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Incompressible flow around thin obstacle,
uniqueness for the wortex-wave system

Christophe Lacave
Abstract

We present here the results concerning the influence of a thin obstacle on
the behavior of incompressible flow. We extend the works made by Itimie,
Lopes Filho, Nussenzveig Lopes and Kelliher where they consider that the
obstacle shrinks to a point. We begin by working in two-dimension, and thanks
to complex analysis we treat the case of ideal and viscous flows around a
curve. Next, we consider three-dimensional viscous flow in the exterior of a
surface/curve. We finish by giving uniqueness of the vortex-wave system with a
single point vortex introduced by Marchioro and Pulvirenti, in the case where
the initial vorticity is constant near the point vortex. This last result gives, in
particular, the uniqueness of the limit system obtained in the case of a perfect
fluid around a point. We choose here to give the main steps of this uniqueness
result, obtained in collaboration with E. Miot.

1. Introduction
We study the influence of a thin obstacle on the behavior of incompressible flow,
when the obstacle tends to a curve or a surface. The small obstacle limit is an
instance of the general problem of PDE on singularly perturbed domains. There is a
large literature on such problems, specially in the elliptic case. Asymptotic behavior
of fluid flow on singularly perturbed domains is a natural subject for analytical
investigation which is virtually unexplored.

The first works were made in 2003 and 2006 by Iftimie, Lopes Filho and Nussen-
zveig Lopes concerning two dimensional incompressible ideal flow (governed by the
Euler equations) [5] and viscous flow (governed by the Navier-Stokes equations) [6]
when the obstacle shrinks homothetically to a point. Iftimie and Kelliher worked in
2008 on the three dimensional incompressible viscous flow around an obstacle which
shrinks to a point [4].

In the following section, we will expose the main results concerning incompressible
ideal [9] and viscous [10] flows around a curve (in 2D) and viscous flow around a
surface/curve (in 3D). In the last part, we present the uniqueness of the vortex-wave
system with a single point vortex introduced by Marchioro and Pulvirenti, in the
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case where the initial vorticity is constant near the point vortex [11]. In fact, the
limit system obtained in [5] (case of a perfect fluid around an obstacle which shrinks
to a point) corresponds to the vortex-wave system with a point fixed in an eulerian
formulation. Our uniqueness result holds also in this case. In [5], the authors just
proved the existence of a subsequence (uε, ωε) which tends to a solution of their
limit system, and a consequence of [11] is that all the sequence converges to the
unique solution of the limit system.

The article [11] was made in collaboration with Evelyne Miot. We choose in this
presentation to present its main steps, whereas the results concerning fluids around
thin obstacles will be given without proof.

General problem
Let us consider a fluid occupying a domain Ω in R2. A classical macroscopic descrip-
tion of its state may be made in terms of the density ρ, the velocity u = (u1, u2, u3)
and the pressure p. The motion of an incompressible viscous flow is governed by the
Navier-Stokes equation:

∂tu− ν∆u+ u · ∇u = −∇p+ g,

with g the exterior force and ν the viscosity of the fluid. The justification of this
equation is largely detailed in literature (see for example [13]). In all the following
works, we do not considered the exterior force (i.e. g = 0). Moreover, for the main
part of flows, it seems reasonable to add the incompressibility condition:

div u = 0.
For the Navier-Stokes equations, the classical condition at the boundary is the

no-slid boundary condition (or Dirichlet condition) :
u = 0 at the boundary.

In the case of an unbounded domain, we assume here that the velocity tends to
zero at infinity.

If the resistance of the fluid is not insignificant, sometimes ν becomes very small
after scaling. For example, it was computed in a case of a tuna moving in water
that ν ≈ 10−7. Therefore, sometimes it is reasonable to let ν = 0 and we obtain the
Euler equations which govern the incompressible perfect flow:

∂tu+ u · ∇u = −∇p.
In this case, the no-slip boundary condition should be replaced by:

u · n = 0 at the boundary,
where n denotes the unit normal on ∂Ω.

The Navier-Stokes and Euler equations can be interpreted in any number of space
dimensions. We exclude the case of n = 1 because the incompressibility condition
makes this problem uninteresting. The physical interpretation applies in principle
only to the three dimensional case. We observe, however, that any solutions u =
(u1, u2) of the two dimensional equations gives rise to a special solution of the 3D
equations, of the form

u = u(x1, x2, x3, t) = (u1(x1, x2, t), u2(x1, x2, t), 0).
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Common examples are an infinite cylinder or an infinite air plane wing.
Moreover, we will have to fix an initial data to make the problem well-posed.
Let us define now an important quantity for the study of these equations. Let ω

be the vorticity defined as follow:
ω = ∂1u2 − ∂2u1

if the space dimension is 2, and
ω = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1)

if the space dimension is 3.

The works [9, 10], presented in the following section, treat a certain kind of sin-
gular limit for these equations. Precisely, we consider Navier-Stokes and Euler equa-
tions posed in the exterior of an obstacle which is more and more thin, tending to
a curve. The goal is to determine the limit equation.

