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WEYL FORMULAE FOR THE ROBIN LAPLACIAN
IN THE SEMICLASSICAL LIMIT

AYMAN KACHMAR, PIERIG KERAVAL, AND NICOLAS RAYMOND

Abstract. This paper is devoted to establish semiclassical Weyl formulae for the Robin
Laplacian on smooth domains in any dimension. Theirs proofs are reminiscent of the Born-
Oppenheimer method.

1. Introduction

1.1. Context and motivations. For d > 2, let us consider an open bounded
connected subset of Rd denoted by Ω with a C3 connected boundary Γ = ∂Ω and
for which the standard tubular coordinates are well defined (see Section 2.2). On
this domain, we consider the Robin Laplacian Lh defined as the self-adjoint operator
associated with the closed quadratic form defined on H1(Ω) by the formula

∀u ∈ H1(Ω) , Qh(u) =
∫

Ω
|h∇u|2 dx− h 3

2

∫
Γ
|u|2 dΓ,

where dΓ is the surface measure of the boundary and h > 0 is the semiclassical
parameter. The domain of the operator Lh is given by

Dom(Lh) = {u ∈ H2(Ω) : n · h 1
2∇u = −u on Γ},

where n is the inward pointing normal to the boundary. Note that, by a usual
trace theorem, the traces of u and ∇u are well-defined as elements of H 3

2 (∂Ω) and
H

1
2 (∂Ω), respectively.
The aim of this paper is to quantify the number of non positive eigenvalues

created by the Robin condition in the semiclassical limit h → 0. The estimate
of the non positive spectrum of the Robin Laplacian in the semiclassical limit (or
equivalently in the strong coupling limit) has given rise to many contributions
(in various geometric contexts) in the last years (see [14, 6, 7, 20, 8]). Negative
eigenvalues of the operator Lh have eigenfunctions localized near the boundary of
the domain thereby serving as edge states. One of the most characteristic results
is established in [20] and states that the n-th eigenvalue of Lh is approximated,
modulo O(h2), by the n-th eigenvalue of the effective Hamiltonian acting on the
boundary

Leff
h = −h+ h2LΓ − h 3

2κ, (1.1)
where LΓ is the Laplace-Beltrami operator on Γ and where κ is the mean curvature.
The approximation of the eigenfunctions of Lh via those of the effective Hamiltonian
is obtained in [7] for the two dimensional situation.

The above O(h2) was dependent on the considered eigenvalue. In the present
paper, we remove this dependence and deduce Weyl formulae. In two dimensions,
the problem of deriving a strengthened effective Hamiltonian was also tackled to
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investigate semiclassical tunneling in presence of symmetries in [8]. Moreover, in
[8, Section 7], as a byproduct of the strategy developed there (which was initially
inspired by [17, 5] or [21]), Weyl formulae are established in two dimensions. The
present paper is an extension of these results to any dimension and it proves, in an
appropriate energy window, a uniform approximation of sp (Lh) by the spectrum
of a slight perturbation of (1.1).

1.2. Results. For λ ∈ R, we denote by

N (Lh, λ) = Tr
(

1(−∞,λ](Lh)
)
,

the number of eigenvalues µn(h) of Lh below the energy level λ. Let us now state
our main two theorems that relate the counting functions of Lh and

√
hLΓ − κ in

the semiclassical limit.

Theorem 1.1. — We have the following Weyl estimate for the low lying eigen-
values:

∀E ∈ R , N
(
Lh,−h+ Eh

3
2

)
∼
h→0

N
(
h

1
2LΓ − κ,E

)
.

Theorem 1.2. — We have the following Weyl estimate for the non positive
eigenvalues:

N (Lh, 0) ∼
h→0

N
(
hLΓ, 1

)
.

Remark 1.3. — Note that we have the classical Weyl estimates (see for instance
[24, Theorem 14.11]):

N
(
h

1
2LΓ − κ,E

)
∼
h→0

1(
2πh 1

4

)d−1 VolT∗Γ{(s, σ) : |σ|2g − κ(s) 6 E}, (1.2)

N
(
hLΓ, 1

)
∼
h→0

1(
2πh 1

2

)d−1 VolT∗Γ{(s, σ) : |σ|2g 6 1}. (1.3)

Note that they remain true if E and 1 are replaced by E + o(1) and 1 + o(1)
respectively.

Remark 1.4. — Let us notice here that these results are proved in the case of a
C3 bounded and connected boundary. The connectedness is actually not necessary
but avoids to consider each connected component separately. For Theorem 1.1, the
boundedness of Γ is not necessary either (bounds on the curvature are enough), but
allows a lighter presentation. We refer to [20] where such geometric assumptions
are accurately described.

Remark 1.5. — The proof we give to Theorem 1.2 uses the classical Weyl law
in the interior of the domain Ω. This law requires that the domain Ω is bounded.

1.3. Strategy of the proofs. In Section 2, we show that the interior of Ω does
not contribute to the creation of non positive spectrum (the Laplacian is non neg-
ative inside Ω). We quantify this thanks to classical Agmon estimates and reduce
the investigation to a Robin Laplacian on a thin neighborhood of the boundary
(see Proposition 2.2). In Section 3, by using an idea from the Born-Oppenheimer
context, we derive uniform effective Hamiltonians (see Theorem 3.1) whose eigen-
values simultaneously describe the eigenvalues of Lh less than −ε0h (for ε0 > 0 as
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small as we want). In particular, we show that the effectiveness of the reduction
to a boundary operator is determined by the estimate of the Born-Oppenheimer
correction. This correction is an explicit quantity related to dimension one. It
appears in physics and, for instance, in the contributions [16, 18, 22, 19, 23] in
the context of time evolution or in the works [11, 15, 13] related to resonance and
eigenvalue problems (see also the review [10] where both aspects are considered).
Let also mention here [1] dealing with the semiclassical counting function in the
Born-Oppenheimer approximation (in a pseudo-differential context). Our strategy
gives rise to a rather short proof (which does not even require approximations of
the eigenfunctions) and displays a uniformity in the spectral estimates that implies
the Weyl formula of Theorem 1.1. In Section 4, we establish Theorem 1.2. Note
that the proof of Theorem 1.2 does not follow from a reduction to the effective
Hamiltonian but uses a variational argument as the one in [3]. This argument is
based on a decomposition of the operator via a rough partition of the unity and a
separation of variables.

