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ALMOST ALL NON-ARCHIMEDEAN KAKEYA SETS HAVE
MEASURE ZERO

XAVIER CARUSO

Abstract. We study Kakeya sets over local non-archimedean fields with a probabilistic
point of view: we define a probability measure on the set of Kakeya sets as above and prove
that, according to this measure, almost all non-archimedean Kakeya sets are neglectable
according to the Haar measure. We also discuss possible relations with the non-archimedean
Kakeya conjecture.
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At the beginning of the 20th century, Kakeya asks how small can be a subset
of R2 obtained by rotating a needle of length 1 continuously through 360 degrees
within it and returning to its original position [14]. A set satisfying the above
requirement is today known as a Kakeya set (or sometimes Kakeya needle set) in
R2. In 1928, Besikovitch [2] constructed a subset of R2 with Lebesgue measure
zero containing a unit length segment in each direction and derived from this the
existence of Kakeya sets with arbitrary small positive Lebesgue measure. Since
then, Kakeya sets have received much attention because they have connections
with important questions in harmonic analysis (see for instance [8]). In particular,
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lower bounds on the size of a Kakeya set have been found: it has been notably
established by Davies [4] that any Kakeya set in R2 must have Hausdorff dimension
2. Later, Cordoba proposed a new elegant argument — today known as Cordoba’s
argument — for proving the latter assertion. It first appeared (in a slighty different
setting) in [3] and is reported in [12, Theorem 2].

Kakeya’s problem extends readily to higher dimensions: a Besikovitch set in
Rd is a subset of Rd containing a unit length segment in each direction while a
Kakeya set in Rd is a set obtained by rotating continuously a needle of length 1 is
all directions (parametrized either by the (d−1)-dimensional sphere or the (d−1)-
dimensional projective space). We refer to §1.1.1 for precise definitions. Kakeya
sets in Rd with Lebesgue measure zero exist as well: the product of Rd−2 by a
neglectable Kakeya set in R2 makes the job. As for lower bounds, it has been
proved by Wolff [19] that a Kakeya set in Rd has Hausdorff dimension > d+2

2 .
More recently Katz, Łaba and Tao gave several improvements on this lower bound
[15, 16, 18]. Katz and Tao notably showed that the Minkowski dimension of a
Kakeya set in Rd is at least (2−

√
2)(d−4) + 3. Experts however believe that these

results are far from being optimal and actually conjecture that a Kakeya set in Rd
should always have Hausdorff/Minkowski dimension d: this is the so-called Kakeya
conjecture. We refer to [20, 17] for a complete survey on these questions. For more
recent developments in this area, see also [10, 11, 13].

More recently Kakeya’s problem was extended over other fields. The first case
of interest was that of finite fields and was first considered in [19] by Wolff. Given
a finite field Fq, a Besikovitch set in Fdq is a subset of Fdq containing an affine line in
each direction (note that the length condition has gone). Wolff wondered whether
there exists a positive constant cd depending only d such that any Besikovitch set
in Fdq contains at least cd · qd elements. A positive answer (leading to cd = 1

d! ) was
given by Dvir in his famous paper [6].

A second case of interest is that of non-archimedean fields. It was first addressed
in the 1990s by Wolff who gave a lecture at the seminar at the University of New
South Wales in which he described a construction of a null Besikovitch set over
such fields. This subject was reintroduced in [7] by Ellenberg, Oberlin and Tao
and then studied by different authors. Dummit and Hablicsek published in [5] a
new construction of zero-measure Besikovitch set in Fq[[t]]d for a finite field Fq and
an integer d > 2. They more generally defined Besikovitch sets over any ring R
admitting a Haar measure µ for which µ(R) is finite and, for those rings, they
stated a straightforward analogue of the Kakeya conjecture. Apart from Fq[[t]], an
interesting ring R which falls within Dummit and Hablicsek’s framework is R = Zp,
the ring of p-adic integers. Dummit and Hablicsek proved the Kakeya conjecture in
dimension 2 for R = Fq[[t]] and R = Zp. The existence of zero-measure Besikovitch
sets over Zp was addressed more recently by Fraser in [9].

The general aim of this paper is to study further the size of Kakeya/Besikovitch
sets over non-archimedean local fields, i.e. Fq((t)) = Frac Fq[[t]], Qp = Frac Zp
and their extensions. Our main originality is that we adopt a probabilistic point of
view.

Let us describe more precisely our results. Let K be a fixed non-archimedean
local field: similarly to R, it is equipped with an absolute value which turns it
into a topological locally compact field. It is thus equipped with a Haar measure
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µ giving a finite mass to any bounded subset. Since K is non-archimedean, the
unit ball R of K is a subring of K (it is Fq[[t]] when K = Fq((t)) and Zp when
K = Qp); we normalize µ so that µ(R) = 1. In this setting, we provide a definition
for Kakeya sets and Besikovitch sets1 and endow the set of Kakeya sets included
in Rd with a probability measure, giving this way a precise sense to the notion of
random non-archimedean Kakeya set. Our main theorem is the following.

Theorem 1 (cf Corollary 1.21). — Almost all Kakeya sets sitting in Rd have
measure zero.

We emphasize that the above theorem concerns actual Kakeya sets (and not
Besikovitch sets). It then shows a clear dichotomy between the archimedean and
the non-archimedean setup: in the former, Kakeya sets have necessarily positive
measure (though it can be arbitrarily small) while, in the latter, almost all of them
have measure zero.

We will deduce Theorem 1 from a much more accurate result providing an exact
value for the average size of ε-neighbourhoods of Kakeya sets. Before stating (a
weak version of) it, recall that the ε-neighbourhood of a subset N ⊂ Kd consists of
points whose distance to N is at most ε. Let q be the cardinality of the residue field
of K, i.e. of q = CardR/m where m is the open unit ball in K. When R = Fq((t)),
we can check that m = t · Fq[[t]], so that q is indeed q. Similarly when R = Qp, we
have m = pZp and q is equal to p.

Theorem 2 (cf Proposition 1.25). — The expected value of the Haar measure
of the ε-neighbourhood of a random Kakeya set sitting in Rd is equivalent to:

2 · (qd − 1)
(q − 1)(qd−1 − 1) ·

1
| logq ε|

when ε goes to 0.

This refined version of Theorem 1 seems to us quite interesting because it un-
derlines that, although Kakeya sets tend to be neglectable according to the Haar
measure, they are not that small on average as reflected by the logarithmic decay
with respect to ε. In particular Theorem 2 is in line with the non-archimedean
Kakeya conjecture and might even be thought (with caution) as an average version
of it.

Of course, beyond the mean, one would like to study further the random vari-
ables Xε taking a random Kakeya set sitting in Rd to the Haar measure of its
ε-neighbourhood. For instance, in the direction of the non-archimedean Kakeya
conjecture, one may ask the following question: can one compute higher moments
of the Xε (possibly extending the techniques of this paper) and this way derive
interesting informations about their minimum? In the real setting, results in re-
lated directions were obtained by Babichenko and al. [1, Theorem 1.6] in the
2-dimensional case.

This paper is organized as follows. In Section 1, we define non-archimedean
Kakeya/Besikovitch sets together with the probability measure on the set of Kakeya

1We emphasize that, similarly to the real setting, we make the difference between Kakeya
and Besikovitch sets: basically, an additional continuity condition (corresponding to the fact that
Kakeya’s needle has to move continuously) is required for the former.
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sets we shall work with afterwards. We then state (without proof) our main theorem
which is yet another refined version of Theorem 2. We then derive from it several
corollaries. Section 2 provides a totally algebraic reformulation of the statements
and results of Section 1. Its interest is twofold. First it allows us to extend to
the torsion case the notion of Kakeya/Besikovitch sets together with the Kakeya
conjecture. Second it positions the framework in which the forthcoming proofs
will all take place. The proof of our main theorem occupies Section 3. Section 4
contains numerical simulations whose objectives are, first, to exemplify our results
and, second, to show the behaviour of the random variables Xε beyond their mean.
Pictures of 2-adic Kakeya sets (in dimension 2 and 3) are also included.

1. Non-archimedean Kakeya sets

As just mentionned, the aim of this section is to introduce (random) Kakeya and
Besikovitch sets over non-archimedean local fields (cf §§1.1–1.3) and then to state
and comment on our main results (§1.4).

Throughout this paper, the letter K refers to a fixed discrete valuation field
on which the valuation is denoted by val. We always assume that K is complete
and that its residue field is finite. For our readers who are not familiar with non-
archimedean geometry, we refer to the Appendix (page 35) for basic definitions and
facts about valuation fields.

We fix in addition an integer d > 2: the dimension.

1.1. Besikovitch and Kakeya sets.

1.1.1. The real setting. We first recall the definition and the basic properties of
Kakeya sets and Besikovitch sets in the classical Euclidean setting. Let Sd−1(R)
denote the unit sphere in Rd. When d = 2, Kakeya considers subsets in R2 that
can be obtained by rotating a needle of length 1 continuously through 360 degrees
within it and returning to its original position (or, depending on authors, by ro-
tating a needle of length 1 continuously through 180 degrees within it and to its
original position with reverse orientation). This notion can be extended to higher
dimensions as follows.

Definition 1.1. — A Kakeya needle set (or just a Kakeya set) in Rd is a subset
N of Rd of the form:

N =
⋃

a∈Sd−1(R)

[
f(a)−a2 , f(a)+a

2

]
where f : Sd−1(R)→ Rd is a continuous function. (Here [x, y] denotes the segment
joining the points x and y.)

Remark 1.2. — Optionally one may further require that the segments corre-
sponding to the directions a and −a coincide for all a ∈ Sd−1(R). This is equiva-
lent to requiring that f(a) = f(−a) for all a ∈ Sd−1(R), that is to requiring that f
factors through the projective space Pd−1(R).

The natural question about Kakeya sets is the following: how small can be a
Kakeya set? As a basic example, Kakeya first asks whether there exists a minimal
area for Kakeya sets in R2. Besikovitch answers this question negatively and proves



ALMOST ALL NON-ARCHIMEDEAN KAKEYA SETS HAVE MEASURE ZERO 7

that there do exist Kakeya sets (in any dimension) of arbitrary small measure.
Besikovitch introduced a weaker version of Kakeya sets:

Definition 1.3. — A Besikovitch set in Rd is a subset of Rd which contains a
unit line segment in every direction.

Obviously a Kakeya set is a Besikovitch set. The converse is however not true.
More precisely Besikovitch managed to construct Besikovitch sets of measure zero
whereas one can easily show that a Kakeya set necessarily has positive measure. The
question now becomes: how small can be a Besikovitch set? A famous conjecture
in this direction asks whether any Besikovitch set in Rd has Hausdorff dimension
d? It is known to be true when d ∈ {1, 2} but the question remains open for higher
dimensions.

1.1.2. The non-archimedean setting. We now move to the non-archimedean setting:
recall that we have fixed a complete discrete valuation field K. We denote by R its
rings of integers and by k its residue field. We set q = Card k. We fix a uniformizer
π ∈ K and always assume that the valuation on K is normalized so that val(π) = 1.
Let µ be the Haar measure on K normalized by µ(R) = 1. In the sequel, we shall
always work with the norm |·| on K defined by |x| = q−val(x) (x ∈ K). We recall
(see also the Appendix page 35) that it is non-archimedean in the sense that

∀x, y ∈ K, |x+ y| 6 max
(
|x|, |y|

)
.

This strong version of the triangle inequality has important consequences: it implies
for instance that every triangle is isoceles and that a series

∑
un converges if and

only if lim un = 0. The next Proposition enlights another consequence that we shall
use repeatedly in the sequel.

Proposition 1.4. — For every fixed r > 0, the closed balls (resp. open balls)
of radius r are pairwise distinct.

