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Abstract
We describe several results obtained recently on stochastic non linear

Schrödinger equations. We show that under suitable smoothness assump-
tions on the noise, the nonlinear Schrödinger perturbed by an additive or
multiplicative noise is well posed under similar assumptions on the nonlinear
term as in the deterministic theory. Then, we restrict our attention to the
case of a focusing nonlinearity with critical or supercritical exponent. If the
noise is additive, smooth in space and non degenerate, we prove that any
initial data gives birth to a singular solution ; thus the noise changes the
qualitative behavior since, as is well known, in the deterministic case only a
restricted class of initial data give a solution which blows up. We also present
numerical experiments which indicate that, on the contrary, a multiplicative
white noise seems to prevent blow up. We finally give a convergence result
for the numerical scheme used in these simulations.

1. Introduction

The nonlinear Schrödinger (NLS) equation describes the propagation of waves in
media with both nonlinear and dispersive response. This model is used in various
fields such as hydrodynamics, plasma physics, nonlinear optics, or molecular biology.
This equation has localized solutions, called soliton, which are particularly robust
and propagate without changing form. More and more attention has been paid
recently to the influence of a noise on the propagation of this soliton solution. The
dynamics of optical pulses in fibers with randomly varying, birefringence may e.g.
be governed by a system of coupled NLS equations with random coefficients (see
[10]). A one dimensional NLS equation with an additive space time white noise
is considered in [8], for which a method is proposed to calculate the probability
distribution of soliton parameters. The equation reads

i∂tψ − (∂2
xψ + 2|ψ|2ψ) = ξ, x ∈ R, t ≥ 0, (1.1)
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and ξ is a space-time white noise. A nonlinear Schrödinger equation with multi-
plicative noise has also been proposed as a model of energy transfer in a monolayer
molecular aggregate in the presence of thermal fluctuations (see [1]). In this case,
the noise arises as a real valued potential, and the equation, which may be written
as

i∂tψ − (∆ψ + |ψ|2ψ) = ηψ, x ∈ R2, t ≥ 0, (1.2)

must preserve the L2 norm of the solution ψ as t varies, since |ψ|2 stands here for
a (spatial) probability density. It follows that the product arising in the right hand
side of (1.2) is necessarily a Stratonovitch product.

In section 2, we briefly recall the definition of a white noise and the construction
of the stochastic integral. In particular, we will see that a space-time white noise
has very irregular paths. Since the Schödinger equation has little smoothing effects,
it seems difficult to treat such noises. In our theoretical study, we thus consider
noises which are white in time but are correlated in space. We give in section 3
various existence and uniqueness results for equations (1.1) and (1.2). In section 4,
we study the influence of an additive noise on finite time blow-up of solutions in
the focusing case (λ = +1) and with σ critical or supercritical. We show that the
noise has a strong effect, when it is spatially smooth : any solution blows up in
finite time whereas in the deterministic case, only a restricted class of initial data
give birth to blowing up solutions. We use in section 5 numerical simulations to
strengthen the theoretical results of section 4; we first observe that any solution
blows up with probability one and that our results seem to be valid also with a
smooth multiplicative noise, at least for supercritical nonlinearities. We then verify
numerically the conjecture that a multiplicative space-time white noise may prevent
blow-up; such a behavior is totally different from the smooth noise case. Finally, in
section 6, we state a convergence result for the semi-discrete version of the scheme
that we used in section 5.

2. Mathematical description of the noise

In order to state precisely the equations we will consider in this note, we introduce
a probability space (Ω,F ,P) endowed with a filtration (Ft)t≥0. Let us recall that
a filtration is an increasing family of σ-algebra contained in F and that, roughly
speaking, a random variable which is measurable with respect to Ft depends only
on the past up to time t.

