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Abstract. We show that every Gaussian mixed quantum state can be disentangled by conjugation with a
unitary operator corresponding to a symplectic rotation via the metaplectic representation of the symplectic
group. The main tools we use are the Werner–Wolf condition for separability on covariance matrices and the
symplectic covariance of Weyl pseudo-differential operators.

Résumé. Nous montrons que chaque état quantique Gaussien peut-être rendu séparable (= « désintriqué »)
par conjugaison avec un opérateur unitaire associé via le groupe métaplectique à une rotation symplectique.
Pour cela nous utilsons la condition de séparabilité de Werner et Wolf sur la matrice de covariance ainsi que
la covariance symplectique des opérateurs pseudo-différentiels de Weyl.
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1. Introduction

Gaussian states play an ubiquitous role in quantum information theory and in quantum op-
tics because they are easy to manufacture in the laboratory, and have in addition important ex-
tremality properties [12]. Of particular interest are the separability and entanglement properties
of Gaussian states; the literature on the topic is immense; two excellent texts whose mathemat-
ical setup is rigorous are [1, 2]. It turns out that even if major advances have been made in the
study of the separability of Gaussian quantum states in recent years (one of the milestones be-
ing Werner and Wolf’s paper [10] about the covariance matrices of bipartite states), the topic is
still largely open. The aim of this Note is to show that every Gaussian state can be made separa-
ble by using a symplectic rotation and of the corresponding metaplectic operator. (We note that
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physicists use the terminology “passive symplectic transformations” in place of “symplectic ro-
tation”). This result can be viewed as closing a problem originally posed in Wolf et al. [11], who
asked which Gaussian states can be entangled by symplectic rotations. A full answer has recently
been given in [8] et al. where the Gaussian states that are separable for all symplectic rotations
are characterized. Our result (Theorem 1) shows that, conversely, every entangled Gaussian state
can be separated (“disentangled”) by metaplectic transformations corresponding to symplectic
rotations.

We will use the following notation. Let R2n =R2nA ⊕R2nB be the phase space of a bipartite sys-
tem (nA ≥ 1, nB ≥ 1). We will use the following phase space variable ordering: z = (zA , zB ) = zA⊕zB

with zA = (x1, p1, . . . , xnA , pnA ) and zB = (xnA+1, pnA+1, . . . , xn , pn). We equip the symplectic spaces
R2nA and R2nB with their canonical bases. The symplectic structure on R2n is then σ(z, z ′) = J z ·z ′

with J = J A ⊕ JB where

J A =
nA⊕

k=1
Jk , Jk =

(
0 1
−1 0

)
and likewise for JB . Thus J A (resp. JB ) determines the symplectic structure on the partial phase
space R2nA (resp. R2nB ).

2. Result: Statement and Proof

Let Σ be a real positive definite symmetric 2n ×2n matrix (to be called “covariance matrix” from
now on) and consider the associated normal probability distribution

ρ(z) = 1

(2π)n
p

detΣ
e−

1
2Σ

−1z2
. (1)

If the covariance matrix satisfies in addition the condition

Σ+ iħ
2

J ≥ 0 (2)

(J the standard symplectic matrix) then ρ is the Wigner distribution of a mixed quantum state,
identified with its density operator ρ̂. We notice that property (2) crucially depends on the
numerical value of ħ (see [4, 7]). We will say that ρ̂ is “AB-separable” if there exist sequences
of density operators (ρ̂A

j ) and (ρ̂B
j ) on L2(RnA ) and L2(RnB ), respectively and coefficients λ j ≥ 0

summing up to one, such that

ρ̂ =∑
j
λ j ρ̂

A
j ⊗ ρ̂B

j (3)

where the convergence is for the trace-class norm. The problem of determining necessary and
sufficient conditions for a density operator to be separable is still very largely open; while there
exist necessary conditions, no simple sufficient condition for separability is known in the general
case; for a recent up to date discussion see Lami et al. [8]. Werner and Wolf [10] have proven that
in the Gaussian case ρ̂ is separable if and only if there exists a 2nA ×2nA covariance matrix ΣA

and a 2nB ×2nB covariance matrix ΣB such that the following conditions hold:

ΣA + iħ
2

J A ≥ 0 (4)

ΣB + iħ
2

JB ≥ 0 (5)

Σ≥ΣA ⊕ΣB . (6)

The aim of this Letter is to prove that for every Gaussian density operator there exists a unitary
transform Û such that Û ρ̂Û−1 is a separable Gaussian state:
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Theorem 1. Let ρ̂ be a density operator with Gaussian Wigner distribution (1). There exists a
symplectic rotation U ∈U (n) (= Sp(n)∩O(2n,R)) such that Û ρ̂Û−1 is separable where Û ∈ Mp(n)
is any of the two metaplectic operators covering U .

