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APPROXIMATE AND EXACT CONTROLLABILITY OF

LINEAR DIFFERENCE EQUATIONS

by Yacine Chitour, Guilherme Mazanti & Mario Sigalotti

Abstract. — In this paper, we study approximate and exact controllability of the linear dif-
ference equation x(t) =

∑N
j=1 Ajx(t − Λj) + Bu(t) in L2, with x(t) ∈ Cd and u(t) ∈ Cm,

using as a basic tool a representation formula for its solution in terms of the initial condition,
the control u, and some suitable matrix coefficients. When Λ1, . . . ,ΛN are commensurable,
approximate and exact controllability are equivalent and can be characterized by a Kalman
criterion. This paper focuses on providing characterizations of approximate and exact control-
lability without the commensurability assumption. In the case of two-dimensional systems with
two delays, we obtain an explicit characterization of approximate and exact controllability in
terms of the parameters of the problem. In the general setting, we prove that approximate
controllability from zero to constant states is equivalent to approximate controllability in L2.
The corresponding result for exact controllability is true at least for two-dimensional systems
with two delays.

Résumé (Contrôlabilité approchée et exacte d’équations aux différences linéaires)
Cet article traite de la contrôlabilité approchée et exacte de l’équation aux différences linéaire

x(t) =
∑N

j=1 Ajx(t−Λj) +Bu(t) dans L2, avec x(t) ∈ Cd et u(t) ∈ Cm, en s’appuyant sur une
formule de représentation de la solution x en termes de la condition initiale, du contrôle u et de
coefficients matriciels appropriés. Lorsque Λ1, . . . ,ΛN sont commensurables, les contrôlabilités
approchée et exacte sont équivalentes et peuvent être caractérisées par un critère de type
Kalman. Cet article s’attache à donner des caractérisations des contrôlabilités approchée et
exacte sans hypothèse de commensurabilité. Dans le cas d’un système bi-dimensionnel avec
deux retards, nous obtenons une caractérisation explicite des contrôlabilités approchée et exacte
en termes des paramètres du problème. Pour le cas général, nous prouvons que la contrôlabilité
approchée de zéro vers les états constants est équivalente à la contrôlabilité approchée dans L2.
Le résultat correspondant à la contrôlabilité exacte est vrai au moins pour les systèmes bi-
dimensionnels avec deux retards.
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Notations. — In this paper, we denote by N and N∗ the sets of nonnegative and
positive integers, respectively. For a, b ∈ R, we write the set of all integers between a
and b as [[a, b]] = [a, b] ∩ Z, with the convention that [a, b] = ∅ if a > b. For Λ ∈ RN ,
we use Λmin and Λmax to denote the smallest and the largest components of Λ, respec-
tively. For ξ ∈ R, the symbol bξc is used to the denote the integer part of ξ, i.e., the
unique integer such that ξ − 1 < bξc 6 ξ, dξe denotes the unique integer such that
ξ 6 dξe < ξ + 1, and we set {ξ} = ξ − bξc. For z ∈ C, the complex conjugate of z
is denoted by z. We write X for the closure of the subset X of a topological space.
By convention, we set the sum over an empty set to be equal to zero, inf ∅ = +∞,
and sup∅ = −∞. The characteristic function of a set A ⊂ R is denoted by χA.

The set of d × m matrices with coefficients in K ⊂ C is denoted by Md,m(K),
or simply by Md(K) when m = d. The identity matrix in Md(C) is denoted by Idd,
the zero matrix in Md,m(C) is denoted by 0d,m, or simply by 0 when its dimensions
are clear from the context, and the transpose of a matrix A ∈ Md,m(K) is denoted
by AT. We write GLd(C) for the general linear group of order d over C. The vectors
e1, . . . , ed denote the canonical basis of Cd. For p ∈ [1,+∞], |·|p indicates both the
`p-norm in Cd and the corresponding induced matrix norm in Md,m(C). We denote
the usual scalar product of two vectors x, y ∈ Rd by x · y. The range of a matrix
M ∈Md,m(C) is denoted by RanM , and rkM denotes the dimension of RanM .

For (A,B) ∈Md(C)×Md,m(C), the controllability matrix of (A,B) is denoted by
C(A,B), and we recall that

C(A,B) =
(
B AB A2B · · · Ad−1B

)
∈Md,dm(C).

We also recall that a pair (A,B) ∈ Md(C) ×Md,m(C) is said to be controllable if
rkC(A,B) = d.

The inner product of a Hilbert space H is denoted by 〈· , ·〉H and is assumed to be
anti-linear in the first variable and linear in the second one. The corresponding norm
is denoted by ‖·‖H, and the index H is dropped from these notations when the Hilbert
space under consideration is clear from the context. For two Hilbert spaces H1,H2,
the Banach space of all bounded operators from H1 to H2 is denoted by L(H1,H2),
with its usual induced norm ‖·‖L(H1,H2). The adjoint of an operator E ∈ L(H1,H2) is
denoted by E∗. When H1 = H2 = H, we write simply L(H) for L(H,H). The range of
an operator E ∈ L(H1,H2) is denoted by RanE.
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1. Introduction

This paper studies the controllability of the difference equation

(1.1) x(t) =

N∑
j=1

Ajx(t− Λj) +Bu(t),

where
– x(t) ∈ Cd is the state,
– u(t) ∈ Cm is the control input,
– N, d,m ∈ N∗,
– Λ = (Λ1, . . . ,ΛN ) ∈ (0,+∞)N is the vector of positive delays,
– A = (A1, . . . , AN ) ∈Md(C)N , and
– B ∈Md,m(C).
The study of the autonomous difference equation

(1.2) x(t) =

N∑
j=1

Ajx(t− Λj)

has a long history and its analysis through spectral methods has led to important
stability criteria, such as those in [1] and [17, Chap. 9] (see also [25, 10, 19, 11, 16, 26]
and references therein). A major motivation for analyzing the stability of (1.2) is
that it is deeply related to properties of more general neutral functional differential
equations of the form

(1.3) d

dt

(
x(t)−

N∑
j=1

Ajx(t− Λj)

)
= f(xt)

where xt : [−r, 0] → Cd is given by xt(s) = x(t + s), r > Λmax, and f is some
function defined on a certain space (typically Ck([−r, 0],Cd) or W k,p((−r, 0),Cd));
see, e.g., [10, 11, 16, 27], [17, §9.7]. Another important motivation is that, using
d’Alembert decomposition, some hyperbolic PDEs can be transformed by the method
of characteristics into differential or difference equations with delays [9, 8, 6, 14, 35,
20], possibly with time-varying matrices Aj [4, 3].

Several works in the literature have studied the control and the stabilization of
neutral functional differential equations of the form (1.3). In particular, stabilization
by linear feedback laws was addressed in [30, 18, 28], with a Hautus-type condition
for the stabilizability of (1.1) provided in [18].

Due to the infinite-dimensional nature of the dynamics of difference equations and
neutral functional differential equations, several different notions of controllability can
be used, such as approximate, exact, spectral, or relative controllability [34, 5, 12, 31,
24]. Relative controllability was originally introduced in the study of control systems
with delays in the control input [5] and consists in controlling the value of x(T ) ∈ Cd

at some prescribed time T . In the context of difference equations of the form (1.1), it
was characterized in some particular situations with integer delays in [12, 31], with a
complete characterization on the general case provided in [24].

J.É.P. — M., 2020, tome 7
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We consider in this paper the approximate and exact controllability of (1.1) in
the function space L2((−Λmax, 0),Cd). Such a problem is largely absent from the
literature, with the notable exception of [34, 29], where some controllability notions for
neutral functional differential equations of the form (1.3) are characterized in terms of
corresponding observability properties, such as unique continuation principles, using
duality arguments reminiscent of the Hilbert Uniqueness Method introduced later in
[21, 22].

The above controllability problems have easy answers in some simple situations.
Indeed, in the case of a single delay, approximate and exact controllability are equiva-
lent to the standard Kalman controllability criterion for the pair (A1, B), i.e., the con-
trollability of the finite-dimensional discrete-time system xn+1 = A1xn +Bun. More
generally, when all delays are commensurable, i.e., integer multiples of a common
positive real number, we reduce the problem to the single-delay case by the classical
augmented state space technique (see, for instance, [13, Chap. 4]). The Kalman crite-
rion can be interpreted as an explicit test for controllability since it yields a complex-
valued function F of the parameters of the problem, polynomial with respect to the
coefficients of the matrices, such that controllability of a system is equivalent to F
not taking the value zero for that system.

We are not aware of any result of this type in the incommensurable case, even
though the problem seems natural and of primary importance if one is interested in
linear controlled difference equations. We show in this paper that such an explicit
test can be obtained at least in the first non-trivial incommensurable case, namely
two-dimensional systems with two delays and a scalar input (Theorem 4.1). Note that
approximate and exact controllability are no more equivalent but we still characterize
explicitly both of them.

Let us now describe the line of arguments we use to derive our results. The approx-
imate controllability in the case of incommensurable delays is reduced to the exis-
tence of nonzero functions invariant with respect to a suitable irrational translation
modulo 1. The ergodicity of the latter yields a necessary condition for approximate
controllability, which is also shown to be sufficient. As regards exact controllability,
the strategy consists in approximating the original system by a sequence of systems
(Σn)n∈N with commensurable delays, and, for every n ∈ N, the controllability of Σn
is equivalent to the invertibility of a Toeplitz matrix Mn, whose size tends to infinity.
The heart of the argument boils down to bounding the norm of M−1

n uniformly with
respect to n.

For more delays or in higher dimension, the existence of explicit controllability
tests remains open. Characterizing approximate controllability using our techniques
would amount to single out a tractable discrete dynamical system, generalizing the
above-mentioned translation modulo 1. Concerning exact controllability, the difficulty
is that the above matrices Mn are now block-Toeplitz. We believe that the general
case is not an easy problem and additional techniques may be needed, for instance
arguments based on the Laplace transform.
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We also prove an additional result stating that approximate controllability from
zero to constant states implies approximate controllability in L2, and the same holds
true for exact controllability at least for two-dimensional systems with two delays
and a scalar input. The interest of this result lies in the fact that reachability of a
finite-dimensional space is sufficient to deduce the reachability of the full L2 space.

Throughout the paper, we rely on a basic tool for the controllability analysis
of (1.1), namely a suitable representation formula, describing a solution at time t
in terms of its initial condition, the control input, and some matrix-valued coefficients
computed recursively (see Proposition 2.4). Such a formula, already proved in [24],
generalizes the ones obtained in [4, Th. 3.3 & 3.6] for the stability analysis of a sys-
tem of transport equations on a network under intermittent damping, and the one
obtained in [3, Prop. 3.14], used for providing stability criteria for a non-autonomous
version of (1.2).

The plan of the paper goes as follows. In Section 2 we discuss the well-posedness
of (1.1), present the explicit representation formula for its solutions, provide the defini-
tions of L2 approximate and exact controllability, and recall some of their elementary
properties. Section 3 considers the case of systems with commensurable delays, for
which the usual technique of state augmentation is available. We prove that such a
technique and our approach based on the representation formula from Section 2.1
both yield the same Kalman-like controllability criterion. The main results are pro-
vided in Sections 4 and 5. Section 4 provides the complete algebraic characterization
of approximate and exact controllability of (1.1) in dimension 2 with two delays and
a scalar input. Finally, Section 5 contains the results regarding controllability from
zero to constant states. Some technical proofs are deferred to the appendix.

All the results in this paper also hold, with the same proofs, if one assumes the
N -uple A = (A1, . . . , AN ) to be in Md(R)N and B in Md,m(R), with the state x(t)

in Rd and the control u(t) in Rm. We choose complex-valued matrices, states, and
controls for (1.1) in this paper following the approach of [3], which is mainly motivated
by the fact that classical spectral conditions for difference equations such as those from
[1, 19, 18] and [17, Chap. 9] are more naturally expressed in such a framework.

2. Definitions and preliminary results

In this section we provide the definitions of solutions of (1.1) and approximate and
exact controllability in L2, and recall the explicit representation formula for solutions
of (1.1) and some elementary properties of L2 controllability.

2.1. Well-posedness and explicit representation of solutions

Definition 2.1. — Let

(2.1)
A = (A1, . . . , AN ) ∈Md(C)N , B ∈Md,m(C), T > 0, u : [0, T ] −→ Cm,

Λ = (Λ1, . . . ,ΛN ) ∈ (0,+∞)N , and x0 : [−Λmax, 0) −→ Cd.

J.É.P. — M., 2020, tome 7



98 Y. Chitour, G. Mazanti & M. Sigalotti

We say that x : [−Λmax, T ] → Cd is a solution of (1.1) with initial condition x0 and
control u if it satisfies (1.1) for every t ∈ [0, T ] and x(t) = x0(t) for t ∈ [−Λmax, 0). In
this case, for t ∈ [0, T ], we define xt : [−Λmax, 0)→ Cd by xt = x(t+ ·)|[−Λmax,0).

This notion of solution, already used in [24] and similar to the one used in [3],
requires no regularity on x0, u, or x. Nonetheless, such a weak framework is enough
to guarantee existence and uniqueness of solutions.

Proposition 2.2. — Let A,B, T, u,Λ, x0 be as in (2.1). Then (1.1) admits a unique
solution x : [−Λmax, T ]→ Cd with initial condition x0 and control u.

Proposition 2.2 can be easily proved from (1.1), which is already an explicit rep-
resentation formula for the solution in terms of the initial condition and the control
when t < Λmin. Its proof can be found in [24, Prop. 2.2] and is very similar to that of
[3, Prop. 3.2].

We also recall that, as in [3, Rem. 3.4] and [24, Rem. 2.3], if x0, x̃0 : [−Λmax, 0)→ Cd

and u, ũ : [0, T ] → Cm are such that x0 = x̃0 and u = ũ almost everywhere on their
respective domains, then the solutions x, x̃ : [−Λmax, T ] → Cd of (1.1) associated
respectively with x0, u, and x̃0, ũ, satisfy x = x̃ almost everywhere on [−Λmax, T ].
In particular, one still obtains existence and uniqueness of solutions of (1.1) for initial
conditions in Lp((−Λmax, 0),Cd) and controls in Lp((0, T ),Cm) for some p ∈ [1,+∞],
and, in this case, solutions x of (1.1) satisfy x ∈ Lp((−Λmax, T ) ,Cd), and hence
xt ∈ Lp((−Λmax, 0),Cd) for every t ∈ [0, T ].

In order to provide an explicit representation for the solutions of (1.1), we first
provide a recursive definition of the matrix coefficients Ξn appearing in such a repre-
sentation.

Definition 2.3. — For A = (A1, . . . , AN ) ∈ Md(C)N and n ∈ ZN , we define the
matrix Ξn ∈Md(C) inductively by

(2.2) Ξn =


0, if n ∈ ZN rNN ,
Idd, if n = 0,
N∑
k=1

AkΞn−ek , if n ∈ NN r {0}.

The explicit representation for the solutions of (1.1) used throughout the present
paper is the one from [24, Prop. 2.7], which we state below.

Proposition 2.4. — Let A,B, T, u,Λ, x0 be as in (2.1). The corresponding solution
x : [−Λmax, T ]→ Cd of (1.1) is given for t ∈ [0, T ] by

(2.3) x(t) =
∑

(n,j)∈NN×[[1,N ]]
−Λj6t−Λ·n<0

Ξn−ejAjx0(t− Λ · n) +
∑

n∈NN
Λ·n6t

ΞnBu(t− Λ · n).

J.É.P. — M., 2020, tome 7



Approximate and exact controllability of linear difference equations 99

Remark 2.5. — Let p∈ [1,+∞]. For t>0, we define Υ(t)∈L(Lp((−Λmax, 0),Cd)) by

(Υ(t)x0)(s) =
∑

(n,j)∈NN×[[1,N ]]
−Λj6t+s−Λ·n<0

Ξn−ejAjx0(t+ s− Λ · n).

The operator Υ(t) maps an initial condition x0 to the state xt = x(t+ ·)|(−Λmax,0),
where x is the solution of (1.1) at time t with initial condition x0 and control 0. Using
the fact that translations define continuous operators in Lp when p <∞, one proves
that the family {Υ(t)}t>0 is a strongly continuous semigroup in Lp((−Λmax, 0),Cd)
for p ∈ [1,+∞) (see, e.g., [3, Prop. 3.5]).

2.2. Approximate and exact controllability in L2. — We now define the main
notions we consider in this paper, namely the approximate and exact controllability
of the state xt = x(t+ ·)|[−Λmax,0) of (1.1) in the function space L2((−Λmax, 0),Cd).
We start with the notations that will be used throughout the rest of the paper.