A brownian motion β is a gaussian process with independent increments, i.e. a
family of random variables indexed by the time t such that, for each t1, t2, . . . , tn,
(β(t1), β(t2), . . . , β(tn)) is a gaussian vector and, for t ≥ s, β(t)− β(s) and β(s) are
independent. It is adapted to (Ft)t≥0 if for each t, β(t) is measurable with respect to
Ft and, for t ≥ s, β(t)−β(s) is independent of Fs. This means that the increments
do not depend on the past.

It is well known that for almost every ω ∈ Ω, the trajectory t 7→ β(t, ω) is con-
tinuous, and even α-hölder continuous for any α < 1/2, but nowhere differentiable
and not of bounded variation.

The white noise in time β̇ is the distributional derivative of the brownian motion
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with respect to time :

β̇ =
dβ

dt
.

It is delta correlated in the sense that, formally,

E(β̇(t)β̇(s)) = δt−s,

where δ is the Dirac mass. The name "white noise" originates from the fact that the
Dirac mass has a constant Fourier transform.

We can similarly define the space-time white noise ξ as the derivative with respect
to the space and time variables of a multidimensional brownian motion B(t, x) :

ξ =
∂n+1B

∂t∂x1 . . . ∂xn

.

As before, B is α-hölder continuous for α < 1/2 with respect to (t, x) but is not of
bounded variations.

However, in the context of evolutionary partial differential equations, it is con-
venient to treat the time t and the space x differently and we use another equivalent
construction.

We consider a sequence (βk)k∈N of independent real valued Brownian motions
on R+ associated to the filtration (Ft)t≥0, a hilbertian basis (ek)k∈N of L2(Rn), the
space of square integrable complex valued functions, and a bounded linear operator
Φ on L2(Rn). The process

W (t, x, ω) =
∞∑

k=0

βk(t, ω)Φek(x), t ≥ 0, x ∈ Rn, ω ∈ Ω,

is a Wiener process on the space of square integrable functions on Rn, with covari-
ance operator ΦΦ∗. We then set

ξ =
∂W

∂t
.

This defines a complex valued noise which is delta correlated in time and whose
space correlation depends on Φ.

Similarly, if we take a hilbertian basis of L2
R(Rn), the space of square integrable

real valued function, instead of L2(Rn) and if Φ maps L2
R(Rn) into itself, we obtain

a real valued noise.
Note that if Φ is defined through a kernel K, which means that for any square

integrable function u,

Φu(x) =

∫
Rn

K(x, y)u(y)dy,

then the correlation function of the noise is formally given by

E
(
∂W

∂t
(t, x)

∂W

∂t
(s, y)

)
= c(x, y)δt−s

with
c(x, y) =

∫
Rn

K(x, z)K(y, z)dz.
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The space-time white is obtained when Φ is the identity, corresponding to k(x, y) =
c(x, y) = δx−y. However such a noise has very irregular trajectories, W is almost
surely continuous with respect to time with values in the negative Sobolev space
Hs

loc(Rn), s < −n/2. And we are not able to consider such a rough noise in the
context of the NLS equation which has very little smoothing effect. It can be shown
that if Φ is a Hilbert-Schmidt operator from L2(Rn) to another Hilbert space H̃
then W is almost surely continuous with respect to time with values in H̃. We will
make such assumptions on Φ.

Once a Wiener process W is given, we define an integral with respect to W :∫ t

0

ψ(s)dW (s)

Since W is constructed in a Hilbert space, the integrand ψ(t) should be a map-
ping with values in a space of linear operator on this Hilbert space. As previously
mentioned, W is not of bounded variation and the integral cannot be defined as a
Stieljes integral. However W has finite quadratic variation and, using probabilistic
arguments, this integral can be defined as the limit of the Riemann sums

N∑
i=1

ψ(ti)(W (ti+1)−W (ti))

where t1, . . . , tN is a subdivision of [0, T ]. The integral will make sense as an element
of a Hilbert space K provided∫ t

0

‖Φ∗ψ(s)‖2
LHS(L2(Rn),K)ds <∞,

where LHS(L2(Rn), K) is the space of Hilbert-Schmidt operators from L2(Rn) to K.
In this way, we obtain the Ito integral.

