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FULLY DISCRETE HYPERBOLIC INITIAL BOUNDARY VALUE
PROBLEMS WITH NONZERO INITIAL DATA

JEAN-FRANÇOIS COULOMBEL

Abstract. The stability theory for hyperbolic initial boundary value problems relies most
of the time on the Laplace transform with respect to the time variable. For technical reasons,
this usually restricts the validity of stability estimates to the case of zero initial data. In
this article, we consider the class of non-glancing finite difference approximations to the
hyperbolic operator. We show that the maximal stability estimates that are known for zero
initial data and nonzero boundary source term extend to the case of nonzero initial data in
`2. The main novelty of our approach is to cover finite difference schemes with an arbitrary
number of time levels. As an easy corollary of our main trace estimate, we recover former
stability results in the semigroup sense by Kreiss [11] and Osher [17].

This article is dedicated to Denis Serre on the occasion of his 60th birthday.

Throughout this article, we use the notation
U := {ζ ∈ C, |ζ| > 1} , U := {ζ ∈ C, |ζ| > 1} ,
D := {ζ ∈ C, |ζ| < 1} , S1 := {ζ ∈ C, |ζ| = 1} .

We letMd,p(K) denote the set of d×p matrices with entries in K = R or C, and we
use the notationMd(K) when p = d. If M ∈Md(C), sp(M) denotes the spectrum
of M , ρ(M) denotes its spectral radius, and M∗ denotes the conjugate transpose of
M . We let I denote the identity matrix or the identity operator when it acts on an
infinite dimensional space. We use the same notation x∗ y for the hermitian product
of two vectors x, y ∈ Cd and for the Euclidean product of two vectors x, y ∈ Rd.
The norm of a vector x ∈ Cd is |x| := (x∗ x)1/2. The corresponding norm onMd(C)
is denoted ‖ · ‖. We let `2 denote the set of square integrable sequences, without
mentioning the indices of the sequences. Sequences may be valued in Ck for some
integer k. In all this article, N is a fixed positive integer.

1. Introduction

We are interested in finite difference discretizations of hyperbolic initial boundary
value problems. The continuous problem reads:

∂tu+A∂xu = F (t, x) , (t, x) ∈ R+ × R+ ,

B u(t, 0) = g(t) , t ∈ R+ ,

u(0, x) = f(x) , x ∈ R+ ,

(1.1)

where, for simplicity, we consider the half-line R+ as the space domain. The matrix
A ∈MN (R) is assumed to be diagonalizable with real eigenvalues, andB is a matrix
- not necessarily a square one - that encodes the boundary conditions. The functions
F, g, f are given source terms, respectively, the interior source term, the boundary
source term and the initial condition. Well-posedness for (1.1) is equivalent to the
algebraic condition:

Ker B ∩ Span
(
r1, . . . , rN+

)
= {0} ,

where the vectors r1, . . . , rN+ span the unstable subspace of A, which corresponds
to incoming characteristics. Furthermore, the matrix B should have rank N+.
Provided these conditions are satisfied, the unique solution u ∈ C(R+;L2(R+)) to
(1.1) depends continuously on f ∈ L2(R+), g ∈ L2(R+) and F ∈ L2(R+ × R+).

Math. classification: 65M12, 65M06, 35L50.
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18 J.-F. Coulombel

We refer to [2, chapter 4] for a general presentation of the well-posedness theory
for (1.1), as well as for its multidimensional analogue.

The well-posedness theory for finite difference discretizations of (1.1) is far less
clear. Let us first set a few notation. We let ∆x,∆t > 0 denote a space and a
time step where the ratio λ := ∆t/∆x is a fixed positive constant, and we also let
p, q, r, s denote some fixed integers. The solution to (1.1) is approximated by means
of a sequence (Unj ) defined for n ∈ N, and j ∈ 1− r + N. For j = 1− r, . . . , 0, the
vector Unj should be understood as an approximation of the trace u(n∆t, 0) on the
boundary {x = 0}. We consider finite difference approximations of (1.1) that read:

Un+1
j =

s∑
σ=0

Qσ U
n−σ
j + ∆t Fnj , j > 1 , n > s ,

Un+1
j =

s∑
σ=−1

Bj,σ U
n−σ
1 + gn+1

j , j = 1− r, . . . , 0 , n > s ,

Unj = fnj , j > 1− r , n = 0, . . . , s ,

(1.2)

where the operators Qσ and Bj,σ are given by:

Qσ :=
p∑

`=−r
A`,σ T` , Bj,σ :=

q∑
`=0

B`,j,σ T` . (1.3)

In (1.3), all matrices A`,σ, B`,j,σ belong toMN (R) and are independent of the small
parameter ∆t, while T denotes the shift operator on the space grid: (T`v)j := vj+`.

Existence and uniqueness of a solution (Unj ) to (1.2) is trivial since the numerical
scheme is explicit, so the last requirement for well-posedness is continuous depen-
dence of the solution on the three possible source terms (Fnj ), (gnj ), (fnj ). This
is a stability problem, and several definitions can be chosen. The following one
dates back to the fundamental contribution [9], and is specifically relevant when
the boundary conditions are non-homogeneous ((gnj ) 6≡ 0):

Definition 1.1 (Strong stability [9]). — The finite difference approximation
(1.2) is said to be strongly stable if there exists a constant C1 such that for all
γ > 0 and all ∆t ∈ (0, 1], the solution (Unj ) to (1.2) with (f0

j ) = · · · = (fsj ) = 0
satisfies the estimate:

γ

γ∆t+ 1
∑

n>s+1

∑
j>1−r

∆t∆x e−2 γ n∆t |Unj |2 +
∑

n>s+1

p∑
j=1−r

∆t e−2 γ n∆t |Unj |2

6 C1

γ∆t+ 1
γ

∑
n>s

∑
j>1

∆t∆x e−2 γ (n+1) ∆t |Fnj |2

+
∑

n>s+1

0∑
j=1−r

∆t e−2 γ n∆t |gnj |2
 . (1.4)

Another more common notion of stability only deals with nonzero initial data in
(1.2), and was considered in the earlier publications [11, 17, 16]:

Definition 1.2 (Semigroup stability). — The finite difference approximation
(1.2) is said to be semigroup stable if there exists a constant C2 such that for all
∆t ∈ (0, 1], the solution (Unj ) to (1.2) with (Fnj ) = (gnj ) = 0 satisfies the estimate:

sup
n>0

∑
j>1−r

∆x |Unj |2 6 C2

s∑
n=0

∑
j>1−r

∆x |fnj |2 . (1.5)

Remark 1.3. — Both Definitions 1.1 and 1.2 are independent of the small pa-
rameter ∆t because of the fixed ratio ∆t/∆x. We could therefore assume ∆t = 1,
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which we sometimes do later on, but have written (1.4) and (1.5) with ∆t and ∆x
in order to make the connection with the "continuous" norms.

Let us observe that semigroup stability for (1.2) amounts to requiring that the
(linear) operator

(U0, . . . , Us) 7−→ (U1, . . . , Us+1) ,
that is obtained by considering (1.2) in the case (Fnj ) = (gnj ) = 0, be power bounded
on `2 × · · · × `2. Let us quote [25] at this stage: “The term GKS-stable is quite
complicated. This is a special definition of stability (...) that involves exponential
factors with respect to t and other algebraic terms that remove it significantly from
the more familiar stability notion of bounded norms of powers.” The goal of this
article is to shed new light on the relations between these two notions of stability
for (1.2).

There is clear evidence that semigroup stability does not imply strong stability
for (1.2). One counter-example is given in [24, page 361]. In the PDE multidimen-
sional context, a very simple counter-example can be constructed by considering
the symmetric hyperbolic operator

∂t +
(

1 0
0 −1

)
∂x1 +

(
0 1
1 0

)
∂x2

with maximally dissipative (but not strictly dissipative) boundary conditions. The
maximal dissipativity property yields semigroup stability, see [2, chapter 3], while
the violation of the so-called Uniform Kreiss-Lopatinskii Condition precludes any
trace estimate in L2 of the solution in terms of the L2 norm of the boundary source
term.

Yet, a reasonable expectation is that strong stability does imply semigroup sta-
bility1. In the PDE multidimensional context, this was proved in [10, 18] for both
symmetric and strictly hyperbolic operators, later extended in [1] to hyperbolic
operators with constant multiplicity, and recently in [15] to an even wider class
of hyperbolic operators. The symmetric case is more favorable and is easily dealt
with by the introduction of auxiliary boundary conditions. Once again, the situa-
tion for difference approximations is not as complete. That strong stability implies
semigroup stability is somehow hidden in the early works [11, 17, 16] since the as-
sumptions made there actually yield strong stability (even though only semigroup
stability was proved then). The first general result on the "uniform power bound-
edness conjecture" dates back to [26] but is restricted to the case s = 0 (numerical
schemes with two time levels only) and to scalar problems. The analysis of [26]
was generalized in [7] to the case of systems in any space dimension, still under the
restriction s = 0 and assuming that the discretized hyperbolic operator does not
increase the `2 norm on all Z (Zd in several space dimensions).

The present article is a first attempt to tackle the "uniform power boundedness
conjecture" for schemes with more than two time levels, that is, when s > 1. Our
main result, which is Theorem 2.1 below, gives a trace estimate for the solution to
(1.2) in the case of nonzero initial data. We are not able yet to give a positive answer
to the conjecture in a general framework, but we recover the results of [11, 17, 16]
as an easy corollary of Theorem 2.1. Unlike [26, 7], our argument does not use the
auxiliary Dirichlet boundary condition but relies on an easy summation by parts
argument, as what one does for toy problems such as the upwind or Lax-Friedrichs
schemes. Unfortunately, this summation by parts argument is restricted so far to
the case s = 0, but we do hope that our trace estimate for nonzero initial data
does imply semigroup stability even for s > 1. This might require adapting the
PDE arguments to the framework of difference approximations and is postponed
to a future work.

1This "uniform power boundedness conjecture" appears in an even stronger (!) version in [13].
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2. Assumptions and main result

We adopt the framework of [4, 5]. Let us first introduce the so-called amplifica-
tion matrix:

∀κ ∈ C \ {0} , A(κ) :=


Q̂0(κ) . . . . . . Q̂s(κ)
I 0 . . . 0

0
. . . . . .

...
0 0 I 0

 ∈MN(s+1)(C) ,

Q̂σ(κ) :=
p∑

`=−r
κ`A`,σ . (2.1)

A necessary condition for both strong and semigroup stability of (1.2) is that the
discretization of the Cauchy problem be `2 stable. We thus make our first assump-
tion.

Assumption 1 (Stability for the discrete Cauchy problem). — There exists a
constant C > 0 such that the amplification matrix A in (2.1) satisfies:

∀n ∈ N , ∀ η ∈ R ,
∥∥A(ei η)n

∥∥ 6 C .
In particular, the von Neumann condition ρ(A(ei η)) 6 1 holds.