Definition 2.6. — Let T ∈ (0,+∞). We define the Hilbert spaces X, YT by X =

L2((−Λmax, 0),Cd) and YT = L2((0, T ),Cm) endowed with their usual inner products
and associated norms.

(a) We say that (1.1) is approximately controllable in time T if, for every x0, y ∈ X

and ε > 0, there exists u ∈ YT such that the solution x of (1.1) with initial condition x0

and control u satisfies ‖xT − y‖X < ε.
(b) We say that (1.1) is exactly controllable in time T if, for every x0, y ∈ X, there

exists u ∈ YT such that the solution x of (1.1) with initial condition x0 and control u
satisfies xT = y.

(c) We define the end-point operator E(T ) ∈ L(YT ,X) by
(2.4) (E(T )u)(t) =

∑
n∈NN

Λ·n6T+t

ΞnBu(T + t− Λ · n).

Approximate or exact controllability in time T implies the same kind of control-
lability for every time T ′ > T , since one can take a control u equal to zero in the
interval (0, T ′ − T ) and control the system from T ′ − T until T ′.

It follows immediately from Proposition 2.4 that, for every T > 0, x0 ∈ X, and
u ∈ YT , the corresponding solution x of (1.1) satisfies
(2.5) xT = Υ(T )x0 + E(T )u,

where {Υ(t)}t>0 is the semigroup defined in Remark 2.5. Equation (2.5) enables one to
immediately obtain the following classical characterization of approximate and exact
controllability in terms of the operator E(T ) (cf. [7, Lem. 2.46]).

Proposition 2.7. — Let T ∈ (0,+∞).
(a) The system (1.1) is approximately controllable in time T if and only if

RanE(T ) is dense in X.
(b) The system (1.1) is exactly controllable in time T if and only if E(T ) is sur-

jective.
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We recall in the next proposition the classical characterizations of approximate
and exact controllability in terms of the adjoint operator E(T )∗, whose proofs can be
found, e.g., in [7, §2.3.2].

Proposition 2.8. — Let T ∈ (0,+∞).
(a) The system (1.1) is approximately controllable in time T if and only if E(T )∗

is injective, i.e., for every x ∈ X,

(2.6) E(T )∗x = 0 =⇒ x = 0.

(b) The system (1.1) is exactly controllable in time T if and only if there exists
c > 0 such that, for every x ∈ X,

(2.7) ‖E(T )∗x‖2YT > c ‖x‖
2
X .

Properties (2.6) and (2.7) are called unique continuation property and observability
inequality, respectively. In order to apply Proposition 2.8, we provide in the next
lemma an explicit formula for E(T )∗, which can be immediately obtained from the
definition of adjoint operator.

Lemma 2.9. — Let T ∈ (0,+∞). The adjoint operator E(T )∗ ∈ L(X,YT ) is given by

(2.8) (E(T )∗x)(t) =
∑

n∈NN
−Λmax6t−T+Λ·n<0

B∗Ξ∗nx(t− T + Λ · n).

Remark 2.10. — Exact controllability is preserved under small perturbations of
(A,B). This follows from Proposition 2.8(b) and the continuity of E(T )∗ with respect
to the operator norm (which clearly results from (2.8)). However, exact controllability
is not preserved for small perturbations of Λ (cf. Theorem 4.1(c)(ii)). As regards
approximate controllability, it is not preserved for small perturbations of (A,B,Λ)

(cf. Theorem 4.1(c)(i), where (A,B,Λ) is chosen such that the set S defined in that
theorem is infinite).

A useful result for studying approximate and exact controllability is the follow-
ing lemma, which states that such properties are preserved under linear change of
coordinates, linear feedback, and changes of the time scale.

Lemma 2.11. — Let T > 0, λ > 0, Kj ∈ Mm,d(C) for j ∈ [[1, N ]], P ∈ GLd(C), and
consider the system

(2.9) x(t) =

N∑
j=1

P (Aj +BKj)P
−1x

(
t− Λj

λ

)
+ PBu(t).

Then
(a) (1.1) is approximately controllable in time T if and only if (2.9) is approxi-

mately controllable in time T/λ;
(b) (1.1) is exactly controllable in time T if and only if (2.9) is exactly controllable

in time T/λ.
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Proof. — Let us prove (a), the proof of (b) being similar. Assume that (1.1) is approx-
imately controllable in time T and take x0, y ∈ L2((−Λmax/λ, 0),Cd) and ε > 0. Let
x̃0, ỹ ∈ L2((−Λmax, 0),Cd) be given by x̃0(t) = P−1x0(t/λ) and ỹ(t) = P−1y(t/λ).
Since (1.1) is approximately controllable in time T , there exists ũ ∈ L2((0, T ),Cm)

such that the solution x̃ of (1.1) with initial condition x̃0 and control ũ satisfies
‖x̃T − ỹ‖X < ε

√
λ/|P |2. Let u ∈ L2((0, T/λ),Cm) and x ∈ L2((−Λmax/λ, T/λ),Cd)

be given by

u(t) = ũ(λt)−
N∑
j=1

Kj x̃(λt− Λj), x(t) = Px̃(λt).

A straightforward computation shows that x is the solution of (2.9) with initial con-
dition x0 and control u, and that xT/λ(t) = Px̃T (λt) for t ∈ (−Λmax/λ, 0). As a
consequence,

∥∥xT/λ − y∥∥L2((−Λmax/λ,0),Cd)
< ε, and thus (2.9) is approximately con-

trollable in time T/λ. The converse is proved in a similar way. �

Remark 2.12. — One can provide a graphical representation for the operators E(T )

and E(T )∗ as follows. In a plane with coordinates (ξ, ζ), we draw in the domain
[0, T ) × [−Λmax, 0), for n ∈ NN , the line segment σn defined by the equation ζ =

ξ − T + Λ · n (see Figure 2.1). We associate with the line segment σn the matrix
coefficient ΞnB.

ξ

ζ T

−Λmax

B

Ξ (0
,0
,1
)
B

Ξ (0
,1
,0
)
B

· · ·

t

s

Figure 2.1. Graphical representation for E(T ) and E(T )∗ in the case
N = 3, Λ1 = 2, Λ2 = (

√
5 + 1)/2, Λ3 = π − 2, and T = e2 − 2. The

matrix coefficients associated with the line segments σn are given in
the picture for n = (0, 0, 0), n = (0, 0, 1), and n = (0, 1, 0).

For u ∈ YT , (2.4) can be interpreted as follows. For s ∈ [−Λmax, 0), we draw
the horizontal line ζ = s. Each intersection between this line and a line segment σn
gives one term in the sum for (E(T )u)(s). This term consists of the matrix coefficient
corresponding to the line σn multiplied by u evaluated at the ξ-coordinate of the
intersection point.
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Similarly, for x ∈ X, (2.8) can be interpreted as follows. For t ∈ [0, T ), we draw
the vertical line ξ = t. As before, each intersection between this line and a line
segment σn gives one term in the sum for (E(T )∗x)(t). This term consists of the
Hermitian transpose of the matrix coefficient corresponding to the line σn multiplied
by x evaluated at the ζ-coordinate of the intersection point.

3. Controllability of systems with commensurable delays

We consider in this section the problem of characterizing approximate and exact
controllability of (1.1) in the case where the delays Λ1, . . . ,ΛN are commensurable,
i.e., there exist λ > 0 and k1, . . . , kN ∈ N∗ (or, equivalently, k1, . . . , kN positive
rational numbers) such that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN ). A classical procedure is to
perform an augmentation of the state of the system to obtain an equivalent system
with a single delay, whose controllability can be easily characterized using Kalman
criterion for discrete-time linear control systems. For the sake of completeness, we
detail such an approach in Lemma 3.1 and Proposition 3.3. An important limitation
of this technique is that it cannot be generalized to the case where Λ1, . . . ,ΛN are
not assumed to be commensurable.

Thanks to Proposition 2.7, another possible approach to the controllability of (1.1),
which will be extended to the case of incommensurable delays in Section 4, is to
consider the range of the operator E(T ). Following this approach, we characterize the
operator E(T ) in Lemma 3.9 in order to obtain a controllability criterion for (1.1) in
Proposition 3.11. It turns out that, in both criteria, controllability is equivalent to a
full-rank condition on the same matrix, as we prove in the main result of this section,
Theorem 3.12.

3.1. Kalman criterion based on state augmentation. — Let us first consider the
augmentation of the state of (1.1). The next lemma, whose proof is straightforward,
provides the construction of the augmented state and the difference equation it satis-
fies.

Lemma 3.1. — Let T ∈ (0,+∞), u : [0, T ] → Cm, and suppose that (Λ1, . . . ,ΛN ) =

λ(k1, . . . , kN ) with λ > 0 and k1, . . . , kN ∈ N∗. Let K = maxj∈[[1,N ]] kj.
(a) If x : [−Λmax, T ] → Cd is the solution of (1.1) with initial condition x0 :

[−Λmax, 0)→ Cd, then the function X : [−λ, T )→ CKd defined by

(3.1) X(t) =


x(t)

x(t− λ)

x(t− 2λ)
...

x(t− (K − 1)λ)


satisfies

(3.2) X(t) = ÂX(t− λ) + B̂u(t),
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with Â and B̂ given by

(3.3)

Â =


Â1 Â2 Â3 · · · ÂK
Idd 0 0 · · · 0

0 Idd 0 · · · 0
...

...
. . . . . .

...
0 0 · · · Idd 0

 ∈MKd(C), B̂ =


B

0

0
...
0

 ∈MKd,m(C),

Âk =

N∑
j=1
kj=k

Aj for k ∈ [[1,K]]

(in particular, Âk = 0 if kj 6= k for all j ∈ [[1, N ]]),

and with initial condition X0 : [−λ, 0)→ CKd given by

(3.4) X0(t) =


x0(t)

x0(t− λ)

x0(t− 2λ)
...

x0(t− (K − 1)λ)

 .

(b) If X : [−λ, T ] → CKd is the solution of (3.2) with initial condition X0 :

[−λ, 0)→ CKd, with Â and B̂ given by (3.3), then the function x : [−Λmax, T ]→ Cd

defined by

x(t) =

{
ĈX(t), if t ∈ [0, T ],
x0(t), if t ∈ [−Λmax, 0),

is the solution of (1.1) with initial condition x0 : [−Λmax, 0)→ Cd, where the matrix
Ĉ ∈Md,Kd(C) is given by Ĉ =

(
Idd 0d,(K−1)d

)
and x0 is the unique function satisfying

(3.4) for every t ∈ [−λ, 0).

Remark 3.2. — Lemma 3.1 considers solutions of (1.1) and (3.2) in the sense of
Definition 2.1, i.e., with no regularity assumptions. However, one immediately obtains
from (3.1) that, for every t ∈ [0, T ], xt ∈ X if and only if Xt ∈ L2((−λ, 0),CKd), and
in this case ‖xt‖X = ‖Xt‖L2((−λ,0),CKd).

As an immediate consequence of Lemma 3.1, we obtain the following criterion.

Proposition 3.3. — Let T ∈ (0,+∞) and suppose that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN )

with λ > 0 and k1, . . . , kN ∈ N∗. Let K = maxj∈[[1,N ]] kj and define Â and B̂ from
A1, . . . , AN , B as in (3.3). Then the following assertions are equivalent.

(a) The system (1.1) is approximately controllable in time T ;
(b) The system (1.1) is exactly controllable in time T ;
(c) T > (κ+ 1)λ, where

κ = inf
{
n ∈ N

∣∣ rk
(
B̂ ÂB̂ Â2B̂ · · · ÂnB̂

)
= Kd

}
∈ N ∪ {∞}.
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Proof. — Notice first that the solution X : [−λ, T ] → CKd of (3.2) with initial
condition X0 : [−λ, 0)→ CKd and control u : [0, T ]→ Cm is given by

(3.5) X(t) = Â1+bt/λcX0 (t− (1 + bt/λc)λ) +

bt/λc∑
n=0

ÂnB̂u(t− nλ).

We will prove that (b) ⇒ (a) ⇒ (c) ⇒ (b). The first implication is trivial due to
the definitions of approximate and exact controllability. Suppose now that (a) holds,
let M = bT/λc, ρ = (M + 1)λ − T > 0, take w ∈ CKd and ε > 0, and write
w = (wT

1 , . . . , w
T

K)
T with w1, . . . , wK ∈ Cd. Let y ∈ X be defined by the relations

y(t) = wj for t ∈ [−jλ,−(j−1)λ), j ∈ [[1,K]]. By (a), there exists u ∈ YT such that the
solution x of (1.1) with zero initial condition and control u satisfies ‖xT − y‖X < ρε.
DefiningX ∈ L2((−λ, T ),CKd) by (3.1), we obtain that ‖XT − w‖L2((−λ,0),CKd) < ρε.
Using Lemma 3.1 and (3.5), we obtain that∫ Mλ

T−λ

∣∣∣∣M−1∑
n=0

ÂnB̂u(t− nλ)− w
∣∣∣∣2
2

dt 6
∫ T

T−λ

∣∣∣∣bt/λc∑
n=0

ÂnB̂u(t− nλ)− w
∣∣∣∣2
2

dt < ρε,

and, in particular, there exists a set of positive measure J ⊂ (T − λ,Mλ) such that∣∣∣∣M−1∑
n=0

ÂnB̂u(t− nλ)− w
∣∣∣∣2
2

< ε

for t ∈ J . Hence, we have shown that, for every w ∈ CKd and ε > 0, there exist
u0, . . . , uM−1 ∈ Cm such that

∣∣∑M−1
n=0 ÂnB̂un − w

∣∣2
2
< ε, which in particular implies

that M > 1. This proves that the range of the matrix
(
B̂ ÂB̂ Â2B · · · ÂM−1B̂

)
∈

MKd,Mm(C) is dense in CKd, and hence is equal to CKd, yielding κ 6 M − 1 by
definition of κ. Thus T >Mλ > (κ+ 1)λ, which proves (c).

Assume now that (c) holds. In particular, since T < +∞, one has κ ∈ N. We will
prove the exact controllability of (1.1) in time T0 = (κ+ 1)λ, which implies its exact
controllability in time T . Let x0, y ∈ X. Define X0, Y ∈ L2((−λ, 0),CKd) from x0, y

respectively as in (3.4). Let C =
(
B̂ ÂB̂ · · · ÂκB̂

)
∈ MKd,(κ+1)m(C), which, by (c),

has full rank, and thus admits a right inverse C# ∈ M(κ+1)m,Kd(C). Let u ∈ YT0
be

the unique function defined by the relation
u(t+ (κ+ 1)λ)

u(t+ κλ)
...

u(t+ λ)

 = C#
(
Y (t)− Âκ+1X0(t)

)
for almost every t ∈ (−λ, 0).

A straightforward computation shows, together with (3.5), that the unique solu-
tion X of (3.2) with initial condition X0 and control u satisfies XT0

= Y , and hence,
by Lemma 3.1, the unique solution of (1.1) with initial condition x0 and control u
satisfies xT0

= y, which proves (b). �

Remark 3.4. — A first important consequence of Proposition 3.3 is that approximate
and exact controllability are equivalent for systems with commensurable delays. As it
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follows from the results in Section 4, this is no longer true when the commensurability
hypothesis does not hold.

Remark 3.5. — It follows from Cayley–Hamilton theorem that κ from Proposition 3.3
is either infinite or belongs to [[0,Kd − 1]]. In particular, (c) is satisfied for some
T ∈ (0,+∞) if and only if the controllability matrix C(Â, B̂) ∈ MKd,Kdm(C) has
full rank. Moreover, condition (c) is satisfied for some T ∈ (0,+∞) if and only if it is
satisfied for every T ∈ [(κ+1)λ,+∞), and thus (approximate or exact) controllability
in time T > (κ + 1)λ is equivalent to (the same kind of) controllability in time
T = (κ+ 1)λ.

Remark 3.6. — When m = 1, it follows from the definition of κ that κ > Kd − 1

and thus, from Remark 3.5, κ ∈ {Kd− 1,+∞}. It follows that a system with a single
input is either (approximately and exactly) controllable in time T = dΛmax or not
controllable in any time T ∈ (0,+∞).

Example 3.7. — To illustrate the result from Proposition 3.3 which relies on the state
augmentation from Lemma 3.1, we provide the following example. Let N = 2 and
Λ = λ(1, 2) with λ > 0. Then (1.1) reads

x(t) = A1x(t− λ) +A2x(t− 2λ) +Bu(t),

and K = 2. The augmented matrices from (3.3) are given by

Â =

(
A1 A2

Idd 0

)
, B̂ =

(
B

0

)
.

