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SIMPLICITY OF VACUUM MODULES AND

ASSOCIATED VARIETIES

by Tomoyuki Arakawa, Cuipo Jiang & Anne Moreau

Abstract. — In this note, we prove that the universal affine vertex algebra associated with a
simple Lie algebra g is simple if and only if the associated variety of its unique simple quotient
is equal to g∗. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction
applied to the universal affine vertex algebra.

Résumé (Simplicité des algèbres vertex affines et variétés associées). — Dans cet article, nous
démontrons que l’algèbre vertex affine universelle associée à une algèbre de Lie simple g est
simple si et seulement si la variété associée à son unique quotient simple est égale à g∗. Nous
en déduisons un résultat analogue pour la réduction quantique de Drinfeld-Sokolov appliquée
à l’algèbre vertex affine universelle.
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1. Introduction

Let V be a vertex algebra, and let

V −→ (EndV )[[z, z−1]], a 7−→ a(z) =
∑
n∈Z

a(n)z
−n−1,

be the state-field correspondence. The Zhu C2-algebra [Zhu96] of V is by definition the
quotient space RV = V/C2(V ), where C2(V ) = spanC{a(−2)b | a, b ∈ V }, equipped
with the Poisson algebra structure given by

a.b = a(−1)b, {a, b} = a(0)b,
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170 T. Arakawa, C. Jiang & A. Moreau

for a, b ∈ V with a := a+C2(V ). The associated varietyXV of V is the reduced scheme
XV = Specm(RV ) corresponding to RV . It is a fundamental invariant of V that
captures important properties of the vertex algebra V itself (see, for example, [BFM,
Zhu96, ABD04, Miy04, Ara12a, Ara15a, Ara15b, AM18a, AM17, AK18]). Moreover,
the associated variety XV conjecturally [BR18] coincides with the Higgs branch of
a 4D N = 2 superconformal field theory T, if V corresponds to a theory T by the
4D/2D duality discovered in [BLL+15]. Note that the Higgs branch of a 4D N = 2

superconformal field theory is a hyperkähler cone, possibly singular.
In the case where V is the universal affine vertex algebra V k(g) at level k ∈ C

associated with a complex finite-dimensional simple Lie algebra g, the variety XV is
just the affine space g∗ with Kirillov-Kostant Poisson structure. In the case where V
is the unique simple graded quotient Lk(g) of V k(g), the variety XV is a Poisson
subscheme of g∗ which is G-invariant and conic, where G is the adjoint group of g.

Note that if the level k is irrational, then Lk(g) = V k(g), and hence XLk(g) = g∗.
More generally, if Lk(g) = V k(g), that is, V k(g) is simple, then obviously XLk(g) = g∗.

In this article, we prove that the converse is true.

Theorem 1.1. — The equality Lk(g) = V k(g) holds, that is, V k(g) is simple, if and
only if XLk(g) = g∗.

It is known by Gorelik and Kac [GK07] that V k(g) is not simple if and only if

(1.1) r∨(k + h∨) ∈ Q>0 r {1/m | m ∈ Z>1},

where h∨ is the dual Coxeter number and r∨ is the lacing number of g. Therefore,
Theorem 1.1 can be rephrased as

(1.2) XLk(g) ( g∗ ⇐⇒ (1.1) holds.

Let us mention the cases when the variety XLk(g) is known for k satisfying (1.1).
First, it is known [Zhu96, DM06] that XLk(g) = {0} if and only if Lk(g) is inte-

grable, that is, k is a nonnegative integer. Next, it is known that if Lk(g) is admissible
[KW89], or equivalently, if

k + h∨ =
p

q
, p, q ∈ Z>1, (p, q) = 1, p >

{
h∨ if (r∨, q) = 1,

h if (r∨, q) 6= 1,

where h is the Coxeter number of g, then XLk(g) is the closure of some nilpotent orbit
in g ([Ara15a]). Further, it was observed in [AM18a, AM18b] that there are cases when
Lk(g) is non-admissible and XLk(g) is the closure of some nilpotent orbit. In fact, it
was recently conjectured in physics [XY19] that, in view of the 4D/2D duality, there
should be a large list of non-admissible simple affine vertex algebras whose associated
varieties are the closures of some nilpotent orbits. Finally, there are also cases [AM17]
where XLk(g) is neither g∗ nor contained in the nilpotent cone N(g) of g.

In general, the problem of determining the variety XLk(g) is wide open.

J.É.P. — M., 2021, tome 8
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Now let us explain the outline of the proof of Theorem 1.1. First, Theorem 1.1
is known for the critical level k = −h∨ ([FF92, FG04]). Therefore, since RV k(g) is a
polynomial ring C[g∗], Theorem 1.1 follows from the following fact.

Theorem 1.2. — Suppose that the level is non-critical, that is, k 6= −h∨. The image
of any nonzero singular vector v of V k(g) in the Zhu C2-algebra RV k(g) is nonzero.

The symbol σ(w) of a singular vector w in V k(g) is a singular vector in the cor-
responding vertex Poisson algebra grV k(g) ∼= S(t−1g[t−1]) ∼= C[J∞g∗], where J∞g∗

is the arc space of g∗. Theorem 1.2 states that the image of σ(w) of a non-trivial
singular vector w under the projection

(1.3) C[J∞g∗] −→ C[g∗] = RV k(g)

is nonzero, provided that k is non-critical. Here the projection (1.3) is defined by
identifying C[g∗] with the Zhu C2-algebra of the commutative vertex algebra C[J∞g∗].
Hence, Theorem 1.2 would follow if the image of any nontrivial singular vector in
C[J∞g∗] under the projection (1.3) is nonzero. However, this is false as there are
singular vectors in C[J∞g∗] that do not come from singular vectors of V k(g) and that
belong to the kernel of (1.3) (see Section 3.4). Therefore, we do need to make use of
the fact that σ(w) is the symbol of a singular vector w in V k(g). We also note that
the statement of Theorem 1.2 is not true if k is critical (see Section 3.4).

For this reason the proof of Theorem 1.2 is divided roughly into two parts. First, we
work in the commutative setting to deduce a first important reduction (Lemma 3.1).
Next, we use the Sugawara construction – which is available only at non-critical levels
– in the non-commutative setting in order to complete the proof.

Now, let us consider theW -algebra W k(g, f) associated with a nilpotent element f
of g at the level k defined by the generalized quantized Drinfeld-Sokolov reduction
[FF90, KRW03]:

W k(g, f) = H0
DS,f (V k(g)).

Here, H•DS,f (M) denotes the BRST cohomology of the generalized quantized Drinfeld-
Sokolov reduction associated with f ∈ N(g) with coefficients in a V k(g)-module M .

By the Jacobson-Morosov theorem, f embeds into an sl2-triple (e, h, f). The
Slodowy slice Sf at f is the affine space Sf = f + ge, where ge is the centralizer of e
in g. It has a natural Poisson structure induced from that of g∗ (see [GG02]), and we
have [DSK06, Ara15a] a natural isomorphism RW k(g,f)

∼= C[Sf ] of Poisson algebras,
so that

XW k(g,f) = Sf .

The natural surjection V k(g)� Lk(g) induces a surjection W k(g, f)� H0
DS,f (Lk(g))

of vertex algebras ([Ara15a]). Hence the varietyXH0
DS,f (Lk(g)) is a C∗-invariant Poisson

subvarieties of the Slodowy slice Sf .
Conjecturally [KRW03, KW08], the vertex algebra H0

DS,f (Lk(g)) coincides the
unique simple (graded) quotient Wk(g, f) of W k(g, f) provided thatH0

DS,f (Lk(g)) 6= 0.
(This conjecture has been verified in many cases [Ara05, Ara07, Ara11, AvE19].)

