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STABILITY OF STATIONARY SOLUTIONS
OF SINGULAR SYSTEMS OF BALANCE LAWS

NICOLAS SEGUIN

Abstract. The stability of stationary solutions of first-order systems of PDE’s is con-
sidered. The systems under investigation may include singular geometric terms, leading to
discontinuous flux and non-conservative products. Based on several examples in Fluid Me-
chanics, we assume that these systems are endowed with a partially convex entropy. We first
construct an associated relative entropy which allows to compare two states which share
the same geometric data. This way, we are able to prove the stability of some stationary
states within entropy weak solutions. Let us stress that these solutions are only required
to have a bounded total variation, i.e. they can be discontinuous. This result applies for
instance to the shallow-water equations with bathymetry. Besides, this relative entropy can
be used to study finite volume schemes which are entropy-stable and well-balanced, and
due to the numerical dissipation inherent to these methods, asymptotic stability of discrete
stationary solutions is obtained. This analysis does not make us of any specific definition
of the non-conservative products, applies to non-strictly hyperbolic systems, and is fully
multidimensional with unstructured meshes for the numerical methods.

1. INTRODUCTION

In this paper, we consider non-conservative systems in d space dimensions of the
form
d
Opu + divy fu, ) + Z si(u, )0 = 0, (1.1)
i=1
Oy = 0, (1.2)
where div, = 2?21 0;, 0; denotes the partial derivative with respect to x;. We note
f=(fi)i=1,....a, and we have
a:RT xR 5 R, fi: QxR — RV,
uw: RT xR — Q, st A xR —RY,
where Q is a convex subset of RY, the so-called set of admissible states. Equa-

tion (1.2) means that « is time-independent, so that this variable is a data, as soon
as an initial condition is associated with (1.1-1.2):

u(0, z) = uo(x)
a(0,z) = a(z)
If « is smooth, the third term of the left-hand side of (1.1) can be considered as a
source term. However, the analysis of the present paper also applies to non-smooth

a, and the term Y s;(u, «)d;« is a non-conservative product. It also applies to the
case of systems of conservation laws with discontinuous flux, f being dependent on

for z € R%, (1.3)
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a, as studied for instance in [32], and also in [36] and [2] in the scalar case (these
two references are only two instances of a huge literature on this subject).
We assume that this system is endowed by an entropy pair (1, F'), which depends
on (u,«) and satisfies the following assumptions:
(H1) The function n = n(u,a) € €( x R,R) is convex with respect to its first
variable and there exist two positive constants 7 < 7] such that
a(92n) C [n,7] on Q x R, (1.4)

where o denotes the matrix spectrum.
(H2) There exists an entropy flux F' = (F;(u, ))i=1,... ¢ such that

Vi = 1, ey d, 6u7] aufz = 8uF1 and 8u77 (aafi + Si) = aaFi. (15)

Since system (1.1-1.2) is non-conservative, the products s;0;a are not defined for
weak solutions, and generalised theories should be invoked, see for instance [14] or
[18]. We do not need here to provide a particular definition of weak solutions, we
mainly impose that these solutions satisfy the entropy inequality

O (u, ) + divy F(u, ) < 0, (1.6)

which becomes an equality for smooth solutions because of (H2). Since the left
hand side of this inequality is in a conservative form, it is well defined for weak
solutions.

Remark 1.1. — The convexity assumption (1.4) is assumed on the whole space
Q x R. It may be restrictive and, in order to deal with more general case, one could
restrict the discussion of this paper to some neighborhood of a constant state of
Q x R without any major change.

The issue addressed in this work is the role of the entropy inequality (1.6) for
the stability analysis of non-conservative systems of the form (1.1-1.2), and more
precisely, the nonlinear stability of stationary solutions of (1.1-1.2). In applications,
they are very important since they may serve not only as initial conditions (before
being perturbed by a particular event on the domain or by a modification of the
boundary conditions), but also as solutions which can be reached in the long time
limit. Our aim is two-fold:

e determine stationary solutions which are stable,
e study the stability of numerical schemes when computing these stationary
solutions.

As we will see later, several systems of interest enter in our framework: shallow-
water equations with bathymetry, gas dynamics in porous media, one-dimensional
gas dynamics in a nozzle. .. Let us focus on the first example in this introduction.
When the influence of the bathymetry is taken into account, the shallow-water
equations write

O¢h + divg(hv) =0
¢ (hv) + div, (hv ® v) + V. (gh?/2) + ghV.a = 0 (1.7)
atOé =0

where h is the height of water, v is the average horizontal velocity, g the gravity
constant, and « the altitude of the ground. The most considered stationary states
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correspond to the “lake at rest” case, i.e.

v=20

where h and ¥ only depend on z. We first prove that stationary solutions (1.8) are
(nonlinearly) stable in the class of entropy weak solutions of (1.7), the bathymetry
« being given. Let us emphasize that this stability holds even for non-smooth
bathymetry, o € BV for instance, and is independent of the definition of the non-
conservative product AV, a. On the other hand, we investigate the behavior of
finite volume schemes which satisfy a discrete version of the entropy inequality (1.6)
(with n((h, hv), @) = h|v|?/2 + gh?/2 + gha and F((h, hv),a) = v(n + gh?/2)). If
in addition they are well-balanced with respect to stationary states (1.8) (i.e. they
exactly preserve a discretized version of (1.8)) then one can deduce the asymptotic
stability of these states, due to the numerical diffusion. Note that the design of well-
balanced schemes for shallow-water equations (1.7) has deserved a huge attention
these last twenty years, but in general, the discrete entropy inequalities are difficult
to obtain. Examples and references will be provided in the sequel.