2. The Robin Laplacian near the boundary

2.1. Reduction near the boundary via Agmon estimates. The eigenfunc-
tions (with negative eigenvalues) of the initial operator Lh are localized near the
boundary since the Laplacian is non negative inside the domain. This localization
is quantified by the following proposition (the proof of which is a direct adaptation
of the case in dimension two, see [7] and also [9]).

Proposition 2.1. — Let ε0 ∈ (0, 1) and α ∈ (0,√ε0). There exist constants
C > 0 and h0 ∈ (0, 1) such that, for h ∈ (0, h0), if uh is a normalized eigenfunction
of Lh with eigenvalue µ 6 −ε0h, then,∫

Ω

(
|uh(x)|2 + h|∇uh(x)|2

)
exp

(
2α dist(x,Γ)

h
1
2

)
dx 6 C.

Given δ ∈ (0, δ0) (with δ0 > 0 small enough), we introduce the δ-neighborhood
of the boundary

Vδ = {x ∈ Ω : dist(x,Γ) < δ}, (2.1)
and the quadratic form, defined on the variational space

Wδ = {u ∈ H1(Vδ) : u(x) = 0 , for all x ∈ Ω such that dist(x,Γ) = δ},
by the formula

∀u ∈Wδ , Q{δ}h (u) =
∫
Vδ
|h∇u|2 dx− h 3

2

∫
Γ
|u|2 dΓ.

Note again that the trace of u is well-defined by a classical trace theorem. Let us
denote by µ

{δ}
n (h) the n-th eigenvalue of the corresponding operator L{δ}h . It is

then standard to deduce from the min-max principle and the Agmon estimates of
Proposition 2.1 the following proposition (see [9]).

Proposition 2.2. — Let ε0 ∈ (0, 1) and α ∈ (0,√ε0).There exist constants
C > 0, h0 ∈ (0, 1) such that, for all h ∈ (0, h0), δ ∈ (0, δ0), n > 1 such that
µn(h) 6 −ε0h,

µ{δ}n (h) 6 µn(h) + C exp
(
−αδh− 1

2

)
. (2.2)
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Moreover, we have, for all n > 1, h > 0, and δ ∈ (0, δ0),

µn(h) 6 µ{δ}n (h).

2.2. Description of the boundary coordinates. Let ι denote the embedding
of Γ in Rd and g the induced metrics on Γ. (Γ, g) is a C3 Riemmanian manifold,
which we orientate according to the ambient space. Let us introduce the map
Φ : Γ× (0, δ)→ Vδ defined by the formula

Φ(s, t) = ι(s) + tn(s),
which we assume to be injective. The transformation Φ is a C3 diffeomorphism for
δ ∈ (0, δ0) and δ0 is sufficiently small. The induced metrics on Γ× (0, δ) is given by

G = g ◦ (Id− tL(s))2 + dt2,
where L(s) = −dns is the second fondamental form of the boundary at s. We also
define the mean curvature:

κ(s) = TrL(s).

2.3. The Robin Laplacian in boundary coordinates. For all u ∈ L2(Vδ0), we
define the pull-back function

ũ(s, t) := u(Φ(s, t)). (2.3)
For all u ∈ H1(Vδ0), we have∫

Vδ0

|u|2 dx =
∫

Γ×(0,δ0)
|ũ(s, t)|2 ãdΓ dt, (2.4)∫

Vδ0

|∇u|2 dx =
∫

Γ×(0,δ0)

[
〈∇sũ, g̃−1∇sũ〉+ |∂tũ|2

]
ãdΓ dt. (2.5)

where
g̃ =

(
Id− tL(s)

)2
,

and ã(s, t) = |g̃(s, t)| 12 . Here 〈·, ·〉 is the Euclidean scalar product in Rd and ∇s
is the differential on Γ seen through the metrics g (by the Riesz representation
theorem). In other words, ∇sũ is the vector of Rd belonging to the tangent space
to Γ at s and satisfying g(∇sũ, v) = dsũ(v), for all v in the tangent space at s.

The operator L{δ}h is expressed in (s, t) coordinates as

L{δ}h = −h2ã−1∇s(ãg̃−1∇s)− h2ã−1∂t(ã∂t),
acting on L2(ãdΓ dt). In these coordinates, the Robin condition becomes

h2∂tu = −h 3
2u on t = 0.

We introduce, for δ ∈ (0, δ0),

Ṽδ = {(s, t) : s ∈ Γ and 0 < t < δ},

W̃δ = {u ∈ H1(Ṽδ) : u(s, δ) = 0},

D̃δ = {u ∈ H2(Ṽδ) ∩ W̃δ : ∂tu(s, 0) = −h− 1
2u(s, 0)},

Q̃{δ}h (u) =
∫
Ṽδ

(
h2〈∇su, g̃−1∇su〉+ |h∂tu|2

)
ã dΓ dt− h 3

2

∫
Γ
|u(s, 0)|2 dΓ,

L̃{δ}h = −h2ã−1∇s(ãg̃−1∇s)− h2ã−1∂t(ã∂t).

(2.6)



WEYL FORMULAE FOR THE ROBIN LAPLACIAN IN THE SEMICLASSICAL LIMIT 43

We now take
δ = hρ, (2.7)

and write simply L̃h for L̃{δ}h . The operator L̃h with domain D̃δ is the self-adjoint
operator defined via the closed quadratic form Ṽρ 3 u 7→ Q̃h(u) by Friedrich’s
theorem.

