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Abstract. We introduce a tiling problem between bounded open convex polyforms P̂ ⊂ R2 with colored
directed edges. If there exists a tiling of the polyform P̂ 2 by P̂ 1, we construct a monomorphism from the
sandpile group GΓ1 = ZΓ1 /∆(ZΓ1 ) on Γ1 = P̂ 1 ∩Z2 to the one on Γ2 = P̂ 2 ∩Z2. We provide several examples
of infinite series of such tilings converging to R2, and thus define the limit of the sandpile group on the plane.
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1. Introduction

1.1. Background

Let Γ = Γ∪ {s} be the vertices of a finite connected (multi-)graph with sink s. Denote by ∂Γ the
boundary of Γ – the set of all vertices adjacent to the sink. The standard discrete graph Laplacian
∆Γ̄ is then defined as the difference between the adjacency matrix of Γ and its degree/valency
matrix. When we delete from ∆Γ̄ the row and column corresponding to the sink, we obtain the
reduced graph Laplacian ∆Γ. The sandpile group GΓ is then defined as the cokernel of ∆Γ acting
on ZΓ [8], i.e.

GΓ =ZΓ/∆Γ(ZΓ).

The sandpile group was rediscovered several times. As a consequence, it is sometimes referred to
as the critical group, as the graph Jacobian, or (sometimes) as the Picard group [2, 4, 6].

Of specific interest are the sandpile groups defined on finite connected domains of the
standard square latticeZ2, i.e. on graphsΓ obtained fromZ2 by contracting all verticesZ2\(Z2∩P )
outside of some bounded open set P ⊂ R2 to the sink. This is also the original setup of the
sandpile model, a cellular automaton introduced by Bak, Tang and Wiesenfeld in 1987 [3] as
the first and archetypical example of a system showing self-organized criticality. Shortly after
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Figure 1. A) Dark-gray points represent the vertices of the standard square latticeZ2, while
the gray isosceles triangles correspond to M . B) The isosceles triangles belonging to the M-
polyform P1 are highlighted by a green background. The black points and lines represent
the vertices and edges of the graph Γ(P1) = Z2 ∩ P1 defined by P1. The sides of the M-
polyform are directed and colored, exemplifying the definition of P DC

1 . C) DC-tiling of a M-
polyform P2 by four copies of the M-polyform P DC

1 from (B). Tiles have a green background
if they can be obtained from P DC

1 by only translations and rotations, and blue otherwise.
Note that the graph Γ(P2) also consists of the vertices lying on the common edges of pairs
of tiles, and the corresponding edges (red points and lines).

the introduction of this cellular automaton, Dhar showed that its recurrent configurations form
a group isomorphic to GΓ, and laid the foundation for its analysis [8, 9]. On such domains,
the sandpile group provides connections between various mathematical fields, including fractal
geometry [7, 14], graph theory and algebraic geometry [4, 5], tropical geometry [12, 13], domino
tilings [10], and others.

Only for few infinite families of graphs, the structure of the respective sandpile groups has
been determined. In particular, the decomposition of the sandpile group on domains of Z2

is yet unknown. Further, results on the relationships between sandpile groups, in terms of
homeomorphisms, on different domains of Z2 are lacking1. This is in stark contrast to the role
of the sandpile model as the archetypical example for self-organized criticality, given that this
concept itself is based on the notion of scaling.

1.2. Sandpile monomorphisms (main result)

In this article, we analyze the relationships between sandpile groups defined on different do-
mains of the standard square lattice Z2. Specifically, given two domains Γ1,Γ2 ⊂ Z2, Γ1 ⊆ Γ2, our
goal is to understand under which conditions group monomorphisms from GΓ1 to GΓ2 exist.