Proof. We begin by recalling [5,6] that the quantum condition (2) is equivalent to the statement:

There exists S ∈ Sp(n) such that SB 2n(
p
ħ) ⊂ΩΣ (7)

where Sp(n) is the symplectic group of the phase spaceR2n ≡Rn
x ×Rn

p equipped with the standard
symplectic form

σ= dp1 ∧dx1 +· · ·+dpn ∧dxn ,

B 2n(
pħ) is the phase space ball defined by |z| ≤ ħ andΩΣ the covariance ellipsoid of ρ̂:

ΩΣ = {z ∈R2n : 1
2Σ

−1z2 ≤ 1} .

Let S = PR (P = (ST S)1/2, R = (ST S)−1/2S) be the symplectic polar decomposition [5] of S ∈ Sp(n),
that is P ∈ Sp(n), P > 0, and

R ∈U (n) = Sp(n)∩O(2n,R) .

We have SB 2n(
pħ) = PB 2n(

pħ) by rotational symmetry of the ball B 2n(
pħ). There exists a

symplectic rotation U ∈U (n) diagonalizing P [5]:

P =U T∆U (8)

where ∆ ∈ Sp(n) is a diagonal matrix whose form will be discussed in a moment. The inclusion
SB 2n(

pħ) ⊂ΩΣ in (7) is thus equivalent to ∆B 2n(
pħ) ⊂U (ΩΣ), that is

∆B 2n(
p
ħ) ⊂ΩΣU (9)

where ΣU =UΣU T . This inclusion is equivalent to the matrix inequality

ħ
2
∆2 ≤ΣU (10)

(A ≤ B meaning that B−A is positive semidefinite). We next note thatΣU is the covariance matrix
of the density operator ρ̂U with Wigner distribution ρU (z) = ρ(U T z) that is

ρU (z) = 1

(2π)n
p

detUΣU T
e−

1
2Σ

−1U T z·U T z .

Recall now the following symplectic covariance property: if Â = OpW(a) is a Weyl operator with
symbol a and Ŝ ∈ Mp(n) a metaplectic operator covering S ∈ Sp(n) then

Ŝ OpW(a)Ŝ−1 = OpW(a ◦S−1) (11)

(see for instance [9] or [5, Ch. 7]). Applying this covariance formula to ρ̂ = (2πħ)n OpW(ρ) yields
since U T =U−1,

ρ̂U = Û ρ̂Û−1 (12)

where Û is anyone of the two metaplectic operators ±Û covering U . We claim that ρ̂U is
separable. To see this, let us come back to the diagonal matrix ∆ appearing in the factorization
P = U T∆U (8). Its diagonal elements are the eigenvalues λ1, . . . ,λ2n of the positive definite
symplectic matrix P and therefore appear in pairs (λ,1/λ) with λ > 0 [3, 5]. In fact, in the AB-
ordering we are using, the matrix ∆ has the form ∆=∆A ⊕∆B with

∆A =
nA⊕

k=1
∆k , ∆B =

n⊕
k=nA+1

∆k

and ∆k =
(
λk 0
0 λ−1

k

)
for k = 1, . . . ,n. Clearly ∆A ∈ Sp(nA) and ∆B ∈ Sp(nB ). The symmetric matrices

ΣA = ħ
2
∆2

A , ΣB = ħ
2
∆2

B
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trivially satisfy ΣA + iħ
2 J A ≥ 0 and ΣB + iħ

2 JB ≥ 0. In view of (10) we have

ΣA ⊕ΣB ≤ΣU

and the theorem now follows using the Werner–Wolf conditions (4)–(6). �
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