Let us emphasize that the present analysis is independent of the space dimension,
and of the hyperbolicity of system (1.1-1.2) (except that assumption (H1) implies
hyperbolicity when « is constant). In some sense, it is very complementary to the
Amadori and Gosse’s works, see [1], and shares the property to lead to estimates
which are uniform in time.

The main tool we use to obtain these results is the relative entropy. Let us
briefly recall this notion in the conservative case.

Relative entropy for systems of conservation laws. Consider a N x N system of
conservation laws

Opu + divy f(u) =0 (1.9)
endowed with a Lax entropy pair (7, F'),  being strictly convex (in a similar sense
as in assumption (H1)), i.e. admissible weak solutions of (1.9) have to satisfy the
inequality

On(u) + div, F(u) <0,

in the weak sense. The relative entropy associated with system (1.9) is defined by

h(u,v) = n(u) = n(v) = Vn(v) - (u—v).
Note that this function is not symmetric, and we should say that h is the entropy
for u relatively to v. It is easy to check that

nlu—v* < h(u,v) < flu—v|? (1.10)

where |- | is the Euclidian norm of RY and o(V?1) C [, 7).
Now, let us consider an admissible weak solution u of (1.9) and a constant vector
v € RY. After some calculations, one obtains

Ah(u,v) + div, (F(u) — Vn(v) - f(u)) <O0. (1.11)

If we integrate this inequality for 2 € R?, the divergence term disappears and we
have

d

— < 0.
a Jos h(u,v) dz <0
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We then deduce from (1.10) the L?-stability of constant, and thus stationary, solu-
tions v in the class of admissible weak solutions.

Remark 1.2. — In [16] and [19], Dafermos and DiPerna respectively proved such
a stability result when v is a strong solution of (1.9), also referred as weak—strong
uniqueness. Note that the set of entropy weak solutions has been enlarged to
measured-valued solutions in [7]. We believe that the present work could also be
extended to this framework.

Outline of the paper. In this work, we extend the previous analysis to systems of the
form (1.1-1.2). For a given «, we are able to compare an entropy weak solution u to
some particular stationary solutions. In section 2, we detail the class of admissible
weak solutions of (1.1-1.2) we consider in this work, which does not use any explicit
definition of the non-conservative term. We then state and prove Theorem 2.4,
on the nonlinear stability of particular stationary states of (1.1-1.2). In the next
section, we provide some examples of systems which enter in this framework, and
we explicit the associated stable stationary states. The aim of section 4 is to present
the discrete case. We then focus on entropy-stable finite volume schemes, which are
well-balanced at least for the stationary states which are nonlinearly stable. Due to
the numerical diffusion of first order time explicit schemes, the discrete stationary
states are asymptotically stable.

2. STABILITY OF STATIONARY SOLUTIONS

2.1. Definition of weak solutions. We aim at proving that stationary solutions
are stable among entropy weak solutions. However, since we consider discontinuous
a, only in BV for instance, the products s;0;c in (1.1) are not defined. Several
theories exist in the literature to define them, but here we only use some basic
and natural assumptions. We assume that the products s;0;a can be described by
means of vector-valued Radon measures ji; € .4 (Rt x RY)N1 which satisfy at least
the following properties:

(P1) On any open set B = B, x B, C Rt x R? such that a € W">(B,), the
measures f;, i = 1,...,d, satisfy

Vo € CX(B),Vi=1,...,d, / © du(t,z) = / s (u, @)0;a dt da.
B B

(P2) For any component k =1,..., N and any dimension index i = 1,...,d,

sgk) =0 = u(k) =0.

i
We are now in position to provide a very general definition of solution.
DEFINITION 2.1. — Let ug € BV(RY, Q)Y a € BV(R?) and T > 0. A function

u € €([0,7); BV(R? Q)) is an entropy weak solution of the Cauchy problem (1.1-
1.2)~(1.3) if there exists (ui)1<ica C A4 (RT x RY)N satisfying assumptions (P1)

IMore precisely, .#(X) denotes the set of locally bounded Radon measures on a set X, i.e.

AM(X) = (Ce(X))".
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and (P2) such that, for all p € C°([0,T) x R9),

_ /OT /Rd <u8ﬂp—|— ifi(ma)@iso) dz dt + /OT /Rd @ du(t, z)

- / up(2)p(0,7) dz =0, (2.1)
Rd

and, for all nonnegative ¢ € C2°([0,T) x R%),

/OT /Rd <77(“’ @)+ é Fy(u, a)@-sﬁ) dz dt
+ /R n(uo, @) (x)p(0,2) dz > 0. (2.2)

Such a definition is not sufficient to hope a well-posedness result, without any
additional assumption on the measures pu;, but it is sufficient to obtain the stability
results of the next sections. Besides, assumption (P1) is not necessary for the
upcoming analysis. We introduce it to ensure that, if & € W1 >°(R4), the standard
definition of entropy weak solutions is recovered. It is also important to note that
inequalities (2.2) exactly correspond to the weak form of (1.6), so that the measures
w; do not appear there.

