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ADDITIVE COMBINATORICS METHODS IN
ASSOCIATIVE ALGEBRAS

VINCENT BECK AND CÉDRIC LECOUVEY

Abstract. We adapt methods coming from additive combinatorics in groups to the study
of linear span in associative unital algebras. In particular, we establish for these algebras
analogues of Diderrich-Kneser’s and Hamidoune’s theorems on sumsets and Tao’s theorem
on sets of small doubling. In passing we classify the finite-dimensional algebras over infinite
fields with finitely many subalgebras. These algebras play a crucial role in our linear version
of Diderrich-Kneser’s theorem. We also explain how the original theorems for groups we
linearize can be easily deduced from our results applied to group algebras. Finally, we give
lower bounds for the Minkowski product of two subsets in finite monoids by using their
associated monoid algebras.

1. Introduction

In this paper, we first establish analogues of theorems in additive combinatorics
on groups for a wide class of associative unital algebras. Next we explain how
this algebra setting permits to recover the original results on groups and their
analogues in fields but also yields similar lower bounds for the Minkowski product
of two subsets in monoids. Our results and tools mix additive number theory,
combinatorics, linear and commutative algebra and basic considerations on Banach
algebras.

Given A and B two non-empty sets of a given group G, a classical problem in
additive combinatorics is to evaluate the cardinality |AB| of the Minkowski product
AB = {ab | a ∈ A, b ∈ B} in terms of the cardinalities |A| and |B|. There exists
an extensive literature on this subject, notably a famous result by Kneser (see [6],
[13]).

Theorem 1.1 (Kneser). — Let A and B be finite subsets of the abelian group
G. Then

|AB| > |A|+ |B| − |H|
where H = {h ∈ G | hAB = AB} is the stabilizer of AB in G.

This theorem does not hold for non-abelian groups and the question of finding
lower and upper bounds for product sets becomes then considerably more diffi-
cult. Nevertheless, there exist in this case numerous weaker results. Let us mention
among them those of Diderrich [3], Olson [14] and Tao [17], [16]. We shall evoke
them in more details in Section 4 and 5.

Analogous estimates exist in the context of fields and division rings. As far as we
are aware, this kind of generalizations was considered for the first time in [9] and
[10]. Consider a field extension K of the field k and A a finite subset in K. Write
k〈A〉 for the k-subspace of K generated by A and let dimk(A) be its dimension. For
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A,B two finite subsets of K, we set AB = {ab | a ∈ A, b ∈ B}. Then dimk(AB),
the dimension of k〈AB〉, is finite. The following analogue of Kneser’s theorem for
fields is proved in [9] and [10].

Theorem 1.2. — Let K be a commutative extension of k. Assume every al-
gebraic element in K is separable over k. Let A and B be two non-empty finite
subsets of K∗. Then

dimk(AB) > dimk(A) + dimk(B)− dimk(H) (1.1)

where H := {h ∈ K | hk〈AB〉 ⊆ k〈AB〉}.

Here H is an intermediate field containing k and the separability hypothesis is
crucial since the proof uses the fact that K admits only a finite number of finite
extensions of k (which is also assumed in [10]). Equivalently, this theorem asserts
that the sum of the dimensions of k〈AB〉 and its stabilizer must be at least equal
to the sum of dimensions of k〈A〉 and k〈B〉. Remarkably, the authors showed that
their theorem implies Kneser’s theorem for abelian groups by using Galois corre-
spondence. Observe that it is not known if the theorem remains valid without the
separability hypothesis (see [8]). Non-commutative analogues of this theorem were
established in [4] (linear version of Olson’s theorem without any separability hy-
pothesis) and in [11] (linear version of Diderrich’s theorem where only the elements
of the set A are assumed pairwise commutative).

In [11], linear analogues (i.e. in division rings and fields) of theorems by Plün-
necke and Ruzsa [15] are given yielding upper bounds for dimk(AB). In passing
we observe that these theorems can be adapted to some unital associative algebras.
It is then a natural question to ask whether lower bound estimates for dimk(AB)
similar to (1.1) exist for subspaces of a unital associative k-algebra A. A first ob-
struction is due to the existence of non-trivial annihilators of subsets. Indeed if
the right annihilator annr(A) of A is not reduced to {0}, we can take for B any
generating subset of annr(A) and obtain dimk(AB) = 0. To overcome this problem,
we will assume most of the time that the k-subspaces we consider in A contain at
least one invertible element. We thus have annr(k〈A〉) = annl(k〈A〉) = {0}. We
prove in this paper that, quite surprisingly, this suffices to establish in A an ana-
logue of Diderrich’s theorem but also analogues of estimates by Hamidoune and
Tao. To obtain lower bounds similar to (1.1), there nevertheless remains a second
obstruction. We indeed need an analogue of the separability hypothesis in our al-
gebra context. In fact we shall see that it suffices to assume that the subalgebra
of A generated by A has finitely many finite-dimensional subalgebras. This leads
us to classify the finite-dimensional associative unital algebras with finitely many
subalgebras in Section 3.

The paper is organized as follows. In Section 2 we make the algebra setting we
consider precise. Also to get a sufficient control on the invertible elements of the
algebra A, we need to assume in the theorems we establish that k is infinite and A
satisfies one of the two following (strong or weak) hypotheses:

Hs: A is finite-dimensional over k or a Banach algebra or a finite product of
(possibly infinite-dimensional) field extensions over k.
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Hw: A is finite-dimensional over k or a subalgebra of a Banach algebra or a
subalgebra of a finite product of (possibly infinite-dimensional) field exten-
sions over k. Equivalently, an algebra verifying Hw is a subalgebra of an
algebra verifying Hs.

These hypotheses are not optimal and one can establish some refinements of
our results we will not detail for simplicity. The main result of Section 3 is the
classification of finite-dimensional algebras with finitely many subalgebras. Section
4 is devoted to the analogue of Diderrich’s theorem. We notably obtain a lower
bound similar to (1.1) where H is the subalgebra of A which stabilizes k〈AB〉. In
Section 5, we establish analogues of results by Tao on spaces of small doubling
using a linear version of Hamidoune connectivity. Finally, in Section 6, we explain
how the original theorems of Kneser and Diderrich in a group G can be very easily
recovered from our linear version in the group algebra of G. In particular, the link
with the group setting does not require to realize G as the Galois group of a finite
extension of k as in [9] which would become problematic when G is non-abelian.
We also explain, in Section 7, how it is possible to state Hamidoune type results in
finite monoids by considering their monoid algebras.

While writing this paper, we were informed by G. Zémor that a Kneser type
theorem has been very recently obtained in [12] for the algebra A = kn with appli-
cations to linear code theory.

2. The algebra setting

2.1. Vector span in an algebra. Let A be a unital associative algebra over the
field k. We denote by A∗ = A \ {0} and by U(A) the group of invertible elements
in A. All along this paper, by a subalgebra B of A, we always mean a unital
subalgebra.

For any subset A of A, let k〈A〉 be the k-subspace of A generated by A. We
write |A| for the cardinality of A, and dimk(A) for the dimension of k〈A〉 over k.
When |A| is finite, dimk(A) is also finite and we have dimk(A) 6 |A|. We denote
by A(A) ⊆ A the subalgebra generated by A in A.

Given subsets A and B of A, we thus have k〈A ∪ B〉 = k〈A〉 + k〈B〉, the sum
of the two spaces k〈A〉 and k〈B〉. We have also k〈A ∩ B〉 ⊆ k〈A〉 ∩ k〈B〉 and
k〈AB〉 = k〈k〈A〉k〈B〉〉. We write as usual

AB := {ab | a ∈ A, b ∈ B}

for the Minkowski product of the sets A and B. Given a family of non-empty subsets
A1, . . . , An of A, we define the Minkowski product A1 · · ·An similarly.

Any finite-dimensional k-subspace V of A can be realized as V = k〈A〉, where A
is any finite subset of nonzero vectors spanning V . Also, when V1 and V2 are two
k-vector spaces in K, V1V2 ⊆ k〈V1V2〉 but V1V2 is not a vector space in general.
We set U(V ) := V ∩ U(A) and U(V )−1 = {x−1 | x ∈ U(V )}. In what follows we
denote by A,B subsets of A whereas V,W refer to k-subspaces of A.

We aim to give some estimates of dimk(AB) in terms of dimk(A), dimk(B)
and structure constants depending on the algebra A (typically the dimensions of
some finite-dimensional subalgebras of A). More generally we consider similar
problems for dimk(A1 · · ·Ar) where A1, . . . , Ar are finite subsets ofA. The following
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is straightforward:

max(dimk(A),dimk(B)) 6 dimk(AB) 6 dimk(A) dimk(B)

when k〈A〉 and k〈B〉 contain at least an invertible element. In the sequel, we will
restrict ourselves for simplicity to the case where k is infinite. For k a finite field,
we can obtain estimates for dimk(AB) from the infinite field case by considering
the algebra A′ = A⊗k k(t) where k(t) is field of rational functions in t over k. We
indeed then have

dimk(AB) = dimk(t)(A′B′), dimk(A) = dimk(t)(A′) and dimk(B) = dimk(t)(B′)

where A′ = A⊗k 1 ∈ A⊗k(t) and B′ = B⊗k 1 ∈ A⊗k(t). The following elementary
lemma will be useful.

