
CONFLUENTES
MATHEMATICI

Daciberg LIMA GONÇALVES, John GUASCHI, and Miguel MALDONADO
Embeddings and the (virtual) cohomological dimension of the braid and mapping
class groups of surfaces
Tome 10, no 1 (2018), p. 41-61.

<http://cml.cedram.org/item?id=CML_2018__10_1_41_0>

© Les auteurs et Confluentes Mathematici, 2018.
Tous droits réservés.

L’accès aux articles de la revue « Confluentes Mathematici »
(http://cml.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://cml.cedram.org/legal/).
Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation á fin
strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://cml.cedram.org/item?id=CML_2018__10_1_41_0
http://cml.cedram.org/
http://cml.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Confluentes Math.
10, 1 (2018) 41-61

EMBEDDINGS AND THE (VIRTUAL) COHOMOLOGICAL
DIMENSION OF THE BRAID AND MAPPING CLASS GROUPS

OF SURFACES

DACIBERG LIMA GONÇALVES, JOHN GUASCHI, AND MIGUEL MALDONADO

Abstract. We use the relations between the braid and mapping class groups of a compact,
connected, non-orientable surface N without boundary and those of its orientable double
covering S to study embeddings of these groups and their (virtual) cohomological dimensions.
We first generalise results of [4, 14] to show that the mapping class group MCG(N ; k) of N
relative to a k-point subset embeds in the mapping class group MCG(S; 2k) of S relative
to a 2k-point subset. We then compute the cohomological dimension of the braid groups
of all compact, connected aspherical surfaces without boundary, generalising results of [15].
Finally, if the genus of N is at least 2, we deduce upper bounds for the virtual cohomological
dimension of MCG(N ; k) that are coherent with computations of Ivanov.

1. Introduction

Let S be a compact, connected surface, and let X = {x1, . . . , xk} be a finite
(possibly empty) subset of S of cardinality k > 0. Let Top(S;X) denote the group
of homeomorphisms of S for the operation of composition that leave X invariant.
If S is orientable, let Top+(S;X) denote the set of elements of Top(S;X) that
preserve orientation. Note that Top+(S;X) is a subgroup of Top(S;X) of index
two. We define the mapping class group MCG(S;X) of S relative to X by:

MCG(S;X) =
{
π0Top+(S;X) if S is orientable
π0Top(S;X) if S is non orientable.

(1.1)

If S is orientable (resp. non orientable), the group MCG(S;X) is thus the set of
isotopy classes of Top+(S;X) (resp. Top(S;X)), the isotopies being relative to the
set X. If f ∈ Top+(S;X) (resp. Top(S;X)) then we let [f ] denote its mapping class
inMCG(S;X). Up to isomorphism,MCG(S;X) only depends on the cardinality k
of the subset X, and we shall often denote this group byMCG(S; k). If X is empty,
then we omit it from the notation, and shall just write Top(S), Top+(S), MCG(S)
etc. The mapping class group may also be defined in other categories (PL category,
smooth category), the groups obtained being isomorphic [5]. The mapping class
group has been widely studied from different points of view – see [1, 9, 10, 24, 30]
for example.

If k ∈ N, there is a surjective homomorphism σ : Top(S;X) −→ Σk defined by
f(xi) = x(σ(f))(i) for all f ∈ Top(S;X) and i ∈ {1, . . . , k}, where Σk is the sym-
metric group on k letters. This homomorphism induces a surjective homomorphism
from MCG(S;X) to Σk that we also denote by σ, and its kernel is called the pure
mapping class group of S relative to X, denoted by PMCG(S;X).
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We have a short exact sequence:
1 −→ PMCG(S;X) −→MCG(S;X) σ−→ Σk −→ 1, (1.2)

and if f ∈ Top(S;X) then [f ] ∈ PMCG(S;X) if and only if f fixes X pointwise.
Mapping class groups are closely related to surface braid groups. If k ∈ N,

the kth ordered configuration space Fk(S) of S is the set of all ordered k-tuples of
distinct points of S that we may consider as a subspace of the k-fold product of
S with itself. The group Σk acts freely on Fk(S) by permuting coordinates, and
the associated quotient is the kth unordered configuration space of S, denoted by
Dk(S). The fundamental group π1Dk(S) (resp. π1Fk(S)), denoted by Bk(S) (resp.
Pk(S)) is the braid group (resp. pure braid group) of S on k strings [8, 11], and
Bk(S) and Pk(S) are related by a short exact sequence similar to that of (1.2). It is
well known that Bk(R2) (resp. Pk(R2)) is isomorphic to Artin’s braid group (resp.
Artin’s pure braid group) on k strings. If π : S̃ −→ S is a d-fold covering map,
where d ∈ N, then for all k > 1, there is a continuous map:

ϕk : Dk(S) −→ Dkd(S̃) (1.3)
defined by ϕk(A) = π−1(A) for all A ∈ Dk(S), and the induced homomorphism
ϕk# : Bk(S) −→ Bkd(S̃) on the level of fundamental groups is injective [14]. Taking
π : S2 −→ RP 2 to be the standard 2-fold (universal) covering, where S2 is the 2-
sphere and RP 2 is the real projective plane, this result was then applied in [14] to
classify the isomorphism classes of the finite subgroups of Bk(RP 2), and to show
that Bk(RP 2) and MCG(RP 2; k) are linear groups for all k ∈ N.

If g > 0 (resp. g > 1), let S = Sg (resp. N = Ng) be a compact, connected
orientable (resp. non-orientable) surface of genus g without boundary. In the non-
orientable case, g is the number of projective planes in a connected sum decomposi-
tion. If g > 1 and k > 0, the orientable double covering π : Sg−1 −→ Ng induces a
homomorphism φk : MCG(Ng; k) −→ MCG(Sg−1; 2k), where the 2k-point subset
of marked points in S is equal to the inverse image by π of a k-point subset of
N . One of the main aims of this paper is to generalise the injectivity result of [14]
to this homomorphism. If k = 0 and g > 3, it was shown in [4, 22] that there
exists an injective homomorphism φ : MCG(Ng) −→ MCG(Sg−1), and that via
φ, MCG(Ng) may be identified with the subgroup of MCG(Sg−1) that consists
of isotopy classes of symmetric homeomorphisms. In Section 3, we show that a
similar result holds for all k > 0, namely that the homomorphism φk induced by π
is injective, and that via φk, MCG(Ng; k) may be identified with the subgroup of
MCG(Sg−1; 2k) that consists of isotopy classes of symmetric homeomorphisms.

Theorem 1.1. — Let k, g ∈ N, let N = Ng be a compact, connected, non-
orientable surface of genus g without boundary, and S its orientable double covering.
The homomorphism φk : MCG(N ; k) −→ MCG(S; 2k) induced by the covering
π : S −→ N is injective; if g > 3 we have the following commutative diagram:

1 Bk(N) MCG(N ; k) MCG(N) 1

1 B2k(S) MCG(S; 2k) MCG(S) 1,

ϕk#

τk

φk φ

τ̃k

(1.4)

where τk and τ̃k are the homomorphisms induced by forgetting the markings on
the sets of marked points.
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Note that in contrast with [4], Theorem 1.1 holds for all g > 1, not just for g > 3.
As we recall in Remark 2.4, the result of [4] does not hold if g = 2. The proof of
this exceptional case g = 2 in Theorem 1.1 will turn out to be the most difficult, in
part due to the non injectivity of φ : MCG(N2) −→MCG(S1).