J.É.P. — M., 2021, tome 8



172 T. Arakawa, C. Jiang & A. Moreau

As a consequence of Theorem 1.1, we obtain the following result.

Theorem 1.3. — Let f be any nilpotent element of g. The following assertions are
equivalent:

(1) V k(g) is simple,
(2) W k(g, f) = H0

DS,f (Lk(g)),
(3) XH0

DS,f (Lk(g)) = Sf .

Note that Theorem 1.3 implies that V k(g) is simple if XWk(g,f) = Sf and
H0

DS,f (Lk(g)) 6= 0 since XH0
DS,f (Lk(g)) ⊃ XW k(g,f).

The remainder of the paper is structured as follows. In Section 2 we set up notation
in the case of affine vertex algebras that will be the framework of this note. Section 3
is devoted to the proof of Theorem 1.1. In Section 4, we have compiled some known
facts on Slodowy slices, W -algebras and their associated varieties. Theorem 1.3 is
proved in this section.

Acknowledgements. — T.A. and A.M. like to warmly thank Shanghai Jiao Tong Uni-
versity for its hospitality during their stay in September 2019.

2. Universal affine vertex algebras and associated graded vertex
Poisson algebras

Let ĝ be the affine Kac-Moody algebra associated with g, that is,

ĝ = g[t, t−1]⊕ CK,

where the commutation relations are given by

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +m(x|y)δm+n,0K, [K, ĝ] = 0,

for x, y ∈ g and m,n ∈ Z. Here,

( | ) =
1

2h∨
× Killing form of g

is the usual normalized inner product. For x ∈ g and m ∈ Z, we shall write x(m) for
x⊗ tm.

2.1. Universal affine vertex algebras. — For k ∈ C, set

V k(g) = U(ĝ)⊗U(g[t]⊕CK) Ck,

where Ck is the one-dimensional representation of g[t] ⊕ CK on which K acts as
multiplication by k and g⊗ C[t] acts trivially.

By the Poincaré-Birkhoff-Witt Theorem, the direct sum decomposition, we have

(2.1) V k(g) ∼= U(g⊗ t−1C[t−1]) = U(t−1g[t−1]).

The space V k(g) is naturally graded,

V k(g) =
⊕

∆∈Z>0

V k(g)∆,

J.É.P. — M., 2021, tome 8
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where the grading is defined by

deg(xi1(−n1) · · ·xir (−nr)1) =

r∑
i=1

ni, r > 0, xij ∈ g,

with 1 the image of 1 ⊗ 1 in V k(g). We have V k(g)0 = C1, and we identify g with
V k(g)1 via the linear isomorphism defined by x 7→ x(−1)1.

It is well-known that V k(g) has a unique vertex algebra structure such that 1 is
the vacuum vector,

x(z) := Y (x⊗ t−1, z) =
∑
n∈Z

x(n)z−n−1,

and
[T, x(z)] = ∂zx(z)

for x ∈ g, where T is the translation operator. Here, x(n) acts on V k(g) by left
multiplication, and so, one can view x(n) as an endomorphism of V k(g). The vertex
algebra V k(g) is called the universal affine vertex algebra associated with g at level k
[FZ92, Zhu96, LL04].

The vertex algebra V k(g) is a vertex operator algebra, provided that k + h∨ 6= 0,
by the Sugawara construction. More specifically, set

S =
1

2

d∑
i=1

xi(−1)xi(−1)1,

where {xi | i = 1, . . . , d} is the dual basis of a basis {xi | i = 1, . . . ,dim g} of g with
respect to the bilinear form ( | ), with d = dim g. Then for k 6= −h∨, the vector
ω = S/(k + h∨) is a conformal vector of V k(g) with central charge

c(k) =
k dim g

k + h∨
.

Note that, writing ω(z) =
∑
n∈Z Lnz

−n−2, we have

L0 =
1

2(k + h∨)

( d∑
i=1

xi(0)xi(0) +

∞∑
n=1

d∑
i=1

(xi(−n)xi(n) + xi(−n)xi(n))

)
,

Ln =
1

2(k + h∨)

( ∞∑
m=1

d∑
i=1

xi(−m)xi(m+ n) +

∞∑
m=0

d∑
i=1

xi(−m+ n)xi(m)

)
, if n 6=0.

Lemma 2.1 ([Kac90]). — We have

[Ln, x(m)] = −mx(m+ n), for x ∈ g, m, n ∈ Z,

and Ln1 = 0 for n > −1.

We have V k(g)∆ = {v ∈ V k(g) | L0v = ∆v} and T = L−1 on V k(g), provided that
k + h∨ 6= 0.

Any graded quotient of V k(g) as ĝ-module has the structure of a quotient vertex
algebra. In particular, the unique simple graded quotient Lk(g) is a vertex algebra,
and is called the simple affine vertex algebra associated with g at level k.

J.É.P. — M., 2021, tome 8



174 T. Arakawa, C. Jiang & A. Moreau

2.2. Associate graded vertex Poisson algebras of affine vertex algebras

It is known by Li [Li05] that any vertex algebra V admits a canonical filtration
F •V , called the Li filtration of V . For a quotient V of V k(g), F •V is described as
follows. The subspace F pV is spanned by the elements

y1(−n1 − 1) · · · yr(−nr − 1)1

with yi ∈ g, ni ∈ Z>0, n1 + · · ·+ nr > p. We have

(2.2)

V = F 0V ⊃ F 1V ⊃ · · · ,
⋂
p F

pV = 0,

TF pV ⊂ F p+1V,

a(n)F
qV ⊂ F p+q−n−1V for a ∈ F pV, n ∈ Z,

a(n)F
qV ⊂ F p+q−nV for a ∈ F pV, n > 0.

Here we have set F pV = V for p < 0.
Let grFV =

⊕
p F

pV/F p+1V be the associated graded vector space. The space
grFV is a vertex Poisson algebra by

σp(a)σq(b) = σp+q(a(−1)b),

Tσp(a) = σp+1(Ta),

σp(a)(n)σq(b) = σp+q−n(a(n)b)

for a, b ∈ V , n > 0, where σp : F p(V ) → F pV/F p+1V is the principal symbol map.
In particular, grF V is a g[t]-module by the correspondence

(2.3) g[t] 3 x(n) 7−→ σ0(x)(n) ∈ End(grF V )

for x ∈ g, n > 0.
The filtration F •V is compatible with the grading: F pV =

⊕
∆∈Z>0

F pV∆, where
F pV∆ := V∆ ∩ F pV .

Let U•(t−1g[t−1]) be the PBW filtration of U(t−1g[t−1]), that is, Up(t−1g[t−1]) is
the subspace of U(t−1g[t−1]) spanned by monomials y1y2 . . . yr with yi ∈ g, r 6 p.
Define

GpV = Up(t
−1g[t−1])1.

Then G•V defines an increasing filtration of V . We have

(2.4) F pV∆ = G∆−pG∆,

where GpV∆ := GpV ∩ V∆, see [Ara12a, Prop. 2.6.1]. Therefore, the graded space
grGV =

⊕
p∈Z>0

GpV/Gp−1V is isomorphic to grF V . In particular, we have

grV k(g) ∼= grU•(t
−1g[t−1]) ∼= S(t−1g[t−1]).