Lemma 2.1. — Let A be a finite-dimensional algebra over the field k and A be
a finite subset of A such that A ∩ U(A) 6= ∅ and k〈A2〉 = k〈A〉. Then k〈A〉 is a
subalgebra of A and U(k〈A〉) = U(A) ∩ k〈A〉.

Proof. — Observe that k〈A2〉 = k〈A〉 means that k〈A〉 is closed under multipli-
cation. Then, for any nonzero a ∈ k〈A〉, the map ϕa : k〈A〉 → k〈A〉 which sends
α ∈ k〈A〉 to ϕa(α) = aα is a k-linear endomorphism of the space k〈A〉. If we choose
a ∈ k〈A〉 ∩U(A), ϕa is a k-linear injective endomorphism of the finite-dimensional
space k〈A〉. Hence it is an automorphism. There then exists α ∈ k〈A〉 such that
aα = a. Since a ∈ U(A), this shows that α = 1 ∈ k〈A〉 and k〈A〉 is a unital sub-
algebra of A. Now since 1 ∈ k〈A〉, there exists β ∈ k〈A〉 such that aβ = 1. So
a−1 = β ∈ k〈A〉 and U(k〈A〉) = U(A) ∩ k〈A〉. �

For any subset A in A∗, we set

Hl(A) := {h ∈ A | h k〈A〉 ⊆ k〈A〉} and Hr(A) := {h ∈ A | k〈A〉h ⊆ k〈A〉}

for the left and right stabilizers of k〈A〉 in A. Clearly Hl(A) and Hr(A) are sub-
algebras. In particular, when A is commutative, Hl(A) = Hr(A) is a commutative
k-algebra that we simply write H(A). If Hl(A) (resp. Hr(A)) is not equal to k, we
say that k〈A〉 is left periodic (resp. right periodic). Observe also that for A and
B two finite subsets of A, if k〈A〉 is left periodic (resp. k〈B〉 is right periodic),
then k〈AB〉 is left periodic (resp. right periodic). Indeed, for k〈A〉 left periodic,
we have Hl(A) 6= k and Hl(A)k〈A〉 ⊆ k〈A〉. By linearity of the multiplication in
A, this gives Hl(A)k〈AB〉 ⊆ k〈AB〉 thus Hl(A) ⊆ Hl(AB) and Hl(AB) 6= k. The
case k〈B〉 right periodic is similar.

Remark 2.2. — The stabilizer algebra Hl(A) (resp. Hr(A)) may also be de-
scribed as the biggest subalgebra of A such that k〈A〉 is a left (resp. right) repre-
sentation for this subalgebra.

Assume A is a finite subset of A∗ such that A ∩ U(A) 6= 0. Then Hl(A) and
Hr(A) are finite-dimensional k-subalgebras of A. Indeed, for any a ∈ A∩U(A), we
have Hl(A)a ⊂ k〈A〉 and aHr(A) ⊂ k〈A〉 with

dimk(Hl(A)a) = dimk(Hl(A)) and dimk(aHr(A)) = dimk(Hr(A)).

For any subset A in A∗, we define

annl(A) := {a ∈ A | a k〈A〉 = {0}} and annr(A) := {a ∈ A | k〈A〉 a = {0}}
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for the left and right annihilator of k〈A〉 in A. Observe that annl(A) and annr(A)
are not subalgebras of A since they do not contain 1 but respectively a left ideal
and a right ideal of A. Moreover annl(A) (resp. annr(A)) is a two-sided ideal of
Hl(A) (resp. Hr(A)) and k⊕annl(A) and k⊕annr(A) are respectively subalgebras
of Hl(A) and Hr(A).

When A is commutative, we write annl(A) = annr(A) = ann(A). Also when
A = {x1, . . . , xr} is finite, we have

annl(A) =
r⋂
i=1

annl(xi).

2.2. Basis of invertible elements. Let A be an algebra over the field k. The
algebra A has no non-trivial finite-dimensional subalgebra when for any a in A\ k,
the algebra homomorphism

θa :
{

k[T ] → A
P 7→ P (a)

is injective. This means that k[a] = Im θa is isomorphic to k[T ].
When A is finite-dimensional, for any element a ∈ A, the k-subalgebra k[a]

generated by a is isomorphic to k[T ]/(µa) where µa is the minimal polynomial of a
and ker θa = (µa). In particular, k[a] is a field if and only if µa is irreducible over k.

Lemma 2.3. — Assume A is finite-dimensional and consider a ∈ A such that
a /∈ U(A). Then, there exists P ∈ k[T ] such that aP (a) = 0 and P (a) 6= 0.

Proof. — Since a /∈ U(A), the minimal polynomial µa is divisible by T . Let us
write µa = TP (T ) with P (T ) ∈ k[T ]. We have P (a) 6= 0 since degP < degµa and
aP (a) = µa(a) = 0. �

Recall the algebras we shall consider are unital and associative over the infinite
field k. In addition we will restrict ourself most of the time to finite-dimensional
algebras, Banach algebras over k = R or k = C or finite products of field extensions
over k. In the case of Banach algebras, we will write ‖·‖ for the ambient norm.

Lemma 2.4. — Assume A is a Banach algebra and consider a in A such that
‖a‖ < 1. Then 1− a ∈ U(A).

Proof. — Since ‖a‖ < 1 and A is a complete space, we have

(1− a)−1 =
+∞∑
k=0

ak. �

Lemma 2.5. — Assume the algebra A satisfies Hs and consider a ∈ A. There
exist infinitely many λ ∈ k such that the elements of the form a − λ1 belong to
U(A).

Proof. — Assume first that A is finite-dimensional. Let λ such that a−λ1 is not
invertible. By Lemma 2.3, there exists P ∈ k[T ] such that (a − λ1)P (a − λ1) = 0
and P (a − λ1) 6= 0. Set Q(T ) = P (T − λ). We then get, (a − λ1)Q(a) = 0 and
Q(a) 6= 0. This can be rewritten aQ(a) = λQ(a) with Q(a) 6= 0. Therefore Q(a) is
an eigenvector associated to the eigenvalue λ for the linear map ϕa : A → A defined
by ϕa(x) = ax for any x ∈ A. Since A is finite-dimensional, the linear map ϕ can
only admit a finite number of eigenvalues and we are done.
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Now assume A is a Banach algebra. For any |λ| > ‖a‖, Lemma 2.4 shows that
1− λ−1a ∈ U(A). Hence −λ(1− λ−1a) = a− λ1 ∈ U(A).

Let us now consider the third case: assume that A = K1×· · ·×Km is a product
of field extensions over k. Let a = (a1, . . . , am) ∈ A and choose λ ∈ k distinct from
a1, . . . , am. �

Proposition 2.6. — Assume A satisfies Hs and let A be a finite subset in A
such that A ∩ U(A) 6= ∅. Then the k-subspace k〈A〉 admits a basis of invertible
elements.

Proof. — Let a ∈ A∩U(A). By replacing A by a−1A, we can assume that 1 ∈ A.
The k-subspace k〈A〉 admits a basis containing 1 of the form B = {1, b2, . . . bd} with
d = dimk A. By using the previous lemma, there exist λi ∈ k such that each bi−λi1
is invertible. Then B′ = {1, b2 − λ11, . . . , bd − λd1} is a k-basis of k〈A〉 containing
only invertible elements. �

Lemma 2.7. — Assume A satisfies Hs. Let V be an n-dimensional subspace
of A such that V ∩ U(A) 6= ∅. Consider a basis {x1, . . . , xn} of V over k with x1
invertible. Then

(1) Any n vectors in the set

X = {x1 + αx2 + · · ·+ αn−1xn | α ∈ k}

form a basis of V over k.
(2) The set X contains an infinite number of invertible elements: there exist

an infinite number of elements α ∈ k such that x1 + αx2 + · · ·+ αn−1xn is
invertible.

(3) The set X contains a basis of V over k of invertible elements.

Proof. — Assertion 1 is an application of the Vandermonde determinant.
For assertion 2, assume first A is finite-dimensional. For any α ∈ k, set xα =

x1 + αx2 + · · · + αn−1xn. Let ϕα : A → A be the left multiplication by xα in
A. Clearly xα is invertible if and only if the linear map ϕα is an isomorphism of
k-spaces. Write P (α) = detϕα for the determinant of the linear map ϕα. Then
P (α) is a non zero polynomial in α since P (0) 6= 0. So P (α) = 0 only for a finite
number of α ∈ k and we are done.

Now assume that A is a Banach algebra. Observe that xa is invertible if and
only if yα = x−1

1 xα is. We have yα = 1 + αx−1
1 x2 + · · · + αn−1x−1

1 xn. Assume
|α| 6 1. We get

‖1− yα‖ =
∥∥αx−1

1 x2 + · · ·+ αn−1x−1
1 xn

∥∥ 6 |α| (∥∥x−1
1 x2

∥∥+ · · ·+
∥∥x−1

1 xn
∥∥).

Therefore ‖1− yα‖ < 1 for any α such that |α| < (
∥∥x−1

1 x2
∥∥ + · · · +

∥∥x−1
1 xn

∥∥)−1.
By using Lemma 2.4 we obtain our assertion 2 for Banach algebras since there are
infinitely many such α in R and C.