2. A singular limit
Let Ωε be an obstacles family (smooth, bounded, open, connected and simply con-
nected domains) which shrink as ε→ 0 to a curve if the space dimension is two or to
a surface in 3D. We consider the Navier-Stokes and Euler equations on the exterior
domains Πε ≡ R2 \Ωε. We assume finally that the initial vorticity ω0 is smooth and
that its support does not intersect the obstacles. As the goal is to compare flows
defined on different domains, we extend the functions on all the space as follow: for
a function f defined on Πε, we denote by Ef the extension of f on Rn, such that
Ef = f on Πε and zero otherwise.

The behavior of these singular limits depends on the space dimension and the
equations chosen. We study three cases: Euler equations in two dimensional space
and Navier-Stokes equations in two and three dimensional spaces.

This kind of limit was treated in the three same situations in [5, 6, 4] when the
obstacles tend to a point, instead of a curve or surface. We will explain the main
differences between their and our results.

2.1. Two dimensional ideal flow (corresponding to [9])
In two dimensional space, the vorticity is not sufficient to uniquely determine a
divergence free vector field, tangent to the boundary Γε ≡ ∂Ωε and vanishing at
infinity. We need the circulation of the velocity around the obstacle. Then, we should
fix the circulation of the initial velocity:

γ =
∮

Γε
uε0.ds

independently of ε. Then, we can show that, given the geometry of the obstacle Ωε,
the initial velocity is uniquely determined in terms of ω0 and γ. In fact we have
an explicit formula of the Biot-Savart law: law which gives the velocity in terms
of the vorticity and the circulation around the obstacle. We use complex analysis
(Riemann theorem) to construct a biholomorphism Tε between Πε and the exterior
of the unit disk, which allows us to establish explicit formula:

uε0 = uε0(x, t) = Kε[ω0(·, t)](x) + αHε(x)
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with Kε, Hε and α given in terms of ω0, γ and Tε. We see here the main advantage
of the two dimensional space: we identify R2 to the complex plan C and we use
complex analysis to obtain these explicit formulas.

The motion of an incompressible ideal flow in Πε is governed by the Euler equa-
tions: 

∂tu
ε + uε · ∇uε = −∇pε in Πε × (0,∞)

div uε = 0 in Πε × (0,∞)
uε · n̂ = 0 on Γε × (0,∞)

lim
|x|→∞

|uε| = 0 for t ∈ [0,∞)

uε(x, 0) = uε0(x) in Πε
where pε = pε(x, t) is the pressure. Kikuchi established in [7] that the previous
system admits an unique global solution uε. A characteristic of this solution is the
conservation of the velocity circulation on the boundary, and that m ≡

∫
curl uε =∫

ω0. This implies in particular that α (in the Biot-Savart law) is constant and is
equal to γ +m (see [5]). In fact, to study the two dimensional ideal flows, we work
on the vorticity equations ωε ≡ curl uε which are equivalent to the previous system:

∂tω
ε + uε · ∇ωε = 0 in Πε × (0,∞)

uε = Kε[ωε] + αHε in Πε × (0,∞)
ωε(x, 0) = ω0(x) in Πε.

The interest of such a formulation is that we recognise a transport equation. The
transport nature allows us to conclude that the Lp(Πε) norms of the vorticity are
conserved, for p ∈ [1,∞], which gives us directly an estimate and a weak convergence
in Lp for the vorticity.

The goal is to determine the limit of (uε, ωε) when ε→ 0.
This kind of work was initiated by Iftimie, Lopes Filho and Nussenzveig Lopes in

[5] when the obstacle shrink homothetically to a point. The authors set Ωε ≡ εΩ,
with Ω a fix obstacle (smooth, bounded, connected, simply connected, containing
0) and they show the following result:

Theorem 2.1. There is a subsequence ε = εk → 0 such that

(a) Φεuε → u strongly in L2
loc(R+ × R2);

(b) Φεωε → ω weak ∗ in L∞(R+;L4
loc(R2));

(c) the limit pair (u, ω) verify in the sense of distributions:

∂tω + u · ∇ω = 0 in R2 × (0,∞)
div u = 0 in R2 × (0,∞)
curl u = ω + γδ0 in R2 × (0,∞)
ω(x, 0) = ω0(x) in R2

with δ0 the Dirac function at 0.

In this result, Φε is a cut-off function of an ε-neighbourhood of Ωε. The limits
(a) and (b) are independents of the choice of the cut-off functions, and we can
give the same theorem with Euε and Eωε. Therefore, they obtain at the limit the

IV–4



Euler equations in the full plane, where a Dirac mass at the origin appears. This
additional term is a reminiscent of the circulation γ of the initial velocities around
the obstacles, and we note that this term does not appear if γ = 0.

The work done in [9] describes the case where the obstacle shrinks to a smooth
curve Γ. Just before to give the main result, we should precise the sense of this
limit. Indeed, the goal in the two articles [5, 9] is to obtain some velocity estimates
thanks to the Biot-Savart law, in order to pass to the limit. For this, we need
some estimates of Tε, the biholomorphism between Πε and the exterior of the unit
disk. In [5], choosing a homothically convergence of the obstacles, the authors set
Tε(x) = T (x/ε), with T the biholomorphism between Ω and the exterior of the unit
disk. This simplifies the a priori estimates. In our case, the first step is to think about
the existence of a conformal mapping T between the exterior of the curve Π ≡ R2\Γ
and the exterior of the unit disk. We use some important results in complex analysis
(see [18, 19]) to establish this existence and we define the convergence of the obstacles
Ωε to Γ by a convergence of Tε to T . For details, see [9]. The convergence of Tε to
T , in a particular sense, is the key of the determination of the limit velocity and we
will deduce properties on the limit velocity thanks to properties of T .

