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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

Strichartz Estimates for the Schrödinger Equation
with small Magnetic Potential

Vladimir Georgiev Atanas Stefanov Mirko Tarulli

1. Introduction and statement of results

In this work we study the dispersive properties of the Schrödinger equation∂tu− i∆Au = F (t, x), t ∈ R, x ∈ Rn

u(0, x) = f(x),
(1.1)

where

∆A =
∑
j

(∂j + iAj)
2 = ∆ + 2iA∇+ idiv(A)− (

∑
j

A2
j)

and
A = (A1(t, x), · · · , An(t, x)), x ∈ Rn, n ≥ 3 is a magnetic potential, such that

Aj(t, x), j = 1, · · · , n, are real valued functions.
More precisely, we plan to establish Strichartz and smoothing estimates for (1.1),

when the vector potential A is small in certain sense. In fact, we aim at obtaining
global scale invariant Strichartz and smoothing estimates, under appropriate scale
invariant smallness assumptions on A.

In the “free” case A = 0, there exists vast literature on the subject. Introduce the
mixed space-time norms

‖u‖Lq
t Lr

x
=

(∫
R

(∫
Rn
|u(t, x)|rdx

)q/r

dt

)1/q

.

We say that a pair of exponents (q, r) is Strichartz admissible, if 2 ≤ q, r ≤ ∞,
2/q + n/r = n/2 and (q, r, n) 6= (2,∞, 2). Then, by result of Strichartz, Ginibre-
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Velo, and Keel-Tao,

‖eit∆f‖Lq
t Lr

x
≤ C‖f‖L2 (1.2)∥∥∥∥∫ eis∆F (s, ·)ds

∥∥∥∥
L2

x

≤ C‖F‖
Lq̃′

t Lr̃′
x

(1.3)∥∥∥∥∥∥
t∫

0

ei(t−s)∆F (s, ·)ds

∥∥∥∥∥∥
Lq

t Lr
x

≤ C‖F‖
Lq̃′

t Lr̃′
x
, (1.4)

where (q̃, r̃) is another Strichartz admissible pair and q′ = q/(q − 1). Note that for
n ≥ 3 the set of admissible pairs (q, r) can be represented equivalently as (1/q, 1/r) ∈
AB, where AB is the segment with end points A(0, 1/2), B(1/2, 2n/(n − 2)) and
we can rewrite the estimate (1.3) as∥∥∥∥∫ eis∆F (s, ·)ds

∥∥∥∥
L2

x

≤ C
(

inf
F=F1+F2

‖F1‖L1
t L2

x
+ ‖F2‖L2

t L
2n/(n+2)
x

)
. (1.5)

On the other hand, the smoothing estimates were established by Kenig-Ponce-
Vega in the seminal paper, [11], see also Ruiz-Vega [16] . These were later extended
to more general second order Schrödinger equations in [12]. Some possible scale
and rotation invariant smoothing estimates similar to (1.2), (1.3) and (1.4) can be
written as (see Corollary 1 below )

sup
m∈Z

(
2−m/22k/2

∥∥∥eit∆fk

∥∥∥
L2

t L2(|x|∼2m)

)
≤ C‖fk‖L2 , (1.6)

∥∥∥∥∫ eis∆Fk(s, ·)ds
∥∥∥∥

L2
x

≤ C

∑
m∈Z

2m/22−k/2‖Fk‖L2
t L2(|x|∼2m)

 . (1.7)

sup
m∈Z

2−m/22k/2

∥∥∥∥∥∥
t∫

0

ei(t−s)∆Fk(s, ·)ds

∥∥∥∥∥∥
L2

t L2(|x|∼2m)

 ≤ (1.8)

≤ C

∑
m∈Z

2m/22−k/2‖Fk‖L2
t L2(|x|∼2m)

 ,
where k is any integer, φk := Pkφ is the kth Littlewood-Paley piece of φ ( see Section
2.1 below).

Motivated by these estimates, given any integer k ∈ Z introduce the spaces Yk,
defined by the norms1

‖φ‖Yk
= 2−k/2

∑
m

2m/2‖φk‖L2
t L2(|x|∼2m).

1The expressions φ → ‖φ‖Yk
are not faithfull norms, in the sense that may be zero, even for some

φ 6= 0. On the other hand, they satisfy all the other norm requirements and φ → (
∑

k ‖φk‖2
Yk

)1/2

is a norm!
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Now we can define the Banach spaces Y as a closure of the functions

φ(t, x) ∈ C∞
0 (R× (Rn \ 0))

with respect to the norm

‖φ‖Y :=

(∑
k

‖φ‖2
Yk

)1/2

. (1.9)

Its dual space Y ′ consists of tempered distributions S ′(R×Rn), having finite norm

‖φ‖Y ′ :=

(∑
k

‖φ‖2
Y ′

k

)1/2

,

where

‖φ‖Y ′
k

= 2k/2 sup
m

2−m/2‖φk‖L2
t L2(|x|∼2m).