Let us consider the third case: A = K1×· · ·×Km is a product of field extensions
over k. We write xi = (ai1, . . . , aim) for i ∈ {1, . . . , n}. Then x1+αx2+· · ·+αn−1xn
is invertible if and only if for every j ∈ {1, . . . ,m}, Pj(α) := a1j + αa2j + · · · +
αn−1anj 6= 0. But Pj ∈ Kj [X] is a non zero polynomial (since a1j 6= 0) and hence
has only a finite number of roots in the (commutative) field Kj and thus also in k.

Assertion 3 is a consequence of Assertions 1 and 2. �
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3. Algebras with finitely many subalgebras

We adopt the notation and the hypotheses of the previous section on the algebra
A. The goal of this section is to classify the finite-dimensional algebras with finitely
many subalgebras. Such algebras will indeed appear in the Kneser type theorem
we shall state in Section 4.

3.1. Primitive element. The first step of our classification is to show that a finite-
dimensional algebra with finitely many subalgebras is generated by one element.

Lemma 3.1 (Union of subspaces). — Let V be a finite-dimensional vector space
over k and V1, . . . , Vn proper subspaces of V . Then

n⋃
i=1

Vi  V.

Proof. — Since Vi is a proper subspace of V , it can be embedded in a hyperplane
Hi of V which is the kernel of a linear form ϕi ∈ V ∗ \ {0}. Since the ring of
polynomial functions on V is an integral domain (k is infinite), then

f =
n∏
i=1

ϕi

is a non zero function. Any vector v ∈ V such that f(v) 6= 0 is not in the union of
the Vi. �

Corollary 3.2. — Let A be a finite-dimensional algebra over k such that A
has only a finite number of subalgebras. Then there exists x ∈ A such thatA = k[x].
In particular, A is commutative and generated by only one element.

Proof. — Lemma 3.1 ensures us that there exists x ∈ A which is not in any
proper subalgebra of A. We then get A = k[x]. �

3.2. Structure of finite-dimensional algebras with finitely many subalge-
bras. The rest of this section is devoted to the study of algebras with only a finite
number of subalgebras. Our aim is to prove a classification theorem for this kind
of algebras (Theorem 3.12). The proof is divided in two steps. In the first step,
we reduce through various easy lemmas the form for algebras with finite number of
subalgebras. The second step shows that algebras of the form obtained in the first
step have indeed a finite number of subalgebras.

Let us start our first step. Corollary 3.2 says that we can restrict our attention
to algebras of the form k[T ]/(P ). We begin with an easy remark which will be very
useful.

Remark 3.3 (Quotient – Subalgebra). — If A is a finite-dimensional algebra
over k such that A has only a finite number of subalgebras, then every subalgebra
or quotient B of A verifies the same property. This is obvious for subalgebras. For
the quotient case, the subalgebras of B are in bijection with the subalgebras of A
containing the kernel of the surjective map from A to B.

Let us now construct finite-dimensional algebras with an infinite number of sub-
algebras.

Lemma 3.4. — For n > 4, k[T ]/Tn has an infinite number of subalgebras.
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Proof. — Due to Remark 3.3, it suffices to study the case n = 4. In this case, for
λ 6= µ ∈ k, the subalgebras Aλ = k[T 2 + λT 3] and Aµ = k[T 2 + µT 3] are distinct
subalgebras. Indeed, they are two-dimensional algebras isomorphic to k[T ]/T 2.
So (1, T 2 + λT 3) is a basis for Aλ and T 2 + µT 3 can not be written as a linear
combination of 1 and T 2 + λT 3 in k[T ]/T 4. For if evaluating at T = 0, T 2 + λT 3

and T 2 + µT 3 would be collinear. �

Lemma 3.5. — For n > 4 and P ∈ k[T ] a non-constant polynomial, k[T ]/Pn
has an infinite number of subalgebras.

Proof. — Indeed, the subalgebra generated by P is isomorphic to the algebra
k[T ]/Tn. So Remark 3.3 and Lemma 3.4 give the result. �

Lemma 3.6. — For n = 2, 3 and P ∈ k[T ] with degP > 2 then k[T ]/Pn has an
infinite number of subalgebras.

Proof. — Thanks to Remark 3.3, it suffices to consider the case n = 2. For
λ ∈ k, let us consider Qλ = (1 + λT )P ∈ k[T ]/P 2. The subalgebra Aλ of k[T ]/P 2

generated by Qλ is isomorphic to k[T ]/T 2 and so is two-dimensional. For λ 6= µ,
we have Aλ 6= Aµ. Indeed, if (1 +µT )P = α+ β(1 +λT )P in k[T ]/P 2, then, going
into k[T ]/P , we get α = 0 and so P | (1 + µT ) − β(1 + λT ). Since degP > 2, we
obtain (1 + µT ) = β(1 + λT ), which is absurd. �

Lemma 3.7. — For n,m ∈ {2, 3}, k[T ]/Tn × k[T ]/Tm has an infinite number
of subalgebras.

Proof. — Thanks to Remark 3.3, it suffices to consider the case m = n = 2. For
λ ∈ k, the element (T, λT ) generates an algebra isomorphic to k[T ]/T 2 denoted by
Aλ. For λ 6= µ, we have Aλ 6= Aµ. Indeed, if (T, µT ) = α(1, 1) + β(T, λT ). Then,
mapping T to 0, we get α = 0 and (T, µT ) and (T, λT ) are collinear which is not
the case. �

Corollary 3.8. — Let A be a finite-dimensional algebra over k such that A
has only a finite number of subalgebras. Then, there exist finite algebraic extensions
of k, L1, . . . , Ln generated over k by one element and two integers δ ∈ {0, 1} and
m ∈ {2, 3} such that.

A
k-alg.
' L1 × · · · × Ln × (k[T ]/Tm)δ.

Proof. — Thanks to Corollary 3.2, we get A = k[T ]/P . Let us write the irre-
ducible decomposition of P as

P =
s∏
i=1

Pi
ni

with Pi ∈ k[T ] irreducible, ni > 0 and Pi and Pj non-associated for i 6= j. The
Chinese remainder theorem tells us that

A
k-alg.
' k[T ]/P1

n1 × · · · × k[T ]/Psns .

In particular, k[T ]/Pini is a quotient of A.
So Remark 3.3 and Lemma 3.6 ensure us that ni = 1 if degPi > 2. In this case

Li = k[T ]/Pi is a finite extension of k generated by one element.
If degPi = 1, then Pi = T − λ for some λ ∈ k and k[T ]/Pini is isomorphic to

k[T ]/Tni . Lemma 3.4 ensures us that ni ∈ {1, 2, 3}. If ni = 1 then we get k. Let
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us consider the case where ni ∈ {2, 3}. Lemma 3.7 tells us that there is at most
one factor of this type and we get the structure result. �

We have just shown that algebras with a finite number of subalgebras have a
certain form (a finite product of fields generated by one element with possibly a
k[T ]/T 2 or k[T ]/T 3 factor). Our aim is now to show that algebras with this given
form have only a finite number of subalgebras. To prove this, we first show that
we can restrict our attention to subalgebras generated by one element (Lemma 3.9)
and then give a description of all the subalgebras generated by one element of such
an algebra (Proposition 3.10).

Lemma 3.9 (Subalgebra generated by one element). — Let us consider a finite-
dimensional algebra A over k. Then A has only a finite number of subalgebras if
and only if A has only a finite number of subalgebras generated by one element.

Proof. — The "only if" part is clear. Let us suppose that A has only a finite
number of subalgebras generated by one element. Let B be a subalgebra of A. We
have B = ∪y∈Bk[y]. So B is a union of subalgebras generated by one element. There
is only a finite number of such subalgebras since there is only a finite number of
subalgebras k[y]. �

Let us now determine subalgebras generated by one element of algebras of the
form L1 × · · · ×Ln × k[T ]/Tm where n,m ∈ N, Li is an algebraic field extension of
k.

Proposition 3.10. — Let m,n ∈ N. For i ∈ [ 1, n ], let Li be an algebraic field
extension of k. Set A = L1 × · · · × Ln × k[T ]/Tm. For simplicity write Ln+1 for
k[T ]/Tm and for any i ∈ [1, n + 1], let pi : A → Li be the projection onto the ith
factor.

Let B be a subalgebra of A generated by one element and for i ∈ [1 , n + 1],
Ki = pi(B) ⊂ Li. There exists

(i) a partition of [ 1, n+ 1]

[1 , n+ 1] = I1
⊔
· · ·
⊔
Ir

with n+ 1 ∈ Ir if m 6= 0.
(ii) a family of integers (i1, . . . , ir) ∈ I1× · · ·× Ir with ir = n+ 1 if m 6= 0. For

every j ∈ [1 , r], let us write Ij = {ij , uj,1, . . . , uj,sj
}.

(iii) For every j ∈ [1 , r] and every ` ∈ [1 , sj ], k-algebras homomorphisms
σj,` : Kij → Kuj,`

such that after reordering the factors of the product, we have
B = {(x1, σ1,1(x1), . . . , σ1,s1(x1), x2, . . . , σ2,s2(x2), . . . ,xr, . . . , σr,sr (xr)),

xj ∈ Kij for j ∈ [1 , r]} .

