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Abstract. Every morphism from Pn to G(k,m) is constant if m < n, and nonconstant morphisms from Pn to
G(k,n) rarely appear when 0 < k < n − 1. In this setting, Tango proved that a morphism from Pn to G(1,n)
is constant if n ∉ {3,5}. Here we focus on the case n = 3 and show that if φ : O⊕4

P3 → E is the surjection onto

a rank 2 vector bundle E inducing a morphism ϕ : P3 → G(1,3), then h1(E∗) ≤ 1. Furthermore, a complete
classification is given if equality holds.
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1. Introduction

Morphisms from Pn to G(k,m) were studied by Tango in the series of papers [12–14] over an
algebraically closed field of arbitrary characteristic. He showed in [12, Corollary 3.2] that a
morphism from Pn to G(k,m) is constant if m < n (cf. [8, Theorem 3.1]). Then he considered
the case m = n, proving that a morphism from Pn to G(k,n) is constant when (cf. Remark 4):

(a) k ∈ {1,2} and n ≥ 6 [12, Proposition 3.4 and Proposition 3.5];
(b) 0 < k < n −1 and kn is even, (k,n) 6= (2,5) [13, Theorem];
(c) 0 < k < n −1 and kn is odd, 3 ≤ k ≤ 9 [14].

In [13, Section 3] he also gave the example of a nonconstant morphism from P3 to G(1,3) that
we reproduce in Example 9. Furthermore, in the case when the defining field is of characteristic 2,
he gave an example of a nonconstant morphism from P5 to G(2,5). Using this, he gave a remark-
able example of indecomposable vector bundle of rank 2 on P5 (cf. [6, Section 6]). However, no
example of nonconstant morphism from P5 to G(1,5) is known.

In this paper we work in characteristic zero and focus on the case k = 1, and hence n ∈ {3,5}
according to (a) and (b). Our main result, concerning the case n = 3, is the bound h1(E∗) ≤ 1 and
the characterization of the rank 2 vector bundles E with h1(E∗) = 1 giving a morphism from P3 to
G(1,3). More precisely:
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Theorem 1. Let ϕ : P3 → G(1,3) be the morphism induced by a surjection φ : O⊕4
P3 → E onto a

rank 2 vector bundle. Then h1(E∗) ≤ 1, and equality holds if and only if there exists a nontrivial
extension 0 → OP3 → E ′ → E → 0 in which E ′ is the kernel of a surjection O⊕4

P3 (e) → OP3 (2e) for
some integer e ≥ 1.

By contrast, the case h1(E∗) = 0 remains very much open. Actually, in this situation the only
known example of surjection O⊕4

P3 → E was given in a completely different context [2] (see also [1,
Remark 2.11]). It would be nice to complete the picture in this case, or at least to find some other
examples (see Question 17 and the discussion at the end of Section 3).

On the other hand, concerning the case n = 5 and closely related to the question whether
there are vector bundles of small rank on projective spaces [6, Section 6], we pose the following
(see Remark 20):

Conjecture 2. Every morphism from P5 to G(1,5) is constant.

The paper is organized as follows. In Section 2 we recall the correspondence between mor-
phisms to Grassmannians and vector bundles generated by their global sections (see for exam-
ple [4, Theorem 3.4]). Following [7], a brief account on the correspondence between rank 2 vector
bundles and subcanonical curves, due to the Serre construction [10], is also provided. In Section 3
we first analyze the Tango example in Remark 10 and Remark 11. This suggests the generalization
given in Proposition 12, which is the first step towards the main result. We then proceed with the
proof of Theorem 1. A key point in the argument is Proposition 13, which is based on an elemen-
tary property that can be traced back at least to [11, Lemma, p. 44]. A few comments on the case
h1(E∗) = 0 follow in 15, 16, and 17. Finally, Section 4 is devoted to Conjecture 2.

2. Preliminaries

2.1. Morphisms to Grassmannians and globally generated vector bundles

Let V a vector space of dimension m +1 over an algebraically closed field of characteristic zero,
and let

G :=G(k +1,m +1) =G(k,m)

denote the Grassmannian of k-planes in P(V ) = Pm , whose points correspond to one-
dimensional quotients of V according to the Grothendieck convention (note that this is oppo-
site to the usage in [4], which is the main reference for this subsection).

Let Q denote the universal quotient bundle of rank k +1 on G , and let S denote the universal
subbundle of rank m −k on G giving the exact sequence

0 → S →V ⊗OG →Q → 0. (1)

Thus if X is a scheme and ϕ : X →G(k,m) is a morphism (i.e., a regular map), then the pull-back
of (1) shows that ϕ∗(Q) is a vector bundle of rank k +1 on X generated by m +1 global sections.