For this, let M be the unique tiling of R2 by isosceles triangles with base length 1 and height
1
2 such that each vertex of (Z+0.5)2 coincides with the apecies of four triangles (Figure 1A). An

1As a consequence of the burning algorithm [8], the restriction of a recurrent configuration to a sub-domain is
recurrent again. Similarly, a recurrent configuration can be extended to a super-domain by e.g. embedding it into the
minimally stable configuration. However, these and similar transformations only define morphisms in the category of
sets (of recurrent configurations), but not in the category of (sandpile) groups.
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M-polyform P ⊂ M then consists of a finite connected subset of triangles in M (Figure 1B). Note
that M is not the usual triangular tiling of the plane, and that M-polyforms thus differ from the
usual definition of polyiamonds. By a slight abuse of notation, we interpret each M-polyform
P to directly correspond to the open subset of R2 enclosed by its isosceles triangles, i.e. to the
interior of

⋃
m∈P m. To each M-polyform P , we then associate the domain Γ(P ) = Z2 ∩P . This

domain is obtained from the standard square lattice Z2 as described in the Introduction, i.e. by
contracting all vertices Z2 \(Z2∩P ) to the sink (Figure 1B). We interchangeably denote by GΓ and
GP the sandpile groups defined on the domain Γ = Γ(P ). Denote by P DC the result of assigning
directions and colors to the edges of an M-polyform P such that each edge has a different color
(Figure 1B). Given two M-polyforms P1 and P2, we say that P1 DC-tiles P2 if there exists a tiling
T P1→P2 of P2 by copies of P DC

1 (allowing all transformations which correspond to automorphisms
of M), such that every common edge of two adjacent tiles in T P1→P2 has the same color and
direction (Figure 1C).

Theorem 1. Let P1 and P2 be two convex M-polyforms, and assume that P1 DC-tiles P2. Then,
there exists a group monomorphism GP1 �GP2 from GP1 to GP2 .

In the proof of this theorem (Section 3), we construct an explicit mapping µ(T P1→P2 ) = (GP1 �
GP2 ) from DC -tilings to the corresponding group monomorphisms. Here, we only note two
properties of this construction: (i) for two M-polyforms P1 and P2, there can exist more than one
distinct DC-tiling of P2 by P1. For example, let the polyform P describe a square with width w and
sides parallel to the standard axes of R2. Since the dihedral group D4 of a square has order eight,
there also exist eight different DC-tiling of P by itself. For w > 2, µ maps each of these tilings to a
different automorphism of GP , which directly correspond to the action of the respective element
of D4 on Γ(P ). For w = 2, the domain Γ(P ) however consists of only a single vertex, and all eight
tilings are mapped to the trivial automorphism; (ii) denote by P̂ the result of extending a polyform
P by one triangle in M adjacent to P such that Γ(P̂ ) = Γ(P ). Then, there exist no DC-tilings of P̂
by P , or vice versa. However, since GP = GP̂ , the set of automorphisms is non-empty. We thus
conclude that the mapping µ is in general neither injective nor surjective.

1.3. Limits of the sandpile group

Let Pol denote the poset of bounded convex M-polyforms, with P1 ⊆DC P2 if there exists a DC-
tiling T P1→P2 of the M-polyform P2 by the M-polyform P1 such that the position and orientation
of one tile in T P1→P2 directly corresponds to P DC

1 , i.e. P DC
1 ∈ T P1→P2 . We naturally identify Pol

with its corresponding (small) category, with the (faithful) forgetful functor U : Pol → Set to the
category of sets mapping each M-polyform to its corresponding open subset of R2 and ⊆DC to
set inclusions. Since the position and orientation of one tile uniquely identifies a DC -tiling (if it
exists), the definition of Pol allows us to associate a DC -tiling ν(P1 ⊆DC P2) ∈ {T P1→P2 } to each
morphism P1 ⊆DC P2, i.e. the unique DC-tiling satisfying P DC

1 ∈ T P1→P2 . We can then define
the functor F : Pol → Ab from Pol to the category Ab of abelian groups, with F (P ) = GP and
F (P1 ⊆DC P2) = µ(ν(P1 ⊆DC P2)). To see that F (idP ) = idGP and F ((P2 ⊆DC P3) ◦ (P1 ⊆DC P2)) =
(GP2 �GP3 )◦ (GP1 �GP2 ), we refer to the construction of the map µ in Section 3.