We now choose d = 2 and A1 = A2 =
(

0 1
0 0

)
, B =

(
0
1

)
. Then

Â =


0 1 0 1

0 0 0 0

1 0 0 0

0 1 0 0

 , B̂ =


0

1

0

0

 .

It is easy to see that the condition from Proposition 3.3(c) is satisfied with κ =

Kd− 1 = 3 as soon as T > 4λ. This value of κ is in accordance with Remark 3.6.

3.2. Controllability analysis through the range of E(T ). — We now turn to the
characterization of the controllability of (1.1) using the operator E(T ) from (2.4)
instead of the augmented system from Lemma 3.1.

Definition 3.8. — Let T ∈ (0,+∞) and suppose that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN )

with λ > 0 and k1, . . . , kN ∈ N∗. Let K = maxj∈[[1,N ]] kj , M = bT/λc, and δ =

T − λM ∈ [0, λ). We define

R1 ∈ L
(
X, L2((−λ, 0),Cd)K

)
and R2 ∈ L

(
YT , L

2((−λ, 0),Cm)M × L2((−δ, 0),Cm)
)
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by
(R1x(t))n = x(t− (n− 1)λ), for t ∈ (−λ, 0) and n ∈ [[1,K]],

(R2u(t))n = u(t+ T − (n− 1)λ), for
{
t ∈ (−λ, 0) if n ∈ [[1,M ]],

t ∈ (−δ, 0) if n = M + 1.

It follows immediately from the definitions of R1 and R2 that these operators
are unitary transformations. The operator R1 allows to represent a function defined
on (−Λmax, 0) as a vector of K functions defined on (−λ, 0). The operator R2 acts
similarly on functions defined on (0, T ), with the interval of length δ < λ corresponding
to the fact that T is not necessarily an integer multiple of λ. In the next result, these
transformations are used to provide a representation of E(T ) in terms of a block-
Toeplitz matrix C and a matrix E.

Lemma 3.9. — Let T ∈ (0,+∞) and suppose that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN ) with
λ > 0 and k = (k1, . . . , kN ) ∈ (N∗)N . Let K, M , δ, R1, and R2 be as in Definition
3.8. Then, for every u ∈ L2((−λ, 0),Cm)M × L2((−δ, 0),Cm),

R1E(T )R−1
2 u = CP1u+ EP2u,

where P1 ∈ L
(
L2((−λ, 0),Cm)M × L2((−δ, 0),Cm), L2((−λ, 0),Cm)M

)
is the projec-

tion in the first M coordinates,
P2 ∈ L

(
L2((−λ, 0),Cm)M × L2((−δ, 0),Cm), L2((−λ, 0),Cm)

)
is the projection in the last coordinate composed with an extension by zero in the
interval (−λ,−δ), and C ∈MKd,Mm(C),E ∈MKd,m(C) are given by

(3.6)

C = (Cj`)j∈[[1,K]],`∈[[1,M ]] , Cj` =
∑

n∈NN
k·n=`−j

ΞnB for j ∈ [[1,K]], ` ∈ [[1,M ]],

E = (Ej)j∈[[1,K]] , Ej =
∑

n∈NN
k·n=M+1−j

ΞnB for j ∈ [[1,K]].

Proof. — Let u ∈ YT and extend u by zero in the interval (−∞, 0). From (2.4) and
Definition 3.8, we have that, for j ∈ [[1,K]] and t ∈ (−λ, 0),

(R1E(T )u(t))j =
∑

n∈NN
Λ·n6T+t−(j−1)λ

ΞnBu(t+ T − Λ · n− (j − 1)λ)

=
∑

n∈NN
k·n6((T+t)/λ)−(j−1)

ΞnBu(t+ T − (k · n + j − 1)λ)

=

M∑
`=1

∑
n∈NN
k·n=`−j

ΞnBu(t+ T − (`− 1)λ) +
∑

n∈NN
k·n=M+1−j

ΞnBu(t+ T −Mλ)

=

M∑
`=1

Cj` (P1R2u(t))` + Ej (P2R2u(t)) ,

which gives the required result. �
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Remark 3.10. — One can use the graphical representation of E(T ) from Remark 2.12
to construct the matrices C and E from Lemma 3.9. Indeed, when (Λ1, . . . ,ΛN ) =

λ(k1, . . . , kN ) for some λ > 0 and k1, . . . , kN ∈ N∗, one can consider a grid in [0, T )×
[−Λmax, 0) defined by the horizontal lines ζ = −jλ, j ∈ [[1,K]], and by the vertical
lines ξ = T − (` − 1)λ, ` ∈ [[1,M + 1]], where K = maxj∈[[1,N ]] kj and M = bT/λc.
This grid contains square cells Sj` = (T − `λ, T − (` − 1)λ) × (−jλ,−(j − 1)λ) for
j ∈ [[1,K]], ` ∈ [[1,M + 1]], and rectangular cells Rj = (0, T −Mλ)× (−jλ,−(j− 1)λ),
the latter being empty when T is an integer multiple of λ (see Figure 3.1).

ξ
ζ T

−Λmax

Figure 3.1. Graphical representation for E(T ) in the case N = 3,
Λ =

(
1, 7

10 ,
3
10

)
, λ = 1

10 , and T ∈ (2, 2 + λ).

Consider the line segments σn from Remark 2.12. Due to the commensurability of
the delays Λ1, . . . ,ΛN , the intersection between each line segment σn and a square Sj`
is either empty or equal to the diagonal of the square from its bottom-left to its top-
right edge, and, similarly, the intersection between each σn and a rectangle Rj is either
empty or equal to a line segment starting at the top-right edge of the rectangle. The
matrix C = (Cj`)j∈[[1,K]], `∈[[1,M ]] can thus be constructed as follows. For j ∈ [[1,K]]

and ` ∈ [[1,M ]], the matrix Cj` is the sum over all n ∈ NN such that σn intersects the
square Sj` of the matrix coefficients corresponding to σn. Notice, in particular, that C
is a block-Toeplitz matrix, which is clear from its definition in (3.6). Similarly, E =

(Ej)j∈[[1,K]] is constructed by defining, for j ∈ [[1,K]], Ej as the sum over all n ∈ NN

such that σn intersects the rectangle Rj of the matrix coefficients corresponding to σn.
In the case N = 3, Λ =

(
1, 7

10 ,
3
10

)
, λ = 1

10 , and T ∈ (2, 2 + λ), represented in
Figure 3.1, the first 5d lines and 9m columns of the matrix C are

C =



B 0 0 Ξ(0,0,1)B 0 0 Ξ(0,0,2)B Ξ(0,1,0)B 0 · · ·

0 B 0 0 Ξ(0,0,1)B 0 0 Ξ(0,0,2)B Ξ(0,1,0)B
. . .

0 0 B 0 0 Ξ(0,0,1)B 0 0 Ξ(0,0,2)B
. . .

0 0 0 B 0 0 Ξ(0,0,1)B 0 0
. . .

0 0 0 0 B 0 0 Ξ(0,0,1)B 0
. . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .


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and the first 6d lines of E are

E =



(
Ξ(2,0,0) + Ξ(1,1,1) + Ξ(0,2,2)

)
B(

Ξ(1,0,3) + Ξ(0,1,4)

)
B

Ξ(0,0,6)B(
Ξ(1,1,0) + Ξ(0,2,1)

)
B(

Ξ(1,0,2) + Ξ(0,1,3)

)
B

Ξ(0,0,5)B
...


.

We now provide a controllability criterion for (1.1) in terms of the rank of C.

Proposition 3.11. — Let T ∈ (0,+∞) and suppose that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN )

with λ > 0 and k1, . . . , kN ∈ N∗. Let K,M , and C ∈MKd,Mm(C) be as in Lemma 3.9.
Then the following assertions are equivalent.

(a) The system (1.1) is approximately controllable in time T ;
(b) The system (1.1) is exactly controllable in time T ;
(c) The matrix C has full rank.

Proof. — The equivalence of (a) and (b) has been proved in Proposition 3.3. Suppose
that (b) holds, which means, from Proposition 2.7(b), that E(T ) is surjective. Since
R1 and R2 are unitary transformations, Lemma 3.9 shows that the operator

CP1 + EP2 : L2((−λ, 0),Cm)M × L2((−δ, 0),Cm) −→ L2((−λ, 0),Cd)K

is also surjective. Let the operator Π ∈ L
(
L2((−λ, 0),Cd)K , L2((−λ,−δ),Cd)K

)
be

defined as the restriction to the non-empty interval (−λ,−δ), and notice that Π is
surjective. Thus Π(CP1 + EP2) is surjective, and one has, from the definition of Π

and P2, that ΠEP2 = 0, which shows that ΠCP1 is surjective. On the other hand,
(ΠCP1u(t))j =

∑M
`=1 Cj`u`(t) for every u ∈ L2((−λ, 0),Cm)M × L2((−δ, 0),Cm),

j ∈ [[1,M ]], and t ∈ (−λ,−δ), and hence C has full rank, which proves (c).
Suppose now that (c) holds. Notice that the matrix C can be canonically identified

with an operator, still denoted by C, in L
(
L2((−λ, 0),Cm)M , L2((−λ, 0),Cd)K

)
, and

such an operator is surjective. Defining

Q ∈ L(L2((−λ, 0),Cm)M , L2((−λ, 0),Cm)M × L2((−δ, 0),Cm))

by Qu = (u, 0) for u ∈ L2((−λ, 0),Cm)M , one has C = (CP1 + EP2)Q, and thus
CP1 + EP2 is surjective, which yields, by Lemma 3.9 and the fact that R1 and R2 are
unitary transformations, that E(T ) is surjective. Thus, by Proposition 2.7(b), (1.1)
is exactly controllable in time T . �

3.3. Comparison between Propositions 3.3 and 3.11. — Propositions 3.3 and 3.11
provide two criteria for the controllability of (1.1) for commensurable delays
Λ1, . . . ,ΛN . The first one is obtained by the usual augmentation of the state and
corresponds to a Kalman condition on the augmented matrices Â and B̂ from (3.3),
whereas the second one uses the characterizations of controllability in terms of the
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operator E(T ) from Proposition 2.7 in order to provide a criterion in terms of the
matrix C constructed from the matrix coefficients ΞnB. It follows clearly from
Propositions 3.3 and 3.11 that C has full rank if and only if the matrix(

B̂ ÂB̂ Â2B̂ · · · ÂbT/λc−1B̂
)

has full rank. The main result of this section is that the two matrices coincide.

Theorem 3.12. — Let T ∈ (0,+∞) and assume that (Λ1, . . . ,ΛN ) = λ(k1, . . . , kN )

with λ > 0 and k1, . . . , kN ∈ N∗. Let K, Â, B̂ be as in Proposition 3.3 and M , C as
in Proposition 3.11. Then

C =
(
B̂ ÂB̂ Â2B̂ · · · ÂM−1B̂

)
.

Proof. — For j ∈ [[1,K]] and ` ∈ [[1,M ]], let Cj` be defined as in (3.6) and set
C` = (Cj`)j∈[[1,K]] ∈ MKd,m(C). We will prove the theorem by showing that C1 = B̂

and that C`+1 = ÂC` for ` ∈ [[1,M − 1]]. Let k = (k1, . . . , kN ).
By (3.6), Cj1 =

∑
n∈NN
k·n=1−j

ΞnB for j ∈ [[1,K]], and thus, since Ξn = 0 for n ∈

ZN r NN , we obtain that Cj1 = 0 for j ∈ [[2,K]] and C11 = Ξ0B = B, which shows
that C1 = B̂.

Let ` ∈ [[1,M − 1]]. For j ∈ [[2,K]], we have

Cj,`+1 =
∑

n∈NN
k·n=`+1−j

ΞnB = Cj−1,` =
(
ÂC`

)
j
.

Moreover, it follows from (2.2) that

C1,`+1 =
∑

n∈NN
k·n=`

ΞnB =
∑

n∈NN
k·n=`

N∑
j=1

AjΞn−ejB =
∑

n∈NN
k·n=`

K∑
m=1

N∑
j=1
kj=m

AjΞn−ejB

=

K∑
m=1

∑
n∈NN
k·n=`

N∑
j=1
kj=m

AjΞn−ejB =

K∑
m=1

∑
n′∈NN

k·n′=`−m

N∑
j=1
kj=m

AjΞn′B

=

K∑
m=1

ÂmCm` =
(
ÂC`

)
1
,

where Âm is defined as in (3.3). Hence ÂC` = C`+1, as required. �

Remark 3.13. — Lemma 3.9 shows that, when Λ1, . . . ,ΛN are commensurable, the
operator E(T ) can be represented by the matrices E and C, and Proposition 3.11
shows that the controllability of (1.1) is encoded only in the matrix C. The represen-
tation of E(T ) by the matrix C is also highlighted in Remark 3.10. Hence, the fact
that C coincides with the Kalman matrix

(
B̂ ÂB̂ · · · ÂM−1B̂

)
for the augmented

system (3.2) shows that E(T ) generalizes the Kalman matrix for difference equations
without the commensurability hypothesis on the delays.
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Remark 3.14. — The main idea used here, namely the representation of E(T ) by the
matrix C in the commensurable case, is useful for the strategy we adopt in Section 4
to address the general case of incommensurable delays. Indeed, we characterize in Sec-
tion 4 approximate and exact controllability through an operator S which can be seen
as a “representation” of E(T ) (see Definition 4.9, Lemma 4.10, and Remark 4.11),
and our strategy consists in approximating the delay vector Λ by a sequence of com-
mensurable delays (Λn)n∈N and studying the asymptotic behavior of a corresponding
sequence of matrices (Mn)n∈N, these matrices representing the operator S in the same
way as C represents the operator E(T ).

4. Controllability of two-dimensional systems with two delays

In this section we investigate the controllability of (1.1) when the delays are not
commensurable. The extension from the commensurable case is nontrivial, since the
technique of state augmentation from Lemma 3.1 cannot be applied anymore and a
deeper analysis of the operator E(T ) is necessary. In this section, we carry out such
an analysis in the particular case N = d = 2 and m = 1, obtaining necessary and
sufficient conditions for approximate and exact controllability. This simple-looking
low-dimensional case already presents several non-trivial features that illustrate the
difficulties stemming from the non-commensurability of the delays, including the fact
that, contrarily to Propositions 3.3 and 3.11, approximate and exact controllability
are no longer equivalent.

Consider the difference equation

(4.1) x(t) = A1x(t− Λ1) +A2x(t− Λ2) +Bu(t),

where x(t) ∈ C2, u(t) ∈ C, A1, A2 ∈ M2(C), and B ∈ M2,1(C), the latter set being
canonically identified with C2. Without loss of generality, we assume that Λ1 > Λ2

and B 6= 0. The main result of this section is the following controllability criterion.

Theorem 4.1. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), T ∈ (0,+∞), and (Λ1,Λ2) ∈
(0,+∞)2 with Λ1 > Λ2 and B 6= 0.

(a) If RanA1 ⊂ RanB or both pairs (A1, B), (A2, B) are not controllable, then
(4.1) is neither approximately nor exactly controllable in time T .

(b) If RanA1 6⊂ RanB and exactly one of the pairs (A1, B), (A2, B) is controllable,
then the following are equivalent.

(i) The system (4.1) is approximately controllable in time T .
(ii) The system (4.1) is exactly controllable in time T .
(iii) T > 2Λ1.

(c) If (A1, B) and (A2, B) are controllable, let B⊥ ∈ C2 be the unique vector such
that det(B,B⊥) = 1 and BTB⊥ = 0. Set

(4.2) β =
detC(A1, B)

detC(A2, B)
, α = det

(
B (A1 − βA2)B⊥

)
.

Let S ⊂ C be the set of all possible complex values of the expression β + α1−Λ2/Λ1 .
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(i) The system (4.1) is approximately controllable in time T if and only if
T > 2Λ1 and 0 /∈ S.

(ii) The system (4.1) is exactly controllable in time T if and only if T > 2Λ1

and 0 /∈ S.

Remark 4.2. — The set S from case (c) is

S =
{
β + |α|1−Λ2/Λ1 ei(θ+2kπ)(1−Λ2/Λ1)

∣∣∣ k ∈ Z
}
,

where θ ∈ (−π, π] is such that α = |α| eiθ. Notice that S is a subset of the circle
centered in β with radius |α|1−Λ2/Λ1 (which reduces to a point when α = 0). When
Λ2/Λ1 ∈ Q, S is finite, S = S, and one recovers the equivalence between exact and
approximate controllability in time T from Proposition 3.10. When Λ2/Λ1 /∈ Q, S is
a countable dense subset of the circle.