Then the smoothing estimates (1.6), (1.7) and (1.8) read

∥∥∥eit∆f
∥∥∥

Y ′
≤ C‖f‖L2 ,

∥∥∥∥∫ eis∆F (s, ·)ds
∥∥∥∥

L2
x

≤ C‖F‖Y . (1.10)

∥∥∥∥∥∥
t∫

0

ei(t−s)∆F (s, ·)ds

∥∥∥∥∥∥
Y ′

≤ C‖F‖Y . (1.11)

Motivated by the Strichartz estimates and these Besov versions of “local smooth-
ing” norms, introduce the spaces

X = L1
tL

2
x + L2

tL
2n/(n+2)
x + Y

with norm

‖F‖X = inf
F=F (1)+F (2)+F (3)

∥∥∥F (1)
∥∥∥

L1
t L2

x

+
∥∥∥F (2)

∥∥∥
L2

t L
2n/(n+2)
x

+
∥∥∥F (3)

∥∥∥
Y
.

The dual to X space is X ′ and the norm in this space is defined in similar way:

‖φ‖X′ :=

(∑
k

‖φ‖2
X′

k

)1/2

, (1.12)

where

‖φ‖X′
k

= sup
(q,r)−Str.

‖φk‖Lq
t Lr

x
+ 2k/2 sup

m
2−m/2‖φk‖L2

t L2(|x|∼2m).

The main result of this work is
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Theorem 1.1. If n ≥ 3, then one can find a positive number ε > 0 so that for any
(vector) potential A = A(t, x) satisfying

‖∇A‖L∞Ln/2 + sup
k

(
∑
m

2m‖A<k‖L∞L∞(|x|∼2m)) ≤ ε, (1.13)

there exists C > 0, such that for any F (t, x) ∈ S(R× Rn) we have the estimate∥∥∥∥∥∥
∫

t−s>0

ei(t−s)∆AF (s, ·)ds

∥∥∥∥∥∥
X′

≤ C‖F‖X .

In particular, the solutions to (1.1) satisfy the smoothing - Strichartz estimate

‖u‖X′ . ‖f‖L2 + ‖F‖X . (1.14)

Remark 1. The estimate (1.14) implies various interesting inequalities. For exam-
ple we have the classical Strichartz estimate

sup
(q,r)−Str.

‖u‖LqLr . ‖f‖L2 + inf
F=F1+F2

‖F1‖L1
t L2

x
+ ‖F2‖L2

t L
2n/(n+2)
x

as well as the smoothing - Strichartz estimates

‖u‖Y ′ . ‖f‖L2 + inf
F=F1+F2

‖F1‖L1
t L2

x
+ ‖F2‖L2

t L
2n/(n+2)
x

,

sup
(q,r)−Str.

‖u‖LqLr . ‖f‖L2 + ‖F‖Y .

The main idea to prove this Theorem is to apply appropriate scale invariant
estimate for the free Schrödinger equation involving Strichartz and smoothing type
norms.

Estimates of this type have been obtained earlier in [15] and [16] with Strichartz
type norms of the form ‖F‖

L
2n/(n+2)
x L2

t
. Recently, we found (the authors are grateful

to Luis Vega for pointing them this recent work) similar estimate in the work [9]
and this estimate has the form

‖D1/2
x

t∫
0

ei(t−s)∆F (s, ·)ds‖ L∞x1
L2

x′L
2
t
≤ C‖F‖

L2
t L

2n/(n+2)
x

. (1.15)

On one hand, this estimate can be used to derive the Strichartz estimate for the
perturbed Schrödinger equation provided its (formally) “dual” version∥∥∥∥∥∥

t∫
0

ei(t−s)∆F (s, ·)ds

∥∥∥∥∥∥
L2

t L
2n/(n−2)
x

≤ C‖D−1/2
x F‖L1

x1
L2

x′L
2
t
. (1.16)

is verified. We apply (1.16) and show that (1.14) is satisfied for the free Schrödinger
equation. Once (1.14) is established for the free case we show that these estimates
are stable under small magnetic perturbations satisfying (1.13).
Acknowledgement: The authors are grateful to Herbert Koch and Nickolay Tzvetkov
for interesting discussions.
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2. Preliminaries

