
Comptes Rendus

Mathématique
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1. Introduction

Recently, the existence and the uniqueness of a global solution, in the strong and weak sense, for
the stochastic geometric wave equations (SGWEs) on the Minkowski space R1+m , m ≥ 1, with the
target manifold (N , g ) being a suitable n-dimensional Riemannian manifold, e.g. a sphere, has
been established under various sets of assumptions by the first named author and M. Ondreját,
see [1–3] for details. To the best of our knowledge, the most general result in the case m = 1, is a
construction of a global H 1

loc (N )×L2
loc (T N )-valued weakly continuous solution of SGWE, where

T N denotes the tangent bundle of N , see [2].
The purpose of this note is to present a method by which we can prove the existence of a

unique local solution to SGWE with m = 1 in the case of the initial data belonging to H s
l oc (N )×

H s−1
l oc (T N ) for s ∈ ( 3

4 ,1
)
. In particular, we generalize the corresponding deterministic theory result

of [8] to the stochastic setting, as well as the results of [1–3] to the wave maps equation with low
regularity initial data (i.e. s < 1) and fractional (both in time and space) Gaussian noise.

A more detailed account of this work and the global theory, with complete proofs, will be
presented in forthcoming papers.
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2. Problem formulation

We are interested in solutions having continuous paths and hence, motivated by [8] and [11], we
find that it is suitable to formulate the Cauchy problem for the SGWE using local coordinates on
the target manifold N . To be precise, given a sufficiently smooth function σ from Rn to Rn , for
the wave map z : R1+1 → N composed with a given local chart φ of N we consider the following
Cauchy problem

�u = N0(u)+σ(u)ξ̇, u(0, x) = u0(x), and ∂t u(0, x) = u1(x), (1)

where φ◦ z := u :R1+1 →Rn ;� := ∂2
t −∆x ;

∂0 = ∂t , ∂0 =−∂t , ∂1 = ∂1 = ∂x ;

N0(u) :=−∑n
a,b=1

∑1
µ=0Γ

k
ab(u)

(
∂µua∂µub

)
with Γk

ab denoting the Christoffel symbols on N in the
chosen local coordinate system and ξ is a suitable random field. The necessary assumptions will
be given later in a precise manner.

An efficient way to simplify the computations of the required a’priori estimates for (1) is to
switch the coordinate-axis of (t , x)-variables to the null coordinates, see for instance [8, 9], and
respectively [13], for the deterministic and the stochastic problem. Our approach is in line with
these references. By performing the following transformation, which can be made rigorous for
sufficiently regular case,

u∗(α,β) := u

(
α+β

2
,
α−β

2

)
= u(t , x) and u(t , x) = u∗(t +x, t −x), (2)

the problem (1) can be re-written as

♦u∗ =N (u∗)+σ(u∗)Ξαβ, (3)

where Ξαβ := ∂2Ξ
∂α∂β , subject to the following boundary conditions

u∗(α,−α) = u0(α), ∂αu∗(α,−α)+∂βu∗(α,−α) = u1(α). (4)

Here Ξ is a fractional Brownian sheet (fBs) on R2 with Hurst indices H1, H2 ∈ (0,1), i.e. Ξ is a
centered Gaussian process such that

E
[
Ξ(α1,β1)Ξ(α2,β2)

]= RH1 (|α1|, |α2|)RH2 (|β1|, |β2|), (α1,β1), (α2,β2) ∈R2,

where RH (a,b) = 1
2

(
a2H +b2H −|a −b|2H

)
, a,b ∈R and

♦u∗ := 4
∂2u∗

∂α∂β
, N (u∗) := 4

n∑
a,b=1

Γab(u∗)
∂u∗a

∂α

∂u∗b

∂β
.