2.2. Relative entropy and nonlinear stability. As mention in the introduction,
it seems impossible to construct a relative entropy for system (1.1-1.2) to compare
two solutions (u,«) and (v,). Nonetheless, one can define a relative entropy
between two solutions v and v, o being given and common.

DEFINITION 2.2. — The relative entropy associated with the non-conservative
system (1.1-1.2), endowed with an entropy 7, is

h: Ox QxR — RT

(u, v, ) — n(u, @) —n(v,a) — Aun(v,a) - (u—v). (2:3)

LEMMA 2.3. — Assume that the entropy n satisfies (H1). Then, the relative
entropy is convex with respect to its first variable and for all u,v € €2, we have

nlu—v> < h(u,v,-) <Hlu— o] (2.4)
For a given a € %' (R?), consider a smooth, and thus entropy conservative,

solution w of (1.1-1.2), and a time-independent function v. Let us compute the
equation satisfied by the relative entropy h:

Och(u, v, o) = On(u, o) — Oun(v, @) - yu

d

—div, F(u, @) + 9yn(v, a) Z filu, @) + s;(u, @)d;)
=1

= —div, (F(u,a) — 8un(v, ) - f(u,a))

d d
- Zai(aun(v7 a fl(u a) + 8u77 v, 04 Z Sz O;ax.
=1 i=1
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The two last terms are not in conservative form, but one could make them vanishing
adding some assumptions on v. To do so, for any given constant vector Hy € R,

we introduce . (Hy), the set of (v, ) € Q x R such that:
(S1) dun(v,a) = Ho.
(S2) Foralli=1,...,dand k=1,...,N, H"s" =o.

We are then able to state the following stability result:

THEOREM 2.4. — Let Hy € RY and consider the set . (H,) defined by (S1) and

(S2), assumed to be nonempty. Consider o € BV(R?) and a function v € BV(R<, )
such that (v,a) € #(Hy) almost everywhere. Then, v is a stationary entropy weak
solution of system (1.1-1.2).
Moreover, let T > 0, ug € BV(R%, Q)Y and u € €((0,T); BV(R%,§)) an entropy
weak solution associated with ug and o. Then, there exists a positive constant Ly,
independent of u, v and « such that the following nonlinear stability property holds
for all R > 0 and for almost every t € [0,T]:

/ hu(t, ), (@), ox)) de < / h(uo(x),v(z), o)) dz.  (2.5)
B(0,R) B(0,R+Lyt)

Proof. — First, let us remark that the stability inequality (2.5) implies that v
is a stationary solution of system (1.1-1.2). Indeed, if we choose ug = v, the right-
hand side of (2.5) is null, by the properties of h, see Lemma 2.3. Therefore, u being
an entropy weak solution and v being time-independent, one may deduce that v is
a stationary entropy weak solution using once again the properties of h.

Let us now rewrite the calculations described above, but in the weak sense.
By assumptions (S1) and (S2), Hp - s;(-,a) = 0 for all i. In other words, this
means that if the i-th component of Hy is non-zero, then s; = 0. We now use the
definition of v and assumption (P2) on the non-conservative product to obtain, for
all ¢ € C2([0,T) x RY),

T d
/ Hy - (udpp + E filu,@)0;p) da dt —|—/ Hy - ug(z)p(0,z) dz = 0.
0 R4 Rd

i=1
Now, using the entropy inequality (2.2) for u and the fact that v is independent of
time, one has

T T d
/ h(u, v, a)0pp dx dt +/ / Z (Fi(u,a) — Ho - fi(u,®))d;p da dt
0 JR4 0 JR? ;T

+ [ h(ug,v,@)(0,z) de >0, (2.6)
Rd

since h(u,v,a) = n(u,a) — n(v,a) — Hy - (u —v). To obtain inequality (2.5), we
introduce L such that

|[F'— Ho - f| < Lgh
which is comparable to the maximum of the spectral radii of 9, f; (for more details,
see [17] and [8]). It suffices now to introduce, ¢t and R being fixed,

1 0<7<t

We(T)=q1+(t—7)/e t<T<t+e
0 t+te<r
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and
1 lz| <R+ Lg(t—1)
Xe(T,2) =<1+ (R+Ls(t—7)—|z])/e O0<|z|-R—-Lf(t—7)<e
0 R+Lsi(t—71)+¢e < |z

and take o(7,z) = xo(7,2)w:(7) (we omit the passage from Lipschitz continuous
functions to CS° functions). Plugging this test function in (2.6) yields

1 t+6
7/ / h(u,v,a)(r, z)xe(T,2) d dr
€ Jt B(0,R+¢)

<

X

/ h(’U,O,'U,Oé)XE(O,fE) dz
B(0,R+Lyt+e)

1 t+e
- 7/ / we(7) [th(u,v,a)
€ Jo 0<|z|—R—Lj(t—7)<e

+ ﬁ(F(u, a) — Hy - f(u,a))} dz dr.

x

By definition of Ly, the last integral is nonnegative, so that, letting ¢ tend to 0
provides inequality (2.5). O

Remark 2.5. — As mentioned above, assumption (P1) has not been used in the
proof.