2.1. Fourier transform and Littlewood-Paley projections

The kth Littlewood-Paley projection is defined as a multiplier type operator by
P̂kf(ξ) = ϕ(2−kξ)f̂(ξ), where ϕ is smooth, non - negative function, supported in
the annulus 1/2 ≤ |ξ| ≤ 2 and

∑
k∈Z(2−kξ) = 1 for all ξ 6= 0. Note that the kernel of

Pk is integrable, smooth and real valued for every k. In particular, it is bounded on
every Lp : 1 ≤ p ≤ ∞ and it commutes with differential operators. Another helpful
observation is that for the differential operator Ds

x defined via the multiplier |ξ|s,
one has

Ds
xPku = 2ksP̃ku,

where P̃k is given by the multipleir ϕ̃(2−kξ), where ϕ̃(ξ) = ϕ(ξ)|ξ|s. One can con-
struct ϕ as follows: take a positive, decreasing, smooth away from zero function
χ : R1

+ → R1
+, supported in {ξ : 0 ≤ ξ ≤ 2} and χ(ξ) = 1, ∀0 ≤ ξ ≤ 1. Define

ϕ(ξ) = χ(ξ)− χ(2ξ).
We also consider P<k :=

∑
l<k Pl, which essentially restricts the Fourier transform

to frequencies . 2k.
Define also the function ψ(ξ) = χ(ξ/4)− χ(4ξ). Note that ψ has similar support

properties as ϕ and ψ(ξ)ϕ(ξ) = ϕ(ξ). Thus, we may also define the operators Zk by
Ẑkf(ξ) = ψ(2−kξ)f̂(ξ). By the construction, ZkPk = Pk and Zk = Pk−2 + . . .+Pk+1.
Recall a version of the Calderón commutator estimate (see for example Lemma 2.1
in the work of Rodnianski and Tao, [14]), which reads

‖[Pk, f ]g‖Lr ≤ C2−k‖∇f‖Lq‖g‖Lp ,

whenever 1 ≤ r, p, q ≤ ∞ and 1/r = 1/q + 1/p.
Also of interest will be the properties of products under the action of Pk. Starting
with the relations

Pk(fg) =
∑
`,m

Pk(f`gm),

Pk(f`gm) =
∫

Rn

∫
Rn

Pk(ξ)P`(ξ − η)f̂(ξ − η)Pm(η)ĝ(η)e2πix·ξdξdη,

we exploit the property supp Pk(ξ) ⊆ {2k−1 ≤ |ξ| ≤ 2k+1} and see that the sum can
be restricted to the set

{|`−m| ≥ 2 +N0, |max(`,m)− k| ≤ 3} ∪ {|`−m| ≤ 1 +N0, k ≤ max(`,m) + 3},

where N0 ≥ 1 is arbitrary number. This domain can be enlarged slightly using the
inequality max(`,m) ≤ `+1 +N0 provided |`−m| ≤ 1+N0. So we can restrict the
sum over the union of the following sets (the first two are disjoint for N0 ≥ 5, while
the third one can overlap with them)

{m ≤ k −N0 + 1, |`− k| ≤ 3}, {` ≤ k −N0 + 1, |m− k| ≤ 3}

and

{|`−m| ≤ 1 +N0, ` ≥ k −N0 − 4}.
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In conclusion, for any two (Schwartz ) functions f, g we have the pointwise esti-
mate

|Pk(fg)(x)| ≤
∑

l≥k−N0−4

∑
|m−`|≤1+N0

|Pk(flgm)(x)|+

+ |Pk(f≤k−N0+1 gk−3≤·≤k+3)(x)|+
+|Pk(fk−3≤·≤k+3 g≤k−N0+1)(x)|

Taking for determinacy N0 = 7, we get

|Pk(fg)(x)| ≤ |f≤k−6(x)gk(x)|+ |[Pk, f≤k−6]gk−3≤·≤k+3(x)|+
+|Pk(fk−3≤·≤k+3 g≤k−6)(x)|+

∑
l≥k−11

∑
|m−`|≤8

|Pk(flgm)(x)|

In particular, we need an appropriate (product like!) expression for
Pk(A∇u). The main term is clearly when ∇u is in high frequency mode, while ~A is
low frequency. More precisely, according to our considerations above,

Pk(A∇u) = A≤k−6∇uk + Ek,

where Ek(x) satisfies the pointwise estimate

|Ek(x)| ≤ |[Pk, A≤k−6]∇uk−3≤·k+3(x)|+ (2.1)∑
l≥k−11

∑
|m−`|≤8

|Pk(Al · ∇um)(x)|+ |Pk(Ak−3≤·≤k+3 · ∇u≤k−6)(x)|

Note that in terms of Lp behavior and Littlewood-Paley theory, one treats these
error terms as if they were in the form (∂xA)u.