The action of g[t] on grV k(g) = S(t−1g[t−1]) coincides with the one induced from the
action of g[t] on g[t, t−1]/g[t] ∼= t−1g[t−1]. More precisely, the element x(m), for x ∈ g

J.É.P. — M., 2021, tome 8
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and m ∈ Z>0, acts on S(t−1g[t−1]) as follows:

x(m) · 1 = 0,

x(m) · v =

r∑
j=1

∑
nj−m>0

y1(−n1) · · · [x, yj ](m− nj) · · · yr(−nr),(2.5)

if v = y1(−n1) · · · yr(−nr) with yi ∈ g, n1, . . . , nr ∈ Z>0.

2.3. Zhu’s C2-algebras and associated varieties of affine vertex algebras

We have [Li05, Lem. 2.9]

F pV = spanC{a(−i−1)b | a ∈ V, i > 1, b ∈ F p−iV }

for all p > 1. In particular,
F 1V = C2(V ),

where C2(V ) = spanC{a(−2)b | a, b ∈ V }. Set

RV = V/C2(V ) = F 0V/F 1V ⊂ grFV.

It is known by Zhu [Zhu96] that RV is a Poisson algebra. The Poisson algebra structure
can be understood as the restriction of the vertex Poisson structure of grFV . It is
given by

a · b = a(−1)b, {a, b} = a(0)b,

for a, b ∈ V , where a = a+ C2(V ).
By definition [Ara12a], the associated variety of V is the reduced scheme

XV := Specm(RV ).

It is easily seen that

F 1V k(g) = C2(V k(g)) = t−2g[t−1]V k(g).

The following map defines an isomorphism of Poisson algebras

C[g∗] ∼= S(g) −→ RV k(g)

g 3 x 7−→ x(−1)1 + t−2g[t−1]V k(g).

Therefore, RV k(g)
∼= C[g∗] and so, XV k(g)

∼= g∗.
More generally, if V is a quotient of V k(g) by some ideal N , then we have

(2.6) RV ∼= C[g∗]/IN

as Poisson algebras, where IN is the image of N in RV k(g) = C[g∗]. Then XV is just
the zero locus of IN in g∗. It is a closed G-invariant conic subset of g∗.

Identifying g∗ with g through the bilinear form ( | ), one may view XV as a
subvariety of g.

J.É.P. — M., 2021, tome 8
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2.4. PBW basis. — Let ∆+ = {β1, . . . , βq} be the set of positive roots for g with
respect to a triangular decomposition g = n− ⊕ h ⊕ n+, where q = (d − `)/2 and
` = rk(g).

Form now on, we fix a basis

{ui, eβj
, fβj

| i = 1, . . . , `, j = 1, . . . , q}

of g such that {ui | i = 1, . . . , `} is an orthonormal basis of h with respect to ( | ) and
(eβi |fβi) = 1 for i = 1, 2, . . . , q. In particular, [eβi , fβi ] = βi for i = 1, . . . , q (see, for
example, [Hum72, Prop. 8.3]), where h∗ and h are identified through ( | ). One may
also assume that ht(βi) 6 ht(βj) for i < j, where ht(βi) stands for the height of the
positive root βi.

We define the structure constants cα,β by

[eα, eβ ] = cα,βeα+β ,

provided that α, β and α + β are in ∆. Our convention is that e−α stands for fα if
α ∈ ∆+. If α, β and α+ β are in ∆+, then from the equalities,

c−α,α+β = (fβ |[fα, eα+β ]) = −(fβ |[eα+β , fα]) = −([fβ , eα+β ]|fα) = −c−β,α+β ,

we get that

(2.7) c−α,α+β = −c−β,α+β .

By (2.1), the above basis of g induces a basis of V k(g) consisted of 1 and the
elements of the form

(2.8) z = z(+)z(−)z(0)1,

with

z(+) := eβ1
(−1)a1,1 · · · eβ1

(−r1)a1,r1 · · · eβq
(−1)aq,1 · · · eβq

(−rq)aq,rq ,

z(−) := fβ1
(−1)b1,1 · · · fβ1

(−s1)b1,s1 · · · fβq
(−1)bq,1 · · · fβq

(−sq)bq,sq ,

z(0) := u1(−1)c1,1 · · ·u1(−t1)c1,t1 · · ·u`(−1)c`,1 · · ·u`(−t`)c`,t` ,

where r1, . . . , rq, s1, . . . , sq, , t1, . . . , t` are positive integers, and al,m, bl,n, ci,j , for l =

1, . . . , q, m = 1, . . . , rl, n = 1, . . . , sl, i = 1, . . . , `, j = 1, . . . , ti are nonnegative
integers such that at least one of them is nonzero.

Definition 2.2. — Each element x of V k(g) is a linear combination of elements in
the above PBW basis, each of them will be called a PBW monomial of x.

Definition 2.3. — For a PBW monomial v as in (2.8), we call the integer

depth(v) =

q∑
i=1

( ri∑
j=1

ai,j(j − 1) +

si∑
j=1

bi,j(j − 1)

)
+
∑̀
i=1

ti∑
j=1

ci,j(j − 1)

the depth of v. In other words, a PBW monomial v has depth p means that v ∈
F pV k(g) and v 6∈ F p+1V k(g). By convention, depth(1) = 0.

J.É.P. — M., 2021, tome 8
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For a PBW monomial v as in (2.8), we call degree of v the integer

deg(v) =

q∑
i=1

( ri∑
j=1

ai,j +

si∑
j=1

bi,j

)
+
∑̀
i=1

ti∑
j=1

ci,j ,

In other words, v has degree p means that v ∈ GpV k(g) and v 6∈ Gp−1V
k(g) since the

PBW filtration of V k(g) coincides with the standard filtration G•V k(g). By conven-
tion, deg(1) = 0.

Recall that a singular vector of a g[t]-representation M is a vector m ∈ M such
that eα(0).m = 0, for all α ∈ ∆+, and fθ(1) ·m = 0, where θ is the highest positive
root of g. From the identity

L−1 =
1

k + h∨

(∑̀
i=1

∞∑
m=0

ui(−1−m)ui(m)

+
∑
α∈∆+

∞∑
m=0

(eα(−1−m)fα(m) + fα(−1−m)eα(m))

)
,

we deduce the following easy observation, which will be useful in the proof of the
main result.

Lemma 2.4. — If w is a singular vector of V k(g), then

L−1w =
1

k + h∨

(∑̀
i=1

ui(−1)ui(0) +
∑
α∈∆+

eα(−1)fα(0)

)
w.

2.5. Basis of associated graded vertex Poisson algebras. — Note that grV k(g) =

S(t−1g[t−1]) has a basis consisting of 1 and elements of the form (2.8). Similarly to
Definition 2.2, we have the following definition.

Definition 2.5. — Each element x of S(t−1g[t−1]) is a linear combination of elements
in the above basis, each of them will be called a monomial of x.

As in the case of V k(g), the space S(t−1g[t−1]) has two natural gradations. The first
one is induced from the degree of elements as polynomials. We shall write deg(v) for
the degree of a homogeneous element v ∈ S(t−1g[t−1]) with respect to this gradation.

The second one is induced from the Li filtration via the isomorphism S(t−1g[t−1]) ∼=
grFV k(g). The degree of a homogeneous element v ∈ S(t−1g[t−1]) with respect to the
gradation induced by Li filtration will be called the depth of v, and will be denoted
by depth(v).