Since W is not of bounded variation, the choice of the point in the Riemann
sums has an influence on the resulting integral. If the integrand is evaluated at
the mid point, i.e. if ψ( ti+ti+1

2
) is taken instead of ψ(ti) in the above formula, the

Stratonovitch integral is obtained.

3. Well-posedness results

In this section, we gather different results on existence and uniqueness for the
stochastic NLS equation with additive or multiplicative noise. The latter case is
the most difficult to treat, the noise depends on the solution through a Lipschitz
function (multiplication by the solution) which is not bounded. This creates diffi-
culties in deriving a-priori estimates. Moreover, we use a contraction argument in
spaces of the form Lr(0, T ;Lp(Rn)) and this requires the use of Burkholder inequal-
ities in Banach spaces.

We first rewrite the equations with the notations introduced above. We are given
σ > 0, λ = ±1, and a Wiener process W associated to a linear operator Φ. We then
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consider two types of stochastic NLS equations : an additive one which is written
as

idu− (∆u+ λ|u|2σu)dt = dW (3.3)

and a multiplicative one, written as

idu− (∆u+ λ|u|2σu)dt = u ◦ dW, (3.4)

where ◦ stands for a Stratonovitch product in the right hand side of (3.4). We will
use the equivalent Ito equation. Defining for x ∈ Rn the function

FΦ(x) =
∞∑

k=0

(Φek(x))
2

which does not depend on the basis (ek)k∈N, this equivalent Ito equation may be
written as

idu− (∆u+ λ|u|2σu)dt = udW − i

2
uFΦdt. (3.5)

In equation (3.3), the noise is either real or complex valued. In equation (3.4), the
noise is a potential and is real valued.

We have the following result.

Theorem 3.1 i) Let n ≤ 5, σ > 0 if n = 1 or 2, 0 < σ < 2
n−2

if n = 3 and
1
2
< σ < inf( 2

n−2
, 3

2(n−3)
) if n = 4 or 5. Assume that Φ is a Hilbert-Schmidt operator

from L2(Rn) into H1(Rn), and if n ≥ 2, assume moreover that Φ is a γ-radonifying
operator from L2(Rn) into W 1,α(Rn) for some α > 2n. Then for any F0-measurable
u0 with values in H1(Rn), there is a unique solution starting from u0 to equation
(3.5) with continuous H1(Rn) valued paths. Moreover, the existence time τ ∗(u0),
which is a stopping time, satisfies :

τ ∗(u0) = +∞ or lim
t↗τ∗(u0)

|u(t)|H1(Rn) = +∞ a.s.

The solution is global if moreover σ < 2/n or in the case of a defocusing nonlinearity
λ = −1, and if in addition Φ satisfies some smoothness assumptions.

ii) Let n ∈ N∗ and assume that 0 < σ < 2/n if n = 1 or 2, 0 < σ < 1
n−1

if
n ≥ 3, and that Φ is a γ-radonifying operator from L2(Rn) into L2+δ(Rn) for some
δ > 2(n − 1). Then one can find a pair (r, p), with r, p ≥ 2, such that for any
F0-measurable initial data with values in L2(Rn), there is a unique solution to (3.5)
with paths in C([0, T0];L

2(Rn)) ∩ Lr(0, T0;L
p(Rn)) where T0 is any given positive

time.

We recall that a γ-radonifying operator from a Hilbert space H into a Banach
space B is a bounded linear operator K from H into B such that the image by K
of the canonical gaussian distribution on H extends to a Borel probability measure
on B.