In Section 4, we compute the cohomological dimension of the braid groups of
all compact surfaces without boundary different from S2 and RP 2, and we give an
upper bound for the virtual cohomological dimension of the mapping class group
MCG(Ng; k) for all g > 2 and k > 1. Recall that the virtual cohomological
dimension vcd(G) of a group G is a generalisation of the cohomological dimension
cd(G) of G, and is defined to be the cohomological dimension of any torsion-free
finite index subgroup of G [6]. In particular, if G is a braid or mapping class
group of finite (virtual) cohomological dimension then the corresponding pure braid
or mapping class group has the same (virtual) cohomological dimension. In [15,
Theorem 5], it was shown that if k > 4 (resp. k > 3) then vcd(Bk(S2)) = k−3 (resp.
vcd(Bk(RP 2)) = k−2). These results are generalised in the following theorem, the
proof being a little more straightforward due to the fact that the braid groups of
Sg and Ng+1 are torsion free if g > 1.

Theorem 1.2. — Let g, k > 1. Then:

cd(Bk(Sg)) = cd(Pk(Sg)) = cd(Bk(Ng+1)) = cd(Pk(Ng+1)) = k + 1.

We then turn our attention to the mapping class groups. If 2g+ k > 2, J. Harer
proved that [21, Theorem 4.1]:

vcd(MCG(Sg; k)) =


4g − 5 if k = 0
k − 3 if g = 0 and k > 0
4g + k − 4 if g, k > 0,

and in the non-orientable case, N. Ivanov showed that [23, Theorem 6.9]:

vcd(MCG(Ng; k)) =



0 if g = 1 and k 6 2
k − 2 if g = 1 and k > 3
k if g = 2
2g − 3 if g > 3 and k = 0
2g + k − 2 if g > 3 and k > 1.

(1.5)

We believe that there is a typographical error in the last case of [23, Theorem 6.9],
and that ‘k = 1’ should read ‘k > 1’ as above. Using the embedding of MCG(Ng)
in MCG(Sg−1) given in [4], G. Hope and U. Tillmann showed that if g > 3 then
vcd(MCG(Ng)) 6 4g − 9 [22, Corollary 2.2]. Using [15, Theorem 5], it was shown
in [15, Corollary 6] that if k > 4 (resp. k > 3) then vcd(MCG(S2; k)) = k − 3
(resp. vcd(MCG(RP 2; k)) = k − 2). In the case of S2, we thus recover the results
of Harer. For non-orientable surfaces, our methods shed light on the cohomological
structure of MCG(Ng; k). In particular, we obtain the following result.

Corollary 1.3. — Let k > 0. The mapping class groups MCG(Ng; k) and
PMCG(Ng; k) have the same (finite) virtual cohomological dimension. Further:

(a) vcd(MCG(N2; k)) = k.
(b) if g > 3 then vcd(MCG(Ng; k)) 6 4g + k − 8.
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Part (a) reproves (1.5) in the case of the Klein bottle (g = 2), and part (b) is
coherent with the result of (1.5) for g > 3.

This paper is organised as follows. In Section 2, we recall some definitions
and results about orientation-true mappings and the orientable double covering of
non-orientable surfaces, we describe how we lift an element of Top(N) to one of
Top+(S) in a continuous manner, and we show how this correspondence induces a
homomorphism from the mapping class group of a non-orientable surface to that of
its orientable double covering (Proposition 2.3). In Section 3, we prove Theorem 1.1
using long exact sequences of fibrations involving the groups that appear in equa-
tion (1.1) and the corresponding braid groups [3, 33]. In most cases, using [14, 20],
we obtain commutative diagrams of short exact sequences, and the conclusion is
obtained in a straightforward manner. The situation is however much more com-
plicated in the case where N is the Klein bottle and S is the 2-torus T , due partly
to the fact that the exact sequences that appear in the associated commutative
diagrams are no longer short exact. This case requires a detailed analysis, notably
in the case k = 1. In Section 4, we prove Theorem 1.2 and Corollary 1.3. Finally,
in an Appendix, we provide presentations of P2(T ) and B2(T ) that we use in the
proof of Theorem 1.1.
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2. Orientation-true mappings and the orientable double covering

Let M,N be manifolds with base points x0, y0 respectively. Following [29], a
pointed map f : (M,x0) −→ (N, y0) is called orientation true if the induced homo-
morphism

f∗ : π1(M,x0) −→ π1(N, y0)

sends orientation-preserving (resp. orientation-reversing) elements to orientation-
preserving (resp. orientation-reversing) elements. In other words, the map f is
orientation-true if for all α ∈ π1(M,x0), either α and f∗(α) are both orientation
preserving or they are are both orientation reversing. In the case of a branched
covering f : M −→ N it follows by [16, Proposition 1.4] that f is orientation-true.
In what follows, we will be interested in the case of maps between surfaces. We will
start with the case of non-orientable surfaces.



EMBEDDINGS AND (V)CD OF BRAID AND MAPPING CLASS GROUPS 45

Lemma 2.1. — Every homeomorphism f : N −→ N of a non-orientable surface
is orientation true. Consequently, the subgroup of all orientation-preserving loops
is invariant with respect to f∗.

Lemma 2.1 is an obvious consequence of [16, Proposition 1.4], but we shall give
a more direct proof.

Proof of Lemma 2.1. — Let x0 ∈ N be a base point and consider α ∈ π1(N, x0),
which we represent by a loop h : S1 −→ N . We fix a local orientation O1 at x0,
and we consider the orientation on N induced by f , denoted by O2. Moving the
orientation O1 along the path h by a finite sequence of small open sets Ui, the
images f(Ui) may be used to transport the local orientation O2 along the path
f ◦ h.

Consider the maps h, f ◦h : S1 −→ N and the tangent bundle TN of N . Pulling
back by these maps, we obtain bundles over S1 that are homeomorphic, and that
are the trivial bundle if the loop is orientation-preserving or the twisted bundle if
the loop is orientation-reversing. �

Let g > 1, and let Ng be as defined in the introduction. The unique orientable
double covering of Ng may be constructed as follows (see [27] for example). Let
the orientable surface Sg−1 be embedded in R3 in such a way that it is invariant
under the reflections with respect to the xy-, yz- and xz-planes. Consider the
involution J : Sg−1 −→ Sg−1 defined by J(x, y, z) = (−x,−y,−z). The orbit space
Sg−1/〈J〉 is homeomorphic to the surface Ng, and the associated quotient map
π : Sg−1 −→ Ng is a double covering.

To simplify the notation, from now on, we will drop the subscripts g and g −
1 from N and S respectively unless there is risk of confusion, so S will be the
orientable double covering of N . As indicated previously, the map π gives rise to a
map on the level of configuration spaces that induces an injective homomorphism
Bk(N) −→ B2k(S) of the corresponding braid groups, and this allows us to study
the braid groups of a non-orientable surface in terms of those of its orientable double
covering [14].

The following result is an immediate consequence of Lemma 2.1 and is basically
contained in [22, Key-Lemma 2.1].

Lemma 2.2. — Let f : N −→ N be a homeomorphism of a non-orientable
surface, and let π : S −→ N be the orientable double covering. Then f admits a
lift, and the number of lifts is exactly two.

Proof. — Using Lemma 2.1, we know that f#|π1(S)(π1(S)) ⊂ π1(S), where we
identify π1(S) with a subgroup of π1(N). By basic properties of covering spaces,
the map f lifts to a map f ′ : S −→ S, and since S −→ N is a double covering,
there are two lifts. �

The lifts of f are in one-to-one correspondence with the group 〈J〉 of deck trans-
formations. There is thus a natural way to choose a lift in a continuous manner
simply by choosing f̃ to be the lift of degree 1 (the other lift is of degree −1 since
J is of degree −1). Let ρ : Top(N) −→ Top+(S) denote this choice of lift. We may
use Lemma 2.2 to compare mapping class groups of orientable and non-orientable
surfaces.



46 D. Lima Gonçalves, J. Guaschi & M. Maldonado

Proposition 2.3. — Let N be a non-orientable surface, and let S be its ori-
entable double covering. Then there is a homomorphism φ : MCG(N)→MCG(S)
such that the following diagram commutes:

Top(N) ρ //

��

Top+(S)

��
MCG(N) φ // MCG(S).

