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Abstract. In 1985 Crapo introduced in [3] a new mathematical object that he called geometry of circuits. Four
years later, in 1989, Manin and Schechtman defined in [13] the same object and called it discriminantal
arrangement, the name by which it is known now a days. Those discriminantal arrangements B(n,k,A 0)
are builded from an arrangement A 0 of n hyperplanes in general position in a k-dimensional space and
their combinatorics depends on the arrangement A 0. On this basis, in 1997 Bayer and Brandt (see [2])
distinguished two different type of arrangements A 0 calling very generic the ones for which the intersection
lattice of B(n,k,A 0) has maximum cardinality and non-very generic the others. Results on the combinatorics
of B(n,k,A 0) in the very generic case already appear in Crapo [3] and in 1997 in Athanasiadis [1] while the
first known result on non-very generic case is due to Libgober and the first author in 2018. In their paper [12]
they provided a necessary and sufficient condition on A 0 for which the cardinality of rank 2 intersections
in B(n,k,A 0) is not maximal anymore. In this paper we further develop their result providing a sufficient
condition on A 0 for which the cardinality of rank r, r ≥ 2, intersections in B(n,k,A 0) decreases.
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1. Introduction

In 1989, Manin and Schechtman ([13]) introduced a family of arrangements of hyperplanes
generalizing classical braid arrangements, which they called the discriminantal arrange-
ments ([13, p.209]). Such an arrangement B(n,k,A 0),n,k ∈ N for k ≥ 2 depends on a choice
A 0 = {H 0

1 , . . . , H 0
n} of a collection of hyperplanes in general position in Ck , i.e., such that

dim
⋂

i ∈K ,|K |=k H 0
i = 0. It consists of parallel translates of H t1

1 , . . . , H tn
n , (t1, . . . , tn) ∈ Cn which fail

to form a general position arrangement in Ck . B(n,k,A 0) can be viewed as a generalization of
the braid arrangement ([15]) with which B(n,1) =B(n,1,A 0) coincides.
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These arrangements have several beautiful relations with diverse problems such as the
Zamolodchikov equation with its relation to higher category theory (see Kapranov-Voevodsky [9],
see also [7, 8]), the vanishing of cohomology of bundles on toric varieties ([16]), the representa-
tions of higher braid groups (see [10]) and, naturally, with combinatorics. The latter is the con-
nection we are mainly interested in and it goes from matroids to special configurations of points,
from fiber polytopes to higher Bruhat orders.

Manin and Schechtman introduced discriminantal arrangements as higher braid arrange-
ments in order to introduce higher Bruhat orders which model the set of minimal path through a
discriminantal arrangement. Even if Ziegler showed (see [19, Theorem 4.1]) in 1991 that we have
to choose a cyclic arrangement instead of discriminantal arrangement for this, few years later,
in a subsequent work (see [6]) Felsner and Ziegler reintroduced the combinatorics of discrimi-
nantal arrangement in the study of higher Bruhat orders (this connection uses fiber polytopes as
observed by Falk in [5]). From a different perspective, unknown in the literature of discriminan-
tal arrangement until Athanasiadis pointed it out in 1999 (see [1]), Crapo introduced for the first
time in 1985 (see [3]) what he called geometry of circuits and which is the matroid M(n,k,C ) of
circuits of the configuration C of n generic points in Rk . The circuits of the matroid M(n,k,C )
are the hyperplanes of B(n,k,A 0), A 0 arrangement of n hyperplanes in Rk orthogonal to the
vectors joining the origin with the n points in C (for further development see [4]).

