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Journées Équations aux dérivées partielles
Biarritz, 3–7 juin 2012
GDR 2434 (CNRS)

Variational inequalities for singular integral
operators
Albert Mas

Abstract
In these notes we survey some new results concerning the ρ-variation for

singular integral operators defined on Lipschitz graphs. Moreover, we investi-
gate the relationship between variational inequalities for singular integrals on
AD regular measures and geometric properties of these measures. An overview
of the main results and applications, as well as some ideas of the proofs, are
given.

1. Introduction and main results

The topics covered in these notes belong to the area of geometric analysis, which
can be considered an interface between harmonic analysis and geometric measure
theory. More precisely, they are concerned with the Cauchy and Riesz transforms,
two fundamental operators in harmonic analysis, PDE’s, and geometric measure
theory.

The results presented in these notes have been obtained in a joint work with
Xavier Tolsa (see [16], [17], [15]).

1.1. Singular integral operators
For the sequel, 1 ≤ n < d denote two fixed integers. Given a positive Borel measure
µ in Rd, one way to define the n-dimensional Riesz transform of f ∈ L1(µ) is by
Rµf(x) = limε↘0 R

µ
ε f(x) (whenever the limit exists), where x ∈ Rd and

Rµ
ε f(x) =

∫
|x−y|>ε

x− y
|x− y|n+1 f(y) dµ(y)

denotes the truncation of the Riesz transform at level ε > 0. When d = 2 (i.e.,
µ is a Borel measure in C), one defines the Cauchy transform of f ∈ L1(µ) by
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Cµf(x) = limε↘0 C
µ
ε f(x) (whenever the limit exists), where x ∈ C and

Cµ
ε f(x) =

∫
|x−y|>ε

f(y)
x− y

dµ(y)

(observe that x, y, and f(y) are complex numbers). Usually, to avoid the problem
of existence of the preceding limits, one considers the associated maximal operators
Rµ
∗f(x) = supε>0 |Rµ

ε f(x)| and Cµ
∗ f(x) = supε>0 |Cµ

ε f(x)|. Notice that the Cauchy
transform coincides with the 1-dimensional Riesz transform in the plane, modulo
conjugation.

The Cauchy and Riesz transforms are two very important examples of singular
integral operators with a Calderón-Zygmund kernel. Namely, given a Borel measure
µ in Rd, ε > 0, x ∈ Rd, and f ∈ L1(µ), one considers operators of the form

T µε f(x) =
∫
|x−y|>ε

K(x− y) f(y) dµ(y), (1.1)

where the kernel K : Rd \ {0} → R satisfies

|K(x)| ≤ C|x|−n, |∂xiK(x)| ≤ C|x|−n−1, |∂xi∂xjK(x)| ≤ C|x|−n−2, (1.2)

for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd \ {0}, where C > 0 is some constant;
and moreover K(−x) = −K(x) for all x 6= 0 (i.e. K is odd). The estimate on the
second derivatives of K is not a standard assumption in Calderón-Zygmund theory,
but it is a key fact in our results. Notice that the n-dimensional Riesz transform
corresponds to the vector kernel (x1, . . . , xd)/|x|n+1, and the Cauchy transform to
(x1,−x2)/|x|2 (so, one may consider K to be any scalar component of these vector
kernels).

1.2. Variation operator
The ρ-variation for martingales and some families of operators has been widely
studied in many papers on probability, ergodic theory, and harmonic analysis (see
[14], [1], [9], [2], [10], and [25], for example). In these notes we survey some new
results concerning the ρ-variation for families of singular integral operators defined
on Lipschitz graphs. By an n-dimensional Lipschitz graph Γ ⊂ Rd we mean any
translation and rotation of a set of the type

{x ∈ Rd : x = (y,A(y)), y ∈ Rn},

where A : Rn → Rd−n is some Lipschitz function with Lipschitz constant Lip(A).
We say that Lip(A) is the slope of Γ.

If µ denotes the n-dimensional Hausdorff measure on an n-dimensional Lipschitz
graph in Rd, the ρ-variation (ρ > 2) for the family of operators T µ = {T µε }ε>0 given
in (1.1) is defined by

(Vρ ◦ T µ)f(x) = sup
{εm}

( ∑
m∈Z
|T µεm+1f(x)− T µεmf(x)|ρ

)1/ρ

for f ∈ L1
loc(µ) and x ∈ Rd, where the pointwise supremum is taken over all decreas-

ing sequences {εm}m∈Z ⊂ (0,∞). We are also interested in the ρ-variation for the
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family T µϕ = {T µϕε}ε>0, where

T µϕεf(x) =
∫
ϕ(|x− y|/ε)K(x− y) f(y) dµ(y), x ∈ Rd,

and ϕ : [0,∞)→ R is a non decreasing function of class C2 such that χ[2,∞) ≤ ϕ ≤
χ[1,∞) (the precise value of the constants is not important for our purposes). We
usually refer to T µε and T µϕε as a rough and smooth truncation, respectively, of the
singular integral with respect to the kernel K and the measure µ.