2.2. Besov spaces versions of the “local smoothing space”

The space Y was introduced as the closure of S(R× Rn) with respect to the norm
in (1.9), where

‖φ‖Yk
= 2k/2

∑
m

2−m/2‖Pkφ‖L2
t L2(|x|∼2m). (2.2)

We can replace ‖F‖L2(|x|∼2m) by the comparable expression ‖ϕ(2−m·)F‖L2 . This will
be done frequently (and without much discussions) in the sequel in order to make
use of the Plancherel’s theorem, which is of course valid only in the global L2 space.
We mention also that the norm ‖φ‖Y is scale invariant for rescale factors any diadic
number.

We show that the the “local smoothing space” defined as a closure of Schwartz
functions φ with respect to the “local smoothing norms”∑

m

2m/2
∥∥∥D−1/2

x φ(t, x)
∥∥∥

L2
t L2(|x|∼2m)

can be embedded in Y.
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Lemma 2.1. There is a constant C = C(n), so that for every Schwartz function φ
we have

‖φ‖Y ≤ C
∑
m

2m/2
∥∥∥D−1/2

x φ(t, x)
∥∥∥

L2
t L2(|x|∼2m)

. (2.3)

Proof. Taking into account the definition of the space Y , it is sufficient to establish
the estimate

‖φ‖Yk
≤ C

∑
m

2m/2
∥∥∥D−1/2

x φk(t, x)
∥∥∥

L2
t L2(|x|∼2m)

for any integer k. Using the scale invariance of the estimate we see that we lose no
generality taking k = 0. Thus, we have to verify the estimate∑

m

2m/2
∥∥∥ϕ(2−m·)P0φ

∥∥∥
L2

t L2
x

≤ C
∑
m

2m/2
∥∥∥ϕ(2−m·)D−1/2

x φ0(t, x)
∥∥∥

L2
t L2

x

.

Since
P0φ =

∑
|k|≤2

P0D
1/2
x D−1/2

x Pkφ =
∑
|k|≤2

∑
`∈Z

P̃0ϕ(2−`·)D−1/2
x Pkφ,

we can apply the triangle inequality, and reduce the proof to the following estimate∑
m

2m/2
∑
`∈Z

∥∥∥ϕ(2−m·)P̃0ϕ(2−`·)D−1/2
x Pkφ

∥∥∥
L2

t L2
x

≤

≤ C
∑

`

2`/2
∥∥∥ϕ(2−`·)D−1/2

x φk(t, x)
∥∥∥

L2
t L2

x

,

where k ∈ Z, |k| ≤ 2. This estimate follows easily from∥∥∥ϕ(2−m·)P̃0ϕ(2−`·)f
∥∥∥

L2
x

≤ C‖f‖L2
x
, (2.4)

∥∥∥ϕ(2−m·)P̃0ϕ(2−`·)f
∥∥∥

L2
x

≤ C2−m‖f‖L2
x
, m ≥ `+ 2 (2.5)

and the obvious observation that∑
m≤`+1

2m/2 +
∑

m≥`+2

2m/22−m . 2`/2.

The estimate (2.4) is obvious, while the proof of (2.5) follows from

ϕ(2−m·)P̃0ϕ(2−`·)f = [ϕ(2−m·), P̃0]ϕ(2−`·)f, m ≥ `+ 2

and the Calderón estimate∥∥∥[ϕ(2−m·), P̃0]g
∥∥∥

L2
x

≤ C2−m‖g‖L2
x
.

This completes the proof of the Lemma. �

Remark 2. Note that the argument in the proof of this lemma implies also the
estimates

‖P (D)fk‖Y . ‖fk‖Y = ‖f‖Yk
, ∀k ∈ Z (2.6)

for any pseudodiferential operator with symbol P (ξ) ∈ C∞
0 (Rn).
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We have also the estimate (dual to (2.3))

Lemma 2.2. There is a constant C = C(n), so that for every Schwartz function
φ ∈ Y ′, we have

sup
m

2−m/2
∥∥∥D1/2

x φ(t, x)
∥∥∥

L2
t L2(|x|∼2m)

≤ Cn‖φ‖Y ′ . (2.7)

Remark 3. Some generalizations of the previous two Lemmas can be seen in The-
orem 1.6 and Theorem 1.7 in [6].

3. Estimates for the bilinear form Q(F,G)

The sesquilinear form

Q(F,G) =
∫ ∫

t>s
〈ei(t−s)∆F (s), G(t)〉L2(Rn)dsdt

was used in [13] to derive Strichartz estimates (with endpoint) and this estimates
can be expressed in terms of Q

|Q(F,G)| ≤ C‖F‖
L

q′
1

t L
r′
1

x

‖G‖
L

q′
2

t L
r′
2

x

, (3.1)

for all Strichartz pairs (q1, r1), (q2, r2).
We have the following estimate that can be obtained by applying Lemma 3 from

the work of Ionescu-Kenig [9].