Both Manin–Schechtman ([13]) and Crapo ([3]) were mainly interested in the arrangements
B(n,k,A 0) for which the intersection lattice is constant when A 0 varies within a Zariski open
set Z in the space of general position arrangements. Crapo shows that, in this case, the matroid
M(n,k) is isomorphic to the Dilworth completion of the kth lower truncation of the Boolean
algebra of rank n. More recently in [1], Athanasiadis proved a conjecture by Bayer and Brandt
(see [2]) providing a full description of combinatorics of B(n,k,A 0) when A 0 belongs to Z .
Following [1] (more precisely Bayer and Brandt), we call arrangements A 0 in Z very generic, non-
very generic otherwise.

However Manin and Schechtman do not describe the set Z of very generic arrangements
explicitly, which, in time, led to the misunderstanding that the combinatorial type of B(n,k,A 0)
was independent from the arrangement A 0 (see for instance, [14][15, § 8] or [11]). Neither Crapo
in [3] provided a description of Z even if he presented the first known example of a non-very
generic arrangement: 6 lines in generic position inR2 which admit translated that are respectively
sides and diagonals of a quadrilateral as in Figure 1 (Crapo calls it a quadrilateral set). Few years
later in 1994, Falk provided an higher dimensional example of non-very generic arrangement of
6 planes in R3 (see [5]). Similar to Crapo’s example, Falk’s example too turned out to be related to
a special configuration of lines, this time in projective plane (see [17, 18]).

In 2018 the first general result on non-very generic arrangements is provided. In [12] Libgober
and the first author described a sufficient geometric condition on the arrangement A 0 to be non-
very generic. This condition ensures that B(n,k,A 0) admits codimension 2 strata of multiplicity
3 which do not exist in very generic case. It is given in terms of the notion of dependency
for the arrangement A∞ in Pk−1 of hyperplanes H∞,1, . . . , H∞,n which are the intersections of
projective closures of H 0

1 , . . . , H 0
n ∈ A 0 with the hyperplane at infinity. Their main result shows

that B(n,k,A 0),k > 1 admits a codimension two stratum of multiplicity 3 if and only if A∞
is an arrangement in Pk−1 admitting a restriction1 which is a dependent arrangement. This
construction generalizes Falk’s example which corresponds to the case n = 6,k = 3 and which
has been object of study in two subsequent papers, ([17, 18]) by Sawada and the first and second
authors. In those papers the authors proved how the arrangement A 0 of 6 planes in R3 (resp. C3)

1Here restriction is the standard restriction of arrangements to subspaces as defined in [15].
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Figure 1. Central generic arrangement of 6 lines inR2, its generic translation on the left and
its non-(very) generic translation on the right.

for which the rank 2 intersections of B(6,3,A 0) are in minimal number corresponds to Pappus’s
(resp. Hesse’s) configuration providing a main example of what conjectured by Crapo that the
intersection lattice of the discriminantal arrangement represents a combinatorial way to encode
special configurations of points in the space. Notice that in [17] the authors connected the non-
very generic arrangements A 0 of n planes in C3 to well defined hypersurfaces in Grassmannian
Gr (3,n).

In this paper we advance the study of non-very generic arrangements and generalize the
dependency condition given in [12] providing a sufficient condition for the existence in rank r ≥ 2
of non-very generic intersections, i.e. intersections which doesn’t exist in B(n,k,A 0),A 0 ∈ Z .
In particular we call an intersection of r hyperplanes in B(n,k,A 0) which satisfies the following
property a simple intersection: if the arrangement A 0 is very generic then all simple intersections
of multiplicity r have rank r (that is they are r hyperplanes intersecting transversally). Then we
provide a geometric necessary and sufficient condition for the existence of simple intersections
of multiplicity r in rank strictly lower than r , i.e. simple non-very generic intersections. This
result firstly connect configurations of non-very generic points to special families of graphs
(called KT-configurations) which help to understand B(n,k,A 0) for A 0 ∉ Z (as conjectured by
Crapo in [3]). Secondly it reduces the geometric problem of the existence of special (non-very
generic) configurations of points to a combinatorial problem on the numerical properties that r
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subsets of indices Li ⊂ {1, . . . , n}, i = 1, . . . , r of cardinality k +1 have to satisfy in order for the KT-
configuration, T = {L1, . . . , Lr }, to give rise to a simple non-very generic intersection. The latter
problem is left open together with the problem of necessary and sufficient conditions for the
existence of intersections in B(n,k,A 0) which are nor simple nor very generic.