(2.1)

Further, if the genus of N is greater than or equal to 3 then φ is injective.

Proof. — If f, g ∈ Top(N) are isotopic homeomorphisms then an isotopy be-
tween them lifts to an isotopy between the orientation-preserving homeomorphisms
ρ(f) and ρ(g) of S. This proves the first part of the statement. For the second
part, suppose that the genus of N is greater than or equal to 3. Let MCG±(S)
denote the extended mapping class group of S consisting of the isotopy classes of
all homeomorphisms of S, and let C〈J〉 be the subgroup of MCG±(S) defined by:

C〈J〉 =
{

[f ] ∈MCG±(S)
∣∣∣∣ f ∈ Top(S), and there exists f ′ ' f
such that f ′ ◦ J = J ◦ f ′

}
,

where f ′ ' f means that f ′ is isotopic to f . By [4], MCG(N) ∼= C〈J〉/〈[J ]〉.
Let π : C〈J〉 −→ C〈J〉/〈[J ]〉 denote the quotient map. Let f ∈ Top(N). Then
φ([f ]) = [ρ(f)] by diagram (2.1). By Lemma 2.2 and the comment that follows
it, f admits exactly two lifts, ρ(f) and J ◦ ρ(f), the first (resp. second) preserving
(resp. reversing) orientation. Now ρ(f)◦J is an orientation-reversing lift of f , from
which we conclude that J ◦ ρ(f) = ρ(f) ◦ J . Hence [ρ(f)] ∈ C〈J〉 ∩ MCG(S),
and so Im(φ) ⊂ C〈J〉 ∩MCG(S). On the other hand, π

∣∣
C〈J〉∩MCG(S) : C〈J〉 ∩

MCG(S) −→MCG(N) is an isomorphism using the proof of [22, Key-Lemma 2.1].
It then follows that π ◦ φ = IdMCG(N), in particular φ is injective. �

In the case of surfaces with marked points, there is another continuous way to
choose a lift. For example, given a finite subset X = {x1, . . . , xk} of N , denote its
preimage under π by:

X̃ = {x′1, x′′1 , x′2, x′′2 , . . . , x′k, x′′k},

where {x′i, x′′i } = π−1(xi) for all 1 6 i 6 k. Pick a subset of X̃ that contains exactly
one element of {x′i, x′′i }, denoted by xi, for all 1 6 i 6 k. If f ∈ Top(N ;X) then
the restriction of f to X is a given permutation of X, and if j ∈ {1, . . . , k} is such
that f(x1) = xj , we may define f̃ to be the unique lift of f such that f̃(x1) = xj .
The two choices for xj correspond to the two possible lifts of f .

Remark 2.4. — Suppose that the genus of N is 2, in which case N is the Klein
bottle K. If T is the torus, the homomorphism φ : MCG(K) −→ MCG(T ) is not
injective, and it may be described as follows. Set π1(K) =

〈
α, β | αβαβ−1〉. The

group MCG(K) is isomorphic to Z2 ⊕ Z2 [26], and its elements are given by the
mapping classes of the following automorphisms:{

α 7−→ α

β 7−→ β,

{
α 7−→ α

β 7−→ αβ,

{
α 7−→ α

β 7−→ β−1,

{
α 7−→ α

β 7−→ αβ−1.
(2.2)
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Let π : T −→ K be the orientable double covering ofK and let π1(T ) = 〈a, b | [a, b] 〉,
so that π#(a) = α and π#(b) = β2. Given a map f : K −→ K such that the
induced homomorphism on the fundamental group is given by f#(α) = αr, f#(β) =
αuβv, if v is odd, then f lifts to a map from T to T , and there are exactly two
lifts. The matrices of the induced homomorphisms of these lifts on π1(T ) are
( r 0

0 v ) and
(−r 0

0 v

)
. Observe that the determinant of one of these two matrices is

positive. Identifying MCG(T ) with SL(2,Z), we conclude that φ sends the first
(resp. second) two automorphisms of equation (2.2) to the matrix ( 1 0

0 1 ) (resp. to(−1 0
0 −1

)
). In particular, the second part of Proposition 2.3 does not hold in this

case.

3. Embeddings of mapping class groups

As in all of this paper, the surfaces N and S under consideration are compact
and without boundary, and π : S −→ N is the double covering defined in Section 2.
If X is a finite k-point subset of N , X̃ = π−1(X) and f ∈ Top(N ;X), then we
define a map ρk : Top(N,X) −→ Top+(S, X̃) by ρk(f) = ρ(f), where we consider
f to be an element of Top(N) and ρ is as defined in Section 2. By Proposition 2.3,
the map ρk induces a homomorphism φk : MCG(N ;X) −→ MCG(S; X̃) defined
by φk([f ]) = [ρk(f)]. On the other hand, the map ψk : Top(N) −→ Dk(N) (resp.
ψ̃2k : Top+(S) −→ D2k(S)) defined by ψk(f) = f(X) for all f ∈ Top(N) (resp.
ψ̃2k(h) = h(X̃) for all h ∈ Top+(S)) is a locally-trivial fibration [3, 28] whose fibre
is Top(N ; k) (resp. Top+(S; 2k)). The long exact sequence in homotopy of these
fibrations gives rise to the following exact sequences:

Bk(N) −→MCG(N ;X) τk−→MCG(N), Bk(S) −→MCG(S; X̃) τ̃k−→MCG(S),

where τk, τ̃k are induced by suppressing the markings on X and X̃ respectively [3].
In Theorem 1.1, we will see that the injectivity of φ given by Proposition 2.3 carries
over to that of the homomorphism φk between mapping class groups of marked
surfaces and holds for all g > 1, in contrast to the non injectivity in the case g = 2
described in Remark 2.4.

Let S be a compact, connected surface without boundary, and let l ∈ N. We
define the following subgroups of Top(S) and Top(S;X):

(a) if S is orientable and X ⊂ S is a subset of cardinality l, let:

Top+
F (S; l) = {f ∈ Top+(S) | f(x) = x for all x ∈ X }

= {f ∈ Top+(S;X) | [f ] ∈ PMCG(S; l)}.

(b) if S is orientable, π : S −→ N is the orientable double covering, and X ⊂ N
is a subset of cardinality l, let:

Top+
F̃

(S; 2l) =
{
f̃ ∈ Top+(S)

∣∣∣f̃(π−1(x)) = π−1(x) for all x ∈ X
}
.

(c) if S is non orientable and X ⊂ S is a subset of cardinality l, let:

TopF (S; l) = {f ∈ Top(S) | f(x) = x for all x ∈ X }
= {f ∈ Top(S;X) | [f ] ∈ PMCG(S; l)}.
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Observe that if S is orientable (resp. non orientable), Top+
F (S; 1) = Top+(S; 1)

(resp. TopF (S; 1) = Top(S; 1)). Before giving the proof of Theorem 1.1, we state
and prove the following two results.

Proposition 3.1. — Let k > 1, and consider the homomorphism

ψ̃2k# : π1(Top+(T )) −→ B2k(T )

induced by the map ψ̃2k defined above. Then π1(Top+(T )) ∼= Z2, and Im(ψ̃2k#) =
Z(B2k(T )) ⊂ P2k(T ).

Proof. — First, by [18, Theorem 2, p. 63]), π1(Top+(T )) ∼= Z2. Secondly, tak-
ing Top+(T ) to be equipped with IdT as its basepoint, a representative loop of
an element γ ∈ π1(Top+(T ), IdT ) is a path in Top+(T ) from IdT to itself. It fol-
lows from the definition of ψ̃2k that ψ̃2k#(γ) ∈ P2k(T ). It remains to show that
Im(ψ̃2k#) = Z(B2k(T )). Since Im(ψ̃2k#) ⊂ P2k(T ), the homomorphism ψ̃2k# coin-
cides with the homomorphism of [3, Theorem 1]. Using the exact sequence of that
theorem and [3, Corollary 1.3], we see that Im(ψ̃2k#) = 〈a1, b1〉, where a1 and b1
are the generators of P2k(T ) defined in [2, Theorem 5]. But by [31, Proposition 4.2],
these two elements generate the centre of B2k(T ) as required. �

The first part of the following lemma generalises results of [19].