Notice that any element v of the form (2.8) is homogeneous for both gradations.
By convention, deg(1) = depth(1) = 0.

As a consequence of (2.5), we get that

(2.9) deg(x(m) · v) = deg(v) and depth(x(m) · v) = depth(v)−m,

for m > 0, x ∈ g, and any homogeneous element v ∈ S(t−1g[t−1]) with respect to
both gradations.
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In the sequel, we will also use the following notation, for v of the form (2.8), viewed
either as an element of V k(g) or of S(t−1g[t−1]):

(2.10) deg
(0)
−1(v) :=

∑̀
j=1

cj,1,

which corresponds to the degree of the element obtained from v(0) by keeping only
the terms of depth 0, that is, the terms ui(−1), i = 1, . . . , `.

Notice that a nonzero depth-homogeneous element of S(t−1g[t−1]) has depth 0 if
and only if its image in

RV k(g) = V k(g)/t−2g[t−1]V k(g)

is nonzero.

3. Proof of the main result

This section is devoted to the proof of Theorem 1.1.

3.1. Strategy. — Let Nk be the maximal graded submodule of V k(g), so that
Lk(g) = V k(g)/Nk. Our aim is to show that if V k(g) is not simple, that is, Nk 6= {0},
then XLk(g) is strictly contained in g∗ ∼= g, that is, the image Ik := INk

of Nk in
RV k(g) = C[g∗] is nonzero.

For k = −h∨, it follows from [FG04] that Ik is the defining ideal of the nilpotent
cone N(g) of g, and so XLk(g) = N(g) (see [Ara12b] or Section 3.4 below). Hence,
there is no loss of generality in assuming that k + h∨ 6= 0.

Henceforth, we suppose that k + h∨ 6= 0 and that V k(g) is not simple, that is,
Nk 6= {0}. Then there exists at least one non-trivial (that is, nonzero and different
from 1) singular vector w in V k(g). Theorem 1.2 states that the image of w in Ik is
nonzero, and this proves Theorem 1.1. The rest of this section is devoted to the proof
of Theorem 1.2.

Let w be a nontrivial singular vector of V k(g). One can assume that w ∈ F pV k(g)r
F p+1V k(g) for some p ∈ Z>0.

The image
w := σ(w)

of this singular vector in S(t−1g[t−1]) ∼= grFV k(g) is a nontrivial singular vector of
S(t−1g[t−1]). Here σ : V k(g) → grFV k(g) stands for the principal symbol map. It
follows from (2.9) that one can assume that w is homogeneous with respect to both
gradations on S(t−1g[t−1]). In particular w has depth p. It is enough to show that
p = 0, that is, w has depth zero. Write

w =
∑
j∈J

λjw
j ,

where J is a finite index set, λj are nonzero scalar for all j ∈ J , and wj are pairwise
distinct PBW monomials of the form (2.8). Let I ⊂ J be the subset of i ∈ J such that
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depthwi = p = depthw. Since w ∈ F pV k(g) r F p+1V k(g), the set I is nonempty.
Here, wi stands for the image of wi in grFV k(g) ∼= S(t−1g[t−1]).

More specifically, for any j ∈ I, write

(3.1) wj = (wj)(+)(wj)(−)(wj)(0)1,

with

(wj)(+) := eβ1
(−1)a

(j)
1,1 · · · eβ1

(−r1)a
(j)
1,r1 · · · eβq

(−1)a
(j)
q,1 · · · eβq

(−rq)a
(j)
q,rq

(wj)(−) := fβ1(−1)b
(j)
1,1 · · · fβ1(−s1)b

(j)
1,s1 · · · fβq (−1)b

(j)
q,1 · · · fβq (−sq)b

(j)
q,sq ,

(wj)(0) := u1(−1)c
(j)
1,1 · · ·u1(−t1)c

(j)
1,t1 · · ·u`(−1)c

(j)
`,1 · · ·u`(−t`)c

(j)
`,t` ,

where r1, . . . , rq, s1, . . . , sq, , t1, . . . , t` are nonnegative integers, and a(j)
l,m, b

(j)
l,n, c

(j)
i,p , for

l = 1, . . . , q, m = 1, . . . , rl, n = 1, . . . , sl, i = 1, . . . , `, p = 1, . . . , ti, are nonnegative
integers such that at least one of them is nonzero.

The integers rl’s, for l = 1, . . . , q, are chosen so that at least one of the a(j)
l,rl

’s is
nonzero for j running through J if for some j ∈ J , (wj)(+) 6= 1. Otherwise, we just
set (wj)(+) := 1. Similarly are defined the integers sl’s and tm’s, for l = 1, . . . , q and
m = 1, . . . , `. By our assumption, note that for all i ∈ I,

q∑
n=1

( rn∑
l=1

a
(i)
n,l +

sn∑
l=1

b
(i)
n,l

)
+
∑̀
n=1

tn∑
l=1

c
(i)
n,l = deg(w)

q∑
n=1

( rn∑
l=1

a
(i)
n,l(l − 1) +

sn∑
l=1

b
(i)
n,l(l − 1)

)
+
∑̀
n=1

tn∑
l=1

c
(i)
n,l(l − 1) = depth(w) = p.

3.2. A technical lemma. — In this paragraph we remain in the commutative setting,
and we only deal with w ∈ S(t−1g[t−1]) and its monomials wi’s, for i ∈ I.

Recall from (2.10) that,

deg
(0)
−1(wi) =

∑̀
j=1

c
(i)
j,1

for i ∈ I. Set
d

(0)
−1(I) := max{deg

(0)
−1(wi) | i ∈ I},

and
I

(0)
−1 := {i ∈ I | deg

(0)
−1(wi) = d

(0)
−1(I)}.

If (wi)(0) = 1 for all i ∈ I, we just set d(0)
−1(I) = 0 and then I(0)

−1 = I.

Lemma 3.1. — If i ∈ I
(0)
−1 , then (wi)(−) = 1. In other words, for i ∈ I

(0)
−1 , we have

wi = (wi)(0)(wi)(+)1.

Proof. — Suppose the assertion is false. Then for some positive roots βj1 , . . . , βjt ∈
∆+, one can write for any i ∈ I(0)

−1 ,

(3.2) (wi)(−) = fβj1
(−1)b

(i)
j1,1 · · · fβj1

(−sj1)
b
(i)
j1,sj1 · · · fβjt

(−1)b
(i)
jt,1 · · · fβjt

(−sjt)
b
(i)
jt,sjt ,
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so that for any l ∈ {1, . . . , t},

{b(i)jl,sjl | i ∈ I
(0)
−1} 6= {0}.

Set
K

(0)
−1 = {i ∈ I(0)

−1 | b
(i)
j1,sj1

> 0}.

Since w is a singular vector of S(t−1g[t−1]) and sj1 − 1 ∈ Z>0, we have

eβj1
(sj1 − 1) · w = 0.

On the other hand, using the action of g[t] on S(t−1g[t−1]) as described by (2.5), we
see that

(3.3) 0 = eβj1
(sj1 − 1) · w =

∑
i∈K(0)

−1

λib
(i)
j1,sj1

vi + v,

where for i ∈ K(0)
−1 ,

vi := (wi)(0)βj1(−1)fβj1
(−1)b

(i)
j1,1 · · · fβj1

(−sj1)
b
(i)
j1,sj1

−1

· · · fβjt
(−1)b

(i)
jt,1 · · · fβjt

(−sjt)
b
(i)
jt,sjt (wi)(+)1,

and v is a linear combination of monomials x such that

deg
(0)
−1(x) 6 d(0)

−1(I).