The content of the paper is the following. In Section 2, we recall the definition of discriminantal
arrangement and basic properties of the intersection lattice of discriminantal arrangement in
very generic case. We also give the definition of simple intersection. In Section 3, we introduce the
notion of KT-translated and KT-configuration associated to a generic arrangement A 0 providing
a geometric condition for A 0 to be non-very generic (Theorem 10).

2. Preliminaries

2.1. Discriminantal arrangement

Let H 0
i , i = 1, . . . , n be a central arrangement inCk ,k < n which is generic2, i.e. any m hyperplanes

intersect in codimension m at any point except for the origin for any m ≤ k. We will call such
an arrangement a central generic arrangement. Space of parallel translates S(H 0

1 , . . . , H 0
n) (or

simply S when dependence on H 0
i is clear or not essential) is the space of n-tuples of translates

H1, . . . , Hn such that either Hi ∩H 0
i =; or Hi = H 0

i for any i = 1, . . . , n.
One can identify S with n-dimensional affine space Cn in such a way that (H 0

1 , . . . , H 0
n) corre-

sponds to the origin. In particular, an ordering of hyperplanes in A determines the coordinate
system in S (see [12]).

Given a central generic arrangement A inCk formed by hyperplanes Hi , i = 1, . . . , n the trace at
infinity, denoted by A∞, is the arrangement formed by hyperplanes H∞,i = H̄ 0

i ∩H∞ in the space
H∞ 'Pk−1(C), where H̄ 0

i are projective closures of affine hyperplanes H 0
i in the compactification

Pk (C) of Ck ' Pk (C) \ H∞. Notice that condition of genericity is equivalent to
⋃

i H 0
∞,i being a

normal crossing divisor in Pk−1(C), i.e. A∞ is a generic arrangement.
The trace A∞ of an arrangement A determines the space of parallel translates S (as a

subspace in the space of n-tuples of hyperplanes in Pk ). Fixed a generic central arrangement
A , consider the closed subset of S formed by those collections which fail to form a generic
arrangement. This subset of S is a union of hyperplanes DL ⊂ S (see [13]). Each hyperplane DL

corresponds to a subset L = {i1, . . . , ik+1} ⊂ [n] := {1, . . . , n} and it consists of n-tuples of translates
of hyperplanes H 0

1 , . . . , H 0
n in which translates of H 0

i1
, . . . , H 0

ik+1
fail to form a generic arrangement.

The arrangement B(n,k,A ) of hyperplanes DL is called discriminantal arrangement and has
been introduced by Manin and Schechtman in [13]3. Notice that B(n,k,A ) depends on the trace
at infinity A∞ hence it is sometimes more properly denoted by B(n,k,A∞).

2.2. Very generic and non-very generic discriminantal arrangements

It is well known (see, among others [3, 13]) that there exists an open Zarisky set Z in the space
of (central) generic arrangements of n hyperplanes in Ck , such that the intersection lattice of
the discriminantal arrangement B(n,k,A ) is independent from the choice of the arrangement
A ∈ Z . Bayer and Brandt in [2] call the arrangements A ∈ Z very generic and the ones which

2Notice that, in general, generic, referred to an arrangement of hyperplanes, has a slightly different meaning. With
an abuse of notation, we use the word generic in this case since the defined property is equivalent to the existence of a
translated of the given central arrangement which is generic in the classical sense.