Lemma 3.2. —
(a) Let S be a compact, connected orientable (resp. non-orientable) surface with-

out boundary for which π1(Top+(S; 1)), (resp. π1(Top(S; 1))) is trivial, and
let l > 1. Then π1(Top+

F (S; l)), (resp. π1(TopF (S; l))) is trivial. In particu-
lar, π1(Top+

F (T ; l)) (resp. π1(TopF (K; l))) is trivial for all l > 1.
(b) π1(Top+

F̃
(T ; 2l)) is trivial for all l > 1.

Proof. —
(a) Assume first that S is orientable. We prove the result by induction on

l. If l = 1 then the result holds by the hypothesis, using the fact that
Top+

F (S; 1) = Top+(S; 1). Suppose by induction that the result holds for
some l > 1. The map Top+

F (S; l) −→ S \ {x1, . . . , xl} given by evaluating an
element of Top+

F (S; l) at the point xl+1 is a fibration with fibre Top+
F (S; l+1).

Taking the long exact sequence in homotopy of this fibration and using the
fact that π2(S \ {x1, . . . , xl}) is trivial, it follows that the homomorphism
π1(Top+

F (S; l + 1)) −→ π1(Top+
F (S; l)) induced by the inclusion of the fibre

in the total space is injective, and since π1(Top+
F (S; l)) is trivial by the

induction hypothesis, π1(Top+
F (S; l+ 1)) is too. This proves the first part of

the statement if S is orientable. If S is non orientable, it suffices to replace
Top+

F (S; l) by TopF (S; l) in the proof of the orientable case. The second
part of the statement is a consequence of the first part and [18, Corollary,
p. 65] and [19, Theorem 4.1].

(b) Let l > 0. The map Top+
F̃

(T ; 2l) −→ D2(T \ {x1, . . . , x2l)} that to a home-
omorphism f ∈ Top+

F̃
(T ; 2l) associates the set {f(x2l+1), f(x2l+2)} is a fi-

bration whose fibre is Top+
F̃

(T ; 2l + 2). If l = 0 then Top+
F̃

(T ; 2l) is just
Top+(T ). Taking the long exact sequence in homotopy, and using the fact
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that D2(T \ {x1, . . . , x2l}) is a K(π, 1), we obtain the following exact se-
quence:

1→ π1(Top+
F̃

(T ; 2l + 2)) (q̃2l+2)#−−−−−→ π1(Top+
F̃

(T ; 2l))→ B2(T \ {x1, . . . , x2l}),
(3.1)

where the homomorphism (q̃2l+2)# is induced by the map

q̃2l+2 : Top+
F̃

(T ; 2l + 2) −→ Top+
F̃

(T ; 2l)

that forgets the marking on the last two points. If π1(Top+
F̃

(T ; 2l)) is trivial
for some l > 1 then clearly π1(Top+

F̃
(T ; 2l + 2)) is also trivial. So applying

induction on l, it suffices to prove the result for l = 1. It follows from
Proposition 3.1 that the map π1(Top+

F̃
(T )) −→ B2(T ) sends π1(Top+

F̃
(T ))

isomorphically onto the centre of B2(T ). It follows from exactness of (3.1)
that π1(Top+

F̃
(T ; 2)) is trivial, and this completes the proof of the lemma. �

Remark 3.3. — If S is a surface that satisfies the hypotheses of Lemma 3.2(a)
then S is different from the 2-sphere [28, lines 2–3, p. 303] and the real projective
plane [19, Theorem 3.1], so S is an Eilenberg Mac Lane space of type K(π, 1).

Proof of Theorem 1.1. — Consider the double covering π : S −→ N , fix a k-point
subset X of N , and let X̃ = π−1(X). By the comments preceding the statement of
the theorem, we obtain the following commutative diagram of fibrations:

Top(N ;X) //

ρk

��

Top(N) ψk //

ρ

��

Dk(N)

ϕk

��
Top+(S; X̃) // Top+(S) ψ̃2k // D2k(S),

(3.2)

where ρ is as defined in Section 2, and ϕk : Dk(N) −→ D2k(S) is given by equa-
tion (1.3). The left-hand square clearly commutes because ρk is the restriction of
ρ to Top(N ; k). We claim that the right-hand square also commutes. On the one
hand, π(ψ̃2k ◦ ρ(f)) = π ◦ ρ(f)(X̃) = f ◦ π(X̃) = f(X), using the fact that ρ(f)
is a lift of f , so ψ̃2k ◦ ρ(f) = ρ(f)(X̃) ⊂ π−1(f(X)) = ϕk ◦ ψk(f). Conversely, if
y ∈ π−1(f(X)), then there exists x ∈ X such that π(y) = f(x). If x̃ ∈ X̃ is a lift of
x then y ∈ {ρ(f)(x̃), J ◦ρ(f)(x̃)} = {ρ(f)(x̃), ρ(f)(J(x̃))} ⊂ ρ(f)(X̃), which proves
the claim. Let Φ1 : π1Top(N) −→ π1Top+(S) denote the homomorphism induced
by ρ on the level of fundamental groups. We now take the long exact sequence in
homotopy of the commutative diagram (3.2). The form of the resulting commuta-
tive diagram depends on the genus g of N , hence we consider the following three
cases.

(a) Suppose that g > 3. Then by [20], π1Top(N) and π1Top+(S) are trivial,
and we obtain the commutative diagram of (1.4). Since ϕk# (resp. φ) is
injective by [14] (resp. by Proposition 2.3), the injectivity of φk follows from
the 5-Lemma.
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(b) Suppose that g = 1. Using [14, 33], we obtain the following commutative
diagram of short exact sequences:

1 Z/2Z︸ ︷︷ ︸
π1Top(RP 2)

Bk(RP 2) MCG(RP 2; k) 1

1 Z/2Z︸ ︷︷ ︸
π1Top+(S2)

B2k(S2) MCG(S2; 2k) 1,

Φ1

ϕk# φk (3.3)

where in both cases, Z/2Z is identified with the subgroup generated by the
full-twist braid of the corresponding braid group. Since ϕk# is injective
by [14], so is Φ1, and a routine diagram-chasing argument shows that φk is
injective.

(c) Finally suppose that g = 2, so that N is the Klein bottle K and S is the
torus T . Let k > 1. We claim that Ker(φk) ⊂ PMCG(K; k).

To prove this, let X = {x1, . . . , xk}, and for i = 1, . . . , k, let yi ∈ π−1(xi).
Let σ : MCG(K; k) −→ Σk and σ̃ : MCG(T ; 2k) −→ Σ2k denote the usual
homomorphisms onto the symmetric groups of X and X̃ respectively as
described in equation (1.2). From the geometric construction of ρk, if 1 6
i, j 6 k and σ([f ])(xi) = xj then

σ̃([ρk(f)])(yi) ∈ π−1(xj).

If [f ] ∈ Ker(φk), where f ∈ Top(K,X), then

[ρk(f)] = φk([f ]) = [IdS ].