From now on we will only work in the (α,β)-coordinates and hence, we will write u instead
of u∗ in the sequel. As usual in the SPDE theory, we understand the SGWE (3) in the following
integral/mild form

u = S(u0,u1)+♦−1N (u)+♦−1[σ(u)Ξαβ

]
, (5)

where, for (α,β) ∈R2,

[S(u0,u1)](α,β) := 1

2

[
u0(α)+u0(−β)

]+ 1

2

∫ α

−β
u1(r )dr ; (6)

[
♦−1N (u)

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
N (u(a,b))db da; (7)

and [
♦−1(σ(u)Ξαβ)

]
(α,β) := 1

4

∫ α

−β

∫ β

−a
σ(u(a,b)) Ξαβ(da,db). (8)

The integral on the right hand side of (8) is well-defined pathwise, see Proposition 4.
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3. Relevant notation and function spaces

If x and y are two quantities (typically non-negative), we will write x . y or y & x to denote the
statement that x ≤C y for some positive constant C > 0.

By Lp (Rd ), for p ∈ [1,∞), we denote the classical real Banach space of all (equivalence classes
of) R-valued p-integrable functions on Rd . For s ∈R, we set

H s (Rd ) = { f ∈S ′(Rd ) : ‖ f ‖H s (Rd ) :=
∫
Rd

〈ξ〉2s |[F ( f )](ξ)|2 dξ<∞},

where S ′(Rd ) is the set of all tempered distributions on Rd , i.e. the dual of the Schwartz space
S (Rd ) of all rapidly decreasing infinitely differentiable functions on Rd , and 〈ξ〉 := (1+ |ξ|2)1/2,
ξ ∈Rd and F ( f ) is the d-dimensional Fourier transform of f .

Definition 1. Let s,δ ∈ R. The hyperbolic H s,δ and the product H s
t Hδ

x Sobolev spaces are the sets
of all u ∈ S ′(R2) for which, the appropriate norm is finite, where, with F (u)being the space-time
Fourier transform of u ∈S ′(R2),

‖u‖H s,δ :=
(∫
R2
〈|τ|+ |ξ|〉2s〈|τ|− |ξ|〉2δ|[F (u)](τ,ξ)|2 dξdτ

)1/2

,

‖u‖H s
t Hδ

x
:=

(∫
R2
〈τ〉2s〈ξ〉2δ|[F (u)](τ,ξ)|2 dτdξ

)1/2

.

LetΦ(Rd ) be the set of all systems ϕ= {ϕ j }∞j=0 ⊂S (Rd ) such that

(1) suppϕ0 ⊂ {x : |x| ≤ 2}, suppϕ j ⊂ {x : 2 j−1 ≤ |x| ≤ 2 j+1}, if j ∈N\ {0}.
(2) For every multi-index α there exists a positive number Cα such that

2 j |α|Dαϕ j (x) ≤ cα for all j ∈N and all x ∈Rd .

(3)
∑∞

j=0ϕ j (x) = 1 for every x ∈Rd .

It is known, see [12, Remark 2.3.1/1], that the system Φ(Rd ) is not empty. Given a dyadic
partition of unity ϕ := {ϕ j }∞j=0 ∈ Φ(R) and a tempered distribution f ∈ S ′(R2), the Littlewood–
Paley blocks of f are defined as ∆ j ,k f := 0, j ,k ≤−1, and

∆ j ,k f :=F−1(ϕ j (τ)ϕk (ξ)[F ( f )](τ,ξ)), j ,k ≥ 0,

where F−1 stands for the inverse Fourier transform on S ′(R2). Next, for (s1, s2) ∈R2, p, q ∈ (1,∞),
we define the following Banach space

Ss1,s2
p,q B(R2) = { f ∈S ′(R2) : ‖ f ‖ϕ

S
s1,s2
p,q B(R2)

<∞},

where

‖ f ‖ϕ
S

s1,s2
p,q B(R2)

:=
( ∞∑

k=0

∞∑
j=0

2q(s1 j+s2k)‖∆ j ,k f ‖q
Lp (R2)

)1/q

.