3Notice that Manin and Schechtman defined the discriminantal arrangement starting from a generic arrangement
instead of its central translated as we do in this paper. For our purpose the latter is a more convenient choice.
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are not in Z , non-very generic. We will use their terminology in the rest of this paper. The name
very generic comes from the fact that in this case the cardinality of the intersection lattice of
B(n,k,A ) is the largest possible for any (central) generic arrangement A of n hyperplanes inCk .

In [3] Crapo proved that the intersection lattice of B(n,k,A ),A ∈ Z is isomorphic to the
Dilworth completion of the k-times lower-truncated Boolean algebra Bn (see [3, Theorem 2,
p. 149]). A more precise description of this lattice is due to Athanasiadis who proved in [1] a
conjecture by Bayer and Brandt which stated that the intersection lattice of the discriminantal
arrangement in very generic case is isomorphic to the collection of all sets {S1, . . . , Sm}, Si ⊂
[n] = {1, . . . , n}, |Si | ≥ k +1, such that∣∣∣⋃

i ∈ I
Si

∣∣∣> k + ∑
i ∈ I

(|Si |−k) for all I ⊂ [m] = {1, . . . , m}, |I | ≥ 2. (1)

The isomorphism is the natural one which associate to the set Si the space

DSi =
⋂

L⊂Si ,|L|=k+1
DL ,DL ∈B(n,k,A )

of all translated of A having hyperplanes indexed in Si intersecting in a not empty space. In
particular {S1, . . . , Sm} will correspond to the intersection

⋂m
i=1 DSi .

If A is very generic and the condition (1) is satisfied, then the subspaces DSi , i = 1, . . . , m
intersect transversally ([1, Corollary 3.6]) or, equivalently, since rank DSi = |Si |−k, that

rank
m⋂

i=1
DSi =

m∑
i=1

(|Si |−k) (2)

Notice that, if A is very generic, the condition (1) is always satisfied (see also [1]) if⋂
i ∈ I

DSi 6= DS , |S| > k +1 for any I ⊂ [r ] = {1, . . . , m}, |I | ≥ 2. (3)

The fact that the condition (3) implies the condition (2) for any set {S1, . . . , Sm} which satisfies the
condition (1) corresponds to the definition provided by Crapo in [3] of a geometry of circuits4.

Contrary to the very generic case, very few is known about the non-very generic case. In
recent papers the first author (see [12]) and the first and second authors (see [17, 18]) showed
that the non-very generic arrangements are arrangements which hyperplanes give rise to special
configurations (e.g. Pappus’s configuration or Hesse configuration). Following this direction,
in the rest of the paper we further develop the result in [12] providing a geometric sufficient
condition for a central generic arrangement A to be non-very generic. In order to do this we
provide the following definition.

Definition 1. An element X in the intersection lattice of the discriminantal arrangement
B(n,k,A ) is said to be a simple intersection if X = ⋂r

i=1 DLi , |Li | = k +1 and
⋂

i ∈ I DLi 6= DS , |S| >
k +1 for any I ⊂ [r ], |I | ≥ 2. We call the number r of the hyperplanes intersecting in X the multi-
plicity of the simple intersection X .

The above considerations lead to the following Proposition.

Proposition 2. If the intersection lattice of the discriminantal arrangement B(n,k,A ) contains a
simple intersection of rank strictly less than its multiplicity, then A is non-very generic.

Proof. Let’s assume, by absurd, that A is a very generic arrangement such that B(n,k,A )
contains a simple intersection X = ⋂r

i=1 DLi , |Li | = k + 1 of rank s < r . Then by definition of
simple intersection, the set {L1, . . . , Lr } satisfies the equation (1) which, in turns, implies that
the equation (2) is satisfied, i.e. rank X = ∑r

i=1(|Li | − k) = r , which is an absurd and the proof
is concluded. �

4Here Crapo followed the preference of his advisor Rota who rarely used the name matroid.
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Proposition 2 will play an important role in the rest of the paper since we will focus on a
necessary and sufficient condition for the existence of such a simple intersection.