Proof. — Let B and B′ be two closed balls of radius r and centre x and x′

respectively. Let us assume that B and B′ meet at some point a. We shall prove
that this implies that B = B′. Indeed, given y ∈ B, we have

|y − x′| 6 max
(
|y − x|, |x− a|, |a− x′|

)
thanks to the non-archimedean triangle inequality. Moreover |y−x|, |x−a|, |a−x′|
are all at most r. Thus |y − x′| 6 r and y ∈ B′. The converse inclusion B′ ⊂ B is
proved similarly. �

We recall finally that the norm | · | is compatible with the Haar measure µ on K in
the sense that

µ(aE) = |a| · µ(E)
for all a ∈ K and all measurable subset E of K.

We consider the K-vector space Kd and endow it with the infinite norm ‖·‖∞:
‖(x1, . . . , xd)‖∞ = max

16i6d
|xi|.

Let Bd(K) (resp. Sd−1(K)) denote the unit ball (resp. the unit sphere) in Kd.
Clearly Bd(K) = Rd and Sd−1(K) consists of tuples (x1, . . . , xd) ∈ Rd containing
at least one coordinate which is invertible in R. The latter condition is equivalent to
the fact that the image of (x1, . . . , xd) in kd does not vanish. This notably implies
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that Sd−1(K) has a large measure: precisely µ(Sd−1(K)) = 1− q−d. This contrasts
with the real case.

Definition 1.5. — Given a ∈ Sd−1(K), a unit length segment of direction a is
a subset of Kd of the form

{
ta+ b : t ∈ R

}
for some b ∈ Rd.

A Besikovitch set in Kd is a subset of Kd containing a unit length segment in
every direction.

Definition 1.6. — A Kakeya set in Kd is a subset N of Kd of the form:

N =
⋃

a∈Sd−1(K)

Sa with Sa =
{
ta+ f(a) : t ∈ R

}
where f : Sd−1(K)→ Kd is a continuous function.

It has been proved (see [9]) that Kakeya sets of measure zero exists in Kd. The
main objective of this article is to establish that this is in fact the case for almost
all Kakeya sets (in a sense that we will make precise later).

1.2. The projective space over K. Instead of working with Sd−1(K), it will
be more convenient to use the projective space Pd−1(K). Recall that is defined
as the set of lines in Kd passing through the origin. From an algebraic point of
view, Pd−1(K) is described as the quotient of Kd+1\{0} by the natural action by
multiplication of K?. We use the standard notation [a1 : · · · : ad] to refer to the
class in Pd−1(K) of a nonzero d-tuple (a1, . . . , ad) of elements of K. Geometrically
[a1 : · · · : ad] corresponds to the line directed by the vector (a1, . . . , ad).

Definition 1.7. — Let a ∈ Pd−1(K). A representative (a1, . . . , ad) ∈ Kd of a
is reduced if it belongs to Sd−1(K).

Any element a ∈ Pd−1(K) admits a reduced representative: it can be ob-
tained by dividing any representative (a1, . . . , ad) by a coordinate ai for which
‖(a1, . . . , ad)‖∞ = |ai|. We note that two reduced representatives of a differ by
multiplication by a scalar of norm 1, i.e. by an invertible element of R. As a conse-
quence Pd−1(K) can alternatively be described as the quotient Sd−1(K)/R× where
R× stands for the group of invertible elements of R.
Canonical representatives. Although there is no canonical choice, we will need to
define a particular set of representatives of the elements of Pd−1(K). The following
lemma makes precise our convention.

Lemma 1.8. — Any element a ∈ Pd−1(K) admits a unique representative
can(a) = (a1, . . . , ad) ∈ Sd−1(K) satisfying the following property: there exists
an index piv(a) (uniquely determined) such that apiv(a) = 1 and |ai| < 1 for all
i < piv(a).

Proof. — Let (a′1, . . . , a′d) ∈ Sd−1(K) be any reduced representative of a. Define
j as the smallest index i for which |a′i| = 1. Then the vector (a′j)−1 · (a′1, . . . , a′d)
satisfies the requirements of the lemma (with piv(a) = j). The uniqueness is easy
and left to the reader. �

Remark 1.9. — The notation piv means “pivot”.
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The above construction defines two mappings piv : Pd−1(K) → {1, . . . , d} and
can : Pd−1(K)→ Sd−1(K) and the latter is a section of the projection Sd−1(K)→
Pd−1(K). In the sequel, we shall often consider can as a function from Pd−1(K) to
Rd.
A distance on Pd−1(K). Recall that we have seen that Pd−1(K) = Sd−1(K)/R×.
The natural distance on Sd−1(K) (inherited from that on Kd) then defines a dis-
tance dist on Pd−1(K) by:

dist(a, b) = inf
â,b̂
‖â− b̂‖∞

where the infimum is taken over all representatives â and b̂ of a and b respec-
tively lying in Sd−1(K). One easily proves that dist takes its values in the set
{0, 1, q−1, q−2, q−3, . . .} and remains non-archimedean in the sense that

dist(a, c) 6 max
(
dist(a, b),dist(b, c)

)
for all a, b, c ∈ Pd−1(K). Moreover Pd−1(K) equipped with the topology induced
by dist is a compact space since there is a continuous surjective map Sd−1(K) →
Pd−1(K) with compact domain.

Proposition 1.10. — For all a, b ∈ Pd−1(K), we have:
dist(a, b) = ‖can(a)− can(b)‖∞.

Proof. — Clearly dist(a, b) 6 ‖can(a)− can(b)‖∞.
Hence, we just need to prove that ‖can(a) − can(b)‖∞ 6 dist(a, b). Let us first

assume that piv(a) < piv(b) and let â = (â1, . . . , âd) and b̂ = (b̂1, . . . , b̂d) be two
vectors in Sd−1(K) lifting a and b respectively. Set j = piv(a). The coordinate âj
has necessarily norm 1 while |b̂j | < 1. Therefore |âj − b̂j | = 1 and dist(a, b) is equal
to 1 as well. We conclude similarly when piv(a) > piv(b).

Assume now that piv(a) = piv(b). Set j = piv(a) and write can(a) = (a1, . . . , ad)
and can(b) = (b1, . . . , bd), so that aj = bj = 1. We notice that any representative
â ∈ Sd−1(K) of a can be written â = λ · can(a) for some λ ∈ R×. Similarly we can
write b̂ = µ · can(b) with µ ∈ R× for any representative b̂ of b. We are then reduced
to show that

‖λ · can(a)− µ · can(b)‖∞ > ‖can(a)− can(b)‖∞ (1.1)
for any λ and µ of norm 1. Set r = ‖can(a) − can(b)‖∞. Observe that the j-th
coordinate of the vector λ · can(a) − µ · can(b) is λ − µ. The inequality (1.1) then
holds if |λ−µ| > r. Otherwise, let j′ be an index such that r = |aj′ − bj′ |. For this
particular j′, write λaj′−µbj′ = λ(aj′−bj′)+(λ−µ)bj′ . Moreover |λ(aj′−bj′)| = r
while |(λ− µ)bj′ | 6 |λ− µ| < r. Thus |λaj′ − µbj′ | = r and (1.1) follows. �

Corollary 1.11. — Let a, b ∈ Pd−1(K). Let (a1, . . . , ad) and (b1, . . . , bd) in
Sd−1(K) be some reduced representatives of a and b respectively. Then dist(a, b)
is the maximal norm of a 2× 2 minor of the matrix(

a1 a2 · · · ad
b1 b2 · · · bd

)
. (1.2)

Proof. — Since two representatives of a differ by multiplication by an element of
norm 1, we may safely assume that (a1, . . . , ad) = can(a). Similarly we assume that
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(b1, . . . , bd) = can(b). If piv(a) 6= piv(b), the determinant of the submatrix of (1.2)
composed by the piv(a)-th and piv(b)-th columns is congruent to ±1 modulo m.
It thus has norm 1 and the corollary is proved in this case. Suppose now that
piv(a) = piv(b) and assume further for simplicity that they are equal to 1. The
matrix (1.2) is then equivalent to:(

1 a2 · · · ad
0 b2 − a2 · · · bd − ad

)
.

It is now clear that the maximal norm of a 2×2 minor is equal to ‖can(b)−can(a)‖∞.
The corollary then follows from Proposition 1.10. �

Projective Kakeya sets. Following Remark 1.2, one may define non-archimedean
Kakeya sets using the projective space instead of the sphere.

Definition 1.12. — A projective Kakeya set in Kd is a subset N of Kd of the
form:

N =
⋃

a∈Pd−1(K)

Sa with Sa =
{
t · can(a) + f(a) : t ∈ R

}
where f : Pd−1(K)→ Kd is a continuous function.

Proposition 1.13. — (a) Any projective Kakeya set is a Kakeya set.
(b) Any Kakeya set contains a projective Kakeya set.

Proof. — (a) The projective Kakeya set attached to a function f : Pd−1(K) →
Kd is equal to the Kakeya set attached to the compositum of f with the natural
map Sd−1(K)→ Pd−1(K) sending a vector to the line it generates.
(b) The Kakeya set attached to a function f : Sd−1(K) → Kd contains the pro-
jective Kakeya set attached to f ◦ can. (Notice that can is continuous by Proposi-
tion 1.10.) �

In what follows, we will mostly work with projective Kakeya sets.

1.3. The universe. To each continuous function f : Pd−1(K) → Kd, we attach
the (projective) Kakeya set N(f) defined by:

N(f) =
⋃

a∈Pd−1(K)

Sa(f) with Sa(f) =
{
t · can(a) + f(a) : t ∈ R

}
.

Observe that N(f) is compact. Indeed it appears as the image of the compact
space Pd−1(K) × R under the continuous mapping (a, t) 7→ t · can(a) + f(a). In
particular, it is closed in Kd.

We would like to define random Kakeya sets, that is to turn N into a random
variable on a certain probability space Ω.

We define Ω as the set of 1-Lipschitz functions from Pd−1(K) to Rd. The addition
on Rd turns Ω into a commutative group. We endow Ω with the infinite norm ‖·‖∞
defined by the usual formula:

‖f‖∞ = sup
a∈Pd−1(K)

‖f(a)‖∞ (f ∈ Ω).

The induced topology is then the topology of uniform convergence. The Arzelà-
Ascoli theorem implies that Ω is compact. It is thus endowed with its Haar measure,
which is a probability measure.
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Remark 1.14. — More generally, one could also have considered r-Lipschitz func-
tions Pd−1(K) → Rd for some positive fixed real number r. This would actually
lead to similar qualitative behaviours (although of course precise numerical values
would differ).

In the rest of this paragraph (which can be skipped on first reading), we give a
more explicit description of the universe Ω as a probability space. We fix a complete
set of representatives of classes modulo m and call it S. We denote by Sn the set
of elements that can be written as

s0 + s1π + s2π
2 + · · ·+ sn−1π

n−1

where the si lie in S and we recall that π ∈ R denotes a fixed uniformizer of K.
Then Sn forms a complete set of representatives of classes modulo mn. Observe in
particular that S1 = S.
We now introduce special “step functions” that will be useful for approximating
functions in Ω.

Definition 1.15. — For a positive integer n, let Ωan
n denote the subset of Ω

consisting of functions taking their values in Sn and which are constant of each
closed ball of radius q−n.

Remark 1.16. — A direct adaptation of Proposition 1.4 shows that the closed
balls of radius q−n in Pd−1(K) are pairwise distinct. The previous definition then
makes sense.

Remark 1.17. — The exponent “an” refers to “analytic” and recalls that we are
here giving an analytic description of Ω. Later on, in §2.3, we will revisit the
constructions of this subsection in a more algebraic fashion and notably define an
algebraic version of Ωan

n .

Note that Ωan
n ⊂ Ωan

m for n 6 m. Observe in addition that Ωan
n is a finite set.

Indeed remark first that Sn is finite. Moreover Pd−1(K) is obviously covered by
its closed balls of radius q−n. This covering is actually open since a closed ball
of radius q−n is also an open ball of radius q−n + ε for ε small enough. Thus, by
compacity and Remark 1.16, the set of closed balls of radius q−n has to be finite.
The finiteness of Ωan

n follows.