Our first main result is summarized in the following theorem (see [16], [15]).
Theorem 1.1. Let ρ > 2. Let µ be the n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph in Rd with slope strictly less than 1. Then, the
operator Vρ ◦ T µ is bounded in Lp(µ) for 1 < p < ∞, from L1(µ) to L1,∞(µ), and
from L∞(µ) to BMO(µ). The same holds without any restriction on the slope of the
Lipschitz graph if one replaces T µ by T µϕ .

The assumption on the slope of the Lipschitz graph is just a technical obstruction
due to the methods we use in the proof of the theorem. As we will see, Vρ ◦ T µ is
actually bounded at least in L2 for any Lipschitz graph, and even for more general
measures (see Theorem 1.5).

Theorem 1.1 applies to the particular cases of the Cauchy and Riesz transforms
on Lipschitz graphs. Moreover, it is easy to see that, for some C > 0, T µ∗ f ≤ C(Vρ ◦
T µ)f for every compactly supported function f . Thus Theorem 1.1 strengthens
the celebrated result of R. Coifman, A. McIntosh, and Y. Meyer about the L2

boundedness of the Cauchy transform on Lipschitz graphs (the assumption on the
slope of the graph can be avoided for this purpose). It is also easily checked that
the Lp boundedness of Vρ ◦ T µ yields a new proof of the existence of the principal
value T µf(x) = limε↘0 T

µ
ε f(x) for all f ∈ Lp(µ) and µ-almost all x ∈ Rd, without

using a dense class of functions in Lp(µ).
Furthermore, from Theorem 1.1 one also gets information on the speed of conver-

gence of the principal value. In fact, the boundedness of the λ-jump operator Nλ◦T µ
and the (a, b)-upcrossings operator N b

a ◦T µ is classically derived from variational in-
equalities. Given λ > 0, f ∈ L1

loc(µ) and x ∈ Rd, one defines (Nλ ◦ T µ)f(x) as the
supremum of all integers N for which there exist 0 < ε1 < δ1 ≤ ε2 < δ2 ≤ · · · ≤
εN < δN so that |T µεif(x)−T µδif(x)| > λ for each i = 1, . . . , N . Similarly, given a < b,
one defines (N b

a ◦T µ)f(x) to be the supremum of all integers N for which there exist
0 < ε1 < δ1 ≤ ε2 < δ2 ≤ · · · ≤ εN < δN so that T µεif(x) < a and T µδif(x) > b for each
i = 1, . . . , N . Using Theorem 1.1 one obtains the following theorem (see [16], [2]).
Theorem 1.2. Let µ be as in Theorem 1.1, ρ > 2, and λ > 0. For 1 < p < ∞,
there exist constants Cp, C1 > 0 such that

λ‖
(
(Nλ ◦ T µ)f

)1/ρ
‖Lp(µ) ≤ Cp‖f‖Lp(µ) and

λm1/ρµ({x ∈ Rd : (Nλ ◦ T µ)f(x) > m}) ≤ C1‖f‖L1(µ)

for all m ∈ N. The same holds replacing λ by b− a and Nλ by N b
a, where a < b are

two given real numbers.
These results also hold for the family of smooth truncations T µϕ .
Concerning the background on the ρ-variation, a fundamental result is Lépingle’s

inequality [14], from which the Lp boundedness of the ρ-variation for martingales
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follows, for ρ > 2 and 1 < p < ∞. From this result on martingales, one deduces
that the ρ-variation for averaging operators (also called differentiation operators)
is bounded in Lp, and similar conclusions hold in the setting of dynamical systems
(see [9]). As far as we know, the first work dealing with the ρ-variation for singular
integral operators is the one of J. Campbell, R. L. Jones, K. Reinhold and M. Wierdl
([2]), where the Lp and weak L1 boundedness of the ρ-variation (for ρ > 2) for the
Hilbert transform was proved. Later on, there appeared other papers showing the
Lp boundedness of the ρ-variation for singular integrals in Rn ([3]), with weights
([7]), and for other operators such as the spherical averaging operator or singular
integral operators on parabolas ([10]). Recently, the case of the Carleson operator
has been considered too ([12], [25]).