In particular, σ̃([ρk(f)]) = IdΣ2k
, so σ̃([ρk(f)])(yi) = yi for all 1 6 i 6 k,

and it follows that σ([f ])(xi) = xi, whence [f ] ∈ PMCG(K; k) as claimed.
It thus suffices to prove that the restriction φk

∣∣
PMCG(K;k) of φk to

PMCG(K; k) is injective. Now assume that k > 2. Let

pk : Fk(K) −→ Fk−1(K) (resp. qk : TopF (K; k) −→ TopF (K; k − 1))

be the map given by forgetting the last coordinate (resp. the marking on the
last point). Let

D
(2)
2k (T ) = F2k(T )/Z2 × · · · × Z2︸ ︷︷ ︸

k times

,

let B(2)
2k (T ) = π1D

(2)
2k (T ). Let p̃2k : D(2)

2k (T ) −→ D
(2)
2(k−1)(T ) be the map

given by forgetting the last two coordinates, and let

q̃2k : Top+
F̃

(T ; 2k) −→ Top+
F̃

(T ; 2(k − 1))

be the map defined in the proof of Lemma 3.2(b). Then we have the following
commutative diagram whose rows are fibrations:
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Top+
F̃

(T ; 2(k − 1)) // Top+(T )
δ̃2(k−1)// D(2)

2(k−1)(T )

Top+
F̃

(T ; 2k) //

q̃2k

OO

Top+(T ) δ̃2k // D(2)
2k (T )

p̃2k

OO

TopF (K; k) //

ρk|TopF (K;k)

OO

qk

��

Top(K)

ρ

OO

δk // Fk(K)

ϕ̂k

OO

pk

��
TopF (K; k − 1) //

ρk−1|TopF (K;k−1)

��

Top(K)

ρ

��

δk−1 // Fk−1(K)

ϕ̂k−1
��

Top+
F̃

(T ; 2(k − 1)) // Top+(T )
δ̃2(k−1)// D(2)

2(k−1)(T ).

(3.4)

The map δk : Top(K) −→ Fk(K) (resp. δ̃2k : Top+(T ) −→ D
(2)
2k (T )) is de-

fined by:

δk(f) = (f(x1), . . . , f(xk)) (resp. δ̃2k(f̃) =
(
f̃(π−1(x1)), . . . , f̃(π−1(xk))

)
)

(3.5)
for all f ∈ Top(K) (resp. for all f̃ ∈ Top+(T )), and the map ϕ̂k : Fk(K) −→
D

(2)
2k (T ) is defined by

ϕ̂k(v1, . . . , vk) = (π−1(v1), . . . , π−1(vk))

for all (v1, . . . , vk) ∈ Fk(K). Note also that the diagram remains commuta-
tive if we identify the corresponding terms of the first and last rows. Taking
the long exact sequence in homotopy of the diagram (3.4) and applying
Lemma 3.2, we obtain the following commutative diagram whose rows are
exact:

1 π1Top+(T ) B
(2)
2(k−1)(T ) π0Top+

F̃
(T ; 2(k − 1)) MCG(T ) 1

1 π1Top+(T ) B
(2)
2k (T ) π0Top+

F̃
(T ; 2k) MCG(T ) 1

1 π1Top(K) Pk(K) PMCG(K; k) MCG(K) 1

1 π1Top(K) Pk−1(K) PMCG(K; k − 1) MCG(K) 1

1 π1Top+(T ) B
(2)
2(k−1)(T ) π0Top+

F̃
(T ; 2(k − 1)) MCG(T ) 1,

(δ̃2(k−1))# ∂̃2(k−1) τ̃2(k−1)

(δ̃2k)# ∂̃2k

(p̃2k)#

τ̃2k

(q̃2k)#

(δk)#

Φ1

∂k

(ϕ̂k)#

(pk)#

τk

(qk)#

φk|P MCG(K;k) φ

(δk−1)#

Φ1

∂k−1

(ϕ̂k−1)#

τk−1

φk−1|P MCG(K;k−1) φ

(δ̃2(k−1))# ∂̃2(k−1) τ̃2(k−1)

(3.6)
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where ∂̃2(k−1), ∂̃2k, ∂k and ∂k−1 are the boundary homomorphisms associated
with the corresponding fibrations of (3.4), τ̃2(k−1), τ̃2k, τk−1 and τk are the
restrictions of these homomorphisms to the given groups, (q̃2k)# and (qk)#
are the maps induced by q̃2k and qk respectively on the level of π0, and
(δ̃2(k−1))#, (δ̃2k)#, (δk)# and (δk−1)# are the homomorphisms induced by
δ̃2(k−1), δ̃2k, δk and δk−1 on the level of π1. The homomorphism φ is given
by Proposition 2.3, and (ϕ̂k)# is the restriction of ϕk# to Pk(K), so is
injective by [14]. We remark that π1Top(K) ∼= Z [19, Theorem 4.1] (resp.
π1Top+(T ) ∼= Z2 [18, Theorem 2]). Once more, the diagram (3.6) remains
commutative if we identify the corresponding groups of the first and last
rows. In particular, the second and third columns yield respectively:

(p̃2k)# ◦ (ϕ̂k)# = (ϕ̂k−1)# ◦ (pk)# (3.7)
(q̃2k)# ◦ φk

∣∣
PMCG(K;k) = φk−1

∣∣
PMCG(K;k−1) ◦ (qk)#. (3.8)

We recall at this point that our aim is to show that the homomorphism
φk
∣∣
PMCG(K;k) is injective. Note that by diagram (3.6), (ϕ̂k)# ◦ (δk)# =

(δ̃2k)# ◦ Φ1, and it follows from the exactness of (3.6) and the injectivity of
(ϕ̂k)# that Φ1 is also injective. We claim that the restriction

∂̃2k

∣∣∣Ker((p̃2k)#) : Ker((p̃2k)#) −→ Ker((q̃2k)#) (3.9)

is an isomorphism. Indeed:
(i) It is well defined: if x ∈ Ker((p̃2k)#), the commutative diagram (3.6)

gives (q̃2k)#◦∂̃2k(x) = ∂̃2(k−1)◦(p̃2k)#(x) = 1, so ∂̃2k(x) ∈ Ker((q̃2k)#).
(ii) Suppose that x ∈ Ker(∂̃2k

∣∣∣Ker((p̃2k)#) ). By exactness of the second row

of the diagram (3.6), there exists z ∈ π1Top+(T ) such that (δ̃2k)#(z) =
x, and by commutativity of the same diagram,

(δ̃2(k−1))#(z) = (p̃2k)# ◦ (δ̃2k)#(z) = (p̃2k)#(x) = 1.

But (δ̃2(k−1))# is injective, so z = 1, whence x = 1. Thus ∂̃2k
∣∣
Ker((p̃2k)#)

is injective too.
(iii) Let y ∈ Ker((q̃2k)#). Using commutativity and exactness of the second

row of the diagram (3.6), we have y ∈ Ker(τ̃2k), so there exists w ∈
B

(2)
2k (T ) such that ∂̃2k(w) = y, and thus (p̃2k)#(w) ∈ Ker(∂̃2(k−1)).

Hence there exists z ∈ π1Top+(T ) such that

(p̃2k)#(w) = (δ̃2(k−1))#(z) = (p̃2k)# ◦ (δ̃2k)#(z).

It follows that w(δ̃2k)#(z−1) ∈ Ker((p̃2k)#), and that

∂̃2k(w(δ̃2k)#(z−1)) = ∂̃2k(w) = y

by exactness of the second row of (3.6), which shows that ∂̃2k|Ker((p̃2k)#)
is surjective.