Of specific interest are infinite sequences S = S0 ⊆DC S1 ⊆DC S2 . . . of M-polyforms in Pol
(identity and composed morphisms omitted), i.e. functors S ∈ Polω from the usual linear order
ω = {0,1, . . .} on the ordinal numbers to Pol. Trivially, each of these sequences, composed with
the forgetful functor U , defines a direct limit lim−−→U S = ⋃

i U (Si ) ⊆ R2 (in the category of sets;
Poldoes not admit all filtered colimits), which we denote by Ŝ∞. Furthermore, each sequence,
composed with F , also defines a direct limit lim−−→F S, denoted either as GS

Ŝ∞
or, equivalently, by

GS
Γ(Ŝ∞)

. We interpret GS
Γ(Ŝ∞)

as the limit of the sandpile group for Γ(Si ) → Γ(Ŝ∞) (with respect

C. R. Mathématique — 2022, 360, 333-341
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Figure 2. Depiction of a small part of the category Polof M-polyforms. Each shape repre-
sents a M-polyform P , while arrows represent morphisms P1 ⊆DC P2 (identities and com-
posed morphisms omitted). The position of the initial triangular M-polyform (black) is de-
picted by a gray background in each M-polyform. The composition of all non-bounded se-
quences S with the forgetful functor U in the depicted part of Pol has a direct limit of R2.

to the sequence S). In Figure 2, we depict the morphisms between four families of polyforms
in Pol. The direct limit of each infinite sequence S ∈ Polω which only contains these polyforms
and morphisms, with Si+1 6= Si for all i ∈ ω, is given by Ŝ∞ = R2, and thus Γ(Ŝ∞) = Z2. To our
knowledge, the respective limits of the sandpile group GS

Z2 are the first2 definitions of limits for
the sandpile group on Z2.

If a given sequence S of M-polyforms is upper bounded, i.e. if there exists an u ∈ω such that
U S j = U Su = Ŝ∞ for all j ≥ u, it directly follows that GS

Ŝ∞
∼= GSu . Thus, for such upper bounded

sequences, the limit of the sandpile group is completely determined (up to isomorphisms) by the
upper bound, i.e. F preserves all finite direct limits. In such cases, we can drop the dependency
of GS

Ŝ∞
on S and simply write GŜ∞ . We may ask if the same also holds for unbounded sequences:

Question 2. Let S A ,SB ∈ Polω be two (possibly unbounded) sequences of M-polyforms with
common limit Ŝ∞ = lim−−→U S A = lim−−→U SB . Is GS A

Ŝ∞
isomorphic to GSB

Ŝ∞
?

Let P̂ol be the category with objects corresponding to all limits Ŝ∞ = lim−−→U S of sequences

S ∈ Polω of polyforms, and morphisms Ŝ A∞ ⊆ ŜB∞ if there exists a natural transformation Sa .→ Sb

between two sequences Sa ,Sb ∈ Polω with Ŝ A∞ = lim−−→U Sa and ŜB∞ = lim−−→U Sb , i.e. if Sa
i ⊆DC Sb

i for all

i ∈ω. We interpret Pol to represent a full subcategory of P̂ol, with the object function of the (fully

2There exist several approaches to define sandpile models directly on Z2, which cope with the occurrence of infinite
avalanches in various ways [1,11,16]. The (weak) limits of the sandpile measures for some of these models concentrate on
certain abelian groups. The relationship between these “groups of recurrent configurations of sandpile models on infinite
graphs” to the sandpile groups on finite graphs is, to our knowledge, however unclear. Specifically, to our knowledge, it
was not shown if these groups correspond to some notion of direct or projective limit in the category of groups.
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faithful) inclusion functor I : Pol → P̂ol given by I (P ) = lim−−→UδP , where δ : Pol → Polω denotes
the diagonal functor with (δP )i = P for all i ∈ ω. Question 2 then asks if there exists a functor
F̂ : P̂ → Ab which preserves all direct limits, and for which F factors as F̂ ◦U .