1.3. Relationship with uniform rectifiability
For a given measure µ in Rd, the relationship between the L2(µ) boundedness of
singular integrals and the geometric properties of µ (such as rectifiability) is an area
of research that has attracted much attention in the last years. There are influential
contributions, for example, by G. David, P. Jones, P. Mattila, M. Melnikov, T.
Murai, S. Semmes, X. Tolsa, J. Verdera, A. Volberg, etc. See [26], for example, for
further names and references.

We recall some definitions on geometric measure theory. A Borel measure µ in
Rd is said to be n-dimensional Ahlfors-David regular, or simply AD regular, if there
exists some constant C > 0 such that C−1rn ≤ µ(B(x, r)) ≤ Crn for all x ∈ suppµ
and 0 < r ≤ diam(suppµ). One says that µ is n-rectifiable if there exists a countable
family of n-dimensional C1 manifolds {Mi}i∈N such that µ(Rd \ ⋃i∈NMi) = 0. One
also says that µ is uniformly n-rectifiable if there exist θ,M > 0 so that, for each
x ∈ suppµ and 0 < r ≤ diam(suppµ), there is a Lipschitz mapping g from the
n-dimensional ball Bn(0, r) ⊂ Rn into Rd such that Lip(g) ≤ M and µ

(
B(x, r) ∩

g(Bn(0, r))
)
≥ θrn. The uniform rectifiability is a quantitative stronger version of

rectifiability. Thus, in particular, any AD regular uniformly rectifiable measure is
actually rectifiable. Notice also that the n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph is a uniformly n-rectifiable measure.

G. David and S. Semmes asked more than twenty years ago the still open question
that follows (see, for example, [26, Chapter 7]):

Question 1.3. Is it true that an n-dimensional AD regular measure µ in Rd is
uniformly n-rectifiable if and only if Rµ

∗ is bounded in L2(µ)?

In [4], G. David and S. Semmes proved the “only if” implication of the question
above. Moreover, they gave a positive answer if one replaces, in the question, the
L2 boundedness of Rµ

∗ by the L2 boundedness of T µ∗ for a wide class of odd kernels
K. In this direction, P. Mattila and D. Preiss proved in [22] the following result: let
µ be an n-dimensional AD regular measure in Rd. Assume that, for any C∞ radial
function h : Rd\{0} → R such that |h(x)| ≤ C and |∇h(x)| ≤ C|x|−1 for some fixed
constant C > 0, the operators T µε defined by (1.1) with kernel K(x) = h(x)|x|−n−1x
are bounded in L2(µ) uniformly in ε > 0. Then, µ is n-rectifiable.

The “if” implication in the question above was proved by P. Mattila, M. Melnikov
and J. Verdera in [21] for the case of the Cauchy transform, that is n = 1 and d = 2.
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Later on, G. David and J. C. Léger proved in [13] that the L2 boundedness Cµ
∗

implies that µ is rectifiable, i.e., they obtained the corresponding “if” implication
without the AD regularity assumption (for n = 1 and d = 2). Very recently, Question
1.3 has been answered affirmatively by F. Nazarov, X. Tolsa, and A. Volberg for
codimension 1, that is, for n = d− 1 ([24]).

When µ is the n-dimensional Hausdorff measure restricted to a set E ⊂ Rd such
that µ(E) <∞, the rectifiability of µ is also related to the existence of the principal
value of the Riesz transform of µ for µ-a.e. x ∈ E. For example, P. Mattila and
M. Melnikov showed in [20] that, if µ is rectifiable, for all finite Borel measures
ν there exists Rν1(x) for µ-a.e. x ∈ Rd. In [22], P. Mattila and D. Preiss proved
that, under the additional assumption that lim infr→0 r

−nµ(B(x, r)) > 0 for µ-a.e.
x ∈ E, the rectifiability of E is equivalent to the existence of Rµ1(x) µ-a.e. x ∈ E.
Later on, in [31], X. Tolsa removed the assumption on the lower density of µ, i.e.,
he proved that µ is rectifiable if and only if the principal value Rµ1 exists µ almost
everywhere. Let us mention that, for the Cauchy transform, the same results were
obtained in [19] with some density assumptions, and in [29] by using the notion
of curvature of measures. For other results dealing with principal values, Hausdorff
measures, rectifiability, and related questions, see also [8], [23], [6], [33], [27], and
[28], for example.