In a similar manner, one may show that the restriction

∂k
∣∣Ker((pk)#) : Ker((pk)#) −→ Ker((qk)#) (3.10)
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is also an isomorphism, and if w ∈ Ker((qk)#) then

(q̃2k)#(φk(w)) = φk−1((qk)#(w)) = 1

by equation (3.8), and so φk(w) ∈ Ker((q̃2k)#). We thus obtain the following
commutative diagram of short exact sequences:

1 //Ker((qk)#) //

φk

∣∣Ker((qk)#)

��

PMCG(K; k)
(qk)# //

φk|P MCG(K;k)

��

PMCG(K; k − 1) //

φk−1|P MCG(K;k−1)

��

1

1 //Ker((q̃2k)#) //π0Top+
F̃

(T ; 2k)
(q̃2k)#

//π0Top+
F̃

(T ; 2(k − 1)) //1,

(3.11)
the second arrow in each row being inclusion. We claim that φk

∣∣Ker((qk)#)
is injective. This being the case, if φk−1

∣∣
PMCG(K;k−1) is injective then

φk
∣∣
PMCG(K;k) is also injective by the commutativity and exactness of the

rows of (3.11). By induction on k, to complete the proof in the case g = 2,
it will thus suffice to prove that the homomorphism φ1 : MCG(K; 1) −→
MCG(T ; 2) is injective, which we shall do shortly (note that PMCG(K; 1) =
MCG(K; 1), so we may remove the restriction symbol from φ1). We first
prove the claim. Let y ∈ Ker((qk)#) be such that φk(y) = 1. From the iso-
morphism (3.10), there exists a unique x ∈ Ker((pk)#) such that ∂k(x) = y.
By (3.7), we have (p̃2k)#◦(ϕ̂k)#(x) = (ϕ̂k−1)#◦(pk)#(x) = 1, so (ϕ̂k)#(x) ∈
Ker((p̃2k)#). On the other hand, ∂̃2k ◦ (ϕ̂k)#(x) = φk ◦ ∂k(x) = φk(y) = 1
by commutativity of the diagram (3.6), hence (ϕ̂k)#(x) ∈ Ker(∂̃2k). So
(ϕ̂k)#(x) = 1 by the isomorphism (3.9). But (ϕ̂k)# is the restriction of ϕk#
to Pk(K), so is injective [14]. Thus x = 1, y = 1, and therefore φk

∣∣Ker((qk)#)
is injective as claimed.

It thus remains to show that the homomorphism φ1 : MCG(K; 1) −→
MCG(T ; 2) is injective. Suppose that w ∈ Ker(φ1). Taking k = 1, the
second and third rows of diagram (3.6) become:

1 //Z(P1(K))
(δ1)# //

Φ1

��

P1(K) ∂1 //

ϕ1#

��

MCG(K; 1) τ1 //

φ1

��

MCG(K)︸ ︷︷ ︸
Z2⊕Z2

φ

��

//1

1 //Z(P2(T ))
(δ̃2)# //B2(T ) ∂̃2 //MCG(T ; 2) τ̃2 //MCG(T )︸ ︷︷ ︸

SL(2,Z)

//1.

(3.12)
Since φ ◦ τ1(w) = τ̃2 ◦ φ1(w) = 1, we see that τ1(w) ∈ Ker(φ), and so
by Remark 2.4, τ1(w) is either equal to the mapping class of the identity
of MCG(K), in which case we say that w is of type one, or is equal to the

mapping class of the automorphism
{
α 7−→ α

β 7−→ αβ,
in which case we say that

w is of type two. Recall that

P1(K) =
〈
α, β

∣∣αβαβ−1 〉 , (3.13)
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Z(P1(K)) = Z(β2), and every element of P1(K) may be written (uniquely) in
the form αrβs, where r, s ∈ Z. By the Appendix, B2(T ) = 〈x, y, a, b, σ〉 and
Z(P1(T )) = Z(a)⊕ Z(b), where the given generators of B2(T ) are described
geometrically, and are subject to the relations of Theorem A.2. The elements
a and b are represented by pairs of parallel strings, and they generate the
centre of B2(T ), the elements x and y are braids whose second string is fixed,
and σ is the standard Artin generator that exchanges the two basepoints.
The group B2(T ) contains

P2(T ) = F2(x, y)⊕ Z(a)⊕ Z(b) (3.14)
as an index two subgroup, where F2(x, y) is the free group on {x, y}. The
homomorphism ϕ1# is given by ϕ1#(α) = a−1x2 and ϕ1#(β) = yσ−1. Using
the relations of Theorem A.2, one may check that ϕ1#(β2) = b.

First assume that w ∈ Ker(φ1) is of type one. Then w ∈ Ker(τ1), and
by exactness of the first row of (3.12), there exists w′ ∈ P1(K) such that
∂1(w′) = w, and so w′ = αrβs, where r, s ∈ Z are unique. If w′ ∈

〈
β2〉 then

∂1(w′) = 1 by exactness of the first row of (3.12), and the conclusion clearly
holds. So suppose that either s is odd or r 6= 0. Then

ϕ1#(w′) = (a−1x2)r(yσ−1)s =
{
x2ra−rbs/2 if s is even
x2rya−rb(s−1)/2σ−1 if s is odd,

(3.15)

using the fact that Z(B2(T )) = 〈a, b〉. Since (δ̃2)# ◦ϕ1#(w′) = φ1 ◦∂1(w′) =
φ1(w) = 1, by observing the induced permutation of ϕ1#(w′), we conclude
that s must be even, so ϕ1#(w′) ∈ P2(T ), and that ϕ1#(w′) ∈ 〈a, b〉 by
exactness of the second row of (3.12). Using the decomposition (3.14), it
follows that r = 0, which yields a contradiction. So if w ∈ Ker(φ1) is of type
one then w = 1. Now suppose that w ∈ Ker(φ1) is of type two. Consider
the basepoint-preserving homeomorphism h of K illustrated in Figure 3.1.
Observe that τ1([h]) = τ1(w), so by exactness of the first row of (3.12),
there exists w′ ∈ P1(K) such that w = [h] ∂1(w′). Let r, s ∈ Z be such
that w′ = αrβs. Now h lifts to an orientation-preserving homeomorphism

α

β

β

α h−−−−−−−→ α

β

β

h(α) = α
h(β)

Figure 3.1. The homeomorphism h of K.

h̃ ∈ Top+(T, X̃) that is illustrated in Figure 3.2, where X̃ = {x̃1, x̃2} is the
inverse image of the basepoint of K under π. It follows that h̃ = ρ1(h), and
hence [h̃] = [ρ1(h)] = φ1([h]). On the other hand, relative to the chosen
generators of P2(T ), the generator x is represented by the loop c based at
x̃1, and a is represented by two loops, namely c and a parallel copy c′ of c
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c

d

d

c c′

x̃1 x̃2

h̃−−−−→
c

d

d

h̃(c) = c h̃(d)

Figure 3.2. A lift h̃ to T of the homeomorphism h.

based at x̃2. The loop c′ represents the element x−1a of P2(T ). Using the
definition of ∂̃2, we must find a homotopy H of T starting at the identity, i.e.
H(·, 0) = IdT , for which the evaluation of the homotopy at the points x1 and
x2 yields the braid x−1a. Let H be the homotopy obtained by pushing x̃2
along the loop c′ and that satisfies H(·, 1) = h̃. This homotopy clearly has
the desired trace (or evaluation), and so ∂̃2(x−1a) = [h̃]. Since w ∈ Ker(φ1),
by commutativity of the diagram (3.12) we have:

1 = φ1(w) = φ1([h] ∂1(w′)) = [h̃] ∂̃2 ◦ ϕ1#(w′) = ∂̃2(x−1aϕ1#(w′)),
where ϕ1#(w′) is given by equation (3.15). Once more, by considering the
induced permutation of x−1aϕ1#(w′), s must be even, and so

∂̃2(x2r−1a−r+1bs/2) = 1,
where x2r−1a−r+1bs/2 ∈ P2(T ) is in the normal form of equation (3.14).
Since r ∈ Z, we thus obtain a contradiction. We conclude that φ1

∣∣
MCG(K;1)

is injective, and this completes the proof of the theorem. �

4. Cohomological aspects of mapping class groups
of punctured surfaces

In this section, we study the (virtual) cohomological dimension of surface braid
groups and mapping class groups with marked points, and we prove Theorem 1.2
and Corollary 1.3.