Remark 4.3. — In case (c), approximate and exact controllability are characterized
by the position of 0 with respect of the subset S of C, which is completely defined
by (A,B,Λ). It would be a striking result to generalize this fact to other values
of N and d. In this context, we believe that the strategy of our argument, as briefly
described in Remark 3.14, is only suited for the case considered here, due to the
difficulties in adapting to a more general case the reductions to normal forms from
Remark 4.6, the construction of the operator S from Definition 4.9, and the spectral
study of the matrix M from the appendix.

The remainder of this section is dedicated to the proof of Theorem 4.1.

4.1. Reduction to normal forms. — We start by characterizing the complex num-
bers α, β defined in (4.2).

Lemma 4.4. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), assume that (A1, B) and (A2, B)

are controllable, and let α, β be given by (4.2). Let

(4.3) R =

(
0 1

−1 0

)
.

Then (A1 − βA2, B) is not controllable, B is a right eigenvector of A1 − βA2, and α
is an eigenvalue of A1 − βA2 associated with the left eigenvector BTR.

Proof. — By definition of β, one has

detC(A1 − βA2, B) = det
(
B (A1 − βA2)B

)
= det

(
B A1B

)
− β det

(
B A2B

)
= 0,

and thus (A1−βA2, B) is not controllable. Moreover, since det
(
B (A1 − βA2)B

)
= 0,

the vectors (A1 − βA2)B and B are colinear, and thus (A1 − βA2)B = λB for some
λ ∈ C. Finally, notice that, for every X,Y ∈M2,1(C), det

(
X Y

)
= XTRY , and thus,

by definition of α,

(4.4) α = BTR(A1 − βA2)B⊥.
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Moreover, one has BTRB = det
(
B B

)
= 0 and BTR(A1 − βA2)B = λBTRB = 0,

which shows in particular that BTR(A1 − βA2)B = αBTRB. Together with (4.4),
this gives BTR(A1 − βA2)(aB⊥ + bB) = αBTR(aB⊥ + bB) for every a, b ∈ C. Since
{B,B⊥} is a basis of C2, this yields

BTR(A1 − βA2) = αBTR,

and thus BTR is a left eigenvector of A1 − βA2 associated with the eigenvalue α. �

We next show, thanks to the characterization of α, β from Lemma 4.4, that α
and β are invariant under linear change of variables and linear feedbacks.

Lemma 4.5. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), P ∈ GL2(C), K1,K2 ∈ M1,2(C),
and set

B̃ = PB, Ãj = P (Aj +BKj)P
−1 for j ∈ {1, 2}.

Suppose that (A1, B) and (A2, B) are controllable. Let α, β ∈ C be defined by (4.2)
and define α̃, β̃ ∈ C by

β̃ =
detC(Ã1, B̃)

detC(Ã2, B̃)
, α̃ = det

(
B̃ (Ã1 − β̃Ã2)B̃⊥

)
,

where B̃⊥ ∈ C2 is the unique vector such that det(B̃, B̃⊥) = 1 and B̃TB̃⊥ = 0. Then
α̃ = α and β̃ = β.

Proof. — Since C(Ãj , B̃) = PC(Aj+BKj , B) and detC(Aj+BKj , B) = detC(Aj , B)

for j ∈ {1, 2}, one immediately obtains from the definitions of β and β̃ that β̃ = β.
Let R be given by (4.3). By Lemma 4.4, α is an eigenvalue of A1 − βA2 associated
with the left eigenvector BTR and α̃ is an eigenvalue of Ã1 − β̃Ã2 associated with
the left eigenvector B̃TR. Using that (PB)TR(PB) = det

(
PB PB

)
= 0 and that

PTRP = (detP )R, we get

B̃TR(Ã1 − β̃Ã2) = BTPTRP ((A1 − βA2) +B(K1 − βK2))P−1

= (detP )BTR(A1 − βA2)P−1 = α(detP )BTRP−1 = αBTPTRPP−1 = αB̃TR,

which shows that α̃ = α. �

Remark 4.6. — It follows from Lemmas 2.11 and 4.5 that, in order to prove Theo-
rem 4.1, it suffices to prove it for

(4.5) Aj =

(
aj1 aj2
0 0

)
for j ∈ {1, 2}, B =

(
0

1

)
, (Λ1,Λ2) = (1, L)

with ajk ∈ C for j, k ∈ {1, 2} and L ∈ (0, 1). Indeed, given A1, A2 ∈ M2(C),
B ∈ M2,1(C), and Λ1,Λ2 ∈ (0,+∞) with Λ1 > Λ2, it suffices to take λ = 1/Λ1,
P ∈ GL2(C) satisfying PB =

(
0 1
)T, and, for j ∈ {1, 2}, Kj ∈ M1,2(C) such that

−KjP
−1 is equal to the second row of PAjP−1, and in this case P (A1 +BK1)P−1,

P (A2 +BK2)P−1, PB, and (λΛ1, λΛ2) are of the form (4.5).
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Notice that aj2 = −detC(Aj , B) for j ∈ {1, 2}, which implies that aj2 = 0 if
and only if (Aj , B) is not controllable. Moreover, if (Aj , B) for j ∈ {1, 2} is con-
trollable, then P ∈ GL2(C) and Kj ∈ M1,2(C) can be taken so that, in addition,
P (Aj +BKj)P

−1 is of the form

Aj =

(
0 1

0 0

)
(see, e.g., [36, Def. 5.1.5]). Clearly, if both (A1, B) and (A2, B) are controllable, in
general only one of the two matrices A1 and A2 can be put in such a normal form.

We will thus prove Theorem 4.1 for (A1, A2, B,Λ1,Λ2) in one of the following
normal forms:

Aj =

(
aj1 0

0 0

)
for j ∈ {1, 2}, B =

(
0

1

)
, (Λ1,Λ2) = (1, L),(4.6)

A1 =

(
0 1

0 0

)
, A2 =

(
a21 0

0 0

)
, B =

(
0

1

)
, (Λ1,Λ2) = (1, L),(4.7)

A1 =

(
a11 a12

0 0

)
, A2 =

(
0 1

0 0

)
, B =

(
0

1

)
, (Λ1,Λ2) = (1, L).(4.8)

Part (a) in the statement of Theorem 4.1 corresponds to the normal forms (4.6) and
(4.8) in the case a11 = a12 = 0, (b) corresponds to (4.7) and (4.8) with a11 6= 0

and a12 = 0, and (c) corresponds to (4.8) with a12 6= 0. In the latter case, by a
straightforward computation, one has α = a11 and β = a12.

4.2. Proof of Theorem 4.1(a). — In order to prove (a), suppose first that (A1, B)

and (A2, B) are not controllable. According to Remark 4.6, we can assume that A1,
A2, B, and (Λ1,Λ2) are of the form (4.6). Hence one immediately computes

ΞnB =

{
B if n = 0,
0 otherwise.

Then, for every u ∈ YT and t ∈ (−1, 0), one has (E(T )u)(t) = Bu(T + t) if T + t > 0

and (E(T )u)(t) = 0 if T + t < 0. In particular, the range of E(T ) is contained
in the set L2((−1, 0),RanB), which is not dense in X. Hence the system is neither
approximately nor exactly controllable in any time T > 0.

Consider now the case where RanA1 ⊂ RanB. In particular, (A1, B) is not con-
trollable, and one is left to consider the case where (A2, B) is controllable. In this
case, the system can be brought down to the normal form (4.8) with a11 = a12 = 0.
Hence

(4.9) ΞnB =


(

0
1

)
if n = 0,(

1
0

)
if n = (0, 1),

0 otherwise.
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Then, for every u ∈ YT , one has

(4.10) (E(T )u)(t) =



0 if −1 6 T + t < 0,(
0

u(T + t)

)
if 0 6 T + t < L,(

u(T + t− L)

u(T + t)

)
if T + t > L.

If T < 1 + L, then, for every u ∈ YT , the first component of E(T )u vanishes in
the non-empty interval (−1, L − T ), and hence the range of E(T ) is not dense in X,
which shows that the system is neither approximately nor exactly controllable in time
T < 1 + L. If T > 1 + L, then, for every u ∈ YT , if x = E(T )u = (x1, x2), we have
x1(t) = u(T + t − L) and x2(t) = u(T + t) for every t ∈ (−1, 0), which implies
that x2(t) = x1(t + L) for t ∈ (−1,−L). Hence the range of E(T ) is not dense in X,
which shows that the system is neither approximately nor exactly controllable in time
T > 1 + L either. This concludes the proof of (a). �

4.3. Proof of Theorem 4.1(b). — Concerning (b), assume first that (A1, B) is con-
trollable and (A2, B) is not controllable. According to Remark 4.6, we can assume
that A1, A2, B, and (Λ1,Λ2) are of the form (4.7). In this case, one has

ΞnB =


(

0
1

)
if n = 0,

ak21

(
1
0

)
if n = (1, k) and k ∈ N,

0 otherwise.

Then, for every u ∈ YT , one has

(4.11) (E(T )u)(t) =



0 if −1 6 T + t < 0,(
0

u(T + t)

)
if 0 6 T + t < 1,

b(T+t−1)/Lc∑
k=0

ak21u(T + t− 1− kL)

u(T + t)

 if T + t > 1.

If T < 2, then, for every u ∈ YT , the first component of E(T )u vanishes in the
non-empty interval (−1, 1−T ), and hence the range of E(T ) is not dense in X, which
shows that the system is neither approximately nor exactly controllable in time T < 2.
If T > 2, the system is exactly controllable. Indeed, take x ∈ X and write x = (x1, x2).
Define u ∈ YT by

u(t) =


x2(t− T ), if T − 1 6 t < T ,
x1(t− T + 1)− a21x1(t− T + 1− L), if T − 2 + L 6 t < T − 1,
x1(t− T + 1), if T − 2 6 t < T − 2 + L,
0, otherwise.
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Then, for t ∈ (−1, 0), one has u(T + t) = x2(t) and, for k ∈ [[0, b(T + t− 1)/Lc]],

u(T + t− 1− kL) =


x1(t− kL)− a21x1(t− (k + 1)L), if k 6 (t+ 1)/L− 1,
x1(t− kL), if k = b(t+ 1)/Lc,
0, otherwise.

By (4.11), one immediately checks that E(T )u = x. Hence E(T ) is surjective, and
thus the system is exactly controllable.

Assume now that RanA1 6⊂ RanB, (A1, B) is not controllable, and (A2, B) is
controllable. Thanks to Remark 4.6, we can then assume that A1, A2, B, and (Λ1,Λ2)

are of the form (4.8) with a11 6= 0 and a12 = 0. Hence

ΞnB =


(

0
1

)
if n = 0,

ak11

(
1
0

)
if n = (k, 1) and k ∈ N,

0 otherwise.
Then, for every u ∈ YT , one has

(4.12) (E(T )u)(t) =



0 if −1 6 T + t < 0,(
0

u(T + t)

)
if 0 6 T + t < L,

bT+t−Lc∑
k=0

ak11u(T + t− k − L)

u(T + t)

 if T + t > L.

If T < 1 + L, (4.12) reduces to (4.10), and the non-controllability of (4.1) follows as
in (a). If 1 + L 6 T < 2, then, for every u ∈ YT , if x = E(T )u = (x1, x2), we have
x1(t) = u(T + t − L) for t ∈ (−1, 1 + L − T ) and x2(t) = u(T + t) for t ∈ (−1, 0),
which implies that x2(t) = x1(t + L) for t ∈ (−1, 1 − T ). As in the proof of (a), the
range of E(T ) is not dense in X and (4.1) is not controllable. To prove that (4.1) is
exactly controllable when T > 2, take x ∈ X and write x = (x1, x2). Define u ∈ YT by

u(t) =


x2(t− T ), if T − 1 6 t < T ,
x1(t− T + L), if T − 1− L 6 t < T − 1,

a−1
11 [x1(t− T + 1 + L)− x2(t− T + 1)] if T − 2 6 t < T − 1− L,

0, otherwise.

Then, for t ∈ (−1, 0), one has u(T + t) = x2(t) and, for k ∈ [[0, bT + t− Lc]],

u(T+t−k−L) =


x2(t− k − L), if k = bt− L+ 1c,
x1(t− k), if t− L+ 1<k6 t+ 1,

a−1
11 [x1(t+ 1− k)− x2(t+ 1− k − L)] , if t+ 1<k6 t− L+ 2,

0, if k > t− L+ 2.

If t ∈ [−1, L− 1), then

bt− L+ 1c = −1, (t− L+ 1, t+ 1] ∩ N = {0}, (t+ 1, t− L+ 2] ∩ N = ∅,
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and thus
bT+t−Lc∑
k=0

ak11u(T + t− k − L) = x1(t).

If t ∈ [L− 1, 0), then

bt− L+ 1c = 0, (t− L+ 1, t+ 1] ∩ N = ∅, (t+ 1, t− L+ 2] ∩ N = {1},

and thus
bT+t−Lc∑
k=0

ak11u(T + t− k − L) = x2(t− L) + a11a
−1
11 [x1(t)− x2(t− L)] = x1(t).

It follows that E(T )u = x, proving that E(T ) is surjective and yielding the exact
controllability of (4.1). �

4.4. Proof of Theorem 4.1(c). — In order to prove (c), let us first provide explicit
expressions for E(T ) and E(T )∗ when A1, A2, B, and (Λ1,Λ2) are of the form (4.8).
In this case, one obtains, by a straightforward computation, that

(4.13) Ξ(n,m)B =



(
0
1

)
if n = m = 0,(

αn−1β
0

)
if m = 0, n > 1,(

αn

0

)
if m = 1,

0 if m > 2,

where one uses that α=a11 and β=a12. Hence, for every u ∈ YT , (E(T )u)(t)=0 for
T + t ∈ (−1, 0) and, for T + t > 0,

(4.14) (E(T )u)(t)

=


bT+t−1c∑
n=0

αnβu(T + t− n− 1) +

bT+t−Lc∑
n=0

αnu(T + t− n− L)

u(T + t)

 .

Moreover, for every x = (x1, x2) ∈ X and t ∈ (−T, 0), one computes from (2.8) that

(4.15) (E(T )∗x)(t+ T ) =


x2(t), if −L < t < 0,
x2(t) + x1(t+ L), if −1 < t < −L,

α−btc−2βx1({t} − 1)

+α−bt+Lc−1x1({t+ L} − 1), if t < −1,

where we recall that {ξ} = ξ − bξc for ξ ∈ R.

4.4.1. Case T < 2Λ1. — Assume that (A1, B) and (A2, B) are controllable, in which
case, according to Remark 4.6, we can assume that A1, A2, B, and (Λ1,Λ2) are of the
form (4.8), and thus E(T ) and E(T )∗ are given by (4.14) and (4.15), respectively.

If T < 1 + L, it follows from (4.14) that, for every u ∈ YT , the first component
of E(T )u vanishes in the non-empty interval (−1, L − T ), and hence the system is
neither approximately nor exactly controllable in time T < 1 + L.
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For 1 + L 6 T < 2, we will show that approximate controllability does not hold
(and hence that exact controllability does not hold either) by showing that E(T )∗ is
not injective. For x = (x1, x2) ∈ X, it follows from (4.15) that E(T )∗x = 0 in YT if
and only if

(4.16)


x2(t) = 0, −L < t < 0,

x2(t) + x1(t+ L) = 0, −1 < t < −L,

βx1(t+ 1− L) + x1(t) = 0, −1 < t < −1 + L,

βx1(t− L) + αx1(t) = 0, 1 + L− T < t < 0.

Since the first two equations in (4.16) define x2 uniquely in terms of x1, showing
that E(T )∗x = 0 for some nonzero function x ∈ X amounts to showing that there
exists a nonzero function y ∈ L2((−1, 0),C) such that

(4.17)
{
βy(t+ 1− L) + y(t) = 0, −1 < t < −1 + L,

βy(t− L) + αy(t) = 0, 1 + L− T < t < 0.

Define f : [−1, 0)→ [−1, 0) by

f(t) =

{
t+ 1− L if −1 6 t < L− 1,
t− L if L− 1 6 t < 0;

notice that f is a translation by 1− L modulo 1. For n ∈ N, set tn = fn(−1) and let

K = min{n ∈ N | fn+1(−1) ∈ [−1, 1− T )}.

K is clearly well-defined: if L is rational, all orbits of f are periodic and hence K + 1

is upper bounded by the period of the orbit starting at −1, and, if L is irrational, all
orbits of f are dense in [−1, 0) and hence they intersect [−1, 1 − T ) infinitely many
times. Moreover, all the points t0, . . . , tK are distinct. For n ∈ [[0,K]], we define γn ∈ C
inductively as follows. We set γ0 = 1 and, for n ∈ [[1,K]], we set γn = −(γn−1)/β if
−1 6 tn−1 < L− 1 and γn = −(αγn−1)/β if L− 1 6 tn−1 < 0.