We then make the following geometric regularity assumption on the difference op-
erators Qσ in (1.2):

Assumption 2 (Geometrically regular operator). — The amplification matrix
A defined by (2.1) satisfies the following property: if κ ∈ S1 and z ∈ S1 ∩ sp(A(κ))
has algebraic multiplicity α, then there exist some functions ζ1(κ), . . . , ζα(κ) that
are holomorphic in a neighborhood W of κ in C, that satisfy

ζ1(κ) = · · · = ζα(κ) = z , det
(
z I −A(κ)

)
= ϑ(κ, z)

α∏
k=1

(
z − ζk(κ)

)
,

with ϑ a holomorphic function of (κ, z) in some neighborhood of (κ, z) such that
ϑ(κ, z) 6= 0, and furthermore, there exist some vectors e1(κ), . . . , eα(κ) ∈ CN(s+1)

that depend holomorphically on κ ∈ W, that are linearly independent for all κ ∈ W,
and that satisfy

∀κ ∈ W , ∀ k = 1, . . . , α , A(κ) ek(κ) = ζk(κ) ek(κ) .

Let us recall that in the scalar case (N = 1), Assumption 2 is actually a consequence
of Assumption 1, see [6, Lemma 7]. For technical reasons to be specified later in
Section 3, we make a final assumption on the amplification matrix A:

Assumption 3 (Non-glancing discretization). — The amplification matrix A
defined by (2.1) satisfies the following property: if κ ∈ S1 and z ∈ S1 ∩ sp(A(κ))
has algebraic multiplicity α, then the eigenvalues ζ1(κ), . . . , ζα(κ) of A(κ) that are
close to z when κ is close to κ satisfy:

∀ k = 1, . . . , α , ζ ′k(κ) 6= 0 .

Many standard finite difference approximations satisfy Assumptions 1, 2 and
3, as for instance the upwind, Lax-Friedrichs and Lax-Wendroff schemes under a
suitable CFL condition. The leap-frog approximation satisfies Assumptions 1 and
2 but violates Assumption 3. The case ζ ′k(κ) = 0 gives rise to glancing wave packets
with a vanishing group velocity, see [23, 24]. Here we assume that no such wave
packet occurs.

For geometrically regular operators, the main results of [4, 5] show that strong
stability is equivalent to an algebraic condition, known as the Uniform Kreiss-
Lopatinskii Condition. Let us summarize the main steps in the analysis since some
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notation and results will be used later on. The main tool in the characterization of
strong stability is the Laplace transform with respect to the time variable, which
leads to the resolvent equation

Wj −
s∑

σ=0
z−σ−1QσWj = Fj , j > 1 ,

Wj −
s∑

σ=−1
z−σ−1Bj,σW1 = gj , j = 1− r, . . . , 0 ,

(2.2)

with z ∈ U . The induction relation (2.2) can be written in a more compact form
by using an augmented vector. We introduce the matrices:

∀ ` = −r, . . . , p , ∀ z ∈ C \ {0} , A`(z) := δ`0 I −
s∑

σ=0
z−σ−1A`,σ ,

where δ`1`2 denotes the Kronecker symbol. We also define the matrices

∀ ` = 0, . . . , q , ∀ j = 1− r, . . . , 0 , ∀ z ∈ C \ {0} , B`,j(z) :=
s∑

σ=−1
z−σ−1B`,j,σ .

(2.3)
Our final assumption is rather standard and already appears in [11].

Assumption 4 (Noncharacteristic discrete boundary). — The matrices A−r(z)
and Ap(z) are invertible for all z ∈ U , or equivalently for all z ∈ C with |z| > 1− ε0
for some ε0 ∈ (0, 1].

Let us first consider the case q < p. In that case, all the Wj ’s involved in
the boundary conditions for the resolvent equation (2.2) are coordinates of the
augmented vector2 W1 := (Wp, . . . ,W1−r) ∈ CN(p+r). Using Assumption 4, we can
define a block companion matrix M(z) ∈MN(p+r)(C) that is holomorphic on some
open neighborhood V := {z ∈ C , |z| > 1− ε0} of U :

∀ z ∈ V , M(z) :=


−Ap(z)−1 Ap−1(z) . . . . . . −Ap(z)−1 A−r(z)

I 0 . . . 0

0
. . . . . .

...
0 0 I 0

 . (2.4)

We also define the matrix B(z) ∈ MNr,N(p+r)(C) that encodes the boundary con-
ditions for (2.2), namely

∀ z ∈ C \ {0} , B(z) :=

0 . . . 0 −Bq,0(z) . . . −B0,0(z) I 0
...

...
...

...
. . .

0 . . . 0 −Bq,1−r(z) . . . −B0,1−r(z) 0 I

 ,

with the B`,j ’s defined in (2.3). With such definitions, it is a simple exercise to
rewrite the resolvent equation (2.2) as an induction relation for the augmented
vector Wj := (Wj+p−1, . . . ,Wj−r) ∈ CN (p+r), j > 1. This induction relation takes
the form {

Wj+1 = M(z)Wj + Fj , j > 1 ,
B(z)W1 = G ,

(2.5)

where the new source terms (Fj),G in (2.5) are given by:
Fj := (Ap(z)−1 Fj , 0, . . . , 0) , G := (g0, . . . , g1−r) .

There is a similar equivalent form of (2.2) in the case q > p, and we refer the reader
to [6, page 145] for the details. The main results of [9] and later [4, 5] characterize
strong stability of (1.2) in terms of an algebraic condition that involves the matrices

2Vectors are written indifferently in rows or columns in order to simplify the redaction.
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M(z) and B(z) in (2.5). This characterization of strong stability relies on a precise
description of the stable and unstable spaces of the matrix M(z), including when
z becomes arbitrarily close to the unit circle. Some ingredients of the analysis are
recalled and used in Section 3.

Our main result is an estimate for the solution to (1.2) with nonzero initial data.
This estimate is entirely similar to (1.4) as far as the left hand-side of the inequality
is concerned. Namely, we extend the known estimate for zero initial data to nonzero
initial data by simply adding the `2 norm of the initial data on the right hand-side
of the inequality.

Theorem 2.1. — Let Assumptions 1, 2, 3 and 4 be satisfied. If the scheme
(1.2) is strongly stable, then for all integer P ∈ N, there exists a constant CP > 0
such that for all γ > 0 and all ∆t ∈ (0, 1], the solution (Unj ) to (1.2) with (Fnj ) =
(gnj ) = 0 satisfies the estimate:

γ

γ∆t+ 1
∑
n>0

∑
j>1−r

∆t∆x e−2 γ n∆t |Unj |2 +
∑
n>0

P∑
j=1−r

∆t e−2 γ n∆t |Unj |2

6 CP

s∑
n=0

∑
j>1−r

∆x |fnj |2 . (2.6)

The analogue of the estimate (2.6) is a key tool in [10] for proving the semigroup
boundedness in the PDE multidimensional context. This requires however rather
strong algebraic properties in order to justify some integration by parts argument
(in a possibly non-symmetric context).

Let us now explain the links between Theorem 2.1 and previous results in the
literature, and more specifically with the analysis in [17] (which is already an ex-
tension of [11]). As explained earlier, Assumption 1 is necessary for any kind of
stability result. It corresponds to condition (1) in the main Theorem of [17] (see
[17, XIX]). Assumption 2 is automatically satisfied in [17] because the equations
are scalar and the scheme involves only two time levels (recall that for N = 1, As-
sumption 2 actually follows from Assumption 1). Assumption 2 seems to be rather
natural in one space dimension, whatever the values of N and s, see the discussion
in [6, Section 2.2]. Assumption 3 is hidden in condition (2) of the main Theorem
of [17], but allows for slightly more general situations. Eventually, strong stability
corresponds to condition (4) in the main Theorem of [17]. So at this stage, one
might reasonably ask whether Theorem 2.1 does imply the main result of [17], that
is, semigroup stability of (1.2) when s = 0. This is the purpose of the following
Corollary.

Corollary 2.2. — In addition to Assumptions 1, 2, 3 and 4, let us assume3

s = 0 and:
p∑

`=−r
A`,0 = I , ‖Q0‖`2(Z)→`2(Z) = 1 .

If the scheme (1.2) is strongly stable, then it is also semigroup stable.

We emphasize that the decomposition technique used in [17] does not seem to
easily extend to the case s > 1, and this is the main reason why we advocate an
alternative approach that is based on the trace estimate (2.6) and a suitable inte-
gration by parts formula (see Section 4 for the proof of Corollary 2.2). Comparing
with the derivation of semigroup estimates for (1.2) in [26, 7], the present approach
is closer to the one that has been used in the PDE context, see e.g. [10, 18, 1], and
is also closer to the one that is used on toy problems such as the Lax-Friedrichs or
upwind schemes, see [8, chapter 11].

3All these extra assumptions are also present in [17].
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The proof of Theorem 2.1 is given in Section 3 and follows some arguments
that appear in the surprisingly unnoticed4 contribution [19], see also [20, section
5]. Our goal is to adapt such arguments to difference approximations and to make
precise the new arguments involved in this extension. More precisely, the non-
glancing Assumption is used in the proof of Theorem 2.1 to show a trace estimate
for the solution to the fully discrete Cauchy problem on Z. Thanks to this trace
estimate, we can incorporate the initial data for (1.2) in the solution to a Cauchy
problem, which reduces the study of (1.2) to zero initial data and nonzero boundary
source term. There is a wide literature on trace operators for hyperbolic Cauchy
problems, see for instance the "well-known", though unpublished, reference [14] and
works cited therein. We do not aim at a thorough description of the trace operator
here, but rather focus on its `2-boundedness. As explained in Appendix A, `2-
boundedness of the trace operator for the discrete Cauchy problem will be seen to
be equivalent5 to the non-glancing condition in Assumption 3.

3. Proof of Theorem 2.1

From now on, we consider the scheme (1.2) and assume that it is strongly stable
in the sense of Definition 1.1. When the interior and boundary source terms vanish,
the scheme reads

Un+1
j =

s∑
σ=0

Qσ U
n−σ
j , j > 1 , n > s ,

Un+1
j =

s∑
σ=−1

Bj,σ U
n−σ
1 , j = 1− r, . . . , 0 , n > s ,

Unj = fnj , j > 1− r , n = 0, . . . , s ,

(3.1)

with initial data f0, . . . , fs ∈ `2.
All constants appearing in the estimates below are independent of the Laplace

parameter γ > 0, when present.

3.1. Reduction to a Cauchy problem. We decompose the solution (Unj ) to (3.1)
as Unj = V nj +Wn

j , where (V nj ) satisfies a pure Cauchy problem that incorporates
the initial data of (3.1), and (Wn

j ) satisfies a system of the form (1.2) with zero
initial data and nonzero boundary source term. More precisely, (V nj ) denotes the
solution to 

V n+1
j =

s∑
σ=0

Qσ V
n−σ
j , j ∈ Z , n > s ,

V nj = fnj , j > 1− r , n = 0, . . . , s ,
V nj = 0 , j 6 −r , n = 0, . . . , s ,

(3.2)

4Actually, one of the main results of [19] shows that the uniform Lopatinskii condition is a
sufficient condition for strong well-posedness of strictly hyperbolic initial boundary value problems,
but the proof in [19] is restricted to constant coefficients linear systems, while the technique
developed in [12] extends to variable coefficients and therefore to nonlinear problems by fixed point
iteration. Another main result in [19] gives stability estimates for solutions to initial boundary
value problems with nonzero initial data, and this seems to be the first result of this kind for
non-symmetric systems.