The statement on L2 solutions in Theorem 3.1 is proved in [3]. Similar techniques
are used for H1 solutions, details on this aspect are given in [6].
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The case of an additive noise is much easier to treat. Indeed, we introduce

z(t) =

∫ t

0

U(t− s)dW (s)

where (U(t))t∈R is the group associated to the linear Schrödinger equation, and
translate the unknown by setting : v = u− z. Since z solves the linear equation

idz −∆z = dW,

we are lead to the following random modified Schrödinger equation which can be
solved pathwise thanks standard deterministic methods :

i
dv

dt
− (∆v + λ|v + z|2σ(v + z)) = 0.

The following result is proved in [6].

Theorem 3.2 i) Assume that 0 ≤ σ < 2/(n− 2), Φ is a Hilbert-Schmidt operator
from L2(Rn) into H1(Rn), and that the initial data is F0-measurable with values in
H1(Rn). Then there exists a unique solution to (3.3) with continuous H1(Rn) valued
paths. This solution is defined on a random interval [0, τ ∗(u0)), where τ ∗(u0) is a
stopping time such that

τ ∗(u0) = +∞ or lim
t↗τ∗(u0)

|u(t)|H1(Rn) = +∞ a.s.

ii) If σ < 2/n or in the defocusing case λ = −1, the solution is global : τ ∗(u0) = +∞
for any u0 ∈ H1(Rn).

iii) Furthermore, if σ < 2/n, the statement in i) is still valid with H1(Rn) replaced
by L2(Rn)1 and the solution is global.

In Theorem 3.2, the assumptions on the nonlinearity are the same as in the
deterministic theory and it seems difficult to weaken them. On the contrary, in
Theorem 3.1, additional restrictions are imposed on σ compared to the deterministic
case. They are due to the impossibility to use Strichartz estimates on the stochastic
integral.

It is important to consider both L2 andH1 solutions. Indeed, the physical models
use a space time white noise. It is impossible to treat it with the available tech-
niques, but we think that we should try to lower the space regularity assumptions
on the noise as much as we can. Up to now, the L2 framework provides minimal
assumptions. However, when studying blow-up phenomena, it is natural to work
with H1 solutions.

1except for uniqueness which holds in L∞(0, T, L2(Rn)) ∩ Lr(0, T, Lp(Rn)) for some p and any
T > 0.
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4. Blow-up in finite time

It is well known that for the deterministic focusing NLS equation (λ = +1) with
2/n ≤ σ < 2/(n − 2), there exist solutions which develop singularities in finite
time (see [9] and reference therein). A natural question is to try to understand the
influence of a noise on such phenomena. We show that the presence of a smooth
additive noise strongly influences the blow-up. Before stating the results, we define
the function spaces

Σ =
{
u ∈ H1(Rn), |x|u ∈ L2(Rn)

}
,

Σk,l =
{
u ∈ Hk+l(Rn), |x|lu ∈ Hk(Rn)

}
,

and Sn whose description depends on the space dimension n,

S1 = Σ, S2 =
⋃
α>0

Σα,1, Sn = Σ1,2 if n ≥ 3.

In all this section we assume that λ = +1 and 2
n
≤ σ < 2

n−2
.

Theorem 4.1 Assume that the covariance operator is such that Φ is Hilbert-Schmidt
from L2(Rn) into Sn, and that Ker Φ∗ = {0}. Then for any u0 ∈ Σ and for any
t > 0, if u is the solution of (3.3) starting from u0 given by Theorem 3.2, then we
have either

P(τ ∗(u0) < t) > 0 (4.6)

or

E
∫ t

0

(
|u|2H1(Rn) + |u|4σ+2

L2σ+2(Rn)

)
ds = +∞. (4.7)

We recall that for the deterministic equation, blow-up of solutions is proved
only for some initial data. It is even known that there exist initial data which
yield global existence. Our result proves that in the presence of noise, any initial
data immediately yields a singular solution at least in the weak sense (4.7). All the
conclusions of Theorem 4.1 are still valid in the case of a real valued noise under the
additional assumption that u0 ∈ Sn ∩ Hs(Rn) for some s > n/2. If we strengthen
the assumptions on Φ, we can prove that the blow-up always occurs with positive
probability, i.e. (4.6) always happens.