In case Question 2 can be answered in the affirmative, a unique limit GZ2 (up to isomorphisms)
of the sandpile group on Z2 would exist. In this case, the following would hold:

Corollary 3. Assume that GS A

Ŝ∞
∼= GSB

Ŝ∞
whenever Ŝ∞ = lim−−→U S A = lim−−→U SB . Then, the limit of the

sandpile group on Z2 is isomorphic to its limit on the upper-right quadrant of Z2, i.e. GZ2 ∼=GZ2
≥0

.

This corollary utilizes that, in morphisms P1 ⊆DC P2, the positions of the M-polyforms P1

and P2 are considered, and that thus two different morphisms can be mapped by ν to the same
tiling T P1→P2 . This can be used to construct two sequences S A and SB such that there exists a
natural isomorphism F S A ∼= F SB , but for which Ŝ A∞ 6= ŜB∞. Corollary 3 corresponds to choosing
S A

0 = SB
0 to be square-shaped M-polyforms with side length w0, S A

i+1 and SB
i+1 to have side lengths

wi+1 = 5wi , S A
i+1 to be positioned such that S A

i is in its center, and SB
i+1 such that SB

i is at its
bottom-left.

1.4. Relationship to harmonic functions and order of the sandpile group

We say that a domain Γ⊆Z2 is convex if there exists a convex open set P ⊆R2 such that Γ= P∩Z2.
Different to before, we do not require P to be an M-polyform anymore. We say that an R-valued
function H : Γ→ R, R ∈ {Z,Q,R}, is harmonic (on Γ) if ∆ΓH(v) = 0 for all vertices v ∈ Γ0 in the
interior Γ0 = Γ\∂Γ of the domain. Note that, different to certain other literature, neither the sink
nor the outer boundary ∂(Z2 \Γ) is in the domain of H . The R-valued harmonic functions on Γ

form the R-module H Γ
R .

Lemma 4. For every finite convex domain Γ ⊂ Z2, −∆Γ : H Γ
G

∼= GΓ is an isomorphism from
H Γ

G = {H ∈ H Γ
Q
|∆ΓH |∂Γ ∈ Z∂Γ}/H Γ

Z
to the sandpile group GΓ, with H Γ

G the subgroup of the

rational-valued harmonic functions H Γ
Q

with integer-valued Laplacians, modulo the integer-

valued harmonic functions H Γ
Z

. This isomorphism corresponds to the exact sequence

0 // GΓ
// H Γ

Q
/H Γ

Z
// (Q/Z)∂Γ // 0.

This and the following lemma can be considered to be special cases of the general theory of
toppling invariants introduced in [9]: By [7], every element of the sandpile group can be reached
from the identity by only adding particles to the boundary of the domain. This allows to choose
the (independent) toppling invariants generating the sandpile group such that their Laplacians
only have support on the boundary ∂Γ of the domain. This choice of toppling invariants (i.e. the
exact sequence in Lemma 4) seems to be especially suited to further characterize the sandpile
group as it e.g. significantly simplifies the proof of our main theorem. For this reason, an explicit
construction of the isomorphism in Lemma 4 is provided in Section 2.

Denote by BΓ
R = {Bi }i=1,...,|∂Γ| a basis for the module H Γ

R of R-valued harmonic functions on
a finite convex domain Γ ⊂ Z2. By definition, the Laplacian ∆ΓH of every harmonic function
H ∈ H Γ

R , and thus also of every basis function in BΓ
R , only has support at the boundary ∂Γ of

the domain. The Laplacian of every basis function in BΓ
R can thus be restricted to ∂Γ without

information loss, and we refer to ∆BΓ
R = (∆ΓB1|∂Γ, . . . ,∆ΓB|∂Γ||∂Γ) ∈ R |∂Γ|×|∂Γ| as the potential

matrix of Γ (with respect to BΓ
R ).