Take δ > 0 small enough such that all the intervals (tn, tn + δ), n ∈ [[0,K]], are
pairwise disjoint, contained in (−1, 0), and do not contain any of the points 1 − T ,
L− 1, 1 +L−T , and −L (these points may possibly be an extremity of the interval).
Let y ∈ L2((−1, 0),C) be defined by

(4.18) y(t) =

K∑
n=0

γnχ(tn,tn+δ)(t).

We claim that y satisfies (4.17).
– Consider first the case t ∈ (1 + L − T, 0), in which we have f(t) = t − L since

(1 + L − T, 0) ⊂ [L − 1, 0). Since f(1 + L − T ) = 1 − T and t0 = −1, it follows by
construction of δ that f(t) /∈ (t0, t0 + δ).

– If t /∈
⋃K
n=0(tn, tn + δ), then f(t) /∈

⋃K
n=0(tn, tn+δ); indeed, f(t)∈(tn, tn+δ)

for some n ∈ [[1,K]] implies immediately, by construction of f and δ, that
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t ∈ (tn−1, tn−1 + δ). Hence, if t ∈ (1 + L− T, 0) r
⋃K
n=0(tn, tn + δ), one imme-

diately has that y(t) = y(t− L) = 0 and hence the second equation of (4.17) is
satisfied for such a t. Notice that f(tK) = tK+1 < 1−T , so that tK < 1+L−T ,
and thus, by construction of δ, (tK , tK + δ) ∩ (1 + L− T, 0) = ∅.

– If t ∈ (tn, tn + δ) for some n ∈ [[0,K − 1]], one has tn ∈ (1 + L − T, 0) ⊂
[L− 1, 0) by construction of δ and f(t) ∈ (tn+1, tn+1 + δ), which shows, by the
construction of (γn)Kn=0, that

αy(t) + βy(t− L) = αγn + βγn+1 = 0.

Hence the second equation of (4.17) is satisfied for every t ∈ (1 + L− T, 0).
– Consider now the case t ∈ (−1, L−1), in which we have f(t) = t+1−L. Noticing

that f−1(t0, t0 + δ) = (L− 1, L− 1 + δ), one deuces that f(t) /∈ (t0, t0 + δ).
– Again, the same argument as before shows that, if t /∈

⋃K
n=0(tn, tn + δ),

then f(t) /∈
⋃K
n=0(tn, tn + δ), and thus, for such a t, y(t) = y(t+ 1−L) = 0 and

the first equation of (4.17) is satisfied. Since f(tK) = tK+1 ∈ [−1, 1 − T ), one
has tK ∈ [L− 1, 1 + L− T ), and hence (tK , tK + δ) ∩ (−1, L− 1) = ∅.

– If t ∈ (tn, tn+δ)∩(−1, L−1) for some n ∈ [[0,K−1]], one has tn ∈ (−1, L−1)

and f(t) ∈ (tn+1, tn+1 + δ), which shows, by the construction of (γn)Kn=0, that

βy(t+ 1− L) + y(t) = βγn+1 + γn = 0.

Hence the first equation of (4.17) is satisfied for every t ∈ (−1, L− 1).
Thus E(T )∗ is not injective, yielding that approximate controllability does not

hold. �

Remark 4.7. — One can modify the above construction to obtain a smooth function
x ∈ C∞0 ([−1, 0),C2) in the kernel of E(T )∗, simply by replacing the characteristic
functions χ(tn,tn+δ) in (4.18) by ϕ(· − tn) for a certain C∞ function ϕ compactly
supported in (0, δ).

4.4.2. Case T > 2Λ1. — The next lemma shows that one can reduce the proof of
Theorem 4.1(c) in the case T > 2Λ1 to the case T = 2Λ1.

Lemma 4.8. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), and (Λ1,Λ2) ∈ (0,+∞)2 with
Λ1 > Λ2, and assume that (A1, B) and (A2, B) are controllable. Then the following
assertions hold.

(a) The system (4.1) is approximately controllable in some time T > 2Λ1 if and
only if it is approximately controllable in time T = 2Λ1.

(b) The system (4.1) is exactly controllable in some time T > 2Λ1 if and only if it
is exactly controllable in time T = 2Λ1.

Proof. — Thanks to Remark 4.6, it suffices to consider the case where A1, A2, B,
and (Λ1,Λ2) are given by (4.8), in which case E(T )∗ is given by (4.15).

It is trivial that approximate controllability in T = 2 implies approximate controlla-
bility for larger time. To prove the converse, suppose that the system is approximately
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controllable in time T > 2 and take x ∈ X such that E(2)∗x = 0 in Y2. Thanks to
(4.15), this means that, for almost every t ∈ (−2, 0),

x2(t) = 0, if − L < t < 0,

x2(t) + x1(t+ L) = 0, if − 1 < t < −L,

α−btc−2βx1({t} − 1) + α−bt+Lc−1x1({t+ L} − 1) = 0, if − 2 < t < −1.

Multiplying the last equation by αk for k ∈ N∗ shows that, for almost every t ∈
(−∞, 0),

x2(t) = 0, if − L < t < 0,

x2(t) + x1(t+ L) = 0, if − 1 < t < −L,

α−btc−2βx1({t} − 1) + α−bt+Lc−1x1({t+ L} − 1) = 0, if t < −1.

In particular, E(T )∗x = 0 in YT , and thus x = 0 in X, which shows the approximate
controllability in time 2.

Concerning exact controllability, it is trivial that exact controllability in T = 2

implies exact controllability for larger time. To prove the converse, it suffices to show
that, for every T > 2, there exists CT > 0 such that, for every x ∈ X,

‖E(T )∗x‖2YT 6 CT ‖E(2)∗x‖2Y2
.

Let T > 2, x = (x1, x2) ∈ X. Since the right-hand side of (4.15) does not depend
on T , one obtains that, for t ∈ (−2, 0), (E(T )∗x)(t+ T ) = (E(2)∗x)(t+ 2). Hence

‖E(T )∗x‖2YT =

∫ T

0

|(E(T )∗x)(t)|2 dt =

∫ 0

−T
|(E(T )∗x)(t+ T )|2 dt

= ‖E(2)∗x‖2Y2
+

∫ −2

−T
|(E(T )∗x)(t+ T )|2 dt

= ‖E(2)∗x‖2Y2
+

∫ −2

−T

∣∣∣α−btc−2βx1({t} − 1) + α−bt+Lc−1x1({t+ L} − 1)
∣∣∣2 dt

6 ‖E(2)∗x‖2Y2

+

dTe−2∑
k=1

∫ −(k+1)

−(k+2)

∣∣∣α−btc−2βx1({t} − 1) + α−bt+Lc−1x1({t+ L} − 1)
∣∣∣2 dt

= ‖E(2)∗x‖2Y2

+

dTe−2∑
k=1

|α|k
∫ −1

−2

∣∣∣α−btc−2βx1({t} − 1) + α−bt+Lc−1x1({t+ L} − 1)
∣∣∣2 dt

6 ‖E(2)∗x‖2Y2

dTe−2∑
k=0

|α|k ,

and one can thus conclude the proof by taking CT =
∑dTe−2
k=0 |α|k. �

In order to study the controllability of (4.1) in the case T = 2Λ1, we introduce the
following operator.
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Definition 4.9. — We define the Hilbert space Z by Z = L2((−1, 0),C). Let α, β ∈ C.
We define the bounded linear operator S ∈ L(Z) by

(4.19) Sx(t) =

{
βx(t) + αx(t− L), if L− 1 < t < 0,
βx(t) + x(t− L+ 1), if −1 < t < L− 1.

By a straightforward computation, one obtains that the adjoint operator S∗ ∈ L(Z)

is given, for x ∈ Z, by

(4.20) S∗x(t) =

{
βx(t) + x(t+ L− 1) if − L < t < 0,

βx(t) + αx(t+ L) if − 1 < t < −L.

The operators S and S∗ allow one to characterize approximate and exact controlla-
bility for (4.1), as shown in the next lemma.

Lemma 4.10. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), and (Λ1,Λ2) ∈ (0,+∞)2 with
Λ1 > Λ2, and assume that (A1, B) and (A2, B) are controllable. Then the following
assertions hold.

(a) The system (4.1) is approximately controllable in some time T > 2Λ1 if and
only if S∗ is injective.

(b) The system (4.1) is exactly controllable in some time T > 2Λ1 if and only if S
is surjective or, equivalently, if there exists c > 0 such that ‖S∗x‖Z > c ‖x‖Z for every
x ∈ Z.

Proof. — Thanks to Remark 4.6, we can assume that A1, A2, B, and (Λ1,Λ2) are of
the form (4.8), in which case E(T ) and E(T )∗ are given respectively by (4.14) and
(4.15).

Let us first prove (a). Combining Lemma 4.8 and Proposition 2.8, one obtains that
(4.1) is approximately controllable in some time T > 2 if and only if E(2)∗ is injective.
Thanks to (4.15) and (4.20), x = (x1, x2) ∈ X satisfies E(2)∗x = 0 if and only if

(4.21)


x2(t) = 0, if − L < t < 0,

x2(t) = −x1(t+ L), if − 1 < t < −L,
S∗x1(t) = 0, if − 1 < t < 0.

Assume that E(2)∗ is injective and let w ∈ Z be such that S∗w = 0. Defining x =

(x1, x2) ∈ X by x1 = w, x2(t) = 0 for t ∈ (−L, 0), and x2(t) = −w(t + L) for
t ∈ (−1,−L), one obtains from (4.21) that E(2)∗x = 0, which implies that x = 0 and
hence w = 0, yielding the injectivity of S∗. Assume now that S∗ is injective and let
x = (x1, x2) ∈ X be such that E(2)∗x = 0. Then, by the third equation of (4.21), one
has S∗x1 = 0, which shows that x1 = 0, and thus the first two equations of (4.21)
show that x2 = 0, yielding the injectivity of E(2)∗. Hence the injectivity of E(2)∗ is
equivalent to that of S∗.

Let us now prove (b). Combining Lemma 4.8 and Proposition 2.7, one obtains that
(4.1) is exactly controllable in some time T > 2 if and only if E(2) is surjective.
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Thanks to (4.14), one has, for u ∈ Y2,

(4.22) (E(2)u)(t)

=


(
βu(t+ 1) + αu(t+ 1− L) + u(t+ 2− L)

u(t+ 2)

)
, if L− 1 < t < 0,(

βu(t+ 1) + u(t+ 2− L)

u(t+ 2)

)
, if −1 < t < L− 1.

Assume that E(2) is surjective and take w ∈ Z. Let x = (w, 0) ∈ X and take u ∈ Y2

such that E(2)u = x. Hence, by (4.22), one has that u(t+ 2) = 0 for t ∈ (−1, 0), i.e.,
u(t) = 0 for t ∈ (1, 2). Thus u(t+ 2−L) = 0 for L− 1 < t < 0, and one obtains from
(4.22) that{

βu(t+ 1) + αu(t+ 1− L) = w(t), if L− 1 < t < 0,

βu(t+ 1) + u(t+ 2− L) = w(t), if − 1 < t < L− 1.

This shows that Su(· + 1) = w, and thus S is surjective. Assume now that S is
surjective and take x = (x1, x2) ∈ X. Let ũ ∈ Z be such that

(4.23) Sũ(t) =

{
x1(t)− x2(t− L), if L− 1 < t < 0,
x1(t), if −1 < t < L− 1,

and define u ∈ Y2 by u(t) = ũ(t − 1) if 0 < t < 1 and u(t) = x2(t − 2) if 1 < t < 2.
Then, combining (4.19), (4.22), and (4.23), one obtains that E(2)u = x, which yields
the surjectivity of E(2). Hence the surjectivity of E(2) is equivalent to that of S. The
fact that the latter is equivalent to the existence of c > 0 such that ‖S∗x‖Z > c ‖x‖Z
for every x ∈ Z is a classical result in functional analysis (see, e.g., [33, Th. 4.13]). �

Remark 4.11. — As in Remark 2.12, one can provide a graphical representation for
the operators S and S∗. Notice first that, for A1, A2, B, and (Λ1,Λ2) of the form (4.8),
the only line segments σn from Remark 2.12 lying inside the domain [0, 2) × [−1, 0)

and associated with non-zero coefficients are σ(0,0), σ(0,1), σ(1,0), and σ(1,1), which are
associated respectively with the coefficients

(
0
1

)
,
(

1
0

)
,
(
β
0

)
, and

(
α
0

)
.

Figure 4.1(a) provides the graphical representation for E(2) and E(2)∗ given in
Remark 2.12. One can decompose the domain [0, 2) × [−1, 0) in two parts, E1 =

[1, 2) × [−1, 0) and E2 = [0, 1) × [−1, 0). The value of E(2)∗x(t) for t ∈ [0, 1), which
corresponds to the region E2, only depends on x1, and S∗ is defined as the operator
that, to each x1, associates the value of E(2)∗x(t) for t ∈ (0, 1), translated by 1 in
order to obtain as a result a function defined in (−1, 0). Hence S∗ can be seen as the
part of E(2)∗ corresponding to the region E2, which is represented in Figure 4.1(b).
It turns out that this part of E(2)∗ is enough to characterize its injectivity and the
surjectivity of its adjoint, as shown in Lemma 4.10.

In the case of commensurable delays, i.e., L = p/q with p, q ∈ N∗ coprime and
p < q, one can associate with S∗ a Toeplitz matrix M = (mij)i,j∈[[1,q]] ∈ Mq(C),
similar to the construction of C and E from E(T ) performed in Remark 3.10, and
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ξ
ζ 2

−1

( 0
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L− 1

E2 E1

ξ
ζ−1

−1

β

1

α

−L

L− 1

(a) (b)

Figure 4.1. Graphical representations of the operators (a) E(2) and
E(2)∗, and (b) S and S∗.

defined by

(4.24) mij =


β, if j = i,
α, if j = i− p,
1, if j = i+ q − p,
0, otherwise.

A graphical way to represent M goes as follows. We decompose (−1, 0)2 into squares
Sij = (−i/q,−(i− 1)/q)× (−j/q,−(j − 1)/q) for i, j ∈ [[1, q]]. Remark that the inter-
section between one of the line segments representing S∗ and the square Sij is either
empty, and in this casemij = 0, or equal to the diagonal of the square from its bottom
left corner to its top right corner, in which case mij is the conjugate of the coefficient
corresponding to the intersecting line. Figure 4.2 illustrates such a construction in the
case L = 3/7. The link between M and S∗ is made more explicit in (4.25).

4.5. Proof of Theorem 4.1(c)(i). — Assume that (A1, B) and (A2, B) are control-
lable, in which case, according to Remark 4.6, we can assume that A1, A2, B, and
(Λ1,Λ2) are of the form (4.8). It has already been proved that approximate control-
lability does not hold for T < 2. Thanks to Lemma 4.10, one is left to show that
the operator S∗ from (4.20) is injective if and only if 0 /∈ S. We write in this proof
α = |α| eiθ for some θ ∈ (−π, π].

Consider first the case L ∈ (0, 1) ∩ Q and write L = p/q for p, q ∈ N∗ coprime.
Define the operator R ∈ L

(
Z, L2 ((−1/q, 0) ,Cq)

)
by

(Rx(t))n = x
(
t− n− 1

q

)
, −1

q
< t < 0, n ∈ [[1, q]].

One immediately verifies from its definition that R is a unitary transformation and
that, for every x ∈ L2 ((−1/q, 0) ,Cq),

(4.25) (RS∗R−1x)(t) = Mx(t),
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ξ

ζ

β

1

α

M =



β 0 0 0 1 0 0

0 β 0 0 0 1 0

0 0 β 0 0 0 1

α 0 0 β 0 0 0

0 α 0 0 β 0 0

0 0 α 0 0 β 0

0 0 0 α 0 0 β



(a) (b)

Figure 4.2. Construction of the matrix M from S∗ in the case L = 3/7.

where M is the matrix defined in (4.24). One has

(4.26) S =
{
β + |α|1−p/q ei(θ+2kπ)(1−p/q)

∣∣∣ k ∈ [[0, q − 1]]
}
.

Notice that 0 ∈ S if and only if detM = 0. Indeed, by Proposition A.1(a) in the
appendix, one has detM = 0 if and only if (−β)q = αq−p, i.e., if and only if −β
is a q-th root of αq−p, which means that −β = |α|(q−p)/q ei(θ+2kπ)(q−p)/q for some
k ∈ [[0, q − 1]], this being equivalent to 0 ∈ S. Since R is a unitary transformation,
one obtains in particular that the injectivity of S∗ is equivalent to that of RS∗R−1,
which, thanks to (4.25), is equivalent to that of M . Since M is injective if and only if
detM 6= 0, one concludes that S∗ is injective if and only if 0 /∈ S, as required.