In [5], the authors do not have this convergence but their estimates are easier.
Indeed, they decompose the velocity uε in two parts: vε uniformly bounded in ε and
an harmonic part γHε. Moreover, when the obstacles shrink to a point, the cut-off
functions verify:

mes(supp ∇Φε) = O(ε2) and ‖∇Φε‖Lp → 0,∀1 ≤ p < 2.
Then they find a weak limit for the curl and the divergence:

div (Φεvε) = 0 +∇Φε · vε → 0
curl (Φεvε) = Φεωε +∇⊥Φε · vε → ω,

which allows us to extract a strong limit in L2 of the sequence {Φεvε}, thanks to
the div-curl lemma.

In our case, we do not obtain L∞ estimates, but only in Lp for p < 4, because
DT blows up at the end points of the curve like the inverse of the square root of the
distance. Moreover mes(supp ∇Φε) = O(ε) and we remark that we can not apply
a similar argument than [5]. However, noting that ∇Φε is normal to the boundary,
whereas uε is tangent, a step consists to prove the limit ∇Φε · uε → 0 holds true
in our case. Next, the idea is to use the weak convergence of the vorticities and the
convergence of Tε to T in order to pass directly to the limit in the Biot-Savart law,
thanks to the dominated convergence theorem. We obtain a strong convergence in
L2 for the velocity. By a weak-strong pair vorticity-velocity, we can pass to the limit
in the Euler equations. The original thing here is that we obtain an explicit form of
the limit velocity. We use it to deduce some properties as the behavior of the flow
near the curve, the relation between limit velocity and limit vorticity, ... The result
concerning the Euler equations in the case of a curve in 2D is the following theorem.
Theorem 2.2. There is a subsequence ε = εk → 0 such that

(a) Φεuε → u strong in L2
loc(R+ × R2);

(b) Φεωε → ω weak ∗ in L∞(R+;L4
loc(R2));

(c) u is explicitly given in terms of ω;
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(d) u and ω are weak solutions of ∂tω + u.∇ω = 0 in R2 × (0,∞).

The limit velocity u is explicitly given in terms of ω and γ and it corresponds to a
divergence-free vector field, tangent to the curve Γ, vanishing at infinity, whose the
curl is equal to ω on R2 \ Γ and whose the circulation around Γ is γ. We also note
that the velocity is continuous up to the curve (with different values on each side of
the curve), except to the end points where it blows up like the inverse of the square
root of the distance. However, the velocity remains bounded in Lploc for p < 4. If we
compute the curl in the full plane, we obtain in fact that curl u = ω+gω(s)δΓ where
δΓ is the Dirac on the curve Γ, and where the density gω depends only on ω and γ.
The function gω is continuous on Γ and blows up at the end-points. Moreover, we
note that gω corresponds to the jump though the curve of the velocity tangent part.
In fact, the presence of the additional term gω in the curl of the velocity, compared
to the Euler equations in the full plane, is necessary to obtain a vector field tangent
to the curve, with a circulation γ around the curve.

If we assume that γ = 0, we obtain a contrast between [5] and our case. In the
case of a small obstacle, we do not observe any reminiscence of the obstacle, whereas
in the case of a thin obstacle, gω 6= 0. Moreover, in the case of a thin obstacle, this
density depends on the time. In other words, if the fluid does not feel the effect of
a point, it always feels a curve.

We also find a formulation on R2 \Γ which corresponds to the Euler equations in
the exterior of a curve. Therefore, a consequence of this work is the global existence
of a weak solution to the Euler equations in such a domain.

Remark 2.3. In the case of two dimensional ideal flow around small obstacle, we
should mention that Lopes Filho worked in [12] about several obstacles where just
one shrinks to a point. However, the author had to work in bounded domain. In his
case, we do not have explicit form of the Biot-Savart law and the complex analysis
techniques are replaced by variational methods and the maximum principle. His
result is equivalent to Theorem 2.1.

Remark 2.4. We can also think about the uniqueness of solutions of the limit prob-
lems. The existence is established by passing to the limit for solutions defined on
smooth domains. Moreover, in each theorem, we state that we extract a subsequence.
If we show an uniqueness result, it would mean that Φεuε → u for all the sequence
εk → 0. Uniqueness in the case of the curve is too complicated, because the density
gω depends on the time and ω. However, in the case where the obstacle shrinks to a
point, we obtain in [11] the uniqueness of solutions of equation (c) in Theorem 2.1.
This result is detailed in the last section.

2.2. Two dimensional viscous flow (corresponding to [10])

As we explain in the previous subsection, we should fix γ the circulation of the
initial velocity around the obstacle. This quantity and the initial vorticity ω0, chosen
independently of ε, allow us to uniquely determine a divergence-free vector field uε0,
tangent to the boundary and vanishing at infinity.
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The behaviour of an incompressible viscous flow in Πε is governed by the Navier-
Stokes equations:



∂tu
ε − ν∆uε + uε · ∇uε = −∇pε in Πε × (0,∞)

div uε = 0 in Πε × (0,∞)
uε = 0 on Γε × (0,∞)

lim
|x|→∞

|uε| = 0 for t ∈ [0,∞)

uε(x, 0) = uε0(x) in Πε

where pε = pε(x, t) is the pressure. Existence and uniqueness of global solution of
such problem were given by the Kozono and Yamazaki’s work [8]. Let us note that
the vorticity equation does not give any control. In the viscous case, a dissipative
term is added to the transport equation, which, in the full plane, allows us to
conclude that the Lp norms of the vorticity are decreasing. However, it does not
remain true if we work in a domain with boundaries (our case) because the vorticity
does not verify well conditions at the boundary. In fact, estimates of one velocity
derivative will be obtained directly from the Navier-Stokes equations, thanks to the
second order term −ν∆uε.