Remark 2.6. — The nonlinear stability due to (2.5) implies the L? stability and
the uniqueness of stationary solutions v satisfying (S1) and (S2), in the class of
entropy weak solutions. Let us stress that v is only BV, while classical results of
nonlinear stability are obtained assuming the smoothness of the reference solution.
Moreover, this result is independent of the possible lack of hyperbolicity of the
system, and it turns out that it applies to systems for which uniqueness may fail,
such as those considered for instance in [33] and [24] (see also [13] for the particular
case of shallow-water equations).

Remark 2.7. — We are not able to extend estimate (2.5) to non-stationary so-
lution v, keeping a in BV(R?). The case of a smooth a could probably be handled
by adapting the results of [34].

Remark 2.8. — We only obtain the stability of v, but asymptotic stability could
not be reached without more structure. Indeed, even for standard systems of conser-
vation laws, asymptotic stability of constant solutions is merely proved for genuinely
nonlinear 2 x 2 systems of conservation laws [23] (see [17] for more references). An-
other way to obtain asymptotic stability would be to add some dissipative term to
system (1.1-1.2). On the other side, the existence of time periodic non-dissipative
solutions have been addressed in a series of paper by Temple and Young, the most
recent being [39)].

3. EXAMPLES

We provide here some examples of equations which enter in this framework. In
each case, we provide the stationary solutions concerned by Theorem 2.4.
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3.1. Shallow-water equations with bathymetry. The first example is the well-
known Saint-Venant system, which models a free surface flow of water of a non flat
bottom. The unknowns are the height of water h, assumed to remain positive,
and the depth-averaged velocity U. They satisfy the following equations, posed for
(t,z) € RT x R?%:

O¢h + div, (hU) = 0,

h2

0 (hU) + div,(hU @ U) 4 V., <g2) + ghVea =0, (3.1)

atOl =0.
Here, « plays the role of the bathymetry, and g is the gravity constant. By its
simplicity in comparison with the incompressible Euler equations with a free surface,
this model is very popular and numerical simulations show its reliability, even when
« is discontinuous.

This system of equations may be endowed with an entropy inequality of the
form (1.6), setting

n(u,a) = hU?/2 + gh(h/2 +a) and Fi(u,a) = U;(n(u, a) + gh?/2)

where u = (h,hU). The convexity of n with respect to u is classical and one can
see that 7 is only linear in a.
The description of all possible stationary solutions is very difficult in practice.
The simplest ones correspond to a “lake at rest” and are defined by
h+a=2Zy and U=0 ae. (3.2)

where Zj is a given real constant greater than the maximum of . On the other
hand, the entropy variable for is

772
D, o) = < U?/2+ g(h+ a)) '
U
As a consequence, assumption (S2) yields U = 0, since s; = s5 = (0,gh) . Next,
assumption (S1) corresponds to equality h + a = Zy. To sum up, we have:

COROLLARY 3.1. — Stationary states of the shallow-water equations (3.1) given
by (3.2) (lake at rest) are nonlinearly stable, in the sense of theorem 2.4.

3.2. Gas dynamics in porous media. We now study the compressible Euler
equations. When the flow lies in porous media, a > 0 being the porosity, they
become

O(ap) + div, (apU) =0,
O (apU) 4+ div, (apU @ U) + Vi (ap) — pVza =0, (3.3)
Di(apE) + diva(aU(pE +p)) = 0,
where p, U, E and p respectively are the density, the velocity, the total energy and
the pressure of the fluid. Note that the porosity « is supposed to be positive. The
total energy is the sum of the specific energy and the kinetic energy, i.e.
E=e+U?/2
and we assume the fundamental thermodynamic relation

Tds = de + pdr, (3.4)
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where s is the specific entropy, T' the temperature and 7 = 1/p the specific volume.
By classical calculations, one may check that classical solutions of (3.3) satisfy

3ts+U.st:0.

From this equation and mass conservation, we deduce the following entropy in-
equality for weak solutions,

Ot(—aps) + div, (—apsU) < 0.

On the other hand, the function S: (p, pU, pE) — —ps(t, €) is convex if s is concave,
see for instance [25]. As a consequence, if we note u = (ap, apU, apE), the function
n: (u,a) = —aps(T,e) is also convex w.r.t. u by the identity n(u,a) = aS(u/a),
while the associated entropy flux is F(u, @) = Un(u, «).

By classical calculations, one may check that

| (e+plo—Ts—|UP/2

Oun(u, ) = T U
—1

Due to the form of system (3.3), assumption (S1) on the third component of
Oun(u, o) leads to a constant temperature 7. Since 7' > 0, assumption (S2) implies
U = 0. At last, by classical thermodynamical arguments, assumption (S1) on the
first component of 9,71 (u, «) provides that p is also constant.

COROLLARY 3.2. — Stationary states of the compressible Euler equations in
porous media (3.3) such that the temperature T and the pressure p are constant
and U = 0 a.e. are nonlinearly stable, in the sense of theorem 2.4.