Assume now that L ∈ (0, 1) rQ. Let x ∈ Z be such that S∗x = 0, i.e.,

x(t) =


− 1

β
x(t+ L− 1), if −L < t < 0,

−α
β
x(t+ L), if −1 < t < −L.

Let ϕ : [−1, 0)→ [−1, 0) be the translation by L modulo 1 on the interval [−1, 0), i.e.,
ϕ(t) = t+ L if t ∈ [−1,−L) and ϕ(t) = t+ L− 1 if t ∈ [−L, 0). Since L is irrational,
ϕ is ergodic with respect to the Lebesgue measure in [−1, 0) (see, e.g., [23, Chap. II,
Th. 3.2]). We have

x(t) = −
αχ(−1,−L)(t) + χ(−L,0)(t)

β
x ◦ ϕ(t) for − 1 < t < 0.

Choose γ ∈ C such that eγ(1−L) = −β. If 0 ∈ S, we next show that γ can be
chosen so that eγ = α and that such a choice is unique. Indeed, since 0 ∈ S, one
has α 6= 0, for otherwise β = 0, which contradicts the controllability of (A1, B).
Hence the set of solutions with respect to γ of the equation eγ = α is equal to
{log |α| − i(θ + 2mπ) | m ∈ Z}. The condition 0 ∈ S means that there exists k ∈ Z
such that β + |α|1−L ei(θ+2kπ)(1−L) = 0, and thus γ = log |α| − i(θ + 2kπ) satisfies
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both equations. As regards uniqueness, consider γ′ ∈ C satisfying eγ′(1−L) = −β and
eγ
′

= α. Then there exists an integer k′ ∈ Z such that γ′ = log |α| − i(θ + 2k′π) and
β+ |α|1−L ei(θ+2kπ)(1−L) = β+ |α|1−L ei(θ+2k′π)(1−L) = 0. Hence (k− k′)(1−L) is an
integer, which implies k = k′ since L /∈ Q.

Let y ∈ Z be defined by y(t) = eγtx(t), i.e., y is the function satisfying

(4.27) y(t) =
(
αe−γχ(−1,−L)(t) + χ(−L,0)(t)

)
y ◦ ϕ(t) for − 1 < t < 0.

If 0 ∈ S, then αe−γ = 1, and thus y satisfies y = y ◦ϕ. Since ϕ is ergodic with respect
to the Lebesgue measure in [−1, 0), the set of functions y ∈ Z satisfying y = y ◦ ϕ is
the set of functions constant almost everywhere (see, e.g., [23, Chap. II, Prop. 2.1]).
Hence

(4.28) KerS∗ = {t 7→ ce−γt | c ∈ C},

where γ = log |α| − i(θ + 2kπ) for some integer k and eγ(1−L) = −β. Since such a
γ ∈ C (i.e., integer k) is unique, KerS∗ is of dimension 1. In particular, S∗ is not
injective, as required.

If 0 /∈ S, notice that, from (4.27),

‖y‖2Z =
∣∣αe−γ∣∣2 ∫ 0

L−1

|y(t)|2 dt+

∫ L−1

−1

|y(t)|2 dt,

which shows that (
1−

∣∣αe−γ∣∣2) ∫ 0

L−1

|y(t)|2 dt = 0.

Let us prove that y vanishes in the interval (L − 1, 0). If |αe−γ | 6= 1, this follows
immediately from the above equality. If |αe−γ | = 1, write αe−γ = ei2πηL/(1−L) for
some η ∈ [0, (1− L)/L). Notice that, for every n ∈ Z, one has ei2π(η−n)L/(1−L) 6= 1;
indeed, one has α = eγ+i2πηL/(1−L) and hence the possible complex values of α1−L

are

(4.29) eγ(1−L)+i(2πηL+2πk(1−L)) = −βe2iπL(η−k), k ∈ Z.

If ei2π(η−n)L/(1−L) = 1 for some n ∈ Z, then η ≡ n mod (1− L)/L and, since
(1− L)/L = (1/L)−1, we conclude that there exists k ∈ Z such that η ≡ k mod 1/L.
Then e2iπL(η−k) = 1, which is not possible due to (4.29) since we are in the case 0 /∈ S.
Hence, for every n ∈ Z, one has ei2π(η−n)L/(1−L) 6= 1. The function y satisfies

y(t) =
(
ei2πηL/(1−L)χ(−1,−L)(t) + χ(−L,0)(t)

)
y ◦ ϕ(t) for − 1 < t < 0.

Thus, for every n ∈ Z,∫ 0

−1

y(t)ei2πn/(1−L)tdt

= ei2πηL/(1−L)

∫ −L
−1

y(t+ L)ei2πn/(1−L)tdt+

∫ 0

−L
y(t+ L− 1)ei2πn/(1−L)tdt

= ei2π(η−n)L/(1−L)

∫ 0

L−1

y(t)ei2πn/(1−L)tdt+

∫ L−1

−1

y(t)ei2πn/(1−L)tdt,
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which implies that(
1− ei2π(η−n)L/(1−L)

)∫ 0

L−1

y(t)ei2πn/(1−L)tdt = 0, ∀n ∈ Z.

Since ei2π(η−n)L/(1−L) 6= 1 for every n ∈ Z, we conclude that∫ 0

L−1

y(t)ei2πn/(1−L)tdt = 0, ∀n ∈ Z,

which shows that all the Fourier coefficients of y|(L−1,0) vanish. Thus y is zero in the
interval (L− 1, 0).

Since y vanishes in (L − 1, 0), it follows from (4.27) and an immediate inductive
argument that y is zero in ϕ−k(L− 1, 0) for every k ∈ N, which shows that y = 0 in
(−1, 0) since ϕ is ergodic (see, e.g., [38, Th. 1.5]). Hence x = 0 is the unique solution
of S∗x = 0, proving that S∗ is injective, as required. �

Remark 4.12. — One can also obtain from the previous proof that, if L = p/q for
some p, q ∈ N∗ coprime, then approximate and exact controllability in time T > 2 are
equivalent for (4.1). Indeed, notice that, when (4.1) is approximately controllable in
time T > 2, then 0 /∈ S, M is invertible, and hence, by (4.25), one has

‖RS∗R−1x‖L2((−1/q,0),Cq)> |M−1|−1
2 ‖x‖L2((−1/q,0),Cq)

for every x ∈ L2 ((−1/q, 0) ,Cq), which shows that ‖S∗x‖Z > |M−1|−1
2 ‖x‖Z for

every x ∈ Z, thus giving the exact controllability of (4.1) in time T > 2 thanks
to Lemma 4.10. This agrees with the general result of Proposition 3.11 for com-
mensurable delays. Moreover, one obtains from (4.26) that the set S is finite, which
shows that S = S and hence conditions 0 /∈ S and 0 /∈ S are equivalent. This proves
Theorem 4.1(c)(ii) in the case where Λ1 and Λ2 are commensurable, i.e., Λ2/Λ1 ∈ Q.

Remark 4.13. — When 0 ∈ S and L /∈ Q, this proof also shows that the kernel of S∗
is the vector space spanned by the function x(t) = eγt with γ ∈ C chosen as in the
proof of the theorem. Thanks to (4.15), this means that the kernel of E(2)∗ is the
vector space spanned by the function

x(t) =

(
e−γt

−e−γ(t+L)χ(−1,−L)(t)

)
.

Remark 4.14. — When 0 ∈ S, L /∈ Q, and α, β ∈ R, one has that γ ∈ R, obtaining thus
a real-valued nonzero solution to S∗x = 0, and hence to E(2)∗x = 0. Indeed, notice
first that one can only have 0 ∈ S with α, β ∈ R if α > 0 (in which case β < 0), since
α = 0 implies β = 0, which is not possible, and, for α < 0, the equality β +α1−L = 0

for some complex value of α1−L implies that −β = α1−L = |α|1−L ei(π+2nπ)(1−L) for
some n ∈ Z, but such an expression cannot be real for any n ∈ Z since L /∈ Q. Now,
when α > 0, then γ = logα ∈ R.
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4.6. Proof of Theorem 4.1(c)(ii). — Assume that (A1, B) and (A2, B) are control-
lable, in which case, according to Remark 4.6, we can assume that A1, A2, B, and
(Λ1,Λ2) are of the form (4.8). Since one has already proved that exact controlla-
bility does not hold for T < 2, it suffices to show that, for T > 2, the system is
exactly controllable if and only if 0 /∈ S. Remark 4.12 has already shown the result
when L ∈ (0, 1) ∩ Q, and thus one is left to prove only the case L ∈ (0, 1) r Q.
Thanks to Lemma 4.10, one is left to show that 0 /∈ S if and only if the operator S
defined in (4.19) is surjective or, equivalently, if there exists c > 0 such that S∗ sat-
isfies ‖S∗x‖Z > c ‖x‖Z for every x ∈ Z. We write in this proof α = |α| eiθ for some
θ ∈ (−π, π].

Take L ∈ (0, 1)rQ. Notice first that 0 ∈ S if and only if |β| = |α|1−L. Indeed, one
has

S =
{
β + |α|1−L ei(θ+2kπ)(1−L)

∣∣∣ k ∈ Z
}
,

and, since L is irrational, S is the circle in C of center β and radius |α|1−L.
Let us first treat the case α = 0. Since β 6= 0 due to the controllability of (A1, B),

one has 0 /∈ S in this case. We will prove the exact controllability of (4.1) by showing
the surjectivity of S. Take x ∈ Z and define u ∈ Z by

u(t) =

bt/(L−1)c∑
k=0

(−1)k

βk+1
x(t+ k(1− L)).

Then, for L− 1 < t < 0, one has Su(t) = βu(t) = x(t) and, for −1 < t < L− 1, one
has

Su(t) = βu(t) + u(t− L+ 1)

=

bt/(L−1)c∑
k=0

(−1)k

βk
x(t+ k(1− L)) +

b(t−L+1)/(L−1)c∑
k=0

(−1)k

βk+1
x(t− L+ 1 + k(1− L))

=

bt/(L−1)c∑
k=0

(−1)k

βk
x(t+ k(1− L)) +

bt/(L−1)c∑
k=1

(−1)k−1

βk
x(t+ k(1− L)) = x(t),

which shows that Su = x and thus S is surjective.
Consider now the case α 6= 0. Suppose that 0 /∈ S, which means that |β| 6= |α|1−L.

Let (pn), (qn) be two sequences of positive integers such that pn and qn are coprime
for every n ∈ N and pn/qn → L as n → ∞. Let rn = qn − pn. Up to eliminating a
finite number of terms in the sequence, we can assume that |β| 6= |α|rn/qn for every
n ∈ N. Let Sn ∈ L(Z) be the operator whose adjoint S∗n is given by

S∗nx(t) =


βx(t) + x

(
t+

pn
qn
− 1
)

if − pn
qn

< t < 0,

βx(t) + αx
(
t+

pn
qn

)
if − 1 < t < −pn

qn
.
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One easily verifies (using, e.g., [32, Th. 9.5]) that, for every x ∈ Z, one has S∗nx→ S∗x

as n→∞. Since |β| 6= |α|rn/qn for every n ∈ N, we obtain, from Remark 4.12, that

‖S∗nx‖Z > |M
−1
n |−1

2 ‖x‖Z ,

where Mn is given by (4.24) with p and q replaced respectively by pn and qn. Hence,
by Proposition A.1(c),

‖S∗nx‖Z >
∣∣|β| − |α|rn/qn ∣∣
max

(
|α| , |α|−1) ‖x‖Z ,

and, letting n→∞,

‖S∗x‖Z >
∣∣|β| − |α|1−L∣∣

max
(
|α| , |α|−1) ‖x‖Z ,

which proves the surjectivity of S.
For a, b ∈ C with a 6= 0, let S∗a,b ∈ L(Z) be defined by

S∗a,bx(t) =

{
bx(t) + x(t+ L− 1) if − L < t < 0,

bx(t) + ax(t+ L) if − 1 < t < −L.

In particular, for every λ ∈ C, one has S∗a,b − λ = S∗
a,b−λ. Let σp(S∗a,b) denote the

set of eigenvalues of S∗a,b. Thus λ ∈ σp(S∗a,b) if and only if 0 ∈ σp(S∗
a,b−λ), which, by

the proof of Theorem 4.1(c)(i), is the case if and only if b − λ + a1−L = 0 for some
complex value of a1−L. Hence σp(S∗) is the set of all possible values of β + α1−L.

Suppose now that 0 ∈ S, i.e., that |β| = |α|1−L. Since L is irrational, we conclude
that 0 ∈ σp(S∗). Hence there exists a sequence (λn)n∈N in σp(S∗) such that λn → 0 as
n→∞. For n ∈ N, let xn be an eigenfunction of S∗ associated with the eigenvalue λn
and with ‖xn‖Z = 1. Hence S∗xn = λnxn → 0 as n → +∞, which shows that there
does not exist c > 0 such that ‖S∗x‖Z > c ‖x‖Z for every x ∈ Z, and thus S is not
surjective. �

Remark 4.15. — It follows from the above proof and (4.28) that, for L ∈ (0, 1)rQ and
α 6= 0, one has a complete description of the eigenvalues and eigenfunctions of S∗.
The set of eigenvalues of S∗ is {β + |α|1−L e−i(θ+2kπ)(1−L) | k ∈ Z}, where θ ∈ R
is an argument of α. In addition, every eigenvalue λ is simple, with corresponding
eigenfunction x(t) = e−γt, where γ is the unique solution of{

eγ = α,

eγ(1−L) = −(β − λ).

5. Controllability to constants

The notions of controllability provided in Definition 2.6 require the possibility of
steering the state xt of (1.1) towards (or arbitrarily close to) an arbitrary state of the
infinite-dimensional space X. We show in this section the equivalence between such
controllability notions and notions which are in appearance much weaker, since they
involve only target states belonging to a finite-dimensional space.
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Definition 5.1. — Let T ∈ (0,+∞). Define K by

(5.1) K =
{
x ∈ X

∣∣ x : (−Λmax, 0)→ Cd is a constant function
}
.

(a) We say that (1.1) is approximately controllable to constants in time T if
RanE(T ) ⊃ K, i.e., for every y ∈ K and ε > 0, there exists u ∈ YT such that the
solution x of (1.1) with initial condition 0 and control u satisfies ‖xT − y‖X < ε.

(b) We say that (1.1) is exactly controllable to constants in time T if RanE(T ) ⊃ K,
i.e., for every y ∈ K, there exists u ∈ YT such that the solution x of (1.1) with initial
condition 0 and control u satisfies xT = y.

As we have proved in Lemma 2.11 for approximate and exact controllability,
approximate and exact controllability to constants are also preserved under linear
change of coordinates, linear feedback, and changes of the time scale.

Lemma 5.2. — Let T > 0, λ > 0, Kj ∈ Mm,d(C) for j ∈ [[1, N ]], P ∈ GLd(C), and
consider the system (2.9). Then

(a) (1.1) is approximately controllable to constants in time T if and only if (2.9)
is approximately controllable to constants in time T/λ;

(b) (1.1) is exactly controllable to constants in time T if and only if (2.9) is exactly
controllable to constants in time T/λ.

The following analogue of Proposition 2.8 will also be of use in the sequel.

Proposition 5.3. — Let T ∈ (0,+∞). The system (1.1) is exactly controllable to
constants in time T if and only if there exists c > 0 such that, for every x ∈ X,

‖E(T )∗x‖2YT > c
∣∣∣∣∫ 0

−Λmax

x(s)ds

∣∣∣∣2
2

.

Proof. — Let κ ∈ L(Cd,X) be the canonical injection of Cd into X, i.e., for v ∈ Cd,
κv is the constant function identically equal to v. Then clearly Ranκ = K, where K is
defined by (5.1), and thus (1.1) is exactly controllable to constants in time T if and
only if Ranκ ⊂ RanE(T ). By classical results on functional analysis (see, e.g., [7,
Lem. 2.48]), the latter condition is equivalent to the existence of c > 0 such that, for
every x ∈ X,

‖E(T )∗x‖2YT > c |κ
∗x|22 .

This concludes the proof, since κ∗x =
∫ 0

−Λmax
x(s)ds, as one can verify by a straight-

forward computation. �

5.1. Approximate controllability to constants. — The main result of this section,
Theorem 5.6, states that approximate controllability and approximate controllabil-
ity to constants are equivalent. Its proof relies on the following lemma, inspired by
[15, Th. 5.1], which provides a link between the operator E(T ) and some suitable
integration operators.
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Lemma 5.4. — Let T ∈ (0,+∞). Define the bounded linear operators P ∈ L(X),
Q ∈ L(YT ), and F ∈ L(YT ,Cd) by

(Px)(t) =

∫ t

−Λmax

x(s)ds, x ∈ X, t ∈ (−Λmax, 0),

(Qu)(t) =

∫ t

0

u(s)ds, u ∈ YT , t ∈ (0, T ),

Fu =
∑

n∈NN
Λ·n6T−Λmax

ΞnB

∫ T−Λmax−Λ·n

0

u(s)ds, u ∈ YT .