Proposition 1.18. — Given n > 1 and f ∈ Ω there exists a unique function
ψan
n (f) ∈ Ωan

n such that
‖f − ψan

n (f)‖∞ 6 q−n.

Proof. — Let a ∈ Pd−1(K). Set f(a) = (x1, . . . , xd) where the xi lie in R. For
any i, let yi be the unique element of Sn which is congruent to xi modulo mn.
We define ψan

n (f)(a) = (y1, . . . , yd). Remembering that ‖x − y‖∞ 6 q−n (with
x, y ∈ Rd) if and only if x and y are congruent modulo mn coordinate-wise, we
deduce that ψan

n (f)(a) is the unique element of Sn with the property that

‖f(a)− ψan
n (f)(a)‖∞ 6 q−n.

It follows that the function ψan
n (f) : Pd−1(K)→ Sn satisfies ‖f −ψan

n (f)‖∞ 6 q−n,
and we have shown in addition that ψan

n (f) is the unique function satisfying the
above condition.
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It then remains to prove that ψan
n (f) ∈ Ωan

n , i.e. that (1) ψan
n (f) is constant

on each closed ball of radius q−n and (2) it is 1-Lipschitz. Let us first prove (1).
Let a, b ∈ Pd−1(K) such that dist(a, b) 6 q−n. By the Lipschitz condition, we get
‖f(a)−f(b)‖∞ 6 q−n as well. In other words, f(a) and f(b) are congruent modulo
mn coordinate-wise. By construction of ψan

n (f), we then derive that ψan
n (f)(a) =

ψan
n (f)(b) and (1) is proved.
We now move to (2). Pick a, b ∈ Pd−1(K). If dist(a, b) 6 q−n, then we have just

seen that ψan
n (a) = ψan

n (b). Consequently we clearly have ‖ψan
n (a) − ψan

n (b)‖∞ 6
dist(a, b). Otherwise, we can write:
‖ψan

n (a)−ψan
n (b)‖∞ 6 max

(
‖ψan

n (a)− f(a)‖∞, ‖f(a)− f(b)‖∞, ‖ψan
n (b)− f(b)‖∞

)
.

Now remark that ‖ψan
n (a) − f(a)‖∞ and ‖ψan

n (b) − f(b)‖∞ are both not greater
than q−n by construction. They are then a fortiori both less than dist(a, b) by
assumption. Moreover since f is 1-Lipschitz, we have ‖f(a)− f(b)‖∞ 6 dist(a, b).
Putting all together we finally derive ‖ψan

n (a)−ψan
n (b)‖∞ 6 dist(a, b) as wanted. �

Proposition 1.18 just above shows that the union of all Ωan
n are dense in Ω.

Moreover, there is a projection ψan
n : Ω → Ωan

n for any n > 1. For m > n, let
ψan
m,n : Ωan

m → Ωan
n denote the restriction of ψan

n to Ωan
m .

Proposition 1.19. — Let n be a positive integer and fn ∈ Ωan
n . The fibre of

ψan
n+1,n over fn consists exactly of functions of the shape:

fn + πng

where g : Pd−1(K) → Sd1 is any function which is constant on each closed ball of
radius q−(n+1).

Proof. — We notice first that any function fn+1 of the form fn+πng clearly lies
in Ωan

n+1 and maps to fn under ψan
n+1,n because

‖fn+1 − fn‖∞ = ‖πng‖∞ = q−n · ‖g‖∞ 6 q−n.
Now pick fn+1 ∈ Ωan

n+1 such that ψan
n+1,n(fn+1) = fn. Then ‖fn+1 − fn‖∞ 6 q−n,

meaning that fn+1 is congruent to fn modulo mn, i.e. that there exists a function
g : Pd−1(K)→ Rd such that fn+1 = fn+πng. Looking at the shape of the elements
of Sn and Sn+1, we deduce that g must take its values in Sd1 . �

Let Gan
i be the set of functions Pd−1(K) → Sd1 which are constant on each

closed ball of radius q−i. Applying repeatedly Proposition 1.19, we find that the
functions in Ωan

n are exactly those that can be written as
∑n
i=1 giπ

i−1 with gi ∈ Gan
i .

Moreover this expansion is unique. Passing to the limit, we find that the functions
in Ω can all be written uniquely as an infinite converging sum

∑∞
i=1 giπ

i−1 with
gi ∈ Gan

i as above. In other words there is a bijection:
∞∏
i=1

Gan
i

∼−→ Ω

(g1, g2, . . .) 7→
∞∑
i=1

giπ
i−1

(1.3)

Furthermore, if we endow Gan
i with the discrete topology, the above bijection is

an homeomorphism. Since the Gan
i are all finite, we recover that Ω is compact.

Finally, the Haar measure on Ω can be described as follows: it corresponds under
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the bijection (1.3) to the product measure on
∏∞
i=1G

an
i where each factor is endowed

with the uniform distribution (it may be seen directly but it is also a consequence
of Proposition 2.17 below). In other words, picking a random element in Ω amounts
to picking each “coordinate” gi in Gan

i uniformly and independantly.

1.4. Average size of a random Kakeya set. For f ∈ Ω, recall that we have
defined a Kakeya set N(f). Recall that N(f) is closed and remark in addition that
N(f) ⊂ Rd since f takes its values in Rd. Given an auxiliary positive integer n, we
introduce the (q−n)-neighbourhood Nn(f) of N(f), that is:

Nn(f) =
{
x ∈ Rd

∣∣∣ inf
y∈N(f)

|x− y| 6 q−n
}

and let Xn(f) denote its measure. This defines a collection of random variables
Xn : Ω → R+ that measures the size of N(f). Our main theorem provides an
explicit formula for their mean. Before stating it, let us recall that q denotes the
cardinality of the residue field k.

Theorem 1.20. — Let (un)n>0 be the sequence defined by the recurrence:

u0 = 1 ; un+1 = 1−
(

1− un
qd−1

)qd−1

.

Then:
E[Xn] = 1− (1− un)1+q−1+···+q−(d−1)

.

This theorem will be proven in Section 3. For now, we would like to comment on
it a bit and derive some corollaries. The first one justifies the title of this article.

Corollary 1.21. — The set N(f) has measure zero almost surely.

Proof. — The sequence (Xn)n>1 defines a nonincreasing sequence of bounded
random variables and therefore converges when n goes to infinity. Set

X = lim
n→∞

Xn.

Noting that the Xn are all bounded by 1, it follows from the dominated convergence
theorem that E[X] = limn→∞ E[Xn]. Observing that

∀x > 0,
(

1− x

qd−1

)qd−1

> 1− x

we deduce that the sequence (un)n>1 of Theorem 1.20 is decreasing and therefore
converges. Furthermore, its limit is necessarily 0. This implies that E[X] = 0.
Since X > 0, we deduce that X = 0 almost surely. Moreover, for a fixed f ∈ Ω,
X(f) is the volume of the

⋂
nNn(f) which is equal to N(f) because the latter is

closed. Therefore N(f) has measure zero almost surely. �

Around the Kakeya conjecture. In the real setting, the classical Kakeya conjecture
asks whether any Besikovitch set in Rd has maximal Minkowski/Hausdorff dimen-
sion. For Minkowski dimension, the ultrametric analogue of this conjecture can be
formulated as follows.



14 X. Caruso

Conjecture 1.22 (Kakeya Conjecture). — Let B be a bounded Besikovitch
set in Kd. For any positive integer n, let Bn be the (q−n)-neighbourhood of B:

Bn =
{
x ∈ Kd

∣∣∣ inf
y∈B
|x− y| 6 q−n

}
and µn be its Haar measure. Then | log µn| = o(n) when n goes to infinity.

Remark 1.23. — Using the fact the the balls of radius q−n are pairwise disjoint in
the non-archimedean setting, one derives that the minimal number of balls needed
to cover Bn is qndµn (see also Proposition 2.1). The Minkowski dimension of B is
then defined by the limit of the sequence:

log(qndµn)
n log q = d+ log µn

n log q
and thus is equal to d if and only if | log µn| = o(n).

The non-archimedean Kakeya conjecture is known in dimension 2 thanks to the
works of Dummit and Hablicsek [5, Theorem 1.2]. Before going further, we state a
slight improvement of Dummit and Hablicsek’s result.

Theorem 1.24. — Let B be a bounded Besikovitch set in K2. For any positive
integer n, let Bn be the (q−n)-neighbourhood of B and let µn be its Haar measure.
Then:

µn >
1

q−1
q+1 n+ 1

.

We postpone the proof of this theorem to §3.1 because it will be convenient to
write it down using the algebraic framework on which we will elaborate later on.
Instead let us go back to random non-archimedean Kakeya sets. Studying further
the asymptotic behaviour of the sequence (un) defined in Theorem 1.20, one can
determine an equivalent of the mean of the random variable Xn.

Proposition 1.25. — The asymptotic equivalence

E[Xn] ∼ 2 · (qd − 1)
(q − 1)(qd−1 − 1) ·

1
n

holds as n goes to infinity.

Proof. — A simple computation shows that un+1 = un − c · u2
n + o(u2

n) with
c = qd−1−1

2qd−1 . For n > 0, define wn = 1
un

, so that we have:

wn+1 − wn = un − un+1

unun+1
= cu2

n + o(u2
n)

unun+1
= cu2

n + o(u2
n)

u2
n − cu3

n + o(u3
n) = c+ o(1).

Thus wn ∼ cn and un ∼ 1
cn . The claimed result then follows from Theorem

1.20. �

It follows from Proposition 1.25 that

− logE[Xn] = logn+ log
(

(q − 1)(qd−1 − 1)
2 · (qd − 1)

)
+ o(1).

In particular | logE[Xn]| = o(n). Proposition 1.25 then might be thought as an
average strong version of Conjecture 1.22. We remark in addition that the lower
bound given by Theorem 1.24 is rather close to the expected value of Xn provided
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by Proposition 1.25: roughly they differ by a factor 2. We then expect the random
variables Xn to be quite concentrated around their mean. We refer to Section 4 for
numerical simulations supporting further this expectation.

2. Algebraic reformulation

The aim of this section is merely to rephrase the constructions, theorems and
conjectures of Section 1 in the more abstract framework of algebra in which the
proofs of Section 3 will be written.

For any positive integer n, set Rn = R/mn = R/πnR. It is a finite ring of
cardinality qn. Concretely if S ⊂ R is a set of representatives of the quotient
R/m = k, any class in Rn is uniquely represented by an element of the shape:

s0 + s1π + s2π
2 + · · ·+ sn−1π

n−1 (2.1)
where the si lie in S and we recall that π is a fixed uniformizer of R (that is a
generator of m). Let pn : Rd → Rdn denote the canonical projection taking a tuple
(x1, . . . , xd) to its class modulo mn (obtained by taking the class modulo mn of each
coordinate separatedly). Notice that, given x = (x1, . . . , xd) and y = (y1, . . . , yd)
in Rd, ‖x− y‖∞ 6 q−n if and only if xi ≡ yi (mod mn) for all i. As a consequence,
the closed ball of radius q−n and centre x is exactly Bx = p−1

n (pn(x)).

Proposition 2.1. — Let E be a subset of Rd and En denote its (q−n)-neigh-
bourhood, that is:

En =
{
x ∈ Kd

∣∣∣ inf
y∈E
|x− y| 6 q−n

}
.

Then En = p−1
n (pn(E)) and the volume of En is:

µ(En) = q−nd · Card pn(E).