One can prove that the space Ss1,s2
p,q B(R2) does not depend on the chosen systemϕ ∈Φ(R), see [12,

Proposition 2.3.2/1], and the norms are pairwise equivalent.
It is known that Ss,δ

2,2B(R2) = H s
t Hδ

x (R2), for s,δ ∈R, with equivalent norms.
The next proposition justifies the coordinate transformation (2) from the computation per-

spective, since in (α,β)-coordinate the knowledge of product Sobolev spaces is enough to have
the local theory.
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Proposition 2. If s ≥ δ ∈R, then the map

H s,δ 3 u(t , x) 7→ u∗(α,β) ∈ H s
αHδ

β ∩H s
βHδ

α =:Hs,δ, (9)

is an isomorphism, where as usual the space Hs,δ is equipped with the norm

‖u∗‖Hs,δ :=
√

‖u∗‖2
H s
αHδ

β

+‖u∗‖2
H s
β

Hδ
α

.

In particular, we have
‖u∗‖Hs,δ . ‖u‖H s,δ . ‖u∗‖Hs,δ .

With the spaces HH1,H2 defined above introduced in the previous Proposition 2, we have the
following result.

Proposition 3. Assume that H1, H2 ∈ (
0,1

)
and H ′

i ∈ (0, H1 ∧ H2), i = 1,2. Then there exists a
complete filtered probability space (Ω,F,P) and a map,

Ξ :R2
+×Ω→R,

such that P-a.s. Ξ( · , · ,ω) ∈HH ′
1,H ′

2 locally, i.e. for every bump function η,

η(α)η(β)Ξ(α,β,ω) ∈HH ′
1,H ′

2 .

Moreover, for (α1,β1), (α2,β2) ∈R2,

E
[
Ξ(α1,β1) Ξ(α2,β2)

]= RH1 (|α1|, |α2|) RH2 (|β1|, |β2|).

Here E is the Expectation operator w.r.t. P.

The above result, somehow related to a result proved in [11], can be proved by using Proposi-
tion 2 and a combination of results from [4] and [5].

4. The main result: the local well-posedness

Let us fix s ≥ δ ∈ ( 3
4 ,1

)
for the whole present section. To solve the SGWE problem (5) locally, which

is sufficient to prove the local-wellposedness result we are aiming, let η,χ ∈C ∞
0 (R; [0,1]) be even

cut-off functions such that supp η = supp χ ⊂ [−4,4] and [−2,2] ⊂ η−1({1}) = χ−1({1}). Let us put
ηT (x) := η(x/T ), x ∈R, for any T > 0. Similarly, we define χT .

To simplify the exposition, without loss of generality, we restrict ourselves to the target mani-
fold of dimension 2 and which can be covered by a family of charts such that the Christoffel sym-
bols Γk

ab depend polynomially on u, that is, for every k = 1,2, one can find r ∈ N and Al
ab ∈ R2

such that Γk
ab(u) =∑

|l |≤r Al
abul , u = (u1,u2) ∈R2, where, for l = (l1, l2) ∈N2, ul = [u1]l1 [u2]l2 .

Our first result in this section is a generalization of [10, Lemma 2.2].

Proposition 4. Assume that s,δ ∈ ( 3
4 ,1

)
, such that s ≥ δ, and f ∈ Hs−1,δ−1 are given. Then

F :R2 →R2 defined by F := H + I + J +G where, for α,β ∈R,

H(α,β) :=
∫ α

−β

∫ β

−γ
(∆0,0 f )(γ,τ)dτdγ,

I (α,β) :=
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,β)dγ,

−
∫ α

−β

∞∑
n=1

F−1
[

1

iξ
ϕ0(τ)ϕn(ξ)(F f )(τ,ξ)

]
(γ,−γ)dγ,

J (α,β) :=
∫ β

−α

∞∑
m=1

F−1
[

1

iτ
ϕ0(ξ)ϕm(τ)(F f )(τ,ξ)