Then ‖P‖L(X) 6
√

2 Λmax/2 and

(5.2) PE(T ) = E(T )Q− F.

Proof. — For x ∈ X, one has

‖Px‖2X =

∫ 0

−Λmax

∣∣∣∣∫ t

−Λmax

x(s)ds

∣∣∣∣2
2

dt 6
∫ 0

−Λmax

(∫ t

−Λmax

|x(s)|22 ds
)

(t+ Λmax)dt

6 ‖x‖2X
∫ 0

−Λmax

(t+ Λmax)dt =
Λ2

max

2
‖x‖2X ,

and thus ‖P‖L(X) 6
√

2 Λmax/2.
Let u ∈ YT and extend u by zero in the interval (−∞, 0). Then, for almost every

t ∈ (−Λmax, 0),

(PE(T )u)(t) =

∫ t

−Λmax

∑
n∈NN

ΞnBu(T + s− Λ · n)ds

=
∑

n∈NN
ΞnB

∫ T+t−Λ·n

T−Λmax−Λ·n
u(s)ds

=
∑

n∈NN
ΞnB

[∫ T+t−Λ·n

0

u(s)ds−
∫ T−Λmax−Λ·n

0

u(s)ds

]
= (E(T )Qu)(t)− Fu,

where we use that the above infinite sums have only finitely many non-zero terms. �

As a consequence of Lemma 5.4, one obtains that approximate controllability to
constants implies approximate controllability to polynomials.

Lemma 5.5. — Let T ∈ (0,+∞) and assume that (1.1) is approximately controllable
to constants in time T . Then, for every polynomial p : (−Λmax, 0) → Cd and ε > 0,
there exists u ∈ YT such that ‖E(T )u− p‖X < ε.

Proof. — Let P , Q, and F be as in Lemma 5.4. We prove the result by induction on
the degree of the polynomial. The result is true for polynomials of degree at most 0

since this is precisely the definition of approximate controllability to constants.
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Assume that r ∈ N is such that, for every polynomial p : (−Λmax, 0) → Cd of
degree at most r and ε > 0, there exists u ∈ YT such that ‖E(T )u− p‖X < ε.
Let q : (−Λmax, 0) → Cd be a polynomial of degree r + 1 and take ε > 0. Let
a0, . . . , ar+1 ∈ Cd be such that

q(t) =

r+1∑
n=0

an(t+ Λmax)n, ∀t ∈ (−Λmax, 0).

Since t 7→ ar+1(r+1)(t+Λmax)r is a polynomial of degree r, thanks to the induction
hypothesis, there exists u0 ∈ YT such that

‖E(T )u0 − ar+1(r + 1)(·+ Λmax)r‖X <
√

2ε

3Λmax
.

Hence, since P [ar+1(r + 1)(·+ Λmax)r]=ar+1(·+Λmax)r+1 and ‖P‖L(X)<
√

2 Λmax/2,
one obtains that ∥∥PE(T )u0 − ar+1(·+ Λmax)r+1

∥∥
X
<
ε

3
,

which yields, thanks to (5.2),

(5.3)
∥∥E(T )Qu0 − Fu0 − ar+1(·+ Λmax)r+1

∥∥
X
<
ε

3
.

Since Fu0 is a constant vector, there exists u1 ∈ YT such that

(5.4) ‖E(T )u1 + Fu0‖X <
ε

3
.

Since t 7→
∑r
n=0 an(t + Λmax)r is a polynomial of degree at most r, there exists

u2 ∈ YT such that

(5.5)
∥∥∥∥E(T )u2 −

r∑
n=0

an(·+ Λmax)r
∥∥∥∥
X

<
ε

3
.

Let u = Qu0 + u1 + u2 ∈ YT . Combining (5.3), (5.4), and (5.5), one finally obtains
that

‖E(T )u− q‖X < ε,

which concludes the inductive argument. �

Since the set of all Cd-valued polynomials defined on (−Λmax, 0) is dense in X, one
obtains as an immediate consequence the main result of this section.

Theorem 5.6. — Let T ∈ (0,+∞). Then (1.1) is approximately controllable in time
T if and only if it is approximately controllable to constants in time T .

5.2. Exact controllability to constants. — In this section, we are interested in
the relation between exact controllability and exact controllability to constants. The
technique used in Section 5.1 to prove Theorem 5.6 does not seem well adapted to
treat such a question, since, even though one can easily adapt Lemma 5.5 to prove
that exact controllability to constants implies exact controllability to polynomials,
this is not sufficient to decide whether exact controllability holds.
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We rely instead in the characterization of exact controllability to constants from
Proposition 5.3. We are only able to treat the case of two-dimensional systems with
two delays and a scalar control, since, in that case, the tools from Section 4, and in
particular the spectral decomposition of the operator S∗ from (4.20), are available.
The general case remains an open problem.

Let us then consider the system (4.1), i.e.,

(4.1) x(t) = A1x(t− Λ1) +A2x(t− Λ2) +Bu(t),

where x(t) ∈ C2, u(t) ∈ C, A1, A2 ∈M2(C), and B ∈ C2, and we still assume, without
loss of generality, that Λ1 > Λ2. We start by proving that the analogue of Lemma 4.8
for exact controllability to constants also holds.

Lemma 5.7. — Let A1, A2 ∈ M2(C), B ∈ M2,1(C), and (Λ1,Λ2) ∈ (0,+∞)2 with
Λ1 > Λ2, and assume that (A1, B) and (A2, B) are controllable. Then (4.1) is exactly
controllable to constants in some time T > 2Λ1 if and only if it is exactly controllable
to constants in time T = 2Λ1.

Proof. — Thanks to Lemma 5.2, one can proceed as in Remark 4.6 and assume with
no loss of generality that A1, A2, B, and (Λ1,Λ2) are given by (4.8), in which case
E(T )∗ is given by (4.15).

Notice that, for every T > 2, there exists CT > 0 such that, for every x ∈ X,

(5.6) ‖E(2)∗x‖2YT 6 ‖E(T )∗x‖2YT 6 CT ‖E(2)∗x‖2Y2
.

Indeed, the first inequality is trivial since, by (4.15), (E(2)∗x)(t+2) = (E(T )∗x)(t+T )

for every t ∈ (−2, 0), and the second inequality has been shown in the proof of
Lemma 4.8. The conclusion of the lemma now follows from Proposition 5.3. �

In order to prove an analogue of Lemma 4.10 for exact controllability to constants,
we first introduce the space Kr(L) defined for L ∈ (0, 1) by

Kr(L) = {x ∈ Z | x is constant on the intervals (−1, L− 1) and (L− 1, 0)} .

Lemma 5.8. — Let A1, A2 ∈M2(C), B ∈M2,1(C), (Λ1,Λ2) ∈ (0,+∞)2 with Λ1 > Λ2,
and L = Λ2/Λ1. Assume that (A1, B) and (A2, B) are controllable. Let S ∈ L(Z) be
the operator defined in (4.19). Then (4.1) is exactly controllable to constants in some
time T > 2Λ1 if and only if RanS ⊃ Kr(L), or, equivalently, if there exists c > 0 such
that, for every x ∈ Z,

(5.7) ‖S∗x‖2Z > c
(∣∣∣∣∫ L−1

−1

x(t)dt

∣∣∣∣2 +

∣∣∣∣∫ 0

L−1

x(t)dt

∣∣∣∣2).
Proof. — As in the proof of Lemma 5.7, we assume, with no loss of generality, that
A1, A2, B, and (Λ1,Λ2) are given by (4.8). By Lemma 5.7, (4.1) is exactly controllable
to constants in some time T > 2 if and only if RanE(2) ⊃ K.
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Assume that (4.1) is exactly controllable to constants in some time T > 2 and take
y ∈ Kr(L). Let (a, b) ∈ C2 be such that

y(t) =

{
a, if L− 1 < t < 0,
b, if −1 < t < L− 1.

Consider the function z ∈ K given by z(t) = (b, b − a) for every t ∈ (−1, 0). Since
RanE(2) ⊃ K, there exists u ∈ Y2 such that E(2)u = z, i.e.,

(
βu(t+ 1) + αu(t+ 1− L) + u(t+ 2− L)

u(t+ 2)

)
=

(
b

b− a

)
, if L− 1 < t < 0,(

βu(t+ 1) + u(t+ 2− L)

u(t+ 2)

)
=

(
b

b− a

)
, if − 1 < t < L− 1,

where we use the explicit expression of E(2) from (4.22). Hence
u(t) = b− a, if 1 < t < 2,

βu(t+ 1) + αu(t+ 1− L) + u(t+ 2− L) = b, if L− 1 < t < 0,

βu(t+ 1) + u(t+ 2− L) = b, if − 1 < t < L− 1,

and, since t+ 2− L ∈ (1, 2) for L− 1 < t < 0, one obtains that

(5.8)
{
βu(t+ 1) + αu(t+ 1− L) = a, if L− 1 < t < 0,

βu(t+ 1) + u(t+ 2− L) = b, if − 1 < t < L− 1.

Let x ∈ Z be defined by x(t) = u(t + 1) for −1 < t < 0. Then (5.8) means precisely
that Sx = y, and thus Kr(L) ⊂ RanS.

Assume now that Kr(L) ⊂ RanS and take x ∈ K. Let (a, b) ∈ C2 be such that
x(t) = (a, b) for t ∈ (−1, 0). Let y ∈ Z be given for t ∈ (−1, 0) by

y(t) =

{
a− b, if L− 1 < t < 0,
a, if −1 < t < L− 1.

Hence y ∈ Kr(L), and thus there exists z ∈ Z such that Sz = y, i.e., for t ∈ (−1, 0),{
βz(t) + αz(t− L) = a− b, if L− 1 < t < 0,

βz(t) + z(t+ 1− L) = a, if − 1 < t < L− 1.

Let u ∈ Y2 be defined by

u(t) =

{
z(t− 1), if 0 < t < 1,
b, if 1 < t < 2.

Then, for t ∈ (−1, 0),
u(t+ 2) = b, if − 1 < t < 0,

βu(t+ 1) + αu(t+ 1− L) + u(t+ 2− L) = a, if L− 1 < t < 0,

βu(t+ 1) + u(t+ 2− L) = a, if − 1 < t < L− 1,

and, using the explicit expression (4.22) of E(2), one obtains that E(2)u = x. Then
K ⊂ RanE(2), and thus (4.1) is exactly controllable to constants in time T > 2.
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Finally, let κr ∈ L(C2,Z) be the bounded linear operator defined for (a, b) ∈ C2 by

(κr(a, b))(t) =

{
a, if L− 1 < t < 0,
b, if −1 < t < L− 1.

Then Ranκr = Kr(L), which means that (4.1) is exactly controllable to constants in
time T > 2 if and only if Ranκr ⊂ RanS. By classical results on functional analysis
(see, e.g., [7, Lem. 2.48]), the latter condition is equivalent to the existence of c > 0

such that, for every x ∈ X,

(5.9) ‖S∗x‖2Z > c |κ
∗
rx|

2
2 .

By a straightforward computation, one obtains that

κ∗rx =

∫ 0

L−1
x(t)dt∫ L−1

−1
x(t)dt

 ,

and thus (5.9) is the same as (5.7). �

We can now state the main result of this section.

Theorem 5.9. — Let T ∈ (0,+∞). Then (4.1) is exactly controllable in time T if and
only if it is exactly controllable to constants in time T .

Proof. — Notice that exact controllability in time T implies exact controllability to
constants in time T , which in turn implies approximate controllability to constants
in time T , the latter being equivalent, thanks to Theorem 5.6, to approximate con-
trollability in time T . Hence, equivalence between exact controllability to constants
in time T and exact controllability in time T is true in particular when approximate
and exact controllability in time T are equivalent. Thanks to Theorem 4.1, this is the
case if at least one of the following conditions holds.

– T < 2Λ1;
– (A1, B) or (A2, B) is not controllable;
– (A1, B) and (A2, B) are controllable and 0 /∈ S r S, where S ⊂ C is as in the

statement of Theorem 4.1(c).
Hence Theorem 5.9 is proved in such situations, and one is left to consider the case
where T > 2Λ1, (A1, B) and (A2, B) are controllable, and 0 ∈ Sr S.

Assume that T > 2Λ1, (A1, B) and (A2, B) are controllable, and 0 ∈ Sr S. Notice
that, due to the definition of S, one has Λ2/Λ1 /∈ Q in this case. Thanks to Theo-
rem 4.1(c), (4.1) is not exactly controllable in time T , and thus the proposition is
proved if one shows that (4.1) is not exactly controllable to constants in time T .

As in Lemmas 5.7 and 5.8, we assume, with no loss of generality, that A1, A2, B,
and (Λ1,Λ2) are given by (4.8), with L = Λ2/Λ1. Let α, β ∈ C be as in the statement
of Theorem 4.1(c), θα, θβ ∈ R be the arguments of α and β, respectively, and S be
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the operator defined in (4.19). Notice that, since 0 ∈ Sr S, one has α 6= 0. Define the
operators Mα ∈ L(Z) and Ŝ ∈ L(Z) for x ∈ Z by

Mαx(t) = e−(log|α|−iθα)tx(t) and Ŝ = M−1
α S∗Mα.

According to Remark 4.15, the eigenvalues of Ŝ are λk = β + |α|1−L e−i(θα+2kπ)(1−L)

for k ∈ Z, with corresponding eigenfunctions ek given, for t ∈ (−1, 0), by ek(t) =

e2ikπt.
Notice that

min(1, |α|) 6 ‖Mα‖L(Z) 6 max(1, |α|),

and thus, for every x ∈ Z,

min
(
|α|2 , |α|−2) ‖S∗x‖2Z 6 ∥∥Ŝx∥∥2

Z
6 max

(
|α|2 , |α|−2) ‖S∗x‖2Z .

Hence, thanks to Lemma 5.8, (4.1) is exactly controllable to constants in time T if
and only if there exists c > 0 such that, for every x ∈ Z,

(5.10)
∥∥Ŝx∥∥2

Z
> c

(∣∣∣∣∫ L−1

−1

x(t)dt

∣∣∣∣2 +

∣∣∣∣∫ 0

L−1

x(t)dt

∣∣∣∣2).
Assume, to obtain a contradiction, that (4.1) is exactly controllable to constants

in time T , and let c > 0 be such that (5.10) holds for every x ∈ Z. Notice that

(5.11) π + θβ − θα(1− L)

2π
is not of the form m(1− L) + n for m,n ∈ Z.

Indeed, if it were the case, one would have π + θβ ≡ (θα − 2πm)(1 − L) mod 2π;
since 0 ∈ S r S, one has |β| = |α|1−L, and thus −β = |α|1−L e−i(θα−2πm)(1−L),
which contradicts the fact that 0 /∈ S. Hence, using the Inhomogeneous Diophantine
Approximation Theorem (see, e.g., [2, Chap. III, Th. IIA]), there exist two sequences
(pn)n∈N and (qn)n∈N in Z with |qn| → ∞ as n → ∞ such that, for every n ∈ N, one
has qn 6= 0 and

(5.12) |2πqn(1− L)− (π + θβ − θα(1− L))− 2πpn| <
π

2 |qn|
.

Recalling that |β| = |α|1−L, one obtains that, for every n ∈ N, the eigenvalue λqn
of Ŝ satisfies

(5.13)

λqn = β + |α|1−L e−i(θα+2πqn)(1−L)

= β
[
1 + e−i(θα+2πqn)(1−L)eiθβ

]
= β

[
1− ei(2πpn+π+θβ−θα(1−L)−2πqn(1−L))

]
.

Notice that, if z ∈ C is such that |z| 6 1, then |1− ez| 6 2 |z|. By (5.12), one has
|2πpn+π+θβ−θα(1−L)−2πqn(1−L)| < π/2 |qn| 6 1 for n large enough, and thus,
for every n large enough,

(5.14) |λqn | 6 |β|
π

|qn|
.

J.É.P. — M., 2020, tome 7



Approximate and exact controllability of linear difference equations 135

In particular, one has λqn → 0 as n → ∞, and, by (5.13), this also proves that
e−2iπqn(1−L) → e−i(π+θβ−θα(1−L)) as n → ∞. Notice that e−i(π+θβ−θα(1−L)) 6= 1, as
it follows from (5.11). Hence there exists C > 0 such that, for every n large enough,

(5.15)
∣∣e−2iπqn(1−L) − 1

∣∣ > 1

C
.