Iftimie, Lopes Filho and Nussenzveig Lopes [6] treated the case of an obsta-
cle which homothetically shrinks to a point. They prove that in the case of small
circulation the limit equations are always the Navier-Stokes equations where the
additional Dirac mass appears only on the initial data. This is due to the fact that
the circulation of the initial velocity on the boundary of the obstacle does vanish for
t > 0 when we consider the no-slip condition. They use again the change of variables
y = x/ε to work in a fixed domain.

Here, we assume that the obstacles shrink to a curve. The first step is to deter-
mine the limit of the initial data. We use here the Biot-Savart law, and we find an
equivalent limit to the case of an ideal flow. Then, a priori estimates are simplified
compared to [6], because our limit initial velocity u0 belongs to Lploc for p < 4,
whereas in the case of small obstacles, limit velocity does not belong to L2

loc. There-
fore, in [6], the authors have to work in a small time interval, in order to the velocity
becomes L2

loc and after they use classical estimates for Navier-Stokes equations. In
the two cases u0 is not square integrable at infinity. We should estimate the square
integrable part of the velocity. This part, denoted by W ε, corresponds to uε where
we remove at infinity the harmonic part. For such an initial data, we define a so-
lution of the Navier-Stokes equations in the exterior of the curve as a vector field
verifying the equation in the sense of distributions and such that the difference be-
tween the solution and a fixed smooth vector field behaving like γ x⊥

2π|x|2 at infinity
has the regularity expected from Leray solution. The main theorem of [10] is the
following.

Theorem 2.5. Let ω0 and γ be independent of ε as defined above. Let uε be the
solution of the Navier-Stokes equations on Πε ≡ R2 \Ωε with initial velocity uε0 and
denote by Euε the extension of uε to R2 with values 0 on Ωε. Then {Euε} converges
in L2

loc([0,∞)× (R2 \Γ)) to a solution of the Navier-Stokes equations in R2 \Γ with
an initial vorticity ω0 + gω0δΓ. Moreover, such a solution is unique.
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The initial velocity is given by the relation
u0 = K[ω0] + αH,

with K and H depend only on the Γ shape, and with α = γ+
∫
ω0. Then, this initial

velocity is explicitly given in terms of ω0 and γ and can be viewed as the divergence
free vector field which is tangent to Γ, vanishing at infinity, with curl in R2 \Γ equal
to ω0 and with circulation around the curve Γ equal to γ. This velocity is blowing
up at the endpoints of the curve Γ as the inverse of the square root of the distance
and has a jump across Γ.

The existence of solutions in the Navier-Stokes equations has been studied in
general domains in [1] for the dimension two or three for square-integrable data,
and in [17] for the dimension three and H

1
2 initial data. Kozono and Yamazaki

[8] treated the case of L2,∞ data but for exterior domains which are smooth. A
byproduct of the previous theorem is the existence and uniqueness of solutions of
the Navier-Stokes equations on R2\Γ in a case which is not covered in previous work.
Indeed, the result of [1] does not apply because the initial data of our limit velocity is
not square-integrable at infinity. Our extension from square-integrable velocities to
velocities that decay like 1/|x| is physically meaningful: it allows nonvanishing initial
circulation around the obstacle, something which can happen in impulsively started
motions. On the other hand, our initial data u0 satisfies the smallness condition of
Kozono and Yamazaki [8], but the domain R2 \ Γ is not smooth, as required in [8].

At opposite of [5, 6, 9], we do not find here a formulation in the full plane. Choosing
to look for a formulation on R2 \ Γ, we work about convergences on compact sets
K included in the exterior of the curve. There is εK such that K ∩ Ωε = ∅ for all
ε ≤ εK , then ∇Φε corresponding to the boundary effects does not appear in the
estimates. The difficulty with Navier-Stokes equations around a curve comes with
the presence of a second order operator ∆ and the fact that the Lebesgue measure
of the set where Φε is not constant is O(ε). In the case where the obstacle shrinks
to a point, this measure is equal to O(ε2), so ‖∆Φε‖L1 is O(1), whereas in our case,
this norm is equal to O(1/ε). This blow up in the case of the viscous flow around the
curve is mathematically difficult but physically meaningful. Indeed, we hope that
the limit velocity verifies:

∂tu− ν∆u+ u · ∇u = νfmG −∇pε in R2 × (0,∞),
where mG is a measure supported on the curve Γ (maybe the Dirac ?) and where f
corresponds to the lift force applied by the viscous flow on the curve.

