)

for all a ∈ A; these subsets are called S-filtering.
In particular, a formal point of ZarS(A) is nothing but an inhabited prime coideal

α such that S ⊆ α. In fact, for any such α the condition (5.3) is a particular instance
of the filtering property:

s ∈ S
s ∈ α a ∈ α
a · s ∈ α .

Vice versa, a formal point contains 1 and thence, as a particular instance of (5.3),
s ∈ S 1 ∈ α

s ∈ α ,

so that S ⊆ α. In particular, if S is generated by a single element a ∈ A, one has

α ∈ Pt(ZarS(A))↔ α ∈ Ext(a)↔ a ∈ α.

We briefly recall that the localisation of a ring A in a monoid S is the ring of
fractions (AS ,+, ·, 0, 1). More precisely, this is the set

AS = {x
s

: x ∈ A, s ∈ S}

of formal fractions together with the equality
x

s
=S

y

t
≡ (∃r ∈ S)(r · t · x = r · s · y),

and the operations and constants
x

s
+ y

t
=S

x · t+ y · s
s · t

,
x

s
· y
t

=S
x · y
s · t

, 0 =S
0
1 , 1 =S

1
1 ,

for all x, y ∈ A and s, t ∈ S.
An element x

s is invertible if and only if so is x
1 , i.e., if there exists r ∈ A

such that r · x ∈ S. Moreover, the function φS : A → AS which maps x to x
1

is a ring homomorphism. Corresponding to φS we have, as before, a continuous
and convergent morphism φ−S : AS → A from Zar(AS) to Zar(A). In particular
φS(A∗) ⊆ A∗S , and each x

s ∈ AS is associated to an element of φS(A) because
x
s = x

1 ·
1
s .

The following proposition establish the link between the localisation of rings and
the localisation of the corresponding basic Zariski topologies:

8This is not restrictive, since otherwise we can pick the monoid generated by S.
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Proposition 5.2. — Let (AS ,CS ,nS , ·) be the basic Zariski topology on the
localisation AS of the ring A in S, and (A,CS ,nS , ·) the localisation in S of the
basic Zariski topology on A. The pair of relations

φ−S : AS → A and ψS : A→ AS ,

where aψS xs ≡ aCSx, constitute an isomorphism of basic topologies with operation.

Proof. — We first verify that ψS is well defined on AS , that is,

aCS x &
(x
s

=S
y

t

)
→ aCS y

for all a, x, y ∈ A and s, t ∈ S. By using (5.2), we have
a · r C x & (x · t · r′ = y · s · r′)→ (∃r′′ ∈ S)(a · r′′ C y)

for some r, r′ ∈ S. From a · r C x and t · r′ C t · r′, from stability follows that
a · r · t · r′ C x · t · r′, that is, a · r · t · r′ C y · s · r′. Since y · s · r′ C y, it is enough to
take r′′ = r · t · r′.

Secondly, we check that φ−S and ψS are both continuous and convergent rela-
tions. For φ−S , this follows from Section 4, since φ−S is the inverse relation of an
homomorphism. To verify that ψS is continuous, we check that it respects the
generating axioms:
(0): It respects the 0-axiom, namely aψS 0

1 → aCS 0; in fact aψS 0
1 ≡ aCS 0.

(Σ): It respects the sum axiom, that is,

aψS
x · t+ x′ · s

s · t
→ aCS ψ

−
S (x
s

) ∪ ψ−S (x
′

t
).

Since in general x ∈ ψ−S
(
x
s

)
holds and x·t+x′·sCS{x, x′}, from aCSx·t+x′·s

we get aCS {x, x′} and finally aCS ψ−S
(
x
s

)
∪ ψ−S

(
x′

t

)
.

(Π): It respects the product axiom, viz.

aψS
x · λ
s · t

→ aCS ψ
−
S

(x
s

)
.

By hypothesis aCS x ·λ,and since x ·λCS x and x ∈ ψ−S
(
x
s

)
, the conclusion

follows.
The relation ψS is convergent: in fact, condition C2 is trivially satisfied, since
1 ∈ ψ−S

( 1
1
)
, and therefore 1C ψ−S (AS). The first convergence condition C1 can be

stated explicitly as

aψS
x

s
& a′ψS

x′

t
→ a · a′ CS ψ−S (x · x

′

s · t
).

By hypothesis a CS x and a′ CS x′, hence, by stability, a · a′ CS x · x′ so that
x · x′ ∈ ψ−S

(
x·x′
s·t

)
.

We leave to the reader the proof that the pair (φ−S , ψS) of convergent continuous
relations is an isomorphism. This amounts to show a =CS

ψ−S φSa and x
s =CS

φSψ
−
S
x
s for all a, x ∈ A and s ∈ S. �

In all, the localisation in a monoid and the corresponding inclusion morphism
are represented by localized rings and localisation homomorphisms.