3.3. Gas dynamics with sources in Lagrangian coordinates. In the previous
example, the source term leads to a standing wave in Eulerian coordinates where
« is discontinuous. In the case of some source terms, like gravity, it may be more
relevant to use a moving wave associated with «. This enables in particular to
construct well-balanced and asymptotic preserving schemes, see [9], [21] or [11]
for instance. In order to deal with this case, we place ourselves in Lagrangian
coordinates and study the problem

Dia =0,

Dy — 0,,U =0,

DU + Omp = Ona,

DiE + 0, (pU) = Udpa,

(3.5)

where u = (7,U, E), while 7, p and E are the same variables as in the previous
section. In the case of a gravity source term, one defines d,,a = g. Multiplying by
U the PDE for U and subtracting it to the PDE for E provides

D:e + po,, U = 0.
This PDE, together with the fundamental thermodynamic relation (3.4), gives
DtS =0.

One may remark that s is independent of o and is a concave function, so that it
suffices to choose = —s for the mathematical entropy. From assumption (S1), one
deduces that the stationary states of interest are constant states. Unfortunately,
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assumption (S2) cannot be fulfilled, because of the third component which would
lead to stationary states with an infinite temperature. In order to circumvent this,
we follow [9] where was remarked that

Udpma = 0 (Ua) — 00U = 05 (Ua) — aDym = 0, (Uar) — Dy(ar).
By introducing F' = E + Ta, system (3.5) becomes conservative:
Dta = 0,
Dt’r - 5mU = 0,

DU + Om(p — a) =0,
D,F + 0 ((p — a)U) = 0.

(3.6)

Using the new variable u = (7, u, F'), we define the mathematical entropy
n(u,a) = —s(1, F — a0 — U?/2),

which satisfies assumptions (H1) and (H2). As far as stationary states are con-
cerned, condition (S2) is trivial since system (3.6) is conservative, while condition
(S1) leads to the classical hydrostatic equilibria.

COROLLARY 3.3. — Stationary states of the compressible Euler equations with
gravity in Lagrangian coordinates (3.6) such that the velocity U and p — « are
constant are nonlinearly stable, in the sense of theorem 2.4.

4. WELL-BALANCED SCHEMES AND STABILITY OF DISCRETE STATIONARY
SOLUTIONS

We look now at the discrete counterpart of the nonlinear stability result stated in
theorem 2.4. We focus here in time-explicit first order finite volume methods, but
the most of the following analysis can be easily extended to more complex methods
which share similar properties.

4.1. General setting and main properties of the schemes. We consider a
general mesh of R?, denoted by .7, defined as a family of disjoint polygonal con-
nected subsets of R? such that R? is the union of the closure of the elements of .7
(called control volumes or cells in the following) and such that the common “inter-
face” of any two control volumes is included in a hyperplane of R?. The interface
which separates two control volumes K and L is noted ek (we have of course
exr, = erk) and ngy the unit normal vector to e, oriented from K to L (then
nir = —nrk). Forany K € 7, A (K) C 7 denotes the set of cells which share
a common interface with K. We assume that h = sup{diam(K),K € T} < +o0
and that there exists a constant a > 0 such that
hdfl
VK €7, |K|>ah® and 0K = > l|exs|< : (4.1)
LeN (K) a

where |K| is the d-dimensional Lebesgue measure of K and |exr| the (d — 1)-
dimensional Lebesgue measure of ex . For simplicity, we use a uniform time dis-
cretization, introducing the time step At > 0.



STATIONARY SOLUTIONS OF SINGULAR BALANCE LAWS 103

The discrete sequence of approximation is denoted (u ), with n € N* and K €
7, where the initial data is given by

1
uly = IS /Kuo(x) dz, (4.2)
and the stationary variable « is approximated in the same way, i.e.
1
ag = Il /K a(z) dz. (4.3)

Finite volumes schemes we consider follow the general form, for all K € .7 and
n €N,

W e - S lexslgtulowhine) (14
Le NV (K)
where w} = (ul, ak) and g is a numerical flux, which fulfills assumptions provided
in the sequel.

The design of finite volume schemes for non-conservative equations is a very diffi-
cult task and convergence is hard to obtain in the singular case. In the general case,
this can be achieved using random sampling instead of classical average techniques
— Glimm [22] vs. Godunov [26] — as explained for instance in [10] (see also ref-
erences therein). Here, since the non-conservative products are located in standing
discontinuities, one may hope to have a better control of their approximation [27].

Remark 4.1. — Using the theory of germs developed in [2], it is possible to prove
convergence of well adapted numerical schemes in the resonant scalar case
Opu + 0,y (u?/2) + udya = 0,
see [3]. To do so, entropy solutions are defined relatively to particular stationary
solutions of the equation, represented by piecewise constant functions, with discon-

tinuities where o jumps corresponding to the non-conservative product. In fact,
the present work may be seen as a continuation of [3], in the case of systems.