The following theorem is our second main result, which might be considered as a
partial answer to the question above, and it is proved using Theorem 1.1 (see [17]).

Theorem 1.4. Let ρ > 2. An n-dimensional AD regular measure µ is uniformly
n-rectifiable if and only if Vρ ◦ Rµ is bounded in L2(µ), where Rµ = {Rµ

ε }ε>0.

Therefore, Vρ ◦ Rµ completely characterizes the n-AD regular measures µ which
are uniformly rectifiable. Recall that the boundedness of Vρ◦Rµ implies the existence
of the principal value Rµ1, which in turn implies rectifiability. Thus our theorem
yields stronger conclusions with, a priori, stronger hypotheses. Theorem 1.4 is a
direct consequence of the following one (see [17]).

Theorem 1.5. Let µ be an n-dimensional AD regular Borel measure in Rd. Then,
the following are equivalent:

(a) µ is uniformly n-rectifiable,

(b) for any ρ > 2 and any T µε as in (1.1), the operator Vρ ◦ T µ is bounded in
L2(µ),

(c) for some ρ > 2, the operator Vρ ◦ Rµ is bounded in L2(µ).

1.4. Further results
Denote by M(Rd) the space of finite complex Radon measures on Rd equipped with
the norm given by the variation of measures. The following theorem strengthens the
first endpoint estimate of Theorem 1.1 (see [15], [17]).

Theorem 1.6. Let ρ > 2, and let µ be n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph with slope strictly less than 1. Then, Vρ ◦ T is
a bounded operator from M(Rd) to L1,∞(µ), i.e., there exist a constant C > 0 such
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that, for all λ > 0 and all ν ∈M(Rd),
λµ({x ∈ Rd : (Vρ ◦ T )ν(x) > λ}) ≤ C‖ν‖,

where T = {Tε}ε>0 and

Tεν(x) =
∫
|x−y|>ε

K(x− y) dν(y). (1.3)

In particular, Vρ ◦ T µ is of weak type (1, 1). The same holds without the assumption
on the slope of the Lipschitz graph if one replaces Vρ ◦ T by Vρ ◦ Tϕ.

Denote byHn the n-dimensional Hausdorff measure in Rd. The following corollary
is a direct consequence of Theorem 1.6 (see [15]).

Corollary 1.7. Let E be an Hn measurable subset of Rd with Hn(E) <∞ and such
that Hn restricted to E is n-rectifiable, and let K be an odd kernel satisfying (1.2).
If ν ∈M(Rd), then the principal value limε↘0 Tεν(x) exists for Hn almost all x ∈ E.

Given a set E ⊂ Rd as in Corollary 1.7, as far as we know, the existence Hn

a.e. x ∈ E of limε↘0 Tεν(x) for ν ∈ M(Rd) was already known for odd kernels
K ∈ C∞(Rd \ {0}) satisfying

|∇jK(x)| ≤ Cj|x|−n−j (1.4)
for all j = 0, 1, 2, 3, . . ., or maybe assuming (1.4) only for a finite but big number of
j’s (see [18, Theorems 20.15 and 20.27, Remarks 20.16 and 20.19] and the references
therein). However, the result is new if one asks (1.4) only for j = 0, 1, 2, and so
Corollary 1.7 improves on previous results.

Similarly to the ρ-variation, one may also consider the so-called oscillation oper-
ator. Given a decreasing sequence {rm}m∈Z ⊂ (0,∞), the oscillation (with respect
to {rm}m∈Z) for T µ is defined by

(O ◦ T µ)f(x) = sup
{εm},{δm}

( ∑
m∈Z
|T µεmf(x)− T µδmf(x)|2

)1/2

for f ∈ L1
loc(µ) and x ∈ Rd, where the pointwise supremum is taken over all sequences

{εm}m∈Z and {δm}m∈Z such that rm+1 ≤ εm ≤ δm ≤ rm for all m ∈ Z. All the results
in these notes also hold replacing Vρ by O. Moreover, the norm of the corresponding
operators is bounded independently of the sequence that defines O.

2. On the proof of the main results
For the sake of brevity, and because of its possible applications in boundary value
problems on non smooth domains, we mainly focus our attention only on the proof
of Theorem 1.1. Theorem 1.2 follows from Theorem 1.1 by standard arguments (see
[2], for example). At the end of these notes we make some comments concerning
Theorems 1.5 and 1.6.