Lemma 5. Let Γ ⊂ Z2 be a finite convex domain, and BΓ
Z

be a basis for the module of integer-
valued harmonic functions H Γ

Z
on Γ. Then, the order of the sandpile group GΓ is |GΓ| = |det(∆BΓ

Z
)|.

As for the previous lemma, this result can be considered to represent a special case of the
general theory of toppling invariants [9].

C. R. Mathématique — 2022, 360, 333-341
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2. Harmonic functions (proofs of Lemmata 4 and 5)

Recall that, in the sandpile model, every recurrent configuration can be reached from the empty
configuration (or any other configuration) by only adding particles to the boundary of the domain
and “relaxing” the sandpile [7]. Since the elements of the sandpile group correspond to the
equivalence classes of the recurrent configurations of the sandpile model (see Introduction), this
can be restated as follows: for every element C ∈ GΓ of the sandpile group, there exist (infinitely
many) functions X ∈ ZΓ which only have support at the boundary ∂Γ of the domain, and which
satisfy that [X ] =C , with [ · ] :ZΓ →GΓ the canonical projection map to the sandpile group. Since
Γ is assumed to be convex, there exist functions BX : ∂(Z2 \Γ) →Z such that X (v) =∑

w∼v BX (w).
When considering BX as a boundary condition, it follows, by the existence and uniqueness of
solutions to the discrete Dirichlet problem on convex domains [15], that, for every such X ∈ ZΓ,
there exists a unique rational-valued harmonic function HX ∈H Γ

Q
with ∆ΓHX =−X .

The composition [.] ◦−∆Γ of the discrete Laplacian with the canonical projection map then
maps two harmonic functions HX ,1, HX ,2 ∈ H Γ

Q
, ∆ΓHX ,1,∆ΓHX ,2 ∈ ZΓ, to the same element of

the sandpile group if and only if −∆Γ(HX ,1 −HX ,2) ∈∆Γ(ZΓ). Since both ∆ΓHX ,1 and ∆ΓHX ,2 only
have support at the boundary ∂Γ of the domain, HX ,1 −HX ,2 is thus an integer-valued harmonic
function, which concludes our proof of Lemma 4.

We construct the inverse of −∆Γ : H Γ
G
∼= GΓ in two steps. For every configuration C ∈ GΓ, we

first define the coordinates σΓ : GΓ→ (Q/Z)∂Γ,

σΓ(C ) ≡−(∆BΓ
Z)−1X (mod1),

with respect to the basis BΓ
Z

. Note that, for two different choices Xα, X β ∈ ZΓ, −(∆BΓ
Z

)−1(Xα −
X β) ∈ Z∂Γ, and that thus the coordinates σΓ don’t depend on the specific choice for X . This also
implies that σΓ correspond to toppling invariants as defined in [9].

In the second step, we then define the function φΓ : (R/Z)∂Γ → H Γ
R

/H Γ
Z

, φΓ(s) = ∑|∂Γ|
i=1 si Bi . It

is easy to check that the composition φΓ ◦σΓ : GΓ→H Γ
R

/H Γ
Z

is independent of the choice of the
basis BΓ

Z
, and that −∆ΓφΓ(σΓ([X ])) = [X ]. The latter implies that φΓ ◦σΓ is the inverse of −∆Γ.

The isomorphism between the sandpile group GΓ and H Γ
G proposes to consider the sandpile

group as a discrete subgroup of a continuous Lie group isomorphic to H Γ
R

/H Γ
Z

, to which we
refer to as the extended sandpile group G̃Γ [14]. More precisely, the extended sandpile group is an
extension of the torus (R\Z)∂Γ by the usual sandpile group, and is defined by the exact sequence

0 // GΓ
// G̃Γ

// (R/Z)∂Γ // 0.