6. The topology induced by points

Let A be a set and (A,C,n, ◦) a basic topology with operation. As already
stressed, the relation : Pt(A) −→ A forms impredicatively a basic pair; we thus
can define a new cover and a new positivity relation on A:

aCPt U ≡ ∀α(a ∈ α→ α G U),

anPt U ≡ ∃α(a ∈ α & α ⊆ U)
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where a ∈ A and u ∈ U . In general, the implications
aC U → aCPt U and anPt U → an U

hold. The reverse implications are instead non-trivial properties: if C coincides
with CPt, then we say that the topology (A,C,n, ◦) is spatial; if n coincides with
nPt we say that the topology is reducible.

Admitting classical logic (CL), a basic topology is spatial if and only if it is
reducible. In this case, saturated and reduced subsets are complements of each
other, and therefore aCU ↔ ¬(an−U) holds [26, 27]. In particular, in the case of
the basic Zariski topology, we have an−U if and only if there is a coideal F such
that a ∈ F and F ⊆ −U . Therefore, since ideals are, with classical logic, precisely
the complements of the coideals, we have ¬(a n −U) if and only if a ∈ I holds
for every ideal I such that U ⊆ I. That is to say, a C U . One therefore gets the
following equivalences:
an−U → ∃α(a ∈ α & α ⊆ −U) iff ¬∃α(a ∈ α & α ⊆ −U)→ ¬an−U iff

iff ∀α(a ∈ α→ ¬α ⊆ −U)→ aC U iff
iff ∀α(a ∈ α→ α G U)→ aC U.

We recall that Restricted Excluded Middle, or shortly REM, asserts that φ∨¬φ for
every restricted9 formula φ. In other terms, REM holds if and only if every subset
of a set S is complemented. In the presence of PSA and REM, the equivalence
shown above between spatiality and reducibility hold.

Remark 6.1. — If the ring A is discrete, then the subset A \ {0} is a coideal,
and is inhabited by the unit if 1 6= 0. In fact

a+ b 6= 0→ a 6= 0 ∨ b 6= 0
for all a, b ∈ A. Since the ring is discrete, a 6= 0 ∨ a = 0; in the first case, we are
done, in the second case, a+b = 0+b = b and by hypothesis b 6= 0. For the product
one argues in the same way.

Proposition 6.2. — If the commutative ring A has a non-zero nilpotent ele-
ment and is discrete, then the basic Zariski topology Zar(A) = (A,C,n, ·) is neither
spatial nor reducible.

Proof. — Let a ∈ A be such that a 6= 0 but an = 0 . Suppose Zar(A) to be
spatial. Let α ∈ Pt(A) be such that a ∈ α; since α is filtering, an ∈ α follows.
Hence ∀α(a ∈ α → α G {0}), which is to say that a CPt 0. By spatiality a C 0, a
contradiction.

Analogously, suppose now Zar(A) reducible and consider the subset F = A\{0},
for which anF . Since A is discrete, by Remark 6.1 F is a coideal. By reducibility,
we get anPt F , that is, there exists a formal point α such that a ∈ α and α ⊆ F .
So 0 = an ∈ α ⊆ F , again a contradiction. �

Note that the first part of this proof does not require the ring A to be discrete.
Definition 6.3. — A formal topology with operation is a basic topology with

operation such that the cover C satisfies Stability, Weakening and aCa2 (Contrac-
tion) for all a ∈ A.

In these structures, we have U ∧ V =C U ◦ V , i.e. the binary meet in Sat(C)
is represented by the operation ◦. Since ◦ commutes with set-indexed joins, the
lattice Sat(C) has a locale structure.

Proposition 6.4. — Let Zar(A) be the basic Zariski topology with operation
on A. Impredicatively, ZarPt(A) = (A,CPt,nPt, ·) is a formal topology with oper-
ation.

9A formula ϕ is said to be restricted if every quantifier that appears in ϕ is restricted, i.e. of
the form ∀x ∈ Y or ∃x ∈ Y for a set Y .
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Proof. — We have to check that · satisfies Stability for ZarPt(A). Suppose that
a CPt U and b CPt V , that is, ∀α(a ∈ α → U G α) and ∀α(b ∈ α → V G α). Since
a · b C a and a ◦ b C b (Weakening), once we have fixed a generic formal point α,
from a · b G α we get a ∈ α and b ∈ α by Compatibility; by hypothesis one gets
U G α and V G α and finally U ·V G α since α is convergent. Inasmuch α is generic,
we get a · bCPt U · V . Analogously, one proves Weakening and Contraction. �

This proof uses just Stability and Weakening and works therefore for every basic
topology with these properties. Among the consequences, we rediscover that the
basic pair induces on the side of points a topology in the usual sense, for which the
lattice of opens is a locale.