Theorem 3.1. There exists a constant C = C(n) so that for any integer k, any
F (t, x) ∈ S(R× Rn) and G(t, x) ∈ S(R× Rn)

|Q(Fk, Gk)| ≤ C

∑
m∈Z

2m/22−k/2‖ϕ(2−m·)Fk‖L2
t L2

x

 ‖Gk‖L2
t L

2n/(n+2)
x

. (3.2)

We have also the following energy-smoothing estimate.

Theorem 3.2. There exists a constant C = C(n) so that for any integer k, any
F (t, x) ∈ S(R× Rn) and G(t, x) ∈ S(R× Rn)

|Q(Fk, Gk)| ≤ C

∑
m∈Z

2m/22−k/2‖ϕ(2−m·)Fk‖L2
t L2

x

 ‖Gk‖L1
t L2

x
. (3.3)

Before proving these Theorems, we recall some of the smoothing estimates used
in this work.

IV–8



3.1. Estimates in the local smoothing space

For n = 1 we have the following smoothing estimates (see Kenig, Ponce, Vega [10])

2k/2‖e−it∆fk‖L∞x L2
γ
≤ C‖fk‖L2 , (3.4)

2k/2

∥∥∥∥∫
s<t

e−i(t−s)∆Fk(s)ds
∥∥∥∥

L∞x L2
t

≤ C‖Fk‖L1
xL2

t
, (3.5)

as well as

2k/2

∥∥∥∥∫
γ
e−it∆Fk(t)dt

∥∥∥∥
L2

≤ C‖Fk‖L1
xL2

γ
(3.6)

for any interval γ ⊆ Rt. Here C > 0 is a constant independent of f, F, γ.
For n > 1 we may assume

supp f̂(ξ) ⊆ {|ξ′| ≤ ξ1/10, ξ′ = (ξ2, · · · , ξn)}. (3.7)

Then we have the representation (
e−it∆f

)
(x1, x

′) = (3.8)

= c
∫

Rn−1

∫
Rn−1

eit|ξ′|2+i(x′−y′)ξ′
(
e−it∆1f

)
(x1, y

′) dξ′dy′,

where ∆1 = ∂2
x1
.

This representation and one dimensional estimates (3.4), (3.5) and (3.6) lead to
the following.

Lemma 3.1. There exists a constant C depending only on the dimension, so that
for any f ∈ S(Rn), F ∈ S(R× Rn), satisfying (3.7) and

suppξ F̂ (t, ξ) ⊆ {|ξ′| ≤ ξ1/10, ξ′ = (ξ2, · · · , ξn)} (3.9)

we have

2k/2‖e−it∆fk‖ L∞x1
L2

x′L
2
γ
≤ C‖fk‖L2

x′L
2
x1

(3.10)

2k/2

∥∥∥∥∫
s<t

e−i(t−s)∆Fk(s)ds
∥∥∥∥

L∞x1
L2

x′,t

≤ C‖Fk‖L1
x1

L2
x′,t
, (3.11)

and

2k/2

∥∥∥∥∫
γ

e−it∆Fk(t)dt
∥∥∥∥

L2
x1

L2
x′

≤ C‖Fk‖L1
x1

L2
x′L

2
γ

(3.12)

for any interval γ ⊆ Rt.

Applying the Hölder inequalities

‖g‖L1
x1

.
∑
m∈Z

2m/2‖g‖L2
x1

(|x|∼2m), sup
m∈Z

2−m/2‖g‖L2
x1

(|x|∼2m) ≤ ‖g‖L∞x1
,

we obtain
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Corollary 1. The smoothing estimates (1.6), (1.7), (1.8) are satisfied.

By Corollary 1 one gets

|Q(Fk, Gk)| ≤ Cn(
∑
m

2−k/22m/2‖Fk‖L2
t L2(|x|∼2m))×

×(
∑
m

2−k/22m/2‖Gk‖L2
t L2(|x|∼2m))

(3.13)

After this prepartion, we turn to

3.2. Proof of Theorem 3.1: Bilinear smoothing-Strichartz es-
timate

The estimate (3.2) is scale invariant and for this we can take k = 0. We have the
relation

Q(F,G) =
∫ ∫

R2
〈ei(t−s)∆F (s), G(t)〉L2(Rn)dsdt−

−
∫ ∫

t<s
〈ei(t−s)∆F (s), G(t)〉L2(Rn)dsdt

For the form

Q0(F,G) =
〈∫

R
ds e−is∆F (s),

∫
R
dt e−it∆G(t)

〉
L2(Rn)

we can apply the Cauchy inequality and via (1.3) and (1.7) we get

|Q0(F0, G0)| ≤ C

∑
m∈Z

2m/2‖ϕ(2−m·)F0‖L2
t L2

x

 ‖G0‖L2
t L

2n/(n+2)
x

.