2.4. The rescaled operator. Let us now take advantage of the homogeneity of
the transverse Robin Laplacian −h2ã−1∂t(ã∂t) with boundary condition ∂tu(s, 0) =
−h− 1

2u(s, 0), where s is considered as a parameter. Near the boundary, this oper-
ator looks like −h2∂2

t with boundary condition ∂tu(s, 0) = −h− 1
2u(s, 0) and we see

that the rescaling t = h
1
2 τ allows to erase the dependence on h in the boundary

condition. That is why, we introduce the rescaling

(σ, τ) = (s, h− 1
2 t),

the new semiclassical parameter ~ = h
1
4 and the new weights

â(σ, τ) = ã(σ, h 1
2 τ) , ĝ(σ, τ) = g̃(σ, h 1

2 τ). (2.8)

We consider rather the operator

L̂~ = h−1L̃h, (2.9)

acting on L2(âdΓ dτ) and expressed in the coordinates (σ, τ). As in (2.6), we let

V̂T = {(σ, τ) : σ ∈ Γ and 0 < τ < T},

ŴT = {u ∈ H1(V̂T ) : u(σ, T ) = 0},

D̂T = {u ∈ H2(V̂T ) ∩ ŴT : ∂τu(σ, 0) = −u(σ, 0)},

Q̂T~ (u) =
∫
V̂T

(
~4〈∇σu, ĝ−1∇σu〉+ |∂τu|2

)
âdΓ dτ −

∫
Γ
|u(σ, 0)|2 dΓ,

L̂T~ = −~4â−1∇σ(âĝ−1∇σ)− â−1∂τ â∂τ .

(2.10)

In what follows, we let T = ~−1 (or equivalently ρ = 1
4 ) and write Q̂~ for Q̂T~ .

3. A variational Born-Oppenheimer reduction

The aim of this section is to prove the following result (that implies Theorem
1.1).

Theorem 3.1. — For ε0 ∈ (0, 1), h > 0, we let

Nε0,h = {n ∈ N∗ : µn(h) 6 −ε0h}.

There exist positive constants h0, C+, C− such that, for all h ∈ (0, h0),

∀n ∈ Nε0,h , µ−n (h) 6 µn(h) , and ∀n > 1 , µn(h) 6 µ+
n (h), (3.1)

where µ±n (h) is the n-th eigenvalue of Leff,±
h defined by

Leff,+
h = −h+ (1 + C+h

1
2 )h2LΓ − κh 3

2 + C+h
2,

and
Leff,−
h = −h+ (1− C−h

1
2 )h2LΓ − κh 3

2 − C−h2.



44 A. Kachmar, P. Keraval & N. Raymond

Before writing the proof of Theorem 3.1, we discuss some of its consequences in
the spirit of the Born-Oppenheimer method. In the sequel, Leff = −h+h2LΓ−h 3

2κ
is the effective Hamiltonian introduced in (1.1). The sequence of eigenvalues of Leff

is denoted by
(
µeff
n (h)

)
n>1. We can compare the eigenvalues of the operator Lh and

those of the effective Hamiltonian, but with a rather bad error term.

Corollary 3.2. — Let ε0 ∈ (0, 1). There exist positive constants h0, C such
that, for all h ∈ (0, h0),

∀n ∈ Nε0,h ,
∣∣µn(h)− µeff

n (h)
∣∣ 6 Ch 3

2 .

The proof of Corollary 3.2 is essentially the same as the one of the following
refined corollary related to energy levels below −h+Eh

3
2 . This is connected to the

works in [13, 23].

Corollary 3.3. — For E ∈ R, we let

Nh(E) := {n ∈ N∗ : µn(h) 6 −h+ Eh
3
2 },

There exist C > 0, h0 > 0 such that, for all n ∈ Nh(E) and h ∈ (0, h0),

|µn(h)− µeff
n (h)| 6 Ch2.

Proof. — Given E ∈ R and ε0 ∈ (0, 1), for h small enough, we have −h+Eh
3
2 6

−ε0h. In particular, we have, for h small enough and for all n ∈ Nh(E),

µ−n (h) 6 µn(h) 6 µ+
n (h).

Then, by elementary considerations on the quadratic forms, for all E ∈ R, there
exist C > 0, h0 > 0 such that, for all ψ ∈ range1

(−∞,−h+Eh
3
2 )

(Leff,−
h ),

h2QΓ(ψ) 6 Ch 3
2 ‖ψ‖2,

and then

Qeff
h (ψ) = Qeff,−

h (ψ) + C−h
1
2h2QΓ(ψ) + C−h

2‖ψ‖2 6 Qeff,−
h (ψ) + Ch2‖ψ‖2,

whereQΓ,Qeff,±
h andQeff

h are the quadratic forms of LΓ, Leff,±
h and Leff

h , respectively.
By the min-max principle, we deduce that, for all n ∈ Nh(E),

µeff
n (h) 6 µ−n (h) + Ch2 6 µn(h) + Ch2.

In particular, we have, for all n ∈ Nh(E),

µeff
n (h) 6 −h+ Eh

3
2 + Ch2.

In the same way, we have, for all ψ ∈ range1
(−∞,−h+Eh

3
2 +Ch2)

(Leff
h ),

Qeff,+
h (ψ) 6 Qeff

h (ψ) + C̃h2‖ψ‖2,

and we get, for all n ∈ Nh(E),

µn(h) 6 µ+
n (h) 6 µeff

n (h) + C̃h2.

�
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3.1. Proof of Theorem 1.1. Let us now explain how we can deduce Theorem
1.1. By the first inequality in (3.1), we have

N
(
Lh,−h+ Eh

3
2

)
6 N

(
Leff,−
h ,−h+ Eh

3
2

)
.

This becomes, for an appropriate constant C̃− > 0,

N
(
Lh,−h+ Eh

3
2

)
6 N

(
h

1
2LΓ − κ,E + C̃−h

1
2

)
.

It remains to apply the usual semiclassical Weyl estimate for the counting function
in the right-hand-side. We get, by using the second inequality in (3.1),

N
(
Leff,+
h ,−h+ Eh

3
2

)
6 N

(
Lh,−h+ Eh

3
2

)
,

and we deduce the semiclassical lower bound for the counting function in the same
way.