Theorem 4.2 Assume that 2
n
< σ < min

(
2
3
, 2

n−2

)
and that the covariance operator

is such that Φ is Hilbert-Schmidt from L2(Rn) into Sn, γ-radonifying from L2(Rn)
into L4σ+2(Rn), and bounded from L2(Rn) into H2(Rn) ∩ L∞(Rn), with Ker Φ∗ =
{0}, then for any u0 ∈ Σ and for any t > 0,

P(τ ∗(u0)) < t) > 0.

We note that the assumptions on σ are compatible only when n ≥ 4. However,
we believe that our result is true for more general σ, this problem will be studied
in the future. The idea to prove Theorem 4.1 is first to generalize the deterministic
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method and to prove that blow-up occurs in the sense of (4.6) or (4.7) for some
initial data. We define for u ∈ Σ :

V (u) =

∫
Rn

|x|2|u(x)|2dx, G(u) = Im

∫
Rn

(x.∇u)ūdx,

and
H(u) =

1

2

∫
Rn

|∇u|2dx− 1

2σ + 2

∫
Rn

|u|2σ+2dx,

and prove that if a solution u is such that

P(τ ∗(u0) < t) = 0 and E
∫ t

0

(
|u|2H1(Rn) + |u|4σ+2

L2σ+2(Rn)

)
ds <∞, (4.8)

then

E(V (u(t))) ≤ E(V (u0)) +
(
4E(G(u0)) + c1Φ

)
t+ (8E(H(u0)) + c2Φ)t2 + c3Φt

3 (4.9)

where c1Φ, c2Φ, c3Φ depend only on Φ. Since the left hand side is always positive, this
is impossible if the polynomial – which only depends on u0 – on the right hand side
takes negative values. Hence for those values of u0, (4.8) cannot hold for t larger
than the second root of the polynomial in the right hand side of (4.9). We then
consider the deterministic problem :{

i∂U
∂t
− (∆U + |U |2σU) = ∂f

∂t
,

U(0) = u0

and denote its solution – when it exists – by U(u0, f, ·). For t̃ > 0, we construct
a function f in a conveniently chosen space such that if U(u0, f, t̃) replaces u0 in
(4.9), then the polynomial in the right hand side takes negative values before a fixed
time t̄ > 0. The mapping f 7→ U(u0, f, t) is continuous into H1(Rn) and lower semi-
continuous into Σ. This implies that for g close to f , the polynomial in (4.9) with
u0 replaced by U(u0, g, t̃) will also take negative values before t̄. Since the solution
of (3.3) is given by u(t) = U(u0,W, t) and W is an irreducible process, we deduce
that

V (u(t̃)) + (4G(u(t̃)) + c2Φ)t+ 8H(u(t̃))t2 + c1Φt
3

takes negative values for a fixed t between 0 and t̄ with a positive probability. In
summary, we prove that for arbitrary t̃, t̄ and u0, the solution of (3.3) satisfies at
time t̃ the conditions to ensure the blow up in the sense of (4.6) or (4.7) before t̃+ t̄,
which gives the conclusion of Theorem 4.1 since t̃ and t̄ may be taken arbitrarily
small. The arguments of the proof of Theorem 4.2 consist in showing that under
the additional assumptions, one cannot have simultaneously P(τ ∗(u0) < t) = 0
and (4.7), so that (4.6) always happens. This is obtained thanks to a complicated
and technical estimate. In fact, working in this way requires a lot of smoothness
assumptions and instead of constructing a forcing term ∂f

∂t
, we construct z such that

the solution of i∂V
∂t
− (∆V + |V + z|2σ(V + z)) = 0 goes from u0 to a prescribed

value. The function z is formally associated to f by the equation i∂z
∂t
− ∆z = ∂f

∂t
.