Conversely, if X is a scheme, E is a vector bundle of rank k +1 generated by its global sections,
and the evaluation morphism φ = φV : V ⊗ OX → E is surjective for some vector subspace
V ⊆ H 0(E) of dimension m+1, then we get a morphismϕ=ϕV : X →G(k,m) such thatϕ∗(Q) = E .
Moreover, if p :G(k,m) →P(Λk+1V ) denotes the Plücker embedding of G then the composition

f = p ◦ϕ : X →G(k,m) →P(Λk+1V ) (2)

is the morphism induced by the surjection φW : W ⊗OX → Λk+1E onto the determinant line
bundle, corresponding to the vector subspace

W :=Λk+1V ⊆Λk+1H 0(E) ⊆ H 0(Λk+1E). (3)
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Remark 3. How many global sections are needed to generate E? If dim(X ) = n then dimP(E)
= n+k, so min{n+k+1,h0(E)} will be enough. Let us see how to improve this when X is a smooth
projective variety. Let E be a globally generated vector bundle of rank k+1 on X . Then there exists
a vector subspace V ⊆ H 0(E) of dimension n +k +1−δ and a surjection φV : V ⊗OX → E if and
only if sn+1−δ(E) = cn+1−δ(F ) = 0, where F denotes the vector bundle on X obtained as the kernel
of the evaluation morphism

0 → F → H 0(E)⊗OX → E → 0, (4)

and sn+1−δ and cn+1−δ denote the Segre and Chern classes, respectively (see for example
[4, Propositions 10.2 and 10.3]). This shows the connection between morphisms from X to Grass-
mannians and vector bundles of rank < n on X , i.e., if δ > 0 then the kernel of the surjection
φV : V ⊗OX → E is a vector bundle of rank n −δ on X . In particular δ ≤ n, with equality holding
if and only if E = O⊕k+1

X and V = H 0(E). This happens if and only if the morphism ϕ induced by
φV : V ⊗OX → E is constant.

Remark 4. Let us explain the Tango assumption 0 < k < n − 1. If k = 0, that is E = OPn (a),
then every surjection φ : O⊕n+1

Pn → E is given by a vector subspace V ⊆ H 0(E) generated by
n + 1 homogeneous polynomials of degree a without common zeros. And if k = n − 1 then
every surjection φ : O⊕n+1

Pn → E is given by the cokernel of an injection OPn (−a) → O⊕n+1
Pn , where

a = c1(E). Therefore, these two dual cases are not interesting.

2.2. The correspondence between vector bundles and curves

Here we follow [7, Theorem 1.1]. If E is a globally generated rank 2 vector bundle on P3 then the
scheme of zeros of a general section s ∈ H 0(E) is either empty, or a smooth —but not necessarily
connected— curve Y ⊂ P3 with canonical sheaf ωY

∼= OP3 (c1(E) − 4)|Y [7, Proposition 1.4].
Furthermore, the Koszul complex gives the exact sequence of sheaves

0 →OP3
·s−→ E →IY (c1(E)) → 0. (5)

Conversely, if Y ⊂ P3 is a smooth, not necessarily connected, curve with ωY
∼= OP3 (a)|Y then

the Serre construction [10] gives a (unique up to isomorphism) rank 2 vector bundle E , a (unique
up to a scalar multiple) section s ∈ H 0(E) whose scheme of zeros is Y ⊂P3, and the exact sequence
of sheaves (5). Of course, in this case E need not be globally generated.

Remark 5. If c1 := c1(E) and c2 := c2(E) denote the Chern classes of E then the numerical
invariants of Y ⊂ P3 can be expressed in terms of c1 and c2 [7, Proposition 2.1]. More precisely,
the degree and arithmetic genus of Y are:

(i) deg(Y ) = c2.
(ii) 2pa(Y )−2 = c2(c1 −4).

Moreover, since E∗ ∼= E(−c1), the number of connected components of Y is:

(iii) h0(OY ) = 1+h1(IY ) = 1+h1 (E∗).

Remark 6. Going back to our context, if the morphismϕ :P3 →G(1,m) is induced by a surjection
φV : V ⊗OP3 → E and s ∈ V , then ϕ(Y ) is the set of lines contained in the hyperplane of Pm

corresponding to [s] ∈P(V ∗).

3. Proof of the main result

Lemma 7. Let E be a globally generated rank 2 vector bundle on P3. Then there exists a surjection
φ : O⊕4

P3 → E if and only if c1 = 2e and c2 = 2e2.