Let us go back to the numerical flux g, which is a function from (Q x R)? x §4-1
to RV, First, let us define the following function:
U: (QAxR)2xRxRT — RN
(4.5)
(wi,wpin,v) — ug —v(g(wg,wr;n) — f(wg) . n)

which enables to rewrite the numerical scheme (4.4) as the convex combination

n+1l __ |€KL‘ n n. At|aK‘
Uy = Z |6K|%<wK7wL’nKL’|K . (4.6)
Le N (K)

The numerical flux is subject to the following requirements:
(F1) Consistency. For all w € Q x R and all n € S971,
g(w,w;n) = f(w) . n.
(F2) Conservation. For all k = 1,...,N such that %) = 0, then for all
ug,up € Qand n € S g(wi, wp;n)®) = —g(wr, wie; —n)®.
(F3) Admissibility preservation. There exists L, > 0 such that, for any
v < Lg*1, we have for all wr,wy € 2 x R and all n € S9~1

U (wg,wr;n,v) € Q.
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(F4) Entropy stability. There exists an numerical entropy flux G, from (€ x
R)2 x S9! to R, which is conservative, i.e. for all wg,wz €  x R and all
ne S,
G(wg,wr;n) = —G(wr, wi; —n)
and satisfies for any v < L;l, all wg,wr € QxR and all n € §¢4-1,
% (wi,wrp;n,v),ax) — n(wg) + v(G(wg,wr;n) — F(wg) .n) < 0. (4.7
(F5) Well-balancing for stationary states .. Let .% some subset of Q x R.
For all wg,wy, €. and all n € S9471,
g(wr,wrin) = f(wk) . n.

The consistency condition (F1) is very classical, and also ensures that the numer-
ical entropy flux G is consistent with the entropy flux F. Condition (F2) allows to
have the discrete conservation for the components of u which satisfy a conservation
law. From assumption (F3) and the convex combination (4.6), one may deduce

(uk)ker CQ=Vn €N, (ui)kes CQ,
under the Courant—Friedrichs-Lewy (CFL) condition

LY

At < inf ———. 4.
Ke L,|0K]| (48)
Condition (F4) leads, under the same CFL condition, to the entropy inequality
At
n(wictt) < n(wi) - Il > lexr|G(wi, wiinkr) (4.9)
LeN (K)

using the Jensen’s inequality after applying 1 to the convex combination (4.6). The
entropy condition (F4) comes from the fundamental work [31].
The well-balancing condition (F5) directly yields
(W) kes C S = Vn e NVK € T, uf = ul.
Well-balanced schemes have been introduced in [30] and have been successfully
developed by many authors, see for instance the books [6] and [29].

4.2. An example of well-balanced scheme. There exists a huge number of well-
balanced schemes in the literature. However, very few satisfy conditions (F1)—(F5),
most of the authors only concentrate on (F5) (and also (F1) which is straightfor-
ward). In particular, condition (F4) may be hard to obtain. One may mention some
of them: the non-conservative Godunov scheme [30], a modified kinetic scheme [37],
Suliciu’s relaxation method [6, 15, 5], entropy-stable schemes [20]. ..

Let us present the basic idea from [30] in the one-dimensional case to construct
well-balanced schemes (see also [28] for a general presentation). First of all, let us
recall that, for systems of conservation laws, the Godunov scheme can be interpreted
as a two-step method, starting with an initial condition constant in each control
volume: in the first step the Cauchy problem is exactly solved, and in the second
step, a time step is chosen before any wave interaction and the exact solution is
replaced by its mean in each control volume. By the divergence theorem and self-
similarity of the solution at each interface, one recovers a finite volume formulation.
Here, we follow the same reasoning.



STATIONARY SOLUTIONS OF SINGULAR BALANCE LAWS 105

Consider a space step h > 0 and an associated one-dimensional uniform mesh
T = Uiz K, with K = (2,12, %i11/2) and ;412 = (i +1/2)h. A well-balanced
scheme can be constructed as follows. Assume that (u}, o;);cz are known:

(1) Solve the system for ¢t > 0 and z € R
Ou+ 0, f (u, @) + s(u, a)ay, (z) =0,

with data

{ah(a:) = icp @il ()
uo(2) = D ez ui' 1k (2)

We note uy(t, r) the exact solution. Remark that, at each interface ;4 2,
the solution is self-similar since we have locally a Riemann problem.

(2) Choose At such that the waves of each Riemann problem do not interact
and apply the classical cell average:

1
uf Tt = 7/ up(At, z)dx.
h Jk.

i

Let us note u;1/2(x/t) the solution of the Riemann problem at interface x; /s,
with data (u,a;) and (uj, |, ;). Since oy, is constant inside control volumes, one
may apply the divergence theorem to get:

up ™ = — % [f(wigryo(a/t = 07)) = f(ui1a(z/t = 07))]. (4.10)

As mentioned above, in general f(qu/g(O_)) # f(Ui+1/2(0+)) due to the non-
conservative contribution of the source term, localized at each interface (see for
instance [28] for more details). On the other hand, assuming that the solution
U;y1/2 is admissible and entropy satisfying, then the numerical flux also satisfies
assumption (F1) to (F5). It is worth noting that the calculation in step 1 of uj, may
be difficult. The extension to the multidimensional case on unstructured meshes is
straightforward by extension of the finite volume form of the scheme (4.10). We
refer to [13] for more details, in the context of the shallow-water equations with
bathymetry.