Hence it remains to evaluate the form

Q∗(F,G) =
∫ ∫

t<s
〈ei(t−s)∆F (s), G(t)〉L2(Rn)

and verify the inequality

|Q∗(F0, G0)| ≤ C

∑
m∈Z

2m/2‖ϕ(2−m·)F0‖L2
t L2

x

 ‖G0‖L2
t L

2n/(n+2)
x

. (3.14)

To prove (3.14) it is sufficient to consider F with

suppξ F̂ (t, ξ) ⊆ {|ξ′| ≤ ξ1/10, ξ′ = (ξ2, · · · , ξn)}. (3.15)

Also, note that

Q∗(F,G) =
∫

R×Rn
F (s, y)u(s, y) dsdy,

where u is a solution to the free Schrödinger equation i∂tu+ ∆u = G having initial
data identically 0.
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With (3.15) in mind, apply Lemma 3 in Ionescu-Kenig [9]. We get

‖D1/2
x1
u‖L∞x1

L2
x′,t

. ‖G‖
L2

t L
2n/(n+2)
x

(3.16)

Here and below we use the notations x = (x1, x
′), x′ = (x2, · · · , xn). So we have

|Q∗(F,G)| ≤ C
(
‖D−1/2

x1
F‖L1

x1
L2

x′,t

)
‖G‖

L2
t L

2n/(n+2)
x

. (3.17)

Thus, we need to establish the inequality

‖D−1/2
x1

F0‖L1
x1

L2
x′,t

. ‖F0‖Y0 =
∑
m∈Z

2m/2‖ϕ(2−m·)F0‖L2
t L2

x
.

For the purpose it is sufficient to apply (2.6), the Hölder inequality

‖g‖L1
x1

.
∑
m∈Z

2m/2‖g‖L2
x1
,

and note that

D−1/2
x1

F0 = P (D)F0,

for some P (ξ) ∈ C∞
0 (Rn) due to our assumption (3.15). This completes the proof of

the Theorem.

3.3. Proof of Theorem 3.2: bilinear energy – smoothing esti-
mate

The proof follows the same line of the proof of Theorem 3.1 with the following
changement: in the place of Ionescu-Kenig inequality (3.16) we use

sup
t

∥∥∥∥∫ t

0
ei(t−s)∆Fk(s, ·)ds

∥∥∥∥
L2

x

≤ C

∑
m∈Z

2m/22−k/2‖Fk‖L2
t L2(|x|∼2m)

 . (3.18)

This estimate is trivial, since by the L2 energy conservation, the left-hand side of
this inequality is equal to

sup
t

∥∥∥∥∫ t

0
e−is∆Fk(s, ·)ds

∥∥∥∥
L2

x

and applying the estimate (1.7), we can finish the proof as before.

4. Proof of Theorem 1.1

We start by some reductions of the problem. First, note that (1.1) is in the form∂tu− i∆u+ 2A∇u = F̃ (t, x)

u(0, x) = f(x),
(4.1)
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where F̃ = F − div(A)u− i(
∑

j A
2
j)u. We claim that suffices to prove

‖u‖X′ ≤ Cn(‖f‖L2 + ‖F̃‖X), (4.2)

for the solutions of (4.1). Indeed, assuming the validity of (4.2) and since by our
assumptions and Sobolev embedding ‖∇A‖

L∞t L
n/2
x

+ ‖A‖L∞t Ln
x
≤ C‖∇A‖

L∞t L
n/2
x

≤
Cε. We have

‖u‖X′ ≤ C‖f‖L2 + C‖F̃‖X ≤
≤ C‖f‖L2 + C‖F‖X + C(‖∇A‖

L∞t L
n/2
x

+ ‖A‖2
L∞t Ln

x
)‖u‖L2L2n/(n−2)

≤ Cn‖f‖L2 + Cn‖F‖X + Cnε‖u‖L2L2n/(n−2) ≤
≤ Cn‖f‖L2 + Cn‖F‖X + Cnε‖u‖X′ .