3.2. Strategy of the proof of Theorem 3.1. Let us briefly explain the main
lines of the proof of Theorem 3.1.

i. From the localization estimates of Proposition 2.2, we only have to consider
Lh restricted to a thin neighborhood of the boundary (say of size δ = h

1
4 ),

that is the operator L̃h. Due to scaling considerations, we may even work
with L̂~.

ii. The operator L̂~ is partially semiclassical. Since the effective semiclassical
variable is σ, it is natural to consider (an approximation of) the operator
acting in the variable τ with σ considered as a parameter (see Section 3.3).

iii. Since the important quantity in the investigation is the mean curvature κ,
it is easier to keep only the main term in the expansion of the metrics in-
duced by the tubular coordinates (see Section 3.4). We get an approximated
operator L̂app

~
iv. Finally, we want to prove upper and lower bounds on the eigenvalues of
L̂app
~ . For the upper bounds, we insert almost explicit test functions (quasi

tensor products of functions on the boundary and of the groundstate of the
transverse operator) in the quadratic form. For the lower bound, we use
the spectral decomposition of the transverse operator to decompose L̂app

~
into two orthogonal components, modulo some remainders involving the
commutator between the transverse groundsate (depending on σ) and the
tangential derivative ∇σ.

3.3. The corrected Feshbach projection. Let us introduce

Hκ(σ),~ = H{T}B ,

with
B = h

1
2κ(σ) = ~2κ(σ)

and whereH{T}B is defined in (A.9). We introduce for σ ∈ Γ the Feshbach projection
Πσ on the normalized groundstate of Hκ(σ),~, denoted by vκ(σ),~,

Πσψ = 〈ψ, vκ(σ),~〉L2((0,T ),(1−Bτ) dτ)vκ(σ),~.

We also let
Π⊥σ = Id−Πσ
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and
f(σ) = 〈ψ, vκ(σ),~〉L2((0,T ),(1−Bτ) dτ), (3.2)
R~(σ) = ‖∇σvκ(σ),~‖2L2((0,T ), (1−Bτ) dτ), (3.3)

The quantity R~ is sometimes called “Born-Oppenheimer correction”. It measures
the commutation defect between ∇σ and Πσ.

Remark 3.4. — In a first approximation, one could try to use the projection
on v0,~, but one would lose the uniformity in our estimates. Note that the idea
to consider a corrected Feshbach projection appears in many different contexts:
WKB analysis (see for instance [2, Sections 2.4 & 3.2], [7] and [8]), norm resolvent
convergence (see for instance [12, Section 4.2]) or space/time adiabatic limits (see
[22, Chapter 3]). The reader might also consider to read [13, p. 35], where the
authors tackle a similar problem of finding a corrected Feshbach projection in order
to decouple the variable of their fiber operator and the semiclassical variable (h
is called ε in their paper and they call “horizontal variable” our variable s). In
particular, they emphasize that, without such a correction, the decoupling appears
modulo a remainder O(h) larger than the gap between the eigenvalues.

3.4. Approximation of the metrics. In this section, we introduce an approxi-
mated quadratic form by approximating first the metrics. For that purpose, let us
introduce the approximation of the weight:

m̃(s, t) = 1− tκ(s) , κ(s) = TrL(s).
We have

|ã(s, t)− m̃(s, t)| 6 Ct2.
Let us now state two elementary lemmas.

Lemma 3.5. — We have the estimate, for all ψ ∈ ŴT ,∣∣∣∣∫
V̂T
|∂τψ|2â dΓ dτ −

∫
V̂T
|∂τψ|2m̂ dΓ dτ

∣∣∣∣
6 C~4

∫
Γ
|f(σ)|2 dΓ + C~2

∫
V̂T
|∂τΠ⊥σ ψ|2 dΓ dτ,

where m̂(σ, τ) = m̃(σ, ~2τ).

Proof. — We have∣∣∣∣∫
V̂T
|∂τψ|2âdΓ dτ −

∫
V̂T
|∂τψ|2m̂ dΓ dτ

∣∣∣∣ 6 C~4
∫
V̂T
τ2|∂τψ|2 dΓ dτ.

Then, we use an orthogonal decomposition to get∣∣∣∣∫
V̂T
|∂τψ|2âdΓ dτ −

∫
V̂T
|∂τψ|2m̂dΓ dτ

∣∣∣∣
6 C̃~4

(∫
V̂T
τ2|∂τΠσψ|2 dΓ dτ +

∫
V̂T
τ2|∂τΠ⊥σ ψ|2 dΓ dτ

)
6 C~4

∫
Γ
|f(σ)|2

(∫ T

0
τ2|∂τvκ(σ),~|2 dτ

)
dΓ + C~2

∫
V̂T
|∂τΠ⊥σ ψ|2 dΓ dτ,
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where we have used that T = ~−1 for the orthogonal component. The result then
follows from the Agmon estimates in one dimension (Proposition A.6). �

Lemma 3.6. — We have the estimate, for all ψ ∈ ŴT ,∣∣∣∣∫
V̂T
〈∇σψ, ĝ−1∇σψ〉âdΓ dτ −

∫
V̂T
〈∇σψ,∇σψ〉m̂dΓ dτ

∣∣∣∣
6 C

∫
Γ

(
~2‖∇σf(σ)‖2 + ~R~(σ)|f(σ)|2

)
dΓ + C~

∫
V̂T
‖∇σΠ⊥σ ψ‖2 dΓ dτ.

Proof. — First, we write∣∣∣∣∫
V̂T
〈∇σψ, ĝ−1∇σψ〉â dΓ dτ −

∫
V̂T
〈∇σψ,∇σψ〉m̂ dΓ dτ

∣∣∣∣
6
∫
V̂T
‖∇σψ‖2|â− m̂|dΓ dτ +

∫
V̂T
|〈∇σψ, (ĝ−1 − Id)∇σψ〉|â dΓ dτ

6 C
∫
V̂T

(~4τ2 + ~2τ)‖∇σψ‖2 dΓ dτ.

Then, by an orthogonal decomposition, we get∣∣∣∣∫
V̂T
〈∇σψ, ĝ−1∇σψ〉âdΓ dτ −

∫
V̂T
〈∇σψ,∇σψ〉m̂dΓ dτ

∣∣∣∣
6 C

∫
V̂T

(~4τ2 + ~2τ)‖∇σΠσψ‖2 dΓ dτ + C~
∫
V̂T
‖∇σΠ⊥σ ψ‖2 dΓ dτ,

where we used T = ~−1 on the orthogonal part.
Finally, we use the naive inequality

‖∇σΠσψ‖2 6 2
(
‖∇σf(σ)‖2|vκ(σ),~|2 + ‖∇σvκ(σ),~‖2|f(σ)|2

)
,

and the conclusion again follows from Agmon estimates. �

Let us now introduce the approximated quadratic form

Q̂app
~ (ψ) =

∫
V̂T

(
~4‖∇σψ‖2 + |∂τψ|2

)
m̂ dΓ dτ −

∫
Γ
|ψ(σ, 0)|2 dΓ. (3.4)

The sense of this approximation is quantified by the following lemma (that is a
consequence of Lemmas 3.5 and 3.6).