4.3. Numerical dissipation and relative entropy. We now focus on the dis-
crete version of the stability result stated in theorem 2.4. To begin, let us give
some details on the entropy dissipation of numerical schemes. For the study of
time-continuous schemes, Tadmor introduced in [38] the function

Nwg,wr;n) = F(wk) . n+ 0un(wgk) - (9(wi, wp;n) — f(wk) . n). (4.11)
From assumption (F4) and following [8], one can prove:

LEMMA 4.2. — For all (wg,wr) € (2 x R)? and all n € S9!, we have for all
v< L1
g
2
2

INwg,wr;n) — Gwg,wr;n) > g(wr,wr;n) — flwk) .n{Q. (4.12)
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Proof. — We inject the definition (4.11) of I' in the entropy flux inequality (4.7),
and obtain

(% (wi,wr;n,v), o) — n(wk)
+ V(aun(wl() (g(wr,wrin) — f(wk) '”))
< v(T(wg,wr;n) — Glwg,wr;n)).
By definition (4.5) of % and using the strict convexity of n w.r.t. its first variable,
see (H1), it results

1/27]

- l9(wic, wiin) = flwi) n|? <v(D(wg,wr;n) — Glwg,wr;n)),

which is exactly the expected inequality. O

We are now in position to measure the numerical dissipation of entropy satisfying
finite volume schemes:

PROPOSITION 4.3. — Consider a finite volume scheme (4.2-4.4) with a numer-
ical flux which satisfies assumptions from (F1) to (F4). If there exists ¢ € (0,1)
such that

At<(1-¢)=22, (4.13)

then the approximate solution satisfies the discrete entropy inequality

At
n(wi™) = n(wk) + — Z lexr|G(wg, wi;nkL)
K] LS
> lexcllgwic, wiingn) — f(wi) npl®. (4.14)

< _C;
2|K|Lg LeV (K)

Proof. — First, let us remark that the upper bound (1.4) on the spectral radius
of the Hessian of n w.r.t. u leads to inequality

n n n n n 77] n n
(Ui ax) = (e, o) = Bunlufe, axc) - (ui™ = ufe) < Gluf™ — e,
which, using the numerical scheme (4.4), yields
n+1 n At n n n
n(wyg) — n(wk) + @ Z lexL]|0un(wik) - g(wi, wisnKr)
LeN (K)
S5 K2 Z lexL?lg(wi, wiinkr) — fwi)  nkLl*.

Le (K)

Moreover, by definition of I and from the divergence theorem, it results

> lexnldun(wi) - g(wie, wiingr) = > ekl T(wh, wiingL),
Let (K) LeA (K)
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and thus, by lemma 4.2, the previous inequality becomes

" At n
’I’](’LUK+1)—’I7(’U}}L()+ |K| E |6KL|(G(w7}L(awL;nKL)
Le N (K)
77 n
+57 ‘g(w%7wzvnKL)_f(wK)nKL|2)
2Lg
< §7|K|2 E |€KL|2|g(wK7 wiinir) — f(wk) . nKL|2-

LeN (K)

Using the isoperimetric assumption on the mesh (4.1), one obtains successively

n . At
weR) —atio + gy 2, lerelGlukuking)
LeN (K)
At (pAthIL n o :
\2|K|(|K|a_2L Z lexcllg(wic, wiinkr) — f(wik) . nkrl®
97 Len(K)
At (nAt 1 N §
= 2|K|((12h_L> Z lexrllg(wi, wiinkr) — f(wh) . nxrl?,
97 Lew (K)

which, by the strengthened CFL condition (4.13), provides inequality (4.14). O

Inequality (4.14) includes an lower bound for the numerical dissipation, which
necessitates the use the CFL condition (4.13), which is strictly more restrictive
than (4.8). Note that it has been obtained without assuming the well-balanced
property (F5). With this property, we obtain:

THEOREM 4.4. — Let Hy € RN and consider the set ./ (Hy) defined by (S1) and
(S2), assumed to be nonempty. Consider (ax)kes C R and (vi)xes C § such
that for all K € 7, (vk,ak) € /(Hp). Assume that the finite volume scheme
(4.2-4.4) is defined by a numerical flux which satisfies assumptions from (F1) to
(F4), and (F5) related to . (Hy), and that the CFL stability condition (4.13) holds
true. Then, for any uy € BV(R?, Q)N one has for all K € .7 and n € N

h(U?(+1,’UK, CVK) - h(U?{,UK,OéK)

At
+ 0= Z |€KL|%HU((U?(,O(K)7 (U/Z,OZL);TLKL) < 9}2’7 (415)

K] LeN (K)

where 9} in the right-hand side of (4.14), h the relative entropy introduced in
definition 2.2 and the numerical flux ¥y, is given by

Y, (wi,wr;n) = G(wg,wr;n) — Hy - g(wg,wr;n) (4.16)

and is conservative: Yy, (Wi, wr;n) = =Yy, (wr, wg; —n).
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Proof. — The proof is straightforward, using proposition 4.3. Indeed, one has

h(urfl(+17vK7aK) - h(u?(a VK, O[K)

= (i ax) = n(uk, ax) = dun(vi, ax) - (up — ul)
At
< IR > lexnlG((ulk, ak), (W}, ap)inkr) + D5
Let (K)

At
+ & Z lexr|Ho - g((uk,ax), (ul,aL)inkr)
Le ¥V (K)
which exactly is (4.14). The conservative property of ¢y, is due to the conservative
property of G and the combination of assumptions (S2) and (F2). O

A straightforward corollary of this theorem is a discrete version of the nonlinear
stability theorem 2.4:

COROLLARY 4.5. — Under the same notations and assumptions as in theo-
rem 4.4, if, for some n € N*, (u})kez ¢ (Ho), then
S K vk, ak) < > 1K h(ul, vk o). (4.17)
Keo KeT

It is worth noting that inequality (4.17) is strict, contrary to (2.5), this is due
to the numerical dissipation, represented by Z}.. Besides, it is important to note
that the cancellation of the dissipation term 2} is related to the well-balancing
property (F5), which may lead to the following result of asymptotic stability:

COROLLARY 4.6. — Let (ak)kes C R and (ul)kez C Q be given. Assume
that there exists Hy € RY for which the set #(Hy) defined by (S1) and (S2) is

nonempty and such that there exists a unique (vi)xez C Q satistying (v, ak) €
S (Hy) for all K € 7, and

Y IE|(wr)® = Y K| (ug)® (4.18)
Keo Keo

for all component k =1,..., N for which s*) = 0.