2.3. Three dimensional viscous flow
At the opposite of two dimensional flow, the initial vorticity ω0 is sufficient to
uniquely determine a divergence-free vector field, tangent to the boundary and van-
ishing at infinity. There is not any work about Euler equations because we can not
obtain estimates independently of ε of one velocity derivative. Indeed, in three di-
mensional space, the vorticity equation is not any more a transport equation and
we can not pretend that the Lp norms of the vorticity are conserved. The Navier-
Stokes equations allow us to obtain this control, thanks to the second order term
ν∆u. Kelliher and Iftimie in [4] worked on the case of an obstacle shrinking to a
point, and they prove that the limit velocity verifies the Navier-Stokes equations in
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the full space. The limit of the initial velocity is u0 = −
∫
R3

x−y
4π|x−y|3 × ω0(y) dy, and

we do not observe any effect of the small obstacle, even on the initial data.
We set S, a smooth surface, bounded, with a boundary Γ and we assume that

Πε ≡ R3 \Ωε is an exterior domain simply connected with a smooth boundary, such
that Ωε tends to S when ε → 0 in the following sense: there is M > 0 such that
Ωε ⊂ S +B(0,Mε) for all ε > 0. Then, we do not use here strong properties on the
convergence assumption, comparing to the two dimensional case. Luckily because
we do not have an equivalent to complex analysis. Then, we do not have any more
explicit formula for the Biot-Savart law. This explicit form was necessary in 2D
Euler, because we deduce velocity convergence from weak convergence of vorticities.
In 2D viscous flow, we need explicit formula to estimate harmonic part vε at infinity,
which allows us to work with square integrable vector fields W ε = uε − vε. There is
not this problem in three dimensional space because Πε is simply connected, then
there are not circulation and harmonic part. However, it is harder to find some
properties of the initial velocity, as the blow up near the boundary. We can show
the strong convergence to a vector field verifying the Navier-Stokes in the exterior of
the surface, with an divergence-free initial data, tangent to the surface. Except the
explicit formula of the initial data, we find an equivalent result to the curve in two
dimensional space. For the same reasons, we do not try to look for a formulation in
the full space.

In the case where the obstacle shrinks to a curve, we prove the strong convergence
in L2(R3) for the initial velocity to the initial velocity without obstacle u0. Actually,
we can not yet show that the limit velocity is a weak solution of the Navier-Stokes
in the full space R3.

3. Uniqueness for the vortex-wave system

3.1. Introduction
In this section, we study a system occurring in two dimensional fluid dynamics.
The motion of an ideal incompressible fluid in R2 with divergence-free velocity field
v = (v1, v2) : R+ × R2 → R2 and vorticity ω = curl v = ∂1v2 − ∂2v1 : R+ × R2 → R
is given by the Euler equations∂tω + v · ∇ω = 0,

ω = curl v, div v = 0,
(3.1)

where div v = ∂1v1 + ∂2v2. For this system, Yudovich’s Theorem [21] states global
existence and uniqueness in L∞ (R+, L1 ∩ L∞(R2)) for an initial vorticity ω0 ∈ L1 ∩
L∞(R2). Equation (3.1) is a transport equation with field v, therefore one may solve
it with the method of characteristics. When v is smooth, it gives rise to a flow
defined by 

d
dt
φt(x) = v

(
t, φt(x)

)
φ0(x) = x ∈ R2.

(3.2)

In view of (3.1), we then have
d

dt
ω
(
t, φt(x)

)
≡ 0, (3.3)
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which means that ω is constant along the characteristics. In the general case of a
vorticity ω ∈ L∞ (R+, L1 ∩ L∞(R2)), these computations may be rigorously justified,
so that the Eulerian formulation (3.1) and the Lagrangian one (3.2), (3.3) turn out
to be equivalent.

Since equation (3.1) governs the evolution of the vorticity ω, it is natural to
express the velocity v in terms of ω. This can be done by taking the orthogonal
gradient in both terms in the relation ω = curl v and using that v is divergence free.
This yields ∇⊥ω = ∆v, so that under the additional constraint that v vanishes at
infinity, we have

v = K ∗ ω. (3.4)
Here ∗ denotes the convolution product and K : R2 \ {0} → R2 stands for the
Biot-Savart Kernel defined by

K(x) = 1
2π

x⊥

|x|2
, x 6= 0, (3.5)

where (x1, x2)⊥ = (−x2, x1). When the vorticity tends to be concentrated at points,
one may modify equation (3.1) according to formulas (3.4) and (3.5) into a system
of ordinary differential equations, called point vortex system, which governs the
motion of these points. A rigorous justification for this system has been carried out
in [16]. It is proved there that if the initial vorticity ω0 is close to the weighted sum
of Dirac masses ∑ diδzi in a certain sense, then ω(t) remains close to ∑ diδzi(t) for
all time, where the vortices zi(t) evolve according to the point vortex system.

In the early 90s, Marchioro and Pulvirenti [14, 15] investigated the mixed problem
in which the vorticity is composed of an L∞ part and a sum of Dirac masses.
They obtained the so-called vortex-wave system, which couples the usual point
vortex system and the classical Lagrangian formulation for the two-dimensional
fluid dynamics. In the case of a single point vortex (which will be the case studied
here), these authors obtained the global existence of solutions of the vortex-wave
system in Lagrangian formulation.