The formal Zariski topology. The counterexample in Proposition 6.2 relies on
the fact that the basic Zariski topology on the ring Z/4Z does not satisfy the axiom
of contraction. We can overcome this issue by generating inductively the least basic
topology Cc ⊇ C, over the basic Zariski topology, satisfying contraction too: it is
enough to add to the rules 0, Σ and Π the following generation rule:

a2 Cc U
aCc U

Rad

In this way, we can generate Zarc(A) = (A,Cc,nc, ·), the formal Zariski topol-
ogy. We will show, in a few lines, that Zarc(A) actually is a formal topology with
operation.

In the presence of the rules S and P , the rule Rad is equivalent to the rule
an Cc U n ∈ N

aCc U
N

One direction is trivial, for n = 2. Vice versa, if n is an even number, then the
property Rad allows to divide n by 2; if n is an odd number, by the rule P we
can get from an Cc U to an+1 Cc U where n+ 1 is even. In this way, after a finite
number of steps, we obtain aCc U starting from an Cc U .

One verifies directly that the rule N commutes with Σ and Π, and that two
applications of the same rule can be collected into one. In other words, one obtains

aCc U ↔ ∃n(an C U)

for all a ∈ A and U ⊆ A. Recalling that aC U ↔ a ∈ I(U), one thus has

aCc U ↔ a ∈ R(U) (6.1)

where

R(U) = {a ∈ A : (∃m ∈ N)(∃u1, . . . , un ∈ U)(∃λ1, . . . , λn ∈ A)(am =
n∑
i=1

λi · ui)}

is the radical ideal generated by U .
Besides the cover Cc, we generate by conduction a compatible positivity nc

starting from the axioms of n together with
anc U
a2 nc U

for all a ∈ A and U ⊆ A. We indicate with Zarc(A) = (A,Cc,nc, ·) the basic
topology generated in this way, and endowed with the product operation.

For a detailed treatment, we refer to [12, 30]. Since the cover was obtained
adding a rule, we have

aC U → aCc U

for all a ∈ A and U ⊆ A. The reverse implication does not hold in general: in
Z/4Z, one has 2Cc 0 but not 2C 0.
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Proposition 6.5. — The basic topology Zarc(A) = (A,Cc,nc, ·) is a formal
topology with convergence operation, for every ring A. In particular, Cc satisfies

aCc U aCc V
aCc U · V

Convergence

for all a ∈ A and U, V ⊆ A.

Proof. — The weakening property follows directly from C ⊆ Cc. For Stability,
one acts as in the proof of Proposition 3.2, that is, one builds by induction, starting
from two deduction trees for aCc U and bCc V , a deduction tree for a · bCc U · V .
For the sake of completeness, we will show that stability lifts up with respect to an
application of rule N in a deduction tree:

πa....
an Cc U
aCc U

N

πb....
bCc V

a · bCc U · V
Stab. 7→

πa....
an Cc U

πb....
bCc V bn−1 ∈ A

bn Cc V
Π

(a · b)n Cc U · V
Stab.

a · bCc U · V
N

The property Contraction coincides precisely with the rule Rad. Finally, we have

a2 C a2

aCc a2 Rad aCc U aCc V
a2 Cc U · V Stab.

aCc U · V
Transitivity

,

so that convergence follows from Stability. �

As already stressed, the lattice Zarc(A) of saturated subsets can be identified
with the lattice of radical ideals of A, and has the structure of a locale. The
equality U ∧ V =C U ◦ V can be restated explicitly as R(I) ∩ R(J) = R(I · J) for
all ideals I, J ⊆ A.

The reduced subsets split the axioms, and therefore they can be identified with
the coideals P ⊆ A satisfying the further condition

a ∈ P
an ∈ P

for all a ∈ A, n ∈ N. We call these subsets radical coideals [30]. The positivity
relation can be characterized as follows:

bm = λ1 · a1 + · · ·+ λn · an bnc F
a1 nc F ∨ a2 nc F ∨ · · · ∨ an nc F .

for all n,m ∈ N and λ1, . . . , λn, a1, . . . , an ∈ A. Hence anc F → ∀n(an nF ) for all
a ∈ A and F ⊆ A.

Every formal point of the basic topology Zar(A) is filtering and it is therefore
a radical coideal and a formal point for Zarc(A). Hence the points of the formal
Zariski topology coincide with the points of the basic Zariski topology.

In the realm of formal topologies, the points can be identified with the continuous
and convergent morphisms to the initial object of FTop, the category of formal
topologies and continuous and convergent morphisms [27].

The results in sections 4 and 5 can easily be generalized to the formal Zariski
topology.