C. R. Mathématique — 2021, 359, n 7, 853-860
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Proof. Consider the exact sequence (4). Let ct (E) = 1+ c1t + c2t 2 and ct (F ) denote the Chern
polynomials of E and F . Since ct (E) · ct (F ) = 1 we deduce that

ct (F ) = 1− c1t + (
c1

2 − c2
)

t 2 − (
c1

3 −2c1c2
)

t 3.

By Remark 3, there exists a surjection φ : O⊕4
P3 → E if and only if s3(E) = c3(F ) = 0, that is, if and

only if c2
1 = 2c2. But this happens if and only if c1 is even, say c1 = 2e, and c2 = 2e2. �

Combining the preliminary material with Lemma 7 and Remark 5, we get:

Corollary 8. Let φ : O⊕4
P3 → E be a surjection onto a nontrivial rank 2 vector bundle. Then the

scheme of zeros of a general section s ∈ H 0(E) is a smooth curve Y ⊂ P3 with ωY
∼= OP3 (2e −4)|Y ,

and its ideal sheaf is given by the exact sequence

0 →OP3
·s−→ E →IY (2e) → 0.

In particular, Y has degree 2e2, arithmetic genus 2e2(e −2)+1 and h1(E∗)+1 connected compo-
nents.

The starting point of this paper was [13, Example 1], that is worth quoting in full:

Example 9. Let S4 be the quadric hypersurface of P5 defined by the homogeneous equation

X0X1 +X2X3 +X4X5 = 0.

Then, it is well-known that Gr (3,1) is isomorphic to S4. Let f be a morphism fromP3 to S4 defined
by

f (x0, x1, x2, x3) = (
x2

0 ,−x2
1 , x2

2 , x2
3 , x0x1 +x2x3, x0x1 −x2x3

)
.

It is easy to see that f is not a constant morphism.

Remark 10. Let us analyze the Tango example in detail: what is the rank 2 vector bundle E on
P3 and the surjection φV : V ⊗OP3 → E defining ϕ : P3 → G(1,3)? In this case, f is given by a
linear system of quadrics. Thus c1(E) = c1(Λ2E) = 2 by (2), and Corollary 8 yields deg(Y ) = 2
and pa(Y ) = −1. We conclude that Y = Y1 ∪Y2 is the disjoint union of two lines in P3, whence
h1(E∗) = 1. Therefore E ∼= N (1), where N (1) denotes the twisted null-correlation bundle on P3

defined by the exact sequence

0 →OP3 →ΩP3 (2) → N (1) → 0.

In particular, H 0(E) = 5 and V ⊂ H 0(E) is a general hyperplane.

Remark 11. Let us now show a more geometric interpretation of Example 9 and Remark 10. The
surjection φ̄ = φH 0(E) : H 0(E)⊗OP3 → E induces a morphism ϕ̄ = ϕH 0(E) : P3 → G(1,4), that is an
isomorphism onto its image since equality holds in (3). More precisely, ϕ̄(P3) is the set of lines of
a smooth quadric hypersurface Q3 in P4 (cf. [12, Section 6]; in particular, E ∼= N (1) is the missing
vector bundle denoted by (∗) in [12, p. 417]). Therefore, we get a commutative diagram

G(1,4)

P3 G(1,3)

π

ϕ

ϕ̄ (6)

where π :G(1,4)99KG(1,3) is induced by the linear projection from P(H 0(E)) =P4 onto P(V ) =P3

given by a point p ∉Q3, hence defined everywhere in ϕ̄(P3).

According to the previous discussion, the Tango example can be generalized as follows:
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Proposition 12. Let Y = Y1 ∪Y2 be the disjoint union of two smooth curves in P3, each of them a
complete intersection of two surfaces of degree e. Let E be the rank 2 vector bundle corresponding
to Y . Then there exist a rank 3 vector bundle E ′ and a nontrivial extension 0 → OP3 → E ′ → E → 0
such that:

(i) E ′ is the kernel of a surjection O⊕4
P3 (e) → OP3 (2e). In particular, E ′ and E are globally

generated, H 0(E ′) = 6, and H 0(E) = 5.
(ii) The surjection φV : V ⊗ OX → E given by a general hyperplane V ⊂ H 0(E) induces a

morphism ϕ :P3 →G(1,3).