Proof of Theorem 1.2. — Let g, k > 1, and let S = Sg or Ng+1. Since Pk(S)
is of (finite) index k! in Bk(S), and Fk(S) is a finite-dimensional CW-complex and
an Eilenberg-Mac Lane space of type K(π, 1) [8], the cohomological dimensions of
Pk(S) and Bk(S) are finite and equal, so it suffices to determine cd(Pk(S)). Let us
prove by induction on k that cd(Pk(S)) = k+ 1 and that Hk+1(Pk(S),Z) 6= 0. The
result is true if k = 1 since then F1(S) = S, H2(π1(S),Z) 6= 0 and cd(P1(S)) =
cd(π1(S)) = 2. So suppose that the induction hypothesis holds for some k > 1.
The Fadell-Neuwirth fibration p : Fk+1(S) −→ Fk(S) given by forgetting the last
coordinate gives rise to the following short exact sequence of braid groups:

1 −→ N −→ Pk+1(S) p#→ Pk(S) −→ 1, (4.1)
where N = π1(S \ {x1, . . . , xk}, xk+1), (x1, . . . , xk) being an element of Fk(S), and
p# is defined geometrically by forgetting the last string. Since S \ {x1, . . . , xk} has
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the homotopy type of a bouquet of circles, Hi(S \ {x1, . . . , xk}), A) is trivial for all
i > 2 and for any choice of local coefficients A, and H1(S \ {x1, . . . , xk}),Z) 6= 0,
hence cd(N) = 1. By [6, Chapter VIII], it follows that cd(Pk+1(S)) 6 cd(Pk(S)) +
cd(N) 6 k+2. To conclude the proof of the theorem, it remains to show that there
exist local coefficients A such that Hk+2(Pk+1(S), A) 6= 0. We will show that this
is the case for A = Z. By the induction hypothesis, we have Hk+1(Pk(S),Z) 6= 0.
Consider the Serre spectral sequence with integral coefficients associated to the
fibration p. Then we have that:

Ep,q2 = Hp
(
Pk(S), Hq(S \ {x1, . . . , xk})

)
.

Since cd(Pk(S)) = k + 1 and cd(S \ {x1, . . . , xk}) = 1 from above, this spectral
sequence has two horizontal lines whose possible non-vanishing terms occur for
0 6 p 6 k+ 1 and 0 6 q 6 1. We claim that the group Ek+1,1

2 is non trivial. To see
this, first note that H1(S \{x1, . . . , xk}),Z) is isomorphic to the free Abelian group
of rank r, where r = 2g+ k− 1 if S = Sg and r = g+ k if S = Ng+1, so r > 2, and
hence Ek+1,1

2 = Hk+1(Pk(S),Zr
)
, where we identify Zr with (the dual of) NAb, the

Abelianisation of N . The action of Pk(S) on N by conjugation induces an action
of Pk(S) on NAb. Let H be the subgroup of NAb generated by the elements of the
form α(x)− x, where α ∈ Pk(S), x ∈ NAb, and α(x) represents the action of α on
x. Then we obtain a short exact sequence 0 −→ H −→ NAb −→ NAb/H −→ 0
of Abelian groups, and the long exact sequence in cohomology applied to Pk(S)
yields:
· · · → Hk+1(Pk(S), NAb)→ Hk+1(Pk(S), NAb/H)→ Hk+2(Pk(S), H)→ · · · .

(4.2)
The last term is zero since cd(Pk(S)) = k+1, and so the map between the remaining
two terms is surjective. So to prove that Ek+1,1

2 is non trivial, it suffices to show
that Hk+1(Pk(S), NAb/H) is non trivial. To do so, we first determine NAb/H.
Suppose first that S = Sg, and consider the presentation of Pk(S) on NAb given
in [12, Corollary 8]. With the notation of that paper, a basis B of N is given by:

{ρk+1,r, τk+1,r, Ci,k+1| 1 6 r 6 g, 1 6 i 6 k − 1} ,
and a set of coset representatives in Pk+1(S) of a generating set S of Pk(S) is given
by {ρm,r, τm,r, Ci,j | 1 6 r 6 g, 1 6 i < j 6 k, 1 6 m 6 k}. Using [12, Table 1 and
Theorem 7 or Corollary 8], one sees that the commutators of the elements of S with
those of B project to the trivial element of NAb, with the exception of [ρm,r, τk+1,r]
and [τm,r, ρk+1,r] that project to (the coset of) Cm,k+1 for all m = 1, . . . , k− 1 (we
take the opportunity here to correct a couple of small misprints in these results:
relation (19) of Theorem 7 should read as in relation (XIIn) of Corollary 8; and in
Table 1, in each of the three rows, the first occurrence of j > k should read j < k).
Note that we obtain a similar result for m = k, but using the surface relation [12,
equation (1)] in Pk+1(S) and taking i = k+ 1 yields no new information. It follows
that H is the subgroup of NAb generated by the Cm,k+1, where 1 6 m 6 k − 1,
and that NAb/H is the free Abelian group generated by the coset representatives
of the ρk+1,r and τk+1,r, where 1 6 r 6 g. In particular, NAb/H ∼= Z2g. Since the
induced action of Pk(S) on NAb/H is trivial, using the induction hypothesis, we
conclude that:

Hk+1(Pk(S), NAb/H) =
(
Hk+1(Pk(S),Z)

)2g 6= 0.
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It then follows from (4.2) that Ek+1,1
2 = Hk+1(Pk(S), NAb) 6= 0. Since Ep,q2 = 0

for all p > k + 1 and q > 1, we have Ek+1,1
2 = Ek+1,1

∞ , thus Ek+1,1
∞ is non trivial,

and hence Hk+2(Pk+1(S),Z) 6= 0. This proves the result in the orientable case.
Now let us turn to the non-orientable case. The idea of the proof is the same as

in the orientable case, but the computations for NAb and H are a little different.
We use the presentation of Pk(S) given in [13]. With the notation of that paper,
a basis B of N is given by {ρk+1,r, Bi,k+1| 1 6 r 6 g, 1 6 i 6 k − 1}, and a set
of coset representatives in Pk+1(S) of a generating set S of Pk(S) is given by
{ρm,r, Bi,j | 1 6 r 6 g, 1 6 i < j 6 k, 1 6 m 6 k}. Using [13, Theorem 3], one sees
that the commutators of the elements of S with those of B project to the trivial
element of NAb, with the exception of [ρm,r, ρk+1,r] that projects to (the coset of)
B−1
m,k+1 for all m = 1, . . . , k − 1 and 1 6 r 6 g. We obtain a similar result for

m = k, and using the surface relation [13, relation (c), Theorem 3] in Pk+1(S)
and taking i = k + 1 implies that the element 2

∑g
l=1 ρk+1,l also belongs to H

using additive notation. It follows that H is the subgroup of NAb generated by
the Bm,k+1, where 1 6 m 6 k − 1, and the element 2

∑g
l=1 ρk+1,l. We conclude

that NAb/H ∼= Zg−1 ⊕ Z2. The argument then goes through as in the orientable
case. �

The exact sequences given by (1.4) and (3.6) also allow us to obtain information
about the virtual cohomological dimension of MCG(Ng; k) if g > 2 and k > 1.
The virtual cohomological dimension for mapping class groups of non-orientable
surfaces was calculated by Ivanov [23] and is given in (1.5). The result in the case
of the Klein bottle may also be recovered using our methods. We first prove the
following lemma.

Lemma 4.1. — Let k ∈ N, and consider the homomorphism

(δk)# : π1Top(K) −→ Pk(K) (resp. (δ̃2k)# : π1Top+(T ) −→ B
(2)
2k (T )),

where the map δk (resp. δ̃2k) is as defined in (3.5). Then the image of (δk)# (resp.
(δ̃2k)#) is equal to the the centre of Pk(K) (resp. of P2k(T )).