Proposition 6.6. — Let A and B be commutative rings and φ : A→ B a ring
homomorphism. The relation φ− : B → A is a continuous and convergent relation
between the corresponding formal Zariski topologies (B,Cc,nc, ·) and (A,Cc,nc, ·).
Moreover, any such correspondence is a functor from the category CRings of com-
mutative rings to the category FTop of formal topologies.
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Also in the context of the Zariski formal topologies, we can talk about closed
subspaces and localisations, and the generation strategy remains the same. Re-
garding localisation, we have to prove that in a generation tree the rule LS (with
the notation of section 5) commutes with the rule Rad:

s ∈ S

πa2·s....
a2 · sCc,S U

a2 Cc,S U
LS

aCc,S U
Rad 7→

s ∈ S

πa2·s....
a2 · sCc,S U
a2 · s2 Cc,S U

Π

a · sCc,S U
Rad

aCc,S U
LS .

The characterizations result:

aCUc V ↔ aCc U ∪ V and aCc,S V ↔ (∃s ∈ S)(a · sCc U)

for all a ∈ A, U, V ⊆ A, S ⊆ A monoid (or filter).
As before, the closed subspaces and the localisations are represented in the cat-

egory of rings by quotient rings and localized rings:

Proposition 6.7. — Let A be a commutative ring, (A/U ,Cc,/(U),nc,/(U), ·)
the formal Zariski topology on the quotient ring A/U , and (A,CUc ,nUc , ·) the closed
subspace of the formal Zariski topology on A defined by U ⊆ A. The relations

π−U : A/U → A and idA : A→ A/U

form an isomorphism between those formal topologies.

Proposition 6.8. — Let A be a commutative ring, (AS ,CSc ,nSc , ·) the formal
Zariski topology on the localized ring AS , and (A,Cc,S ,nc,S , ·) the localisation in
S of the formal Zariski topology on A. The relations

φ−S : AS → A and ψS : A→ AS

where aψS xs ≡ aCc,S x form an isomorphism between the formal topologies under
consideration.

In particular, we recall that properties such as spatiality and reducibility are pre-
served by continuous and convergent morphisms, as all the properties of topological
nature.

7. Spatiality and reducibility of the formal Zariski topology

As shown in the previous section, the formal points of the basic Zariski topology
and of the formal Zariski topology coincide. In particular, the formal topology
induced impredicatively by the points of A, namely by the basic pair : Pt(A) −→
A, coincides with ZarPt(A). We therefore have the chain of implications

aC U → aCc U → aCPt U

for all a ∈ A and U ⊆ A. In other words, Zarc(A) is a better approximation of
ZarPt(A) with respect to Zar(A), and we are prompted to address again the issue
of spatiality and reducibility for the formal topology Zarc(A).

The reducibility of the formal Zariski topology asserts that for every radical
coideal P ⊆ A and every a ∈ P , there exists a prime filter α containing a and
contained in P .
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b
a

P

A

Assuming AC (and therefore REM [11, 1, 13]) together with PSA, every finitary
formal topology is reducible and hence spatial:

Proposition 7.1. — Let (S,C,n, ◦) be a finitary formal topology. Assuming
Zorn’s Lemma and classical logic, S is reducible (and therefore spatial).

Proof. — Suppose a n F . We have to show that there exists a formal point α
such that a ∈ α and α ⊆ F . To this end, we define

Sa,F = {U ∈ P(S) : an U & U ⊆ F}.

This collection is inhabited by F , and it is naturally ordered by inverse inclusion
⊇. We show by coinduction that, If V1 ⊇ V2 ⊇ . . . is a chain in Sa,F , then
V =

⋂
n∈N Vn ∈ Sa,F . The subset V is clearly a lower bound for the chain. We

define b ∈ Q ≡ ∀n(bn Vn); then we have:
(1) a ∈ Q since Vn ∈ Sa,F for all n ∈ N.
(2) If b ∈ Q then bnVn, and therefore b ∈ Vn for all n. In other terms, Q ⊆ V .
(3) If b = b1 + b2 and b ∈ Q, namely ∀n(b n Vn), then ∀n(b1 n Vn ∨ b2 n Vn).

With classical logic, since the sequence {Vi}i∈N is descending, we have
∀n(b1 n Vn) ∨ ∀n(b2 ∈ Vn), i.e. b1 ∈ Q ∨ b2 ∈ Q. This shows that Q
splits the axiom Σc. Acting similarly for the other axioms, one shows that
Q is a reduced subset.