Definition 3.1 (Lagrangian solutions). Let ω0 ∈ L1 ∩ L∞(R2) and z0 ∈ R2. We
say that the triple (ω, z, φ) is a global Lagrangian solution to the vortex-wave system
with initial condition (ω0, z0) if ω ∈ L∞ (R+, L1 ∩ L∞(R2)), v = K ∗ω ∈ C(R+×R2)
and

z : R+ → R2, φ : R+ × R2 \ {z0} → R2

are such that z ∈ C1(R+,R2), φ(·, x) ∈ C1(R+,R2) for all x 6= z0 and satisfy

v(·, t) = (K ∗ ω)(·, t),
ż(t) = v(t, z(t)),
z(0) = z0,

φ̇t(x) = v(t, φt(x)) +K
(
φt(x)− z(t)

)
,

φ0(x) = x, x 6= z0,

ω(φt(x), t) = ω0(x),

(LF)

where φt = φ(t, ·). In addition, for all t, φt is an homeomorphism from R2 \ {z0}
into R2 \ {z(t)} that preserves Lebesgue’s measure.
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This system involves two kinds of trajectories. The point vortex z(t) moves under
the velocity field v produced by the regular part ω of the vorticity. This regular
part and the vortex point give rise to a smooth flow φ along which ω is constant.
The main difference with the classical Euler dynamics is the presence of the field
K(x− z(t)), which is singular at the point vortex but smooth elsewhere. Marchioro
and Pulvirenti [14] proved global existence for (LF). The proof mainly relies on
estimates involving the distance between φt(x) and z(t) and uses almost-Lipschitz
regularity for v = K ∗ ω and the explicit form of K. It is shown in particular that
a characteristic starting far apart from the point vortex cannot collide with z(t)
in finite time. Consequently, the singular term K(φt(x) − z(t)) in (LF) remains
well-defined for all time.

The notion of Lagrangian solutions is rather strong. One can define a weaker
notion of solutions: solutions in the sense of distributions of the PDE (without
involving the flow φ). We call these Eulerian solutions and we define them here
below.

Definition 3.2 (Eulerian solutions). Let ω0 ∈ L1∩L∞(R2) and z0 ∈ R2. We say that
(ω, z) is a global Eulerian solution of the vortex-wave equation with initial condition
(ω0, z0) if

ω ∈ L∞
(
R+, L1 ∩ L∞(R2)

)
, z ∈ C(R+,R2)

and if we have in the sense of distributions
∂tω + div ((v +H)ω) = 0,
ω(0) = ω0,

ż(t) = v
(
t, z(t)

)
, z(0) = z0,

(EF)

where v and H are given by

v(t, ·) = K ∗x ω(t), H(t, ·) = K(· − z(t)).

In other words, we have 1 for any test function ψ ∈ D(R+ × R2)

−
∫

R2
ω0(x)ψ(0, x) dx =

∫
R+

∫
R2
ω(∂tψ + (v +H) · ∇ψ) ds dx,

and 2

z(t) = z0 +
∫ t

0
v(s, z(s)) ds

for all t ∈ R+.

This kind of Eulerian solutions appears for example in [5]. In that paper, a solution
of the Euler equation with a fixed point vortex is obtained as the limit of the Euler
equations in the exterior of an obstacle that shrinks to a point. The regularity of
the limit solution obtained in [5] is not better than the one given in Definition 3.2.

In [11], we are concerned with the problems of uniqueness of Eulerian and La-
grangian solutions and with the related question of equivalence of Definitions 3.1
and 3.2.

1We can prove that the field defined by v = K ∗ω belongs to L∞(R+×R2). On the other hand,
H belongs to L1

loc(R+ × R2), so that this definition makes sense.
2We can prove that v(t) is defined for all time and is continuous in the space variable.
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3.2. Lagrangian implies Eulerian.
We first prove the following Theorem, clarifying that a Lagrangian solution is an
Eulerian solution.

Theorem 3.3. Let ω0 ∈ L1 ∩ L∞(R2) and z0 ∈ R2. Let (ω, z, φ) be a global La-
grangian solution of the vortex-wave system with initial condition (ω0, z0). Then
(ω, z) is a global Eulerian solution.

Idea of the proof. Given (ω, z, φ) a solution of (LF), it actually suffices to show that

∂tω + div ((v +H)ω) = 0 (3.6)

in the sense of distributions on R+ × R2.
We first give a formal proof of (3.6). Let us take a C1 function ψ(t, x) and define

f(t) =
∫

R2
ω(t, y)ψ(t, y) dy.

We set y = φt(x). Since φt preserves Lebesgue’s measure for all time and since ω is
constant along the trajectories, we get

f(t) =
∫

R2
ω0(x)ψ(t, φt(x)) dx.

Differentiating with respect to time and using the ODE solved by φt(x), this leads
to

f ′(t) =
∫

R2
ω0(x)

(
∂tψ + u · ∇ψ

)
(t, φt(x)) dx.

Using the change of variables y = φt(x) once more yields

f ′(t) =
∫

R2
ω(t, y)

(
∂tψ + u · ∇ψ

)
(t, y) dy,

which is (3.6) in the sense of distributions. In order to justify the previous compu-
tation, we need to be able to differentiate inside the integral, and we proceed as
follows.

Let ψ = ψ(t, x) be any test function. For 0 < δ < 1, we set

ψδ(t, x) ≡ χδ (x− z(t)) ψ(t, x),

where χδ is the map defined as follow: χδ(z) = χ0
(
z
δ

)
with χ0 : R2 → R a smooth,

radial cut-off map such that

χ0 ≡ 0 on B(0, 1
2), χ0 ≡ 1 on B(0, 1)c, 0 ≤ χ0 ≤ 1.