2.1. The α and β coefficients
For the proof of Theorem 1.1, it is a key fact to develop a multiscale analysis on the
underlying measure using the so-called α and β coefficients.
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Given m ∈ N, λ > 0, and a cube Q ⊂ Rm (i.e. Q = [0, b)m + a with a ∈ Rm and
b > 0), let `(Q) denote the side length of Q, let zQ denote the center of Q and let
λQ be the cube with center zQ and side length λ`(Q).

Let µ be a locally finite Borel measure in Rd. Given 1 ≤ p < ∞ and a cube
Q ⊂ Rd, one sets (see [5])

βp,µ(Q) = inf
L

{
1

`(Q)n
∫

2Q

(
dist(y, L)
`(Q)

)p
dµ(y)

}1/p

, (2.1)

where the infimum is taken over all n-planes L in Rd. For p = ∞ one replaces the
Lp norm by the supremum norm, that is,

β∞,µ(Q) = inf
L

{
sup

y∈suppµ∩2Q

dist(y, L)
`(Q)

}
, (2.2)

where the infimum is taken over all n-planes L in Rd again. These coefficients were
introduced by P. W. Jones in [11] for p =∞ and by G. David and S. Semmes in [4]
for 1 ≤ p <∞.

Let F ⊂ Rd be the closure of an open set. Given two finite Borel measures σ, ν
in Rd, one sets

distF (σ, ν) = sup
{∣∣∣∣∫ f dσ − ∫ f dν∣∣∣∣ : Lip(f) ≤ 1, suppf ⊂ F

}
. (2.3)

It is easy to check that this is a distance in the space of finite Borel measures σ
such that suppσ ⊂ F and σ(∂F ) = 0. Moreover, it turns out that this distance is
a variant of the well known Wasserstein distance W1 from optimal transportation
(see [34, Chapter 1]). See [18, Chapter 14] for other properties of distF .

Given a cube Q ⊂ Rd which intersects suppµ, set BQ = B(zQ, 6
√
d`(Q)). Then

one defines (see [32])

αµ(Q) = 1
`(Q)n+1 inf

c≥0,L
distBQ(µ, cHn

L), (2.4)

where the infimum is taken over all constants c ≥ 0 and all n-planes L in Rd,
and where Hn

L denotes the n-dimensional Hausdorff measure restricted to L. For
convenience, if Q does not intersect suppµ, one sets αµ(Q) = 0.

The following result characterizes uniform rectifiability in terms of the α and β
coefficients.

Theorem 2.1. Let µ be an n-dimensional AD regular measure in Rd, and consider
any p ∈ [1, 2]. Then, the following are equivalent:

(a) µ is uniformly n-rectifiable.

(b) There exists C > 0 such that, for any cube R ⊂ Rd,∑
Q∈D(R)

βp,µ(Q)2µ(Q) ≤ Cµ(R),

where D(R) stands for the collection of cubes in Rd contained in R which are
obtained by splitting R dyadically.
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(c) There exists C > 0 such that, for any cube R ⊂ Rd,∑
Q∈D(R)

αµ(Q)2µ(Q) ≤ Cµ(R).

The equivalence (a)⇐⇒(b) in Theorem 2.1 was proved by G. David and S. Semmes
in [4], and the equivalence (a)⇐⇒(c) was proved by X. Tolsa in [32].

2.2. Martingales
The first step in the proof of Theorem 1.1 is to relate the variation for singular
integral operators to the variation for martingales, and to use the known results on
the variation for martingales. Recall a particular case of Lépingle’s inequality (see
[14] or [10]):

Theorem 2.2. Let (X,Σ, λ) be a σ-finite measure space and ρ > 2. There exists
C > 0 such that ‖Vρ(G)‖L2(λ) ≤ C‖G‖L2(λ) for every martingale G = {Gm}m∈Z ∈
L2(λ), where ‖G‖L2(λ) = supm∈Z ‖Gm‖L2(λ),

Vρ(G)(x) = sup
{εm}

( ∑
m∈Z
|Gεm+1(x)−Gεm(x)|ρ

)1/ρ

and the supremum is taken over all increasing sequences {εm}m∈Z ⊂ Z.

We are going to introduce a suitable martingale for our purposes. For the rest
of this section, let µ be as in Theorem 1.1, and assume that Γ = {x ∈ Rd : x =
(y,A(y)), y ∈ Rn} is the corresponding Lipschitz graph. We may also assume that
A has compact support. Given m ∈ Z and a ∈ Rn, we set

D̃ a
m = a+ [0, 2−m)n ⊂ Rn and D a

m = D̃ a
m × Rd−n ⊂ Rd.