2.3. Motivating examples

In this subsection we provide the two main examples given by Crapo (see [3]) and Falk (see [4]
and [5]) of simple but non-very generic intersections. Those two examples inspired the rest of the
content of this paper.

Crapo example is illustrated in Figure 1. In this case A 0 is the central generic arrangement
in the top of the figure while the arrangement A t on the right of Figure 1 is an element in the
simple intersection X = ⋂4

i=1 DLi with L1 = {1,2,3}, L2 = {1,4,5}, L3 = {2,4,6}, L4 = {3,5,6}. By
definition of discriminantal arrangement, the only rank 4 intersection of B(6,2,A 0) is given by
D[6], the space of all central translated of A 0. Since A t is not central, this implies that X 6= D[6]

and hence rank X < 4, that is X is a simple intersection of multiplicity 4 and rank 3 < 4. That is
the arrangement A 0 in Figure 1 is non-very generic.

Falk example is illustrated in Figure 2. Let B(6,3,A∞) be the discriminantal arrangement
associated to a central generic arrangement A 0 of 6 hyperplanes Hi in R3 which satisfy the
condition that Hi ∩Hi+1 ∩H∞, i = 1,3,5 span a line at infinity (see Figure 2). In [12] the authors
proved that such an arrangement A 0 admits a translation A t which belongs to the simple
intersection X = ⋂3

i=1 DLi with L1 = {1,2,3,4}, L2 = {1,2,5,6}, L3 = {3,4,5,6}, that is, in particular,
A t is not a central arrangement. By definition of discriminantal arrangement, the only element
in rank 3 in B(6,3,A 0) is D[6] the space of all central translated of A 0 hence rank X < 3, that is X
is a simple intersection of multiplicity 3 and rank 2 < 3, i.e. A 0 is non-very generic.

Figure 2. Figure of non-very generic arrangement with 6 hyperplanes in R3.

3. A geometric condition for non-very genericity

In this section we provide a necessary and sufficient condition for the existence of a simple
intersection X of multiplicity r and rank X < r in the intersection lattice of the discriminantal
arrangement B(n,k,A 0). By Proposition 2 this is a sufficient condition for A 0 to be non-very
generic.
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Notation 3. To begin with let us fix some notations we will use throughout the paper.

• A 0 is a central generic arrangement of n hyperplanes in Ck

• For each subset L of {1, . . . , n} with |L| = k + 1, DL ⊂ Cn will denote the hyperplane in
B(n,k,A 0) corresponding to the subset L.

• Fixed a set T = {L1, . . . , Lr } of subsets Li ⊂ [n], |Li | = k + 1, for any arrangement A =
{H1, . . . , Hn} translated of A 0 we will denote by Pi = ⋂

p ∈Li Hp and Hi , j = ⋂
p ∈Li ∩L j Hp .

Notice that Pi is a point if and only if A ∈ DLi , it is empty otherwise.

3.1. KT-translated and KT-configurations

Let A 0 = {H 0
1 , . . . , H 0

n} be a central generic arrangement in Ck , T = {L1, . . . , Lr } fixed as in
Notation 3 and such that the conditions

r⋃
i=1

Li =
⋃
i ∈ I

Li and Li ∩L j 6= ; (4)

are satisfied for any subset I ⊂ [r ], |I | = r −1 and any two indices 1 ≤ i < j ≤ r . In the rest of the
paper a set T which satisfies those properties will be called an r -set.

Given an r -set Twe provide the following two definitions.

3.1.1. KT-translated

A translated A = {H1, . . . , Hn} of A 0 will be called KT or KT-translated if⋂
p ∈Li

Hp 6= ; and
⋂

p ∈Li ∪ {t }
Hp =;

for any i ∈ [r ] and t ∉ Li .