In terms of the sandpile model, this Lie group is obtained by allowing each vertex b ∈ ∂Γ in
the boundary ∂Γ of the domain to carry a real value C̃ (b) ∈ [0,4) of particles, while each vertex
v ∈ Γ0 in the interior Γ0 = Γ \∂Γ of the domain is still only allowed to carry an integer number
of particles, i.e. C̃ (v) ∈ {0,1,2,3} (the toppling rules are kept unchanged) [14]. This definition lifts
φΓ : (R/Z)∂Γ ∼= G̃Γ to a group isomorphism, and a left-inverse of the inclusion map GΓ → G̃Γ is
given by the floor function b ·c : G̃Γ→GΓ. We thus naturally arrive at the function f = b·c◦−∆Γ◦φΓ :
(R/Z)∂Γ→GΓ, f (s) =−[b∑|∂Γ|

i=1 si∆ΓBi c], which justifies to interpret the usual sandpile group GΓ as
the discretization of an |∂Γ|-dimensional torus [14].

Due to the properties of the floor function, the preimage f −1(C ) of an element C ∈ GΓ of the
sandpile group under f is connected. Denote by vol( f −1(C )) the volume of this preimage, with
vol((R/Z)∂Γ) = 1. Since, for every C ∈ GΓ, there exists a coordinate transformation s 7→ s̃ such
that C has coordinates s̃ = 0, we get that vol( f −1(C )) = vol( f −1(0)) = 1

|GΓ| for all C ∈ GΓ, with 0
the identity of the sandpile group. The preimage f −1(0) of the identity under f forms a |∂Γ|-
parallelotope with edges gi given by (∆BΓ

Z
)gi = ei , with (ei ) j = δi j the i th unit vector and δi j

the Kronecker delta. The volume of this parallelotope is vol( f −1(0)) = |det(∆BΓ
Z

)−1|, and thus
|GΓ| = |det(∆BΓ

Z
)|, which proves Lemma 5.

C. R. Mathématique — 2022, 360, 333-341
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3. Construction of sandpile monomorphisms (proof of Theorem 1)

Let P A and PB be two convex M-polyforms, and assume that there exists a DC -tiling T P A→PB of
PB by P A . In this section, we then construct a monomorphism from the sandpile group on the
domain ΓA = Γ(P A) = Z2 ∩P A to the sandpile group on ΓB = Γ(PB ) = Z2 ∩PB , and thus prove
Theorem 1. Before starting this construction, we shortly state three properties of DC -tilings.

Corollary 6. The domains of different tiles do not overlap, i.e. Γi ∩Γ j = {} for all i 6= j .

The domains of the tiles in general don’t cover ΓB . Specifically, all vertices of ΓB which lie
directly on common edges (including their endpoints) of two tiles are not elements of any Γi

(red vertices in Figure 1). We refer to the set ∂TΓB = ΓB \
⋃

i Γi of these vertices as the internal
boundaries of the tiling. They separate the domains Γi in the following sense:

Corollary 7. The removal of all vertices in ∂TΓB splits ΓB into the disconnected components
{Γ1,Γ2, . . . ,Γ|T P A→PB |}.

By definition, each tile Pi ∈ T P A→PB can be obtained from P DC
A by a combination of transla-

tions, rotations and reflections. If this is possible by using only translations and rotations, we as-
sign the sign s(Pi ) =+1 to the tile, and otherwise the sign s(Pi ) =−1. This definition also induces
signs s(v) = s(Γi ) = s(Pi ) for the domains Γi and vertices v ∈ Γi belonging to the tiles. To the in-
ternal boundaries ∂TΓB and their vertices b ∈ ∂TΓB , we assign the sign s(∂TΓB ) = s(b) = 0. The
relationship of each tile Pi with the polyform P A (i.e. the translations, rotations and reflections
mapping P A on Pi ) corresponds to a function ψi : ΓA → ΓB which maps vertices v A ∈ ΓA of the
polyform onto their corresponding vertices vi of the tile. For two vertices v, w ∈ ΓB , we then de-
fine the equivalence relation ≡DC such that v ≡DC w if there exists a v A ∈ ΓA such that v =ψi (v A)
and w =ψ j (v A) for some tiles Pi and P j , or if both vertices are part of the internal boundaries,
i.e. v, w ∈ ∂TΓB . We denote by [v]DC the equivalence class of v induced by ≡DC .