Proof. — Let us start by giving an overview of the proof. Let y ∈ A such that
B = k[y]. We write y = (y1, . . . , yn+1) with yi ∈ Li for all i. The partition we are
looking for is in fact given by gathering the yi with the same minimal polynomial
(except for yn+1 which may play a special role). After this, we link yi and yj with
the same minimal polynomial through a homomorphism of algebras. We finally get
the independence of blocks with different minimal polynomial using the Chinese
remainder theorem.
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Let us now begin the proof. We have k[y] = {(Q(y1), . . . , Q(yn+1)), Q ∈ k[T ]}
and then Ki = k[yi]. We define the equivalence relation ∼ on [1 , n] by i ∼ j if
yi and yj have the same minimal polynomial over k. This defines a partition of
[1 , n] = J1t· · ·tJs. Let us now consider the index n+1. For i = n+1 (if m 6= 0),
the minimal polynomial of yn+1 is of the form (T − λ)s for some λ ∈ k and s 6 m.
If there exists i ∈ [1 , n] such that yi = λ ∈ k then we add n+ 1 to the equivalence
class of i and obtain a partition of [1 , n] in s blocks. In this case, we set r = s and
we number these blocks such that n+ 1 is in the block indexed by r. If there does
not exist an i such that yi = λ, then we set r = s+ 1 and add the block {n+ 1} to
the partition of [1 , n] to get the desired partition of [1 , n + 1]. For i ∈ [1 , r], we
denote by Ii the ith block of the partition.

For each block of the partition, we choose a representative ij of the subset. If
n+ 1 is not alone in its block, then we choose n+ 1 to be the representative of this
subset.

First, assume that m = 0. For j ∈ [1 , r] and α ∈ Ij the elements yα and yij have
the same minimal polynomial so there exists an isomorphism σ of extensions from
k[yij ] = Kij to k[yα] = Kα sending yij to yα. In particular, we have σ(Q(yij )) =
Q(yα) for all Q ∈ k[T ].

To get the desired description of B, it suffices now to find Qj ∈ k[T ] such that
Qj(yij ) = 1 and Qj(yi`) = 0 for all ` 6= j. This is possible since the minimal
polynomial P` of the yi` are prime to each other (they are irreducible and distinct):
we write

1 = UPj + V
∏
` 6=j

P`

and consider Qj = V
∏
` 6=j P`.

Let us now assume that m 6= 0. For j ∈ [1 , r − 1], there is no difference with
the preceding case. For j = r, we have to be more careful: for α 6= n+ 1 ∈ Ir, we
can define the following homomorphisms of algebras

Kn+1 = k[yn+1]
k-alg.
' k[T ]/(T − λ)s → k[T ]/(T − λ)

k-alg.
' k = Kα

where the first isomorphism sends yn+1 to the class of T and the second isomorphism
sends the class of T to λ ∈ k = Kα. So by composition, we get the desired
homomorphism of algebras.

Finally, to get the desired description of B in this case, it suffices to adapt the
Chinese remainder argument. For this, we remark that (T −λ)s is prime with every
irreducible polynomial over k except T −λ. But the index i ∈ [1 , n] such that T −λ
is the minimal polynomial yi are precisely in Ir. �

Corollary 3.11. — Let L1, . . . , Ln be finite field extensions of k generated
over k by one element. Consider also two integers δ ∈ {0, 1} and m ∈ {2, 3}. Then

A = L1 × · · · × Ln × (k[T ]/Tm)δ

has only a finite number of subalgebras.
Proof. — Lemma 3.9 shows that it suffices to prove that A has only a finite

number of subalgebras generated by one element. But Proposition 3.10 implies
that a subalgebra of A generated by one element is determined by a family of
subalgebras of the Li and by algebra homomorphisms between them. But each
Li has only a finite number of subalgebras and moreover the Dedekind lemma ([2,
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Chapter 5 Theorem 6.1]) ensures us that there exists only a finite number of k-
algebra homomorphisms with values in a finite extension of k. So there is only a
finite number of such subalgebras. �

Finally we get the structure theorem for algebras with only a finite number of
subalgebras.

Theorem 3.12. — Let A be a finite-dimensional algebra over k. Then the
following statements are equivalent.

(1) A has only a finite number of subalgebras.
(2) There exist finite algebraic extensions L1, . . . , Ln generated over k by one

element and two integers δ ∈ {0, 1} and m ∈ {2, 3} such that

A
k-alg.
' L1 × · · · × Ln × (k[T ]/Tm)δ. (3.1)

(3) There exists g ∈ A such that A = k[g] where the minimal polynomial µg
of g has the form

µg = P1 · · ·PnQmδ

where P1, . . . , Pn, Q are distinct irreducible polynomials in k[T ], δ ∈ {0, 1},
m ∈ {2, 3} and degQ = 1.

Proof. — The theorem follows from Corollary 3.8 and Corollary 3.11. �

Remark 3.13. — Consider an infinite-dimensional commutative algebra A with
a finite number of finite-dimensional subalgebras B1, . . . ,Br. There exist g1, . . . , gr
in A such that Bi = k[gi] for any i = 1, . . . , r. Then B = k[g1, . . . , gr] is a finite-
dimensional subalgebra of A containing the subalgebras B1, . . . ,Br. Therefore B co-
incides in fact with one of the algebras Bi. This means that all the finite-dimensional
subalgebras of A appear as subalgebras of the finite-dimensional algebra B ⊂ A and
we have a structure theorem for B.

Remark 3.14. — Consider a k-algebra A with a finite number of subalgebras.
Then A is finite-dimensional over k. Indeed, for y ∈ A, k[y] is finite-dimensional.
Otherwise, k[y] would be isomorphic to k[T ] and would have infinitely many subal-
gebras. Moreover, there are finitely many subalgebras of the form k[y]. Write these
algebras k[y1], . . . , k[yr]. We then have

A =
r⋃
i=1

k[yi] =
r∑
i=1

k[yi]

since for each y ∈ A, the algebra k[y] coincides with k[yi] for some i ∈ [1 , r]. This
equality shows that A is finite-dimensional.

3.3. Some examples.

3.3.1. Algebras of functions defined on a finite set. Let S = {s1, . . . , sn} be a finite
set and write FS for the algebra of functions f : S → k. The algebra FS is clearly
isomorphic to kn. Thus, applying Theorem 3.12 to FS allows us to recover the
following very classical fact : FS admits a finite number of subalgebras parametrized
by the partitions S =

m⊔
i=1

Sm of S. The subalgebra FS1,...,Sm
associated to such

a partition is the algebra of functions f ∈ FS which are constant on each set
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Si, i = 1, . . . ,m. Observe also that we have FS = k[f ] for any function f such that
f(si) 6= f(sj) for any i 6= j.

A special case is the algebra FG of complex central functions defined on a group
G. Here, S is the set of conjugacy classes of G. In particular the characters
of G belong to FG. Let us consider A = {χ0 = 1, χ1, . . . , χr} and B = {ϕ0 =
1, ϕ1, . . . , ϕs} two subsets of irreducible characters corresponding to the irreducible
representations U0 = k, U1, . . . , Ur and V0 = k, V1, . . . , Vs, respectively. Recall that
for any (i, j) ∈ {0, . . . , r} × {0, . . . , s}, χiϕj is the character of the tensor product
Ui⊗Vj . Let V be the set of characters of the representations obtained as direct sums
of some copies of the Ui⊗Vj ’s. Observe that V is not a k-space since it only contains
linear combinations of the χiϕj with nonnegative integer coefficients. Nevertheless,
we have k〈V〉 = k〈AB〉 since the family {χiϕj | (i, j) ∈ {0, . . . , r} × {0, . . . , s}}
generates k〈AB〉 as a k-space. In particular, k〈AB〉 admits a basis of characters
in V. It follows that dimk(AB) is the maximal number of linearly independent
characters in V. WhenG is abelian or the characters χi and ϕj are linear, dimk(AB)
is simply the cardinality of {χiϕj | (i, j) ∈ {0, . . . , r} × {0, . . . , s}} since distinct
linear characters are always independent.

3.3.2. Matrix subalgebras with finitely many subalgebras. It is easy to construct
subalgebras of matrix algebras with the form (3.1). Indeed consider irreducible
polynomials P1, . . . , Pn, Q and integers m ∈ {2, 3} and δ ∈ {0, 1} as in Theorem
3.12 and their companion matrices CP1 , . . . , CPn

, CQm . Set

r = deg(P1) + · · ·+ deg(Pn) +mδ deg(Q)

and defineM as the r×r matrix with coefficients in k obtained as the block diagonal
matrix with blocs CP1 , . . . , CPn

, CQm when δ = 1 and CP1 , . . . , CPn
when δ = 0. Then

the subalgebra k[M ] ofMr(k) has the form (3.1).

3.3.3. Algebras of complex valued continuous functions on a connected space. Con-
sider a connected space I and define CI as the C-algebra of continuous functions
f : I → C. Then, the unique finite-dimensional subalgebra of CI is that of constant
functions. Indeed if we consider A such a subalgebra and f ∈ A, then the minimal
polynomial µf is such that µf (f)(x) = 0 for any x ∈ I. Hence all the values of the
connected set Im f are zeroes for µf . Since the only finite connected sets of C are
singletons, the set Im f is reduced to a point and f is constant.