The detailed proofs are given in [4].
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5. Numerical simulations

Numerical experiment is a powerful tool to study the qualitative behavior of an evo-
lutionary system. We present here some simulations on the stochastic NLS equation
with additive or multiplicative noise. We wish in particular to give informations on
the influence of the noise on blow-up for a multiplicative or a non smooth noise,
since our theoretical results do not cover these cases. Our numerical scheme is based
on finite differences in time and space. It is built to preserve essential properties of
the NLS equation : when no noise is taken into account, the discrete solution has
constant L2 norm and energy H. We show results in space dimension one, higher
dimensional simulations are now being performed and will be presented elsewhere.
It is not possible to discretize an equation on the whole real line and, as it is usual,
we restrict our attention to a bounded interval [0, L] and impose Neumann bound-
ary conditions. Given a time step ∆t and a mesh size ∆x = L

N
, we approximate

u(n∆t, j∆x), n ∈ N, j ∈ {0, · · · , N} by un
j defined by

i

∆t
(un+1

j − un
j ) +

1

(∆x)2

(
u

n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

)
+

1

(σ + 1)

|un+1
j |2σ+2 − |un

j |2σ+2

|un+1
j |2 − |un

j |2
u

n+1/2
j = f

n+1/2
j , (5.10)

where

f
n+1/2
j =

{
ε

χn
j√

∆t
√

∆x
u

n+1/2
j (multiplicative noise)

ε
χn

j√
∆t
√

∆x
(additive noise),

(χn
j )j,n is a sequence of independent real valued N (0, 1) random variables and

u
n+1/2
j = 1

2
(un

j + un+1
j ). It may easily be seen that in the multiplicative case, the

L2 norm is conserved. At each time step, we use a fixed point iteration to find
(un+1

j )j=0,··· ,J . Simulations of the equation have been performed in both additive
and multiplicative cases with several initial data and various realizations of the
noise. Given a threshold, S, we decide that a solution has blown up if its maximum
amplitude is larger than S. We have checked that this is a good criterion if S is
larger than two or three times the amplitude of the initial data. For an initial data
u0 and a particular form of the equation (σ = 2 or 3 , additive noise or multiplica-
tive), we compute a large number N of realizations. For each realization, we find an
estimate of the blow-up time τ ∗ by taking the first instant when the solution reaches
the threshold S. We then define N(t) as the number of computed trajectories for
which τ ∗ is greater than t and plot the evolution of N(t)/N . As expected, we have
found that with an additive noise with critical (σ = 2) or supercritical (σ = 3) non-
linearity, N(t)/N is always less than one. However, for t small, we had to simulate
more than 30, 000 trajectories before being able to see one blow-up before t. This
shows that 1−N(t)/N is very small for t small. Moreover, we have observed that
N(t)
N

→ 0 when t→ +∞ so that we may conjecture that solutions blow up at some
time with probability one.

In figure 1, we present the same experiment, in the case of a multiplicative noise
and a supercritical nonlinearity (σ = 3) for two kinds of initial data : the first one
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corresponds to a blowing up deterministic solution ; the second one would give a
global deterministic solution. We obtain in both cases exactly the same behavior as
for an additive noise.

In figure 2 are plotted the results obtained with a critical nonlinearity (σ = 2).
We then see that for an initial data giving rise to a blowing up deterministic solution,
we have N(t)

N
→ 0 as t → +∞ again. However, for an initial data yielding a global

deterministic solution, we have not observed any blowing up stochastic solution. It
seems that here the noise does not have the effect described above and is not able
to create blow-up. We note that our theoretical argument of section 2 cannot be
adapted to the multiplicative noise with a critical nonlinearity.