Lemma 3.7. — We have, for all ψ ∈ ŴT ,∣∣∣Q̂~(ψ)− Q̂app
~ (ψ)

∣∣∣
6 C~4

∫
Γ
|f(σ)|2 dσ + C~2

∫
V̂T
|∂τΠ⊥σ ψ|2 dΓ dτ

+ C

∫
Γ

(
~6‖∇σf(σ)‖2 + ~5R~(σ)|f(σ)|2

)
dΓ + C~5

∫
V̂T
‖∇σΠ⊥σ ψ‖2 dΓ dτ.
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3.5. Upper bound. The following proposition provides an upper bound of the
quadratic form on a subspace.

Proposition 3.8. — There exist C > 0, ~0 > 0 such that, for all ψ ∈ D̂T and
~ ∈ (0, ~0), we have

Q̂~(Πσψ) 6
∫

Γ
~4(1 + C~2)‖∇σf(σ)‖2 dΓ

+
∫

Γ

(
λ1(Hκ(σ),~) + C~4 + ~4(1 + C~)R~(σ)

)
|f(σ)|2 dΓ.

Proof. — First, we use Lemma 3.7. Then, we are reduced to estimates on the
approximated quadratic form. By writing Πσψ = f(σ)vκ(σ),~ and considering the
derivative of this product, we get

Q̂app
~ (Πσψ) =

∫
V̂T

(
~4‖∇σΠσψ‖2 + |∂τΠσψ|2

)
m̂ dΓ dτ −

∫
Γ
|Πσψ(σ, 0)|2 dΓ

=
∫

Γ

(
~4‖∇σf(σ)‖2 +

(
~4R~(σ) + qκ(σ),~(vκ(σ),~)

)
|f(σ)|2

)
dΓ

+ 2~4
∫

Γ
f(σ)

〈
∇σf(σ),

∫ T

0
vκ(σ),~∇σvκ(σ),~m̂dτ

〉
dΓ.

where qκ(σ),~ is the quadratic form associated with Hκ(σ),~. By definition, we have

qκ(σ),~(vκ(σ),~) = λ1(Hκ(σ),~).

Then we notice from the normalization of vκ(σ),~ that

∇σ

(∫ T

0
|vκ(σ),~|2m̂ dτ

)
= 0,

and since ∇σB = ~2∇σκ(σ), we have∫ T

0
vκ(σ),~∇σvκ(σ),~m̂ dτ = O(~2).

This implies the estimate:∣∣∣∣∣~4
∫

Γ
f(σ)

〈
∇σf(σ),

∫ T

0
vκ(σ),~∇σvκ(σ),~m̂ dτ

〉
dΓ

∣∣∣∣∣
6 C~6

∫
Γ

(
|f(σ)|2 + ‖∇σf(σ)‖2

)
dΓ, (3.5)

and the conclusion follows. �

3.6. Lower bound. Let us now establish the following lower bound of the qua-
dratic form.
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Proposition 3.9. — There exist C > 0, ~0 > 0 such that, for all ψ ∈ D̂T and
~ ∈ (0, ~0), we have

Q̂~(ψ)

>
∫

Γ

(
~4(1− C~2)‖∇σf(σ)‖2 +

(
λ1(Hκ(σ),~)− C(~4 + ~2R~(σ)

)
|f(σ)|2

)
dΓ

+
∫

Γ
~4(1− C~)‖∇σΠ⊥σ ψ‖2L2(m̂ dτ) dΓ

+
∫

Γ

(
(1− C~2)λ2(Hκ(σ),~)− C(~6 + ~2R~(σ))

)
‖Π⊥σ ψ‖2L2(m̂ dτ) dΓ.

Proof. — The proof will be done in a few steps.
i. First, we use Lemma 3.7 to write

Q̂~(ψ) >
∫
V̂T

~4‖∇σψ‖2m̂ dΓ dτ +
∫

Γ
qκ(σ),~(ψ) dΓ

− C
∫

Γ

(
~6‖∇σf(σ)‖2 + ~4(1 + ~R~(σ))|f(σ)|2

)
dΓ

− C~5
∫
V̂T
‖∇σΠ⊥σ ψ‖2m̂dΓ dτ − C~2

∫
V̂T
|∂τΠ⊥σ ψ|2m̂ dΓ dτ. (3.6)

ii. On one hand, we get, by using an orthogonal decomposition, for each σ ∈ Γ,

qκ(σ),~(ψ) = qκ(σ),~(Πσψ) + qκ(σ),~(Π⊥σ ψ).

Then, we get, by using the min-max principle,∫
Γ
qκ(σ),~(ψ) dΓ− C~2

∫
V̂T
|∂τΠ⊥σ ψ|2m̂dΓ dτ

>
∫

Γ
qκ(σ),~(Πσψ) dΓ + (1− C~2)

∫
Γ
qκ(σ),~(Π⊥σ ψ) dΓ (3.7)

>
∫

Γ

(
λ1(Hκ(σ),~)|f(σ)|2 + (1− C~2)λ2(Hκ(σ),~)‖Π⊥σ ψ‖2L2(m̂ dτ)

)
dΓ.

On the other hand, we also have

‖∇σψ‖2L2(m̂ dτ) = ‖Πσ∇σψ‖2L2(m̂ dτ) + ‖Π⊥σ∇σψ‖2L2(m̂ dτ). (3.8)

iii. Then, we estimate the commutator:

[∇σ,Πσ]ψ = 〈ψ,∇σvκ(σ),~〉L2(m̂ dτ)vκ(σ),~ + 〈ψ, vκ(σ),~〉L2(m̂) dτ∇σvκ(σ),~

− ~2∇σκ(σ)
(∫ T

0
ψvκ(σ),~τ dτ

)
vκ(σ),~.