Since we have ψδ(t) ≡ 0 on the ball B
(
z(t), δ2

)
, we may apply the previous compu-

tation to ψδ, which yields for all t∫
R2
ω(t, x)ψδ(t, x) dx−

∫
R2
ω0(x)ψδ(0, x) dx

=
∫ t

0

∫
R2
ω (∂tψδ + u · ∇ψδ) dx ds.
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We first observe that thanks to the pointwise convergence of ψδ(t, ·) to ψ(t, ·) as
δ → 0, we have∫

R2
ω(t, x)ψδ(t, x) dx −

∫
R2
ω0(x)ψδ(0, x) dx

→
∫

R2
ω(t, x)ψ(t, x) dx−

∫
R2
ω0(x)ψ(0, x) dx

by Lebesgue’s dominated convergence Theorem. Then, we compute
∂tψδ + u · ∇ψδ = χδ(x− z)(∂tψ + u · ∇ψ)

+ ψ(−ż + v +H) · ∇χδ(x− z).
Using that H · ∇χδ(x− z) = 0 and that v is uniformly bounded, we obtain∣∣∣ ∫

R2
ω[∂tψδ+u · ∇ψδ − χδ(x− z)

(
∂tψ + u · ∇ψ

)
] dx

∣∣∣
≤ C‖ψ‖L∞‖v‖L∞‖ω‖L∞

∫
R2
|∇χδ|(x) dx.

We now let δ tend to zero. Since H is locally integrable, we observe that∫ t
0

∫
R2
ωχδ

(
∂tψ+u · ∇ψ

)
dx ds

→
∫ t

0

∫
R2
ω(∂tψ + u · ∇ψ) dx ds,

so that the conclusion finally follows.
�

The key of this proof is the remark: H · ∇χδ(x − z) = 0 because χδ is radial.
Although H is not bounded, we use its explicit form and the previous remark to
establish equivalent theorem to the case of a vorticity belonging to L∞(L1∩L∞). This
previous method was the main tool in [14] and it allows us to extend renormalized
solutions for velocity v +H.

We turn next to our main purpose and investigate uniqueness for Eulerian solu-
tions, which will imply uniqueness for Lagrangian soltutions.

3.3. Conservation of the vorticity near the point vortex.
Uniqueness for Lagrangian solutions can be easily achieved when the support of ω0
does not meet z0; in that case, the support of ω(t) never meets z(t) and the field
x 7→ K(φt(x)− z(t)) is Lipschitz on supp ω0.

Another situation that has been studied is the case where the vorticity is initially
constant near the point vortex. Marchioro and Pulvirenti [14] suggested with some
indications that uniqueness for Lagrangian solutions should hold in that situation.
This was proved by Starovoitov [20] under the supplementary assumption that ω0
is Lipschitz. In [11], we treat the general case where the initial vorticity is constant
near the point vortex z0 and belongs to L1 ∩ L∞(R2).

We first show that if (ω, z) is an Eulerian solution, then ω is a renormalized
solution in the sense of DiPerna-Lions [3] of its transport equation. We consider
equation (EF) as a linear transport equation with given velocity field u = v + H
and trajectory z. Our purpose is to show that if ω solves this linear equation, then
so does β(ω) for a suitable smooth function β. When there is no point vortex,
this directly follows from the theory developed in [3] (see also [2] for more details).
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The results stated in [3] hold for velocity fields having enough Sobolev regularity; a
typical relevant space is L1

loc

(
R+,W 1,1

loc (R2)
)
. These results can actually be extended

to our present situation, thanks to the regularity of H away from the point vortex
and to its special form.

Lemma 3.4. Let (ω, z) be a solution of (EF). Let β : R→ R be a smooth function
such that

|β′(t)| ≤ C(1 + |t|p), ∀t ∈ R,

for some p ≥ 0. Then for all test function ψ ∈ D(R+ × R2), we have

d

dt

∫
R2
ψβ(ω) dx =

∫
R2
β(ω)(∂tψ + u · ∇ψ) dx in L1

loc(R+).

Remark 3.5. We let 1 ≤ p < +∞. Approximating β(t) = |t|p by smooth functions
and choosing ψ ≡ 1 in Lemma 3.4, we deduce that for an Eulerian solution ω to
(EF), the maps t 7→ ‖ω(t)‖Lp(R2) are continuous and constant. In particular, we have

‖ω(t)‖L1(R2) + ‖ω(t)‖L∞(R2) ≡ ‖ω0‖L1(R2) + ‖ω0‖L∞(R2),

and we denote by ‖ω0‖ this last quantity.

Specifying our choice for β in Lemma 3.4, we are led to the following.

Proposition 3.6. Let (ω, z) be an Eulerian solution of (EF) such that

ω0 ≡ α on B(z0, R0)

for some positive R0. Then there exists a continuous and positive function t 7→ R(t)
depending only on t, R0 and ||ω0|| such that R(0) = R0 and

∀t ∈ R+, ω(t) ≡ α on B (z(t), R(t)) .

Idea of the proof. We set β(t) = (t − α)2 and use Lemma 3.4 with this choice. Let
Φ ∈ D(R+ × R2). We claim that for all T∫

R2
Φ(T, x)(ω − α)2(T, x) dx−

∫
R2

Φ(0, x)(ω − α)2(0, x) dx

=
∫ T

0

∫
R2

(ω − α)2(∂tΦ + u · ∇Φ) dx dt.