Fix n0 ∈ N such that (5.14) and (5.15) hold for every n > n0.
For n > n0, define xn ∈ Z by

xn =
1

n− n0 + 1

n∑
j=n0

2iπqj
e−2iπqj(1−L) − 1

eqj .

Then, since {ek | k ∈ Z} is an orthonormal basis of Z made of the eigenfunctions of Ŝ,
one has

(5.16)

∥∥Ŝxn∥∥2

Z
=

n∑
j=n0

∣∣∣ 2iπqj
(e−2iπqj(1−L) − 1)(n− n0 + 1)

∣∣∣2 ∣∣λqj ∣∣2
6

4π2C2

(n− n0 + 1)2

n∑
j=n0

|qj |2 |λqj |2 6
4 |β|2 π4C2

n− n0 + 1
.

On the other hand, one computes

(5.17)
∫ L−1

−1

xn(t)dt =
1

n− n0 + 1

n∑
j=n0

2iπqj
e−2iπqj(1−L) − 1

e−2iπqj(1−L) − 1

2iπqj
= 1.

Hence, inserting (5.16) and (5.17) into (5.10), one obtains that, for every n > n0,

4 |β|2 π4C2

n− n0 + 1
> c,

which implies, by taking the limit as n→∞, that c 6 0, contradicting the fact that
c > 0. This contradiction proves that (4.1) is not exactly controllable to constants in
time T , as required. �

6. Conclusion and open problems

This paper has provided new results on the approximate and exact controllability of
(1.1) in the function space L2((−Λmax, 0),Cd). The case of commensurable delays has
been completely characterized in Section 3, using both the classical augmented state
space technique in Proposition 3.3 and the explicit expression of the end-point oper-
ator E(T ) in Proposition 3.11, with a comparison between such techniques provided
in Theorem 3.12. In particular, approximate and exact controllability are equivalent
in this context and can be characterized by the Kalman criterion from Proposition
3.3(c).

A complete characterization of approximate and exact controllability has been
provided in the first non-trivial case of (1.1) where incommensurable delays appear,
namely the case N = d = 2 and m = 1. This complete characterization, provided in
Theorem 4.1, has been proved using several tools, the first one being a reduction to
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normal forms carried out in Section 4.1. The easy cases from Theorem 4.1(a) and (b),
in which approximate and exact controllability are equivalent, were then studied using
the expression of the end-point operator E(T ), with explicit constructions of controls
in the cases where controllability holds.

The interesting and more subtle case from Theorem 4.1(c) has been tackled using
different tools, including classical characterizations of approximate and exact control-
lability in terms of the dual notions of unique continuation property and observability
inequality, the ergodicity of translations by L modulo 1 when L is irrational, and ra-
tional approximation of the delays combined with a fine spectral analysis of a sequence
of Toeplitz matrices whose sizes tend to infinity.

We have also considered the notions of approximate and exact controllability to
constants in Section 5, proving in Theorem 5.6 that approximate controllability and
approximate controllability to constants are equivalent. The main tool in the proof
of this result is (5.2), which essentially means that a (sort of) commutator between
integration and the end-point operator E(T ) is given by the operator F , which takes
values in constant states. Exact controllability to constants has been proved to be
equivalent to exact controllability in Theorem 5.9 in the case N = d = 2 and m = 1,
whose proof is built upon the spectral analysis of S∗ from Remark 4.15 and uses an
inhomogeneous Diophantine approximation result to bound the absolute value of a
subsequence of the eigenvalues of an operator related to S∗.

We next propose two open problems that we believe to be interesting and chal-
lenging.

(a) Is it possible to provide approximate and exact controllability criteria for (1.1)
similar to Theorem 4.1 in higher dimensions and with more delays and control inputs?

The most interesting case seems to be the analogue of Theorem 4.1(c), in which
approximate and exact controllability are not equivalent and can be characterized in
terms of the position of 0 with respect to some set S constructed from the parameters
of the system. It is not clear how the assumptions of (c) should be generalized to more
than two delays, and many subtleties might appear depending on the ranks of the
controllability matrices C(Aj , B) for j ∈ [[1, N ]]. An important starting point would
be to consider the case where all pairs (Aj , B), j ∈ [[1, N ]], are controllable.

If one tries to follow the ideas of the proof of Theorem 4.1, a first difficulty comes
from the reduction to normal forms from Section 4.1. Even though similar reductions
are still possible in higher dimensions and with more delays, explicit computations
of Ξn and E(T ) used in Section 4 are much more tricky to handle. In particular, it
is not immediate what should be a suitable generalization for the operator S defined
in (4.19).

Concerning the main tools used in Section 4.4, we expect the translations by Lmod-
ulo 1 used in the analysis of approximate controllability to be replaced by more gen-
eral interval exchange maps, on which ergodicity results are available (see, e.g., [37]).
However, it is not clear how to transform approximate controllability into an inter-
val exchange problem similar to (4.27) in the general case. As regards the spectral
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analysis of Toeplitz matrices of sizes tending to infinity, it seems that reasonable gen-
eralizations of the operator S would yield matrices that are only Toeplitz by blocks,
whose spectral analysis seems intractable. We then expect a general characterization
of exact controllability to rely on different techniques.

(b) Are exact controllability and exact controllability to constants equivalent in
general?

The proof of Theorem 5.9 relies on spectral properties of S, and so we expect any
generalization of this result using similar techniques to face the same difficulties as
the general characterization of exact controllability.

Appendix

Proposition A.1. — Let α, β ∈ C and p, q ∈ N∗ with p, q coprime and p < q. Define
the matrix M = (mij)i,j∈[[1,q]] ∈Mq(C) by

(A.1) mij =


β, if j = i,
α, if j = i− p,
1, if j = i+ q − p,
0, otherwise.

Then the following holds.

(a) The characteristic polynomial and the determinant of the matrix M are given
by P (λ) =

(
λ− β

)q − αq−p and detM = β
q − (−1)qαq−p, respectively.

(b) Assume that α 6= 0 and write α = |α| eiθ for some θ ∈ (−π, π]. The eigenvalues
of the matrix M are

(A.2) λj = β + |α|(q−p)/q e−iθ(q−p)/qei2πj(q−p)/q, j ∈ [[1, q]].

For j ∈ [[1, q]], a right eigenvector vj ∈ Cq 'Mq,1(C) of M associated with λj is

vj =
(
|α|k/q e−iθk/qei2πjk/q

)q
k=1

and a left eigenvector wj ∈M1,q(C) of M associated with λj is

wj =
1

q

(
|α|−k/q eiθk/qe−i2πjk/q

)q
k=1

.

Moreover, for every j, k ∈ [[1, q]], we have wkvj = δjk, where δjk denotes the Kronecker
delta, i.e., δjk = 1 if j = k and δjk = 0 otherwise.

(c) If α 6= 0 and |β| 6= |α|(q−p)/q, then M is invertible and

∣∣M−1
∣∣
2
6

max
(
|α| , |α|−1)∣∣|β| − |α|(q−p)/q∣∣ .
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Proof. — We start by proving (a). Set Mλ = λ Idq −M and notice that P (λ) =

detMλ. Let Sq denote the group of permutations of [[1, q]] and ε(σ) denote the signa-
ture of an element σ ∈ Sq. Leibniz formula for the determinant gives

(A.3) P (λ) = detMλ =
∑
σ∈Sq

ε(σ)

q∏
i=1

m
(λ)
iσ(i).

Thanks to (A.1), the product
∏q
i=1m

(λ)
iσ(i) is nonzero only if σ ∈ Sq satisfies, for every

i ∈ [[1, q]],

(A.4) σ(i) ∈

{
{i, i+ q − p}, if i ∈ [[1, p]],
{i, i− p}, if i ∈ [[p+ 1, q]].

Let τ ∈ Sq be the translation by −1 modulo q, i.e., τ(i) = i − 1 if i ∈ [[2, q]] and
τ(1) = q. We have ε(τ) = (−1)q−1, and thus ε(τp) = (−1)(q−1)p. Since p, q are
coprime, one has pq ≡ p+ q + 1 mod 2 and thus (q − 1)p ≡ q + 1 mod 2, which gives
ε(τp) = (−1)q+1. Notice, moreover, that (A.4) can be written as σ(i) ∈ {i, τp(i)} for
every i ∈ [[1, q]].

One immediately verifies that the only permutations σ ∈ Sq satisfying (A.4) are
IdSq and τp. Then, it follows from (A.3) that

P (λ) =

q∏
i=1

m
(λ)
ii + (−1)q+1

q∏
i=1

m
(λ)
iτp(i) =

(
λ− β

)q
+ (−1)q+1(−1)qαq−p

=
(
λ− β

)q − αq−p.
Moreover, detM = (−1)q det(−M) = (−1)qP (0) = β

q − (−1)qαq−p.
We now turn to the proof of (b). Formula (A.2) for the eigenvalues of M follows

immediately from the expression of the characteristic polynomial ofM . Let j ∈ [[1, q]].
For k ∈ [[1, p]],

(Mvj)k = β |α|k/q e−iθk/qei2πjk/q + |α|(k+q−p)/q
e−iθ(k+q−p)/qei2πj(k+q−p)/q

= |α|k/q e−iθk/qei2πjk/q
(
β + |α|(q−p)/q e−iθ(q−p)/qei2πj(q−p)/q

)
= λj(vj)k,

and, for k ∈ [[p+ 1, q]],

(Mvj)k = β |α|k/q e−iθk/qei2πjk/q + α |α|(k−p)/q e−iθ(k−p)/qei2πj(k−p)/q

= |α|k/q e−iθk/qei2πjk/q
(
β + |α|(q−p)/q e−iθ(q−p)/qei2πj(q−p)/q

)
= λj(vj)k,

which shows that Mvj = λjvj , and hence vj is a right eigenvector of M associated
with λj . Now, for k ∈ [[1, q − p]],

(wjM)k =
1

q
β |α|−k/q eiθk/qe−i2πjk/q +

1

q
α |α|−(k+p)/q

eiθ(k+p)/qe−i2πj(k+p)/q

=
1

q
|α|−k/q eiθk/qe−i2πjk/q

(
β + |α|(q−p)/q e−iθ(q−p)/qei2πj(q−p)/q

)
= λj(wj)k,
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and, for k ∈ [[q − p+ 1, q]],

(wjM)k =
1

q
β |α|−k/q eiθk/qe−i2πjk/q +

1

q
|α|−(k+p−q)/q

eiθ(k+p−q)/qe−i2πj(k+p−q)/q

=
1

q
|α|−k/q eiθk/qe−i2πjk/q

(
β + |α|(q−p)/q e−iθ(q−p)/qei2πj(q−p)/q

)
= λj(wj)k,

which shows that wjM = λjwj , and hence wj is a left eigenvector of M associated
with λj . For j, k ∈ [[1, q]], one evaluates immediately

wkvj =
1

q

q∑
`=1

ei2π(j−k)`/q = δjk.

To prove (c), we first consider the matrices V,W,D ∈Mq(C) defined by

V = (Vjk)j,k∈[[1,q]], W = (Wjk)j,k∈[[1,q]], D = (Djk)j,k∈[[1,q]],

with, for j, k ∈ [[1, q]]

Vjk = (vk)j , Wjk = (wj)k, Djk = λjδjk.

It follows from (b) that

M = V DW and V = W−1.

For simplicity, we set r=q−p. By (a),M is invertible if and only if βq−(−1)qαr 6=0,
which is the case if α 6= 0 and |β| 6= |α|r/q. In this case, M−1 = V D−1W and thus,
for j, k ∈ [[1, q]],

(A.5)

(
M−1

)
jk

=

q∑
`=1

(v`)jλ
−1
` (w`)k =

|α|(j−k)/q
e−iθ(j−k)/q

q

q∑
`=1

λ−1
` ei2π`(j−k)/q

=
|α|(j−k)/q

e−iθ(j−k)/q

q

q∑
`=1

ei2π`(j−k)/q

β + |α|r/q e−iθr/qei2π`r/q

=
|α|(j−k)/q

e−iθ(j−k)/q

qβ

q∑
`=1

ei2π`(j−k)/q

1 + (|α|r/q e−iθr/q/β)ei2π`r/q
.

We claim that, for every z ∈ C such that zq 6= 1, we have

(A.6)
q∑
`=1

ei2π`(j−k)/q

1− zei2π`r/q
=

qzdj,k

1− zq
,

where dj,k is the unique integer in [[0, q− 1]] such that rdj,k + j − k ≡ 0 mod q, which
is well-defined since q and r are coprime.

To show that (A.6) holds for every z ∈ C such that zq 6= 1, it suffices to show
that it holds for z ∈ C with |z| < 1, since both left- and right-hand sides of (A.6) are
meromorphic functions with simple poles at the q roots of zq = 1. If z ∈ C is such
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that |z| < 1, then
q∑
`=1

ei2π`(j−k)/q

1− zei2π`r/q
=

q∑
`=1

ei2π`(j−k)/q
∞∑
s=0

zsei2π`rs/q

=

∞∑
s=0

zs
q∑
`=1

ei2π`(rs+j−k)/q = qzdj,k
∞∑
t=0

ztq =
qzdj,k

1− zq
,

where we use that
∑q
`=1 e

i2π`(rs+j−k)/q = q if rs + j − k ≡ 0 mod q and is equal to
zero otherwise, and that {s ∈ N | rs+ j − k ≡ 0 mod q} = {dj,k + tq | t ∈ N}. Hence
(A.6) is proved.

Since |β| 6= |α|r/q implies βq 6= (−1)qαr, we have
(
−|α|r/q e−iθr/q/β

)q 6= 1. Hence,
combining (A.5) and (A.6), we obtain that(
M−1

)
jk

=
|α|(j−k)/q

e−iθ(j−k)/q

qβ

q
(
−|α|r/q e−iθr/q/β

)dj,k
1−

(
−|α|r/q e−iθr/q/β

)q =(−1)dj,k
αnj,kβ

q−1−dj,k

β
q − (−1)qαr

,

where nj,k ∈ Z is the unique integer satisfying rdj,k + j − k = nj,kq; moreover, since
dj,k ∈ [[0, q − 1]] and j, k ∈ [[1, q]], we have nj,k ∈ [[0, r]].

Notice that, for j, k ∈ [[1, q]], rdj,k/q = nj,k+(k − j)/q, and hence nj,k = brdj,k/qc+
δj>k, where δj>k = 1 if j > k and δj>k = 0 otherwise. Thus, for k ∈ [[1, q]],

q∑
j=1

∣∣(M−1)jk
∣∣ =

1

|βq − (−1)qαr|

q∑
j=1

|α|brdj,k/qc+δj>k |β|q−1−dj,k .

Since dj,k is defined as the unique integer in [[0, q−1]] satisfying rdj,k+j−k ≡ 0 mod q

and r, q are coprime, we obtain that, for fixed k ∈ [[1, q]], the map j 7→ dj,k is a bijection
between [[1, q]] and [[0, q − 1]]. Hence, when |α| > 1,
q∑
j=1

∣∣(M−1)jk
∣∣ 6 |α|
|βq − (−1)qαr|

q−1∑
j=0

|α|brj/qc |β|q−1−j

6
|α| |β|q−1

|βq − (−1)qαr|

q−1∑
j=0

|α|rj/q |β|−j =
|α| |β|q−1

|βq − (−1)qαr|

∣∣∣ 1− |α|r |β|−q

1− |α|r/q |β|−1

∣∣∣
=

|α|∣∣|β| − |α|r/q∣∣ ||β|
q − |α|r|

|βq − (−1)qαr|
6

|α|∣∣|β| − |α|r/q∣∣ ,
and, similarly, when 0 < |α| < 1,

q∑
j=1

∣∣(M−1)jk
∣∣ 6 1

|βq − (−1)qαr|

q−1∑
j=0

|α|brj/qc |β|q−1−j

6
|α|−1 |β|q−1

|βq − (−1)qαr|

q−1∑
j=0

|α|rj/q |β|−j 6 |α|−1∣∣|β| − |α|r/q∣∣ ,
which shows that∣∣M−1

∣∣
1

= max
k∈[[1,q]]

q∑
j=1

∣∣(M−1)jk
∣∣ 6 max

(
|α| , |α|−1)∣∣|β| − |α|r/q∣∣ .
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A similar argument also shows that∣∣M−1
∣∣
∞ = max

j∈[[1,q]]

q∑
k=1

∣∣(M−1)jk
∣∣ 6 max

(
|α| , |α|−1)∣∣|β| − |α|r/q∣∣ ,

and the result follows since
∣∣M−1

∣∣
2
6
√
|M−1|1 |M−1|∞. �
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