Indeed, for i ∈ K(0)
−1 , it is clear that

eβj1
(sj1 − 1) · wi = b

(i)
j1,sj1

vi + yi,

where yi is a linear combination of monomials y such that deg
(0)
−1(y) 6 d(0)

−1(I) because
ht(βj1) 6 ht(βjl) for all l ∈ {1, . . . , t}. Next, for i ∈ I(0)

−1 rK
(0)
−1 , eβj1

(sj1 − 1) ·wi is a
linear combination of monomials z such that deg

(0)
−1(z) 6 d

(0)
−1(I) because b(i)j1,sj1 = 0.

Finally, for i ∈ I r I
(0)
−1 , we have deg

(0)
−1(wi) < d

(0)
−1(I) and, hence, eβj1

(sj1 − 1) · wi is
a linear combination of monomials z such that deg

(0)
−1(z) 6 d(0)

−1(I) as well.
Now, note that for each i ∈ K(0)

−1 ,

deg
(0)
−1(vi) = deg

(0)
−1(wi) + 1 = d

(0)
−1(I) + 1.

Hence by (3.3) we get a contradiction because all monomials vi, for i running through
K

(0)
−1 , are linearly independent while λib(i)j1,sj1 6= 0, for i ∈ K(0)

−1 . This concludes the
proof of the lemma. �

3.3. Use of Sugawara operators. — Recall that w =
∑
j∈J λjw

j . Let J1 ⊆ J be
such that for i ∈ J1, (wi)(−) = 1. Then by Lemma 3.1,

∅ 6= I
(0)
−1 ⊆ J1.

So J1 6= ∅. Set
d

(0)
−1 := d

(0)
−1(J1) = max{deg

(0)
−1(wi) | i ∈ J1},
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and
J

(0)
−1 := {i ∈ J1 | deg

(0)
−1(wi) = d

(0)
−1}.

Then d(0)
−1(I) 6 d(0)

−1. Set

d+ := max{deg(wi)(+) | i ∈ J (0)
−1}

and let
J+ = {i ∈ J (0)

−1 | deg(wi)(+) = d+} ⊆ J (0)
−1 .

Our next aim is to show that for i ∈ J+, wi has depth zero, whence p = 0 since p
is by definition the smallest depth of the wj ’s, and so the image of w in RV k(g) =

F 0V k(g)/F 1V k(g) is nonzero.
This will be achieved in this paragraph through the use of the Sugawara construc-

tion.
Recall that by Lemma 2.4,

L−1w = L̃−1w

since w is a singular vector of V k(g), where

L̃−1 :=
1

k + h∨

(∑̀
i=1

ui(−1)ui(0) +
∑
α∈∆+

eα(−1)fα(0)

)
.

Lemma 3.2. — Let z be a PBW monomial of the form (2.8). Then L̃−1z is a linear
combination of PBW monomials x satisfying all the following conditions:

(a) deg(x(+)) 6 deg(z(+)) + 1 and deg(x(0)) 6 deg(z(0)) + 1,
(b) if z(−) 6= 1, then x(−) 6= 1.
(c) if x(−) = z(−), then either deg(x(0)) = deg(z(0)) + 1, or x(0) = z(0).
(d) if deg(x(0)) = deg(z(0)) + 1, then x(−) = z(−) and deg(x(+)) 6 deg(z(+)).

Proof. — Parts (a)–(c) are easy to see. We only prove (d). Assume that deg(x(0)) =

deg(z(0)) + 1. Either x comes from the term
∑`
i=1 u

i(−1)ui(0)z, or it comes from a
term eα(−1)fα(0)z for some α ∈ ∆+.

If x comes from the term
∑`
i=1 u

i(−1)ui(0)z, then it is obvious that x(−) = z(−)

and x(+) = z(+).
Assume that x comes from eα(−1)fα(0)z for some α ∈ ∆+. We have

eα(−1)fα(0)z = eα(−1)[fα(0), z(+)]z(−)z(0)1 + eα(−1)z(+)[fα(0), z(−)]z(0)1

+ eα(−1)z(+)z(−)[fα(0), z(0)]1.

Clearly, any PBW monomials x from

eα(−1)z(+)[fα(0), z(−)]z(0)1 or eα(−1)z(+)z(−)[fα(0), z(0)]1

satisfies that deg(x(0)) 6 deg(z(0)). Then it is enough to consider PBW monomials in

eα(−1)[fα(0), z(+)]z(−)z(0)1.

The only possibility for a PBW monomial x in eα(−1)[fα(0), z(+)]z(−)z(0)1 to satisfy
deg(x(0)) = deg(z(0)) + 1 is that it comes from a term [fα(0), eα(−n)] = −α(−n) for
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some n ∈ Z>0, where eα(−n) is a term in z(+). But then, for PBW monomials x in
eα(−1)[fα(0), z(+)]z(0)1 such that deg(x(0)) = deg(z(0)) + 1, we have x(−) = z(−) and
deg(x(+)) 6 deg(z(+)). �

We now consider the action of L̃−1 on particular PBW monomials.

Lemma 3.3. — Let z be a PBW monomial of the form (2.8) such that z(−) = 1 and
depth(z(+)) = 0, that is, either z(+) = 1, or for some j1, . . . , jt ∈ {1, . . . , q} (with
possible repetitions),

z = eβj1
(−1)eβj2

(−1) · · · eβjt
(−1)z(0)1.

Then L̃−1z is a linear combination of PBW monomials y satisfying one of the fol-
lowing conditions:

(1) y(−) = 1, depth(y(+)) > 1, deg(y(+)) 6 deg(z(+)), y(0) = z(0),
(2) y(−) = 1, depth(y(+)) = 0, deg(y(+))6deg(z(+)) − 1, and deg(y(0))>deg(z(0)),

deg
(0)
−1(y) = deg

(0)
−1(z),

(3) y(−) =1, depth(y(+))>1, deg(y(+))6deg(z(+))−1, and deg
(0)
−1(y)=deg

(0)
−1(z)+1,

(4) y(−) 6= 1.

Proof. — First, we have∑̀
i=1

ui(−1)ui(0)z =

t∑
r=1

eβj1
(−1) · · ·

[∑̀
i=1

ui(−1)ui(0), eβjr
(−1)

]
· · · eβjt

(−1)z(0)1,

and∑̀
i=1

ui(−1)ui(0), eβjr
(−1) =

∑̀
i=1

(
ui(−1)[ui(0), eβjr

(−1)] + [ui(−1), eβjr
(−1)]ui(0)

)
= βjr (−1)eβjr

(−1) + eβjr
(−2)βjr (0).

So

(3.4)
∑̀
i=1

ui(−1)ui(0)z

=

t∑
r=1

eβj1
(−1) · · · (βjr (−1)eβjr

(−1) + eβjr
(−2)βjr (0)) · · · eβjt

(−1)z(0)1.

Second, we have∑
α∈∆+

eα(−1)fα(0)z =
∑
α∈∆+

t∑
r=1

eα(−1)eβj1
(−1) · · · [fα(0), eβjr

(−1)] · · · eβjt
(−1)z(0)1

+
∑
α∈∆+

eα(−1)eβj1
(−1)eβj2

(−1) · · · eβjt
(−1)[fα(0), z(0)]1.