]
(α,γ)dγ

−
∫ β

−α

∞∑
m=1

F−1
[

1

iτ
ϕ0(ξ)ϕm(τ)(F f )(τ,ξ)

]
(−γ,γ)dγ,
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and

G(α,β) :=
∞∑

j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,β)

− 1

2

∞∑
j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(α,−α)

− 1

2

∞∑
j ,k=1

[
F−1[

1

(iτ)(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(−β,β)

− 1

2

∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iξ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ

− 1

2

∫ α

−β

∞∑
j ,k=1

[
F−1[

1

(iτ)
ϕ j (τ)ϕk (ξ)(Fφ)(τ,ξ)]

]
(γ,−γ)dγ,

is the unique tempered distribution such that ∂2F
∂α∂β = f , and satisfy the following homogeneous

boundary conditions

F (α,−α) = 0 and
∂F

∂α
(α,−α)+ ∂F

∂β
(α,−α) = 0.

Moreover, for every η,χ and T > 0, there exists C (η,χ,T ) > 0 such that

‖ηT (α)χT (β)F (α,β)‖Hs,δ ≤C (η,χ,T ) ‖ f ‖Hs−1,δ−1 .

We will use the following notation

F (α,β) =:
∫ α

−β

∫ β

−a
f (da,db), (α,β) ∈R2.

Proof. Using the properties of Ss,δ
2,2B(R2) spaces, we need to show that G , H , I , J are well-defined

elements of Hs,δ. �

By following the approach of [7] we get the next required result.

Proposition 5. Assume that σ ∈ C 3
b (R2). Then σ ◦ u ∈ Hs,δ for every u ∈ Hs,δ and there exist

constants Ci (σ) :=Ci (‖σ‖C i+1
b

), i = 1,2 such that for u,u1,u2 ∈Hs,δ,

‖σ◦u‖2
Hs,δ ≤C1(σ)‖u‖2

Hs,δ

[
1+‖u‖2

Hs,δ

]
,

‖σ◦u1 −σ◦u2‖2
Hs,δ ≤C2(σ)‖u2 −u1‖2

Hs,δ

[
1+

2∑
i ,k=1

‖ui‖2k
Hs,δ

]
.

We now state and provide a sketch of proof of the main result of this note. Below we fix a
realisation of the random field belonging to the space Hs,δ, see Proposition 3.

Theorem 6. Assume s,δ ∈ ( 3
4 ,1

)
such that δ ≤ s and (u0,u1) ∈ H s (R) × H s−1(R). Let Ξ be a

fractional Brownian sheet with Hurst indices H1, H2 ∈ (s,1). There exist a R0 ∈ (0,1) and a λ0 :=
λ0(‖u0‖H s ,‖u1‖H s−1 ,R0) À 1 such that for every λ ≥ λ0 there exists a unique u := u(λ,R0) ∈ BR0 ,
where BR := {

u ∈Hs,δ : ‖u‖Hs,δ ≤ R
}

, which satisfies the following integral equation

u(α,β) = η(λα)η(λβ)
(
[S(χ(λ)u0,χ(λ)u1)](α,β)+ [♦−1N (u)](α,β)+ [♦−1σ(u)Ξαβ](α,β)

)
,

(α,β) ∈R2.

Here the right hand side terms are, respectively, defined in (6), (7) and (8).

C. R. Mathématique, 2020, 358, n 6, 633-639
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Sketch of proof of Theorem 6. Our proof is based on the Banach Fixed Point Theorem in the
space Hs,δ. Note that all the constants below are positive and depend on η unless mentioned
otherwise.

Step 1. Using the following well-known result, see e.g. [6],∥∥∥{
x 7→χ(x)

∫ x

0
f (y)dy

}∥∥∥
H s
. ‖ f ‖H s−1 ,

we can estimate the localized homogeneous part of the solution as

‖η(α)χ(β)S(u0,u1)‖Hs,δ ≤CS
(‖u0‖H s +‖u1‖H s−1

)
.