3.1.2. KT-configuration KT(A )

The complete graph (as depicted in Figure 3) having the points Pi = ⋂
p ∈Li Hp as vertices

and the vectors Pi P j joining Pi and P j as edges will be called KT-configuration and denoted
by KT(A ) (examples of graphs KT(A ) for |T| = 3,4,5 are represented in Figure 4). Notice that
Pi P j ∈ Hi , j =⋂

p ∈Li ∩L j Hp 6= ; for any 1 ≤ i < j ≤ r .
For our purpose it is convenient to introduce a slightly weaker notion, beside the one of KT-

translated and KT-configuration as follows.

• A will be called almost KT if it is KT but for one hyperplane H 0
l and a set Sl , i.e. if there

exists an hyperplane Hl ∈A , l ∈⋃r
i=1 Li \

⋂r
i=1 Li , and a set Sl ⊆ {Li ∈T | l ∈ Li } such that⋂

p ∈L j Hp 6= ; for any L j ∈T\ Sl and
⋂

p ∈Li Hp =; for any Li ∈ Sl .
• If we keep the notation Pi = ⋂

p ∈Li \{l } Hp , Li ∈ Sl ,Pi = ⋂
p ∈Li Hp ,Li ∉ Sl , the complete

graph having Pi as vertices and Pi P j as edges will be called almost KT-configuration and
denoted by KT\Sl (A ).

Notice that since A 0 is a central generic arrangement inCk and | Li |= k+1, then
⋂

p ∈Li \{l } Hp 6= ;
for any Li ∈ Sl . Moreover if the set {Li ∈T | l ∈ Li } is not empty then its cardinality is | {Li ∈T | l ∈
Li } |≥ 2 since l must belong to at least two sets inside T by the first condition in equation (4).

Remark 4. Similarly to the KT-configuration we could define the∆T-configuration as the simpli-
cial complex having as t-face Pi1 . . . Pit+1 ∈

⋂
p ∈∩t+1

j=1Li j
Hp 6= ;. Notice that in general, the intersec-

tion
⋂

p ∈∩t+1
j=1Li j

Hp can be empty, that is ∆T is not a simplex. As pointed out by Crapo in [3], this

simplicial complex may play a fundamental role in the study of non-very generic arrangements.
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Pr
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Figure 3. KT-configuration for |T| = r

P1 P2

P3

H1,2

H1,3 H2,3

P1 P2

P3P4

H1,2

H1,3

H1,4 H2,3
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H3,4
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P4

P5

H1,2

H1,3

H1,4

H1,5 H2,3

H2,4

H2,5

H3,4

H3,5

H4,5

Figure 4. Left: |T| = 3, Center: |T| = 4, Right: |T| = 5

In order to understand the ratio behind the definition of KT and almost KT-translated let’s
consider the Crapo’s configuration depicted in Figure 1.

Example 5 (Crapo’s example). Let us consider the Crapo’s example in Subsection 2.3. The
non-very genericity of Crapo’s arrangement A 0 implies that any translation A of A 0 such that
A ∈ ⋂3

i=1 DLi has to satisfy A ∈ DL4 . That is, as depicted in Figure 5, any translation t5 of the
hyperplane H 0

5 for which P2 ∈ H t5
5 has to satisfy P4 ∈ H t5

5 .
In other words, if we choose l = 5, then the almost KT-configuration given by P1 = H t1

1 ∩H t2
2 ∩

H t3
3 , P2 = H t1

1 ∩ H t4
4 , P3 = H t2

2 ∩ H t4
4 ∩ H t6

6 and P4 = H t3
3 ∩ H t6

6 becomes a KT-configuration (see
Figure 6) by the only translation t5 of H 0

5 which satisfies P2 ∈ H t5
5 .