It is clear that any PBW monomial y in∑
α∈∆+

eα(−1)eβj1
(−1)eβj2

(−1) · · · eβjt
(−1)[fα(0), z(0)]1

satisfies
(3.5) y(−) 6= 1.
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We now consider

ur :=
∑
α∈∆+

eα(−1)eβj1
(−1) · · · [fα(0), eβjr

(−1)] · · · eβjt
(−1)z(0)1, for 1 6 r 6 t.

– If βjr = α+β for some α, β ∈ ∆+, then there is a partial sum of two terms in ur:

c−α,α+βeα(−1)eβj1
(−1) · · · eβ(−1) · · · eβjt

(−1)z(0)1

+ c−β,α+βeβ(−1)eβj1
(−1) · · · eα(−1) · · · eβjt

(−1)z(0)1.

Rewriting the above sum to a linear combination of PBW monomials, and noticing
that

c−α,α+βeα(−1)eβ(−1) + c−β,α+βeβ(−1)eα(−1) = c−α,α+βcα,βeα+β(−2),

due to (2.7), we deduce that it is a linear combination of PBW monomials y such that

(3.6) y(−) = z(−) = 1, y(0) = z(0), depth(y(+)) > 1, deg(y(+)) 6 deg(z(+)),

where c−α,α+β , c−β,α+β , cα,β ∈ R∗.
– If α− βjr ∈ ∆+ for some α ∈ ∆+, then there is a term in ur:

(3.7) c−α,βjr
eα(−1)eβj1

(−1) · · · eβjr−1
(−1)fα−βjr

(−1)eβjr+1
(−1) · · · eβjt

(−1)z(0)1.

It is easy to see that (3.7) is a linear combination of PBW monomials y such that y
satisfies one of the following:

y(−) = 1, depth(y(+)) > 1, deg(y(+)) 6 deg(z(+)), y(0) = z(0),(3.8)

y(−) = 1, depth(y(+)) = 0, deg(y(+)) 6 deg(z(+))− 1,(3.9)

deg(y(0)) > deg(z(0)), deg
(0)
−1(y) = deg

(0)
−1(z),

y(−) 6= 1.(3.10)

Notice also that with α = βjr , there is a term in ur:

−eβjr
(−1)eβj1

(−1) · · · eβjr−1
(−1)βjr (−1)eβjr+1

(−1) · · · eβjt
(−1)z(0)1.

Together with (3.4), we see that

∑̀
i=1

ui(−1)ui(0)z +

t∑
r=1

eβjr
(−1)eβj1

(−1) · · · [fβjr
(0), eβjr

(−1)] · · · · · · eβjt
(−1)z(0)1

=

t∑
r=1

eβj1
(−1) · · · (βjr (−1)eβjr

(−1) + eβjr
(−2)βjr (0)) · · · eβjt

(−1)z(0)1

−
t∑

r=1

r−1∑
s=1

eβj1
(−1) · · · [eβjr

(−1), eβjs
(−1)]

· · · eβjr−1
(−1)βjr (−1)eβjr+1

(−1) · · · eβjt
(−1)z(0)1

−
t∑

r=1

eβj1
(−1) · · · eβjr−1

(−1)eβjr
(−1)βjr (−1)eβjr+1

(−1) · · · eβjt
(−1)z(0)1
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is a linear combination of PBW monomials y satisfying one of the following:

y(−) = 1, depth(y(+)) > 1,deg(y(+)) 6 deg(z(+)), y(0) = z(0),(3.11)

y(−) = 1, depth(y(+)) > 1,deg(y(+)) 6 deg(z(+))− 1,(3.12)

deg
(0)
−1(y) = deg

(0)
−1(z) + 1.

Then the lemma follows from (3.5), (3.6), (3.8)–(3.12). �

Lemma 3.4. — Let z be a PBW monomial of the form (2.8) such that z(−) = 1. Then

L̃−1z = cz(+)(γ −
q∑
j=1

aj,1βj)(−1)z(0) + y1,

where c is a nonzero constant, γ =
∑q
j=1

∑rj
s=1 aj,sβj, and y1 is a linear combination

of PBW monomials y such that

deg
(0)
−1(y) = deg

(0)
−1(z) + 1, deg(y(+)) 6 deg(z(+))− 1,

or
deg

(0)
−1(y) 6 deg

(0)
−1(z).

Proof. — Since the proof is similar to that of Lemma 3.3, we left the verification to
the reader. �

Lemma 3.5. — For i ∈ J+, we have that depth((wi)(+)) = 0.

Proof. — First we have

w =
∑
j∈J+

λjw
j +

∑
j∈J(0)
−1rJ+

λjw
j +

∑
j∈J1rJ(0)

−1

λjw
j +

∑
j∈JrJ1

λjw
j .

Then by Lemma 3.2(b) and Lemma 3.4, we have

(k + h∨)L̃−1w =
∑
i∈J+

(wi)(+)

(
γi −

q∑
j=1

a
(i)
j,1βj

)
(−1)(wi)(0)

+
∑

i∈J1rJ+

(wi)(+)

(
γi −

q∑
j=1

a
(i)
j1 βj

)
(−1)(wi)(0) + y1,

where γi =
∑q
j=1

∑r
(i)
j

s=1 a
(i)
j,sβi, for i ∈ J1, and y1 is a linear combination of PBW

monomials y satisfying one of the following conditions:

deg
(0)
−1(y) = d

(0)
−1 + 1, deg(y(+)) 6 d+ − 1,

deg
(0)
−1(y) 6 d(0)

−1,

y(−) 6= 1.

On the other hand, by Lemma 2.4

L−1w = L̃−1w.
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By Lemma 2.1, there is no PBW monomial y in L−1w such that deg(y(+)) = d+,
y(−) = 1, and deg

(0)
−1(y) = d

(0)
−1 + 1. Then we deduce that∑

i∈J+

(wi)(+)

(
γi −

q∑
j=1

a
(i)
j,1βj

)
(−1)(wi)(0) = 0,

which means that (γi −
∑q
j=1 a

(i)
j,1βj) = 0, for i ∈ J+, that is, depth((wi)(+)) = 0. �

As explained at the beginning of §3.3, Theorem 1.1 will be a consequence of the
following lemma.

Lemma 3.6. — For each i ∈ J+, we have depth(wi) = 0.

Proof. — By definition, for i ∈ J+, (wi)(0) = 1. Moreover, by Lemma 3.5,
depth((wi)(+)) = 0. Hence it suffices to prove that for i ∈ J+,

(wi)(0) = u1(−1)c
(i)
1,1 · · ·u`(−1)c

(i)
`,1 .

Suppose the contrary. Then there exists i ∈ J+ such that

wi = eβ1(−1)a
(i)
1,1 · · · eβq (−1)a

(i)
q,1u1(−1)c

(i)
1,1 · · ·u1(−m1)c

(i)
1,m1

· · ·u`(−1)c
(i)
`,1 · · ·u`(−m`)

c
(i)
`,m`1,

with at least one of the mj ’s, for j = 1, . . . , `, strictly greater than 1 and c(i)j,mj
6= 0

for such a j. Without loss of generality, one may assume that 1 ∈ J+, that

m1 = max{mj | j = 1, . . . , `} and 0 6= c
(1)
1,m1

> c(i)1,m1
, for i ∈ J+.