Set D a
m = {Da+2−mk

m ⊂ Rd : k ∈ Zn} (for a fixed a, the projection of ⋃m∈ZD a
m onto

Rn is a translation of the standard dyadic lattice in Rn). Notice that, since Γ is an
n-dimensional Lipschitz graph, µ(D a

m) is comparable to 2−mn for all m ∈ Z, a ∈ Rn.
For D ∈ D a

m and x ∈ D, we set

EDµ(x) = 1
µ(D)

∫
D

∫
Dc
K(z − y) dµ(y) dµ(z).

Finally, given a ∈ Rn, we define the martingale
E a
mµ(x) =

∑
D∈D am

χD(x)EDµ(x)

for x ∈ Rd and m ∈ Z, where χD denotes the characteristic function of D.
Let us make some comments to understand better the nature of E a

mµ. Roughly
speaking, if we forget the truncations, we have∫

D

∫
D
K(z − y) dµ(y) dµ(z) = 0

because of the antisymmetry of K (use Fubini’s theorem). Hence, if we set T µf(z) =∫
K(z − y)f(y) dµ(y) for f ∈ L1(µ), then

∫
D T

µχD dµ = 0 and

E a
mµ(x) = 1

µ(D)

∫
D
T µχDc dµ = 1

µ(D)

∫
D
T µ1 dµ
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for x ∈ D ∈ D a
m. Therefore, E a

mµ(x) is the average of the function T µ1 on the
set D ∈ D a

m which contains x. So, it is clear that, for a fixed a ∈ Rn, {E a
mµ}m∈Z

is a martingale. In [23] it is shown that {E a
mµ}m∈Z is actually well defined and a

martingale. Finally, for x ∈ Rd, we define

Emµ(x) = 2mn
∫
{a∈Rn :x∈D a

m}
E a
mµ(x) dLna

where Ln denotes the Lebesgue measure in Rn (notice that Ln({a : x ∈ D a
m}) =

2−mn). Thus, Emµ is an average (of the m’th term) of some martingales depending
on a parameter a ∈ Rn. Set Eµ = {Emµ}m∈Z. Using Theorem 2.2, in [16] we prove
the following theorem, which can be considered the starting point to prove Theorem
1.1.

Theorem 2.3. Fix a dyadic cube P̃ ⊂ Rn, set P = P̃ × Rd−n, and assume that
A is supported in P̃ . Let ρ > 2. There exists C > 0 independent of P such that
‖Vρ(Eµ)‖2

L2(µ) ≤ Cµ(P ).

2.3. Sketch of the proof of Theorem 1.1
As pointed out above, the proof relies on two basic facts: the known L2 boundedness
of the ρ-variation for martingales explained in section 2.2 and the good geometric
properties of Lipschitz graphs from a measure theoretic point of view.

The starting point of the proof is Theorem 2.3, where the L2 boundedness of the
ρ-variation (of a convex combination) of some particular martingales is stated. So,
the next step consists in relating the results on martingales of Theorem 2.3 with
the ρ-variation for singular integrals on Lipschitz graphs, and this is the aim of the
following proposition (see [16]). We denote by D the standard dyadic lattice in Rd.

Proposition 2.4. Let A and µ be as in Theorem 2.3. For each x ∈ suppµ, define

Wµ(x)2 =
∑
j∈Z
|T µϕ2−j

1(x)− Ejµ(x)|2,

Sµ(x)2 = sup
{εm}

∑
j∈Z

∑
m∈Z: εm,εm+1∈[2−j−1,2−j)

|T µϕεm+1
1(x)− T µϕεm1(x)|2,

where the supremum is taken over all decreasing sequences of positive numbers
{εm}m∈Z. Then, there exist C1, C2 > 0 such that

‖Wµ‖2
L2(µ) + ‖Sµ‖2

L2(µ) ≤ C1
∑
Q∈D

(
αµ(Q)2 + β2,µ(Q)2

)
µ(Q) ≤ C2µ(P ).

The last inequality in Proposition 2.4 can be easily derived from the packing
condition that the α’s and β’s satisfy (i.e., Theorem 2.1(b) and (c)).