The simulations presented above use a noise which is not white. Its length and
time scales are ∆t and ∆x while a white noise would have zero length and time
scales. In this sense, in the computations presented above, the noise is smooth
and this is the reason why we recover the results of section 3. It is possible that
smaller scales of the noise have different effects. Indeed, some physicists believe
that a white noise may prevent the blow-up of solutions (see [2]). Also, it can be
seen that, in the multiplicative case, the noise has a tendency to delay blow-up.
It seems that the noise disturbs the deterministic mechanism yielding to blow up.
However, sometimes the noise has a weaker effect and the mechanism can be turned
on and energy can go into the small scales. The numerical noise does not affect
scales smaller than the mesh size so that afterwards it is too late to prevent blow
up. If this scenario is correct, only a space-time white noise with arbitrary small
scales could prevent blow up.

In order to investigate this aspect, we have used a local refinement procedure,
so that near the blow up point, the noise has very small length and time scales. In
figure 3, we have plotted the evolution of the maximum amplitude of one trajectory
with a multiplicative noise and a critical nonlinearity. The initial data is chosen in
order that the deterministic solution blows up around t = 0.83. Without refinement,
as previously observed, the solution amplitude reaches a high value and blow up
occurs. The second curve is obtained with refinement, and we see that apparently,
the formation of the singularity is inhibited by the smaller scales of the noise. We
have always found the same behavior for many realizations. We conclude that,
contrary to a smooth noise, a multiplicative space-time white noise may prevent the
blow-up of solutions.

This typical behavior does not seem to happen in the additive case.

6. Numerical analysis of the scheme

Our aim in this section is to justify the simulations presented above. As a first step,
we consider a time semi-discrete scheme only. Also, since our aim is to compare
the semi-discrete solution to the solution of the continuous multiplicative equation
given by Theorem 3.1 as the time step goes to zero, we will assume in all the section
that n ≤ 3, and that σ satisfies the assumptions leading to global existence in
Theorem 3.1, with moreover σ < 1 if n = 3. Given a time step ∆t, we set

χn =
W ((n+ 1)∆t)−W (n∆t)√

∆t
,
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where W is the Wiener process with covariance ΦΦ∗ defined in the introduction.
In all what follows, we assume that Φ is a Hilbert-schmidt operator from L2(Rn)
into Hs(Rn) with s > 1 + n

2
. Given a F0-measurable initial data u0 which is a.s. in

H1(Rn), we wish to define u at time (n+ 1)∆t from u at time n∆t by the identity

i

∆t
(un+1−un)+∆un+1/2 +

λ

σ + 1

|un|2σ+2 − |un+1|2σ+2

|un|2 − |un+1|2
un+1/2 =

χn√
∆t
un+1/2 (6.11)

where we have set again, un+1/2 = 1
2
(un + un+1). It is indeed possible to show that

given a Fn∆t-measurable un which is a.s. in H1(Rn), there is a F(n+1)∆t-measurable
random variable un+1 with P{un+1 ∈ H1(Rn)} = 1 satisfying (6.11). We then fix
T > 0, and define the process u∆t – which is adapted thanks to the preceding
remark)– as being constant and equal to un on each interval [n∆t, (n+ 1)∆t) with
0 ≤ n ≤ T

∆t
, and with un and un+1 related by (6.11). Our convergence result is then

the following.

Theorem 6.1 The process u∆t converges in probability to the solution of (3.3) in
L∞(0, T ;Hs(Rn)) for any s < 1.

A compactness method is used to prove Theorem 6.1 – because no Strichartz
estimates are available in the semi-discrete case – so that we need an estimate on the
H1 norm of u∆t, uniform in ∆t. Fortunately, the deterministic part of the scheme
preserves the energy. A major difficulty in treating the stochastic equation is then
the lack of Ito formula for the time-discretization. The tricks used to overcome this
difficulty are rather involved.
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Figure 1: Supercritical case, (a) blowing-up and (b) global deterministic solution,
several levels of noise.
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Figure 2: Critical case, (a) blowing-up and (b) global deterministic solution, several
levels of noise.
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