Writing L−1w as

L−1w =
∑
i∈J+

L−1w
i +

∑
i∈J(0)
−1rJ+

L−1w
i +

∑
i∈J1rJ(0)

−1

L−1w
i +

∑
i∈JrJ1

L−1w
i,

we see by Lemma 2.1 that

(3.13) L−1w = λ1m1c
(1)
1,m1

v1 +
∑

i∈J+,i6=1

λim1c
(i)
1,m1

vi + v + v′,

where for i ∈ J+, vi is the PBW monomial defined by:

(vi)(−) = (wi)(−) = 1,(3.14)

(vi)(+) = (wi)(+) = eβ1
(−1)a

(i)
1,1 · · · eβq

(−1)a
(i)
q,1 ,(3.15)

(vi)(0) = u1(−1)c
(i)
1,1 · · ·u1(−m1)c

(i)
1,m1

−1u1(−m1 − 1) · · ·u`(−m`)
c
(i)
`,m` ,(3.16)

and so, by definition of J+ ⊂ J (0)
−1 ,

(3.17) deg
(0)
−1(vi) = d

(0)
−1,

v is a linear combination of PBW monomials x such that

x(0) = u1(−1)c
(x)
1,1 · · ·u1(−n(x)

1 )
c
(x)

1,n
(x)
1 · · ·u`(−1)c

(x)
`,1 · · ·u`(−n(x)

` )
c
(x)

`,n
(x)
`
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and

either n(x)
1 6 m1, or deg(x(+)) 6 d+ − 1, or deg

(0)
−1(x) 6 d(0)

−1 − 1,

and v′ is a linear combination of PBW monomials x such that x(−) 6= 1. Note that
the assumption that m1 > 2 makes sure that (3.17) holds, and that depth(vi) =

depth(wi) + 1 for all i ∈ J+.
On the other hand, by Lemma 2.4,

L−1w = L̃−1w,

since w is a singular vector of V k(g). Hence v1 must be a PBW monomial of L̃−1w.
Our strategy to obtain the expected contradiction is to show that there is no PBW
monomial v1 in L̃−1w

i for each i ∈ J .
– Assume that i ∈ J+, and suppose that v1 is a PBW monomial in L̃−1w

i. First
of all, deg((wi)(+)) = d+ because i ∈ J+. Moreover, by the definition of J1 and
Lemma 3.5, we have (wi)(−) = 1 and depth((wi)(+)) = 0. Hence by Lemma 3.3(2),

deg((v1)(+)) < deg((wi)(+)) = d+

because (v1)(−) = 1 and depth((v1)(+)) = 0 by (3.14) and (3.15). But d+ =

deg((v1)(+)) by (3.15), whence a contradiction.
– Assume that i ∈ J (0)

−1 r J+. By the definition of J+ and (3.15),

(3.18) deg((wi)(+)) < d+ = deg((v1)(+)).

Suppose that v1 is a PBW monomial in L̃−1w
i. Then

(3.19) (wi)(−) = 1 = (v1)(−)

by Lemma 3.1 since i ∈ J
(0)
−1 . The last equality follows from (3.14). Then by

Lemma 3.2(c), either deg((v1)(0)) = deg((wi)(0)) + 1, or (v1)(0) = (wi)(0). But it
is impossible that deg((v1)(0)) = deg((wi)(0)) + 1, by (d) of Lemma 3.2 because
deg((v1)(+)) > deg((wi)(+)). Therefore,

(v1)(0) = (wi)(0).

Computing L̃−1w
i, we deduce from

(v1)(+) = eβ1(−1)a
(1)
1,1 · · · eβq (−1)a

(1)
q,1 ,

that
(wi)(+) = eβ1

(−1)a
(j)
1,1 · · · eβq

(−1)a
(j)
q,1 .

Since (v1)(−) =(wi)(−) =1, it results from Lemma 3.3 that deg((v1)(+))6deg((wi)(+)),
which contradicts (3.18).

– Assume that i ∈ J1 r J
(0)
−1 . Then

(3.20) deg
(0)
−1(wi) < d

(0)
−1 = deg

(0)
−1(v1)

by (3.17). Suppose that v1 is a PBW monomial in L̃−1w
i. By Lemma 3.2(b) and (c),

(3.21) (wi)(−) = 1, deg
(0)
−1(v1) = deg

(0)
−1(wi) + 1,
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because (v1)(−) = 1 by (3.14). Remember that

(3.22) (v1)(+) = eβ1(−1)a
(1)
1,1 · · · eβq (−1)a

(1)
q,1 .

Computing L̃−1w
i, we deduce that

(wi)(+) = eβ1
(−1)a

(i)
1,1 · · · eβq

(−1)a
(i)
q,1 .

Since v(−) = 1 and deg
(0)
−1(v1) = deg

(0)
−1(wi) + 1, it results from Lemma 3.3(3) that

depth((v1)(+)) > 1, which contradicts (3.22).
– Finally, if j ∈ J r J1, then by Lemma 3.2(b), any PBW monomial y in L̃−1w

j

satisfies that y(−) 6= 1. So v1 cannot be a PBW monomial in L̃−1w
j .

This concludes the proof of the lemma. �

As already explained, Lemma 3.6 implies that w has zero depth and so its image
in RV k(g) is nonzero, achieving the proof of Theorem 1.1.

3.4. Remarks. — The statement of Theorem 1.2 is not true at the critical level. Also,
it is not true that the depth of a depth-homogeneous singular vector of S(g[t−1]t−1)

is always zero. Indeed, the g[[t]]-module S(g[t−1]t−1) can be naturally identified with
C[J∞g∗], where J∞X is the arc space of X, and so S(g[t−1]t−1)g[t] ∼= C[J∞g∗]J∞G.
It is known [RT92, BD, EF01] that

C[J∞g∗]J∞G ∼= C[J∞(g∗//G)].

This means that the invariant ring is a polynomial ring with infinitely many variables
∂jpi, i = 1, . . . , `, j > 0, where p1, . . . , p` is a set of homogeneous generators of
S(g)g considered as elements of S(g[t−1]t−1) via the embedding S(g) ↪→ S(g[t−1]t−1),
g 3 x 7→ x(−1). We have depth(∂jpi) = j although each ∂jpi is a singular vector of
S(g[t−1]t−1).

For k = −h∨, the maximal submodule Nk of V k(g) is generated by Feigin-Frenkel
center ([FG04]). Hence [FF92, Fre05], grNk is exactly the argumentation ideal of
S(g[t−1]t−1)g[t]. Therefore, the above argument shows that the statement of Theo-
rem 1.2 is false at the critical level.

4. W -algebras and proof of Theorem 1.3

Let f be a nilpotent element of g. By the Jacobson-Morosov theorem, it embeds
into an sl2-triple (e, h, f) of g. Recall that the Slodowy slice Sf is the affine space
f +ge, where ge is the centralizer of e in g. It has a natural Poisson structure induced
from that of g∗ ([GG02]).

The embedding spanC{e, h, f} ∼= sl2 ↪→ g exponentiates to a homomorphism
SL2→G. By restriction to the one-dimensional torus consisting of diagonal matri-
ces, we obtain a one-parameter subgroup ρ : C∗ → G. For t ∈ C∗ and x ∈ g, set

ρ̃(t)x := t2ρ(t)(x).
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We have ρ̃(t)f = f , and the C∗-action of ρ̃ stabilizes Sf . Moreover, it is contracting
to f on Sf , that is, for all x ∈ ge,

lim
t→0

ρ̃(t)(f + x) = f.

The following proposition is well-known. Since its proof is short, we give below the
argument for the convenience of the reader.