4. Kneser type theorems

In this section, we state an analogue of Kneser’s theorem for algebras.

4.1. Kneser-Diderrich theorem for a wide class of algebras. In this sec-
tion, A satisfies Hs or Hw. Let us consider a finite non-empty subset A of A∗.
We say that A is commutative when aa′ = a′a for any a, a′ ∈ A. The algebra
A(A) generated by A is then commutative. Typical examples of commutative sets
are geometric progressions A = {ar, ar+1, . . . , ar+s} with r and s integers. The
following theorem is an analogue, for algebras, of a theorem by Diderrich [3] ex-
tending Kneser’s theorem for arbitrary groups when only the subset A is assumed
commutative.
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Theorem 4.1. — Assume A satisfies Hw and consider A and B be two finite
non-empty subsets of A∗ such that k〈A〉 ∩ U(A) 6= ∅ and k〈B〉 ∩ U(A) 6= ∅. As-
sume that A is commutative and A(A) admits a finite number of finite-dimensional
subalgebras. Let H := Hl(AB).

(1) We have
dimk(AB) > dimk(A) + dimk(B)− dim(H).

In particular, if AB is not left periodic, then
dimk(AB) > dimk(A) + dimk(B)− 1.

(2) If A is commutative, then
dimk(AB) > dimk(HA) + dimk(HB)− dimk(H) > dimk(A) + dimk(B)− dimk(H).

To prove this theorem we need the following preparatory lemma.

Lemma 4.2. — Assume A satisfies Hs. Let A and B be two finite subsets of
A∗ such that A is commutative, k〈A〉 ∩U(A) 6= ∅ and k〈B〉 ∩U(A) 6= ∅. Then, for
each a ∈ k〈A〉 ∩ U(A), there exists a (commutative) finite-dimensional subalgebra
Aa of A such that k ⊆ Aa ⊆ A(A) and a vector space Va contained in k〈AB〉 such
that Va ∩ U(A) 6= ∅, AaVa = Va, k〈aB〉 ⊆ Va and

dimk(Va) + dimk(Aa) > dimk(A) + dimk(B).

Proof. — The hypothesis on A ensures that each subspace of A containing an
invertible element admits a basis of invertible elements (see Proposition 2.6).

By replacing A by A′ = a−1A with a ∈ k〈A〉 ∩ U(A) 6= ∅, we can establish the
lemma only for a = 1. Indeed, if there exists a subalgebra B ⊆ A(A′) and a vector
space V 6= {0} contained in k〈A′B〉 such that BV = V and k〈B〉 ⊆ V with

dimk(V ) + dimk(B) > dimk(A′) + dimk(B),
it suffices to take Va = aV and Aa = B ⊆ A(A′) ⊆ A(A). Since B ⊆ A(A), we must
have Ba = aB for any a ∈ A and B(Va) = B(aV ) = aBV = aV = Va. Moreover
k〈aB〉 = ak〈B〉 ⊆ aV = Va and dimk(Va)+dimk(Aa) > dimk(A)+dimk(B) because
dimk(Va) = dimk(V ) and Aa = B.

We can also assume that 1 ∈ B by replacing B by B′ = Bb−1 with b ∈ k〈B〉 ∩
U(A) 6= ∅. Indeed, if there exist a subalgebra B′ ⊆ A(A) and a vector space
V ′ 6= {0} contained in k〈AB′〉 such that B′V ′ = V ′ and k〈B′〉 ⊆ V ′ with

dimk(V ′) + dimk(B′) > dimk(A) + dimk(B′),
it suffices to take V = V ′b and Aa = B′. We will then have

V = V ′b ⊆ k〈AB′〉b = k〈AB〉,
AaV = B′(V ′b) = (B′V ′)b = V ′b = V,

k〈B〉 = k〈B′〉b ⊆ V ′b = V

and
dimk(V ) + dimk(Aa) > dimk(A) + dimk(B)

since dimk(B) = dimk(B′) and dimk(V ) = dimk(V ′).
We thus assume in the remainder of the proof that 1 ∈ A ∩ B and proceed by

induction on dimk(A). When dimk(A) = 1, we have k〈A〉 = k = A(A). It suffices
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to take V1 = V = k〈B〉 (with 1 ∈ B) and A1 = k = A(A). Assume dimk(A) > 1.
Given e ∈ k〈B〉 ∩ U(A), define A(e) and B(e) to be finite subsets of A∗ such that

k〈A(e)〉 = k〈A〉 ∩ k〈B〉e−1 and k〈B(e)〉 = k〈B〉+ k〈A〉e.
Observe that k〈A(e)〉 and k〈B(e)〉 contain k since 1 ∈ A ∩ B. Thus we may and
do assume that 1 ∈ A(e) ∩B(e). Moreover, k〈A(e)〉k〈B(e)〉 is contained in k〈AB〉.
Indeed, for v ∈ k〈A〉 ∩ k〈B〉e−1 and w ∈ k〈B〉, we have vw ∈ k〈A〉k〈B〉 ⊆ k〈AB〉
because v ∈ k〈A〉. Set v = ze−1 with z ∈ k〈B〉. If w ∈ k〈A〉e, we have vw ∈
ze−1k〈A〉e. But ze−1 ∈ k〈A〉 and A is commutative. Therefore,

vw ∈ k〈A〉ze−1e = k〈A〉z ⊆ k〈A〉k〈B〉 ⊆ k〈AB〉.
In particular, dimk(A(e)B(e)) 6 dimk(AB). We get

dimk(A(e)) + dimk(B(e)) = dimk(k〈A〉 ∩ k〈B〉e−1) + dimk(k〈B〉+ k〈A〉e)
= dimk(k〈A〉e ∩ k〈B〉) + dimk(k〈B〉+ k〈A〉e) = dimk(Ae) + dimk(B).

Therefore, dimk(A(e)) + dimk(B(e)) = dimk(A) + dimk(B). Also A(e) ⊆ k〈A〉.
Assume k〈A(e)〉 = k〈A〉 for any e ∈ k〈B〉 ∩ U(A). Then k〈A〉e ⊆ k〈B〉 for any

e ∈ k〈B〉 ∩ U(A). Thus k〈AB〉 ⊆ k〈B〉 by Proposition 2.6. Indeed k〈B〉 admits a
basis contained in U(A) and the products xy with x ∈ A and y ∈ k〈B〉 ∩ U(A)
generate k〈AB〉. Since 1 ∈ A, we have in fact k〈AB〉 = k〈B〉. The subalgebra
A1 = A(A) is commutative. Take V1 = k〈B〉 (with 1 ∈ B). Then A1V1 = V1 since
k〈AB〉 ⊆ k〈B〉. In particular, A1 is finite-dimensional since 1 ∈ V1. We clearly have
V1 = k〈AB〉 and k〈B〉 ⊆ k〈AB〉 = V1 as desired. We also get

dimk(V1) + dimk(A1) > dimk(A) + dimk(B).
Now assume k〈A(e)〉 6= k〈A〉 for at least one e ∈ k〈B〉 ∩ U(A). Then 0 <

dimk(A(e)) < dimk(A) and 1 ∈ A(e) ∩ B(e). By our induction hypothesis, there
exists a finite-dimensional subalgebra A1 of A(A(e)) ⊆ A(A) and a nonzero k-
vector space V1 ⊆ k〈A(e)B(e)〉 ⊆ k〈AB〉, such that V1 ∩U(A) 6= ∅, A1V1 = V1 and
k〈B〉 ⊆ k〈B(e)〉 ⊆ V1 with

dimk(V1) + dimk(A1) > dimk(A(e)) + dimk(B(e)) = dimk(A) + dimk(B).
The subalgebra A1 ⊆ A(A) and the nonzero space V1 ⊃ k〈B〉 satisfy the statement
of the lemma for the pair of subsets A and B which concludes the proof. �

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. — We first remark that if A is a subalgebra of an algebra

B then the stabilizer of k〈AB〉 in B is the stabilizer of k〈AB〉 in A. Indeed, for
a ∈ A ∩ U(A), b ∈ B ∩ U(A) and x in the stabilizer of k〈AB〉 in B, we have
xab ∈ k〈AB〉 and so x ∈ k〈AB〉b−1a−1 ⊂ A.

Since A stays commutative in B and A(A) ⊂ A ⊂ B has also a finite number of
finite dimensional subalgebras, it suffices to prove our theorem when A satisfies Hs.

(1): Let {x1, . . . , xn} be a basis of k〈A〉 with x1 invertible. For any α ∈ k,
set xα = x1 + αx2 + · · · + αn−1xn. Assume xα is invertible. Since k is infinite
and by Lemma 4.2, there exists a finite-dimensional subalgebra Aα such that k ⊆
Aα ⊆ A(A) ⊆ A and a k-vector space Vα ⊆ k〈AB〉 with xαB ⊆ Vα, AαVα = Vα,
Vα ∩ U(A) 6= ∅ and

dimk(Vα) + dimk(Aα) > dimk(A) + dimk(B). (4.1)
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Since Aα ⊆ A(A) and A(A) is commutative and admits a finite number of finite-
dimensional subalgebras containing k, there should exist by Lemma 2.7, n distinct
scalars α1, . . . , αn in k such that

Aα1 = Aα2 = · · · = Aαn = B
and xα1 , . . . , xαn form a basis of invertible elements of k〈A〉 over k. We thus have
k〈AB〉 =

∑n
i=1 xαi

k〈B〉 ⊆
∑n
i=1 Vαi

since xαi
k〈B〉 ⊆ Vαi

for any i = 1, . . . , n. On
the other hand, Vαi ⊆ k〈AB〉 for any i = 1, . . . , n. Hence k〈AB〉 =

∑n
i=1 Vαi and

Bk〈AB〉 = B
n∑
i=1

Vαi
=

n∑
i=1
Aαi

Vαi
=

n∑
i=1

Vαi
= k〈AB〉.