These remarks imply that a n V and therefore V ∈ Sa,F . By means of Zorn’s
Lemma, we find a minimal element α in Sa,F . This minimal element is a coideal,
inhabited by a, and it is filtering: suppose x ∈ α and y ∈ α; then neither α \ {x} ∈
Sa,F nor α \ {y} ∈ Sa,F and hence ¬(a n α \ {x}) and ¬(a n α \ {y}). Since the
topology is generated and classical logic is at hand, this is equivalent to aC p∪{x}
and a C p ∪ {y}, where p is the complement of α. The axioms of formal topology
allow to conclude a C p ∪ x ◦ y which means ¬(a n α \ x ◦ y); this is equivalent to
x ◦ y G α. �

In particular, Proposition 7.1 holds for the formal Zariski topology: in this case
the formal points coincide with the complements of the prime ideals and the state-
ment of spatiality/reducibility has the familiar form

a ∈
⋂
U⊆p

p→ a ∈ R(U) (7.1)

where a ∈ A and U ⊆ A. One has in fact

∀α(a ∈ α→ U G α)→ aCc U iff ∀α(¬(U G α)→ ¬(a ∈ α))→ aCc U iff
iff ∀α(U ⊆ −α→ a ∈ −α)→ aCc U iff
iff ∀p ∈ Spec(A)(U ⊆ p→ a ∈ p)→ a ∈ R(U).

The implication (7.1), or its contrapositive, is usually called “Krull’s Lemma” and is
a crucial statement in commutative algebra. Starting from the collection of points,
it allows to deduce a concrete information on the ring side, that is, an equational
witness for a ∈ R(U). Nevertheless this existence is a consequence of AC, and a
priori has no effective content [32].
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From the spatiality of the formal Zariski topology on every discrete ring A, one
deduces REM. The proof makes use of the following general lemma, already present
in [22] and [12]. The only difference lies in the reformulation by means of n:

Lemma 7.2. — Let (S,C,n) be a finitary and spatial formal topology. Then
for all a ∈ S:

aC ∅ ∨ an S.

Proof. — We consider the subset Ua defined by

x ∈ Ua ≡ x = a & an S,

and show ∀α(a ∈ α → α G Ua); by spatiality, a C Ua follows. If a ∈ α, then a n α
because α is reduced, and therefore anS; we then have a witness for α G Ua. Hence
aCUa and, since the cover is finitary, there exists a finite U0 ⊆ Ua such that aCU0.
It is decidable whether U0 is empty or inhabited. If U0 is empty, then aC ∅; if U0
is inhabited, then so is Ua, and thus an S. �

In particular, Lemma 7.2 applies to the formal Zariski topology.

Remark 7.3. — Since the class of Zariski formal topologies is stable under form-
ing closed subspaces, from the hypothesis that the class of Zariski formal topologies
is spatial follows, in the light of Lemma 7.2, that

aCUc ∅ ∨ anUc A,

that is,
aCc U ∨ anc −U

for every ring A, every a ∈ A and every U ⊆ A. Moreover, by compatibility, we
have anc −U → ¬(aCc U) and we obtain

aCc U ∨ ¬(aCc U)

or, in other words, every radical coideal is complemented for every ring A.

Proposition 7.4. — If spatiality holds for the class of Zariski formal topologies,
then every subset U of a discrete set S is complemented.

Proof. — Take the ring A = Z[S] freely generated by S and consider the formal
Zariski topology (A,Cc,nc). We regard S and U as subsets of A. We are going to
prove

aCc U ↔ a ∈ U
for any a ∈ S. Notice that A is the free Z-module with a basis given by the monic
monomials of A. Therefore every element of A can be written in a unique way as
Z-linear combination of such monomials. If aCc U then there is k ∈ N such that

ak =
n∑
i=0

bi · ui where bi ∈ A, ui ∈ U ;

more explicitly, we have bi =
∑
m∈Mi

λi,m ·m with Mi a finite set of monic mono-
mials in A and λi,m ∈ Z. One therefore has

ak =
n∑
i=0

∑
m∈Mi

λi,m · (m · ui).

Since ak and every m ·ui are monomials and therefore basis elements, this equation
can be realized if and only if ak = m · ui for some i = 1, . . . , n and m ∈ Mi; this
amounts to m = ak−1 and ui = a and a ∈ U . By remark 7.3 we get

a ∈ U ∨ ¬(a ∈ U)

for all a ∈ S. �
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Not even reducibility can be accepted constructively for every ring A. In fact, as-
suming it, we can prove a version of Russell’s Multiplicative Axiom in the following
form ACF∗:

ACF∗. — Let S be a discrete set and {Ui}i∈I a partition of S in finite and
inhabited subsets, with I discrete. Then, there exists α ⊆ S such that

∀i(Ui G α) and ∀t, t′∀i(t, t′ ∈ Ui ∩ α→ t = t′). (7.2)

We now fix a set S equipped with a partition {Ui}i∈I in finite and inhabited
subsets, with I and S discrete. We will define a formal topology on S such that
the formal points coincide precisely with the subsets α that satisfy (7.2). Consider
on S the following generated basic topology:10

aCP U ≡ a ∈ U ∨ (∃i ∈ I)(Ui ⊆ U)
anP F ≡ a ∈ F & (∀i ∈ I)(Ui G F ).