5The equivalent result for PDE problems seems to be part of folklore, though we have not
found a detailed proof based on elementary arguments.
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and (Wn
j ) denotes the solution to

Wn+1
j =

s∑
σ=0

QσW
n−σ
j , j > 1 , n > s ,

Wn+1
j =

s∑
σ=−1

Bj,σW
n−σ
1 + gn+1

j , j = 1− r, . . . , 0 , n > s ,

Wn
j = 0 , j > 1− r , n = 0, . . . , s ,

(3.3)

where the source term (gnj ) in (3.3) is defined by

∀ j = 1− r, . . . , 0 , ∀n > s+ 1 , gnj := −V nj +
s∑

σ=−1
Bj,σ V

n−1−σ
1 . (3.4)

The following result shows that Theorem 2.1 only relies on a trace estimate for the
solution to (3.2).

Lemma 3.1. — Let Assumption 1 be satisfied. Assume furthermore that for all
P ∈ N, there exists a constant CP > 0, that does not depend on the initial data in
(3.2), such that the solution (V nj ) to (3.2) satisfies

∑
n>0

P∑
j=1−r

|V nj |2 6 CP
s∑

n=0

∑
j>1−r

|fnj |2 . (3.5)

Then the conclusion of Theorem 2.1 holds.

Proof. — Assumption 1 shows that the discrete Cauchy problem is stable in `2,
that is to say, there exists a numerical constant C such that

sup
n>0

∑
j∈Z

∆x |V nj |2 6 C
s∑

n=0

∑
j>1−r

∆x |fnj |2 .

Introducing the parameter γ > 0, and summing with respect to n ∈ N, we get

γ

γ + 1
∑
n>0

∑
j∈Z

∆x e−2 γ n |V nj |2 6 C
γ

(1− e−2 γ) (γ + 1)

s∑
n=0

∑
j>1−r

∆x |fnj |2

6 C
s∑

n=0

∑
j>1−r

∆x |fnj |2 .

The substitution γ → γ∆t and the trace estimate (3.5) already yield:

γ

γ∆t+ 1
∑
n>0

∑
j>1−r

∆t∆x e−2 γ n∆t |V nj |2 +
∑
n>0

P∑
j=1−r

∆t e−2 γ n∆t |V nj |2

6 CP

s∑
n=0

∑
j>1−r

∆x |fnj |2 . (3.6)

The trace estimate (3.5) for (V nj ) gives a bound for the boundary source term
(gnj ) in (3.4). Indeed, we have

|gnj | 6 C
s∑

σ=−1

1+q∑
`=1−r

|V n−1−σ
` | ,
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with a constant C that does not depend on j, n, nor on the sequence (V nj ). Intro-
ducing the parameter γ > 0, we thus obtain

∑
n>s+1

0∑
j=1−r

∆t e−2 γ n∆t |gnj |2 6 C
∑
n>0

1+q∑
j=1−r

∆t e−2 γ n∆t |V nj |2

6 C
s∑

n=0

∑
j>1−r

∆x |fnj |2 ,

where we have used (3.5) again (with P = 1+q). Since the scheme (1.2) is strongly
stable and (3.3) starts with zero initial conditions, we can use the strong stability
estimate and obtain

γ

γ∆t+ 1
∑
n>0

∑
j>1−r

∆t∆x e−2 γ n∆t |Wn
j |2 +

∑
n>0

p∑
j=1−r

∆t e−2 γ n∆t |Wn
j |2

6 C
∑

n>s+1

0∑
j=1−r

∆t e−2 γ n∆t |gnj |2 6 C
s∑

n=0

∑
j>1−r

∆x |fnj |2 . (3.7)

The combination of both estimates (3.6) and (3.7) gives the conclusion of Theorem
2.1. �

Our goal now is to show that the trace estimate (3.5) is valid for the solution to
the Cauchy problem (3.2). This is summarized in the following result.

Proposition 3.2. — Let Assumptions 1, 2, 3 and 4 be satisfied. Then for
all P ∈ N, there exists a constant CP > 0 such that for all γ > 0, the solution
(V nj )j∈Z,n∈N to (3.2) satisfies∑

n>0

P∑
j=1−r

e−2 γ n |V nj |2 6 CP
s∑

n=0

∑
j>1−r

|fnj |2 .

Proposition 3.2 clearly implies the validity of (3.5) by passing to the limit γ → 0,
and therefore the validity of Theorem 2.1. We thus now focus on the proof of
Proposition 3.2, for which we first recall some fundamental properties of the matrix
M(z) in (2.4).

3.2. A brief reminder on the normal modes analysis. The main result of [4]
can be stated as follows.

Theorem 3.3 (Block reduction ofM). — Let Assumptions 1, 2, 3 and 4 be satis-
fied. Then for all z ∈ U , the matrix M(z) in (2.4) has N r eigenvalues, counted with
their multiplicity, in D\{0}, and N p eigenvalues, counted with their multiplicity, in
U . We let Es(z), resp. Eu(z), denote the N r-dimensional, resp. N p-dimensional,
generalized eigenspace associated with those eigenvalues that lie in D \ {0}, resp.
U .

Furthermore, for all z ∈ U , there exists an open neighborhood O of z in C, and
there exists an invertible matrix T (z) that is holomorphic with respect to z ∈ O
such that:

∀ z ∈ O , T (z)−1 M(z)T (z) =

M1(z) 0
. . .

0 ML(z)

 ,

where the number L of diagonal blocks and the size ν` of each block M` do not de-
pend on z ∈ O, and where each block satisfies one of the following three properties:

• there exists δ > 0 such that for all z ∈ O, M`(z)∗M`(z) > (1 + δ) I,
• there exists δ > 0 such that for all z ∈ O, M`(z)∗M`(z) 6 (1− δ) I,
• ν` = 1, z and M`(z) belong to S1, and zM′`(z)M`(z) ∈ R \ {0}.
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We refer to the blocks M` as being of the first, second or third type.

Observe that Assumption 4 precludes the occurrence of blocks of the fourth type
in the terminology of [4], because such blocks only arise when glancing modes are
present. In our framework, we shall only deal with elliptic blocks (first or second
type) or scalar blocks. The latter correspond to eigenvalues of M(z) that depend
holomorphically on z.

3.3. Proof of the trace estimate for the Cauchy problem.

3.3.1. The resolvent equation. As already seen in the proof of Lemma 3.1, the
solution (V nj ) to the Cauchy problem (3.2) satisfies

γ

γ + 1
∑
n>0

∑
j∈Z

∆x e−2 γ n |V nj |2 6 C
s∑

n=0

∑
j>1−r

∆x |fnj |2 , (3.8)

for all γ > 0. The estimate (3.8) shows that, for all j ∈ Z, we can define the Laplace
transform of the step function

Vj(t) :=
{

0 if t < 0 ,
V nj if t ∈ [n, n+ 1) , n ∈ N .

The Laplace transform V̂j is holomorphic in the right half-plane {Re τ > 0} for all
j ∈ Z, and Plancherel Theorem gives

∀ γ > 0 ,
∑
j∈Z

∫
R
|V̂j(γ + i θ)|2 dθ < +∞ .

In particular, for all γ > 0, the sequence
(
V̂j(γ + i θ)

)
j∈Z belongs to `2 for almost

every θ ∈ R.
Applying the Laplace transform to (3.2) yields the resolvent equation on Z:

∀ j ∈ Z , V̂j(τ)−
s∑

σ=0
z−σ−1Qσ V̂j(τ) = Fj(τ) , (3.9)

where the source term Fj is defined by

∀ j ∈ Z , Fj(τ) := 1− z−1

τ

{
s∑

n=0
z−n fnj −

p∑
`=−r

s−1∑
σ=0

s−σ−1∑
n=0

z−n−σ−1A`,σ f
n
j+`

}
,

(3.10)
and it is understood, as always in what follows, that τ is a complex number of
positive real part γ, and z := eτ ∈ U . In (3.10), we use the convention fnj = 0 if
j 6 −r. Using the matrix M(z) that has been defined in (2.4), we can rewrite (3.9)
as

∀ j ∈ Z , Wj+1(τ) = M(z)Wj(τ) + Fj(τ) ,

Wj(τ) :=

V̂j+p−1(τ)
...

V̂j−r(τ)

 , Fj(τ) :=

Ap(z)−1 Fj(τ)

0

 . (3.11)

Our goal now is to estimate the term W1−p−r(τ) of the solution (Wj) to (3.11),
and then to estimate finitely many Wν(τ), ν > 1− p− r.
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3.3.2. Estimates for γ small. In what follows, we always use the notation τ = γ+i θ,
and we recall the notation z := eτ . The source term Fj in (3.11) is given in terms
of Fj , whose expression is given in (3.10). The initial data (f0

j ), . . . , (fsj ) in (3.2)
vanish for j 6 −r, and so therefore do Fj and Fj for j 6 −p − r (and even for
j 6 −r if s = 0). This means that for all j 6 −p− r, the sequence (Wj) satisfies

Wj+1(τ) = M(z)Wj(τ) ,
and we know moreover that for all γ > 0, the sequence (Wj(γ + i θ))j∈Z belongs
to `2 for almost every θ ∈ R. Applying Theorem 3.3, this means that the vector
W1−p−r(τ) belongs to Eu(z) for almost every θ ∈ R.

Let us introduce the projectors Πs(z),Πu(z) associated with the decomposition
CN (p+r) = Es(z)⊕ Eu(z) .

Using the exponential decay of M(z)−k Πu(z) as k tends to infinity, the induction
relation (3.11) gives for almost every θ ∈ R:

W1−p−r(τ) = Πu(z)W1−p−r(τ) = −
∑
j>0

M(z)−1−j Πu(z)F1−p−r+j(τ) . (3.12)

We now focus on formula (3.12) and its consequences for small values of γ. More
precisely, we consider a point z of the unit circle S1 and apply Theorem 3.3. Let
us introduce neighborhoods of the form as depicted in Figure 3.1:

∀ ε > 0 , Vz,ε :=
{
z eα+i β , α, β ∈ (−ε, ε)

}
.

According to Theorem 3.3, there exists some ε > 0 such that on Vz,ε, there is a
holomorphic change of basis T (z) that block-diagonalizes M(z), with blocks satis-
fying one of the properties stated in Theorem 3.3. There is no loss of generality in
assuming that blocks M`(z) of the third type, which correspond to eigenvalues of
M(z), can further be written as

M`(z) = eξ`(z) , ξ`(z) ∈ iR , z ξ′`(z) ∈ R \ {0} , (3.13)
where ξ` is holomorphic on Vz,ε and

∀ z ∈ Vz,ε , |Re (z ξ′`(z))| >
1
2 |ξ
′
`(z)| > 0 .

In particular, |ξ′`| is uniformly bounded from below by a positive constant on Vz,ε.
We can further assume that T (z) and its inverse are uniformly bounded on Vz,ε.

Remark 3.4. — Since M`(z) is an eigenvalue of M(z), there holds ξ`(z) 6∈ iR for
z ∈ Vz,ε ∩ U . More precisely, the ξ`(z)’s of positive real part correspond to eigen-
values of M(z) in U (the unstable ones), and those of negative real part correspond
to eigenvalues in D (the stable ones).