The α and β coefficients are two fundamental tools in the study of Wµ and Sµ,
which are used to measure the flatness of the graph Γ at different scales in order to
estimate the terms which appear in the sums defining Wµ and Sµ. To use the α
coefficients to relate the ρ-variation for martingales with the ρ-variation for singular
integrals, it is a key fact that we consider a family of smooth truncations and an
average of martingales instead of rough truncations and a fixed martingale, because
the α’s are defined in terms of Lipschitz functions (see section 2.4 for more details,
where a concrete example is shown).
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Combining Proposition 2.4 with the L2 estimates for the ρ-variation on the average
of martingales Eµ in Theorem 2.3, we obtain local L2 estimates of Vρ ◦ T µϕ when Γ
is any Lipschitz graph (the restriction Lip(A) < 1 is not necessary). More precisely,
we separate the sum in the definition of Vρ ◦T µϕ into two parts, which are classically
called short and long variation. The short variation corresponds to the sum Sµ in
Proposition 2.4, where the indices run over those m ∈ Z such that both εm and εm+1
lie in the same dyadic interval, and can be handled using the α’s and β’s. The long
variation corresponds to the sum over the indices m ∈ Z such that εm and εm+1 lie
in different dyadic intervals, so one may assume that the εm’s are dyadic numbers,
i.e., εm = 2−j for some j ∈ Z. It is handled by comparing T µϕ2−j

1 with Ejµ, and
then using Theorem 2.4 and the fact the ρ-variation for Eµ is bounded in L2(µ), by
Theorem 2.3.

Using the local L2 estimates for Vρ◦T µϕ , combined with rather standard techniques
in Calderón-Zygmund theory, we obtain the endpoint estimates of Theorem 1.1 for
Vρ ◦ T µϕ . Then, by interpolation, we obtain the Lp boundedness of this operator in
the whole range 1 < p <∞, and in particular the L2 boundedness.

The next step is to replace the family of smooth truncations ϕ by the rough one.
We obtain the L2 boundedness of Vρ ◦ T µ by comparing this operator with Vρ ◦ T µϕ ,
and by estimating the difference in terms of the α and β coefficients, decomposing a
function f ∈ L2(µ) using a suitable wavelet basis. It is in this step where we need the
assumption Lip(A) < 1. Roughly speaking, when dealing with rough truncations,
we need the estimate

µ(A(x, a, b)) ≤ C(b− a)bn−1 for all x ∈ suppµ, (2.5)

where A(x, a, b) = {y ∈ Rd : a ≤ |y − x| ≤ b} (that is the case if, for example, A is
affine), but this estimate may fail if Lip(A) ≥ 1.

Finally, by adapting the proof of [3, Theorem B] to our setting and using standard
techniques in Calderón-Zygmund theory, we show that the L2 boundedness of Vρ◦T µ
yields the endpoint estimates of Theorem 1.1, and we obtain the Lp boundedness in
the whole range 1 < p <∞ by interpolation again. This finishes the proof.

2.4. How the α and β coefficients come into play
This section is devoted to illustrate how the α and β coefficients appear when
studying variational inequalities for singular integral operators. We only present an
example for the α’s because for the β’s the arguments are similar.

We intend to estimate one term of the sum defining Sµ in Proposition 2.4 (say
|T µϕεm+1

1(x) − T µϕεm1(x)|, for some εm and εm+1) by means of the α coefficients.
To simplify and facilitate the exposition, we may assume that we are in the most
favorable situation. That is, assume that x ∈ Q ∩ suppµ for some cube Q ∈ D with
`(Q) = 2−j for some j ∈ Z, that εm = 9

102−j and εm+1 = 2−j−1, that x belongs to the
n-plane L which minimizes αµ(Q), and that the constant c which minimizes αµ(Q)
is equal to 1. We want to estimate∣∣∣T µϕ2−j−1

1(x)−T µϕ2−j9/10
1(x)

∣∣∣
=
∣∣∣∣∣
∫ (

ϕ(|x− y|2j+1)− ϕ(|x− y|2j10/9)
)
K(x− y) dµ(y)

∣∣∣∣∣.
VII–10



Set ψ(y) = ϕ(|x−y|2j+1)−ϕ(|x−y|2j10/9), so ψ is supported in BQ and 0 ≤ ψ ≤ 1.
Moreover, |x− y| is comparable to 2−j = `(Q) for all y ∈ suppψ. Since ϕ is smooth,
it is easy to check that there exists C > 0 depending only on ϕ such that |∇ψ| ≤
C`(Q)−1. Combining these estimates with (1.2) we deduce that Ψ(y) = ψ(y)K(x−y)
is supported in BQ, and that for some fixed C > 0 we have |∇Ψ| ≤ C`(Q)−n−1.