Proof. — The first assertion is clear from what we have already said. To establish
the second assertion, it is enough to prove that each Bx has volume q−nd. Observe
that Bx = By + (y − x). By the properties of the Haar measure, we then must
have µ(Bx) = µ(By). Finally we note that the Bx are pairwise distinct and cover
the whole space Rd when x runs over the tuples (x1, . . . , xd) where each xi has the
shape (2.1). Since there are qnd such elements, we are done. �

2.1. The torsion Kakeya Conjecture. Recall that the sphere Sd−1(K) — or
equivalenty Sd−1(R) — consists of tuples (x1, . . . , xd) ∈ Rd having one invertible
coordinate. This algebraic description makes sense for more general rings and allows
us to define Sd−1(Rn) as the set of tuples (x1, . . . , xd) ∈ Rdn for which xi is invertible
in Rn for some i. Note that an element x ∈ Rn is invertible if and only if its image
in R/m = k does not vanish, i.e. if and only if x 6≡ 0 (mod m).

We can now extend the definition of a Besikovitch set (cf Definition 1.5) and
the Kakeya conjecture (cf Conjecture 1.22) over Rn.

Definition 2.2. — Let n be a positive integer and let ` ∈ J0, nK. Given a ∈
Sd−1(Rn), a segment of length q−` of direction a is a subset of Rdn of the form{
ta+ b : t ∈ m`

}
for some b ∈ Rdn.

A `-Besikovitch set in Rdn is a subset of Rdn containing a segment of length q−` in
every direction.
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Conjecture 2.3 (Torsion Kakeya Conjecture). — There exists a sequence2 of
positive real numbers (εn)n>1 converging to 0 satisfying the following property: for
any n > 1, any ` ∈ J0, nK and any `-Besikovitch set B in Rdn, we have:

logq CardB > n · (d− εn)
where logq stands for the logarithm in q-basis.

Theorem 1.24 admits an analogue in the torsion case as well; it can be formulated
as follows.

Theorem 2.4. — For any positive integer n, any integer ` ∈ J0, nK and any
`-Besikovitch set B in R2

n, we have:

CardB > q2(n−`) · 1
q−1
q+1 n+ 1

.

Again, we postpone the proof of this theorem to §3.1. Let us however notice
here that it implies Theorem 1.24. Indeed, let B be a bounded Besikovitch set in
K2. Let ` be an integer for which B is included in the ball of centre 0 and radius
q`. Then π`B ⊂ R and pn(π−`B) is a `-Besikovitch set in R2

n. Therefore, according
to the above theorem, one must have:

Card pn(π`B) > q2(n−`) · 1
q−1
q+1 n+ 1

.

Combining this with Proposition 2.1, we get the result.

2.2. Algebraic description of the projective space. The projective space
Pd−1(K) — considered as a metric space — which has been introduced in §1.2
admits an algebraic description as well. In order to explain it, let us first recall
that Pd−1(K) = Sd−1(K)/R×. This allows us to define a specialization map:

sp1 : Pd−1(K) −→ Pd−1(k)
[a1 : · · · : ad] 7→ [ā1 : · · · : ād]

where (a1, . . . , ad) ∈ Sd−1(K) and āi denotes the image of ai in k. With these
notations, the index piv(a) (defined in §1.2) appears as the first index of a non-
vanishing coordinate of sp1(a). We notice that the mapping sp1 is surjective and
that the preimage of any point in Pd−1(k) is in bijective correspondence with Rd−1.
Indeed let us define piv1(ā) as the smallest index of a non-vanishing coordinate of
ā and consider the unique representative (ā1, . . . , ād) of a such that āpiv1(ā) = 1.
Choose moreover a lifting a ∈ Rd of (ā1, . . . , ād) whose piv1(ā)-th coordinate is 1.
We can then define a bijection:

Hpiv1(ā) −→ sp−1
1 (ā)

x 7→ [a+ πx]

where Hpiv1(ā) denote the coordinate hyperplane of Rd defined by the equation
xpiv1(ā) = 0. We remark moreover that the vectors a+ πx appearing above are all
canonical representatives.

More generally, for any positive integer n, we define:
Pd−1(Rn) = Sd−1(Rn)/R×n

2This sequence may a priori depend on K, d and `.
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Given a ∈ Pd−1(Rn), let pivn(a) be the index of the first invertible coordinate
of a and cann(a) ∈ Sd−1(Rn) be the unique representative of a whose pivn(a)-th
coordinate is 1. We have a specialization map of level n:

spn : Pd−1(K) −→ Pd−1(Rn)
[a1 : · · · : ad] 7→ [a1 modmn : · · · : ad modmn].

Again spn is surjective and the preimage of any point a ∈ Pd−1(Rn) is isomorphic
to Rd−1 via

Hpivn(a) −→ sp−1
n (a)

x 7→ [cann(a) + πnx]
Similarly, given a second integer m > n, the reduction modulo mn defines a map
spm,n : Pd−1(Rm) → Pd−1(Rn). This map is surjective and its fibres are all in
bijective correspondence with Rd−1

m−n. It notably follows from this that

Card Pd−1(Rn) = q(d−1)(n−1) · q
d − 1
q − 1 . (2.2)

Proposition 2.5. — The collection of applications spn induces a bijection:

sp : Pd−1(K) −→ lim←−n P
d−1(Rn)

where the codomain is by definition the set of all sequences (xn)n>1 with xn ∈
Pd−1(Rn) and spn+1,n(xn+1) = xn for all n.

Proof. — We define a function ϕ in the opposite direction as follows. Let (xn)n>1
be a sequence in lim←−n P

d−1(Rn). The compatibility condition implies that pivn(xn)
is constant and that cann(xn) is the reduction modulo mn of cann+1(xn+1). There-
fore the sequence (cann(xn))n>1 defines an element x ∈ Rd. The piv1(x1)-th coor-
dinate of x is 1, so that x ∈ Sd−1(K). Define ϕ((xn)n>1) as the class of x in the
projective space Pd−1(K). It is clear that ϕ ◦ sp and sp ◦ ϕ are both the identity,
implying that sp is a bijection as claimed. �

Remark 2.6. — The proposition says that the closed balls of radius q−n in Kd

are exactly the fibres of the projection pn. In particular, the set of closed balls of
radius q−n is naturally in bijective correspondence with Rdn.

Algebraic version of the distance. For a, b ∈ Pd−1(K), define v(a, b) as the supre-
mum in N ∪ {+∞} of the set consisting of 0 and the positive integers n for which
spn(a) = spn(b). Thanks to Proposition 2.5, v(a, b) = +∞ if and only if a = b.

Proposition 2.7. — Given a, b ∈ Pd−1(K), we have dist(a, b) = q−v(a,b).

Proof. — Note that spn(a) = spn(b) if and only if a and b have the same image
in Pd−1(Rn), i.e. if and only if can(a) ≡ can(b) (mod mn). The proposition now
follows from Proposition 1.10. �

More generally, given a, b ∈ Pd−1(Rn), we define vn(a, b) as the biggest integer
v ∈ {0, 1, . . . , n} for which spn,v(a) = spn,v(b) (with the convention that v = 0
always satisfies the above requirement). As above vn(a, b) = n if and only if a = b.
A torsion analogue of Proposition 1.10 then holds.
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Proposition 2.8. — For a, b ∈ Pd−1(Rn), we can write:

cann(b)− cann(a) = πvn(a,b) · u
where u lies in Rdn and has at least one invertible coordinate.

Proof. — It is a simple adaptation of the proof of Proposition 1.10. �

It follows finally from the previous description that the closed balls of radius q−n
in Pd−1(K) are exactly the preimages of points of Pd−1(Rn) under the specialization
map spn. They are thus canonically indexed by Pd−1(Rn) (see also Remark 2.6).

2.3. Algebraic description of the universe. Recall that we have defined in §1.3
the set Ω (our universe) consisting of 1-Lipschitz functions Pd−1(K) → Rd. The
aim of this subsection is to revisit constructions and results of §1.3 with an algebraic
point of view. We recall that we have defined specialization maps spn : Pd−1(K)→
Pd−1(Sn) in §1.2 and, similarly, that we have introduced previously the projections
pn : Rd → Rdn taking a tuple to its reduction modulo mn.

The algebraic analogue of the existence of ψan
n (f) can be formulated as follows.

Proposition 2.9. — Let f ∈ Ω. For all positive integer n, there exists a unique
function ψn(f) : Pd−1(Rn)→ Rdn making the following diagram commutative:

Pd−1(K) Rd

Pd−1(Rn) Rdn

f

spn pn

ψn(f)

(2.3)

Remark 2.10. — Roughly speaking, the function ψn(f) encodes the action of
ψan
n (f) on closed balls of radius q−n.

Proof of Proposition 2.9. — The proposition can be derived from Proposition
1.18. We nevertheless prefer giving an independant and completely algebraic proof.

Let a, b ∈ Pd−1(K) with spn(a) = spn(b). By definition dist(a, b) 6 q−n. Thus
‖f(a) − f(b)‖∞ 6 q−n because f is assumed to be 1-Lipschitz. Thus f(a) and
f(b) lie in the same ball of radius q−n or, equivalently, pn ◦ f(a) = pn ◦ f(b). In
other words, for x ∈ Pd−1(K), pn ◦ f(x) depends only on spn(x). This implies the
existence of the required mapping fn. The uniqueness follows from the surjectivity
of spn. �

We emphasize that, we have not proved yet that ψn(f) is 1-Lipschitz. Indeed
this notion has not been defined yet. Here is the definition we will use.

Definition 2.11. — A function f : Pd−1(Sn) → Rdn is 1-Lipschitz if for all
a, b ∈ Pd−1(Sn):

f(a) ≡ f(b) (mod mvn(a,b))
where the above condition means that all the coordinates of f(bn) − f(an) lie in
mvn(a,b).

We denote by Ωn their set.

We notice that Ω1 is the of all set theoretical functions Pd−1(k)→ kd. Moreover,
given two integers m > n together with a function fm ∈ Ωm, it is easily checked
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that there exists a unique function ψm,n(fm) ∈ Ωn making the diagram below
commutative:

Pd−1(Rm) Rdm

Pd−1(Rn) Rdn

fm

spm,n pm,n

ψm,n(fm)

Lemma 2.12. — The function ψn takes its values in Ωn.

Proof. — Let f ∈ Ω. Let an, bn ∈ Pd−1(Sn). If an = bn, we have vn(an, bn) = n
and there is nothing to prove. Otherwise, pick a, b ∈ Pd−1(K) such that spn(a) = an
and spn(b) = bn. Then ψn(f) maps an and bn to pn(f(a)) and pn(f(b)) respectively.
We then need to prove that pn(f(a)) − pn(f(b)) = pn(f(a) − f(b)) has all its
coordinates in mvn(an,bn). But, using that f is 1-Lipschitz, we get:

‖f(a)− f(b)‖∞ 6 dist(a, b) = q−v(a,b) = q−vn(an,bn)

and we are done. �

One important benefit of working with Ωn instead of Ωan
n is that the former

is naturally endowed with algebraic structures. Precisely, one easily checks that
Ωn is a R-module for the usual operations (addition and scalar multiplication) on
functions and that the projection maps ψn : Ω → Ωn and ψm,n : Ωm → Ωn are all
R-linear.

The ψm,n are actually the exact algebraic analogue of the functions ψan
m,n intro-

duced in §1.3. In order to state an analogue of Proposition 1.19, we introduce the
additive group Gn+1 consisting of functions Pd−1(Rn+1) → kd and let it act on
Ωn+1 by

∀gn+1 ∈ Gn+1, ∀fn+1 ∈ Ωn+1, gn+1 • fn+1 = fn+1 + πngn+1.

Proposition 2.13. — The map ψn+1,n : Ωn+1 → Ωn is surjective. Moreover
the action of Gn+1 stabilizes each fibre of ψn+1,n and induces on it a free and
transitive action.

Remark 2.14. — Recall that an action of a group G over a space X is free and
transitive if, given two any points x, y ∈ X, there always exists a unique element
g ∈ G such that y = gx. This notably implies that, for all x ∈ X, the map
hx : G → X, g 7→ gx is a bijection. In particular X is either empty or in bijective
correspondence with G.