We get, thanks to the Cauchy-Schwarz inequality and Agmon estimates (see
Proposition A.6),

‖[Πσ,∇σ]ψ‖
L2(m̂ dτ) 6

(
2R~(σ) 1

2 + C~2
)
‖ψ‖

L2(m̂ dτ). (3.9)

Then, we write

Πσ∇σψ = ∇σf(σ)vκ(σ),~ + f(σ)∇σvκ(σ),~ + [Πσ,∇σ]ψ. (3.10)
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Let us recall the following classical inequality:

∀ a, b ∈ Cn−1,∀ ε ∈ (0, 1), ‖a+ b‖2 > (1− ε)‖a‖2 − ε−1‖b‖2.

We take ε = ~2, a = ∇σf(σ)vκ(σ),~ and b = f(σ)∇σvκ(σ),~ +[Πσ,∇σ]ψ. We
get, from (3.9) and (3.10),∫ T

0
‖Πσ∇σψ‖2m̂ dτ > (1− ~2)‖∇σf(σ)‖2

− C~−2(R~(σ) +O(~4)
)(
|f(σ)|2 + ‖Π⊥σ ψ‖2L2(m̂ dτ)

)
. (3.11)

In the same way, we get∫ T

0
‖Π⊥σ∇σψ‖2m̂ dτ > (1− ~2)‖∇σΠ⊥σ ψ‖2L2(m̂ dτ)

− C~−2(R~(σ) +O(~4)
)(
|f(σ)|2 + ‖Π⊥σ ψ‖2L2(m̂ dτ)

)
. (3.12)

iv. Now we use (3.6), (3.7), (3.8) and the estimates (3.11), (3.12) and the con-
clusion follows.

�

3.7. Derivation of the effective Hamiltonians. We can now end the proof of
Theorem 3.1.

i. We apply Proposition A.5 to get

λ1(Hκ(σ),~) = −1− κ(σ)~2 +O(~4),

and we use Lemmas A.1, A.3 to deduce that there exist positive constants
~0 and C such that, for all ~ ∈ (0, ~0),

λ2(Hκ(σ),~) > −C~ > −ε0

2 .

Then we notice, thanks to Lemma A.7, that the Born-Oppenheimer correc-
tion satisfies R~(σ) = O(~4).

ii. As a consequence of Proposition 3.8, there exists C+ > 0 such that, for all
ψ ∈ D̂T and ~ small enough,

Q̂~(Πσψ) 6 Q̂eff,+
~ (f),

where, for all f ∈ H1(Γ),

Q̂eff,+
~ (f) =

∫
Γ

(
~4(1 + C+~2)‖∇σf‖2 +

(
−1− κ(σ)~2 + C+~4) |f |2) dΓ.

For n > 1, let

Gn,~ =
{
fvκ(σ),~ ∈ D̂T : f ∈ Fn,~

}
,

where Fn,~ ⊂ H1(Γ) is the eigenspace of the operator L̂eff,+
~ associated with

the eigenvalues
(
µ̂eff,+
k (~)

)
16k6n

. We have dimGn,~ = n and, for all ψ ∈
Gn,~,

Q̂~(ψ) 6 µ̂eff,+
n (~)‖ψ‖2

L2 (̂a dΓ dτ),
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so that, by application of the min-max principle,

µ̂n(~) 6 µ̂eff,+
n (~).

iii. For ε0 ∈ (0, 1), thanks to Proposition 3.9, there exists C− > 0 such that, for
all ψ ∈ D̂T and ~ small enough,

Q̂~(ψ) > Q̂eff,−
~ (f)− ε0

2 ‖Π
⊥
σ ψ‖2L2(m̂ dΓ dτ),

where, for all f ∈ H1(Γ),

Q̂eff,−
~ (f) =

∫
Γ

(
~4(1− C−~2)‖∇σf‖2 +

(
−1− κ(σ)~2 − C−~4) |f |2) dΓ.

We consider the quadratic form defined, for (f, ϕ) ∈ H1(Γ)× V̂T , by

Q̂tens
~ (f, ϕ) = Q̂eff,−

~ (f)− ε0

2 ‖ϕ‖
2
L2(m̂ dΓ dτ).

By application of the min-max principle (see also [21, Chapter 13]), we have
the comparison of the Rayleigh quotients:

µ̂n(~) > µ̂tens
n (~).

Note that the spectrum of L̂tens
~ lying below −ε0 is discrete and coincides

with the spectrum of L̂eff,−
~ . Then, for all n ∈ Nε0,h, µ̂tens

n (~) is the n-th
eigenvalue of L̂tens

~ and its satisfies µ̂tens
n (~) = µ̂eff,−

n (~).
iv. Finally, we apply Proposition 2.2 to compare µ̂n(~) and µn(h).

4. Asymptotic counting formula for the non positive eigenvalues

This section is devoted to the proof of Theorem 1.2. For that purpose we prove
an upper bound in Proposition 4.1 and a lower bound in Proposition 4.2.

The philosophy behind the proof of Theorem 1.2 is different compared to that
of Theorem 1.1. In fact, our proof of Theorem 1.1 follows from the derivation of an
effective Hamiltonian that describes all the eigenvalues below the energy level −ε0h,
for an arbitrary ε0 ∈ (0, 1). Since this proof breaks for ε0 = 0, we follow a different
approach by comparing the eigenvalue counting functions of the Robin Laplacian
on the open domain Ω and the Laplace-Beltrami operator on the boundary ∂Ω. A
key point is to isolate the contribution of “bulk eigenvalues” through the classical
Weyl formula.

Proposition 4.1. — There exist C, h0 > 0 such that for all h ∈ (0, h0),

N (Lh, 0) 6 (1 + o(1))N
(
hLΓ, 1

)
.

Proof. — Consider a quadratic partition of the unity (χj,h)j=1,2 in Ω satisfying
2∑
j=1

χ2
j,h = 1 ,

2∑
j=1
|∇χj,h|2 6 Ch−2ρ,

and
suppχ1,h ⊂ {dist(x, ∂Ω) < hρ}.
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For all u ∈ H1(Ω), the following “IMS” localization formula holds (cf. [4])

Qh(u) = Qh(χ1,hu) +Qh(χ2,hu)− h2
2∑
j=1

∥∥u∇χj,h‖2
> Qh(χ1,hu) +Qh(χ2,hu)− Ch2−2ρ‖u‖2.