Proposition 4.1 ([Slo80, Pre02, CM16]). — The morphism

θf : G×Sf −→ g, (g, x) 7−→ g · x

is smooth onto a dense open subset of g∗.

Proof. — Since g = ge+[f, g], the map θf is a submersion at (1G, f). Therefore, θf is
a submersion at all points of G × (f + ge) because it is G-equivariant for the left
multiplication in G, and

lim
t→∞

ρ(t) · x = f

for all x in f+ge. So, by [Har77, Ch. III, Prop. 10.4], the map θf is a smooth morphism
onto a dense open subset of g, containing G · f . �

As in the introduction, let W k(g, f) be the affine W -algebra associated with a
nilpotent element f of g defined by the generalized quantized Drinfeld-Sokolov reduc-
tion:

W k(g, f) = H0
DS,f (V k(g)).

Here, H•DS,f (M) denotes the BRST cohomology of the generalized quantized Drinfeld-
Sokolov reduction associated with f ∈ N(g) with coefficients in a V k(g)-module M .
Recall that we have [DSK06, Ara15a] a natural isomorphism RW k(g,f)

∼= C[Sf ] of
Poisson algebras, so that

XW k(g,f) = Sf .

We write Wk(g, f) for the unique simple (graded) quotient of W k(g, f). Then XWk(g,f)

is a C∗-invariant Poisson subvariety of the Slodowy slice Sf .
Let Ok be the category O of ĝ at level k. We have a functor

Ok −→ W k(g, f) -Mod, M 7−→ H0
DS,f (M),

where W k(g, f) -Mod denotes the category of W k(g, f)-modules.
The full subcategory of Ok consisting of objects M on which g acts locally finitely

will be denoted by KLk. Note that both V k(g) and Lk(g) are objects of KLk.

Theorem 4.2 ([Ara15a])
(1) Hi

DS,f (M) = 0 for all i 6= 0, M ∈ KLk. In particular, the functor

KLk −→ W k(g, f) -Mod, M 7−→ H0
DS,f (M),

is exact.
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(2) For any quotient V of V k(g),

XH0
DS,f (V ) = XV ∩Sf .

In particular H0
DS,f (V ) 6= 0 if and only if G · f ⊂ XV .

By Theorem 4.2(1), H0
DS,f (Lk(g)) is a quotient vertex algebra of W k(g, f) if it is

nonzero. Conjecturally [KRW03, KW08], we have

Wk(g, f) ∼= H0
DS,f (Lk(g)) provided that H0

DS,f (Lk(g)) 6= 0.

(This conjecture has been verified in many cases [Ara05, Ara07, Ara11, AvE19].)

Proof of Theorem 1.3. — The directions (1) ⇒ (2) and (2) ⇒ (3) are obvious. Let us
show that (3) implies (1). So suppose that XH0

DS,f (Lk(g)) = Sf . By Theorem 1.1, it is
enough to show that XLk(g) = g∗. Assume the contrary. Then XLk(g) is contained in
a proper G-invariant closed subset of g. On the other hand, by Theorem 4.2 and our
hypothesis, we have

Sf = XH0
DS,f (Lk(g)) = XLk(g) ∩Sf .

Hence, Sf must be contained in a proper G-invariant closed subset of g. But this
contradicts Proposition 4.1. The proof of the theorem is completed. �

References
[ABD04] T. Abe, G. Buhl & C. Dong – “Rationality, regularity, and C2-cofiniteness”, Trans. Amer.

Math. Soc. 356 (2004), no. 8, p. 3391–3402.
[Ara05] T. Arakawa – “Representation theory of superconformal algebras and the Kac-Roan-

Wakimoto conjecture”, Duke Math. J. 130 (2005), no. 3, p. 435–478.
[Ara07] , “Representation theory of W -algebras”, Invent. Math. 169 (2007), no. 2, p. 219–

320.
[Ara11] , “Representation theory of W -algebras, II”, in Exploring new structures and nat-

ural constructions in mathematical physics, Adv. Stud. Pure Math., vol. 61, Math. Soc.
Japan, Tokyo, 2011, p. 51–90.

[Ara12a] , “A remark on the C2-cofiniteness condition on vertex algebras”, Math. Z. 270
(2012), no. 1-2, p. 559–575.

[Ara12b] , “W -algebras at the critical level”, in Algebraic groups and quantum groups, Con-
temp. Math., vol. 565, American Mathematical Society, Providence, RI, 2012, p. 1–13.

[Ara15a] , “Associated varieties of modules over Kac-Moody algebras and C2-cofiniteness
of W -algebras”, Internat. Math. Res. Notices (2015), no. 22, p. 11605–11666.

[Ara15b] , “Rationality of W -algebras: principal nilpotent cases”, Ann. of Math. (2) 182
(2015), no. 2, p. 565–604.

[AvE19] T. Arakawa & J. van Ekeren – “Rationality and fusion rules of exceptional W-algebras”,
2019, arXiv:1905.11473.

[AK18] T. Arakawa & K. Kawasetsu – “Quasi-lisse vertex algebras and modular linear differential
equations”, in Lie groups, geometry, and representation theory, Progress in Math., vol.
326, Birkhäuser/Springer, Cham, 2018, p. 41–57.

[AM17] T. Arakawa & A. Moreau – “Sheets and associated varieties of affine vertex algebras”, Adv.
Math. 320 (2017), p. 157–209, Corrigendum: Ibid 372 (2020), article Id. 107302.

[AM18a] , “Joseph ideals and lisse minimal W -algebras”, J. Inst. Math. Jussieu 17 (2018),
no. 2, p. 397–417.

[AM18b] , “On the irreducibility of associated varieties of W -algebras”, J. Algebra 500
(2018), p. 542–568.

[BLL+15] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli & B. C. van Rees – “Infinite chiral
symmetry in four dimensions”, Comm. Math. Phys. 336 (2015), no. 3, p. 1359–1433.

J.É.P. — M., 2021, tome 8

http://arxiv.org/abs/1905.11473


190 T. Arakawa, C. Jiang & A. Moreau

[BR18] C. Beem & L. Rastelli – “Vertex operator algebras, Higgs branches, and modular differ-
ential equations”, J. High Energy Phys. (2018), no. 8, article no. 114 (70 pages).

[BD] A. Beilinson & V. Drinfeld – “Quantization of Hitchin’s integrable system and Hecke
eigensheaves”, preprint, available at http://math.uchicago.edu/~drinfeld/langlands/
QuantizationHitchin.pdf.

[BFM] A. Beilinson, B. Feigin & B. Mazur – “Introduction to algebraic field theory on curves”,
preprint.

[CM16] J.-Y. Charbonnel & A. Moreau – “The symmetric invariants of centralizers and Slodowy
grading”, Math. Z. 282 (2016), no. 1-2, p. 273–339.

[DSK06] A. De Sole & V. G. Kac – “Finite vs affine W -algebras”, Japan. J. Math. 1 (2006), no. 1,
p. 137–261.

[DM06] C. Dong & G. Mason – “Integrability of C2-cofinite vertex operator algebras”, Internat.
Math. Res. Notices (2006), article no. 80468 (15 pages).

[EF01] D. Eisenbud & E. Frenkel – “Appendix to [Mus01]”, 2001.
[FF90] B. Feigin & E. Frenkel – “Quantization of the Drinfel′d-Sokolov reduction”, Phys. Lett. B

246 (1990), no. 1-2, p. 75–81.
[FF92] , “Affine Kac-Moody algebras at the critical level and Gel′fand-Dikĭı algebras”, in
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