The Example 5 also motivated the following main definition.
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Definition 6. A central generic arrangement A 0 of n hyperplanes in Ck is called (r, s)-dependent
if there exist an r -setT= {L1, . . . , Lr }, an index l ∈⋃r

i=1 Li \
⋂r

i=1 Li and a subset Sl ⊆ {Li ∈T | l ∈ Li },
|Sl | = s, such that any almost KT-configuration KT\Sl (A ) gives rise to a KT-configuration KT(A ′)
with the KT-translated A ′ obtained from the almost KT-translated A by a suitable translation of
the hyperplane Hl ∈A . If s = 2, then we call A 0 r -dependent.

H t1
1

H t2
2
H t3

3 H t4
4

H 0
5

H t6
6

P1 P2

P3

P4

H t1
1

H t2
2
H t3

3 H t4
4

H t5
5

H t6
6

P1 P2

P3

P4

Figure 5. Almost KT-translated A on the left and KT-translated A ′ on the right.

By the argument in the Example 5, the Crapo’s arrangement is 4-dependent. The definition
of (r, s)-dependency generalizes the definition of dependency given in [12]. Indeed we have the
following proposition which, in particular, applies to Falk’s example (see Example 8).

Proposition 7. A central generic arrangement A 0 of n hyperplanes in C3 is dependent if and only
if it is 3-dependent.

Proof. Let’s consider the set T= {L1,L2,L3} and assume n = 3s,k = 2s −1, s ≥ 2. The general case
of any n and k is obtained considering a deletion and a restriction of the original arrangement
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P1 P2

P3

P4

P1 P2

P3

P4

Figure 6. KT\S5 (A ), S5 = {L2,L4} on the left and KT(A ′) on the right.

as in [12]. In order to prove the statement it is enough to show that both conditions, i.e. 3-
dependency and dependency, are equivalent to the condition that the space Hi , j is a subspace of
Hi ,k +Hk, j .

Dependency. Recall that an arrangement A 0 of 3s hyperplanes in C2s−1, s ≥ 2 is dependent if
it exists a set T = {L1,L2,L3} of subsets Li ⊂ [3s] such that |Li | = 2s, |Li ∩L j | = s, |⋃3

i=1 Li | = 3s
and the spaces Hi , j = ⋂

p ∈Li ∩L j Hp span a subspace of dimension 2s −2 in C2s−1. The condition
|Li ∩ L j | = s implies that Hi , j are spaces of codimension s, that is of dimension s − 1 in C2s−1.
Moreover |⋃3

i=1 Li | = 3s implies that the
⋃3

i=1 Li is disjoint union of the three sets Li ∩L j , that
is any two subspaces Hi , j are in direct sum, i.e. Hi ,k ⊕ Hk, j span a space of dimension 2s − 2.
Hence dependency condition is equivalent to the fact that Hi , j belongs to the space generated by
Hi ,k ⊕Hk, j .

3-dependency. First of all notice that, when n = 3s,k = 2s −1, s ≥ 2 the condition for which T
is a 3-set implies that the subsets Li ⊂ [3s] satisfy |Li | = 2s, |Li ∩L j | = s, |⋃3

i=1 Li | = 3s and, in
particular

⋂3
i=1 Li = ;. Moreover a KT-configuration when |T| = 3 is equivalent to the fact that

Pi P j = Pi Pk +Pk P j (see Figure 4) and the condition
⋃3

i=1 Li = ⋃
i ∈ I ⊂ [3],|I |=2 Li implies that any

index l ∈ ⋃3
i=1 Li \

⋂3
i=1 Li belongs to exactly two different subsets Li and L j . The 3-dependency

condition is then equivalent to the fact that any translation for which the vertex Pi =⋂
p ∈Li Hp 6=

; exists the vertex P j =⋂
p ∈L j Hp 6= ; has to exist. Hence, in particular, Pi P j = Pi Pk+Pk P j for any