(4.1)

Let ∆Dir be the Dirichlet Laplacian on Ω with domainH2(Ω)∩H1
0 (Ω). In the sequel,

δ = hρ, Vδ is the domain introduced in (2.1) and L{δ}h is the Robin Laplacian Lh
on the domain

D{δ}h = {u ∈ H2(Vδ) : n · h 1
2∇u = −u on Γ, u = 0 on dist(x,Γ) = δ)}.

Since χ1,hu and χ2,hu are in the form domains of the operators L{δ}h and −∆Dir

respectively, and the mapping L2(Ω) 3 u 7→ (χ1,hu, χ2,hu) ∈ L2(Vδ)⊕ L2(Ω) is an
isometry, we get by the min-max principle (cf. [3]):

N (Lh, 0) 6 N
(
L{δ}h , Ch2−2ρ

)
+ N

(
−h2∆Dir, Ch2−2ρ) . (4.2)

Now, we estimate Qh(u)/‖u‖2 for all u ∈ Dh,ρ \ {0} by using the boundary coor-
dinates (see Section 2.3 and especially (2.6)) and a rough Taylor expansion of the
metrics:

Qh(u)
‖u‖2L2(Vδ)

> (1− Chρ) Q̃
tens
h (ũ)

‖ũ‖2
L2(Ṽδ)

,

where
‖v‖2

L2(Ṽδ)
=
∫
Ṽδ
|v|2 dΓ dt,

and

Q̃tens
h (v) =

∫
Ṽδ

(
h2〈∇sv,∇sv〉+ |h∂tv|2

)
dΓ dt− h 3

2

∫
Γ
|v(s, 0)|2 dΓ.

The quadratic form Q̃tens
h defines a self-adjoint operator L̃tens

h on Ṽδ with Robin
condition at t = 0 and Dirichlet condition at t = δ = hρ. Thanks to the min-max
principle, we deduce that, for h sufficiently small, the following comparison between
the eigenvalues of L{δ}h and L̃tens

h holds:

µ{δ}n (h) > (1− Chρ)µn
(
L̃tens
h

)
.

Consequently, we have N
(
L{δ}h , Ch2−2ρ

)
6 N

(
L̃tens
h , C̃h2−2ρ

)
for a new constant

C̃ > 0. Plugging this into (4.2), we get:

N (Lh, 0) 6 N
(
L̃tens
h , C̃h2−2ρ

)
+ N

(
−h2∆Dir, Ch2−2ρ) . (4.3)

Then, by using the usual Weyl formula for the Dirichlet Laplacian, we get for h
sufficiently small

N
(
−h2∆Dir, Ch2−2ρ) 6 Ch−dρ, (4.4)

and it remains to analyze N
(
L̃tens
h , Ch2−2ρ

)
. The operator L̃tens

h is in a tenso-
rial form and it has a Hilbertian decomposition by using the Hilbertian basis of
the eigenfunctions of the transverse Robin Laplacian Ltrans

h := h2D2
t acting on

L2((0, hρ), dt), with Robin condition at t = 0 and Dirichlet condition at t = hρ.
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Let
(
λtrans
n (h)

)
be the increasing sequence of the eigenvalues of the transverse oper-

ator counting multiplicities. The spectral decomposition of the transverse operator
yields

sp
(
L̃tens
h

)
=
∞⋃
n=1

(
h2sp(LΓ) + λtrans

n (h)
)
.

We will show that only the first eigenvalue λtrans
1 (h) contributes to the spectrum of

L̃tens
h below Ch2−2ρ. We know that the second eigenvalue of the transverse operator

h2D2
t is of order h2ρ (see Lemma A.2, with T = hρ−

1
2 ). Since ρ ∈

(
0, 1

2
)
, we get

h2ρ � h2−2ρ and thus we have only to consider the first transverse eigenvalue whose
asymptotic expansion is −h + O(h∞), by Lemma A.1. We get, for h sufficiently
small,

N
(
L̃tens
h , C̃h2−2ρ

)
6 N

(
hLΓ, 1 + 2C̃h1−2ρ

)
∼
h→0

N
(
hLΓ, 1

)
. (4.5)

We deduce the upper bound by combining (4.3), (4.4), (4.5), (1.3) and taking ρ
small enough. �

Proposition 4.2. — There exist C, h0 > 0 such that for all h ∈ (0, h0),

N (Lh, 0) > (1 + o(1))N
(
hLΓ, 1

)
.

Proof. — To find the lower bound, we just have to bound the quadratic form
Qh on an appropriate subspace. We consider ρ ∈

(
0, 1

2
)
. We first notice that, for u

such that suppu ⊂ Ṽhρ ,

Qh(u) 6 (1 + Chρ)Q̃tens
h (ũ).

We apply this inequality to the space spanned by functions in the form ũ(s, t) =
fh,n(s)uh(t) where the fh,n are the eigenfunctions of h2LΓ + λ(h) associated with
non positive eigenvalues and uh is the first eigenfunction of the transverse Robin
Laplacian with eigenvalue λ(h) = −h+O(h∞). The conclusion again follows from
the min-max principle and the fact that N

(
hLΓ, 1 +O(h∞)

)
∼
h→0

N
(
hLΓ, 1

)
.
�

Appendix A. Reminders about Robin Laplacians in one dimension

The aim of this section is to recall a few spectral properties related to the Robin
Laplacian in dimension one. Most of them have been established in [7] or [8].

A.1. On a half line. As simplest model, we start with the operator, acting on
L2(R+), defined by

H0 = −∂2
τ (A.1)

with domain
Dom(H0) = {u ∈ H2(R+) : u′(0) = −u(0)}. (A.2)

Note that this operator is associated with the quadratic form

V0 3 u 7→
∫ +∞

0
|u′(τ)|2 dτ − |u(0)|2,

with V0 = H1(0,+∞) .
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The spectrum of this operator is {−1}∪ [0,∞). The eigenspace of the eigenvalue
−1 is generated by the L2-normalized function

u0(τ) =
√

2 exp (−τ) . (A.3)
We will also consider this operator in a bounded interval (0, T ) with T sufficiently
large and Dirichlet condition at τ = T .