Consider a finite volume scheme (4.2-4.4) defined by a numerical flux which satisfies
assumptions from (F1) to (F4). Besides, we assume the well-balancing property
(F5), but also its converse: let (ux)kes C 2, we assume that

VK,Lec.7, g((uix,ok),(ur,ar);n) = f(uk,arx)

4.19
— VK eZT, ug=vg. ( )

Then, under the CFL stability condition (4.13), we have
nh_{r;o ; |K|h(ul, vk, ax) = 0. (4.20)

In other words, the approximate solution provided by the finite volume (4.2-4.4)
tends uniformly to the approximate stationary solution (vi)xes when n tends to
+00.

Proof. — This proof consists in proving that

Vi (uf ke — > |K|h(uf, vk, ak)
KeT
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is a Lyapunov functional for the numerical scheme, relative to the stationary state
(vk)kes. According to condition (4.19), the stationary state (vk)x is the only
fixed point of the numerical scheme. Moreover, thanks to (4.18), the state (vi) ke
can be attained from (ug)g, the numerical scheme being conservative for these
components k. To conclude, it is sufficient to apply corollary 4.6, and the convexity
property of the relative entropy h stated in lemma 2.3. O

4.4. An example of numerical asymptotic stability. Let us provide a concrete
application of the latter corollary. Let us go back to the two-dimensional shallow-
water equations with bathymetry (3.1). In order to be in a configuration with only
one possible “lake at rest” stationary state (3.2), let us pose the equations (3.1) in
a (polygonal) bounded domain D C R?, with wall boundary conditions:

Vt>0,2€0D, (hU)(t z).n(z)=0, (4.21)

where n is unit normal to 9D, outward t 2. Moreover, still to obtain the uniqueness
of the stationary state, we assume that the bottom « and the initial data ug comply
with

W= / ho(z) dz > max a(z) —/ a(z) dz. (4.22)

D D D

In other words, the total volume of water is sufficient to avoid the appearance of dry
areas (using the conservation law satisfied by k). Indeed the case of non uniqueness
could appear with the occurrence of at least two disjoint lakes with possible different
surface levels.

Let us now detail the numerical scheme. We assume that the boundary condi-
tions (4.21) are approximated by the mirror technique: for each boundary cell, a
fictitious symmetric cell is created outside the domain D, with the same height of
water and bathymetry, and with an opposite velocity, see for instance [40]. This
method ensures the conservation of the height of water and a good approximation
of (4.21).

COROLLARY 4.7 (Corollary 4.6 rephrased for shallow-water equations). — Con-
sider a bathymetry « and an initial data which satisfy (4.22). Let Zy the associated
stationary surface level, defined by

1

The discrete bathymetry (ax) ke being given by (4.3), the associated stationary
state (Vi ) ke Is uniquely defined by (3.2). Then, under the assumptions of corol-
lary 4.6 on the finite volume scheme (4.2-4.4), the associated approximate solution
converges towards this stationary state, i.e.

n
(hie +ax ) 2 Zo,

n (4.23)
Ukx 2572 0
Remark 4.8. — As far as the (entropy weak) solution of the shallow-water equa-

tions is considered, this asymptotic stability for the “lake at rest” stationary state
(h+«a = Zy,U = 0) should fail. Indeed, different stationary states could exist but
also time periodic non-dissipative smooth solutions. We can only obtain from theo-
rem 2.4 the (non-asymptotic) stability of the stationary state (h +«a = Zp, U = 0).
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5. SOME CONCLUDING REMARKS

In this work, we have been able to compare entropy weak solutions to some
stationary solutions. This analysis holds independently of the space dimension, the
definition of the non-conservative products, the hyperbolicity, and the smallness
and the smoothness of the solutions. These advantages are due to the use of the
relative entropy, see also for instance [35] or [41] and references therein. However,
this analysis does not apply to every stationary states of interest. For instance,
one-dimensional stationary states with a non-zero discharge of the shallow-water
equations are not included, as well as transonic steady shock waves in a nozzle.

Concerning the numerical part, many numerical well-balanced schemes are not
entropy-stable. The analysis we provide fails in this case, but could be adapted
if the discrete entropy inequalities can be obtained up to some error terms (which
in general require some smoothness on «; see for instance [5]) or when only semi-
discrete entropy inequalities hold [4, 12]. Note that the well-balancing property is
also crucial to deduce the inequality satisfied by the relative entropy (4.15).

We present at the end an application of (asymptotic) stability for the numerical
approximation. In the same way, other applications can be obtained, replacing
for instance wall boundary conditions by periodic boundary conditions, or using
systems presented in section 3.
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