Proof of Proposition 2.13. — The surjectivity of ψn+1,n comes from that of
spn+1,n while the claimed properties on the action of Gn+1 are easily checked. �

Corollary 2.15. — The set Ωn has cardinality:

Card Ωn = q
d· q

d−1
q−1 ·

qn(d−1)−1
qd−1−1 .

Proof. — Proposition 2.13 implies:

Card Ωn = Card Ωn−1 · CardGn = Card Ωn−1 · qd Card Pd−1(Sn).

The claimed formula follows by induction using Eq. (2.2). �
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Proposition 2.16. — The mapping ψ : f 7→ (ψn(f))n>1 induces a bijection
between Ω and lim←−n Ωn where the latter is by definition the set of all sequences
(fn)n>1 with fn ∈ Ωn and ψn+1,n(fn+1) = fn for all n.

Proof. — We define the inverse bijection of ψ. Let (fn)n>1 be a sequence in
lim←−n Ωn. Let a ∈ Pd−1(K). The sequence of fn ◦ spn(a) defines an element in
lim←−nR

d
n, i.e. an element f(a) in Rd by completeness of R. This yields a function

f : Pd−1(K)→ Rd making all the diagrams

Pd−1(K) Rd

Pd−1(Rn) Rdn

f

spn pn

fn

commutative. One derives from this that f is 1-Lipschitz, i.e. f ∈ Ω. Moreover it
is apparently an antecedent by ψ of the sequence (fn)n>1. Finally, starting with
f ∈ Ω, the above construction applied with fn = ψn(f) clearly rebuilds f . This
concludes the proof. �

Proposition 2.17. — For all n and all subset E ⊂ Ωn, we have:

P[ψn(f) ∈ E] = Card E
Card Ωn

.

In other words, the map ψn sends the probability measure on Ω to the uniform
distribution on Ωn.

Proof. — Let fn, gn ∈ Ωn. Pick h ∈ Ω mapping to gn − fn under ψn. Taking
advantage of the fact that ψn is a group homomorphism, we derive that the trans-
lation by h sends the fibre over fn to the fibre over gn. The properties of the Haar
measure consequently implies that all the fibres of ψn have the same measure. The
proposition follows from this. �

2.4. Reformulation of the main Theorem. We fix a positive integer n. Follow-
ing the construction of Section 1, given a function f ∈ Ωn, we define a Besikovitch
set N(f) ⊂ Rdn by:

N(f) =
⋃

a∈Pd−1(Sn)

Sa(f) with Sa(f) =
{
t · cann(a) + f(a) : t ∈ Rn

}
.

where we recall that cann(a) ∈ Rd denote the unique representative of a whose first
invertible coordinate is equal to 1 (see §2.2). The relationship between the above
construction and that of Section 1 is made precise by the following lemma.

Lemma 2.18. — With the notation of §1.4, we have:
Xn(f) = q−nd · CardN(ψn(f))

for all f ∈ Ω.

Proof. — Set fn = ψn(f). Proposition 2.1 shows that
Xn(f) = q−nd · Card pn(N(f)).

It is then enough to show that N(fn) and pn(N(f)) have the same cardinality. We
will actually show that these two sets are equal.
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Pick first x ∈ N(f). Thus x ∈ Sa(f) for some a ∈ Pd−1(K) from which we
derive that pn(x) ∈ Sspn(a)(fn). Therefore pn(x) ∈ N(fn) and we have proved that
pn(N(f)) ⊂ N(fn). Conversely, take xn ∈ N(fn), so that xn = tn ·cann(an)+fn(a)
for some an ∈ Pd−1(Sn) and some tn ∈ Rn. Consider now a ∈ Pd−1(K) and t ∈ R
such that spn(a) = an and pn(t) = tn. Clearly x = t · cann(a) + f(a) sits in N(f)
and, coming back to the definition of ψn (cf Proposition 2.9), we observe that
pn(x) = xn. Thus xn ∈ pn(N(f)) and we have proved the reverse inclusion. �

Combining the above lemma with Proposition 2.17, we find that our main the-
orem can be rephrased as follows.

Theorem 2.19. — Let (un)n>0 be the sequence defined by the recurrence:

u0 = 1 ; un+1 = 1−
(

1− un
qd−1

)qd−1

.

and set:

u′n = 1− (1− un)1+q−1+···+q−(d−1)
.

Then, for any position integer n:

1
Card Ωn

·
∑
fn∈Ωn

CardN(fn) = qndu′n.

3. Proofs

In this section, we give complete proofs of Theorem 1.20 and Theorem 1.24 or,
more precisely, of their algebraic analogues, namely Theorem 2.4 and Theorem 2.19
respectively. The strategy of the proof of Theorem 2.4 follows closely that of the
real case (see [12, Theorem 2] or [1, Proposition 6.4]): a clever use of the Cauchy-
Schwarz inequality reduces the proof to finding good estimations of the size of the
intersections of two segments. This is achieved by counting the number of solutions
of some affine congruences.

The proof of Theorem 2.19 basically follows the same idea of understanding the
size of the intersections of unit length segments. Several complications nonetheless
occur. The most significant one is that we cannot restrict ourselves to 2 by 2
intersections but need to study s by s intersections for any integer s > 2. Roughly
speaking, using the inclusion-exclusion principle, we will write Xn as an alternating
sum:

Xn = Xn,1 −Xn,2 +Xn,3 − · · ·+ (−1)sXn,s + · · · . (3.1)

We will then compute the mean of Xn,s for all s, put it into the above formula and
end up this way with the value of E[Xn]. We would like to insist on the fact that,
although Xn is rather small (at least less than 1), the random variables Xn,s —
and their mean — may take very large values when n is large. For instance E[Xn,2]
goes to infinity when n grows up. There are then many compensations. Our proof
works because we will be able to keep exact values during all the computations and
then simplify the final result.
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3.1. Kakeya conjecture in dimension 2. We fix a positive integer n and an
integer ` ∈ J0, nK. Let B be a `-Besikovitch set in R2

n. Our aim is to prove that

CardB > q2(n−`) · 1
q−1
q+1 n+ 1

(3.2)

By definition B contains a segment Sa of length q−` and direction a for each a ∈
P1(Sn). Let ψa be the indicator function of Sa. Set ψ =

∑
a∈P1(Sn) ψa. Note that

ψ vanishes outside B. Applying the Cauchy-Schwarz inequality with ψ and the
indicator function of B, we then get:( ∑

x∈R2
n

ψ(x)
)2

6 CardB ·
∑
x∈R2

n

ψ(x)2.

Noting that ψ2
a = ψa and

∑
x∈R2

n
ψa(x) = Card Sa, the above inequality rewrites:(∑

a

Card Sa
)2
6 CardB ·

∑
a,b

Card (Sa ∩ Sb) (3.3)

where a and b run over P1(Rn). Recall that, given a, b ∈ P1(Rn), we have defined
in §2.2 an integer vn(a, b) between 0 and n.

Lemma 3.1. — (a) For a ∈ P1(Rn), we have Card Sa = qn−`.
(b) For a, b ∈ P1(Rn), we have Card (Sa ∩ Sb) ∈ {0, qmin(n−`,vn(a,b))}.

Proof. — (a) Recall that Sa consists of points mt = t · cann(a) + a′ where t runs
over π`Rn and a′ ∈ R2

n is fixed. We claim that these points are pairwise distinct.
Indeed remember the pivn(a)-th coordinate of cann(a) is equal to 1. Consequently
the pivn(a)-th coordinate of mt is t+ c where c ∈ Rn is some constant. Our claim
then becomes clear and it follows from it that the map π`Rn → Sa, t 7→ mt is
bijective. Hence Card Sa = qn−`.
(b) Thanks to what we have just explained, there exist a′, b′ ∈ Rn for which the
cardinality of Sa ∩ Sb is equal to the number of solutions of the equation:

u · cann(a) + a′ = v · cann(b) + b′

where the unknown are u and v run over π`Rn. The number of solutions of this
affine system is either 0 or equal to the number of solutions of the associated
homogeneous system, namely:(

u v
)
·
(
a1 a2
b1 b2

)
= 0

where can(a) = (a1, a2) and can(b) = (b1, b2). Thanks to (a direct adaptation
of) Corollary 1.11, the above square matrix is equivalent to the diagonal matrix
Diag(1, πvn(a,b)). In other words there exists a linear change of basis (u, v) 7→ (u′, v′)
after which our system rewrites:{

u′ = 0
πvn(a,b)v′ = 0 i.e.

{
u′ = 0
πn−vn(a,b) divides v′

It is now clear that this system has qmin(n−`,vn(a,b)) solutions in (π`Rn)2. �
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Coming back to the inequality (3.3), we obtain:

CardB >
(
Card P1(Rn) · qn−`

)2∑
a,b q

vn(a,b) = q4n−2`−2 · (q + 1)2∑
a,b q

vn(a,b) (3.4)

where a and b run over P1(Rn). Now fix a ∈ P1(Rn) and observe that the set of
b in P1(Rn) for which vn(a, b) > v is a fibre of spn,v. Thanks to the results of
§2.2, there are qn−v of them if v > 0 and, according to our convention, there are
Card P1(Rn) = qn−1(q + 1) of them when v = 0. Therefore, when a remains fixed,
we obtain:∑

b

qvn(a,b) = 2qn +
n−1∑
v=1

qv · (qn−v − qn−v−1)

= (n+ 1) qn − (n− 1) qn−1 = n qn−1(q − 1) + qn−1(q + 1)
Summing up over all a, we get:∑

a,b

qvn(a,b) = Card P1(Rn) ·
(
n qn−1(q − 1) + qn−1(q + 1)

)
= qn−1(q + 1) ·

(
n qn−1(q − 1) + qn−1(q + 1)

)
.

Substituting this in (3.4), we end up with Eq. (3.2) and the proof is complete.

3.2. Average size of a random Kakeya set. We now focus on the proof of
Theorem 2.19 (which is equivalent to Theorem 1.20 thanks to the results of §2.4).
We fix a positive integer n and endow Ωn with the uniform distribution. Recall
that to any function f ∈ Ωn, we have attached the Kakeya set:

N(f) =
⋃

a∈Pd−1(Sn)

Sa(f) with Sa(f) =
{
t · cann(a) + f(a) : t ∈ Rn

}
.

Set C(f) = CardN(f) and, given in addition a subset A of Pd−1(Sn), define:

CA(f) = Card
⋂
a∈A

Sa(f). (3.5)

The inclusion-exclusion principle readily implies:

C(f) =
∑

A⊂Pd−1(Sn)

(−1)1+Card A · CA(f)

from what we get:

E[C] =
∑

A⊂Pd−1(Sn)

(−1)1+Card A · E[CA]. (3.6)

Remark 3.2. — The random variables Xn,s considered in the introduction of
Section 3 are related to the CA as follows:

Xn,s = q−nd ·
∑

A⊂Pd−1(Sn)
Card A=s

CA.

Our strategy is now clear: first, we compute the expected values of the CA and
second, we inject the obtained result in Eq. (3.6). The first step is achieved in
§3.2.2 while the second is reached in §3.2.3. The first paragraph (§3.2.1) is devoted
to work out one important notion on which the rest of the proof will be based.
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3.2.1. The height function. For i ∈ {1, . . . , n}, choose and fix a total order on
Pd−1(Si) in such a way that the implication:

a < b =⇒ spi,i−1(a) < spi,i−1(b) (3.7)

holds for i > 2 and a, b ∈ Pd−1(Si). (We recall that the specialization maps
spi,i−1 were defined in §2.2.) Such orders do exist. Indeed, pick any total or-
der ≺j on Pd−1(Sj) (1 6 j 6 n) and, for a, b ∈ Pd−1(Si), define a < b when
( spi,1(a), spi,2(a), . . . , spi,i−1(a), a ) is less than ( spi,1(b), spi,2(b), . . . , spi,i−1(b), b )
for the lexicographic order with respect to the ≺j . It is then easily checked that
(3.7) holds.