Corollary 8. Let b ∈ ∂TΓB be a vertex of the internal boundaries. Then, the number of neighbors
of b in every equivalence class [vB ]DC , vB ∈ ΓB carrying a positive sign is equal to the number of
neighbors carrying a negative sign, i.e.

∑
v∈[vB ]DC

v∼b
s(v) = 0.

Proof. Assume that b has at least one neighbor in [vB ]DC ; otherwise the corollary is trivially
satisfied. Also, assume vB ∉ ∂TΓB , since otherwise s(v) = 0 for all v ∈ [vB ]DC , from which the
corollary also trivially follows. Denote by N (b, vB ) = {v ∈ [vB ]DC |v ∼ b} the set of neighbors of b in
the equivalence class of vB . Every vertex can have maximally four neighbors, thus |N (b, vB )| ≤ 4.
Being part of the internal boundaries, b must lie on at least one common edge (including
endpoints) of two tiles Pi 6= P j . These two tiles can be mapped onto one another by reflection
on the common edge, and thus must have opposite signs. If a vertex v ∈ Γi of Pi is a neighbor
of b, it follows that there must be a vertex w ∈ Γ j of P j which is also a neighbor of b, and which
has opposite sign, i.e. s(w) =−s(v). This excludes the case |N (b, vB )| = 1, and proves the corollary
for |N (b, vB )| = 2. For |N (b, vB )| ∈ {3,4}, the structure of M directly implies that b has to lie on a
common corner of three, respectively four, tiles. The corresponding internal angles of the tiles
have to be smaller or equal to 360◦/3 = 120◦, respectively 360◦/4 = 90◦. The definition of M only
admits internal angles which are multiples of 45◦ (Figure 1A). Thus, in both cases, only angles of
45◦ or 90◦ are possible. An angle of 45◦ is only possible if all v ∈ [vB ] lie on the internal boundaries,
which implies s(v) = 0 (see above). If the angle is 90◦, |N (b, vB )| = 3 would imply that PB is not
convex, which can thus be excluded. Finally, if the angle is 90◦ and |N (b, vB )| = 4, each of the four
tiles to which these vertices belong must have exactly two adjacent tiles with opposite signs. �

By Lemma 4, the sandpile group GΓ is isomorphic to H Γ
G = {H ∈ H Γ

Q
| ∆ΓH |∂Γ ∈ Z∂Γ}/H Γ

Z
.

To prove Theorem 1, it thus suffices to construct a monomorphism from H
P A
G to H

PB
G given
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Figure 3. Construction of sandpile monomorphisms. A) A harmonic function HA ∈ H
ΓA
G

(left) corresponding to the element [−∆ΓA HA] ∈ GP A of the sandpile group (right) on a
given M-polyform P DC

A (colored arrows indicate edges, green squares vertices of ΓA =
Γ(P A)). B) The M-polyform P A from (A) DC -tiles the depicted M-polyform PB . Depicted
is the rational-valued function Ĥ B (top-left), and the three integer-valued functions X1,
X2 and X3 (one for each tile) which cure the non-harmoniticity of Ĥ B . C) The function
HB = Ĥ B +X1 +X2 +X3 is harmonic everywhere and can be reinterpreted as an element of
H

ΓB
G (left). It corresponds to the element [−∆ΓB HB ] ∈GPB of the sandpile group on PB onto

which [−∆ΓA HA] ∈GPB HA is mapped by the monomorphism (right).