It follows that a subset U ⊆ S is saturated if and only if

∃i(Ui ⊆ U)→ S = U

and is reduced if and only if

S G F → ∀i(Ui G F )

for all i ∈ I. We define on the topology the following operation

a ∈ t ◦ t′ ≡ ∃i, j ∈ I(i 6= j & t ∈ Ui & t′ ∈ Uj) ∨ t = t′ = a

where t, t′ ∈ S. With this operation, the filtering subsets (viz. the U ⊆ S such that
t, t′ ∈ U → t ◦ t′ G U), are the ones which have at most one element in each subset
Ui of the partition.

U1 U2 U3 U4 U5 U6

b

b

b

b b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b
bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

b

b

b

b

In the picture above, we give as example S = U1
·
∪ . . .

·
∪ U6: the fat black dots

form a filtering subset, the white ones a reduced subset.
The formal points for this topology are, by direct observation, exactly the in-

habited subsets α ⊆ A which satisfy the conditions (7.2).

Remark 7.5. — The existence of a formal point for this topology is equivalent
to ACF∗.

Remark 7.6. — Let A be a discrete ring. By Remark 6.1 the subset A\{0} is a
coideal, and is inhabited by the unit if 1 6= 0. If moreover the ring A is reduced, that
is, an = 0→ a = 0, then A \ {0} is a radical coideal, that is to say a 6= 0→ an 6= 0
for all n ∈ N.

Lemma 7.7. — Let S be a discrete set and {Ui}i∈I a partition of S in finite and
inhabited subsets, with I a discrete set; let (S,CP ,nP , ◦) be the basic topology
with operation assigned to S as above. Then there exists a non-trivial, reduced
and discrete ring A, and a continuous and convergent morphism from Zarc(A) to
(S,CP ,nP , ◦).

10Following [21], the topology is generated by setting {Ui}i∈I as axiom-set for all a ∈ S.
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Proof. — Consider the ring Z[S] freely generated by the elements of S. We apply
successively he following transformations: first, we quotient Z[S] by the ideal I(H)
generated by

H = {t · t′ : (∃i ∈ I)(t, t′ ∈ Ui) & t 6= t′};
secondly, we localize it in the monoid M(K) generated by

K = {σi : i ∈ I} (σi =
∑
u∈Ui

u)

for all11 i ∈ I. Let A be the resulting ring. First of all, one can prove that A is
non-trivial, that is, M(K) G I(H) leads to a contradiction. This follows from the
structure of the elements of M(K) and I(H).
Secondly, the equality on A is decidable. To see this, let x = a

k ∈ A; we can suppose
that a is a monomial, namely a = sm1

1 · · · smn
n ∈ Z[S], and k ∈M(K). We want to

show x = 0 ∨ x 6= 0; if two variables si belong to the same element of the partition
Uj for some j ∈ I, then a ∈ I(H) and therefore a

k = 0. Suppose instead that
all the si lie in distinct subsets Uj of the partition; we show k′ · a 6∈ I(H) for all
k′ = σl1i1 · · ·σ

lh
ih
∈M(K). In details, we have:

k′ · a = σl1i1 · · ·σ
lh
ih
· sm1

1 · · · smn
n =

∑
(s′1,...,s′h)∈Ui1×...,×Uih

s′1, . . . , s
′
h · s

m1
1 · · · smn

n .

At least one element of this sum does not lie in I(H): it is enough to choose s′j = sl
if sl ∈ Uij . This is sufficient to assert k′ · a 6∈ I(H) and therefore x 6= 0. Finally,
the ring A is reduced; a proof can be obtained similarly to the previous point, by
making explicit an

kn = 0, where n ∈ N, a ∈ Z[S] is a monomial and k ∈M(K).
We therefore have a chain of morphisms

S
� � i // Z[S] πH // Z[S]/I(H) φK // A

r

ii

where i is the canonical inclusion, πH is the projection on the quotients and φK
is the localisation homomorphism in M(K). Finally, let r be the composition of
the three morphisms, considered as relation in the opposite direction; we will prove
that r is a continuous and convergent morphism if S is endowed with the topology
(S,CP ,nP , ◦). For the sake of convenience, we identify S with the corresponding
subset of A and the relation i with the identity.