Alternatively, a family of total orders satisfying the requirement (3.7) can be
built from a family of orders over W/πiW (1 6 i 6 n) satisfying an analoguous
condition: for a, b ∈ Pd−1(Si), we agree that a < b when cani(a) < cani(b) for the
lexicographic order on Sdi .

Example 3.3. — We consider W = Zp. We know that every element α ∈ W/pi
can be written uniquely as a sum α = α0 + pα1 + p2α2 + · · ·+ pi−1αi−1 where the
αj are all between 0 and p−1. Given

α = α0 + pα1 + p2α2 + · · ·+ pi−1αi−1

β = β0 + pβ1 + p2β2 + · · ·+ pi−1βi−1

as above, define α < β when (α0, . . . , αi−1) is less than (β0, . . . , βi−1) for the lex-
icographic order. Notice that this is not the usual order on the integers: here we
first compare the “less significant” digits. One can check that these orders satisfy
(3.7). Therefore, they can be used to build a family of orders on Pd−1(W/piW ) as
explained above.

To illustrate this construction, let us consider the family of elements of P1(Z/55Z)
shown in the left column of Figure 3.1 where all the coordinates are written in radix
5. The canonical representatives of these elements appear in the second column of
Figure 3.1, while the last column shows the same elements sorted in increasing
order.

x0 = [ 20230 : 23223 ]
x1 = [ 44410 : 43242 ]
x2 = [ 40121 : 01431 ]
x3 = [ 32420 : 20302 ]
x4 = [ 93224 : 11414 ]
x5 = [ 44220 : 43232 ]
x6 = [ 13111 : 24321 ]
x7 = [ 42030 : 01011 ]
x8 = [ 14121 : 03431 ]
x9 = [ 14010 : 23212 ]

x10 = [ 14330 : 34131 ]

can(x0) = ( 21010 , 1 )
can(x1) = ( 44330 , 1 )
can(x2) = ( 1 , 33111 )
can(x3) = ( 32210 , 1 )
can(x4) = ( 1 , 12111 )
can(x5) = ( 30210 , 1 )
can(x6) = ( 1 , 24111 )
can(x7) = ( 14230 , 1 )
can(x8) = ( 1 , 11111 )
can(x9) = ( 24330 , 1 )

can(x10) = ( 12430 , 1 )

x0 = [ 21010 : 1 ]
x5 = [ 30210 : 1 ]
x3 = [ 32210 : 1 ]
x7 = [ 14230 : 1 ]
x9 = [ 24330 : 1 ]
x1 = [ 44330 : 1 ]

x10 = [ 12430 : 1 ]
x8 = [ 1 : 11111 ]
x4 = [ 1 : 12111 ]
x2 = [ 1 : 33111 ]
x6 = [ 1 : 24111 ]

Figure 3.1. Sorting 11 points in P1(Z/55Z)
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Definition 3.4. — Let A be a subset of Pd−1(Sn) of cardinality ` + 1. The
height function of A is the function:

hA : J1, `K → J1, nK
j 7→ n− vn(aj , aj−1)

where the aj (0 6 j 6 `) are the elements of A sorted by increasing order.

It is sometimes convenient to extend the function hA by setting hA(0) = n. We
will often represent a height function as a table with n rows (labeled from 1 to n)
and ` columns (labeled from 1 to `), where the cell (i, j) is tinted in gray when
i > h(j). Sometimes we will add a 0-th column on the left with all cells left white,
in agreement with our convention hA(0) = n.

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Figure 3.2. Representation of a height function (with n = 5 and
` = 10)

Example 3.5. — We continue Example 3.3. The height function associated to
the set A = {a0, . . . , a10} can be directly read off from the last column of Figure 3.1:
hA(j) is nminus the number of ending digits which coincide between the coordinates
of the element written on the j-th row and the one written on the (j+1)-th row.
We get:

j 1 2 3 4 5 6 7 8 9 10
hA(j) 3 2 4 3 1 3 5 2 2 2

The geometrical representation of hA is displayed on Figure 3.2.

Interesting information can be read off immediately from this representation.
For example, the numbers of white cells on the i-th row (including that on the 0-th
column) indicates the number of different values taken by the spn,n+1−i(aj) (for
0 6 j 6 n). More precisely, if j < j′, the equality spn,n+1−i(aj) = spn,n+1−i(aj′)
holds if and only if the cells (i, j+1), (i, j+2), . . . , (i, j′) are all tinted in gray. This
remark notably implies that

vn(aj , aj′) = n−max
(
h(j + 1), h(j + 2), . . . , h(j′)

)
(3.8)

provided that j < j′. In order to visualize even better the above properties, it can
be helpful to fill the table of Figure 3.2 by writing the value spn,n+1−i(aj) is the
cell (i, j). The three following properties then hold:
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(i) each cell contains an element which lies in the fibre of the element written
just below (or, equivalently, each element of the table specializes to the
element written just above),

(ii) each gray cell contains the same element as the cell immediately on the
left,

(iii) on each line, the elements are sorted in increasing order.
Conversely remark that any filling of the table which satisfies the three above
requirements corresponds to one unique choice of A: it suffices to read the aj on
the first line. As we are going to explain now, this point of view will be particularly
suitable for counting the number of subsets A having a fixed height function.

Definition 3.6. — Let h : J1, `K→ J1, nK be any function.
The multiplicity function of h is the function M(h) : J1, `K → N taking an integer
j ∈ J1, `K to the number of indices j′ ∈ J1, jK for which:

h(j′) = h(j) and h(x) 6 h(j) for all x ∈ Jj, j′K.

The weight function of h is the function W (h) : J1, `K→ R defined by:

W (h)(j) = 1
qd−1 ·

qd−1 −M(h)(j)
M(h)(j) + 1 .

The modified weight function of h is the function W ′(h) : J1, `K→ R defined by:

W ′(h)(j) = 1
qd−1 ·

qd−1 −M(h)(j)
M(h)(j) + 1 if h(j) 6= n

1
qd−1 ·

1 + q + · · ·+ qd−1 −M(h)(j)
M(h)(j) + 1 if h(j) = n.

We emphasize that j′ = j is allowed in the definition of the multiplicity function,
so that M(h)(j) is always at least 1. As an example, the values of the multiplicity
function attached to the function hA represented on Figure 3.2 are:

j 1 2 3 4 5 6 7 8 9 10
hA(j) 3 2 4 3 1 3 5 2 2 2

M(hA)(j) 1 1 1 1 1 2 1 1 2 3

Proposition 3.7. — Let h : J1, `K → J1, nK be a function. The number of
subset A of Pd−1(Sn) (necessarily of cardinality ` + 1) whose height function is h
is:

(
1 + q−1 + q−2 + · · ·+ q−(d−1)) · q(d−1)n ·

∏̀
j=1

W ′(h)(j) · q(d−1)·h(j). (3.9)

Proof. — Let us first explain that the value (3.9) can be easily read off on the
representation by cells (see Figure 3.2) we have introduced before. To do this,
write 1 + q+ · · ·+ qd−1 in the cell (0, n), write the number qd−1W ′(h)(j) in the cell
(h(j), j) (0 6 j 6 `) and qd−1 in all other white cells. In the example of Figure 3.2,
we get:
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0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5 P

A

A

A

A

A−1
2

A

A

A−1
2

A

A−1
2

A

A

A

A−1
2

A

A A−1
2

A−2
3

A

A

P−1
2

A

A

A

A

A−1
2

A

A−2
3

A

A−3
4

A

where we have set A = qd−1 (A for “affine”) and P = 1 + q + · · · + qd−1 (P for
“projective”). It can then be easily checked that the quantity (3.9) equals the
product of all the numbers written in the above table.

Now recall that we have previously defined a bijection between the set of all A
such that hA = h and the fillings of the table corresponding to h obeying to the
requirements (i)–(iii) listed on page 26. We are going to show that the number of
such fillings of the m last rows is exactly the product of the numbers appearing on
the m last rows. This will conclude the proof. We proceed by induction on m. For
m = 1, we have to count the number of strictly increasing sequences of elements of
Pd−1(k) of length c where c is the number of white cells located on the last row.
The data of such a sequence is obviously equivalent to the data of the set of its
values. Since furthermore Card Pd−1(k) = P , there are then

(
P
c

)
such sequences

and we are done for m = 1. More generally, going from m to m + 1 is obtained
in a similar fashion once we have noticed that the fibres of spn−m+1,n−m all have
cardinality A (see the discussion just above Eq. (2.2), page 17). �

3.2.2. Directional expected values. Throughout this paragraph, we fix a subset A
of Pd−1(Sn). We write A = {a0, a1, . . . , a`} with a0 < a1 < · · · < a` and denote by
hA the height function of A. Recall that we have defined a random variable CA on
Ωn by Eq. (3.5). The aim of this paragraph is to compute its mean. In order to do
so, we consider the following evaluation mapping:

evA : Ωn → (Rdn)`+1

f 7→
(
f(a0), f(a1), . . . , f(a`)

)
.

Clearly, CA(f) only depends on evA(f) for f ∈ Ωn. Moreover evA is a group
homomorphism, which notably implies that the fibres of evA all have the same
cardinality. As a consequence, letting BA denote the image of evA, we get:

E[CA] = 1
Card BA

·
∑
b∈BA

Card
⋂̀
j=0

Σaj
(bj) (3.10)

where Σaj
(bj) =

{
t · cann(ai) + bi : t ∈ Rn

}
.

Lemma 3.8. — The set BA consists of tuples (b0, b1, . . . , b`+1) ∈ (Rdn)`+1 such
that bj−1 ≡ bj (mod mn−h(j)) for all j ∈ J1, `K.

Proof. — By definition of hA, we have vn(aj , aj−1) = n− hA(j) for all j. Going
back to the definition of Ωn, we deduce that, for any f ∈ Ωn and j ∈ J1, `K, we
must have f(aj−1) ≡ f(aj) (mod mn−hA(j)). In other words, evA takes its values
in BA.
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Conversely pick (b0, b1, . . . , b`) ∈ BA. Given a ∈ Pd−1(Sn), let j(a) be the
smallest index for which vn(a, aj(a)) is maximal and set f(a) = bj(a). This defines
a function f : Pd−1(Sn) → Rdn satisfying f(aj) = bj for all j. It remains to prove
that f ∈ Ωn, i.e. that f is 1-Lipschitz. Let a, a′ ∈ Pd−1(Sn) and set for simplicity
j = j(a) and j′ = j(a′). By possibly swapping a and a′, we may assume that
j 6 j′. If j = j′ there is nothing to prove. Otherwise, it follows from Eq. (3.8)
and the definition of BA that bj ≡ bj′ (mod mvn(aj ,aj′ )). This readily implies the
1-Lipschitz condition under the extra assumption vn(a, a′) 6 vn(aj , aj′) since then
mvn(aj ,aj′ ) ⊂ mvn(a,a′). Let us now examine the case where vn(a, a′) > vn(aj , aj′).
Put ν = vn(a, a′). From the assumption vn(a, aj) > ν, we would derive:

vn(a′, aj′) > vn(a′, aj) > min(vn(a′, a), vn(a, aj)) > ν
and would deduce:

vn(aj , aj′) > min(vn(aj , a), vn(a, a′), vn(a′, aj′)) = ν

which is a contradiction. Hence vn(a, aj) < ν and similarly vn(a′, aj′) < ν. Noting
that vn(x, z) = min(vn(x, y), vn(y, z)) as soon as vn(x, y) 6= vn(y, z) (which comes
from the very first definition of vn), we find:

vn(a′, aj) = vn(a, aj) > vn(a, aj′) = vn(a′, aj′).
Now we conclude by remarking that the above inequality cannot be true since it
contradicts the minimality of j′ (remember that we had assumed j < j′). �

Corollary 3.9. — We have:

Card BA = qnd ·
∏̀
j=1

qd·hA(j). (3.11)

Proof. — There are qnd possibilities for the choice of b0. Once this choice has
been made, b1 must satisfy b1 ≡ b0 (mod mn−hA(1)), which leads to qd·hA(1) possi-
bilities. Repeating this reasoning, we end up with the announced formula. �

Proposition 3.10. — We have:

E[CA] = qn ·
∏̀
j=1

q−(d−1)·hA(j).