Our goal is to derive a bound of the form∫
I
|W1−p−r(τ)|2 dθ 6 C

s∑
n=0

∑
j>1−r

|fnj |2 , (3.14)

uniformly with respect to γ ∈ (0, ε), where I denotes the set6:
I := {θ ∈ R / eτ ∈ Vz,ε} = ∪k∈Z (θ + 2 k π − ε, θ + 2 k π + ε) , z = ei θ . (3.15)
Let γ ∈ (0, ε) be fixed. For almost every θ ∈ I, the vector W1−p−r(τ) is given

by (3.12), and we can diagonalize M(z) with the matrix T (z). In order to cover all
possible cases7, we assume that the block diagonalization of M(z) reads
T (z)−1 M(z)T (z) = diag (M](z),M[(z),M+

1 (z), . . . ,M+
L+(z),M−1 (z), . . . ,M−L−(z)) ,

6Observe that the form of the neighborhood Vz,ε implies that I is independent of γ, which is
the reason for introducing such neighborhoods.

7If one type of block is not present in the reduction close to z, the proof of (3.14) simplifies
accordingly.
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2 ε

2 sinh ε

S1

z

Re z

Im z

Figure 3.1. The neighborhood Vz,ε.

where M](z) is a block of the first type, M[(z) is a block of the second type, and
all other blocks are (scalars) of the third type with

∀ ` = 1, . . . , L+ , M+
` (z) ∈ S1 , M+

` (z) z (M+
` )′(z) ∈ R∗+ ,

∀ ` = 1, . . . , L− , M−` (z) ∈ S1 , M−` (z) z (M−` )′(z) ∈ R∗− .

Then the generalized eigenspace Eu(z) is spanned by those column vectors of T (z)
which correspond to the blocks M],M+

1 , . . . ,M
+
L+ , while the generalized eigenspace

Es(z) is spanned by those column vectors of T (z) which correspond to the blocks
M[,M−1 , . . . ,M

−
L− , see, e.g., [24, Lemma 3.3] or [4]. An easy corollary of this "de-

coupling" property is that both projectors Πs,Πu extend holomorphically to Vz,ε
and are bounded. We can even decompose Πu(z) as

Πu(z) = Π](z) +
L+∑
`=1

Π+
` (z) ,

with self-explanatory notation. For almost every θ ∈ I, the formula (3.12) then
reads

Π](z)W1−p−r(τ) = −
∑
j>0

M(z)−1−j Π](z)F1−p−r+j(τ) , (3.16)

Π+
` (z)W1−p−r(τ) = −

∑
j>0

e−(1+j) ξ+
`

(z) Π+
` (z)F1−p−r+j(τ) . (3.17)

The norm ofM(z)−1−j Π](z) decays exponentially with j, uniformly with respect
to z ∈ Vz,ε, because M] is a block of the first type. Hence (3.16) implies, with a
constant C that is uniform with respect to γ and θ ∈ I:

|Π](z)W1−p−r(τ)|2 6 C
∑
j>0
|F1−p−r+j(τ)|2 .

We then use the definitions (3.11) and (3.10) to derive

|Π](z)W1−p−r(τ)|2 6 C |1− z
−1|2

|τ |2
s∑

n=0

∑
j>1−r

|fnj |2 .
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We end up with the estimate of the elliptic part of W1−p−r:∫
I
|Π](z)W1−p−r(τ)|2 dθ 6 C

∫
R

|1− e−γ−i θ|2

γ2 + θ2 dθ
s∑

n=0

∑
j>1−r

|fnj |2

6 C
1− e−2 γ

γ

s∑
n=0

∑
j>1−r

|fnj |2 6 C
s∑

n=0

∑
j>1−r

|fnj |2 . (3.18)

We now turn to the hyperbolic components Π+
` (z)W1−p−r(τ), whose analysis

relies on arguments that are similar to those in [19]. Since Π+
` (z) projects on a

one-dimensional vector space, we can rewrite (3.17) as

Π+
` (z)W1−p−r(τ) = −

∑
j>0

e−(1+j) ξ+
`

(z) (L`(z)F1−p−r+j(τ))T`(z) ,

where L` is a row vector that depends holomorphically on z, and T`(z) is a column
vector of T (z). Using the expression (3.11) of F1−p−r+j(τ), we find that, up to
multiplying by harmless bounded functions of z, Π+

` (z)W1−p−r(τ) reads as a linear
combination of the s+ 1 functions

1− z−1

τ

∑
j>0

e−j ξ
+
`

(z) fn1−r+j , n = 0, . . . , s ,

which coincide, up to multiplying by harmless bounded functions of z, with:

1− z−1

τ
Fn(ξ+

` (z)) , n = 0, . . . , s ,

where Fn denotes the Laplace transform of the initial condition

fn(x) :=
{
fn1−r+j , x ∈ [j, j + 1) , j ∈ N ,
0 , otherwise.

Recall that ξ+
` (z) has positive real part for γ > 0, so the Laplace transform Fn is

well-defined at ξ+
` (z). At this stage, the decomposition of Π+

` (z)W1−p−r(τ) implies
the uniform bound∫

I
|Π+
` (z)W1−p−r(τ)|2 dθ 6 C

s∑
n=0

∫
I

|1− e−γ−i θ|2

γ2 + θ2 |Fn(ξ+
` (z))|2 dθ . (3.19)

We first simplify (3.19) by observing that θ enters the integrand on the right hand-
side only through ei θ but at one place, which is the 1/(γ2 + θ2) factor. The form
(3.15) of I and some straightforward changes of variable turn (3.19) into∫

I
|Π+
` (z)W1−p−r(τ)|2 dθ 6 C

s∑
n=0

∫ θ+ε

θ−ε
|Fn(ξ+

` (z))|2 dθ ,

with a constant C that is still uniform with respect to γ. Because |ξ′`| is uniformly
bounded away from zero on Vz,ε, we obtain∫

I
|Π+
` (z)W1−p−r(τ)|2 dθ

6 C
s∑

n=0

∫ θ+ε

θ−ε
|Fn(ξ+

` (z))|2 |i z (ξ+
` )′(z)|dθ = C

s∑
n=0

∫
C`,γ
|Fn(z)|2 |dz| , (3.20)

where C`,γ denotes the (analytic) curve

C`,γ :=
{
ξ+
`

(
z eγ+i θ) , θ ∈ (−ε, ε)

}
. (3.21)
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The argument now relies on Carlson’s Lemma [3], which gives a bound for curvilin-
ear integrals of Laplace transforms in terms of the L2 norm of the original function.
More precisely, there holds∫

C`,γ
|Fn(z)|2 |dz| 6 1

π

∫
iR
|Fn(w)|2A`(γ,w) |dw| ,

where A`(γ,w) denotes the total variation of the argument of z − w as z runs
through the curve C`,γ . In particular, if we can prove a uniform bound of the type

sup
γ∈ (0,ε)

sup
w∈iR

A`(γ,w) < +∞ ,

then we shall obtain from (3.20) and Carlson’s Lemma the uniform bound∫
I
|Π+
` (z)W1−p−r(τ)|2 dθ 6 C

s∑
n=0

∑
j>1−r

|fnj |2 , (3.22)

and the combination of (3.18) and (3.22) will yield (3.14).

3.3.3. Bounding the total variation of the argument. The goal of this paragraph is
to prove the following technical Lemma on families of analytic curves such as the
C`,γ ’s in (3.21). We give a complete proof of this fact since the details in [19] are
omitted and we consider an even more general situation than the corresponding
one in [19].

Lemma 3.5. — Let ε > 0, and let f be holomorphic on (−ε, ε)2 ⊂ C with:
• f(0) = 0, f ′(0) ∈ R∗+,
• for all (γ, θ) ∈ (0, ε) × (−ε, ε), f(γ + i θ) has positive real part.

For w ∈ R and (γ, θ) ∈ (0, ε) × (−ε, ε), let v(γ, θ, w) ∈ (−π/2, π/2) denote the
argument of f(γ+ i θ)− i w. Then, up to shrinking ε, there exists a constant C > 0
such that

sup
γ∈ (0,ε)

sup
w∈R

∫ ε

−ε
|∂θv(γ, θ, w)|dθ 6 C . (3.23)

Proof. — There are two cases (see a similar argument in [5, Proposition 4.5]).
Since f is holomorphic, then either f(i θ) is purely imaginary for all θ ∈ (−ε, ε), or
there exists a smallest k ∈ N∗ and a constant c > 0 such that

Re f(i θ) > c θ2 k . (3.24)
The proof of (3.23) is different in each of these two cases. (The analysis in [19] only
deals with the first case.)

Observe that we can always change ε for ε/2, so that we can assume that f
together with any of its derivatives is bounded on the square (−ε, ε)2.

• Case 1 : we assume that f is such that f(i θ) is purely imaginary for all
θ ∈ (−ε, ε), which amounts to assuming in−1 f (n)(0) ∈ R for all n ∈ N. Since v
denotes the argument of f(γ + i θ)− i w, there holds

∂θv(γ, θ, w) = Re
(

f ′(γ + i θ)
f(γ + i θ)− i w

)
. (3.25)

The function f is holomorphic and vanishes at 0, so there exists a constant C0 > 0,
which does not depend on ε, such that, up to choosing ε small enough, there holds

sup
(γ,θ)∈ (−ε,ε)2

|f(γ + i θ)| 6 C0 ε . (3.26)

The constant C0 is now fixed. If |w| > 2C0 ε and γ > 0, then (3.25) yields

|∂θv(γ, θ, w)| 6 1
C0 ε

sup
(γ,θ)∈ (−ε,ε)2

|f ′(γ + i θ)| ,
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and therefore

sup
γ∈ (0,ε)

sup
|w|>2C0 ε

∫ ε

−ε
|∂θv(γ, θ, w)|dθ 6 2C0 sup

(γ,θ)∈ (−ε,ε)2
|f ′(γ + i θ)| .

It therefore only remains to study the case |w| 6 2C0 ε, for which we are going to
show that ∂θv is positive. The formula (3.25) shows that ∂θv has the same sign as

Re
(
f ′(γ + i θ)

(
f(γ + i θ) + i w

))
,

and from the assumption on f , we find that ∂θv has the same sign as

Re
(
f ′(γ + i θ)

(
f(γ + i θ) + i w

)
− f ′(i θ)

(
f(i θ) + i w

))
.

We rewrite the latter quantity as

Re
(
f ′(i θ)

(
f(γ + i θ)− f(i θ)

))
− w Im(f ′(γ + i θ)− f ′(i θ))

+ Re
(

(f ′(γ + i θ)− f ′(i θ)) f(γ + i θ)
)
,

which, for ε sufficiently small, is bounded from below by (here we use |w| 6 2C0 ε):
f ′(0)2

2 γ − 3C0 ε γ sup
(γ,θ)∈ (−ε,ε)2

|f ′′(γ + i θ)| .

In particular, for ε > 0 sufficiently small, there holds ∂θv(γ, θ, w) > 0 for all (γ, θ) ∈
(0, ε)× (−ε, ε) and |w| 6 2C0 ε. This property yields

sup
γ∈ (0,ε)

sup
|w|62C0 ε

∫ ε

−ε
|∂θv(γ, θ, w)|dθ 6 π ,

and (3.23) holds.

• Case 2 : we now assume that f satisfies (3.24) for some minimal integer k ∈ N∗,
which amounts to assuming
∀n = 0, . . . , 2 k − 1 , in−1 f (n)(0) ∈ R , and Re ((−1)k f (2 k))(0)) > 0 .