It follows that

‖u‖X′ ≤ C‖f‖L2 + C‖F‖X ,

as claimed, as long as ε : Cnε < 1/2.
Thus, we concentrate on showing (4.2) for the solutions of (4.1), where we denote

the right hand side by F again.
Next, we take a Littlewood-Paley projection of (4.1). We get

∂tuk − i∆uk = Fk − 2A<k−6∇uk − 2Ek := Hk,

where Ek is the error term Ek = Pk(A∇u)− A≤k−6∇uk given by (2.1).
We will show that the solution to ∂tuk−i∆uk = Hk with initial data uk(0, x) = fk,

satisfies the estimate

‖uk‖X′ ≤ C‖fk‖L2 + C‖Hk‖X (4.3)

We will show first how (4.3) implies Theorem 1.1 and then we proceed to show
(4.3).

4.1. (4.3) implies Theorem 1.1

Apply (4.3) to uk. We have

‖uk‖X′ ≤ C‖fk‖L2 + C(‖Fk‖X +
∥∥∥Ek

∥∥∥
L2L2n/(n+2)

+

+C
∑
m

2m/22−k/2‖A<k−6∇uk‖L2L2(|x|∼2m))
(4.4)

We will need the following estimates.

(
∑
k

‖Ek‖2
L2L2n/(n+2))

1/2 ≤ Cnε(
∑
k

‖u‖2
L2L2n/(n−2))

1/2 ≤ Cnε‖u‖X′ (4.5)

∑
m

2m/22−k/2‖A<k−6∇uk‖L2L2(|x|∼2m) ≤ Cnε‖uk‖X′
k
. (4.6)
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Let us show first how based on (4.5) and (4.6), we finish the proof of Theorem
1.1. Plugging in these estimates in (4.4), using the definition (1.12) of X ′ and square
summing in k yields

‖u‖X′ =

(∑
k

‖uk‖2
X′

k

)1/2

≤ Cn(‖f‖L2 + ‖F‖X) + Cnε‖u‖X′ ,

whence since ε : Cnε < 1/2,

‖u‖X′ ≤ Cn(‖f‖L2 + ‖F‖X).

Thus, for this section, remains to see (4.5) and (4.6).

4.1.1. Proof of (4.6)

Let k̃ be integer with |k − k̃| ≤ 3. We have

∑
m

2m/22−k/2
∥∥∥A<k−6∇uk̃

∥∥∥
L2L2(|x|∼2m)

.

.

(∑
m

2m‖A<k−5‖L∞L∞(|x|∼2m)

)
sup
m

2−m/22−k/2
∥∥∥∇u

k̃

∥∥∥
L2L2(|x|∼2m)

≤

≤ Cnε sup
m

2−m/22−k/2
∥∥∥∇u

k̃

∥∥∥
L2L2(|x|∼2m)

.

This last expression is very similar to
∥∥∥u

k̃

∥∥∥
X′

. We will show that it is controlled by
it, which of course is enough to establish (4.6).
Fix an m. Then

2−m/22−k/2
∥∥∥∇u

k̃

∥∥∥
L2L2(|x|∼2m)

. 2−m/22k/2
∥∥∥ϕ(2−m·)Q

k̃
u

k̃

∥∥∥
L2L2

,

where Qk acts as a (vector) multiplier ψ(2−kξ)2−kξ. We have by the Calderón com-
mutator estimate2 and the Bernstein inequality

2−m/22k/2
∥∥∥ϕ(2−m·)Qkuk

∥∥∥
L2L2

≤ 2−m/22k/2
∥∥∥Qk(ϕ(2−m·)uk)

∥∥∥
L2L2

+

+2−m/22k/2
∥∥∥[Qk, ϕ(2−m·)]uk

∥∥∥
L2L2

. 2−m/22k/2
∥∥∥ϕ(2−m·)uk

∥∥∥
L2L2

+

+2−k/2‖uk‖L2
t L2n/(n−3) . 2−m/22k/2

∥∥∥ϕ(2−m·)uk

∥∥∥
L2L2

+ ‖uk‖L2
t L2n/(n−2)

≤ Cn‖uk‖X′
k
.

2We are using the particular form ‖[Qk, ϕ(2−m·)]uk‖L2L2 .
2−k2−m‖(∇ϕ)(2−m·)‖L2n/3‖uk‖L2n/(n−3) = 2−k2m/2‖uk‖L2n/(n−3)
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4.1.2. Proof of (4.5)

We treat Ek on a term-by-term basis in (2.1). For the first term, by Calderón
commutators,

(
∑
k

‖[Pk, A<k−6]∇uk‖2
L2L2n/(n+2))

1/2 .

. (
∑
k

‖∇A<k−6‖2
L∞Ln/2‖uk−3≤·k+3‖2

L2L2n/(n−2))
1/2 .

. sup
k
‖∇A<k−6‖L∞Ln/2(

∑
k

‖uk−3≤·k+3‖2
L2L2n/(n−2))

1/2 .