Proof. Since each Yi ⊂P3 is a smooth complete intersection of degree e2 and genus e2(e −2)+1
we get ωY

∼= OP3 (2e −4)|Y , and the Serre construction gives a rank 2 vector bundle E with Chern
classes c1 = 2e and c2 = 2e2 such that h1(E∗) = 1. To make the construction explicit, consider the
two resolutions

0 →OP3 →O⊕2
P3 (e) →IYi (2e) → 0

that, together with the exact sequence of sheaves

0 →IY (2e) →IY1 (2e)⊕IY2 (2e) →OP3 (2e) → 0,

give a commutative diagram with exact rows and columns

0

��

0

��
O⊕2
P3

��

O⊕2
P3

��
0 // E ′ //

��

O⊕4
P3 (e) //

��

OP3 (2e) // 0

0 // IY (2e) //

��

IY1 (2e)⊕IY2 (2e) //

��

OP3 (2e) //

��

0

0 0 0

where E ′ denotes the kernel of the surjection O⊕4
P3 (e) → OP3 (2e). In particular, c3(E ′) = 0 and

h1(E ′∗) = 0. The surjection determines the exact Koszul complex

0 →OP3 (−2e) →O⊕4
P3 (−e) →O⊕6

P3 →O⊕4
P3 (e) →OP3 (2e) → 0,

whence an exact sequence
0 → F ′ →O⊕6

P3 → E ′ → 0,

where F ′ denotes the cokernel of the injection OP3 (−2e) → O⊕4
P3 (−e). Since c3(E ′) = 0 and h1(E ′∗)

= 0, a general global section of E ′ yields a nontrivial extension 0 →OP3 → E ′ → E → 0, proving (i).
Lemma 7 gives (ii). �

A key point in the proof of Theorem 1 is the following result, that actually works for many other
three-dimensional varieties X (for example, those with Picard number ρ(X ) = 1). From now on ϕ̄
denotes the morphism induced by the surjection φ̄ : H 0(E)⊗OP3 → E , as in Remark 11.

Proposition 13. Let φ : O⊕4
P3 → E be a surjection onto a rank 2 vector bundle. Then h0(E) ≤ 5, and

equality holds if and only ifϕ :P3 →G(1,3) factors as in (6) and ϕ̄(P3) is the set of lines of a smooth
quadric hypersurface Q3 in P4.

C. R. Mathématique — 2021, 359, n 7, 853-860
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Proof. Let P (E) denote the subvariety ofP(H 0(E)) swept out by the lines corresponding to points
of ϕ̄(P3), that is, P (E) is the image of the map

ϕξ :P(E) →P
(
H 0(E)

)
given by H 0(ξ) ∼= H 0(E), where ξ := OP(E)(1) denotes the tautological line bundle of P(E). Since
there exists a surjection φ : O⊕4

P3 → E , Remark 3 gives s3(E) = 0 or, equivalently, dimP (E) ≤ 3.
On the other hand, we may assume that dimϕ̄(P3) = 3 (if not, ϕ̄ is constant and E = O⊕2

P3 ), so
P (E) is swept out by a three-dimensional family of lines. Thus P (E) is either P3, or a smooth
quadric hypersurface Q3 in P4, or it is swept out by a one-dimensional family B of planes (see for
example [11, Lemma, p. 44]). But the latter cannot occur, since otherwise P3 would dominate B .
Then h0(E) ≤ 5, with equality if and only if ϕ : P3 →G(1,3) factors as in (6) and ϕ̄(P3) is the set of
lines of Q3 in P4. �

Corollary 14. Let φ : O⊕4
P3 → E be a surjection onto a rank 2 vector bundle. Then h1(E∗) ≤ 1, and

h1(E∗) = 1 if and only if h0(E) = 5.

Proof. Let F denote the kernel of φ, and consider the exact sequence

0 → F →O⊕4
P3 → E → 0. (7)

We may assume h0(E∗) = 0; otherwise the Splitting Lemma gives E ∼= OP3 ⊕OP3 (c1) and hence
E =O⊕2

P3 by Lemma 7. Similarly, we can assume h0(F ) = 0. Thus Proposition 13 applied to (7) and
its dual sequence yields

h0(E) = 4+h1(F ) ≤ 5, h0 (
F∗)= 4+h1 (

E∗)≤ 5. (8)

This gives h1(E∗) ≤ 1. Suppose now h0(E) = 5. The scheme of zeros of a general section s ∈ H 0(E)
is a smooth curve Y , and ϕ̄(Y ) is not connected by Proposition 13 and Remark 6, since the set of
lines of Q3 contained in a general hyperplane ofP4 consists of the two rulings of a smooth quadric
surface. Therefore Y is not connected, so h1(E∗) > 0, and hence h1(E∗) = 1 by (8). Conversely, if
h1(E∗) = 1 then h0(F∗) = 5 and the same argument yields h1(F ) = 1, whence h0(E) = 5. �

We can now prove the main result of the paper:

Proof of Theorem 1. The inequality h1(E∗) ≤ 1 has been proved in Corollary 14. If h1(E∗) = 1
then the scheme of zeros of a general section s ∈ H 0(E) is a smooth curve Y = Y1 ∪ Y2 with
two connected components by Corollary 8. Moreover h0(E) = 5 and ϕ̄(Y ) consists of the two
rulings of a smooth quadric surface, as shown in Corollary 14, so we have deg(Y1) = deg(Y2).
Then deg(Yi ) = e2 and g (Yi ) = e2(e −2)+1 by Corollary 8. If h0(IYi (e)) = 0 for some i ∈ {1,2}, then
equality holds for s = e in the genus bound [5] and we get a contradiction. Thus

h0 (
IY1 (e)

) ·h0 (
IY2 (e)

) 6= 0. (9)

On the other hand, since IY (2e) is globally generated and h0(IY (2e)) = h0(E)−1 = 4, we conclude
that h0(IY (2e −1)) = 0. In particular, we deduce from (9) that

h0 (
IY1 (e −1)

)= h0 (
IY2 (e −1)

)= 0. (10)

It follows from (10) and [5] that each Yi is a complete intersection of two surfaces of degree e, and
Proposition 12 applies. The converse is immediate. �

Remark 15. While Theorem 1 gives the bound h1(E∗) ≤ 1 and a complete classification when
h1(E∗) = 1, the case h1(E∗) = 0 remains open. To the best of the author’s knowledge, the
only known example of surjection φ : O⊕4

P3 → E onto a rank 2 vector bundle with h1(E∗) = 0
corresponds to an elliptic curve Y ⊂ P3 of degree 8 with no 5-secant lines [2, Théorème 1].
A more detailed proof of the global generation of IY (4) was given in [1, Lemma 2.10] thanks to
[9, Remark 4 and Proposition 6], that allows to find a smooth quartic surface S ⊂P3 containing Y .
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In particular, there exist two pencils S → P1 corresponding to |Y | and |4H −Y |. This is a remark-
able property, so we may also state the following.

Corollary 16. Let S ∈ H 0(IY (2e)) be general in Proposition 12. Then S ⊂ P3 is a smooth surface
with two pencils S →P1 given by |Y | and |2eH −Y |.
Proof. If s, s′ ∈ H 0(E) are general sections, then the scheme of zeros of s ∧ s′ ∈ H 0(Λ2E) is a
smooth surface S ⊂ P3 of degree 2e containing the scheme of zeros Y of s. A concrete homo-
geneous equation of S can be derived from the equality

I (Y ) = I (Y1)∩ I (Y2) = (F1,G1) · (F2,G2),

where (Fi ,Gi ) denote the homogeneous polynomials of degree e defining Yi in P3. Adjunction
formula ωY

∼=ωS (Y )|Y gives Y 2 = 0, whence (2eH −Y )2 = 0. �

Therefore, we pose the following question concerning the case h1(E∗) = 0.

Question 17. What are the smooth connected curves Y ⊂ P3 of degree 2e2 with ωY
∼= OP3 (2e

−4)|Y lying on a smooth surface S ⊂P3 of degree 2e?

4. A remark on the conjecture on morphisms from P5 to G(1,5)

One can modify the statements of Lemma 7 and Corollary 8 to obtain the following two results.

Lemma 18. Let E be a globally generated rank 2 vector bundle onP5. Then there exists a surjection
φ : O⊕6

P5 → E if and only if c1 = 6e and c2 = 12e2.

Corollary 19. Let φ : O⊕6
P5 → E be a surjection onto a nontrivial rank 2 vector bundle. Then

the scheme of zeros of a general section s ∈ H 0(E) is a smooth irreducible threefold Y ⊂ P5 with
ωY

∼=OP5 (6e −6)|Y , and its ideal sheaf is given by the exact sequence

0 →OP5
·s−→ E →IY (6e) → 0.

In particular, di := (KY +HY )i ·H 3−i
Y = 12e2(6e −5)i for every integer 0 ≤ i ≤ 3.

In view of them, we may provide some evidence for Conjecture 2.

Remark 20. On the one hand, no example of indecomposable vector bundle of rank 2 on P5

is known in characteristic zero (see [6, Section 6]). On the other hand, if E is decomposable then
(c1,c2) 6= (6e,12e2) (cf. Lemma 18). Moreover, in the case e = 1 there is no smooth threefold Y ⊂P5

with the numerical invariants given in Corollary 19 (see [3, Proposition 4.2]).
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