Pi ,P j ∈ Hi , j , that is Hi , j is a subspace of Hi ,k ⊕Hk, j which are in direct sum since
⋂3

i=1 Li =;. �

Example 8 (Falk’s example). Consider the Falk’s example in Subection 2.3. In this case A 0 is an
arrangement of 6 hyperplanes in R3 and the set T = {L1,L2,L3} is given by L1 = {1,2,3,4}, L2 =
{1,2,5,6} and L3 = {3,4,5,6} which satisfy the conditions | Li |= 4, |Li ∩L j | = 2 and |⋃3

i=1 Li | = 6.
Since the spaces Hi , j ,∞ = ⋂

p ∈Li ∩L j H p ∩ H∞ span a subspace of dimension 1 in H∞ then Hi , j

span a space of dimension 2 in R3, that is A 0 is a dependent arrangement.
In other words, let’s choose the index l = 6 and Sl = {L2,L3}. Then for any translated A of A 0

such that P1 =⋂
p ∈L1 Hp 6= ; exists, the translated H ′

6 of H6 for which P2 = H ′
6 ∩

⋂
p ∈L2\{6} Hp 6= ;

also satisfies P3 = H ′
6∩

⋂
p ∈L3\{6} Hp 6= ;. Moreover P1P3 = P1P2+P2P3, that is A 0 is 3-dependent

(see Figure 7).

Notice that the condition of r -dependency is non trivial. Indeed by
⋃r

i=1 Li =⋃
i ∈ I⊂[r ],|I |=r−1 Li

it follows that any index l ∈ ⋃r
i=1 Li has to belong to at least two different subsets Li ’s. Hence if

Li 6= L j are two different subsets containing the index l the fact that Hl is a translated of H 0
l for

which
⋂

p ∈Li \{l } Hp ∩ Hl 6= ; does not imply, in general, that
⋂

p ∈L j \{l } Hp ∩ Hl 6= ;. In particular
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Figure 7.

(r, s)-dependency is always non trivial for any 1 < s ≤| {Li ∈ T | l ∈ Li } |. The following lemma
holds.

Lemma 9. If a central generic arrangement A 0 of n hyperplanes in Ck is (r, s)-dependent for
some s > 1 then the discriminantal arrangement B(n,k,A 0) admits a simple intersection X of
multiplicity r and rank X < r .

Proof. By definition A 0 is (r, s)-dependent if and only if there exist an r -set T = {L1, . . . , Lr },
an index l ∈ ⋃r

i=1 Li \
⋂r

i=1 Li and a subset Sl ⊆ {Li ∈ T | l ∈ Li }, |Sl | = s > 1, such that any
translated arrangement A ∈ ⋂

Li ∈T\Sl
DLi that satisfy A ∈ DL j , for an L j ∈ Sl , has to satisfy

A ∈⋂
Li ∈TDLi = X . That is, if A 0 is (r, s)-dependent then

X = ⋂
Li ∈T

DLi =
⋂

Li ∈T\Sl

DLi ∩DL j (5)

is a simple intersection of multiplicity r and rank X ≤ r − s +1 < r since s > 1. �

An immediate consequence of the Lemma 9 and the Proposition 2 is the following main
theorem.

Theorem 10. If a central generic arrangement A 0 of n hyperplanes in Ck is (r, s)-dependent for
some s > 1 then A 0 is non-very generic.

The authors conjecture that, if the sets Li ’s in the Definition 1 are replaced by subsets Si ∈ [n]
of any cardinality, then the argument in this paper can be rewritten to obtain a necessary and
sufficient condition for a central generic arrangement to be non-very generic. But while it is
not difficult to generalize the definition of KT-translated, how to define the analogous of almost
KT and hence the equivalent of the (r, s)-dependency requires farther studies. Moreover the
combinatorial condition on the set of indices in equation (4) has to be generalized.

Finally, let’s remark that the geometric condition in Theorem 10 can be translated in a condi-
tion on the vectors belonging to the subspaces Hi , j . This condition, in turns, lead to a computa-
tional feasible way to build non-very generic arrangements. This is the content of a forthcoming
paper.
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