To prove continuity, we have to check that r respects the axiom sets {Ui}i∈I
for every a ∈ A. This is equivalent to showing a Cc Ui for all i ∈ I and s ∈ S,
which is obvious because σi ∈ I(Ui) is invertible in the localized ring. As for the
convergence of r, since ACc S as a consequence of the proof of continuity, we only
have to prove

t · t′ Cc t ◦ t′

for all t, t′ ∈ S. If t ∈ Ui and t′ ∈ Uj with i 6= j, then t ◦ t′ = S. If instead t, t′ ∈ Ui
for the same i ∈ I, then either t 6= t′ and t · t′ = ∅, or t = t′ and t ◦ t′ = {t} = {t′}.
In the first case, t · t′ ∈ I(H) and therefore t · t′ Cc ∅; in the second case, the
convergence condition becomes t · tCc t, which is always true by weakening. Hence
r is a continuous and convergent morphism. �

Proposition 7.8. — If every formal Zariski topology is reducible, then ACF∗
holds.

Proof. — Proving ACF∗ is equivalent to proving the existence of a formal point
for the formal topology (S,CP ,nP , ◦). By Lemma 7.7, there exists a discrete,
reduced and non-trivial ring A and a continuous and convergent morphism r from
Zarc(A) to (S,CP ,nP , ◦).

11Since every Ui is finite, this sum is well-defined.
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By Remark 7.6, the subset A \ {0} is a radical coideal and 1 ∈ A \ {0}. In
particular 1nA\{0}, so, by reducibility, there exists a formal point α of the formal
Zariski topology such that α ⊆ A\{0}. The direct image of α through r is a formal
point for (S,CP ,nP , ◦). �

It remains to be seen whether Proposition 7.4 and 7.8 have any kind of con-
verse. To conclude this section, we list some principles constructively equivalent to
spatiality for the class of Zariski formal topologies. Before, we make the following
observations:
(1) For all the monoids S ⊆ A and for all ideals I ⊆ A one has

S G R(I)↔ S G I.

In particular, for S = {1}, one gets A = R(I)↔ A = I.
(2) For every radical ideal I and monoid S of A, if we set

a ∈ LS(I) ≡ (∃s ∈ S)(a · s ∈ I);
then LS(I) is the saturation of I with respect to the cover Cc,S , and moreover
every saturated subset is obtained in this way. Also, S G LS(I) if and only if
S G I. By definition

∃s(s ∈ S & s ∈ LS(I)),
that is, there exists s′ ∈ S such that s ∈ S and s · s′ ∈ I; then s · s′ is a witness
of S G I.

(3) Putting together the previous remarks, for every monoid S and every ideal I,
we get

S G LS(R(I))↔ S G R(I)↔ S G I.

We can now prove the following equivalences:

Proposition 7.9. — Asserting the spatiality of Zarc(A) for every ring A is
equivalent to each of the following:
(1) For every ring A, for every monoid S ⊆ A and every ideal I ⊆ A,

(∀α ∈ Pt(A))(S ⊆ α→ α G I)→ S G I.

In particular, this holds for every filter S.
(2) (Sufficiency) For every ring A and for every a ∈ A,

(∀α ∈ Pt(A))(¬(a ∈ α))→ aCc ∅.

In terms of prime ideals, this property can be rewritten with classical logic as

(∀α ∈ Pt(A))∀p(a ∈ p)→ a ∈
√

(0).
(3) For every ring A and for every ideal I ⊆ A,

(∀α ∈ Pt(A))(α G I)→ A = I.

Assuming classical logic, this statement corresponds to
(∀p ∈ Spec(A))(I 6⊆ p)→ I = A.

Proof. — (1) (←) Let A be a commutative ring which satisfies 1. Given a ∈ A
and U ⊆ A, let S(a) be the monoid generated by a and I = R(U). Then

S(a) ⊆ α↔ a ∈ α, α G I ↔ α G U, S(a) G I ↔ aCc U.

By substituting these equivalents we get
∀α(a ∈ α→ α G U)→ aCc U,

which is spatiality. (→) Suppose that the Zariski formal topologies are spatial, and
fix a ring A, a monoid S and a radical ideal I in A. Let AS be the localisation
in S, equipped with the formal topology Zarc(AS). Thanks to the isomorphism of
Proposition 6.8, this formal topology is spatial if and only if the formal topology
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Zarc,S(A) is spatial. Remembering that the formal points in Zarc,S(A) are precisely
the formal points of Zarc(A) containing S, the spatiality in (1, LS(R(I))) becomes

∀α ∈ Pt(A)(S ⊆ α→ α G LS(R(I)))→ 1 ∈ LS(R(I)).
Since α G LS(R(I)) ↔ α G I and 1 ∈ LS(R(I)) → S G LS(R(I)) ↔ S G I, we
obtain

∀α ∈ Pt(A)(S ⊆ α→ α G I)→ S G I,

for every ideal I.
(2) (→) Let A be a commutative ring satisfying spatiality. For every a ∈ A, we

have in particular
∀α(a ∈ α→ α G ∅)→ aCc ∅,

that is, ∀α(¬(a ∈ α))→ aCc ∅, or Sufficiency.
(←) Let a ∈ A and U ⊆ A. By hypothesis, A/U satisfies Sufficiency, so that

∀α ∈ Pt(A/U )(¬(a ∈ α))→ aCUc ∅.