We can still assume that f satisfies (3.26) for some constant C0 > 0, and therefore
the same argument as in Case 1 gives a uniform bound for the total variation of
v when |w| > 2C0 ε, for in that case, i w lies at a uniformly positive distance C0 ε
from the curves

Cγ :=
{
f(γ + iθ) , θ ∈ (−ε, ε)

}
.

Let us therefore consider from now on the case |w| 6 2C0 ε. We can assume that f ′
does not vanish on (−ε, ε)2, so the curve Cγ only consists of regular points. Hence
its curvature equals, up to multiplying by a positive quantity:

K(γ, θ) := Re f ′(γ + i θ) Im f ′′(γ + i θ)− Re f ′′(γ + i θ) Im f ′(γ + i θ)

= Re
(
f ′(γ + i θ) f ′′(γ + i θ)

)
.

Performing a Taylor expansion of f ′ and f ′′, we compute

K(0, θ) = −f
′(0)Re ((−1)k f (2 k)(0))

(2 k − 2)! θ2 k−2 +O(θ2 k−1) .

Choosing ε small enough, this means that there exists positive constants c and C,
that do not depend on ε, such that the curvature K satisfies

K(γ, θ) 6 −c θ2 k−2 + C γ .

If k = 1, the curvature K is uniformly negative, and we can conclude that the
family of curves Cγ , 0 < γ < ε, consists of arcs of convex closed curves in the right
half-place {Re ζ > 0}. For k = 1, this shows that the total variation∫ ε

−ε
|∂θv(γ, θ, w)|dθ ,
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is not larger than 2π and the bound (3.23) follows. In the case k > 2, we still have
K 6 0 as long as |θ| > (γ/C)1/(2 k−2) for some suitable constant C, which means
that the two arcs{

f(γ + iθ) , θ ∈ (−ε,max(−ε,−(γ/C)1/(2 k−2))]
}
,{

f(γ + iθ) , θ ∈ [min(ε, (γ/C)1/(2 k−2)), ε)
}
,

are convex8. In particular, there holds∫
(−ε,ε)\(−(γ/C)1/(2 k−2),(γ/C)1/(2 k−2))

|∂θv(γ, θ, w)|dθ 6 4π . (3.27)

We now consider the regime where θ is small, meaning |θ| 6 (γ/C)1/(2 k−2) with
the same constant C as the one for which (3.27) holds. We are going to show that
in this regime, the derivative ∂θv is positive. Using (3.25), this derivative has the
same sign as

Re
(
f ′(γ + i θ)

(
f(γ + i θ) + i w

))
,

which, similarly to what we did in Case 1, we rewrite as9

Re
(
f ′(i θ)

(
f(γ + i θ)− f(i θ)

))
− w Im(f ′(γ + i θ)− f ′(i θ)) + Re

(
(f ′(γ + i θ)− f ′(i θ)) f(γ + i θ)

)
+ Re

(
f ′(i θ)

(
f(γ + i θ) + i w

))
.

Using the same lower bounds as in Case 1, the latter quantity is lower bounded,
for ε sufficiently small, by (here we use |w| 6 2C0 ε):

f ′(0)2

4 γ + Re
(
f ′(i θ)

(
f(γ + i θ) + i w

))
.

Performing a Taylor expansion for f and f ′, we have derived the following lower
bound:

|f(γ + i θ)− i w|2 ∂θv >
f ′(0)2

4 γ − C θ2 k − C ε |θ|2 k−1 > c γ − C ′ ε |θ|2 k−1 ,

for suitable constants c, C ′ > 0. In the regime θ2 k−2 6 γ/C, C fixed as in (3.27),
there holds c γ − C ′ ε |θ|2 k−1 > c γ/2 for ε small enough, and we have thus shown
that ∂θv is positive. This gives the bound∫

(min(−ε,−(γ/C)1/(2 k−2)),max(ε,(γ/C)1/(2 k−2)))
|∂θv(γ, θ, w)|dθ 6 2π ,

which we combine with (3.27) to derive

sup
γ∈ (0,ε)

sup
|w|62C0 ε

∫ ε

−ε
|∂θv(γ, θ, w)|dθ 6 6π .

This completes the proof of (3.23) in Case 2. �

The above proof of Lemma 3.5 crucially uses the holomorphy of f , which corre-
sponds, in the block reduction of M, to the fact that there is no glancing frequency.
When glancing frequencies occur, some eigenvalues of M display algebraic singulari-
ties, see [9], that are combined with some possible dissipative behavior. A complete
classification was made in [5]. The proof of the uniform BV bound (3.23) is much
more intricate when f has an algebraic singularity at 0, and we have not managed
to complete it so far in a general framework.

8By convex, we mean that these curves are arcs of closed convex curves.
9The property Re (f ′(i θ) (f(i θ) + i w)) = 0 does not hold any longer, and this is the reason

why some new terms arise comparing to Case 1.
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Let us now explain how Lemma 3.5 yields (3.22). We consider a family of curves
C`,γ in (3.21). We can rewrite C`,γ as

C`,γ := ξ+
` (z)︸ ︷︷ ︸
∈iR

+
{
f(γ + i θ) , θ ∈ (−ε, ε)

}
,

with
f(γ + i θ) := ξ+

`

(
z eγ+i θ)− ξ+

` (z) .

The function f satisfies all the assumptions of Lemma 3.5, therefore, up to shrinking
ε, we can assume that the argument of z− i w, as z runs through the curve C`,γ and
w ∈ R, satisfies the uniform bound (3.23). Applying Carlson’s Lemma, we have
thus obtained (3.22).

3.3.4. Conclusion. We still consider a fixed z ∈ S1. Then for some sufficiently small
ε > 0, we have shown that, uniformly with respect to the parameter γ ∈ (0, ε), the
estimate (3.14) holds. For ` > 1− p− r, we use the induction relation (3.11), and
easily derive the uniform bound

|W`+1(τ)|2 6 C` |W1−p−r(τ)|2 + C`
∑̀

j=1−p−r
|Fj(τ)|2 .

Using (3.14) and the definition (3.10), we obtain

∀ ` > 1− p− r ,
∫
I
|W`(τ)|2 dθ 6 C`

s∑
n=0

∑
j>1−r

|fnj |2 ,

uniformly with respect to γ ∈ (0, ε). We have therefore proved that for all P ∈ N,
there exists a constant CP > 0 such that

P∑
j=1−r

∫
I
|V̂j(τ)|2 dθ 6 CP

s∑
n=0

∑
j>1−r

|fnj |2 .

We now use the compactness of S1 and cover it by finitely many neighborhoods
Vz1,ε1 , . . . ,VzK ,εK such that, for each k = 1, . . . ,K and P ∈ N, there exists a
constant Ck,P for which there holds

∀ γ ∈ (0, εk) ,
P∑

j=1−r

∫
Ik
|V̂j(τ)|2 dθ 6 Ck,P

s∑
n=0

∑
j>1−r

|fnj |2 , (3.28)

with the obvious notation

Ik := {θ ∈ R / eτ ∈ Vzk,εk} .

The sets I1, . . . , IK cover R, so adding the estimates (3.28) gives
P∑

j=1−r

∫
R
|V̂j(τ)|2 dθ 6 CP

s∑
n=0

∑
j>1−r

|fnj |2 ,

for 0 < γ < min εk, and some suitable constant CP > 0. Applying Plancherel
Theorem, we get

∑
n∈N

P∑
j=1−r

e−2 γ n |V nj |2 6 CP
s∑

n=0

∑
j>1−r

|fnj |2 ,

for γ ∈ (0,min εk). This proves Proposition 3.2 for sufficiently small values of γ.
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The case where γ is not close to zero10 is much easier for in that case, we already
have the estimate (3.8), and an obvious lower bound then gives

min εk
1 + min εk

∑
n∈N

P∑
j=1−r

e−2 γ n |V nj |2 6 C
s∑

n=0

∑
j>1−r

|fnj |2 ,

for γ > min εk. The proof of Proposition 3.2, and ultimately of Theorem 2.1, is
thus complete.

4. Proof of Corollary 2.2. The uniform power boundedness
conjecture for schemes with two time levels

4.1. The discrete Leibniz formula and integration by parts. In this para-
graph, we recall the discrete version of Leibniz formula and its consequence for
integrating by parts. We recall that given ν ∈ Z and a sequence v = (vj)j>ν , Tv
denotes the sequence defined by (Tv)j := vj+1 for all j > ν − 1, and T−1v denotes
the sequence defined by (T−1v)j := vj−1 for all j > ν + 1. (Of course, v may also
be indexed by all Z.) Powers of T and T−1 are defined similarly. We let D denote
the operator T − I, where I is the identity. The operator D represents a discrete
derivative11.

The following result is a discrete version of the Leibniz rule.
Lemma 4.1 (Discrete Leibniz formula). — Let u, v be two sequences with values

in CN and indexed either by j > ν for some ν ∈ Z, or by all Z. Then for all k ∈ N,
there holds

Dk (u∗ v) =
k∑

j1,j2=0,
j1+j2>k

k!
(k − j1)! (k − j2)! (j1 + j2 − k)! (Dj1u)∗Dj2v .

Proof. — One starts with the formula

Dk (u∗ v) =
k∑
j=0

k!
(k − j)! j! (Dju)∗TjDk−jv ,

which is obtained by a straightforward induction argument, and then use the bino-
mial identity

∀ j ∈ N , Tj =
j∑
`=0

j!
(j − `)! `! D` .

�

The first consequence of Lemma 4.1 is the following integration by parts formula,
which mimics the analogous one for the product u∗Au(k), when u is a k-times differ-
entiable function and A a hermitian matrix. Corollary 4.2 below is a generalization
of [8, Lemma 11.1.1].

Corollary 4.2. — Let A ∈MN (C) be hermitian and nonzero, and let k ∈ N∗.
Then there exists a unique hermitian form qA,k on CN k, and a unique collection of
real numbers α1,k, . . . , αk,k that only depend on k and not on A, such that for all
sequence u with values in CN , there holds

2Re (u∗ADku) = D
(
qA,k(u, . . . ,Dk−1u)

)
+

k∑
j=1

αj,k (Dju)∗ADju . (4.1)

10It should be understood that we use the scaling ∆t/∆x = Cst and therefore only deal with
one single parameter γ but γ is in fact a placeholder for γ∆t, so the regime "γ small" can be
thought of as that of the continuous limit ∆t → 0 with a fixed γ. It is then rather obvious that
in that case, the trace estimate of Proposition 3.2 can not be proved by just isolating the trace
terms in (3.8), which corresponds to passing from an L2

t,x estimate to an L2 estimate at x = 0.
11Our notation D corresponds to D+ in [8], but we omit the + sign since we shall never use

the other discrete derivative D− = I −T−1, nor the centered derivative D0 = (T−T−1)/2.



DISCRETE HYPERBOLIC BOUNDARY VALUE PROBLEMS 35

Proof. — Let us first prove the existence of the decomposition (4.1), which is
done by induction. For k = 1, one just uses Lemma 4.1 and the fact that A is
hermitian to obtain

2Re (u∗ADu) = 1
2 D

(
u∗Au

)
− 1

2 (Du)∗ADu .