. ‖∇A‖L∞Ln/2‖u‖X′ .

For the second term, we have by standard Littlewood-Paley theory

(
∑
k

‖PkG‖2
L2L2n/(n+2))

1/2 . ‖G‖L2L2n/(n+2) ,

‖(
∑

l

|gl|2)1/2‖Lp ∼ ‖g‖Lp for all 1 < p <∞.

whence with m, ` ∈ Z with |m− `| ≤ 8 we have

(
∑
k

‖Pk(
∑

|`−m|≤8

A` · ∇um)‖2
L2L2n/(n+2))

1/2 ∼

∼ ‖
∑

|`−m|≤8

A` · ∇um‖L2L2n/(n+2) .

. ‖(
∑

`

22l|A`|2)1/2‖L∞Ln/2‖(
∑
m

|P̃mu|2)1/2‖L2L2n/(n−2) ∼

∼ ‖∇A‖L∞Ln/2‖u‖L2L2n/(n−2) . ε‖u‖X′ .

For the third term in (2.1), observe that since for all 1 ≤ p ≤ 2,

(
∑
k

‖Gk‖2
Lp)1/2 ≤ Cn‖(

∑
k

|Gk|2)1/2‖Lp

we can estimate by

(
∑
k

‖Pk(Ak−3≤·≤k+3 · ∇u<k−5)‖2
L2L2n/(n+2))

1/2 .

. (
∑
k

22k‖Ak−3≤·≤k+3P̃<k−5u‖2
L2L2n/(n+2))

1/2 .

. ‖(
∑
k

22k|Ak−3≤·≤k+3|2|P̃<k−5u|2)1/2‖L2L2n/(n+2) .

. ‖(
∑
k

22k|Ak−3≤·≤k+3|2)1/2‖L∞Ln/2‖ sup
k
|P̃<k−5u|‖L2L2n/(n−2) .

. ‖∇A‖L∞Ln/2‖u‖L2L2n/(n−2) . ε‖u‖X′ ,
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Here, we have used the pointwise estimate(see section 6.1, Chapter I, [18]) supk |P̃<k−5u|(x) ≤
CM(u)(x), where M(u) is the Hardy-Littlewood maximal function and therefore

‖ sup
k
|P̃<k−5u|‖Lp ≤ C‖u‖Lp

for all 1 < p <∞.

4.2. The proof of (4.3)

The nontrivial part of (4.3) is the case when uk is the solution to ∂tuk − i∆uk = Hk

with zero initial data uk(0, x) = 0. Then the fact that the norm of Xk has three
components implies that the inequality

‖uk‖X′ ≤ C‖Hk‖X

is equivalent to the following nine inequalities

‖uk‖L2L2n/(n−2) ≤ C‖Hk‖L2
t L2n/(n+2) (4.7)

‖uk‖L2L2n/(n−2) ≤ C‖Hk‖L1
t L2 (4.8)

‖uk‖L2L2n/(n−2) ≤ C
∑
m

2m/22−k/2‖Hk‖L2
t L2(|x|∼2m), (4.9)

‖uk‖L∞L2 ≤ C‖Hk‖L2
t L2n/(n+2) (4.10)

‖uk‖L∞L2 ≤ C‖Hk‖L1
t L2 (4.11)

‖uk‖L∞L2 ≤ C
∑
m

2m/22−k/2‖Hk‖L2
t L2(|x|∼2m), (4.12)

2k/2 supm 2−m/2‖uk‖L2
t L2(|x|∼2m) ≤ C‖Hk‖L2

t L2n/(n+2) , (4.13)

2k/2 supm 2−m/2‖uk‖L2
t L2(|x|∼2m) ≤ C‖Hk‖L1

t L2 , (4.14)

and
2k/2 supm 2−m/2‖uk‖L2

t L2(|x|∼2m) ≤
≤ C

∑
m

2m/22−k/2‖Hk‖L2
t L2(|x|∼2m).

(4.15)

The estimates (4.7), (4.8), (4.10) and (4.11) are Strichartz inequalities (see (1.4)
for general case).

The estimate (4.15) is smoothing - smoothing estimate established in Corollary
1( actually they follow from the bilinear estimate (3.13)) .

The estimates (4.9), (4.13) are smoothing - endpoint Strichartz inequalities fol-
lowing from bilinear estimate of Theorem 3.1.

Finally, the estimates (4.12), (4.14) are smoothing - energy inequalities following
from bilinear estimate of Theorem 3.2.

The first inequality is the usual Strichartz estimate, while the second one is equiv-
alent to (3.2).

This completes the proof of the inequality (4.3) and Theorem 1.1.
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