Since α ∈ Pt(A/U ) if and only if α ∈ Pt(A) and ¬(α G U), and aCUc ∅ if and only
if aCc U , we have

∀α ∈ Pt(A)(a ∈ α→ α G U)→ aCc U,

which is spatiality.
(3) (→) We give a sketch, following the previous points. Let A be a commutative

ring satisfying spatiality. For every ideal I ⊆ A, spatiality in (1, R(I)) is expressed
by

∀α(1 ∈ α→ α G R(I))→ 1 ∈ R(I)
which is to say that ∀α(α G I)→ A = I.

(←) Let a ∈ A and U ⊆ A. Applying the hypothesis to AS(a), the localisation
of A in S(a), and using the isomorphism of Proposition 6.8, we get

∀α ∈ Pt(A)(S(a) ⊆ α→ α G U)→ 1Cc,S(a) U

for all U ⊆ A. Since S(a) ⊆ α if and only if a ∈ α, and 1 Cc,S(a) U if and only if
aCc U , we finally have

∀α ∈ Pt(A)(a ∈ α→ α G U)→ aCc U,

that is, spatiality for A. �

It is worthwhile to stress that the proof of (←) in point 1 and that of (→) in
points 2 and 3 hold instance by instance of the ring A.

Apart from Proposition 7.8, it remains to be seen to what extent reducibility
for the Zariski formal topology is related to any non-constructive principle (e.g.,
fragments of the law of excluded middle and/or the axiom of choice), as is the case
in other contexts [5].

8. The Zariski lattice and the formal Hilbert Nullstellensatz

We present a different and well-known point-free interpretation of the Zariski
spectrum (due to Joyal [17]) and briefly recall the link to the formal Zariski topology.
In particular, we give a alternative proof of the so-called formal Nullstellensatz.

We recall that the Zariski topology on a ring A has as basis the subsets of the
form

D(a) = {p ∈ Spec(A) : a 6∈ p}
with a ∈ A. This Spec(A) is a spectral space: that is, it is sober, i.e. every non-
empty irreducible closed subset is the closure of a unique point, and the compact
opens form a basis for the topology. It is possible to describe this basis in an formal
way, as the collection of opens of the form D(a1)∪ · · · ∪D(an) with a1 . . . , an ∈ A;
these opens form a distributive lattice satisfying
D(0) = ∅, D(1) = Spec(A), D(ab) = D(a) ∩D(b), D(a+ b) ⊆ D(a) ∪D(b)
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for all a, b ∈ A. At this point, one can avoid reference to the collection Spec(A) of
the prime ideals and formally describe the distributive lattice freely generated by
the expressions {D(a)}a∈A and subject to the relations
D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a+ b) 6 D(a, b) (8.1)

for all a, b, b′ ∈ A, where
D(a1, . . . , an) ≡ D(a1) ∨ · · · ∨D(an).

This lattice is called the Zariski lattice of A [7, 18]. We notice that every element
of the lattice can be written in the form D(a1, . . . , an). Hence the Zariski lattice
can be identified with the set Z = Pω(A) of finite subsets of A, equipped with the
minimal partial order relation 6 satisfying

{0} 6 ∅ {a · b} 6 {a}
{c} 6 {a} {c} 6 {b}

{c} 6 {a · b} {a+ b} 6 {a, b}. (8.2)
and

U0 6 V0 ↔ (∀u ∈ U0)({u} 6 V0)
for all a, b ∈ A and U0, V0 ∈ Z. The condition {a} 6 {1} is already entailed by
{a · b} 6 {a}.

In particular, the distributive lattice (Z,6) satisfies
{0} 6 ∅ {a · b} 6 {a} {a+ b} 6 {a, b} {a} 6 {a2}.

for all a, b ∈ A, and therefore U0CcV0 → U0 6 V0 by the induction rule associated to
Cc. Vice versa, Cc satisfies Convergence (Proposition 6.5) and thus the conditions
(8.2) from which we derive Cc =6. In other terms, (Z,Cc) is exactly the lattice
generated by the conditions (8.1). The characterization (6.1) of the formal cover
can then be rewritten as follows:

Proposition 8.1. — D(a) 6 D(b1, . . . bn) if and only if a ∈ R({b1, . . . bn}).

The statement above is also called formal Nullstellensatz and establishes the link
between the lattice and the given structure of the ring, and is the core theorem for
the application of formal methods [6, 7, 8, 18]. In our treatment, Proposition 8.1
corresponds to the explicit characterization (6.1) of the formal cover.
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