So B ⊂ H. Moreover, since Vα1 ⊂ k〈AB〉, we get
dimk(AB) + dimk(H) > dimk(AB) + dimk(B) > dimk(Vα1) + dimk(Aα1)

Hence by (4.1) we obtain dimk(AB) + dimk(H) > dimk(A) + dimk(B).
(2): The space 〈HA〉 contains A and is finite-dimensional because both H and

k〈AB〉 are. Similarly, 〈HB〉 contains B and is finite-dimensional. Let A′ and B′ be
finite sets such that 〈HA〉 = 〈A′〉, 〈HB〉 = 〈B′〉, A ⊂ A′ and B ⊂ B′. Observe first
that

〈A′B′〉 = 〈HAHB〉 = 〈HAB〉 = 〈AB〉
for A is commutative and 〈HAB〉 = 〈AB〉. We then get Assertion 2 by applying
Assertion 1 to A′ and B′. �

Corollary 4.3. — Let A be a commutative Banach algebra with no non-
trivial finite-dimensional subalgebra. Then for any finite subsets A and B such
that k〈A〉 ∩ U(A) 6= ∅ and k〈B〉 ∩ U(A) 6= ∅, we have

dimk(AB) > dimk(A) + dimk(B)− 1.

Example 4.4. — The previous corollary applies in particular to the Banach
algebra A = C0(I) where I is any compact interval in R (or more generally I is a
compact and connected set) and C0(I) is the set of continuous functions f : I → R.

Remark 4.5. — Assume A and B as in Theorem 4.1 and dimk(A) + dimk(B) >
dimk(A). Then, for any invertible x ∈ A, we get

dimk(k〈AB〉 ∩ Hx) > 0.
If H is a field (which is the case when A is a field), this shows that x ∈ k〈AB〉
and we have in this case k〈AB〉 = A. In the general case, H is not a field and we
can have k〈AB〉 $ A. For example, consider A = kn with n > 3 and A = B the
subalgebra of vectors whose last two coordinates are equal. In this case, we have
AB = A = B.

With Theorem 4.1 in hand, one can prove the following generalization to arbi-
trary finite Minkowski products. The proof is similar to that of Theorem 2.7 in [11]
so we omit it.

Theorem 4.6. — Assume A is a commutative finite-dimensional algebra, a
commutative subalgebra of a Banach algebra or a subalgebra of a product of field
extensions over k. Assume A contains only a finite number of finite-dimensional
subalgebras. Consider a collection of finite subsets A1, . . . , An of A∗ such that
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k〈Ai〉 ∩ U(A) 6= ∅ for any i = 1, . . . , n. Set H := H(A1 · · ·An). The following
statements hold and are equivalent:

(1) dimk(A1 · · ·An) >
∑n
i=1 dimk(AiH)− (n− 1) dimk(H),

(2) dimk(A1 · · ·An) >
∑n
i=1 dimk(Ai)− (n− 1) dimk(H),

(3) any one of the above two statements in the case n = 2.
Remark 4.7. — In [8], Hou shows that in the context of non-separable exten-

sion of fields, a counterexample to Theorem 4.1 could only arise with dimA > 6.
Following the proof given in [8], we are able to show that if dimA 6 4, then no
hypotheses on A(A) other than commutativity is needed to get Theorem 4.1.

Otherwise, in their article [1], Bachoc, Serra and Zémor show that in Theorem 1.2
the separability hypothesis is unnecessary.
4.2. Remarks on Olson type Theorem. It is known that Kneser’s theorem does
not hold for non-abelian group. In [14], Olson gave a weaker version of Kneser’s
theorem for arbitrary groups. This Olson theorem admits a natural linearization for
division rings [4]. It is tempting to look for a possible analogue in our algebra con-
text. In fact, by using the Kemperman linear transform defined in [4] and arguments
close to those we have used to establish Theorem 4.1 one can prove the following
analogue of Olson’s theorem where neither a hypothesis on the commutativity of
A nor one on the number of its finite-dimensional subalgebras is required.

Theorem 4.8. — Let A be a unital associative algebra over k satisfying Hs.
Consider two finite-dimensional k-vector spaces V andW inA such that V ∩U(A) 6=
∅ and W ∩ U(A) 6= ∅. Then one of the two following assertions holds

(1) There exists a k-vector subspace N of k〈VW 〉 such that
• N ∩ U(A) = ∅,
• dimk k〈VW 〉 > dimk V + dimk W − dimk(N).

(2) There exist a k-vector subspace S of k〈VW 〉 and a subalgebra H of A such
that
• S ∩ U(A) 6= ∅,
• k ⊂ H ⊂ A,
• dimk k〈VW 〉 > dimk S > dimk V + dimk W − dimkH,
• HS = S or SH = S.

Assertion 2 looks indeed like a natural analogue of Olson’s theorem for algebras.
Also, when A is a division ring, we must have N = {0} in assertion 1. This is
unfortunately not the case in general. Moreover, for an algebra A, one can have
few constraints on the dimensions of the subspaces N such that N ∩ U(A) = ∅.
This is notably the case of the matrix algebra Mn(C) which admits subspaces N
of any dimension less than n2 − n containing no invertible matrices or the Banach
algebra of continuous functions from [0, 1] to R. So it eventually appears that this
Olson type theorem for algebras yields only little information on the dimension of
the space products k〈VW 〉.

Now, if we assume that V is commutative, we obtain immediately the following
corollary of Lemma 4.2.

Corollary 4.9. — Assume A satisfies Hs
1 and let V,W be finite-dimensional

k-vector spaces in A such that V is commutative, V ∩ U(A) 6= ∅ and W ∩ U(A) 6=

1Observe that there is no hypothesis on the number of subalgebras of A here.
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∅. Then there exist a k-vector subspace S of k〈VW 〉 and a finite-dimensional
subalgebra H of A such that

• S ∩ U(A) 6= ∅,
• k ⊂ H ⊂ A,
• dimk k〈VW 〉 > dimk S > dimk V + dimk W − dimkH,
• HS = S.

Proof. — Choose a ∈ V ∩ U(A). By Lemma 4.2, there exists a (commutative)
finite-dimensional subalgebra H of A such that k ⊆ H ⊆ A(A) and a vector space
S contained in k〈VW 〉 such that S ∩ U(A) 6= ∅, HS = S and

dimk(S) + dimk(H) > dimk(V ) + dimk(W ). �

5. Hamidoune and Tao type results

In this section, we assume A satisfies Hs so that every subspace of A containing
an invertible element admits a basis of invertible elements (Proposition 2.6).

5.1. Linear Hamidoune connectivity. The notion of connectivity for a subset
S of a group G was developed by Hamidoune in [7]. As suggested by Tao in [17],
it is interesting to generalize Hamidoune’s definition by introducing an additional
parameter λ. The purpose of this subsection is to adapt this notion of connectivity
to our algebra context. Assume V is a finite-dimensional fixed k-subspace of A such
that V ∩U(A) 6= ∅ and λ is a real parameter. For any finite-dimensional k-subspace
W of A, we define

c(W ) := dimk(k〈WV 〉)− λ dimk(W ). (5.1)

For any x ∈ U(A), we have immediately that c(xW ) = c(W ).

Lemma 5.1. — For any finite-dimensional subspaces W1,W2 and V of A, we
have

c(W1 +W2) + c(W1 ∩W2) 6 c(W1) + c(W2).

Proof. — We have

dimk(W1 +W2) + dimk(W1 ∩W2) = dimk(W1) + dimk(W2) (5.2)

and

dimk(k〈W1V 〉+ k〈W2V 〉) + dimk(k〈W1V 〉∩k〈W2V 〉) = dimk(W1V ) + dimk(W2V ).

Observe that
k〈(W1 +W2) · V 〉 = k〈W1V 〉+ k〈W2V 〉

and
k〈(W1 ∩W2) · V 〉 ⊆ k〈W1V 〉 ∩ k〈W2V 〉.

This gives

dimk(k〈(W1 +W2)·V 〉)+dimk(k〈W1∩W2)·V 〉) 6 dimk(k〈W1V 〉)+dimk(k〈W2V 〉).
(5.3)

We then obtain the desired equality by subtracting λ copies of (5.2) from (5.3). �
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Similarly to [7], we define the connectivity κ = κ(V ) as the infimum of c(W )
over all finite-dimensional k-subspaces of A such that W ∩ U(A) 6= ∅. A fragment
of V is a finite-dimensional k-subspace of A which attains the infimum κ. An atom
of V is a fragment of minimal dimension. Since c(xW ) = c(W ) for any x ∈ U(A),
any left translate by an invertible of a fragment is a fragment and any left translate
of an atom is an atom. Since dimk(WV ) > dimk(W ) (because V ∩ U(A) 6= ∅), we
have

c(W ) > (1− λ) dimk(W ). (5.4)
We observe that when λ < 1, c(W ) is always positive and takes a discrete set of
values. Therefore, when λ 6 1, there exists at least one fragment and at least one
atom. In the remainder of this paragraph we will assume that 0 < λ 6 1. Let W1
and W2 be two fragments such that W1 ∩W2 intersects U(A). By the previous
lemma, we derive

c(W1 +W2) + c(W1 ∩W2) 6 c(W1) + c(W2) = 2κ.