Proof. — Fix a point c ∈ Rdn. We are going to count the number of parameters
(b0, b1, . . . , b`) ∈ BA for which c lies on all lines Σaj

(bj) (0 6 j 6 `). Call Nc this
number.

We first focus on b0. By definition c ∈ Σa0(b0) if and only if there exists t0 ∈ Rn
such that t0 · can(a0) + b0 = c. Since one of the coordinates of can(a0) is equal to 1,
the mapping t 7→ t · can(a0) + b0 is injective and there is then exactly CardRn = qn

acceptable values for b0.
Suppose now that we are given b0, . . . , bj satisfying the above condition and let

us count the number of possibilities for completing the sequence with an extra term
bj+1. This bj+1 has to satisfy the two following conditions:

∃tj+1 ∈ Rn, tj+1 · can(aj+1) + bj+1 = c

bj+1 ≡ bj (mod mn−hA(j))
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Our problem then amounts to counting the number of values tj+1 ∈ Rn such that

tj+1 · can(aj+1) + bj ≡ c (mod mn−hA(j)). (3.12)

Since c ∈ Σaj
(bj), we know that there exists some tj ∈ Rn such that

tj · can(aj) + bj = c.

By Proposition 2.8, we know moreover that can(aj) ≡ can(aj+1) (mod mn−hA(j)).
Thus tj+1 = tj is a solution of (3.12) and, using again that can(aj+1) has one
coordinate equal to 1, we find that Eq. (3.12) rewrites tj+1 ≡ tj (mod mn−hA(j)).
There are thus qhA(j) possibilities for tj+1.

As a consequence of the previous discussion, we find that

Nc = qn · qhA(1) · qhA(2) · · · qhA(`)

(independently on c). Finally notice that∑
b∈BA

Card
⋂̀
j=1

Σaj
(bj) =

∑
c∈Rd

n

Nc = qnd · qn · qhA(1) · qhA(2) · · · qhA(`)

and conclude by combining this equality with Eq. (3.11) in Eq. (3.10). �

3.2.3. Summing up all contributions. Let Hn be the set of all functions h : J1, `K→
J1, nK for ` varying in J0,+∞J (agreeing as usual that there exists a unique function
h : ∅ → J1, nK). For h ∈ Hn, denote `(h) its `. Combining Proposition 3.7 and
Proposition 3.10, we find that the expected value of C is:

E[C] =
(
1 + q−1 + q−2 + · · ·+ q−(d−1)) · qnd · ∑

h∈Hn

(−1)`(h)
`(h)∏
i=1

W ′(h)(i) (3.13)

Recall that we have defined a sequence (un)n>0 by:

u0 = 1 ; un = 1−
(

1− un−1

qd−1

)qd−1

. (3.14)

Proposition 3.11. — The following formula holds:

un =
∑
h∈Hn

(−1)`(h)
`(h)∏
i=1

W (h)(i).

Proof. — For simplicity, we set w(h) =
∏`(h)
i=1 W (h)(i). The key observation is

the following: to each h ∈ Hn, one can attach a finite sequence h0, h1, . . . , hm of
functions in Hn−1 as follows. Let j1 < j2 < · · · < jm be the integers for which
h(ji) = n, set j0 = 0 and jm+1 = `(h) + 1 and, for i ∈ J0,mK, define:

hi : J1, ji+1−ji−1K → J1, n−1K
j 7→ h(j + ji).

On the representation of Figure 3.2, the functions hi then correspond to the bands
(with last row erased) located between two white columns. This construction clearly
defines a bijection between Hn and the set of finite sequences of elements of Hn−1.
This bijection is moreover compatible with the length and the weight functions in
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the following sense: if h corresponds to (h0, h1, . . . , hm) then `(h) = m + `(h1) +
`(h2) + · · ·+ `(hm) and

W (h)(j) = W (hi)(j − ji) for ji < j < ji+1

W (h)(ji) = 1
qd−1 ·

qd−1 − i
i+ 1

Hence w(h) = q−(d−1)(m+1) ·
(
qd−1

m+1
)
· w(h1) · w(h2) · · ·w(hm). Taking the sum over

all h ∈ Hn, we find the relation:∑
h∈Hn

(−1)`(h)w(h) =
∞∑
m=0

(−1)m ·
(
qd−1

m+ 1

)
·
( 1
qd−1

)m+1 ∑
h0,...,hm

∈Hn−1

m∏
i=0

(−1)`(hi)w(hi)

=
∞∑
m=0

(−1)m ·
(
qd−1

m+ 1

)
·
( 1
qd−1

)m+1
·
( ∑
h∈Hn−1

(−1)`(h)w(h)
)m+1

= 1 −
qd−1∑
m′=1

(
qd−1

m′

)
·
(
− 1
qd−1

)m′
·
( ∑
h∈Hn−1

(−1)`(h)w(h)
)m′

= 1 −
(

1− 1
qd−1

∑
h∈Hn−1

(−1)`(h)w(h)
)qd−1

.

The proposition now follows by comparing the above relation with Eq. (3.14). �

Slightly adapting the arguments of the above proof, we get:

(
1 + q−1 + q−2 + · · ·+ q−(d−1)) · ∑

h∈Hn

(−1)`(h)
`(h)∏
i=1

W ′(h)(i)

= 1−
(

1− un−1

qd−1

)1+q+···+qd−1

= u′n

where u′n is defined in the statement of Theorem 2.19 (page 21). Using Eq. (3.13),
we end up with E[C] = qndu′n and Theorem 2.19 is proved.

4. Numerical simulations

We recall that the main objects studied in this paper are the random Kakeya sets
and especially the random variables Xn (defined in §1.4) that measure their size.
In this last section, we present several numerical simulations showing the behaviour
of the Xn beyond their mean.

All our experiments have been done over the field of 2-adic numbers Q2. We
recall briefly that Q2 is the completion of Q for the 2-adic norm | · |2 defined, for
two integers n and m, by:

|n|2 = 2−v if 2v is the highest power of 2 dividing n
and

∣∣ n
m

∣∣
2 = |n|2

|m|2 .

The unit ball of Q2 is the so-called ring of 2-adic integers Z2. Any element x in it
can be uniquely written as a convergent series

x = s0 + 2s1 + 22s2 + 23s3 + · · ·+ 2nsn + · · ·
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def random_l ipsch i tz_iter (d , n ) :
i f n == 1 :
#Run over elements a ∈ Pd−1(Z/2Z) according to the position of the first nonzero coordinate
for piv in range (d ) :

for a in xmrange_iter ( piv ∗ [ [ 0 ] ] + [ [ 1 ] ] + ( d−1−piv ) ∗ [ [ 0 , 1 ] ] ) :
# Gererate a random image b ∈ (Z/2Z)d of a

b = [ randint (0 , 1 ) for _ in range (d) ]
y i e l d ( piv , vec to r ( a ) , vec to r (b ) )

else :
# Run over elements a ∈ Pd−1(Z/2n−1Z) and call b the image of a

for ( piv , a , b ) in random_l ipsch i tz_iter (d , n−1):
q = 2∗∗(n−1)
# Run over the elements a + a′ of the fibre of spn,n−1 above a

for aprime in xmrange_iter ( piv ∗ [ [ 0 , q ] ] + [ [ 0 ] ] + ( d−1−piv ) ∗ [ [ 0 , q ] ] ) :
# Generate a random image b + b′ ∈ (Z/2Z)d (with 2n−1 divides b′) of a + a′

bprime = [ q∗ rand int (0 , 1 ) for _ in range (d) ]
y i e l d ( piv , a+vecto r ( aprime ) , b+vecto r ( bprime ) )

Figure 4.1. SageMath function generating a random element
in Ωan

n for K = Q2

where the si all lie in S = {0, 1} (decomposition in 2-basis). The si define mutually
independent Bernoulli variables of parameter 1

2 on Z2. In other words, generating
a random element in Z2 reduces to pick each digit si uniformly in S and indepen-
dently.

4.1. Empirical distribution of the variables Xn. We recall that our universe Ω
is the set of 1-Lipschitz functions Pd−1(K)→ Rd. By the results of §1.3, Ω comes
equipped with projection maps Ω → Ωan

n where Ωan
n was defined as the subset

of Ω consisting of functions which are constant on each closed ball of radius q−n
and takes their values in J0, 2n−1Kd. Alternatively functions in Ωan

n can be viewed
as mapping Pd−1(Sn) → Sdn satisfying an extra condition (see §2.3). Two other
interesting features of Ωan

n are the following: (1) the measure induces on Ωan
n by the

projection Ω → Ωan
n is the uniform distribution and (2) the random variable Xn

factors through Ωan
n .

We recall also that one can furthermore decompose any function in Ωan
n as a

sum:
(g1 ◦ sp1) + 2 · (g2 ◦ sp2) + 22 · (g3 ◦ sp3) + · · ·+ 2n−1 · (gn ◦ spn) (4.1)

where gi : Pd−1(Si)→ Sd is any function. Conversely any function of the shape (4.1)
lies in Ωan

n . Generating a random function in Ωan
n then reduces to pick the gi

(1 6 i 6 n) uniformly and independently. Picking each gi is also easy: we enu-
merate the elements of Pd−1(Si) (this can be done using the results of §2.2) and
choose their image randomly and independantly in Sd. The SageMath function
presented in Figure 4.1 generates a random element fn ∈ Ωan

n according to the
uniform distribution. More precisely, it returns an iterator over the sequence of
triples (piv(a), a, fn(a)) where a runs over Pd−1(Sn). (Note that the first coordi-
nate piv(a) is useful for the recursion but may be then omitted.) One nice feature
of this implementation is its memory cost which (almost) does not grow with n.
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n 5 6 7 8 9 10 11
E[Xn]

(theoretical value)
0.534 0.487 0.448 0.415 0.386 0.362 0.340

E[Xn]
(empirical value)

0.534 0.487 0.448 0.415 0.386 0.362 0.340

σ[Xn]
(empirical value)

0.0316 0.0229 0.0169 0.0126 0.0097 0.0076 0.0061

Figure 4.2. Expected value and standard deviation of Xn for
K = Q2 and d = 2

n 3 4 5 6 7 8 9
E[Xn]

(theoretical value)
0.628 0.551 0.490 0.442 0.402 0.369 0.341

E[Xn]
(empirical value)

0.628 0.551 0.490 0.442 0.402 0.369 0.341

σ[Xn]
(empirical value)

0.0502 0.0371 0.0286 0.0227 0.0187 0.0155 0.0132

Figure 4.3. Expected value and standard deviation of Xn for
K = Q2 and d = 3

The tables of Figure 4.2 and Figure 4.3 show the expected value and the stan-
dard deviation of some of Xn observed on a sample (renewed for each value of
n) of 100, 000 random Kakeya sets in dimension 2 and 3 respectively. We note in
particular that

• the empirical mean agrees with the theoretical one (given by Theorem 1.20)
up to 10−3,

• the standard deviation is quite small and seems to converge to 0 faster than
the mean, i.e. faster than 1

n (although this phenomenon is less apparent in
dimension 3).

Going further one can draw the empirical “density”3: we subdivise R into small
intervals and count, for each of them, the proportion of sample points (renormalized
by the size of the interval) leading to a point in it. The results are displayed in
Figure 4.4 (page 33) and Figure 4.5 (page 34) in dimension 2 and 3 respectively.
The red and green vertical lines (which actually always collapse) in these pictures
indicate the theoretical mean and the empirical mean of Xn respectively.