a DC -tiling T P A→PB of the M-polyform PB by P A . For a harmonic function HA ∈ H
ΓA
G , define

the rational-valued function Ĥ B ∈ QΓB in the following way (Figure 3A&B): for each vertex
v ∈ Γi belonging to tile Pi ∈ T P A→PB , set Ĥ B (v) = s(Pi )HA(v A) with v A ∈ ΓA the unique vertex
satisfying ψi (v A) = v . Otherwise, that is if v belongs to the internal boundaries, set Ĥ B (v) = 0.
Because Ĥ B (b) = 0 for all vertices b ∈ ∂TΓB of the internal boundaries, Corollary 7 implies that
∆ΓB Ĥ B (v) = s(Γi )∆ΓA HA(v A) for all vertices v ∈ Γi belonging to the domain of a tile Pi , with
ψi (v A) = v . This implies that the Laplacian of Ĥ B is zero in the interior of the sub-domains Γi

of ΓB , and integer-valued at their boundaries. From Corollary 8, on the other hand, it follows that
∆ΓB Ĥ B (b) = 0 for every vertex b ∈ ∂TΓB of the internal boundaries. Thus, Ĥ B is harmonic nearly
everywhere, except at the vertices directly adjacent to (but not including) the internal boundaries,
for which ∆ΓB Ĥ B is integer-valued.

The “harmonic deficit” of Ĥ B can be cured, one tile at a time: for a given tile Pi , we can define
an integer-valued function Xi ∈ ZΓB whose Laplacian is zero everywhere in the interior of ΓB ,
except for those vertices v ∈ ∂Γi \∂ΓB at the boundary of Γi which are not also at the boundary of
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ΓB . Note that these vertices are all next to an internal boundary. For these vertices v ∈ ∂Γi \∂ΓB ,
we require that∆ΓB Xi (v) =−∆ΓB Ĥ B (v). For example, Xi can be defined by the following iterative
algorithm: first, set Xi (v) = 0 for all v ∈ Γi . Define Γ0 = Γi and B 0 = {v ∈ ΓB \Γi | ∃ w ∈ Γi : v ∼ w}.
For every v ∈ B 0, choose an integer value Xi (v) such that for every w ∈ ∂Γi \∂ΓB , ∆ΓB Ĥ B (w) =
−∆ΓB Xi (w). Note that, since Γi is convex, the corresponding equation system always admits a
solution (even though non-unique). Then, in every iteration s = 1,2, . . ., set Γs = Γs−1 ∪B s−1 and
B s = {v ∈ ΓB \Γs | ∃ w ∈ Γs : v ∼ w}. Note that Γs is convex again. Now, for every v ∈ B s , choose
an integer value Xi (v) such that for every w ∈ ∂Γs \∂ΓB , ∆ΓB Xi (w) = 0. Again, this is possible due
to convexity of Γs . Continue until all values of Xi are defined. In general, there is some degree of
freedom to choose the values of Xi assigned in every step of this algorithm. However, note that
the difference Xα

i −X β

i of every two such possible choices Xα
i and X β

i is integer-valued harmonic.
Given the functions Xi , we define HB ∈ QΓ by HB = Ĥ B + ∑

i Xi . By construction, HB is
harmonic everywhere and has an integer-valued Laplacian. We can thus reinterpret HB to be an
element of H

ΓB
G

. It is then easy to see that the function ξ : H P A
G →H

PB
G , ξ(HA) = HB , is injective,

and that it satisfies ξ(H 1
B +H 2

B ) = ξ(H 1
B )+ξ(H 2

B ). The function ξ is thus a group monomorphism,
and with the isomorphism −∆Γ : H P

G
∼= GP from Lemma 4, we get that µ(T P A→PB ) = ∆ΓB ◦ ξ ◦

(∆ΓA )−1 : GP A �GPB is the group monomorphism stated to exist in Theorem 1.
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