Finally, since ψ is a radial function (with center x), K is odd, and L is a plane
which contains x, we obviously have

∫
Ψ dHn

L = 0. Therefore, for some C > 0
depending only on ϕ, we conclude∣∣∣T µϕ2−j−1

1(x)− T µϕ2−j9/10
1(x)

∣∣∣ =
∣∣∣∣∣
∫

Ψ dµ

∣∣∣∣∣ =
∣∣∣∣∣
∫

Ψ dµ−
∫

Ψ dHn
L

∣∣∣∣∣
≤ C

`(Q)n+1 distBQ(µ, cHn
L) = C αµ(Q),

and we are done.

2.5. Further comments
In this section we only give an overview of the main ingredients for proving Theorems
1.5 and 1.6 (see [17] and [15] for the details).

Concerning Theorem 1.5, the implication (b) =⇒ (c) is obvious. The proof of
(a) =⇒ (c) can be separated in three main steps. For the first one, we assume that
µ is the n-dimensional Hausdorff measure restricted to an n-dimensional Lipschitz
graph. Then, an application of Theorem 1.1 gives that Vρ ◦ T µϕ is bounded in L2(µ).
For the second step, we use a good λ inequality to derive, from the L2 boundedness of
Vρ ◦ T µϕ when µ is the Hausdorff measure on a Lipschitz graph, the L2 boundedness
of Vρ ◦ T µϕ when µ is a more general measure whose support contains big pieces of
Lipschitz graphs. Applying that method once again we obtain the L2 boundedness
of Vρ ◦ T µϕ when µ is a measure whose support contains big pieces of sets which
contain big pieces of Lipschitz graphs, which in turn is equivalent to say that µ is
uniformly rectifiable (see [5] for the precise definitions). In order to run the good λ
method, we need the following estimate:∣∣∣(Vρ ◦ T µϕ )fχ(2B)c(x)− (Vρ ◦ T µϕ )fχ(2B)c(z)

∣∣∣ ≤ CMµf(x)

for x, z ∈ B, where B is any ball, f ∈ L1(µ), and Mµ denotes the Hardy-Littlewood
maximal operator with respect to µ. The estimate may fail for rough truncations,
i.e., for Vρ ◦ T µ, so we need to use smooth truncations. The third and last step
consists on obtaining the L2 boundedness of Vρ◦T µ on uniformly rectifiable measures
µ, and this is a combination of two ingredients: a decomposition of the support
of µ using a corona decomposition in the sense of [5], which organizes the good
geometric/measure theoretic information of µ, and the comparison of Vρ ◦ T µ with
the smooth version Vρ ◦ T µϕ , which we already know that is bounded in L2(µ), using
a suitable Haar basis adapted to the corona decomposition of µ.

For the proof of (c) =⇒ (a), one first notices that the L2 boundedness of Vρ ◦Rµ

implies the L2 boundedness of its smooth version, say Vρ ◦ Rµ
ϕ. In [32] it is shown

that if ∑
j∈Z

∥∥∥Rµ
ϕ2−j−1

χQ −Rµ
ϕ2−j

χQ
∥∥∥2

L2(µ)
≤ Cµ(Q)
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for all Q ∈ D then µ is uniformly rectifiable, which in turn is a consequence of the
fact that∑

P∈D(Q)
β2,µ(P )2µ(P ) ≤ C

∑
j∈Z

∥∥∥Rµ
ϕ2−j−1

χ3Q −Rµ
ϕ2−j

χ3Q

∥∥∥2

L2(µ)
+ Cµ(Q)

and Theorem 2.1. Notice that∑
j∈Z

∥∥∥Rµ
ϕ2−j−1

χQ −Rµ
ϕ2−j

χQ
∥∥∥2

L2(µ)
≤
∥∥∥(V2 ◦ Rµ

ϕ)χQ
∥∥∥2

L2(µ)
,

thus if V2 ◦Rµ
ϕ is bounded in L2(µ), we are done. However, the 2-variation operator

is unbounded in general (even for the case of martingales). For ρ > 2, we use these
ideas combined with a deep result in [5] called the weak geometric lemma and a
stopping time argument.

The proof of Theorem 1.6 is based on a nontrivial modification of the proof
of [3, Theorem B] using a Calderón-Zygmund decomposition for general measures
developed in [30]. The estimate (2.5) is necessary in our arguments, so we must
require Lip(A) < 1 in the statement of the theorem.
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