Now, we choose a test function Φ centered at z(t). More precisely, we let Φ0 be
a non-increasing function on R, which is equal to 1 for s ≤ 1/2 and vanishes for
s ≥ 1 and we set Φ(t, x) = Φ0(|x − z(t)|/R(t)), with R(t) a smooth, positive and
decreasing function to be determined later on, such that R(0) = R0. For this choice
of Φ, we have (ω0(x)− α)2Φ(0, x) ≡ 0.

We compute then

∇Φ = x− z
|x− z|

Φ′0
R(t)

and

∂tΦ = −R
′(t)

R2(t) |x− z|Φ
′
0 + ż · (z − x)

|x− z|
Φ′0
R(t) .
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Since u · ∇Φ = (v +H) · ∇Φ = v · ∇Φ, we obtain∫
R2

Φ(T, x)(ω − α)2(T, x) dx

=
∫ T

0

∫
R2

(ω − α)2 Φ′0(
|x−z|
R

)
R

(
(v(x)− ż) · (x− z)

|x− z|
− R′

R
|x− z|

)
dx dt.

(3.7)

Without loss of generality, we may assume that R0 ≤ 1, so that R ≤ 1. As
Φ′0(

|x−z|
R

) ≤ 0 for R/2 ≤ |x − z| ≤ R and vanishes elsewhere and R′ < 0, we
can estimate the right-hand side term of (3.7) by:∫ T

0

∫
R2

(ω − α)2 Φ′0(
|x−z|
R

)
R

(
(v(x)− ż) · (x− z)

|x− z|
− R′

R
|x− z|

)
dx dt

≤
∫ T

0

∫
R2

(ω − α)2 |Φ′0|(
|x−z|
R

)
R

(
|v(x)− v(z)|+ R′

2

)
dx dt.

Using regularity properties of v, we deduce from (3.7)∫
R2

Φ(T, x)(ω − α)2(T, x) dx

≤
∫ T

0

∫
R2

(ω − α)2 |Φ′0|(
|x−z|
R

)
R

(
CR(1− lnR) + R′

2

)
dx dt,

where C only depends on ‖ω0‖. Taking R(t) = exp(1− (1− lnR0)e2Ct), we arrive at∫
R2

Φ(T, x)(ω − α)2(T, x) dx ≤ 0,

which ends the proof.
�

Remark 3.7. We assume that ω0 has compact support. Considering β(t) = t2 in
Lemma 3.4 and adapting the proof of Proposition 3.6, we obtain that ω(t) remains
compactly supported and its support grows at most linearly. Indeed, if we choose
Φ(t, x) = 1−Φ0(|x−z(t)|/R(t)), withR(t) a smooth, positive and increasing function
such that R(0) = R1, where supp ω0 ⊂ B(z0, R1), then (3.7) becomes∫

R2
Φ(T, x)ω2(T, x) dx

=
∫ T

0

∫
R2
ω2−Φ′0(

|x−z|
R

)
R

(
(v(x)− ż) · (x− z)

|x− z|
− R′

R
|x− z|

)
dx dt

≤
∫ T

0

∫
R2
ω2 |Φ′0|(

|x−z|
R

)
R

(
2C − R′

2

)
dx dt,

where C depends only on ‖ω0‖. The right-hand side is identically zero for R(t) =
R1 + 4Ct, and we conclude that supp (ω(t)) ∈ B(0, R(t)).

We then take advantage of the weak formulation (EF) to derive a partial differen-
tial equation satisfied by the velocity v = K ∗ω. In order to compare two solutions,
one not only has to compare the two regular parts, but also possibly the diverging
trajectories of the two vortices. Given two Eulerian solutions (ω1, z1) and (ω2, z2),
we therefore introduce the quantity

r(t) = |z̃(t)|2 + ‖ṽ(t)‖L2(R2)
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where z̃ = z1 − z2, ω̃ = ω1 − ω2 and ṽ = v1 − v2 = K ∗ ω̃. Since ω̃ vanishes
in a neighborhood of the point vortex, the velocity ṽ has to be harmonic in this
neighborhood. This provides in particular a control of its L∞ norm (as well as the
L∞ norm for the gradient) by its L2 norm, whereas we take the norm L1 for H. Far
of the point vortex, H is smooth and we can use Yudovich’s argument. Separating
integral in this two part, ones ultimately yields a Gronwall-type estimate for r(t)
and allows to prove that it vanishes.

More precisely, we prove the following

Theorem 3.8. Let ω0 ∈ L1 ∩ L∞(R2) and z0 ∈ R2 such that there exists R0 > 0
and α ∈ R such that

ω0 ≡ α on B(z0, R0).
Suppose in addition that ω0 has compact support. Then there exists a unique Eulerian
solution of the vortex-wave system with this initial data.

Finally, although we have chosen to restrict our attention to Eulerian solutions,
we remark in the last section of [11] that the renormalization property established
for the linear transport equation can be used to show the converse of Theorem 3.3.
This implies that Definitions 3.1 and 3.2 are equivalent for any ω0 ∈ L1 ∩ L∞(R2),
even if the vorticity is not initially constant in a neighborhood of the point vortex.
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