Step 2. In view of the polynomiality of the Christoffel symbols, by using Proposition 4, we deduce
the existence of a natural number γ≥ 2 such that

‖η(α)χ(β) ♦−1(N (φ)−N (ψ))‖Hs,δ ≤CN ‖φ−ψ‖Hs,δ

[‖φ‖Hs,δ +‖ψ‖Hs,δ

]γ .

Step 3. By Propositions 4 and 5 followed by the continuity of the multiplication map

Hs,δ×Hs−1,δ−1 →Hs−1,δ−1,

see e.g. [8], we get

‖η(α)η(β)♦−1[(σ(u1)−σ(u2))Ξαβ]‖2
Hs,δ ≤CΞC2(σ) ‖u2 −u1‖Hs,δ

[
1+

2∑
i ,k=1

‖ui‖k
Hs,δ

]
‖Ξαβ‖Hs−1,δ−1 ,

for some positive constants CΞ and C2(σ) :=C2(‖σ‖C 3
b

).

Step 4. We consider a mapΘλ :Hs,δ 3 u 7→ uΘλ ∈Hs,δ defined by

uΘλ = η(α)η(β)
(
S(uλ

0 ,uλ
1 )+♦−1[N (u)]+♦−1[σ(u)Ξλ

αβ]
)

,

where

uλ
0 (α) :=χ(α)

[
u0

(α
λ

)
− ūλ

0

]
, uλ

1 (α) :=χ(α)λ−1u1

(α
λ

)
, and Ξλ

αβ :=λ−2ΠλΞαβ,

with

ūλ
0 :=

∫
R

u0

( y

λ

)
ψ(y)dy.

Hereψ is any bump function which is non zero on the support of χ,η and
∫
Rψ(x)dx = 1. Then, in

view of the assumption that s +δ> 3
2 , by using the above estimates we obtain, for any u, v ∈BR ,

‖uΘλ − vΘλ‖Hs,δ .
[
CN R +λ1−(s+δ)CΞ C2(σ) (1+R)‖Ξαβ‖Hs−1,δ−1

]
‖u − v‖Hs,δ .

Hence we can choose R0 ∈ (0,1),λ0 := λ0(‖u0‖H s ,‖u1‖H s−1 ,R0) in such a way that Θλ is 1
2 -

contraction as a map from BR0 into itself and, then by the Banach Fixed Point Theorem there
exists a unique uλ ∈BR0 such that uλ =Θλ(uλ).

Step 5. By working with another suitable translated coordinate chart on N (which will remove
the dependence on ūλ

0 ) and by defining the inverse scaling u(α,β) := uλ(λα,λβ) for the fixed
point uλ from Step 4, we deduce that

u(α,β) =Θλ
(
uλ

)
(λα,λβ)

= η(λα)η(λβ)
(
[S(χ(λ)u0,χ(λ)u1)]+ [♦−1N (u)]+ [♦−1σ(u)Ξαβ]

)
.

Hence we conclude the proof of Theorem 6. �

We complete our study of local theory with the following Theorem.
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Theorem 7. Under the above mentioned assumptions, there exist a open set O , containing the
diagonal D := {(α,−α) : α ∈ R}, and a function u : O → R2 such that for every (α0,−α0) ∈ D, there
exists r > 0 such that u

∣∣
Br ((α0,−α0)) ∈Hs,δ, where Br ((α,−α)) is open ball of radius r around (α,−α),

and u solves (3)-(4) uniquely in O .

To prove Theorem 7, for each fixed point (α0,−α0) ∈D, by Theorem 6 we find a unique solution
uα0 of a translated version of the problem (5) defined in some neighbourhood Nα0 of (α0,−α0).
By using the uniqueness we can glue “local” solutions to get a solution u as in the assertion.
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