Let us therefore assume that the existence of the decomposition (4.1) holds up to
some integer k. We use Lemma 4.1 and the fact that A is hermitian to obtain

2Re (u∗ADk+1u) = D
(

Dk(u∗Au)
)

+
k+1∑
j=1,

2 j>k+1

? (Dju)∗ADju

+
k+1∑

j1,j2=1,
j1+j2>k+1,j1<j2

? Re ((Dj1u)∗ADj2u) ,

where the ? symbols represent harmless (real) numerical coefficients. Lemma 4.1
shows that the term Dk(u∗Au) can be written as a hermitian form of (u, . . . ,Dku).
The terms Re ((Dj1u)∗ADj2u), j1 < j2, are simplified by using the induction
assumption:

Re ((Dj1u)∗ADj2u) = 1
2 D

(
qA,j2−j1(Dj1u, . . . ,Dj2−1u)

)
+ 1

2

j2−j1∑
j=1

αj,j2−j1 (Dj1+ju)∗ADj1+ju .

The existence of the decomposition (4.1) up to the integer k + 1 follows.
Let us now prove that the decomposition (4.1) is unique. If two such decompo-

sitions exist, this means that we can find a hermitian form q (which may depend
on A), and a collection of real numbers α1,k, . . . , αk,k (which do not depend on A)
such that for all sequences u with values in CN , there holds

D
(
q(u, . . . ,Dk−1u)

)
+

k∑
j=1

αj,k (Dju)∗ADju = 0 . (4.2)

Given arbitrary vectors x0, . . . , xk ∈ CN , we can find a sequence u with values in
CN and indexed by N, such that

∀ j = 0, . . . , k , (Dju)0 = xj .

Equation (4.2) evaluated at the index ` = 0 gives

q(u1, . . . , (Dk−1u)1)− q(x0, . . . , xk−1) +
k∑
j=1

αj,k x
∗
j Axj = 0 ,

that is to say

q(x1 + x0, . . . , xk + xk−1)− q(x0, . . . , xk−1) +
k∑
j=1

αj,k x
∗
j Axj = 0 .

Let Q denote the hermitian matrix associated with q, which therefore satisfies

X∗1 QX1 +2Re (X∗0 QX1)+
k∑
j=1

αj,k x
∗
j Axj = 0 , X0 :=

 x0
...

xk−1

 , X1 :=

x1
...
xk

 .

(4.3)
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The vector x0 enters Equation (4.3) only through the term Re (X∗0 QX1). Since
x0, . . . , xk are arbitrary in CN , the block decomposition of Q:

Q =

 Q0,0 . . . Q0,k−1
...

...
Qk−1,0 . . . Qk−1,k−1

 ,

necessarily satisfies Q0,0 = · · · = Q0,k−1 = 0. Since Q is hermitian, this implies of
course Q0,0 = · · · = Qk−1,0 = 0. In other words, the hermitian form q only depends
on its k − 1 last arguments, which reduces (4.3), with obvious notation, to

Y ∗1 Q̃ Y1 + 2Re (Y ∗0 Q̃ Y1) +
k∑
j=1

αj,k x
∗
j Axj = 0 , Y0 :=

 x1
...

xk−1

 , Y1 :=

x2
...
xk

 .

Choosing Y1 = 0 in the latter relation gives α1,k x
∗
1 Ax1 = 0, which means that

α1,k equals zero (here we use the fact that A is nonzero), and uniqueness of the
decomposition (4.1) follows by induction on k. �

Let us observe that in Corollary 4.2, if A is a real symmetric matrix, then the corre-
sponding qA,k is a real quadratic form on RN k. The proof of Corollary 2.2 requires
an extension of Corollary 4.2 to the case where A is real and skew-symmetric, which
we state now.

Corollary 4.3. — Let A ∈ MN (R) be skew-symmetric and nonzero, and let
k ∈ N, k > 2. Then there exists a unique quadratic form qA,k on RN k, and a
unique collection of real numbers β1,k, . . . , βk−1,k that only depend on k and not
on A, such that for all sequence u with values in RN , there holds

u∗ADku = D
(
qA,k(u, . . . ,Dk−1u)

)
+
k−1∑
j=1

βj,k (Dju)∗ADj+1u . (4.4)

Proof. — The proof follows closely that of Corollary 4.3. We briefly indicate the
induction argument for the existence of the decomposition (4.4). For k = 2, we use
Lemma 4.1 and the fact that A is skew-symmetric to obtain

u∗AD2u = D
(
u∗ADu

)
− (Du)∗AD2u .

Since u is real valued, the term u∗ADu coincides with q(u,Du), where the matrix
of the quadratic form q is

1
2

(
0 A
−A 0

)
.

If the existence of the decomposition (4.4) holds up to some integer k, then Lemma
4.1 gives

u∗ADk+1u = D
(
u∗ADku

)
− (Du)∗ADku− (Du)∗ADk+1u .

We apply the induction assumption for decomposing the term (Du)∗ADk+1u.
There are two cases for the remaining term (Du)∗ADku. Either k = 2, and this
term is already in an irreducible form, or k > 3, and we can apply the induction
assumption, which eventually yields the decomposition (4.4) up to k + 1.

Uniqueness of the decomposition (4.4) relies on more or less the same arguments
as those used in the proof of Corollary 4.2. More precisely, assuming that two
decompositions (4.4) exist, we can find a quadratic form q on RN k, with a corre-
sponding real symmetric matrix Q, and a collection of real numbers β1,k, . . . , βk−1,k
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that satisfy12

X∗1 QX1 + 2X∗0 QX1 +
k−1∑
j=1

βj,k x
∗
j Axj+1 = 0 , X0 :=

 x0
...

xk−1

 , X1 :=

x1
...
xk

 .

Identifying the x0 term shows, as in the proof of Corollary 4.2, that the block
decomposition of Q reads

Q =


0 . . . . . . 0
...
... Q̃
0

 ,

which means that the following relation holds for all vectors x1, . . . , xk ∈ RN :

Y ∗1 Q̃ Y1 + 2Y ∗0 Q̃ Y1 +
k−1∑
j=1

βj,k x
∗
j Axj+1 = 0 , Y0 :=

 x1
...

xk−1

 , Y1 :=

x2
...
xk

 .

Here the proof differs slightly from that of Corollary 4.2 since there is no quadratic
term with respect to x1. Instead, we identify the quadratic terms with respect to
(x1, x2), which amounts to taking first a partial derivative with respect to x2 and
then a partial derivative with respect to x1. This yields

2 Q̃1,1 + β1,k A = 0 ,

where Q̃1,1 denotes the upper left block of Q̃ in its block decomposition. Observe
now that Q̃ is symmetric, and therefore so is Q̃1,1, while A is skew-symmetric and
β1,k is real. Hence β1,k is zero and uniqueness of the decomposition (4.4) follows
by induction. �

4.2. Consequences for Cauchy problems. In this paragraph, we explain some
consequences of Corollaries 4.2 and 4.3 for showing stability of finite difference
discretizations of Cauchy problems. We consider a numerical discretization with
two time levels, that is: {

Un+1
j = QUnj , j ∈ Z , n > 0 ,

U0
j = fj , j ∈ Z ,

(4.5)

with (fj)j∈Z ∈ `2, and

Q =
p∑

`=−r
A` T` ,

p∑
`=−r

A` = I .

The latter consistency assumption allows us to express the finite difference operator
Q as a sum of discrete derivatives. Namely, we write

Tr (Q− I) =
p∑

`=−r,
` 6=0

A` (Tr+` −Tr) ,

and then decompose each Tr+`−Tr as a linear combination of D, . . . ,Dp+r, which
amounts to decomposing the polynomial Xr+` −Xr on the family

X − 1, . . . , (X − 1)p+r ,

12Here the vectors x0, . . . , xk are real.
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which forms a basis of the space of real polynomials that vanish at 1 and whose
degree is not larger than p + r. Summing up, the operator Q can be written
equivalently as

Q = I + T−r
p+r∑
`=1

Ã` D` , (4.6)

for suitable matrices Ã1, . . . , Ãp+r whose expression is obtained from A−r, . . . , Ap.
It is rather clear that all matrices Ã1, . . . , Ãp+r are real, and they are symmetric
if A−r, . . . , Ap are symmetric (which we shall not assume, but this might simplify
some of the calculations below in some given situation).

The following Lemma is a direct consequence of Corollaries 4.2 and 4.3.

Lemma 4.4. — There exists a quadratic form q on RN (p+r), some real symmet-
ric matrices S1, . . . , Sp+r and some real skew-symmetric matrices S̃1, . . . , S̃p+r−1
such that for all sequence U with values in RN , there holds

2U∗ (Q− I)U + |(Q− I)U |2 = T−r D
(
q(U, . . . ,Dp+r−1U)

)
+ T−r

p+r∑
`=1

(D`U)∗ S` D`U + T−r
p+r−1∑
`=1

(D`U)∗ S̃` D`+1U . (4.7)

If the sequence U is indexed by j > 1− r, then (4.7) is valid for all indeces j > 1,
while if the sequence U is indexed by Z, then (4.7) is valid on all Z.

In particular, the solution (Unj ) to (4.5) satisfies

∀n ∈ N ,
∑
j∈Z
|Un+1
j |2 −

∑
j∈Z
|Unj |2 =

∑
j∈Z

p+r∑
`=1

(D`Unj )∗ S` D`Unj

+
∑
j∈Z

p+r−1∑
`=1

(D`Unj )∗ S̃` D`+1Unj . (4.8)

The decomposition (4.7) is unique provided that Q is not the identity operator.
Proof. — The existence of the decomposition (4.7) is indeed an easy consequence

of Corollaries 4.2 and 4.3. Due to (4.6), the term U∗ (Q− I)U is a sum of terms of
the form

U∗ (T−r Ã` D`U) = T−r
(

(TrU)∗ Ã` D`U
)
,

which can be written as a (real) linear combination of terms of the form

(D`1U)∗ Ã`2 D`2U ,

by simply expanding Tr as a linear combination of I, . . . ,Dr (which is nothing
but the binomial identity). We then split Ã`2 as the sum of its symmetric and
skew-symmetric parts and apply Corollaries 4.2 and 4.3 (if `1 = `2, nothing needs
to be done). The term |(Q− I)U |2 can also be written under the form on the right
hand-side of (4.7) since it is a sum of terms of the form

T−r
((
Ã`1 D`1U

)∗
Ã`2 D`2U

)
= T−r

(
(D`1U)∗

(
Ã∗`1

Ã`2

)
D`2U

)
,

and it only remains to split Ã∗`1
Ã`2 as the sum of its symmetric and anti-symmetric

parts and to apply Corollaries 4.2 and 4.3 (if `1 = `2, nothing needs to be done).
The energy balance (4.8) follows by observing that the sum on Z of the discrete

derivative D q vanishes. The remaining terms incorporate the (possible) dissipative
behavior of the discretization. �
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As a concrete example, let us explain Lemma 4.4 for three point schemes and
scalar equations. In that case, N = 1 so that there is no skew-symmetric matrix
except 0, and the scheme reads

Un+1
j = a−1 U

n
j−1 + a0 U

n
j + a1 U

n
j+1 ,

with a triple of real numbers a−1, a0, a1 that satisfies a−1 + a0 + a1 = 1. In that
case, the integration by parts procedure leads to the relation

2Unj (Q− I)Unj + |(Q− I)Unj |2

= T−1 D
(

(a1 − a−1) |Unj |2 + 2 a1 U
n
j DUnj + a1 (a1 − a−1) |DUnj |2

)
+ T−1

(
d1 |DUnj |2 + d2 |D2 Unj |2

)
,

with
d1 := (a1 − a−1)2 − (a1 + a−1) , d2 := a1 a−1 .