For a fixed dimension, the density curves (for various n) all have a similar shape.
This may suggest that the law of Xn — correctly renormalized — converges to
some limit. We believe that it would be very interesting to investigate further
this question. For example if one can compute this limit and check that it is zero

3It is not actually a density in the usual sense because the variables Xn take their values in a
discrete subset of R.
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n = 5:

n = 10:

n = 11:

Figure 4.4. Empirical density of Xn for K = Q2 and d = 2
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n = 3:

n = 8:

n = 9:

Figure 4.5. Empirical density of Xn for K = Q2 and d = 3
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until some point, it would eventually imply the Kakeya conjecture for almost all
non-archimedean Kakeya sets.

We finally remark that, on the first diagram of Figure 4.4, one can clearly sep-
arate two curves. This reflects a parity phenomenon: qndXn = 210X5 is even with
probability ≈ 73% and odd with probability ≈ 27%. The curve below then corre-
sponds to odd values of X5 while the curve above corresponds to even values. This
phenomenon tends to disappear rapidly as n grows large.

4.2. Visualizing a random 2-adic Kakeya set. In order to draw a 2-adic
Kakeya set sitting naturally in Zd2, we will necessarily need to relate Z2 and R.
In order to do so, we use the “reverse” function r : Z2 → [0, 1] mapping the 2-adic
integer

∑∞
i=0 2isi (with si ∈ {0, 1}) to the real number

∑∞
i=0 2−i−1si.

Note that r is continuous (it is actually 1-Lipschitz) but not injective since the
binary representation of a real number fails to be unique in general. For instance
1
2 has two preimages which are 1 ∈ Z2 and −2 ∈ Z2. The closed intervals [0, 1

2 ]
and [ 1

2 , 1] correspond to the disjoint cosets 2Z2 and 2Z2 + 1 respectively. Note that
the latter are open and closed in Z2. More generally all real number of the form
a

2n have two distinct preimages in Z2 and there always exist two closed intervals
meeting a

2n corresponding to two open closed subsets of Z2.

Remark 4.1. — There actually exist closed embeddings Z2 → R; an example of
it is the Cantor mapping C taking

∑∞
i=0 2isi ∈ Z2 to 2 ·

∑∞
i=0 3−i−1si. The image

of C is the usual triadic Cantor set and C induces an homeomorphism between
it and Z2. We nevertheless preferred to use r because it maps Z2 to an interval
whereas C maps Z2 to a null set. Working with C has then two disadvantages: it
would lead to undrawable pictures on the one hand and would not reflect properly
the properties we want to emphasize on the other hand.

Viewing Z2
2 in R2 through the map (r, r), the picture of Figure 4.6 (page 36)

represents a random Kakeya set — or more precisely its (2−13)-neighbourhood —
in Z2

2. An animation showing a 2-adic needle moving continuously in the 2-adic
plane and filling a 2-adic Kakeya set is available at the URL:

http://xavier.toonywood.org/papers/publis/kakeya/kakeya-2d.gif
Finally, a 3-dimensional 2-adic Kakeya set is displayed on Figure 4.7 (page 37) and
a movie showing it on different angles can be found at:

http://xavier.toonywood.org/papers/publis/kakeya/kakeya-3d.mp4

Appendix: Discrete valuation fields

This appendix is written for the benefit of readers who are not familiar with
non-archimedean geometry. It presents a quick summary of the most important
basic definitions and facts of the field. All the material presented below is very
classical.

Definitions. A discrete valuation field is a field K equipped with a map val : K →
Z ∪ {+∞} (the so-called valuation) satisfying the following axioms:

(i) val(x) = +∞ if and only if x = 0,
(ii) val(xy) = val(x) + val(y),
(iii) val(x+ y) > min(val(x), val(y))

http://xavier.toonywood.org/papers/publis/kakeya/kakeya-2d.gif
http://xavier.toonywood.org/papers/publis/kakeya/kakeya-3d.mp4
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Figure 4.6. A 2-dimensional random Kakeya set over Q2

for all x and y in K. The valuation val is non trivial if there exists an element
x ∈ K? with val(x) 6= 0. Under this additional assumption, the set val(K?) is
an infinite subgroup of Z and therefore is equal to nZ for some positive integer n.
An element π ∈ K of valuation n is called a uniformizer of K. One can always
renormalize the valuation (by dividing it by n) in order to ensure n = 1.

The valuation on K readily defines a family of absolute values |·|a (a > 1) on K
by:

∀a ∈ (1,∞), ∀x ∈ K, |x|a = a−val(x)

with the convention that a−∞ = 0. Each of these absolute values defines a distance
da on K by the usual formula da(x, y) = |x − y|a. It is easily seen that all these
distances define the same topology on K. We underline that da is ultrametric in
the sense that

∀x, y, z ∈ K, da(x, z) 6 max
(
da(x, y), da(y, z)

)
. (A.1)

This stronger version of the triangle inequalities has unexpected and important
consequences. For instance it implies that da(x, z) = max

(
da(x, y), da(y, z)

)
as

soon as da(x, y) 6= da(y, z), showing then that every triangle in K is isosceles.
Similarly if two balls B1 and B2 of K meet, we necessarily have B1 ⊂ B2 or
B2 ⊂ B1.
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Figure 4.7. A 3-dimensional random Kakeya set over Q2

Let R be the closed unit ball of K (this does not depend on the parameter a);
alternatively R is the subset of K consisting of elements x with nonnegative valua-
tion. An important remark following from axioms (ii) and (iii) is that R is a subring
of K; it is usually called the ring of integers of K. The invertible elements in R are
exactly the elements of norm 1 (since the norm is multiplicative). The open unit
ball m is an ideal of R. It is actually the unique maximal ideal of R (showing that
R is a local ring). It is moreover principal and generated by any uniformizer of K.
The quotient k = R/m is a field which is called the residue field of K.

Examples. — 1. Let p be a prime number. Recall that the p-adic valuation of
a nonzero integer n is defined as the greatest integer v such that pv divides n; it is
often denoted by vp(n). This construction defines a function vp : Z\{0} → N. We
extend it to a function Q→ Z ∪ {+∞} by setting:

vp(0) = +∞ and vp(ab ) = vp(a)− vp(b)
for a, b ∈ Z. One checks that vp satisfies the axioms of a valuation, turning then Q
into a discrete valuation field. A uniformizer of (Q, vp) is p. Its rings of integers is
the ring Z(p) consisting of fractions a

b where b is not divisible by p. Its residue field
is isomorphic to Z/pZ.
2. Let k be any field and K = k(t) be the field of univariate rational fractions
over k. Given f ∈ K, f 6= 0, let ord(f) denote the order of vanishing of f at
0, i.e. ord(f) is the unique integer for which one can write f = tord(f) · g where
g ∈ k(t) is defined and does not vanish at 0. This defines a function ord : K? → Z
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that we extend to K by letting ord(0) = +∞. One then checks that (K, ord) is a
discrete valuation field. Its ring of integers consists of fractions f

g where f and g
are polynomials with g(0) 6= 0. A uniformizer of (K, ord) is t and its residue field
is canonically isomorphic to k.

Completeness. A discrete valuation field (K, val) is said complete if it is com-
plete4 with respect to one (or equivalently all) da. Using the ultrametric trian-
gle inequality (A.1), we easily check that, assuming that K is complete, a series∑
n>0 un (with un ∈ K) converges if and only if the sequence (un)n>0 converges to

0.
Let (K, val) be a discrete valuation field and let K̂a be the completion of the

metric space (K, da). One checks that K̂a does not depend on a, so that we can
denote it safely simply K̂. Observe that the ring operations extend uniquely to K̂,
turning it into a field. Similarly the continuous map val : K → Z ∪ {+∞} extends
uniquely to K̂, turning then K̂ into a discrete valuation field. By construction K̂
is moreover complete. The ring of integers R̂ of K̂ can be seen as the completion
of R or, alternatively, as the topological closure of R in K̂. Note moreover that
a uniformizer of K remains a uniformizer of K̂ (since the valuation on K̂ extends
that on K) and that the residue field of K̂ is canonical isomorphic to that of K.

Elements in complete discrete valuation fields can be explicitely described as the
values at a fixed uniformizer of particular power series.

Proposition A.1. — Let K be a complete discrete valuation field. Let R be
its ring of integers, k be its residue field and π be a fixed uniformizer. Let S ⊂ R
be a fixed complete system of representatives of k and assume 0 ∈ S. Then:

(1) any element x ∈ R can be written uniquely as a converging sum:
x = s0 + s1π + s2π

2 + · · ·+ snπ
n + · · · (A.2)

with sn ∈ S for all n > 0
(2) any element x ∈ K can be written uniquely as a converging sum:

x = svπ
v + sv+1π

v+1 + sv+2π
v+2 + · · ·+ snπ

n

with v ∈ Z, sn ∈ S for all n > v. If x 6= 0, we can moreover require that
sv 6= 0, in which case we have v = val(x).

Proof. — We only prove the first statement, the second being totally similar.
We first remark that the series (A.2) converges since its general term snπ

n goes to
0 when n goes to infinity.

Assume first that we are given a decomposition (A.2). Then s0 has to be congru-
ent to x modulo π and therefore is uniquely determined since S is by definition a
complete set of representatives of k = R/πR. Substrating s0, dividing by π and ap-
plying the same reasoning, we find that s1 is uniquely determined as well. Repeating
this argument again and again, we get the uniqueness of the decomposition (A.2).

Now pick x ∈ R. Define s0 as the unique element of S which is congruent to
x modulo π. Then r1 = x−s0

π lies in R. We can thus repeat the construction
and define s1 as the unique element of S which is congruent to r1 modulo π. We
construct this way an infinite sequence (sn)n>0 of elements of S with the property

4In the sense that all Cauchy sequences converge.
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that x ≡ s0 + s1π+ s2π
2 + · · ·+ sn−1π

n−1 (mod πn) for all n. Passing to the limit
(and noting that πn goes to 0), we get (A.2). �

Examples. — 1. The field Q equipped with the p-adic valuation vp is not com-
plete. Its completion is the field of p-adic numbers Qp. A uniformizer of Qp is p
and its residue field is Z/pZ. The ring of integers of Qp is usually denoted by Zp;
its elements are the so-called p-adic integers. According to Proposition A.1, any
p-adic integer can be uniquely written as a sum:

s0 + s1p+ s2p
2 + · · ·+ snp

n + · · ·
with sn ∈ {0, 1, . . . , p−1}. It is the decomposition of a p-adic integer in radix p.
2. Similarly, the field k(t) equipped with the valuation ord is not complete. Thanks
to Proposition A.1, its completion consists of series of the shape:

svt
v + sv+1t

v+1 + sv+2t
v+2 + · · ·+ snt

n + · · ·
with v ∈ Z and sn ∈ k. It is therefore nothing but the field of univariate Laurent
series over k, usually referred to as k((t)). Its ring of integers is the ring of power
series over k, namely k[[t]]. Its residue field is canonically isomorphic to k.

The Haar measure. Let (K, val) be a complete discrete valuation field with ring
of integers R and residue field k. We assume that k is finite.

The first part of Proposition A.1 shows that R is homeomorphic to kN (i.e.
the set of all sequences with coefficients in k) and therefore is compact. Since R
carries in addition a group structure, it is endowed with a unique Haar measure µ
normalized by µ(R) = 1. This measure extends uniquely to a Haar measure on K.
Be careful nevertheless that µ(K) is infinite.

It is quite convenient to normalize the norm | · | on K by |π| = 1
Card k where π

is any uniformizer. (If the valuation is normalized so that it takes the value 1, the
above norm is the norm | · |Card k we have introduced before.) The above convention
leads to the expected relation:

µ(aE + b) = |a| · µ(E)
for all a, b ∈ K and all measurable subset E of K (and where aE + b denotes of
course the image of E under the affine transformation x 7→ ax+ b).
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