Since W1 + W2 and W1 ∩W2 are finite-dimensional and intersect U(A), we must
have c(W1 +W2) > κ and c(W1 ∩W2) > κ. Hence c(W1 +W2) = c(W1 ∩W2) = κ.
This means that W1 +W2 and W1 ∩W2 are also fragments. If we assume now that
W1 andW2 are atoms such thatW1∩W2 intersects U(A), we obtain thatW1 = W2.

Proposition 5.2. — Assume A satisfies Hs and V is a finite-dimensional fixed
k-subspace of A such that V ∩ U(A) 6= ∅.

(1) There exists a unique atom Hλ containing 1 for V .
(2) This atom is a subalgebra of A containing Hl(V ).
(3) Moreover the atoms of V which intersect U(A) are the right Hλ-modules

xHλ where x runs over U(A).
(4) For any finite-dimensional k-subspaceW satisfyingW ∩U(A) 6= ∅, we have

dimk(k〈WV 〉) > λ dimk(W ) + dimk(V )− λdimk(Hλ).

Proof. — Since there exists at least one atom and the left translate of any atom
by any invertible is an atom, there exists one atom H containing 1. Now, this
atom must be unique. Indeed, if H′ is another atom containing 1, we have that
H ∩H′ intersects U(A). Hence, by the previous arguments H = H′. Now, for any
h ∈ H ∩ U(A), we have that H ∩ h−1H contains 1. Since both H and h−1H are
atoms, we must have h−1H = H and H = hH. So H is stable under multiplication
by any invertible of H. By Proposition 2.6, H is then stable by multiplication. We
then deduce that H is a subalgebra of A by Lemma 2.1. Moreover, if x ∈ Hl(V ) and
x /∈ H, then (H + kx)V = HV and so c(H + kx) < c(H) since λ > 0 contradicting
the definition of an atom. Finally, given any atom W of V intersecting U(A), we
must have w−1W = H for any w ∈W ∩U(A) since H is the unique atom containing
1 and w−1H is an atom containing 1.

Let us now prove (4). By definition of κ, we have κ = c(Hλ) 6 c(W ). This gives
dimk(k〈HλV 〉)− λ dimk(Hλ) 6 dimk(k〈WV 〉)− λ dimk(W ).

We thus get

dimk(k〈WV 〉) > λ dimk(W ) + dimk(HλV )− λ dimk(Hλ) ,

and then dimk(k〈WV 〉) > λ dimk(W ) + dimk(V )− λ dimk(Hλ). �
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Remarks 5.3. —
(1) Assume A has no non-trivial finite-dimensional subalgebra. Then we must

have Hλ = k for any λ 6 1. So we obtain

dimk(k〈WV 〉) > λ(dimk(W )− 1) + dimk(V ) for any λ 6 1.

In particular, for λ = 1, this gives

dimk(k〈WV 〉) > dimk(W ) + dimk(V )− 1

which generalizes Corollary 4.3.
(2) If V and W are such that dimk(k〈WV 〉) < dimk(W ) + dimk(V )− 1, then

the unique atom H1 for V containing 1 is a subalgebra of A of dimension
at least 2.

(3) Contrary to Theorem 4.1 where the lower bound makes appear the stabilizer
of k〈WV 〉, the subalgebra Hλ in the previous corollary only depends on λ
and V and is the same for each subspace W .

5.2. Tao’s theorem for algebras. We say that V = k〈A〉, where A is a finite
subset of A, is a space of small doubling, when dimk(A2) = O(dimk(A)). Simplest
examples of spaces of small doubling are the spaces V = k〈A〉 containing 1 and
such that dimk(A2) = dimk(A). Then by Lemma 2.1, V is a subalgebra containing
k. In general, a space of small doubling k〈A〉 is not a subalgebra and neither a left
nor right H-module for a subalgebra k ⊆ H ⊆ A. The following theorem, which is a
linear version of Theorem 1.2 in [17], permits to study the spaces of small doubling
in an algebra A satisfying Hs.

Theorem 5.4. — Consider finite-dimensional k-subspaces V and W of A (sat-
isfying Hs) intersecting U(A) such that dimk(W ) > dimk(V ) and dimk(k〈WV 〉) 6
(2 − ε) dimk(V ) for some real ε such that 0 < ε < 2. Then, there exists a finite-
dimensional subalgebraH such that dimk(H) 6 ( 2

ε−1) dimk(V ), and V is contained
in the left H-module HV with dimk(HV ) 6 ( 2

ε − 1) dimk(H).

Proof. — We apply linear Hamidoune connectivity with λ = 1− ε
2 . We have by

(5.4) c(S) > ε
2 dimk(S) for any k-subspace S. This can be rewritten as

dimk(S) 6 2
ε
c(S). (5.5)

We also get

c(W ) := dimk(k〈WV 〉)− (1− ε

2) dimk(W ) 6 (2− ε) dimk(V )− (1− ε

2) dimk(V )

since dimk(WV ) 6 (2 − ε) dimk(V ) and dimk(W ) > dimk(V ). We then get the
inequality c(W ) 6 (1− ε

2 ) dimk(V ). By Proposition 5.2, the unique atom containing
1 is a subalgebra H. By definition of an atom, we should have

κ = c(H) 6 c(W ) 6 (1− ε

2) dimk(V ).

We therefore obtain, by using (5.5) with S = H, that

dimk(H) 6 2
ε
c(H) 6 2

ε
c(W ) 6 (2

ε
− 1) dimk(V ).
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By using that c(H) = dimk(HV ) − (1 − ε
2 ) dimk(H) and the previous inequality

c(H) 6 (1− ε
2 ) dimk(V ), we get

dimk(HV ) 6 (1− ε

2) dimk(V ) + (1− ε

2) dimk(H). (5.6)

We can also bound dimk(V ) by dimk(HV ) in (5.6). This yields

dimk(HV ) 6 (2
ε
− 1) dimk(H). �

Remarks 5.5. —
(1) When dimk(V 2) 6 (2−ε) dimk(V ), we can apply Theorem 5.4 with V = W

and obtain that V ⊂ HV with

dimk(H) 6 (2
ε
− 1) dimk(V ) and dimk(HV ) 6 (2

ε
− 1) dimk(H).

(2) When dimk(V 2) 6 (2 − ε) dimk(V ) and the algebra A has no non-trivial
finite-dimensional subalgebra, we have H = k. So

1
2
ε − 1

6 dimk(V ) 6 2
ε
− 1.

6. Group setting

6.1. Recovering results in the group setting. The aim of this paragraph is to
explain how Theorem 4.1 permits to recover Diderrich’s theorem for groups. The
proof goes through three steps. First we turn the group G into the group algebra
k[G]. Second, we link the stabilizer in G of the subset A with the stabilizer in k[G]
of the subspace k〈A〉. Third we choose a convenient field (the field C of complex
numbers) so that the subalgebra generated by k〈A〉 has only a finite number of
subalgebras.

Let us now detail these ideas. First, the group algebra k[G] is the k-vector space
with basis {eg | g ∈ G} and multiplication defined by eg · eg′ = egg′ for any g, g′
in G. Given any non-empty set A in G, we define its associated set in k[G] as
A = {ea | a ∈ A}. It is clear that A is a commutative set in G if and only if A is a
commutative set in k[G]. In that case, the subalgebra A(A) is a finite-dimensional
commutative algebra isomorphic to k[G(A)] the group algebra of the subgroup G(A)
of G generated by the elements of A. Moreover, write

H = {h ∈ G | hA = A} and Hl = {x ∈ k[G] | xA ⊂ k〈A〉}

for the left stabilizer of A in G and the left stabilizer of k〈A〉 in k[G], respectively.

Lemma 6.1. — We have Hl = k〈H〉 = k[H] that is, Hl is the group algebra of
the group H.

Proof. — The inclusion Hl ⊃ k〈H〉 is immediate. For the converse, observe first
that for any g /∈ H, there exists ag in A such that gag /∈ A. Consider x =

∑
g∈G λgeg

in Hl (where the coefficients λg are all but a finite number equal to zero when G
is infinite). Since Hl ⊃ k〈H〉, we may assume that λg = 0 for all g ∈ H and write
x =

∑
g/∈H λgeg. Our aim is to show that λg = 0 for all g /∈ H. For such a g,

there exists a ∈ A such that ga /∈ A. Moreover, since x ∈ Hl and a ∈ A, we have
xea ∈ k[A]. Finally, we get
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∑
g′∈A

µg′eg′ = xea =
∑
g′ /∈H

λg′eg′ea =
∑
g′ /∈H

λg′eg′a .