In that case, stability for the Cauchy problem, that is fulfillment of Assumption 1,
is equivalent to the property

max (d1, d1 + 4 d2) 6 0 ,
or, in other words,

max
(

(a1 − a−1)2, (a1 + a−1)2
)
6 1− a0 .

For the upwind, Lax-Friedrichs and Lax-Wendroff schemes, one gets the standard
CFL condition λ |a| 6 1, with a the velocity of the transport equation one is willing
to approximate.

4.3. Proof of Corollary 2.2. We consider the numerical scheme (1.2) with s = 0,
zero interior source term and zero boundary source term. Writing Q instead of Q0
for simplicity, the scheme reads

Un+1
j = QUnj , j > 1 , n > 0 ,

Un+1
j = Bj,−1 U

n+1
1 +Bj,0 U

n
1 , j = 1− r, . . . , 0 , n > 0 ,

U0
j = fj , j > 1− r ,

(4.9)

with (fj)j>1−r ∈ `2, and

Q =
p∑

`=−r
A` T` ,

p∑
`=−r

A` = I .

We use the decomposition (4.7) of Q. The solution13 (Unj ) to (4.9) satisfies

∀ j > 1 , |Un+1
j |2 − |Unj |2 = 2 (Unj )∗ (Q− I)Unj + |(Q− I)Unj |2

= T−r D
(
q(Unj , . . . ,Dp+r−1Unj )

)
+ T−r

p+r∑
`=1

(D`Unj )∗ S` D`Unj + T−r
p+r−1∑
`=1

(D`Unj )∗ S̃` D`+1Unj .

Summing with respect to j > 1, we get∑
j>1
|Un+1
j |2 −

∑
j>1
|Unj |2 = −q(Un1−r, . . . ,Dp+r−1Un1−r)

+
∑
j>1−r

p+r∑
`=1

(D`Unj )∗ S` D`Unj +
∑
j>1−r

p+r−1∑
`=1

(D`Unj )∗ S̃` D`+1Unj , (4.10)

13It is assumed here that the initial condition consists of real vectors, so that the solution to
(4.9) is real. The extension to complex sequences is straightforward because the scheme is linear
with real coefficients.
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where, comparing with Lemma 4.4, the novelty is the "boundary" term
q(Un1−r, . . . ,Dp+r−1Un1−r) .

Our goal now is to estimate the terms which appear in the second line of (4.10).
Following an argument already used in [26, 7], we extend the sequence (Unj )j>1−r
by zero for j 6 −r, and still denote it (Unj ). This extended sequence belongs to
`2(Z), and we can therefore use the assumption of Corollary 2.2 on the action of Q
on `2(Z). We obtain∑

j∈Z
2 (Unj )∗ (Q− I)Unj + |(Q− I)Unj |2 6 0 ,

which, using the decomposition (4.6) and the fact that Unj vanishes for j 6 −r,
gives

∑
j>1−r

p+r∑
`=1

(D`Unj )∗ S` D`Unj +
∑
j>1−r

p+r−1∑
`=1

(D`Unj )∗ S̃` D`+1Unj

6 −
−r∑

j=1−p−2r

p+r∑
`=1

(D`Unj )∗ S` D`Unj −
−r∑

j=1−p−2r

p+r−1∑
`=1

(D`Unj )∗ S̃` D`+1Unj . (4.11)

The combination of (4.10) and (4.11) shows that there exists a quadratic form q[
on RN (p+r), which only depends on Q, such that any solution to (4.9) satisfies∑

j>1
|Un+1
j |2 −

∑
j>1
|Unj |2 6 q[(Un1−r, . . . , Unp ) .

In particular, there exists a numerical constant C, that only depends on the operator
Q and not on the solution (Unj ) to (4.9), such that∑

j>1
|Un+1
j |2 −

∑
j>1
|Unj |2 6 C

p∑
j=1−r

|Unj |2 .

Summing with respect to n, and using the fact that ∆t/∆x is constant, we end up
with

sup
n∈N

∑
j>1

∆x |Unj |2 6
∑
j>1

∆x |fj |2 + C
∑
n>0

p∑
j=1−r

∆t |Unj |2 . (4.12)

Let us now observe that for all n ∈ N, we have
0∑

j=1−r
∆x |Unj |2 6

1
λ

0∑
j=1−r

∆t |Unj |2 6
1
λ

∑
ν∈N

0∑
j=1−r

∆t |Uνj |2 ,

so that the left hand-side of (4.12) can be slightly increased in order to obtain

sup
n∈N

∑
j>1−r

∆x |Unj |2 6
∑
j>1

∆x |fj |2 + C
∑
n>0

p∑
j=1−r

∆t |Unj |2 .

We then use Theorem 2.1 to control the trace of (Unj ) in terms of the initial condition
(fj), which is done by letting γ tend to zero in (2.6), and this completes the proof
of Corollary 2.2.

Remark 4.5. — The above derivation of the semigroup estimate for the solution
(Unj ) to (4.9) heavily relies on the assumption ‖Q0‖`2(Z)→`2(Z) = 1, which in view of
the consistency assumption on the A`’s, is equivalent to ‖Q0‖`2(Z)→`2(Z) 6 1. This
property is called "strong stability" in [21], see also [22], though "strong stability"
in this context should not be mixed up with Definition 1.1.

The exact same assumption on Q0 is the cornerstone of the analysis in [7]. Since
[26] deals with scalar problems, this assumption is also present, though hidden,
in [26]. However, the method we use here is completely different from the one
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in [26, 7] and bypasses the introduction of Dirichlet or other auxiliary boundary
conditions. Unlike [26, 7], we use here the consistency of the discretized hyperbolic
operator in order to derive an "integration by parts formula", which connects the
time derivative of the `2 norm of (Unj ) with the trace of (Unj ) on the first space
meshes.

We aim in a near future to extend the derivation of such an "integration by parts
formula" to numerical schemes with arbitrarily many time levels, which would imply,
with the help of Theorem 2.1, a semigroup estimate for the solution to (1.2) and
therefore a positive answer to the uniform power boundedness conjecture.

Appendix A. On the non-glancing condition

The goal of this Appendix is to show that the validity of Proposition 3.2 is equiva-
lent to the non-occurrence of glancing wave packets. This uses similar constructions
as those in [24], namely we use discrete geometric optics expansions. Opposite to
[24], we use here a fully discrete framework, namely we only deal with piecewise
constant functions. This has a major impact on the arguments we use. While in [24,
Lemma 5.1], L∞ error bounds are derived by using decay of the Fourier transform
(or, equivalently, smoothness of the functions), the framework of step functions
yields Fourier transforms that have no better than L2 decay (and certainly not L1).
Hence the derivation of L∞ error bounds is more intricate than in [24], and we pay
special attention to the rigorous justification of our error bound below. Our result
is the following.

Proposition A.1. — Let Assumptions 1 and 2 be satisfied. Assume further-
more that there exists a constant C > 0 such that for all ∆t ∈ (0, 1], and for all
solution to the fully discrete Cauchy problemV

n+1
j =

s∑
σ=0

Qσ V
n−σ
j , j ∈ Z , n > s ,

V nj = fnj , j ∈ Z , n = 0, . . . , s ,
(A.1)

there holds ∑
n>0

∆t |V n0 |2 6 C
s∑

n=0

∑
j∈Z

∆x |fnj |2 . (A.2)

Then Assumption 3 is satisfied.

The proof of Proposition A.1 is based on high frequency asymptotics for solutions
to (A.1). We first state independently a Lemma which gives the expression of the
Fourier transform of a piecewise constant "highly oscillating" function14.

Lemma A.2. — Let a denote a Schwartz function from R to Cq for some q ∈ N.
Given ξ ∈ R and ∆x > 0, we consider the step function

∀ j ∈ Z , ∀x ∈ [j∆x, (j + 1) ∆x) , a∆(x) := ei j ξ a(j∆x) .
Then a∆ ∈ L1(R) ∩ L2(R) and its Fourier transform is given by

∀ ξ ∈ R , â∆(ξ) = 1− e−i∆x ξ

i∆x ξ
∑
m∈Z

â

(
ξ −

ξ + 2mπ

∆x

)
.

Observe that the function a∆ in Lemma A.2 is a piecewise constant version of the
"continuous" function

x ∈ R 7−→ ei x ξ/∆x a(x) ,
which represents a fast oscillation at frequency ξ/∆x (∆x is meant to be small
while ξ is fixed), with a slowly varying smooth envelope a.

14Of course the maximal frequency that is compatible with the mesh is 2π/∆x so high fre-
quency in our discrete setting means a frequency of order 1/∆x.
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Proof of Lemma A.2. — Due to the fast decay of a at infinity, the Fourier
transform of a∆ is given by

â∆(ξ) =
∑
j∈Z

ei j ξ a(j∆x)
∫ (j+1) ∆x

j∆x
e−i x ξ dx

= 1− e−i∆x ξ

i ξ

∑
j∈Z

e−i j∆x (ξ−ξ/∆x) a(j∆x) ,

and it only remains to apply the so-called Poisson summation formula to obtain
the result of Lemma A.2. �

Proof of Proposition A.1. — Let us first rewrite (A.1) as a scheme with two time
levels for an augmented vector. Namely, we introduce Wn

j := (V n+s
j , . . . , V nj ) ∈

CN (s+1), and rewrite (A.1) as

Wn+1
j = QWn

j , j ∈ Z , n > 0 , (A.3)
with the operator

Q :=


Q0 . . . . . . Qs
I 0 . . . 0

0
. . . . . .

...
0 0 I 0

 .

The estimate (A.2) can be equivalently rewritten for solutions to (A.3) as∑
n>0

∆t |Wn
0 |2 6 C

∑
j∈Z

∆x |W 0
j |2 . (A.4)

Let us consider some fixed parameter ξ ∈ [0, 2π), a Schwartz function a from R
to CN (s+1) and the initial sequence for (A.3):

∀ j ∈ Z , W 0
j := ei j ξ a(j∆x) .

For all n ∈ N, the step function corresponding to the sequence (Wn
j )j∈Z is denoted

Wn
∆. Applying the Fourier transform to (A.3) and using Lemma A.2, we have

Ŵn
∆(ξ) = 1− e−i∆x ξ

i∆x ξ
∑
m∈Z
A
(
ei∆x ξ)n â(ξ − ξ + 2mπ

∆x

)
.