Proof. — Let us first consider the case of the Klein bottle. If k = 1, with the
notation of (3.13), it follows from the proof of [19, Theorem 4.1] that the image
of (δk)# is equal to 〈β2〉, which is equal to the centre of π1(K). Furthermore, a
generator γ of π1Top(K) may be taken to be the loop class [(Ts)s∈[0,1]], where with
respect to the geometric representation of K given in Figure 3.1 as the quotient of
the unit square [0, 1] × [0, 1] by the relations (x, 0) ∼ (x, 1) and (0, 1 − y) ∼ (1, y)
for all x, y ∈ [0, 1], Ts is the translation defined by Ts(x, y) = (x + 2s, y). Now
let k > 2. By [17, proof of Proposition 5.2] or [32, Proposition 2.2.4], the centre
of Pk(K) is infinite cyclic, generated by the braid illustrated in Figure 4.1. By
pushing the crossings in the rightmost square into the middle square, this braid
may be deformed in Pk(K) to the braid shown in Figure 4.2 that is clearly equal
to (δk)#(γ). This proves the statement of the lemma for K. The proof in the
case of the torus is similar, and is obtained by noting that the centre of P2k(T )
is isomorphic to Z2 by [31, Proposition 4.2], where a basis is given by sets of
parallel strings in the x- and y-directions respectively, and that by the proof of [18,
Theorem 2], π1Top+(T ) is a free Abelian group of rank two generated by the loop
classes of unit translations in the x- and y-directions respectively. �
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. .
.

. .
.

Figure 4.1. A generator of the centre of Pn(K). The right-hand
side of each square should be identified with the left-hand side of
the following square according to the identification (1, y) ∼ (0, 1−
y).

. .
.

. .
.

Figure 4.2. A deformation of the braid of Figure 4.1 that is equal
to (δk)#(γ) in Pn(K).

Proof of Corollary 1.3. —
(a) Since PMCG(K; k) is a subgroup of finite index of MCG(K; k), it suffices

to work with the pure mapping class group PMCG(K; k). Moreover, using
the exact sequence given by the third row of (3.6):

1 −→ π1Top(K) (δk)#−−−→ Pk(K) ∂k→ PMCG(K; k) τk→MCG(K) −→ 1,
Lemma 4.1 and the fact thatMCG(K) is finite, PMCG(K; k) has the same
vcd as the quotient Pk(K)/Z(Pk(K)). We claim that vcd(PMCG(K; k)) =
k. To prove the claim, we proceed by induction on k. First, the result is true
for k = 1 since P1(K)/Z(P1(K)) ∼= Z ⊕ Z2. Now suppose that the result
holds for some k > 1. By taking the image of the generator γ of π1Top(K) of
the proof of Lemma 4.1 by (δk+1)# and (δk)#, the projection Pk+1(K) −→
Pk(K) maps the centre Z(Pk+1(K)) of Pk+1(K) isomorphically onto the
centre Z(Pk(K)) of Pk(K), and we have the following short exact sequence
of groups:
1 −→ P1(K \ {x0}) −→ Pk+1(K)/Z(Pk+1(K)) −→ Pk(K)/Z(Pk(K)) −→ 1.
Now vcd(Pk(K)/Z(Pk(K))) = k by induction, hence

vcd(Pk+1(K)/Z(Pk+1(K))) 6 k + 1,
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because vcd(P1(K \ {x0})) = 1. Using the short exact sequence

1 −→ Z(Pk+1(K)) −→ Pk+1(K) −→ Pk+1(K)/Z(Pk+1(K)) −→ 1,

and the fact that cd(Pk+1(K)) = k+ 2 6 1 +vcd(Pk+1(K)/Z(Pk+1(K))) by
Theorem 1.2, we see that vcd(Pk+1(K)/Z(Pk+1(K))) > k + 1, so

vcd(Pk+1(K)/Z(Pk+1(K))) = k + 1,

and the result follows.
(b) Let g > 3, and consider the following short exact sequence

1 −→ Bk(Ng) −→MCG(Ng; k) −→MCG(Ng) −→ 1

given by equation (1.4). From [22, Corollary 2.2] and Theorem 1.2, we have:

vcd(MCG(Ng; k)) 6 cd(Bk(Ng))+vcd(MCG(Ng)) 6 k+1+4g−9 = 4g+k−8. �

Appendix

In this appendix, we provide presentations of P2(T ) and B2(T ) that are adapted
to our situation. From [7, Section 4], we have:

Theorem A.1. — The group P2(T ) possesses a presentation with generators
B1,2, ρ1,1, ρ1,2, ρ2,1 and ρ2,2 subject to the following relations:

(a) [ρ1,1, ρ
−1
1,2] = [ρ2,1, ρ

−1
2,2] = B1,2.

(b) ρ2,1ρ1,1ρ
−1
2,1 = B1,2ρ1,1B

−1
1,2 .

(c) ρ2,1ρ1,2ρ
−1
2,1 = B1,2ρ1,2[ρ−1

1,1, B1,2].
(d) ρ2,2ρ1,1ρ

−1
2,2 = ρ1,1B

−1
1,2 .

(e) ρ2,2ρ1,2ρ
−1
2,2 = B1,2ρ1,2B

−1
1,2 .

If necessary, the generator B1,2 may be suppressed from the list of generators of
P2(T ). Using Theorem A.1, we may obtain the following useful relations in P2(T ):

ρ2,1B1,2ρ
−1
2,1 = B1,2ρ

−1
1,1B1,2ρ1,1B

−1
1,2 and ρ2,2B1,2ρ

−1
2,2 = B1,2ρ

−1
1,2B1,2ρ1,2B

−1
1,2 .

Setting δ1,1 = ρ1,1, τ1,1 = ρ1,2, δ2,1 = B−1
1,2ρ2,1 and τ2,1 = B−1

1,2ρ2,2, we obtain a new
presentation of P2(T ) whose generators are B1,2, δ1,1, τ1,1, δ2,1 and τ2,1, that are
subject to the following relations:

(a) [δ1,1, τ−1
1,1 ] = [B1,2δ2,1, τ

−1
2,1B

−1
1,2 ] = B1,2.

(b) [δ2,1, δ1,1] = [τ2,1, τ1,1] = 1.
(c) δ2,1τ1,1δ−1

2,1 = τ1,1δ
−1
1,1B1,2δ1,1.

(d) τ2,1δ1,1τ−1
2,1 = B−1

1,2δ1,1.
If we let a = δ1,1δ2,1 b = τ1,1τ2,1, x = δ1,1 and y = τ1,1, then it is not hard to show
that P2(T ) has a presentation whose generators are x, y, a and b that are subject
to the following relations:

(a) [a, b] = 1.
(b) [a, x] = [b, x] = 1.
(c) [a, y] = [b, y] = 1.

It follows from this presentation that P2(T ) is isomorphic to F2 ⊕ Z ⊕ Z, where
{x, y} is a basis of the free group F2, and {a, b} is a basis of the free Abelian group
Z⊕ Z. We then obtain the following presentation of B2(T ).
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Theorem A.2. — The group B2(T ) has a presentation with generators B =
B1,2, σ, x, y, a and b that are subject to the following relations:

(a) σ2 = [x, y−1] = B.
(b) [a, b−1] = 1.
(c) axa−1 = x and aya−1 = y.
(d) bxb−1 = x and byb−1 = y.
(e) σxσ−1 = Bx−1a and σyσ−1 = By−1b.
(f) σaσ−1 = a and σbσ−1 = b.

The generator σ given in the statement of Theorem A.2 is the Artin generator
σ1. The proof of the theorem is standard, and makes use of the above presentation
of P2(T ), the short exact sequence:

1 −→ P2(T ) −→ B2(T ) −→ Z2 −→ 1,

standard results on presentations of group extensions [25, Proposition 1, p. 139],
and computations of relations between the given generators by means of geometric
arguments.
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