Since the family {eg′ , g′ ∈ G} is a basis for k[G], we get λg = 0 by comparing the
coefficient of ega in the left and right hand side of the previous equality. �

To obtain Diderrich’s theorem for groups from Theorem 4.1 and Lemma 6.1, we
have to find a field such that A(A) = k[G(A)] admits a finite number of subalgebras
containing 1 and k[G] verifies Hs. These two points rely on the following two
lemmas.

Lemma 6.2. — Let G be a finitely generated commutative group. Then
C[G]' C[X1

±1, . . . , Xr
±1]m

is a product of integral algebras and has a finite number of finite dimensional
subalgebras.

Proof. — This is standard representation theory. We may write G ' Zr × G′
with G′ a finite group of order m. We then have C[G] ' C[Zr]⊗ C[G′].

The algebra C[G′] is semisimple and therefore isomorphic to a product of `matrix
algebras where ` is the number of conjugacy classes in G′. So ` = |G′| = m since
G′ is commutative. A dimension argument (or commutation argument) shows that
all the matrix algebras have to be of dimension 1. Finally C[G′] ' Cm.

Moreover, we have C[Zr]' C[X1
±1, . . . , Xr

±1] whose unique finite-dimensional
subalgebra is C.

Finally, we obtain C[G] ' C[X1
±1, . . . , Xr

±1]m. This implies that the finite-
dimensional subalgebras of C[G] are the subalgebra of Cm. There thus exist only
finitely many such subalgebras. �

Lemma 6.3. — Let G be a finitely generated group. Then C[G] can be identified
with a subalgebra of a Banach algebra over C.

Proof. — Let us consider on C[G] the norm defined by

‖
∑
g∈G

λgeg‖ =
∑
g∈G
|λg| .

For x, y ∈ C[G], we have ‖xy‖ 6 ‖x‖‖y‖. The completion of C[G] will then be a
Banach algebra. �

Corollary 6.4 (Diderrich’s theorem for groups). — Consider two finite non-
empty subsets A and B of a group G. Assume that A is commutative. Let H :=
{g ∈ G | gAB = AB}. Then

|AB| > |A|+ |B| − |H| .

Proof. — Since AB belongs to the subgroup of G generated by the finite sets
A and B, we can assume that G is finitely generated. Lemma 6.3 then shows
that C[G] satisfies Hw. We then apply Theorem 4.1 to A and B which consist of
invertible elements in C[G] . We have |A| = dimCA, |B| = dimCB and by Lemma
6.1, we have |H| = dimCH = dimCH where H = {x ∈ C[G] | x〈AB〉 = 〈AB〉}.
Since C[G(A)] = A[A] admits a finite number of finite-dimensional subalgebras by
Lemma 6.2, we are done. �
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Remark 6.5. — Observe that in the case of a commutative group G, Lemma 6.3
is not necessary. Indeed, we may consider the commutative finitely generated group
〈A ∪B〉 whose group algebra verifies Hw by Lemma 6.2.

Remark 6.6. — Contrary to [9], we recover here the results for the groups with-
out using any Galois correspondence arguments which would become problematic
in the non-commutative case.

7. Monoid setting

Let M be a multiplicative monoid with neutral element 1. Its set of invertible
elements is defined as

U(M) = {x ∈M | ∃y ∈M, xy = yx = 1}.
We denote by C[M ] its monoid algebra over C. Given a non-empty set A in G, we
define A = {ea | a ∈ A} as in the case of a group algebra. Moreover, we also write

HA = {h ∈M | hA = A} and Hl(A) = {x ∈ k[M ] | xA ⊂ k〈A〉}

for the left stabilizer ofA inM and the left stabilizer of k〈A〉 in k[M ], respectively. It
is clear thatHA is a submonoid ofM andHl(A) a subalgebra of k[M ]. Nevertheless,
Lemma 6.1 does not hold in general when M is not a group as illustrated by the
following example.

Example 7.1. — Consider M defined as the quotient of the free monoid {a, b}∗
(with neutral element the empty word) by the relations

a2 = b2 = ab = ba.

Given x ∈M , let `(x) be the common length of the words of x regarded as a class
in {a, b}∗. Then `(xy) = `(x) + `(y) for any x, y in M . For A = {1, a, b}, we thus
have HA = {1}. Nevertheless, the subalgebra Hl(A) is not reduced to C. One
easily verifies that it coincides with the 2-dimensional subalgebra Hl(A) = C⊕Cx
generated by x = a− b with x2 = 0.

7.1. Finite monoids. The Kneser theorem for abelian groups becomes false in
commutative finite monoids even if we assume the subsets considered intersect
non-trivially the set of invertible elements. To see this, define a monoid M as the
quotient of the free monoid {a, b}∗ (with neutral element the empty word) by the
relations

a2 = b2 = ab = ba and a4 = a. (7.1)
Then M = {1, a, b, a2, a3} is finite. For A = B = {1, a, b}, we have yet A2 =
{1, a, b, a2} and HAB = {1}, whereas

4 =
∣∣A2∣∣ � 2 |A| − |HAB | = 5.

It is nevertheless possible to obtain a Hamidoune type theorem from our algebra
setting.

Theorem 7.2. — LetM be a finite monoid and A a finite subset inM satisfying
A ∩ U(M) 6= ∅. Then, for any 0 < λ 6 1, the subalgebra Hλ of C[M ] which is the
unique atom containing 1 contains Hl(A) and verifies

|BA| > λ |A|+ |B| − λ dimC(Hλ) and dimC(Hλ) > |HA|
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for any finite subset B in M such that B ∩ U(M) 6= ∅. In particular H1 verifies
|BA| > |A|+ |B| − dimC(H1) and dimC(H1) > |HA| .

Proof. — Since M is finite, C[M ] verifies Hs. We apply Corollary 5.2 to A and
B. We have dimC(Hλ) > |H| because C[H] ⊂ Hl(A) ⊂ Hλ. �

Remarks 7.3. —
(1) Contrary to the group setting, for A a finite subset in M , the subalge-

bra A[A] of C[M ] generated by A can admit an infinite number of finite-
dimensional subalgebras. This is notably the case when A contains a (non
invertible) element a generating a submonoid

〈a〉 = {1, a, . . . , am, am+1, . . . , am+r−1}
with am+r = am. Then the algebra A[A] admits a subalgebra isomorphic
to C[X]/(Xm+r −Xm). We get

C[X]/(Xm+r −Xm) ' C[X]/(Xr − 1)× C[X]/(Xm).
Thus C[A] has an infinite number of finite-dimensional subalgebras as soon
as m > 3 by Theorem 3.12. So we cannot state a general monoid version
of the Diderrich-Kneser theorem from Theorem 4.6.

(2) But we have the following version: If M is a monoid whose elements are
right regular, and A is a finite commutative subset of M and B a finite
subset of M , then |AB| + |HAB | > |A| + |B|. Indeed, M may not be a
submonoid of a group, but A is since it is commutative. So C[A(A)] is a
subalgebra of a finitely generated commutative group and thus has only a
finite number of subalgebra by Lemma 6.2. Moreover, adapting the proof of
Lemma 6.3, we get that C[M ] is a subalgebra of a Banach algebra. Finally,
in this context Lemma 6.1 still holds, since eg′a 6= eg′′a if g′ 6= g′′ (using
notation of Lemma 6.1). Therefore, we can apply Theorem 4.1.

(3) It is also possible to get from the monoid algebra C[M ] monoid versions of
Corollary 4.9 and Theorem 5.4. They are left to the reader. Here also we
have to use finite-dimensional subalgebras of C[M ] instead of submonoids
of M .

7.2. Finitely generated commutative monoids. LetM be a finitely generated
commutative monoid. Its monoid algebra C[M ] is a finitely generated algebra (over
C). It thus can be written as C[X1, . . . , Xr]/I where I is an ideal of C[X1, . . . , Xr].
We now give a sufficient condition on the components of the algebraic variety V
defined by I to apply Theorem 4.1.

Assume that I is a radical ideal (or that C[M ] is reduced) and that the irreducible
components of V coincide with its connected components. Then in this case C[M ]
is a finite product of integral algebras, one for each irreducible component of V .
Thus C[M ] satisfies hypothesisHw and we can apply Theorem 4.1 because we know
by Lemma 6.2 that it admits a finite number of finite dimensional subalgebras.

To prove that C[M ] is a finite product of integral algebras, write V = V1∪· · ·∪Vs
where the Vi are the irreducible components of V . For a subset X of Cr, write I(X)
for the ideal of C[X1, . . . , Xr] of polynomial vanishing on all x ∈ X. In particular,
we have by using the Nullstellensatz that I = I(V ) since C[M ] is reduced. We also
get I = I(V ) = I(V1)∩· · ·∩I(Vs). Hence C[M ] = C[X1, . . . , Xr]/I(V1)∩· · ·∩I(Vr).
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Moreover, since the Vi are the connected component of V , we have Vi ∩ Vj = ∅ for
i 6= j. The Nullstellensatz also ensures us that I(Vi) + I(Vj) = C[X1, . . . , Xr]
(see [5], Chapter 1 p.20). The Chinese remainder theorem allows us to write

C[X1, . . . , Xr]/I(V1)∩· · ·∩I(Vr) = C[X1, . . . , Xr]/I(V1)×· · ·×C[X1, . . . , Xr]/I(Vr)

where C[X1, . . . , Xr]/I(Vj) is an integral domain since Vj is irreducible.
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