We now use Assumptions 1 and 2 in order to give a detailed expansion of the
amplification matrix A close to exp(i ξ): there exists an integer P such that, on the
disk {η ∈ C / |η − ξ| < δ0}, A admits the spectral decomposition

A(ei η) =
P∑
p=1

ei ωp(η) Πp(η) +A](η) Π](η) ,

with (scalar) functions ω1, . . . , ωP , rank one projectors Π1, . . . ,ΠP , a rank N (s +
1)−P projector Π] and a square matrix A] that has spectral radius less than 1 for
all η. In the latter decomposition, all functions depend holomorphically on η. The
functions ω1, . . . , ωP satisfy

∀ p = 1, . . . , P , ωp(ξ) ∈ R ,

so the exp(i ωp(η)) correspond to the eigenvalues of the amplification matrix that
are close to the unit circle as exp(i η) is close to exp(i ξ). Of course, we can extend
all functions to the disks {η ∈ C / |η− (ξ+ 2mπ)| < δ0}, m ∈ Z, by 2π-periodicity
because A(exp(i ·)) is 2π-periodic. The latter spectral decomposition of A only
holds "microlocally", that is, locally near ξ + 2π Z. To avoid technicalities, we
assume that a satisfies

a ∈ C∞0 (R) , Supp â ⊂ [−δ0/2, δ0/2] .
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In this way, the expression of Ŵn
∆ splits into

Ŵn
∆(ξ) = 1− e−i∆x ξ

i∆x ξ
∑
m∈Z

P∑
p=1

ei n ωp(ξ∆x) Πp(ξ∆x) â
(
ξ −

ξ + 2mπ

∆x

)

+ 1− e−i∆x ξ

i∆x ξ
∑
m∈Z
A](ξ∆x)n Π](ξ∆x) â

(
ξ −

ξ + 2mπ

∆x

)
. (A.5)

Following [23, 24], we define the group velocities vp := −ω′p(ξ)/λ, which by
Assumption 1, are known to be real (see, for instance, [24, Lemma 3.2]). In
the notation of Assumption 2, the group velocity is equivalently given by vp =
−κ ζ ′p(κ)/(λ z). In particular, Assumption 3 is valid provided that the scheme does
not admit any wave packet with a vanishing group velocity. We introduce the
"approximate" solution to (A.3) by defining:

∀ (j, n) ∈ Z× N , Wn
j :=

P∑
p=1

ei (nωp(ξ)+j ξ) Πp(ξ) a(j∆x− n∆tvp) ,

which represents a sum of highly oscillating signals with phase velocity−ωp(ξ)/(λ ξ),
and corresponding smooth envelopes that propagate at the group velocity vp. Ac-
cording to Lemma A.2, the Fourier transform of the corresponding piecewise con-
stant function is given by

Ŵn
∆(ξ) = 1− e−i∆x ξ

i∆x ξ

×
∑
m∈Z

P∑
p=1

ei n ωp(ξ)+i n∆xω′p(ξ) (ξ−(ξ+2mπ)/∆x) Πp(ξ) â
(
ξ −

ξ + 2mπ

∆x

)
. (A.6)

We are now going to estimate the error Wn
0 −Wn

0 .
Let us define the error:

∀ (j, n) ∈ Z× N , enj := Wn
j −Wn

j .

The expressions (A.5) and (A.6) show that the Fourier transform ên∆ splits as:

ên∆ =
P∑
p=1

εn1,p(ξ) + εn2,p(ξ) + εn] (ξ) ,

with, for all p = 1, . . . , P ,

εn1,p(ξ) := 1− e−i∆x ξ

i∆x ξ

×
∑
m∈Z

(
ei n ωp(ξ∆x) − ei n ωp(ξ)+i n ω′p(ξ) (ξ∆x−ξ−2mπ)

)
Πp(ξ) â

(
ξ −

ξ + 2mπ

∆x

)
,

(A.7)

εn2,p(ξ) := 1− e−i∆x ξ

i∆x ξ

×
∑
m∈Z

ei n ωp(ξ∆x) (Πp(ξ∆x)−Πp(ξ + 2mπ)
)
â

(
ξ −

ξ + 2mπ

∆x

)
, (A.8)

and

εn] (ξ) := 1− e−i∆x ξ

i∆x ξ
∑
m∈Z
A](ξ∆x)n Π](ξ∆x) â

(
ξ −

ξ + 2mπ

∆x

)
. (A.9)



44 J.-F. Coulombel

Let us first estimate the L2 norm of εn1,p in (A.7). We fix a time T > 0, and
consider integers n such that n∆t 6 T . Since ωp(ξ) and ω′p(ξ) are real, there holds

|εn1,p(ξ)| 6 C
|1− e−i∆x ξ|

∆x |ξ| ×∑
m∈Z

∣∣∣ei n ωp(ξ∆x)−i n ωp(ξ+2mπ)−i n ω′p(ξ+2mπ) (ξ∆x−ξ−2mπ) − 1
∣∣∣

×
∣∣∣∣â(ξ − ξ + 2mπ

∆x

)∣∣∣∣ .
There is no loss of generality in assuming δ0/λ < π. Then the support property of
â shows that in the latter sum with respect to m ∈ Z, at most one term is nonzero.
Consequently, there holds

|εn1,p(ξ)|2 6 C
|1− e−i∆x ξ|2

∆x2 ξ2 ×∑
m∈Z

∣∣∣ei n ωp(ξ∆x)−i n ωp(ξ+2mπ)−i n ω′p(ξ+2mπ) (ξ∆x−ξ−2mπ) − 1
∣∣∣2

×
∣∣∣∣â(ξ − ξ + 2mπ

∆x

)∣∣∣∣2 ,
and because of the limitation n∆t 6 T , there holds15∣∣∣ei n ωp(ξ∆x)−i n ωp(ξ+2mπ)−i n ω′p(ξ+2mπ) (ξ∆x−ξ−2mπ) − 1

∣∣∣
6 C T ∆x

(
ξ −

ξ + 2mπ

∆x

)2

6 C T ∆x ,

on the support of â(ξ − (ξ + 2mπ)/∆x). We thus derive the bound∫
R
|εn1,p(ξ)|2 dξ 6 C T 2 ∆x2

∑
m∈Z

∫
R

|1− e−i∆x ξ|2

∆x2 ξ2

∣∣∣∣â(ξ − ξ + 2mπ

∆x

)∣∣∣∣2 dξ

6 C ‖â‖2L∞ T 2 ∆x2
∑
m∈Z

∫ (ξ+2mπ)/∆x+δ0/2

(ξ+2mπ)/∆x−δ0/2

|1− e−i∆x ξ|2

∆x2 ξ2 dξ

6 C T 2 ∆x
∑
m∈Z

∫ ξ+2mπ+δ0 ∆x/2

ξ+2mπ−δ0 ∆x/2

|1− e−i η|2

η2 dη

6 C T 2 ∆x
∑
m∈Z

∫ ξ+2mπ+δ0 ∆x/2

ξ+2mπ−δ0 ∆x/2

1
1 + η2 dη 6 C T 2 ∆x2 ,

with a constant C > 0 that is uniform with respect to T > 0 and ∆t ∈ (0, 1]. (Recall
that the ratio ∆t/∆x is kept fixed.) Similarly, the error εn2,p in (A.8) satisfies16∫

R
|εn2,p(ξ)|2 dξ 6 C ∆x2 ,

with a constant C > 0 that is uniform with respect to T > 0 and ∆t ∈ (0, 1].
If Wn

j is meant to be a good approximation of Wn
j , including for small values

of n, then the term εn] in (A.9) is meant to be small. In order to achieve this, we
assume that a satisfies the polarization condition

Π](ξ) a = 0 .

15Here we use Assumption 1 to obtain that the imaginary part of ωp(ξ∆x) is nonpositive.
16Here we use again Assumption 1 in order to have | exp(i n ωp(ξ∆x))| 6 1 uniformly in n.
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Let us now derive an L2 bound for εn] . Shrinking δ0 is necessary, there is no loss
of generality in assuming that the matrix A] in the spectral decomposition of A is
power bounded:

sup
n∈N
|A](η)n| 6 C ,

with a constant C > 0 that is uniform with respect to η as long as |η−(ξ+2mπ)| 6
δ0/2. (We shall not even use here the exponential decay in time of the ] component.)
Performing the same kind of analysis as for the terms εn2,p, the error εn] in (A.9)
satisfies ∫

R
|εn] (ξ)|2 dξ 6 C ∆x2 ,

with a constant C > 0 that is uniform with respect to T > 0 and ∆t ∈ (0, 1].
By Plancherel Theorem, we have proved the bound∑

j∈Z
∆x |enj |2 6 C ∆x2 (1 + T 2) ,

for all n such that n∆t 6 T and a constant C that is uniform with respect to T > 0
and ∆x ∈ (0, 1]. In particular, there holds

‖Wn
∆ −Wn

∆‖2L∞(R) = sup
j∈Z
|Wn

j −Wn
j |2 6 C ∆x (1 + T 2) , (A.10)

which gives an L∞ bound for the error between the exact and approximate solu-
tions provided that â has sufficiently narrow support, and a is suitably polarized
(Π](ξ) a = 0).

The proof of Proposition A.1 is now almost complete. Indeed, let us assume that
Assumption 3 is not valid. Up to reordering, this means that for some ξ, the group
velocity v1 is zero. We use the previous construction of high frequency solutions to
(A.3). Choosing a such that the (more restrictive) polarization condition Π1(ξ) a =
a holds, the expression of the approximate solution W reduces to

∀ (j, n) ∈ Z× N , Wn
j := ei (nω1(ξ)+j ξ) a(j∆x) .

Let us consider some time T > 0. The trace estimate (A.4) gives∑
06n6T/∆t

∆t |Wn
0 |2 6 2

∑
06n6T/∆t

∆t |Wn
0 |2 + 2

∑
16n6T/∆t

∆t |Wn
0 −Wn

0 |2

6 C
∑
j∈Z

∆x |W 0
j |2 + C ∆x (1 + T 2)T .

By the smoothness of a, there holds∑
j∈Z

∆x |W 0
j |2 =

∑
j∈Z

∆x |a(j∆x)|2

6 C
∑
j∈Z
‖a‖2L2([j∆x,(j+1) ∆x)) + ∆x2 ‖a′‖2L2(L2([j∆x,(j+1) ∆x))

6 C ‖a‖2H1(R) ,

uniformly with respect to ∆t ∈ (0, 1]. Summing up, we have shown that, for a
suitable constant C > 0 that is uniform with respect to T > 0 and ∆t ∈ (0, 1],
there holds

(NT + 1) ∆t |a(0)|2 6 C + C ∆x (1 + T 2)T ,
with NT the largest integer such that NT ∆t 6 T . By first passing to the limit
∆t→ 0, we get

T |a(0)|2 6 C ,
and by passing to the limit T → +∞, we get a(0) = 0, which is obviously a
contradiction because one can construct the function a that meets all previous
requirements (support of â, smoothness and polarization), together with a(0) 6=
0. �
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Remark A.3. — The above argument is actually simpler in the PDE context
because an accurate description of high frequency asymptotics (including L∞ error
bounds) is available for hyperbolic systems, say with constant multiplicity. Consider
for instance the Cauchy problem

∂tu+
d∑
j=1

Aj ∂xju = 0 ,

with a hyperbolic operator of constant multiplicity, that is:

∀ ξ = (ξ1, . . . , ξd) ∈ Rd \ {0} , det
[
τ I +

d∑
j=1

ξj Aj

]
=

q∏
k=1

(
τ + λk(ξ)

)νk ,
with (real valued) real analytic semi-simple eigenvalues λ1, . . . , λq. The validity of
the trace estimate∫

R+

∫
Rd−1

|u(t, y, 0)|2 dy dt 6 C ‖u(0, ·)‖2L2(Rd) ,

is equivalent to the fact that there is no glancing wave packet, namely:

∀ ξ 6= 0 , ∀ k = 1, . . . , q , ∂λk(ξ)
∂ξd

6= 0 .

The latter condition is basically never satisfied in dimension d > 2, and this is one
reason why the derivation of semigroup estimates in [10, 18] and followers is so
involved.
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