A.2. On an interval. Let us consider T > 1 and the self-adjoint operator acting
on L2(0, T ) and defined by

H{T}0 = −∂2
τ , (A.4)

with domain,

Dom(H{T}0 ) = {u ∈ H2(0, T ) : u′(0) = −u(0) and u(T ) = 0}. (A.5)

The spectrum of the operator H{T}0 is purely discrete and consists of a strictly
increasing sequence of eigenvalues denoted by

(
λn

(
H{T}0

))
n>1

. This operator is
associated with the quadratic form

V
{T}
0 3 u 7→

∫ T

0
|u′(τ)|2 dτ − |u(0)|2,

with V {T}0 = {v ∈ H1(0, T ) | v(T ) = 0}.
The next lemma gives the localization of the two first eigenvalues λ1

(
H{T}0

)
and

λ2

(
H{T}0

)
for large values of T .

Lemma A.1. — As T → +∞ we have
λ1(H{T}0 ) = −1 + 4

(
1 + o(1)

)
exp

(
− 2T

)
and λ2(H{T}0 ) > 0. (A.6)

Let us now discuss the estimates of the next eigenvalues.

Lemma A.2. — For all T > 1 and n > 2,(
(2n− 3)π

2T

)2
< λn(H{T}0 ) <

(
(n− 1)π

T

)2
.

Proof. — Let w > 0 and λ = −w2 be a non-positive eigenvalue of the operator
H{T}0 with an eigenfunction u. We have,

− u′′ = λu in (0, T ) , u′(0) = −u(0) , u(T ) = 0. (A.7)
If w = 0 and T > 1, then u = 0 is the unique solution of (A.7). Thus, w > 0 and

u(τ) = A cos(wτ) +B sin(wτ), (A.8)
for some constants A ∈ R and B ∈ R that depend on T . The boundary conditions
satisfied by u yield that A = −Bw, cos(wT ) 6= 0 and

tan(wT ) = w.

Thus w is a fixed point of the π/T -periodic function x 7→ tan(xT ). Obviously, there
exist infinitely many solutions, at least one solution in every interval (− π

2T ,
π

2T )+ kπ
T ,

k = 0,±1, · · · . Since we are interested in the positive solutions, we specialize first
into the interval (− π

2T ,
π

2T ). Define the function g(x) = tan(xT )−x. Clearly, x = 0
is a zero of this function in the interval (− π

2T ,
π

2T ). It is the unique zero of g in this
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interval since g′(x) = T (1 + tan2(xT ))− 1 > 0 for T > 1. Thus, the smallest w > 0

that satisfies g(w) = 0 does live in the interval ( π
2T ,

π
T ), which is

√
−λ2(H{T}0 ). The

next positive zero of g,
√
−λ3(H{T}0 ), lives in the interval ( π

2T ,
π
T ) + π

T , etc. �

A.3. In a weighted space. Let B ∈ R, T > 0 such that |B|T < 1
3 . Consider the

self-adjoint operator, acting on L2((0, T ); (1−Bτ) dτ
)
and defined by

H{T}B = −(1−Bτ)−1∂τ (1−Bτ)∂τ = −∂2
τ +B(1−Bτ)−1∂τ , (A.9)

with domain
Dom(H{T}B ) = {u ∈ H2(0, T ) : u′(0) = −u(0) and u(T ) = 0}. (A.10)

The operator H{T}B is the Friedrichs extension in L2((0, T ); (1−Bτ) dτ
)
associated

with the quadratic form defined for u ∈ V {T}h , by

q
{T}
B (u) =

∫ T

0
|u′(τ)|2(1−Bτ) dτ − |u(0)|2.

The operator H{T}B is with compact resolvent. The strictly increasing sequence of
the eigenvalues of H{T}B is denoted by (λn(H{T}B )n∈N∗ . It is easy to compare the
spectra of H{T}B and H{T}0 as B goes to 0.

Lemma A.3. — There exist T0, C > 0 such that for all T > T0, B ∈
(
− 1

3T ,
1

3T
)

and n ∈ N∗ we have∣∣∣λn(H{T}B )− λn(H{T}0 )
∣∣∣ 6 C|B|T( ∣∣λn(H{T}0 )

∣∣+ 1
)
.

Then we notice that, for all T > 0, the family
(
H{T}B

)
B

is analytic for B small
enough. More precisely, we have

Lemma A.4. — There exist T0 > 0 such that for all T > T0, the two functions(
− 1

3T ,
1

3T
)
3 B 7→ λ1

(
H{T}B

)
and

(
− 1

3T ,
1

3T
)
7→ u

{T}
B are analytic. Here u{T}B is

the corresponding positive and normalized eigenfunction λ1

(
H{T}B

)
.

The next proposition states a two-term asymptotic expansion of the eigenvalue
λ1(H{T}B ).

Proposition A.5. — There exist T0 > 0 and C > 0 such that for all T > T0
and all B ∈

(
− 1

3T ,
1

3T
)
we have∣∣∣λ1(H{T}B )− (−1−B)

∣∣∣ 6 CB2 + Ce−T/2.

We have also a decay estimate of u{T}B that is a classical consequence of Propo-
sition A.5, the fact that the Dirichlet problem on (0, T ) is positive and of Agmon
estimates.

Proposition A.6. — There exist T0 > 0, α > 0 and C > 0 such that for all
T > T0 and all B ∈

(
− 1

3T ,
1

3T
)
we have

‖eατu{T}B ‖
H1
(

(0,T );(1−Bτ) dτ
) 6 C.
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Lemma A.7. — There exist C > 0 and T0 > 0 such that for all T > T0 and all
B ∈

(
− 1

3T ,
1

3T
)
we have ∣∣∣∂Bλ1

(
H{T}B

)∣∣∣ 6 C, (A.11)

‖∂Bũ{T}B ‖L2((0,T ), dτ) 6 C. (A.12)

where ũ{T}B = (1−Bτ) 1
2u
{T}
B .
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